
Frontpage for master thesis 

Faculty of Science and Technology 
 

 

 
 

Faculty of Science and Technology 

 

MASTER’S THESIS 

 

Study program/Specialization: 

 

Lektorutdanning for trinn 8-13 i realfag 

 

Spring semester, 2021 

 

 

Open / Restricted access 

 

Writer:  

Jardar Olav Jøsendal Kårstad 

 
(Writer’s signature) 

Faculty supervisor: 

David Ploog 

External supervisor(s):  

 

 

Thesis title: 

 

Error Correcting Codes and BCH Codes 

 

 

 

Credits (ECTS): 

30 

Key words: 

 Information theory, error detection, error 

correction, codes. 

 

 

 

 

 

         Pages: ………31………… 

     

     + enclosure: ………… 

 

 

         Stavanger, 15/06/2021 

       

 

 



Error Correcting Codes and BCH codes

Jardar Olav Jøsendal K̊arstad

15/06/2021



Abstract

One of the central topics in coding theory is the study of error detection
and correction, where codes are used to ensure that the correct information
can be extracted from a message or storage, even if an error occurs during
transmission, or a storage device is damaged. We give an overview of the
background of information theory, before learning the necessary theory to
understand a communication system and the structure of codes. One cen-
tral property of codes is the minimum distance, which determines how many
errors a code can detect and correct. We learn about some important clas-
sifications of codes, like the linear codes, which have a more systematic way
of finding the minimum distance. A subclass of the linear codes is the cyclic
codes, which have more effective ways of construction by using polynomi-
als. We look further into specific cyclic codes like the BCH codes, which
is constructed by choosing a defining minimum distance, the Reed-Solomon
codes, which is a special case of BCH code, and the Golay codes, which are
examples of perfect codes.



Contents

1 Introduction 2

2 Basic Theory 3
2.1 Motivation and focus . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 The minimum distance . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Code classes 15
3.1 Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 BCH Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Golay Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Coding theory in school 31

1



Chapter 1

Introduction

Whenever we send and receive information between each other, there is al-
ways a risk of that information getting distorted in some way. Whether it is
a loud noise drowning out our speech, or water smudging ink on a paper, it
is hard to guarantee that someone will always receive our intended messages.
In digital communication, information gets converted into bits of ones and ze-
roes and gets transferred either wirelessly or through some physical medium
like a cable. It is during these transfers that our messages are exposed to
external interference, such as electromagnetic waves, that can change ones
into zeroes and zeroes into ones.

The purpose of error detection and correction is to find effective ways
of making sure that a potential receiver will be able determine if any errors
have occurred, and deduce the original message if any such errors did occur.
Certain families of codes have internal mathematical structures that make
construction and analysis of the codes more manageable, and these struc-
tures will be the main topics of interest in this thesis.

The first chapter will cover the basic theory necessary to understand how
one constructs a code, as well as look into the parameter called the minimum
distance, and see how this determines the error-correcting capabilities of a
code. The second chapter will cover different classes of structured codes,
such as the Hamming code, which is the first error-correcting code. It will
then introduce cyclic codes, and look at some subclasses within these. The
final chapter will briefly discuss the possibilities of introducing some of the
mathematical concepts used in this thesis to pupils at different grades in
school.

2



Chapter 2

Basic Theory

2.1 Motivation and focus

For my bachelor thesis, I wrote about the card game SET and finite geome-
try. The thesis focused mainly on how the cards in the game can be used to
represent finite fields, and how the way the game is played is actually based
on algebraic principles. For the final part of the thesis, I barely touched
upon the concepts of error detection and correction, where I looked at ways
the properties of the cards can be used to determine if any mistakes have
been made during a game, and then correct them. This turned to be an
interesting field with important real life applications, and served as a great
motivation to write this thesis, where I will get a chance to look further into
the mathematical concepts behind error detection and correction.

The focus of this thesis will mainly be to learn some of the tools and ter-
minology of coding theory, and give a thorough explanation some important
mathematical proofs. The theory in this thesis will closely follow the books
CODING THEORY a first course by Henk. C.A. van Tilborg [3], and Intro-
duction to Coding Theory Lecture Notes by Yehuda Lindell [2]. All theorems
and proofs can be found in van Tilborg (1993) [3].

2.2 Information Theory

The mathematical theory of communication was first introduced by Claude
Shannon in 1948, when he presented his noisy-channel coding theorem. Shan-
non states that good codes can be designed, so that information can safely
be exchanged with a low risk of transmission errors [3].

3



CHAPTER 2. BASIC THEORY 4

In the context of this paper, we think of communication as the process
where information is being exchanged between a sender and a receiver. The
information must be transferred across some medium called the channel, and
this can be the cables that signals travel through, or a disk that information
is written on to be read at a later time. The channel will consist of an input
alphabet X and an output alphabet Y .

Definition 1. An alphabet Q = {q1, q2, q3, ..., qn} is a collection of symbols
that can be arranged in different orders to form words.

If the sets X and Y consist of the same symbols, the channel is said to be
symmetric. A channel that uses symbols from an alphabet with q elements is
said to be q-ary, so for example the channel that uses the alphabet Q = {0, 1}
is the binary channel. For the majority of this thesis we will be working
with the Binary Symmetric Channel, or BSC, which is the language used
by our computers. Here, the symbols of Q = {0,1} form the basic unit of
information, and are called bits.

2.3 Codes

When we send a message, we put together a string of bits and send it across
a channel. Noise in the channel refers to all the factors that may alter the
symbols in our string, and our goal is to find ways of making our messages
more robust before sending them through a noisy channel. The way we do
this is to add some extra bits to them. These extra bits carry no information,
but will instead serve as a way for the receiver to check whether any errors
have occurred, and are therefore referred to as redundancy.

Definition 2. The algorithm used to systematically add redundancy to a
message is called the encoder.

When an encoder has added some redundancy to a message, we have
what is referred to as a codeword. This codeword is then sent through the
channel, and when it arrives at the receivers end, they will have to decode it
and check if any errors have occurred.

Definition 3. The algorithm used to convert a received codeword back into
the original message is called the decoder.

The reason we know that something is wrong when we see the word ”uni-
versiky” is that this is not a valid word in the English language. We conclude
that an error must have occurred, and it is quite easy to decode it into a word



CHAPTER 2. BASIC THEORY 5

that makes sense. The same idea is used in coding theory. Whenever we re-
ceive a non-valid word, we use our decoding algorithm to correct it into a
valid one.

Example 1. Suppose we wish to send a simple yes/no message, where 0
symbolizes ”no” and 1 symbolizes ”yes”. These two bits are representing the
information we wish to convey, and as such they are called information bits
or data bits. All it takes is for one error to occur, before the meaning of our
message changes completely.

In order to improve our chances that the correct message is received, we
can add some redundancy to our information bits. Instead of sending only
a 0 or a 1, we can repeat the the intended bit three times. That way, ”no”
becomes 000 and ”yes” becomes 111. This particular way of making the
message more robust is called the repetition code. If the receiver then gets a
message reading something like 101 or 001, they can determine that an error
has occurred, since these combinations of symbols do not represent any valid
words. In order to correct such an error, they will use a maximum likelihood
algorithm. This simply means to look at what symbol appears the most in a
received word, and then change the others accordingly. The word 101 would
then be corrected to 111, while 001 would be corrected to 000.

With this, we have seen our first example of a block code, sometimes
simply referred to as a code. The next step will be to define the different
parameters that describe the characteristics and capabilities of codes. The
number of symbols used to form a codeword is its length. If a code C uses an
alphabet Q, and all codewords have a fixed length n, then all valid codewords
form a subset of Qn. The number of codewords in a code is its size or
cardinality, and is usually denoted by M . Out of the n symbols used to form
a codeword, only k symbols carry information. This is called the dimension
of the code, and the remaining symbols r = n− k are the redundancy of the
codeword. The relation R = k/n is called the information rate of a code,
and tells us how effective a code is based on how many of the transferred bits
actually carry any information.



CHAPTER 2. BASIC THEORY 6

2.4 The minimum distance

In this section, we will define a few parameters that describe the error-
correcting capabilities of codes. The first one is the Hamming distance,
which is the number of coordinates in which two codewords differ.

Definition 4. The Hamming distance d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|.

As an example, the Hamming distance between the codewords

c1 = 110101

c2 = 111100

is 2 because the third and sixth coordinates are different. The smallest
distance between any two codewords in a code is called the minimum dis-
tance, and this parameter is crucial for determining how many errors a code
is able to detect and correct.

Definition 5. The minimum distance d of a code C is given by

d = min{d(x,y) | x ε C, y ε C, x 6= y} (2.1)

A code of length n, cardinality M , and minimum distance d is typically
labeled as an (n, M, d) code. Another way of thinking about the minimum
distance is that it represents the number of coordinates we can change in a
codeword before it becomes another valid codeword. Let us consider a binary
code C consisting of the codewords

x = 0

y = 1

The minimum distance d in this case is 1. If a sender transmits the codeword
0, and the receiver receives a 1, then they have no way of knowing that an
error occurred since what they received is also a valid codeword. Let us now
consider a binary code C with the codewords

x = 00

y = 11

In this code, the minimum distance d is equal to two, because we must
change two coordinates in a codeword in order for it to become another code-
word. If a sender now transimts the codeword 00, and the receiver receives



CHAPTER 2. BASIC THEORY 7

either a 01 or a 10, then they can determine that an error must have occurred
since neither of these vectors are valid words in our code. In general, if a
code has minimum distance d = t + 1, then as long as no more than d − 1
errors occur we can detect up to t errors.

If a code has minimum distance

d = 2e+ 1,

then the code can correct up to e errors.

Definition 6. The error-correcting capability e is given by

e =

⌊
d− 1

2

⌋
(2.2)

Even though we can determine that an error has occurred when we receive
either 01 or 10, we have no way of knowing whether the intended message
was 00 or 11. For this, we need a larger minimum distance between the
codewords.

Minimum distance d Detectable errors t Correctable errors e
1 0 0
2 1 0
3 2 1
4 3 1
5 4 2

When creating a more complex system for communication where large
quantities of information will be transferred, it becomes necessary to have a
code with a sufficient number of codewords in it. We will now look at a few
definitions required to understand how many codewords we can fit in a code.

A Hamming ball is a visualization of the error-correcting capability of a
code. We can imagine a ball of radius e around a codeword x, where the
elements inside this ball are all the non-valid words at distance at most e
from x. For the purpose of error correcting, it is important that all such
balls are disjoint, meaning that any element in Qn appears in at most one
ball.

Definition 7 (Hamming ball). A Hamming ball of radius r around a code-
word x is denoted by Br(x), where the cardinality of such a ball is given
by

|Br(x)| =
r∑
i=0

(
n

i

)
(q − 1)i. (2.3)



CHAPTER 2. BASIC THEORY 8

To determine the cardinality of a Hamming ball of radius r, is to de-
termine how many words lie at distance at most r from a codeword c. To
do this, we must first choose i out of the n coordinates in the codeword to
change. This gives us

(
n
i

)
options. We must then replace the symbols in

those coordinates with one of the other (q−1) symbols in our alphabet. The
number of words at distance i from x is therefore

(
n
i

)
(q−1)i. By adding these

up for all 0 ≤ i ≤ r, we find the total number of elements in the Hamming
ball of radius r.

The set of all possible words Qn can be partitioned into |C| disjoint
Hamming balls, one for each valid codeword. As all the balls are disjoint, we
can add up all the elements in every Hamming ball and get a maximum of
qn elements.

Theorem 1 (Hamming bound). Let C be a code with error-correcting capa-
bility e. Then

|C|
e∑
i=0

(
n

i

)
(q − 1)i ≤ qn. (2.4)

We may get values less than qn, because certain words may not lie in any
Hamming ball. This is the case whenever the minimum distance of a code is
an even number, since each Hamming ball must contain the same number of
elements and not overlap.

Another essential parameter is the covering radius of a code. This refers
to the smallest distance any word x in Qn can lie from a codeword c. In
other words, if d(x, C) = min{d(x, c)| c εC} is the distance between any
word x and the code C, then the covering radius is given by the following
definition:

Definition 8. The covering radius ρ of a code C is given by

ρ = max{d(x, C) | x ε Qn}. (2.5)

Knowing that every word inQn lies at distance at most ρ from a codeword,
we can draw a Hamming ball of radius ρ around every codeword and be sure
that every element in Qn is contained in at least one of these balls.

Theorem 2.

|C|
ρ∑
i=0

(
n

i

)
(q − 1)i ≥ qn. (2.6)



CHAPTER 2. BASIC THEORY 9

In the special case when ρ = e, we have what is called a perfect code.
These are codes where the Hamming balls of radius e cover all of Qn, meaning
every element in Qn is contained in exactly one ball.

Theorem 3 (Sphere packing bound).

|C|
e∑
i=0

(
n

i

)
(q − 1)i = qn. (2.7)

The repetition code of length n is an example of a perfect code. This
will have a minimum distance equal to n, but the rate will decrease as we
increase n. As it turns out, there are only two other families of codes that
are perfect, which we will cover later in the thesis.

The final theorem in this section gives us an upper bound on how many
codewords we can have in a code. A proof of the existence of a lower bound
can be found in van Tilborg [2] on page 12.

Theorem 4 (Singleton bound). Let C be a (n,M, d) code, then
M ≤ qn−d+1.

Proof. If we delete the last d− 1 coordinates in every valid codeword, their
new length becomes n − (d − 1) = n − d + 1. Because all codewords are at
distance at least d from each other, these new words will still be distinct, but
there are only qn−d+1 distinct words of this length over the alphabet of size
q. The number of valid codewords therefore not exceed this number.

Codes where the cardinality meets this bound, meaning M = qn−d+1, are
called maximum-distance-separable codes, or MDS codes.

2.5 Fields

It will be useful go through some of the fundamentals of field theory before
moving on to looking at the construction of specific codes. As we shall see,
there are many useful algebraic tools we can use to build effective and reliable
codes.

Some well known examples of fields are the rational numbers Q, the real
numbers R and the complex numbers C. These are all sets of elements closed
under the operations of addition, subtraction, multiplication and division.

Definition 9. A field is a set F that together with the operations of addition
and multiplication satisfy a set of axioms.



CHAPTER 2. BASIC THEORY 10

• If x, y ε F then x + y ε F, and xy ε F.

• Commutativity: x + y = y + x, and xy = yx.

• Associativity: (x + y) + z = x + (y + z), and (xy)z = z(yz).

• F contains the additive and multiplicative identity elements, such that
x + 0 = x and 1x = x.

• F contains the additive and multiplicative inverses, such that
x + (-x) = 0 and for each x 6= 0, xx−1 = 1.

• Distributivity: x(y + z) = xy + xz

The sets R, Q and C are all infinite fields, meaning they contain an in-
finite number of elements. A finite field, or Galois field, has only a finite
number of elements, but still satisfy all the field axioms. Some well known
Galois fields are the integers mod pm, where p is a prime number. In fact,
for each prime power pm, there exists a unique field with pm elements.

Every finite field contains at least one element called a primitive element
α, such that every other element except zero can be expressed as a power
of α, i.e. GF (qm) = {0, 1, α, α2, ...}. The field GF (5) = {0, 1, 2, 3, 4}
can for example be generated by both two and three when raised to different
powers modulo five.

20 = 1 30 = 1

21 = 2 31 = 3

22 = 4 32 = 9 ≡ 4 (mod 5)

23 = 8 ≡ 3 (mod 5) 33 = 27 ≡ 2 (mod 5).

2.6 Linear codes

The properties and capabilities of our codes depend on the structures we
choose when we construct them. There are certain structures we can choose
that will make finding parameters like the minimum distance, and thereby
the error-correcting capability, much easier. One way of achieving this is to
make our codes linear. This involves giving our alphabet the structure of a
Galois field GF (q) for some q = pm, where p is a prime number. We also
consider all words in Qn as vectors in an n-dimensional vector space, denoted
by Vn(q). This means that codewords can also be referred to as code vectors



CHAPTER 2. BASIC THEORY 11

from now on, and will be denoted in bold text.

Definition 10. A linear, q-ary code C of length n is any linear subspace of
Vn(q). If C has dimension k and minimum distance d, then we can label C
as a [n, k, d] code. The cardinality of such a code is qk.

As for the minimum distance of linear codes, it is not necessary to compare
all
(
M
2

)
pairs of codewords and see which one is smallest.

Theorem 5. The minimum distance of a linear code C is equal to the lowest
non-zero Hamming weight in C.

Proof. For linear codes, the sum of two valid code vectors will result in
another valid code vector. If x and y are in C, then x + y and x - y are
also in C. This lets us observe the following:

d(x,y) = d(x− y, 0) = w(x− y). (2.8)

Considering that w(x) = d(x, 0), we see how the distance between two code-
words in C is equal to the weight of some other codeword in C.

For this reason, it is sufficient to find the lowest Hamming weight in a
linear code to know its minimum distance. This is a very useful property,
especially for codes of lower cardinality. For codes with a large number of
codewords, sometimes in the thousands, it becomes necessary to find other
ways of finding the minimum distance, which is something that will not be
covered in this thesis.

When it comes to the construction and representation of linear codes,
there are some elegant methods here as well. A k-dimensional linear subspace
can be represented by a set of k independent vectors, called basis vectors.
A selection of codewords can be chosen to serve as the basis vectors for a
code, and together they form a generator matrix that is used to generate the
remaining codewords.

Definition 11. The generator matrix G of an [n, k, d] code C is a k × n
matrix, where the k rows form the basis of C.

The generator matrix is used to transform k-dimensional message vectors
a into n-dimensional code vectors c. Once the generator matrix has been
formed, it can be multiplied with all qk message vectors to generate a code.

C = {aG | a ∈ Vk(q).}



CHAPTER 2. BASIC THEORY 12

For this reason, a linear code can be represented by a single matrix, instead
of a long list of codewords. When a generator matrix is written on the form
(Ik P ), it is called standard form, where Ik is the k × k identity matrix.

Example 2. The binary [5, 2, 3] code can be generated by the generator
matrix

G =

(
1 0 1 0 1
0 1 1 1 0

)
. (2.9)

The cardinality of this code will be qk = 22 = 4, so we can multiply all
four message vectors of length 2 with our matrix to generate our codewords.

Message vector a Code vector c = aG
00 00000
01 01110
10 10101
11 11011

With the generator matrix being in standard form (Ik P ), the first two bits of
the codewords are equal to the message bits, while the last three bits are the
redundancy. As this is a smaller linear code, it is quite easy to determine that
the minimum distance is equal to 3, as this is the lowest non-zero Hamming
weight of the code.

Another way of describing a k-dimensional vector space such as this is
with n − k linearly independent equations. This allows us to form another
type of matrix that describes a linear code, called the parity check matrix.
Acting as a kind of compliment to the generator matrix, the parity check
matrix is essential in the decoding process of received codewords.

Definition 12. The parity check matrix H of an [n, k, d] code is the (n−k)×n
matrix, that when multiplied with a transposed codeword returns the zero
vector.

c ∈ C ⇐⇒ HcT = 0T . (2.10)

If the generator matrix was written on the form (Ik P ), then the parity
check matrix can be written as (−P T In−k). This is so that the product
GHT = 0k,n−k gives the all-zero matrix of size k × (n− k).

The definition of the parity check matrix states that a received codeword
is only valid if it returns the zero vector when multiplied by the parity check
matrix. This leads us the concept of decoding and the following definition:



CHAPTER 2. BASIC THEORY 13

Definition 13. Let C be a q-ary [n, k, d] code with parity check matrix H,
and let x be a vector in Vn(q). The vector s = HxT is a vector in Vn−k(q)
and is called the syndrome of x.

If the vector r is received, and the syndrome of r is computed to be 0,
then one assumes that no error has occured and that r is a valid codeword.
If the code vector c is sent, and the vector r is received, then an error has
occurred and the syndrome will be non-zero. We let the vector e denote the
error vector, and let r = c + e. We can then show the following:

HrT = H(c + e)T = HcT +HeT = HeT . (2.11)

We know from (2.10) that HcT = 0, so the syndrome of r depends only on
the error vector. Once we have determined that an error has occurred, the
next step becomes to find the intended message c, by first finding the vector
e of minimal weight such that r− e = c.

The way this is done is to consider the solutions of the system of linear
equations s = HxT . Not only will r be a solution, but all vectors r+c, where
c is in C, will form the solution space. This means that the set r + c forms
a coset, which is a set of words in Vn(q) which all have the same syndrome.
In order to correct the error, we must find the vector e in this coset with the
lowest Hamming weight, called the coset leader.

When e has been found, we have a good maximum-likelihood estimate
for the correct codeword with c = r − e. A coset leader does not have to
be unique, and in that case we have no sure way of estimating the intended
message.

Going back to our example with the [5, 2, 3] code, we can start by
constructing the parity check matrix, and then use it to correct an error
in a transmitted codeword. Writing the parity check matrix on the form
(−P T In−k) we get

H =

1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

 . (2.12)

Now suppose we receive the vector r =(0,1,1,1,1). Transposing this and
multiplying it with H gives us

s = rTH =

0
0
1

 . (2.13)



CHAPTER 2. BASIC THEORY 14

We get a non-zero syndrome, and conclude that an error has occurred.
In order to correct this error, it is necessary to look at all possible words in
Qn, and group them together in the right cosets. In this example, there are
four words sharing the syndrome s = (0, 0, 1)T , where (0, 0, 0, 0, 1) is the one
with the lowest weight. We therefore determine this to be our error vector
e, and we can complete the decoding.

c = r− e = (0, 1, 1, 1, 0). (2.14)

This method of decoding is clearly not suited for long codes, as this re-
quires us to write unreasonably long lists of words to compare the cosets.
Instead, it gives us a nice glimpse into the some of the ideas behind error
correction.

Before ending this chapter, we should mention one of the most important
families of linear codes, namely the Hamming codes. We will not be able to
dedicate a section to this topic, but it is worth mentioning that this is the
second family of codes which is perfect. The third and final family of perfect
codes will be discussed at end of the following chapter.



Chapter 3

Code classes

3.1 Cyclic Codes

The next step is look at a special subclass of linear codes, namely the cyclic
codes. This is the point where we will start thinking a little differently
about our codewords, when we start representing them as q-ary polynomials
over the field GF (q) instead of vectors. A polynomial defined over a field
GF (q) simply refers to a polynomial where all coefficients are elements in
GF (q). The set of all such polynomials is denoted by GF (q)[x]. The reason
for this change is to take advantage of the mathematical utilities that be-
come available when working with polynomials, and we shall see how these
are particularly useful for expressing and performing calculations with cyclic
codes.

Definition 14 (Cyclic codes). A code C is cyclic if it is linear, and for every
codeword (c0, c1, c2, ..., cn−1) in C, the cyclic shift (cn−1, c0, c1, ..., cn−2) is
also in C.

What this means is that if we take the last coordinate of any codeword
in a cyclic code C and move it to the front, we get another valid codeword
in C. If we keep shifting a codeword like this, we will eventually end up with
the initial codeword again.

C = {000, 101, 110, 011} is an example of such a code. The cyclic shift of
one codeword, as well as the sum of any two codewords, results in another
valid codeword in C.

The code vector c = (c0, c1, c2, ..., cn−1) will now be represented as the

15



CHAPTER 3. CODE CLASSES 16

polynomial

c(x) = c0 + c1x+ c2x
2 + ...+ cn−1x

n−1,

where c0 represents the constant coefficient, c1 represents the linear coefficient
and so on.

To show why this notation is well suited for expressing cyclic codes, we
shall consider the case where we multiply c(x) by x. As we shall see, this will
give us the cyclic shift of c(x) if we reduce modulo xn − 1 after multiplying.

xc(x) ≡ x(c0 + c1x+ c2x
2 + ...+ cn−1x

n−1) ≡
≡ c0x+ c1x

2 + c2x
3 + ...+ cn−2x

n−1 + cn−1x
n ≡

≡ cn−1 + c0x+ c1x
2 + ...+ cn−2x

n−1 (mod xn − 1).

When calculating mod xn − 1, then

xn ≡ 1 → cn−1x
n ≡ cn−1. (3.1)

This gives us an n-dimensional basis for the vector space denoted by
GF (q)[x]/(xn − 1), that refers to the polynomials of GF (q)[x] when calcu-
lated modulo xn − 1.

Multiplying a codeword c(x) by x corresponds to one cyclic shift to the
right, and since the cyclic shift of any codeword must result in a new code-
word, we see that x2c(x), x3c(x), and so on, are all valid codewords. Since C
is linear, we also know that any linear combination of these polynomials is in
C, and so we conclude that we can multiply a codeword by any polynomial
as long as we reduce modulo xn − 1. Specifically, for any polynomial f(x),
we have f(x)c(x) (mod xn − 1) ∈ C.

One of the benefits of working with cyclic codes is their effectiveness when
it comes to describing different codes. More specifically, instead of having
to write out long lists of valid codewords, or constructing large generator
matrices, we can describe a specific code with just one single polynomial,
called the generator polynomial.

Theorem 6. Let C be a cyclic code in Vn(q), then there exists a unique
monic polynomial g(x) over GF (q) dividing xn − 1 with the property

c(x) is in C ⇐⇒ g(x) divides c(x). (3.2)



CHAPTER 3. CODE CLASSES 17

Proof. Let g(x) be the non-zero monic polynomial of lowest degree in C. If
g(x) divides c(x), then we can write c(x) = f(x)g(x) + r(x), where r(x) is
the residue after division. The degree of r(x) must then be lower than that
of g(x). When g(x) is in C, we have shown that f(x)g(x) (mod xn − 1) is
also in C, and when c(x) is in C, we know through linearity that r(x) must
be in C. Because g(x) is of the lowest degree, r(x) must be equal to zero,
and we conclude that c(x) = f(x)g(x).

In practice this means that if we can factorize xn − 1 over some field
GF (q) into its irreducible factors, then we can use these factors to generate
all cyclic codes of length n.

Example 3. If we wanted to create a binary cyclic code of length 7, then
our generator polynomial would divide x7− 1. This is factorized over GF (2)
as:

x7 − 1 = (x+ 1)(x3 + x2 + 1)(x3 + x+ 1). (3.3)

Knowing that g(x) divides x7 − 1, we see that any one of these factors, or
any product of them, can be used as our generator polynomial. This gives us
a total of eight different generator polynomials, thereby defining eight cyclic
codes.

Generator polynomial g(x) Generated code C
1 V7(2)

x+ 1 [7,6]
x3 + x+ 1 [7,4,3] Hamming code
x3 + x2 + 1 [7,4,3] Hamming code

(x+ 1)(x3 + x+ 1) [7,3]
(x+ 1)(x3 + x2 + 1) [7,3]

(x3 + x+ 1)(x3 + x2 + 1) [7, 1, 7] repetition code
(x+ 1)(x3 + x2 + 1)(x3 + x+ 1) [7,0]

Some of these codes are equivalent to each other, like the [7,4] Hamming
codes. The equivalence of codes is explained in van Tilborg [2] on page 11.
The [7,0] zero code is trivial since it only contains the zero vector, and when
g(x) = 1 we generate the entire vector space.

Once we have our generator polynomial, the next step is to determine
the dimension k of our code. Before we can use our generator polynomial to
encode a message, we need to how many of the n bits will be message bits,
and how many will be redundancy. For this we have the following theorem:



CHAPTER 3. CODE CLASSES 18

Theorem 7. Let C be a k-dimensional cyclic code in Vn(q) with generator
polynomial g(x). The degree of g(x) is then equal to n− k.

Given the generator polynomial g(x) = g0 + g1x+ ...+ gn−kx
n−k, the gen-

erator matrix is defined as

G =


g0 g1 · · · · · · gn−k 0 · · · · · · 0
0 g0 g1 · · · · · · gn−k 0 · · · 0
0 0 g0 g1 · · · · · · gn−k · · · 0
...

...
. . . . . .

...
0 0 0 · · · g0 g1 · · · · · · gn−k


Proof. Let the degree of g(x) be equal to l, and let G∗ be the (n − l) × n
matrix, whose rows are the codewords xig(x), 0 ≤ i < n− l. The rank of G∗

will then be equal to n− l, because g(x) is monic.

Every codeword c(x) is a multiple of g(x), so we can write c(x) = u(x)g(x),
where the degree of u(x) must be lower than n− l because the degree of c(x)
is lower than n. With the code C having dimension k, we conclude that
k = n− l and G∗ = G.

The next step will be to briefly look at an alternative way of describing a
cyclic code. Knowing that g(x) divides xn−1, we can write xn−1 = g(x)h(x),
where h(x) is called the parity check polynomial.

Theorem 8. Let C be a cyclic code in Vn(q) with generator polynomial g(x).
C will then have a parity check polynomial h(x) = (xn − 1)/g(x) with the
property

c(x) ∈ C ⇐⇒ c(x)h(x) ≡ 0 (mod xn − 1).

Proof. First to prove that c(x) ∈ C =⇒ c(x)h(x) ≡ 0 (mod xn−1). When
c(x) is in C, we can write it as c(x) = f(x)g(x). This way, c(x)h(x) becomes
f(x)g(x)h(x) = f(x)(xn − 1) = 0 in GF (q)[x]/(xn − 1).

The next step is to prove that c(x) ∈ C ⇐= c(x)h(x) ≡ 0 (mod xn−1).
If c(x)h(x) ≡ 0 (mod xn − 1), then we have c(x)h(x) = f(x)(xn − 1). We
can replace (xn− 1) by g(x)h(x), and we get c(x)h(x) = f(x)g(x)h(x). This
shows that g(x) divides c(x), meaning c(x) ∈ C.

Finally, we can look at how one determines the minimum distance of a
cyclic code. For this, we need an extension field of the base field GF (q)



CHAPTER 3. CODE CLASSES 19

where xn − 1 can be factorised completely into linear factors. If we consider
the field GF (8), then another way of describing this is
GF (2)[x]/(x3 + x+ 1). Here, x3 + x+ 1 is the irreducible polynomial gener-
ating the extension field GF (8), and as such is called a primitive polynomial.

If we let α be a zero of x3 + x + 1, then α is a primitive element of
the multiplicative group of GF (2)[x]/(x3 + x+ 1), meaning every element in
the extension field except 0 can be generated by multiplying α by itself. In
other words, GF (2)[x]/(x3 + x + 1) = {0, 1, α, α2, ..., α6}. The relation
α3 = α+ 1 is used to reduce the degree of the polynomials to less than 3 for
the multiplication.

From (3.3) we saw that x7 − 1 is factorised in GF (2) as

x7 − 1 = (x+ 1)(x3 + x2 + 1)(x3 + x+ 1).

If we were to generate a code using x3 + x+ 1 as the generator polynomial,
then g(x) would factor into (x−α)(x−α2)(x−α4) over GF (23). The parity
check polynomial would then factor into (x−1)(x−α3)(x−α5)(x−α6) over
GF (23).

Over all, we have that

xq
m − 1 =

∏
ξ∈GF (qm), ξ 6=0

(x− ξ). (3.4)

We can factorise xn − 1 into linear factors over GF (qm) as long as n
divides (qm − 1). If we let n|(qm − 1), and let ω be a primitive element in
GF (qm), the the n different powers of α = ω(qm−1)/n will all be zeroes of
xn − 1. We can write the following:

xn − 1 =
n−1∏
i=0

(x− αi). (3.5)

Here, α is a zero of xn − 1, but will also generate all other zeroes. It is
therefore called a primitive n-th root of unity. In order for n|(qm − 1) to be
possible, we will from now on always assume that gcd(q, n) = 1.

From here we can write the generator polynomial as

g(x) =
∏
i∈I

(x− αi), (3.6)



CHAPTER 3. CODE CLASSES 20

where I is a subset of {0, 1,...,n-1} called the defining set of C with respect
to α. Now let mi(x) be the minimal polynomial of αi. What this means is
that mi(x) is an irreducible polynomial dividing xn− 1, and that αi is a zero
of mi(x). This means that (αi)q is also a zero, because (αi)q = αiq. In fact,
αiq

2
, ..., αiq

m−1
are all zeroes, and the exponents of α modulo n, written as

iqj, form a set called the cyclotomic coset Ci of i modulo n. We can reduce
modulo n because αn = 1.

The minimal polynomial can then be factorised as

mi(x) =
∏
l∈Ci

(x− αl). (3.7)

When generating a cyclic code, we choose a minimal polynomial, or a product
of minimal polynomials, to serve as our generator polynomial. In order to
find these minimal polynomials, we first find the corresponding cyclotomic
cosets. This is done by using the following property of the defining set:

i ∈ I → qi ∈ I. (3.8)

We multiply i by q and reduce modulo n.

We can from this derive the following theorem.

Theorem 9. Let Vn(q) be a vector space with gcd(q, n) = 1. Let m satisfy
n|(qm − 1), and let ω be a primitive element in GF (qm). Then α = ω(qm−1)

is a primitive n-th root of unity.

Let I = {i1, i2, ..., il} be the defining subset of a q-ary, cyclic code C of
length n, and let mi(x) be the minimal polynomial of αi. We then have the
following relations:

C = {c(x) | mi(x) divides c(x)for all i ∈ I}, (3.9)

C = {c(x) | c(αi) = 0 for all i ∈ I}. (3.10)

Making a cyclic code from scratch

We now have the tools necessary to make our own cyclic code from scratch!
We first need to determine the length of the code, and the base field we will
be working with. Let us make a binary code of length 9, and use the base
field GF (2). We know from Theorem 1 that a generator polynomial will
divide x9 − 1, so any factor of this expression can be used as our generator
polynomial. We can also write down the set of exponents of the n-th root



CHAPTER 3. CODE CLASSES 21

of unity as {0, 1, 2, 3, 4, 5, 6, 7, 8}. From this set we can generate the
cyclotomic cosets, by starting with 1 and multiplying by q = 2 and reducing
modulo 9.

C0 = {0}
C1 = {1, 2, 4, 8, 7, 5}
C3 = {3, 6}

C0 gives rise to the irreducible polynomial m0 = (x+ 1), meaning we can
write

x9 − 1 = (x+ 1)(x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1). (3.11)

The other cosets tell us that (x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1) can
be factored into two polynomials of order six and two. Starting with C3, it
contains two elements and should therefore define an irreducible polynomial
of degree two. Our code is binary, so this leaves us with the following options:

x2

x2 + x

x2 + 1

x2 + x+ 1

Observe that f(0) or f(1) yields zero for all of these polynomials except
for x2 + x + 1, meaning this is the only second degree polynomial which
is irreducible over GF (2). Our second irreducible polynomial is therefore
m1(x) = x2 + x+ 1. From this we can work out that

x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

x2 + x+ 1

will give us the last factor of x9−1. This polynomial division will give us

x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

x2 + x+ 1
= x6 + x3 + 1. (3.12)

We have now reduced x9 − 1 to its primitive polynomials:

x9 − 1 = (x+ 1)(x2 + x+ 1)(x6 + x3 + 1). (3.13)

Any one of these, or any product of them, can now be used to define a
cyclic code. Let us use x6 + x3 + 1 as our generator polynomial, and create



CHAPTER 3. CODE CLASSES 22

the appropriate generator matrix. The polynomial x6 +x3 + 1 in GF (2) cor-
responds to the code vector 100100100 in V9(2). This gives us the following
generator matrix:

G =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


We know that the degree deg g(x) = n−k, meaning the dimension of our

code is k = n − deg g(x) = 9 − 6 = 3. This corresponds nicely to our three
rows in our generator matrix. We can now take all binary message vectors
of length three and encode them using our matrix to construct the following
cyclic code:

Message bits Codeword
000 000000000
001 001001001
010 010010010
011 011011011
100 100100100
101 101101101
110 110110110
111 111111111

Another way of generating this code without using the matrix would be
to write all the message vectors as message polynomials and multiply them
with our generator polynomial and reduce modulo x9 − 1.

Message bits Message polynomial m(x) Codeword m(x)g(x)
000 0 0
001 x2 x2 + x5 + x8

010 x x + x4 + x7

011 x + x2 x+ x2 + x4 + x5 + x7 + x8

100 1 1 + x3 + x6

101 1 + x2 1 + x2 + x3 + x5 + x6 + x8

110 1 + x 1 + x+ x3 + x4 + x6 + x7

111 1 + x + x2 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8



CHAPTER 3. CODE CLASSES 23

3.2 BCH Codes

As we have seen, the minimum distance of a code is one of its most important
parameters, as this determines the error-correcting capability of the code. Up
until now, the codes we have been looking at have minimum distances that
depend on the other parameters we set for the code, meaning the minimum
distance is something we have to calculate after the code is made. We will
now move on to looking at a certain group of codes with a very nice property.
This new group is called the BCH codes, and is characterized by the fact that
we choose a designed distance first, and develop the rest of the code around
it. This will allow us to make sure that a code is able to correct as many
errors as we need it to, and this makes the BCH codes a very useful subclass
of the cyclic codes.

Definition 15. Let C be a cyclic code in Vn(q), with defining set I. If I con-
tains dBCH − 1 consecutive integers, C is said to be a BCH code of designed
minimum distance dBCH .

If I contains {1, 2, ..., dBCH−1} as a subset, the code is a called a narrow-
sense BCH code.

As mentioned, the benefit of using BCH codes is that we start by choosing
a designed minimum distance dBCH and develop the code around this. The
following theorem explains how the actual minimum distance such a code
will be greater or equal to the designed minimum distance.

Theorem 10 (BCH bound). Let C be a BCH code of designed minimum
distance dBCH . The minimum distance d will then satisfy

d ≥ dBCH .

Proof. Let α be an n-th root of unity. We start by considering any non-zero
codeword c(x) and defining the following polynomial:

C(X) =
n∑
i=1

c(αi)Xn−i.

Having c(αi) = 0 for all 1 ≤ i ≤ dBCH − 1, we see that the first non-zero
term in our sum is when i = dBCH . Knowing that c(αi) 6= 0 for all i ≥ dBCH ,
we see that C(X) has at most n − dBCH zeroes, meaning C(X) has degree
at most n− dBCH .

Now consider C(αl) for 0 ≤ l ≤ n− 1. We write



CHAPTER 3. CODE CLASSES 24

C(αl) =
n∑
i=1

c(αi)(αl)n−i.

Here we can rewrite (αl)n−i = αln−il, where αln = (αn)l = 1. Putting this
into our expression we get

C(αl) =
n∑
i=1

c(αi)α−il.

We can also rewrite

c(αi) = c0 + c1α
i + ...+ cn−1(α

i)n−1 =
n−1∑
j=0

cjα
ij.

This gives us

C(αl) =
n∑
i=1

n−1∑
j=0

cjα
ijα−il =

n−1∑
j=0

n∑
i=1

cjα
i(j−l) =

n−1∑
j=0

cj

n∑
i=1

αi(j−l).

As cj = 0 for j 6= l, we have

n−1∑
j=0

cj = cl.

Considering the geometric series 1 + z+ ...+ zn−1 = 1−zn
1−z , we can say the

following about this sum:
Let u = j − l, then

n∑
i=1

αiu = αu+α2u+...+αnu =
n∑
i=1

αiu = 1+αu+α2u+...+α(n−1)u =
1− αnu

1− α
= 0.

This is true for all 0 ≤ j ≤ n− 1, except for when j = l. Then we have

n∑
i=1

αiu =
n∑
i=1

α0 = n.

Finally, we conclude that C(αl) = ncl, and since the degree of C(X) is at
most n− dBCH , it follows that at most n− dBCH coordinates cl can be zero.
This lets us conclude that c(x) has a weight at least equal to dBCH .



CHAPTER 3. CODE CLASSES 25

Example 4. We will now look at how to construct a binary narrow-sense
BCH code of length n = 93 and designed minimum distance dBCH = 13.
From our definition of a narrow-sense code, we know that our defining set
must contain the elements {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12}. The smallest
extension field of GF(2) that contains 93-th roots of unity is GF (2m) such
that 93 divides 2m − 1. We find that m = 10, so our extension field will be
GF (1024).

We create the cyclotomic cosets by multiplying our elements iq (mod 93):

C1 = { 1 , 2 , 4 , 8 , 16, 32, 64, 35, 70, 47}
C3 = { 3 , 6 , 12 , 24, 48}
C5 = { 5 , 10 , 20, 40, 80, 67, 41, 82, 71, 49}
C7 = { 7 , 14 , 28, 56, 19, 38, 76, 59, 25, 50}
C9 = { 9 , 18, 36, 72, 51}
C11 = { 11 , 22, 44, 88, 83, 73, 53, 13 , 26, 52}.

Our generator polynomial can then be written as
g(x) = m1(x)m3(x)m5(x)m7(x)m9(x)m11(x). The cyclotomic cosets contain
fifty elements in total, meaning fifty zeroes. The degree of g(x) is therefore
equal to fifty, and the dimension of our code will then be k = n−deg(g(x)) =
43. It follows from the BCH bound that the minimum distance of this code
must be equal to or greater than the designed minimum distance. Looking at
the cyclotomic cosets, we see that they contain the zeroes I = {1, 2, ..., 14},
meaning the minimum distance is actually at least 15. The parameters of
this code is therefore [93, 43,≥ 15].

3.3 Reed-Solomon Codes

In 1977, NASA launched their Voyager program by sending two interstellar
probes into space. Their objective was to collect data and transmit this to
Earth as they moved through and eventually out of the solar system. As of
2021, the probes have entered interstellar space and are still collecting data.
The pictures sent back to Earth by these probes are encoded by certain
error-correcting codes, one of them being a special type of BCH code called
a Reed-Solomon code [1].

Definition 16. A Reed-Solomon code, or RS(n,k) code, is a narrow-sense
BCH code with length n = q − 1 and dimension k.



CHAPTER 3. CODE CLASSES 26

Because of this definition, the Reed-Solomon codes are good examples
of non-binary codes, as you need larger alphabets in order to create useful
codes. The code used by the Voyager probes is the RS(255, 223) code, with
an excellent information rate of 0.8745, or 87%.

When constructing RS codes, we consider extension fields GF (qm) of
some base field GF (q) that contain n-th roots of unity. When n = q− 1, the
smallest extension field that contains such roots is GF (q) itself. If we let α be
a primitive element in our field GF (q), and we choose a designed minimum
distance dBCH , then the generator polynomial for the corresponding RS code
is given by

dBCH−1∏
i=1

(x− αi).

Being a BCH code, we know from the BCH bound that the actual mini-
mum distance of the Reed-Solomon codes must be equalt to or greater than
the designed minimum distance dBCH . As it turns out, the true minimum
distance of a Reed-Solomon code is also upper bounded by the Singleton
bound, meaning it is actually equal to the designed minimum distance.

The following table shows a few examples of Reed-Solomon codes and
their parameters. The table lists the error-correcting capabilities t, dimen-
sions k, minimum distances d and information rates r.

q = 2m n = q - 1 t k d r
4 3 1 1 3 0.3333
8 7 1 5 3 0.7143

2 3 5 0.4286
3 1 7 0.1429

16 15 1 13 3 0.8667
2 11 5 0.7333
5 5 11 0.3333
7 1 15 0.0667

32 31 1 29 3 0.9355
5 21 11 0.6774
8 15 17 0.4839

256 255 5 245 11 0.9608
50 155 101 0.6078

Looking at the table, we can observe that the RS(255, 245) code would
make a particularly effective code, as it can correct up to five errors, and has



CHAPTER 3. CODE CLASSES 27

an impressive information rate of 0.9608, or 96%. The price we have to pay
is the long code length of 255.

3.4 Golay Codes

Finally, there exists a unique set of codes called the Golay codes. There are
two codes in this family, one binary, and one ternary. We will focus on the
binary version, which has the parameters [23, 12, ≥ 5]. Following the usual
algorithm for constructing cyclic codes, we know that a generator polynomial
g(x) must divide x23−1, meaning we can write x23−1 = (x−1)m1(x)m2(x).
Considering that we are working in GF (2), we can think of m2(x) as m−1(x),
and if we write out the cyclotomic cosets for m1(x) and m−1(x) (mod 23),
something interesting occurs:

C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}
C−1 = {−1,−2,−4,−8,−16,−9,−18,−13,−3,−6,−12}.

It turns out that the cosets C1 and C−1 are symmetric, and that m1(x) =
x11m−1(1/x). This can be shown by considering the following:

m−1(x) =
(1

x
− 1

α

)(1

x
− 1

α2

)(1

x
− 1

α4

)
. . .

(1

x
− 1

α12

)
.

x11m−1(x) = x11
(1

x
− 1

α

)(1

x
− 1

α2

)(1

x
− 1

α4

)
. . .

(1

x
− 1

α12

)
=

=
(

1− x

α

)(
1− x

α2

)(
1− x

α4

)
. . .

(
1− x

α12

)
.

This last expression has a total of 92 alphas in it. With α being a 23rd
root of unity, we have that αn·23 = 1. We can therefore multiply by α4·23 to
cover all the fractions and get

α4·23x11m−1(x) = (α− x)(α2 − x)(α4 − x) . . . (α12 − x) =

= (−1)(x− α)(x− α2)(x− α4) . . . (x− α12) = (−1)m1(x) = m1(x)

in GF (2).
Let c(x) be a codeword in the binary code C, generated by m1(x), and

let c(x) have an even Hamming weight w. For the binary Golay code, we
have the following implication:



CHAPTER 3. CODE CLASSES 28

w(c(x)) ≡ 0 (mod 2) =⇒ w(c(x)) ≡ 0 (mod 4).

In words, this means that if a codeword in the binary Golay code has even
Hamming weight, then not only is it divisible by two, but it must actually
be divisible by four.

Proof. A codeword of even weight w can be written as c(x) = xi1 + xi2 +
... + xiw . If c(x) was generated by m1(x), then c(x) ≡ 0 mod m1(x). With
c(x) having an even weight, we can determine that c(1) will give us an even
number of ones, which is equal to zero when added up in GF (2). Having 1
as a zero of c(x) means that (x−1) divides c(x), and since (x−1) and m1(x)
are coprime, we conclude that c(x) ≡ 0 mod (x− 1)m1(x).

Next, c
(
1
x

)
can be written as x−i1 + x−i2 + ... + x−iw . We can then let

p(x) = x23c
(
1
x

)
= x23−i1 + x23−i2 + ...+ x23−iw . We are working with the set

of polynomials GF (2)/x23 − 1, so x23 ≡ 1. If c(x) = f(x)m1(x) for some
polynomial f(x), then c

(
1
x

)
= f

(
1
x

)
m1

(
1
x

)
. We can substitute this into p(x)

and get the following expression:

p(x) = x23c
(1

x

)
= x23f

(1

x

)
m1

(1

x

)
= x12f

(1

x

)
x11m1

(1

x

)
= x12f

(1

x

)
m−1(x).

(3.14)

So p(x) is a multiple of m−1(x), meaning p(x) ≡ 0 (mod m−1(x)). Having
p(1) = 0, we also have that p(x) ≡ 0 (mod (x−1)). With m−1(x) and (x−1)
being coprime, we can say that p(x) ≡ 0 mod m−1(x)(x− 1). If we multiply
p(x) by c(x) we get

c(x)p(x) = c(x)x23c(
1

x
) ≡ 0 (mod (x− 1)m1(x)m−1(x) = x23 − 1.)

(3.15)

c(x)c(
1

x
) =

w∑
u=1

xiu
w∑
v=1

x−iv =
w∑

u,v=1

xiu−iv



CHAPTER 3. CODE CLASSES 29

When u = v, then

w∑
u=v=1

xiu−iv = w ≡ 0 (mod 2),

so all such terms cancel. We can therefore define the sum

w∑
u6=v,u,v=1

xiu−iv =:
22∑
i=1

six
i = s1x+ s2x

2 + ...+ s22x
22

This sum adds up to zero in GF (2)/(x23−1), so each si is an even number.
Another important property of this sum is that si = s23−i. This can be shown
by considering the product

c(x)c
(1

x

)
= (xa + xb)(x−a + x−b)

= 1 + xa−b + xb−a + 1

≡ xa−b + xb−a (mod 2)

(3.16)

If we let a > b, then a−b is positive, while b−a is negative. By factorizing
out (-1) we get x−(a−b), and since x23 = 1, we can multiply by this and get
xa−b + x23−(a−b) = xi + x23−i.

Having removed all terms where u = v, the sum
∑w

u6=v,u,v=1 x
iu−iv has

w(w − 1) terms. This lets us show the following:

w(w − 1) =
22∑
i=1

si =
11∑
i=1

2si ≡ 0 mod 4. (3.17)

The sum can be changed because si = s23−i, and since si is already even,
2si must be a multiple of 4. With (w − 1) being odd, we can conclude that
w ≡ 0 (mod 4).

This proves that any codeword of even weight is zero modulo 4. The next
step is to use this to find the actual minimum distance of the code, and show
that the code is indeed perfect.

Let Ai be the number of codewords of weight i. For this specific code, we
have a bijection betweenAi = |{c ε C | w(c) = i}| andA23−i = |{c ε C | w(c) =
23 − i}|, namely that Ai = A23−i. This is due to the fact the all-one vector
is contained in the code, which can we can be shown by rewriting the vector
as



CHAPTER 3. CODE CLASSES 30

c = (1, 1, ..., 1) =
22∑
i=0

xi =
x23 − 1

x− 1
= m1(x)m−1(x).

Now, if a codeword c(x) has weight i, then the codeword c′(x) = c(x) +
(1, 1, ..., 1) will be the inverse codeword and have weight 23− i. Since we can
do this for all codewords c(x), we have shown that Ai = A23−i. This tells us
the following about the minimum distance:

A5 = A18 = 0,

because 18 is not divisible by 4, and A6 = 0 for the same reason. The
minimum distance is therefore at least equal to 7. Finally,

2k
e∑
i=0

(
n

i

)
(q − 1)i = 212

3∑
i=0

(
23

i

)
= 223,

proving that the minimum distance is exactly 7, and that the code is
perfect. The parameters for this code are therefore [23,12,7].



Chapter 4

Coding theory in school

The renewal of the curriculum in Norwegian schools started in 2020, and aims
to deepen pupils understanding in various subjects, as well as highlight the
connection between them. As for mathematics, computer science and pro-
gramming will have a more prominent role, as improving the digital skills of
the pupils is a part of the new learning goals (Utdanningsdirektoratet, 2020).

Certain mathematical concepts used in this thesis are already part of the
learning goals of different grade levels. Others could be introduced, given
that it happens in the right context. In the 10th grade, pupils are expected
to learn polynomial multiplication, and during the 12th grade they learn
polynomial division. At this point, it could be possible show them code-
words represented as polynomials, and let pupils try to generate their own
codewords. Modular arithmetic with polynomials could prove a bit challeng-
ing for some, but could be presented to a more advanced science class.

In elementary school, children learn how to tell the time, meaning they
are introduced to modular arithmetic at a very young age. Whenever we do
calculations involving time on a clock, we work with groups under addition
modulo 12 and 24. The concept of finite groups and fields is something that
could be introduced more formally at some point, without going into too
much detail on group theory. Instead, pupils could be introduced to other
finite groups Z/nZ, and practise modular addition with different numbers.
These kinds of computations are something most people are able to perform.

One of the benefits of introducing these concepts to pupils is that it shows
a clear connection between the mathematics they learn at school, and real
life problems that need solving. If anyone are interested in pursuing a career
in computer science, then this can serve as a nice demonstration of the types

31



CHAPTER 4. CODING THEORY IN SCHOOL 32

of challenges that arise in digital communication and storing of information.



Bibliography

[1]K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones and
F. Pollara, (2007), The Development of Turbo and LDPC Codes for
Deep-Space Applications,IEEE.

[2] Lindell, Y. (2010). Introduction to Coding Theory Lecture Notes.
Bar-Ilan University, Israel.

[3] van Tilborg, H. C. A. (1993). CODING THEORY a first course.

[4] Utdanningsdirektoratet (2020) Læreplan i matematikk 1.–10. trinn
(MAT01-05). Fastsatt som forskrift. Læreplanverket for Kunnskapsløftet
2020.

33


