

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

MASTEROPPGAVE

Studieprogram/spesialisering:

Lektor i realfag 8.-13.

Vårsemesteret, 2021

Åpen

Forfatter: Celina Santos Osmundsen

…………………………………………

(signatur forfatter)
Fagansvarlig:

Veileder(e): David Ploog

Tittel på masteroppgaven: Feilkorrigering av koder og Reed-Muller koder

Engelsk tittel: Error correcting codes and Reed-Muller codes

Studiepoeng: 30

Emneord:
 Coding theory
Hamming codes,
Error correcting codes
Reed-Muller
Introduce code theory to pupils

 Sidetall: 20

 + vedlegg/annet: 1

 Stavanger, 15.juni 2021
 dato/år

Error-Correcting Codes and

Reed-Muller codes

Celina Santos Osmundsen

A thesis presented for the degree of

Lektor i realfag 8.-13.

Teknisk og Naturvitskapeleg Fakultet
Universitetet i Stavanger

Norge
15. juni 2021

Abstract

In this thesis, we will go through the basics of coding theory. By introducing the basic concepts
of coding, we will look at di↵erent types of error-correcting codes. We will look into the properties of
block codes and linear codes. The di↵erent families of codes have di↵erent properties but the same
goal, to detect and correct errors. Matrices can be used to make good codes. Examples of good
codes by matrices can be the Hamming code and the Reed-Muller. When we have been through all
of the theory we see how it can be introduced in the classroom and linking it to the curriculum aims.
The reason why I chose this thesis is because the prerequisites is close to where the mathematical
level are for the oldest pupils I can teach when I finish my masters. For me, it was important that
I could see the relevance from the thesis to my work afterwards. It was also interesting to see how
and if I can use this in school later on.

1

Contents

1 Coding theory 3
1.1 Redundancy . 4
1.2 Claude Shannon . 4
1.3 Focus . 4
1.4 Motivation . 4

2 Basic notations 5
2.1 Finite fields Fp . 5
2.2 Codes . 8
2.3 Block codes . 8
2.4 Linear codes . 9
2.5 Hamming codes . 10

3 Reed-Muller codes 12
3.1 Properties of Reed-Muller codes . 13
3.2 Reed-Muller code is a linear repetition code . 14
3.3 Examples of Reed-Muller codes . 14
3.4 Proof of minimum distance of Reed-Muller code . 16
3.5 Dual of Reed-Muller code . 17

4 Introducing coding theory in school 19

2

Chapter 1

Coding theory

Coding theory is divided into several categories. One of these is channel coding. In this thesis, we
will look into channel coding, more specifically, error-correcting codes.

In communication, we have information exchanged between two parties. In coding theory, these
are called the sender or source who will send the information to a receiver. The sending is called
the transmission and will happen through a medium such as a telephone, software or the internet.

The information is sent through a channel. The input alphabet X is sent through a medium,
and the result is an output alphabet Y . We also look at the transition probability function P .
When the message is sent, the probability for p(y|x) means that for every x in X and y in Y the
sent symbol x was transmitted, and the symbol y received.

When we send a codeword or symbol, we call it a transmission. Through the transmission of
information, bits or parts of the message can be transmitted wrong. When the information is trans-
mitted wrong, the information sent is not the same information as the one received. From this, we
can conclude with noise in the channel. If the received word is the same as the one sent, there is no
noise, and the channel is noiseless.

The Binary Symmetric Channel, or the BSC, is the channel where both X and Y is equal to
{0, 1} and the probability P is given by p(0|1) = p(1|0) = p and p(0|0) = p(1|1) = 1 � p for some
0  p  1. If a symbol is received correctly, the probability is 1 � p, if it is received incorrectly,
the probability is p, if the symbol is received incorrectly, an error has occurred. If the probability of
receiving the correct symbol is less than 1

2 , the channel will be more reliable.

Illustration of the BSC

As mentioned earlier, in coding, there are alphabets. An alphabet is denoted as Q, and within
each alphabet, there are q distinct symbols. If we have a binary code, the alphabet will contain
0 and 1, meaning the q = 2. If we say we send a bit, a bit corresponds to a bit. When we send
messages with letters, this is called a string or bitstrings which corresponds to vectors.

Altogether, Shannon’s results proves the existence of good codes, but the proof is probabilistic:
it does not say anything about how to find the good codes. Also, we cannot let the block length go
to infinity in practice. From this, it becomes a relevant problem to find practical, good codes.

3

1.1 Redundancy

Redundancy to a code is when the transmitted code has more symbols than necessary. The redun-
dancy is to protect the original code better against errors in the channels. The redundancy is used
as a reassurance to be sure that the information can be transmitted almost correctly and still be
interpreted as the original information. Especially when the words are long, redundancy is used to
prevent errors.

An example can be if one wants to transmit a 1 over the BSC giving it an error probability p.
Instead of sending the symbol once, we can make a k � fold repetition code where we send the
symbol k-times instead of once. When the code is transmitted we can see from the symbols received
which ever symbol occurs most is most likely the symbol we wanted to receive. In this case, we can
see how the redundancy only is for reassurance. To find the redundancy, we know that it will be
0 < r < 1. When we have a k � fold repetition code, we see that the information rate is rate = 1

k .
If a code C is F3

2 we have length n = 3, and we are in the binary system. To find the rate of C, we
need to: rate(C) = log2M

3 so we have the rate(C) = log22
3 , and from this we get rate(C) = 1

3 . We
can choose to have a large information rate and low redundancy or a large redundancy and small
information rate in coding theory.

1.2 Claude Shannon

Shannon’s noisy-channel coding theorem states that arbitrarily good codes exist in a specific and
technical sense. For simplicity, we assume a BSC. This means that only bits, 0 or 1, are sent and
received and that the probability of an error is the same number p < 0, 5. The capacity of such
a channel is C = 1 + p log2(p) + (1 � p) log2(1 � p). Then the theorem states that there exists a
sequence of codes Cn of length n and information rate rate < C such that the error probability
converges to 0.

In practical terms, code words are n-bit strings such that k < n are the information part and n�k

the redundancy, giving information rate rate = k/n. Shannon’s theorem says that among binary
codes with rate = k/n < C, there exist codes such that the probability of transmissions errors is low,
i.e. that the code can correct many errors (has a large minimal distance, in the language introduced
below).

1.3 Focus

The focus in this thesis is Reed-Muller codes. To understand how the Reed-Muller code is constructed
and used, it will first go through some of the basics for the thesis by looking into fields, block codes
and linear codes. From there we can go on to how to do calculations with the Reed-Muller code,
and how to use the code to find codewords. This thesis will also look into some of the properties of
the Reed-Muller code. Show that the Reed-Muller code is both linear and a repetition code. The
thesis will also show how to find and calculate dual of the Reed-Muller code and its dimension. The
thesis mainly follows the lecture notes given by Henk von Tilborg called CODING THEORY, a first
course.

1.4 Motivation

The reason why I chose this thesis is because the prerequisites is close to where the mathematical
level are for the oldest pupils I can teach when I finish my masters. For me, it was important that
I could see the relevance from the thesis to my work afterwards. It was also interesting to see how
and if I can use this in school later on.

4

Chapter 2

Basic notations

To understand the construction of the Reed-Muller code and the Reed-Muller codes properties, some
basic concepts about codes and coding theory one should know. Some of the theory presented in
this chapter is finding the minimum distance of a code, what the minimum distance tells us and the
error correction capability. The construction of the Hamming Code and what the Hamming code is
will also be introduced.

2.1 Finite fields Fp

Finite fields are algebraic structures, important examples of finite fields are Q,R,C. In these fields,
we do all four operations of arithmetic: addition, subtraction, multiplication and division. When
we work in these types of fields, all regular rules can be applied. We use finite fields to limit what
we are working with, to get to what we would like. Finite fields are also used in data technology,
where the structured data is finite, and memory is finite. Here we also limit the fields so that the
computers or software can do what it is supposed to without doing it for eternity.

Most codes consist of vectors taken from a vector space over a finite field, and many codes are
constructed by using algebraic methods. Finite fields of order q exist if and only if q is a prime
power. An example of this can be F32 , where q = p

k is q = 32 .

An example of what a finite field could be is Z11. The finite field Z11 is made up of the set

Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

The set could also be written as Z11 = {�5,�4,�3,�2,�1, 0, 1, 2, 3, 4, 5}. The sets are the because
of residue classes. A residue class is when a number is divided by a given modulo and give the same
remainder. Each of the numbers in the set corresponds to a number in the second set. By adding or
subtracting the number of the given modulo, we can find the number from the first set in the second
set. The corresponding numbers from the sets will give the same answers by the same operations in
mod 11.

If we use any of the operations on the set Z11 we have to remember that the answer we want
must lie within the set we defined. We do this by adding or subtracting the number 11 until we get
a number with the set. So for basic addition we see that it is easy to do the operations.

8 + 6 = 14 ⌘ 3 mod 11

Here we clearly see that the number is in our set.
If we take the numbers 8 and 6 and subtract 6 from 8 in Z11 we get:

8� 6 = 2 mod 11

5

However
6� 8 = �2 ⌘ 9 mod 11

Here we also need to adjust the answer to be within the defined set.
Doing multiplication in Z11:

6 · 8 = 48 ⌘ 4 mod 11

When we need to do division in a set, it is not straightforward as the operations previously
mentioned. To do division in a set, we need to understand Euclid’s Algorithm. Euclid’s Algorithm:
Let m,n 2 Z. Then there exist a, b 2 Z. Such that am+bn = gcd(m,n), To apply the algorithm, we
need to do it in steps. The first step is to find the gcd(m,n) by continued division and remainders.
m = 231, n = 39

We start by dividing m by n and finding the remainder of this.

231 = 5 · 39 + 36

In the second line, we use n and divide it by the previous remainder.

39 = 1 · 36 + 3

Lastly, we use the remainder of the first line and divide it by the remainder of the second line.

36 = 12 · 3 + 0

We can see that the last non-zero remainder is 3, and 3 will therefore be the greatest common
divisor of n and m, 231 and 39.

gcd(231, 39) = 3

The second step is to find the a and b in the expression am+ bn = gcd(m,n). a · 39 + b · 231 =
gcd(m,n) = 3. To find the a and b, we need to go backwards from the continued division in part 1.
From the first part, we write it as a linear combination of n and m.

We start by using the last line from the division, where we find the gcd(m,n).

3 = 39� 1 · 36

By substituting the remainder for the starting expression in step 1 we get a new expression.

3 = 39� (231� 5 · 39)

By ordering the expression we can get it in the form we want am+ bn = gcd(m,n)

3 = 6 · 39� 1 · 231

This gives us the a=-1, and b = 6

When we want to divide in our set Z11 we know that m = p, and 1  n < p. So we can have the
following equation:

5

8
2 Z11

To solve this we first have to find 1
8 2 Z11. Then we have to apply Euclids Algorithm. We set

p = 11 and n = 8.

11 = 1 · 8 + 3

8 = 2 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

6

gcd(11, 8) = 1

Now that we have the gcd(11, 8) we need to use the ap+bn = gcd(p, n) and substitute backwards.

1 = 3� 2

1 = 3� (8� 2 · 3)

1 = 3 · 3� 1 · 8

1 = 3(11� 1 · 8)� 1 · 8

1 = 3 · 11� 4 · 8

Here we have the equation equal to the expression ap + bn = gcd(p, n) giving us the a = 3 and
b = �4. Since there is a multiple of p in our expression we know this becomes 0 in Z11. We are left
with a · 0 + bn = gcd(p, n), bn = 1

bn = 1 mod 11

1

n
= b mod 11

We see that our b = �4, but in mod 11 these becomes b = 7.

1

8
= 7 mod 11

We can now look at the problem we started with and replace our 1
8 with 7.

5

8
mod 11

5 · 7 = 35 ⌘ 2 mod 11

The general method to check if Fpk is a field is to see that all prime powers

Fpk = F1[x]/|f(x)| withf(x) 2 Fp[x] irreducible polynomial with degf(x) = k

By the following example we can see that Z4 is not a field, however Z22 is a field.

Example 1 F4

F4 = F2[x]/(x
2 + x+ 1) = {0, 1, x, x+ 1},

x
2 + x+1 is irreducible over the field F2, but x2 +1 is in fact reducible over F2. This is because the

function x
2 + x + 1 does not have any roots in F2 and the degree is 2. x

2 + 1 can be reduced into
(x+ 1)(x+ 1)

When we have a field:
Fpk = Fp[x] / (f(x))

with deg(f) = k, f(x)=irreducible polynomial.
We can construct C using the field R[x] and divide it by an irreducible polynomial in R[x], but

reducible in C.
C = R[x]/(x2 + 1)

x
2 + 1 2 R[x] is irreducible.

C is a quadratic field extension.

7

2.2 Codes

A code is a subset c of a larger set S. When we transmit a code c 2 C the receiver will receive a
code s 2 S and try to decode the message to a codeword.

The number of codewords in a code is called the cardinality. The cardinality of a code depends
on the alphabet of the code. If we have an [n, k, d]code, we can use the k and the q and calculate
q
k = M , where M is the cardinality of the code. The cardinality can be written as |C| = q

k = M .
If a code is said to have a cardinality equal to one, the code is trivial. So a trivial code must be
non-zero and contain exactly one codeword, C = {c}.

2.3 Block codes

Block codes are codes where all codewords are of the same fixed length n. An example of a code
that is not a block code is the Morse code, where the codewords are of varied lengths. Block codes
are usually just called codes and will be addressed as this throughout the thesis. The codewords are
represented by an n-dimensional vector over the finite field Fn

q . The code C is a subset of the field
Fn
q .
An important property of a code is the Hamming distance. The Hamming distance tells us the

number of coordinates two given vectors di↵er. If we have an alphabet Q and fixed length n

Qn

The Hamming distance is given by:

d(x, y) = |{1  i  n | xi 6= yi}|

We get that the d(x, x) is equal to zero because the two vectors are the same and for that reason,
the distance will be 0. Also, d(x, y) = d(y, x) because it is not relevant which one is the first vector
when we look at places the two di↵ers. From the properties we can introduce the triangle inequality

d(x, z)  d(x, y) + d(y, z), 8x, y, z 2 Qn

From the triangle inequality we can see that the Hamming distance is a distance function.
We also have another important property called the minimum distance d of a non-trivial code C

given by:
d = min{d(x, y) | x 2 C, y 2 C, x 6= y}

Both the Hamming distance and the minimum distance of a code C shows closeness between two
codewords.

u =
�
1 0 0 1 1 0

�

v =
�
0 0 1 1 1 0

�

d(u, v) = 2, The vectors u and v di↵er in the first and third place giving the distance=2. Given a
vector space, the distance will be the number of places, coordinates, the vectors di↵er. The smaller
this number is, the closer the receiver is to get the original message. When we have the minimum
distance of a code, it is simple to find the error-correcting capability e.

e =
⌅
d�1
2

⇧

If we have a code C with the minimum distance d, we can detect d� 1 errors and correct
⌅
d�1
2

⇧

errors. If we have a code with a small distance, the correction and detection of an error is harder
than with a large distance. If we have a larger distance, we can assume that the error we have is
closer to one word than another in C. It is also easier to see where the error has occurred.

The Hamming bound is another way to approach the minimum distance. We think of the
codewords as disjoint balls with radius = e. Br(x) is a ball of radius r around x, {y 2 Qn | d(y, x) 

8

r}. The cardinality of Br(x) is found when we know all the words that are at distance i from x.
From the n coordinates from x we choose exactly i, and for each of these we replace them with q�1
alphabet symbols. Then we have

�n
i

�
(q � 1)i words at the distance i from x giving us:

|Br(x)| =
rX

i=0

✓
n

i

◆
(q � 1)i

Since we now know that balls around all the codewords in C are disjoint, this leaves q
n distinct

words in Q. So we can use the following theorem:

Let C be a code, then the covering radius ⇢ is given by

|C|
eX

i=0

✓
n

i

◆
(q � 1)i  q

n

Let the distance from codeword x to the code C be d(x,C), d(x,C) = min{d(x, c) | c 2 C}, so to
find the furthest removed code we get it by the covering radius. The covering radius ⇢ a code C is
given by

⇢ = max{d(x, y)|x 2 Q}

Illustration of the cover radius

A perfect code is an e-error-correcting code C with the covering radius ⇢ = e. This means every
element in Qn is at most e from a unique codeword.

2.4 Linear codes

A linear code is a code for which any linear combination of codewords is also a codeword. Linear
code C of the fixed length n is any linear subspace V

q
n . From linear algebra, we have V ⇢ Fn

q is a
subvector space. If 0 2 V , and v1, v2 2 V and by that we get v1 + v2 2 V

For a linear code the minimum distance of the code, C is equal to the minimum weight of all the
non-zero code vectors. d(x, y) = d(x� y, 0) = w(x� y)

The dimension k of a code C is the part of the codeword that is not redundancy k = n� r.If a
code C have a dimension k and minimum distance d, we call it an [n, k, d]code. We can also have
a q-ary (n,M, d) code C, where the cardinality is M . For [n, k, d] code C we know it is linear, and
the cardinality is qk.

Good linear codes can be made by matrices.
A generator matrix G of an [n,k,d]code C is a k ⇥ n matrix. The basis of C is made up by the

k rows. The rows of G generate C.

C = {aG | a 2 Vk(q)}

[n, 1, n]

9

The generator matrix of the q-ary [n,k,d] repetition code is given by.

G = (1 1 1 · · · 1)

If we have an even weight linear code we can use the parameters [n,n-1,2] so this generator is
given by a matrix.

G2 =

0

BBBBBBBB@

1 0 0 · · · · · · 0 1
0 1 0 · · · · · · 0 1
0 0 1 · · · · · · 0 1
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · 0 1

1

CCCCCCCCA

If we have a code C the first k ⇥ k matrix is the identity matrix. What is left after is the
redundancy, which makes the error-correcting possible. So we can say that the first part of the code
is the Ik which is the identity matrix, and the second part is P . Giving us G = (Ik P).

[6, 3, 3] =

0

@
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

1

A

Here it is clear that the 3 ⇥ 3 matrix in the front is the identity matrix and the rest is the
redundancy.

We also have a parity check matrix H of an [n,k,d] code C is an (n� k)⇥ n matrix.

c 2 C , Hc
T = 0T

This means that C is the solution space of n � k linearly independent equations Hx
T = 0T . So

when we have the generator matrix G we can take H = (�P
T

In�k) and then we have the parity
check matrix.

Let (x,y) is the inner product of the
Pn

i=1 xiyi in the vector space Vn(q). We say that the vectors
are orthogonal when the inner product is zero. However, we can have vectors that are orthogonal
to themselves without being the zero-vector. To check if a product is orthogonal, we use the dot
product. If we take the vector v = (1 0 2 1) in V4(3). To check if it is orthogonal with itself.

v · v = (1 0 2 1) · (1 0 2 1)

= (1 · 1) + (0 · 0) + (2 · 2) + (1 · 1) = 0

Another example in F2 where the vector u = (1, 1) is orthogonal to itself.
The [n,k,d] code C also have a dual code C

? is defined as:

C
? = {x 2 Vn(q) | (x, c = 0 for all c 2 C}

The code C
? is a linear subspace of the dimension n � k, so the C

? = [n, n � k, d
?] code. We

can check that the C
? is the generator matrix of the parity check matrix H and that the parity

check matrix of C? is the generator matrix G of C, by using GH
T = 0. If a code is in both C and

C
? the code is self-orthogonal.

2.5 Hamming codes

c = C , Hc
T = 0T

If a linear code C has word c if and only if coordinates of c give a dependency relation between the
columns of the parity check matrix H of C. The d of the Hamming code is d � 2 i↵ the parity check
matrix do not contain the all-zero column. If the parity check matrix contains two columns that are

10

linearly dependent, we have d � 3. The distance of the Hamming code C is � d i↵ there are d � 1
linearly dependent columns in the parity check matrix.

The q-ary Hamming code of length n = (qr � 1)/(q� 1) and the r is defined by the parity check
matrix that consists of all the pairwise linearly independent columns. [7,4,3]

H =

0

@
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 1 1

1

A

These columns in the matrix give us the binary representation of the numbers 1 up to 7.

An example where we can use the c = C , Hc
T = 0T

G =

0

@
1 0 0 1 1 1 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

1

A

Here it is easy to see that this has the identity matrix in front. So to make the parity check matrix
we transpose the part that is not the identity matrix, and set the identity matrix, but we need to
change the identity to be a 4⇥ 4 identity matrix instead to get the right dimension.

H = [�P
T
In�k] =

0

BB@

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
1 1 0 0 0 0 1

1

CCA

Choose an arbitrary codeword from the code C and transpose it.

c
T =

0

BBBBBBBB@

1
0
0
1
0
0
1

1

CCCCCCCCA

Hc
T =

0

BB@

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 0 0 1 0
1 1 0 0 0 0 1

1

CCA

0

BBBBBBBB@

1
0
0
1
0
0
1

1

CCCCCCCCA

=

0

BB@

0
0
0
0

1

CCA

For all non-zero codewords Hc
T = 0T holds.

11

Chapter 3

Reed-Muller codes

Reed-Muller is a class of linear codes. It dates back to 1954, when D. E. Muller wrote a paper
about the code. Within the same year, I. S. Reed found a decoding algorithm for the code. The
Reed-Muller codes are one of the oldest and simplest family of codes. It has been used in computer
science and electrical engineering.

When we work with Reed-Muller we only consider binary polynomials with squarefree monomials,

f = f(x1, x2, x3, ..., xm)

where m is some fixed integer. The Reed-Muller code can also be denoted as a binary field with
length 2m, Fm

2 . In F2: we get that x
2 = x, because we have 02 = 0 and 12 = 1 we could have

an example of two polynomials that is two di↵erent functions, but in F2 these two are the same
function. f(x, y, z) = g(x, y, z)

Example of when this happens can be:

f(x, y, z) = x
2
y + yz + z

3

and

g(x, y, z) = xy + xz + z

Although they are di↵erent polynomials, they are the same function. A polynomial contains several
monomials, meaning power products, but in Reed-Muller codes, they are all without any squares.
The polynomial can have several terms, but none of the terms will have any powers larger than 1
nor coe�cients other than 0 or 1, however, the degree of the polynomial can be up to m.

monomial = x1x2...xm

Here we have a monomial, a term made up of several variables multiplied together.

polynomial = 2x1
3
x4

2
x5 + x2

2
x3 + 3

Here we have a polynomial containing several terms made up of several variables multiplied
together in several terms.

Definition 1 The r-th order Reed-Muller code RM(m,m) of length n = 2n

RM(r,m) = {(f(u0), f(u2), ..., f(un�1)) | degree(f)  r}

The degree of a Reed-Muller code is decided by the degree of an element in f(x1, x2, ..., xm) of
RM(r,m). The degree of the RM(r,m) is from the degree of f as a polynomial in m variables. If f
contains a term which is a product of r variables, but no term that is a product of  r+1 variables,
f is said to have degree r at most. The degree of f is clear to see when 1  r  m. We can not

12

have monomials with squares, and therefore, we cannot get a larger degree than r. The maximum
degree of polynomials without squares in m is x1x2...xm

The Reed-Muller code RM(2, 3) will at most have the degree 2. This is because of the binary
polynomial with squarefree monomials. The function will only have binary coe�cient and exponents.
When we have r = 2 the degree cannot be more than 2, simply because we can not make a term
with a higher degree than two, when the function is binary and, the r is 2.

3.1 Properties of Reed-Muller codes

To find the number of codewords in a Reed-Muller code, we need to know what the m is. When we
have the m the number of codewords is:

Fm
2 = 2m

To find the dimension of any Reed-Muller code, we need to add all the binomial coe�cients of
the RM(r,m) code.

A polynomial f(x1, . . . , xm) in m variables without squares of degree r is a sum of r monomials
with all exponents 1. There are

�0,m
+

��1,m
)

�
+ . . . +

�r,m� of those.
By setting n = 5 we start by finding the values we get for each i, when m = 5. We find the

number of each ✓
5

0

◆
= 1

✓
5

1

◆
= 5

✓
5

2

◆
= 10

✓
5

3

◆
= 10

✓
5

4

◆
= 5

✓
5

5

◆
= 1

When adding them together we get

dimRM(5, 5) = 1 + 5 + 5 + 10 + 10 + 1 = 32 = 25 = 2m

. We can also obtain the dimension of RM(3, 5) by adding the binomial coe�cients from r = 0 up
until r = 3. So dimRM(3, 5) = 1+5+10+10 = 26 2m is the number of all subsets of a set with m

elements, for example the set x1, x2, ..., xm RM(rm). If all the codewords are 0, the subset is empty.

We can count the number of binary polynomials with squarefree monomials by using the binomial
coe�cient. When

mX

l=0

✓
m

l

◆
= 2m

The number of squarefree binary polynomials in x1, x2, .., xm with degree  r is given by

21+(
m
1) +(m2) +....+(mr) = 2

Pr
i=1 (

m
i) = 22

m
= 2n

We can conclude that the Reed-Muller codes include each vector in Vn. So there are exactly 2n

vectors in Vn. We have already seen how to get the n = 2m. To get the number of all polynomials we
need to use the dimension of the RM(r,m) code, and use it as an exponent of 2 to get the number
of polynomials.

13

3.2 Reed-Muller code is a linear repetition code

To prove that the Reed-Muller code is in fact a linear code we need to check:

c1 = f 2 F2[x1, x2, ..., xm],

and
c2 = g 2 F2[x1, x2, ..., xm]

where deg f  r, and deg g  r

c1 + c2 = f + q

Both c1 and c2 are given by polynomials. We know that the degree of f and the degree of g
are less than r+1 because they are contained in the RM(r,m). For the code to be linear, we want
c1 + c2 = f + g to also be in RM. All the binary polynomials with squarefree monomials in the m

variables x1, ..., xm, therefore the deq(f + g)  max(deg(f), deg(g)  r. When we get the sum of
the degree of the polynomials, it does not go up, but it can go down.

The linear subspace of F2 which has a basis of vectors (u0, u1, ..., um). We know from the
definition of the r� th orderRM(r,m) that the RM(0,m) is the repetitive code of length n = 2m.
From the definition, we can confirm that the Reed-Muller code is a linear repetition code.

3.3 Examples of Reed-Muller codes

An example of a Reed-Muller code RM(r, 3). We first need to understand how to construct it. We
start by taking a function f(x1, x2, x3)

When working with RM, its possible to write the codes in lexicographical order or reverse
lexicographical order, these codes will, however be in lexicographical order. That is so the most
significant coordinate will be the first.

To show how to construct the RM(1,3), RM(2,3), RM(3,3).
To compute the three Reed-Muller given above, we first have to find the length.

n = F3
2 = 23

We start by setting the vectors in order where they are presented in the binary form from 0 to
m� 1. �

0 0 0
�
= u0

�
0 0 1

�
= u1

�
0 1 0

�
= u2

�
0 1 1

�
= u3

�
1 0 0

�
= u4

�
1 0 1

�
= u5

�
1 1 0

�
= u6

�
1 1 1

�
= u7

We change the rows into columns and add the repetition vector 1 of length 23.

v0 =
�
1 1 1 1 1 1 1 1

�

v1 =
�
0 0 0 0 1 1 1 1

�

v2 =
�
0 0 1 1 0 0 1 1

�

v3 =
�
0 1 0 1 0 1 0 1

�

14

We then, by setting the vectors together, get the new matrix. This matrix is the RM(1, 3). This
matrix includes the linear terms of the code.

RM(1, 3) =

0

BB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

1

CCA

When we have the RM(1, 3) to get the next rows of the matrix, we have to make the terms of
second degree. We need to add v1 with v2, v1 with v3, and v2 with v3

RM(2, 3) =

0

BBBBBBBB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1

1

CCCCCCCCA

So to get the full RM(1, 3) matrix, we lastly have to add up the three vector v1, v2, v3.

RM(3, 3) =

0

BBBBBBBBBB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

Another way to show the codewords is by the a table. Here is the RM(4, 4):

Table of RM(4, 4)

When we have this table we can also try finding other codewords like (x1)(x2�1)(x3�1)(x4�1).
Where you have to change all the variables, here the codeword is:

(x1)(x2 � 1)(x3 � 1)(x4 � 1) =
�
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�

15

3.4 Proof of minimum distance of Reed-Muller code

To find the minimum distance of a Reed-Muller code, we first need to understand the construction
of (u, u+ v).

If we construct a new code by using C1 a binary [n, k1, d1] code and C2 another binary [n, k2, d2]
code, we can define a code C

C = {(u, u+ v) | u in C1, v in C2}

By constructing C we have the parameters [2n, k1 + k2, d].
The length of the code is easy to see, the length of the C1 first and then the same length as

C1+C2, which is the same length, which we can see from how the codes are defined, with the same
n. Therefore by adding them after each other, we get n+ n = 2n.
We get the cardinality of C by adding k1 + k2 because these are the powers of the alphabet. When
we find the cardinality of c1 we use the k1 as a power of the alphabet q, and the for c2 we use k2. The
cardinality for the code C is found by multiplying the q

k1withq
k2 , thisgivesq

k1+k2 . The cardinality
is k1 + k2.

The distance, however is the minimum distance of 2d1 and d2, min{2d1, d2 }. To show this we
need to use (u1, u1 + v1) and (u2, u2 + v2), two codewords in C. By first setting v1 = v2, we get that
the minimum distance between the codewords would be d1 both in the first part and the second
part of the code. Because it happens twice, we need to double the distance. Therefore we get 2d1.
We get the second distance when we set v1 6= v2. There are three di↵erent cases we need to take
into count. The first one is where u1 and u2 cancel each other out, so we are only left with v1 and
v2. In this case, we get the same distance as in C2, which is d2. We could also get that u1 and u2

di↵er, or u1 + v1 and u2 + v2 di↵er. The minimum distance for (u1, u1 + v1) and (u2, u2 + v2) is at
least d2.

Therefore the minimum distance of C=min{ 2d1, d2 }
To find the minimum distance of a Reed-Muller code with the parameters [n,

Pr
l=0

�m
l

�
, 2m�r],

with the length n = 2m�r.
If we have a polynomial in f(x1, x2, ..., xm) in RM(r,m) we split the terms into terms con-

taining the x1 and those which do not. So we are left with f(x1, x2, ..., xm) = p(x2, x3, ..., xm) +
x1q(x2, x3, ..., xm). p(x2, x3, ..., xm) is in RM(r,m � 1), the number of variables go down by 1,
simply because we remove the x1. WE also have one less variable for the q we get RM(r�1,m�1).
The degree of the polynomial p(x1, x2, ..., xm) can at most be r, because the term with the highest
degree in f can be in p as well. However, when we have q we exclude x1 from our function. So if a
term in f has the highest degree of the function, it will have a lower degree in q because we factorise
out the x1term. To find the minimum distance of p, we need to use the standard formula 2m�r, but
we have m� 1 number of variables so the minimum distance of p=2m� 1� r. To find the minimum
distance for q, we use the same formula, but we need to subtract 1 from both m and r, leaving us
with. 2(m�1)�(r�1) = 2m�r. From here, we have the same rule as the one for constructed codes.
min{ 2dp, dq }. We see that:

min{2dp, dq} = min{2 · 2m�1�r
, 2m�r} = min{2m�r

, 2m�r} = 2m�r

From notes: For m=1, this is trivial.

RM(0, 1) = {11, 00}, d = 2m�r = 21�0 = 2

RM(1, 1) = {11, 01, 10, 00}, d = 2m�r = 21�1 = 1

Example 2 Start by setting m=4, and using the polynomial with squarefree monomials.

f(x1, x2, x3, x4) = 1 + x1 + x2x4 + x1x3x4 + x2x3

By grouping all terms into terms including x1 and those who don’t include x1 we get:

1 + x2x4 + x2x3 + x1(1 + x3x4)

16

We can now split up the polynomial into two new functions all the terms not containing x1 is
set in p, and then the terms including x1 is set in q. So p will now be a function of x2, x3, x4 and
x1q is a function q of x2, x3, x4. This gives us:

f(x1, x2, x3, x4) = p(x2, x3, x4) + x1q(1 + x3, x4)

The minimum distance of p RM(r,m� 1), where we know the degree can at most be r, we get the
following:

minimum distance of p = 2(m�1)�(r�1) = 2m�r

The minimum distance of q RM(r � 1,m� 1), where we know the degree cannot be r, we get:

minimum distance of q = 2(m�1)�(r�1)

So f(x1, x2, x3, x4) = p(x2, x3, x4) + x1q(x2, x3, x4)
From RM(1, 4)

RM(1, 4) =

0

BBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1

CCCCA

When we use f(x1, x2, x3, x4) we get that

p = 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1

q = 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0

f = 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0

d1 = 2m�r�1

,
d2 = 2m�r

d = (2d1, d2) = (2 · 2m�r�1
, 2m�r) = 2m�r

3.5 Dual of Reed-Muller code

To find the dual of a Reed-Muller code, we use the dimension of the RM(r,m) code. As well as the
length n. To find the dimension of the field, we use the same formula as for the [n,k,d] but change
the upper limit to m so that we include the entire field.

n = dim Fn
2 =

nX

i=0

✓
n

i

◆

RM(r,m) = C 2 Fn
2

k = dim C =
rX

l=0

✓
m

l

◆

RM

dim C
? = n� k

17

To find the dimension of C? we can use the two sums we found and subtract the k from the n,
similar to how we find the dimension of a regular linear code.

dim C
? =

mX

l=0

✓
m

l

◆
�

rX

l=0

✓
m

l

◆

We change l = 0 to l = r + 1, when we do this we can use the same expression of the sum.

=
mX

l=r+1

✓
m

l

◆

=

m�(r+1)X

l0=0

✓
m

l + (r + 1)

◆

By substituting the l with l
0 we can see how the dim C

? is in the same form as the dimension of C.

l = l
0 + r + 1

l
0 = l � (r + 1)

m�r�1X

l=0

✓
m

l + r + 1

◆

Each element f in RM(m�r�1,m) is orthogonal to each element g inRM(r,m). If we multiply
f and g the product will be in RM(m�1,m). Since m�1 is less than m, RM(m�1,m) is an even
weight code. This implies that the functions are orthogonal to each other. C

? = C only happens
when the k = n

2 and is then called a self dual.

18

Chapter 4

Introducing coding theory in

school

In 2020 there was a new curriculum for all pupils in the Norwegian school system. The renewal
of the curriculum takes a step back from specific goals and gives more room for the pupils to be
engaged in their own learning. We have looked into algebra during this thesis, which occurs several
places in Kunnskapsløftet 2020, or LK20. The theory from the thesis can be incorporated in several
of the di↵erent grade level’s curricula.

The necessity of the pupils understanding the terminology of coding theory can be debatable.
The pupils know how to work with the operations in mathematics without knowing the mathematical
concept behind it, such as working with the clock. Pupils can use modular arithmetic and work
with the clock in modulo 12 and 24 without knowing anything about sets, groups or fields.

The 8th-grade curriculum includes several curriculum aims regarding algebra. From the 8th grade
curriculum, we can take a closer look at the following curriculum aim.

Explore algebraic calculation rules

This curriculum aim gives the teacher an advantage in working towards this aim because it does not
state nor specify an approach. The teacher can choose what and how to work with the curriculum
aim. It is also an underlying goal in Kunnskapsløftet 2020 that the pupils will learn to be critical
thinkers and think in a more scientific and exploring manner. Here it is possible to introduce mod-
ular arithmetic. The pupils can learn what a set is and how to understand sets, as well as finite fields.

An obstacle with fields in the 8thgrade is that exponents are new to the pupils. They are not
familiar with working with exponents. The pupils will most likely be able to do the operations need
to work with fields and sets, but some pupils would see the working with codes in a theoretical form
to be too challenging. If the pupils would work with the fields and sets on paper, the student with
little motivation would most likely end up doing nothing. If a teacher chooses to introduce coding
theory and coding to a class in the 8th grade, there are several tools one can use. To introduce
coding in a more practical way the teacher can bring in ASCII. With ASCII tables the teacher can
give the students challenge and introduce games. The pupils can then start coding and decoding
without knowing the coding theory. This can also encourage the pupils to learn more about coding
without seeing it as working with math in the traditional way. Now that most schools use computers
or iPads in the classroom there are several apps and websites where they can start coding without
knowing its concepts. If pupils use apps to code, the pupils can also see when or if they do a mistake
almost immediately and fix it, instead of not seeing the mistake on paper and feeling defeated when
they have to start over with the calculations.

19

Bibliography

• Utdanningsdirektoratet (2020)Kompetansem̊al og vurdering available from: https://www.udir.no/lk20/mat01-
05/kompetansemaal-og-vurdering/kv16?lang=nob (downloaded June 2021)

• Utdanningdirektoratet (2020)Kompetansem̊al og vurdering available from:https://www.udir.no/lk20/mat01-
05/kompetansemaal-og-vurdering/kv14?lang=nob (downloaded June 2021)

• Utdanningdirektoratet (2020)Opplæringens verdigrunnlag available from:https://www.udir.no/lk20/overordnet-
del/opplaringens-verdigrunnlag/ (downloaded June 2021)

• van Lint, J. H. (1973) Lecture Notes in Mathematics. Published: Berlin, Springer

• van Tilborg, H. C. A (1993) Coding Theory - A first course Available from:http://docplayer.net/7371482-
Coding-theory-a-first-course-henk-c-a-van-tilborg.html (downloaded: January 2021)

20

