
Faculty of Science and Technology

Topology Optimization Using the Lattice

Boltzmann Method

Master’s Thesis in Computational Engineering

by

Angela Hoch

Internal Supervisors

Aksel Hiorth

Knut Erik Teigen Giljarhus

June 15, 2021
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Abstract

Human design is limited by our ideas of geometries. Topology optimization is a tool to cross

that barrier and improve design, especially for applications that are irrevocable once they are

in use. This thesis presents a Python implementation of the Lattice Boltzmann Method (LBM)

with a porosity model and a separate Python implementation of the adjoint method using the La-

grange multiplier method. The implementation is intended as a basis for topology optimization

and is created with the deliberate application of blood flow related topology optimization. The

two-dimensional LBM is implemented with a no-slip fullway bounce-back boundary for the

closed boundary and solid nodes. For the open boundaries, a non-equilibrium density bound-

ary condition and an equilibrium velocity Boundary Condition (BC) are provided. The porosity

model constitutes a hybrid method of the Stokes and Brinkman equations. The implemented

test case represents a quadratic domain with a velocity boundary building a flow inlet and a

pressure boundary that is the flow outlet. New topologies are created by adjusting the porosity

of the nodes, so that the ideal shape of the tube under the specified conditions based on a scalar

objective function is obtained, when the LBM is combined with an optimization algorithm as

the adjoint method. The adjoint method is applied to a one-dimensional problem, where the ge-

ometry of a tube is optimized based on the radius along the axis of the tube. The theory and the

implementation procedure are documented in a detailed manner to facilitate the understanding

of the methods and provide a foundation for own implementations.
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1. Introduction

Numerical methods and simulation software are essential for the work of engineers. Develop-

ment can be shortened distinctly by testing prototypes digitally before performing real-world

tests. However, most human creations are still based on our ideas of geometries. This is es-

pecially critical when the application does not allow realistic testing on prototypes and can

hardly be modified after installation as, for instance, in medicine. After suffering a myocar-

dial infarction, also called heart attack, one or more tiny tubes called stents are usually placed

in the patient’s blood vessel to redistribute plaque and reduce further occlusion (Niccoli and

Eitel, 2018). Their curvature is usually determined by the flexibility of the stent and does not

necessarily conform to the initial coronary geometry (Zhang et al., 2018), which changes the

local wall shear stress distribution in the blood vessel and can result in negative consequences

for the patient (LaDisa Jr et al., 2003). Computational Fluid Dynamics (CFD) can predict fluid

flow reliably. With the development of new methods to implement stents, it could in combi-

nation with optimization algorithms be applied to tailor the curvature of stents to the patient’s

coronary geometry.

To provide a framework for topology optimization that can for example be applied to stent im-

plementation in human blood vessels, we have chosen to use the LBM. The LBM is attractive,

because it is relatively easy to add new physics, thus one can extend the topology algorithm

presented in this thesis to study the effect of different fluids and Boundary Conditions (BCs),

which subsequently can be used to investigate optimal topology for blood and various sub-

stances to manufacture geometries.
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1.1 State of the Art

The methodology of all CFD methods consists of

• preprocessing, where the geometry, the mesh, the physical boundaries, and the BC are

defined,

• the simulation, where discretized versions of the mathematical equations are solved, and

• postprocessing.

The most common CFD methods discretize with the aid of the finite volume method, the finite

element method, or the finite difference method. They numerically solve the conservation

equations of macroscopic properties, namely the mass, momentum, and energy conservation.

The LBM is another discretization method. It is based on simplified particle dynamics, meaning

that the simulation is conducted at particle level. The fluid is modelled by fictive distributions

that are moving and interacting across the computational domain. The conservation equations

are recovered only indirectly in contrast to conventional discretization methods that are initially

built on them. Due to the simulation procedure the LBM is especially simple to implement to

study flow in complex geometries. The finite volume method and the finite element method

discretize the control volume or the volume of the element, while the finite difference method

and the LBM discretize space and time (Mohamad, 2011).

Topology optimization is a method of computation that identifies a favorable topology within a

domain given one or more objective functions. The shape can therefore differ from the initially

given shape so that any geometry possible within the design space can be obtained. Topology

optimization has a wide range of applications in structural design, where conceptual designs as

well as detailed shape and sizing optimizations are conducted (Zhu and Gao, 2016; Bendsoe

and Sigmund, 2004), in microfluidics (Deng et al., 2018), for electromagnetic waves to opti-

mize microwaves and antennas (Aage et al., 2010) and in dynamics to optimize vibrations and

particularly the eigenvalues of a machine or a structure (Bendsoe and Sigmund, 2004). Also,

coronary stents are subject to design optimization. The commonly inserted stents are called

2



balloon-mounted metal mesh permanent scaffolds. They are widened to the desired size by

a balloon that is then deflated and removed. Consequently, the geometry of the implemented

stent is determined by its flexibility, the surrounding coronary geometry as well as the shape

of the inflated balloon. The focus of the conducted optimizations lies on the complex scaffold

of the stent that gives stability and widens the blood vessel rather than the curvature of the

tube (Ribeiro et al., 2021; James and Waisman, 2016). Current research about the curvature

of stents observes their flexibility to enhance general adjustment to the surrounding geometry

without deliberately adjusting it to the coronary geometry of individual patients (Saito et al.,

2020; Wentzel et al., 2000).

CFD simulations with non-Newtonian fluids, such as blood are performed for several reasons.

The main reason is the design of biomedical devices, such as blood pumps, which can also

be designed with the aid of topology optimization (Alonso et al., 2019; Romero and Silva,

2017). Besides, there are studies on arterial bypass configurations (Zhang and Liu, 2015; Abra-

ham et al., 2005; Quarteroni and Rozza, 2003) and hemolysis, which indicates blood damage

(Alonso and Silva, 2021), for instance.

The LBM is widely used for shape optimization. Kreissl et al. (2011) use an explicit level-set

approach to model the fluid-solid interface and determine the geometry of fluidic devices and

obstacles that are immersed in flows. De Avila Belbute-Peres et al. (2020) apply a hybrid graph

neural network to speed up fluid flow predictions compared to conventional CFD simulations.

Obiols-Sales et al. (2020) utilize deep learning algorithms to accelerate the convergence of

CFD simulations. The approach shows improvements regarding generalization and the vari-

ety of applicable cases like laminar and turbulent flows as well as the possibility to consider

convergence constraints. Pingen et al. (2007) and Pingen et al. (2009) utilize the LBM in com-

bination with varying porosity for design optimization with the adjoint method. Later Pingen

and Maute (2010) model a non-Newtonian fluid to analyze the 2D dual-pipe problem at dif-

ferent Reynolds numbers. Other studies with the LBM and non-Newtonian fluids have been

conducted by Chuanhu et al. (2016) and Vikhansky (2012). Conrad et al. (2015) analyze the

accuracy of non-Newtonian Lattice Boltzmann (LB) simulations and describe how to minimize

3



the error that is induced by the relaxation time.

1.2 Motivation

As it becomes clear in the previous section, topology optimization is subject to research in

various fields. Although the use of the adjoint method is widely used in combination with

topology optimization, the method is only theoretically described in the available literature.

Consequently, inexperienced readers will find it difficult to apply the theoretical approach

to their application. The knowledge gap is a detailed description for the implementation of

topology optimization using the LBM that is easily understandable even for an inexperienced

reader. Only Pingen and Maute (2010) combine topology optimization with the LBM and non-

Newtonian fluids. Topology optimization in combination with the LBM to model blood flow

for a real-world application has not been conducted so far.

The reader will be provided with the necessary methods and tools to implement topology op-

timization using the adjoint LBM to examine blood flow related applications. The aim of the

study is to facilitate the implementation process to make the available methods more accessible

for a wider audience. Therefore, the LBM will be implemented in Python with the required

BCs. Thereafter, the porosity model is added. Finally, the adjoint method is described and an

example calculation is provided that is supposed to provide the reader with a thorough under-

standing of how to adjust the calculations to an individual application. As the overarching aim

is to provide an easily understandable manual for the implementation, the simplest approaches

are preferred throughout this work.

4



2. Theory

This chapter introduces the main methods applied in this thesis such as the LBM to solve the

fluid dynamics, the porosity model and the adjoint method for topology optimization.

2.1 Lattice Boltzmann Method

The LBM can be used for various CFD problems from multiphase flow to heat transfer, flow

through porous media and slightly compressible flows (Guo and Shu, 2013; Huang et al., 2015;

Evgrafov, 2006). The Lattice Boltzmann Equation (LBE) initially evolved out of the Lattice

Gas Cellular Automata with the aim to bypass its main drawbacks, which are statistical noise

and the complexity of the collision rule. The LBM is based on kinetic theory of gases, where the

time evolution of density distributions on a lattice is simulated instead of individual particles

in the lattice gas automata. One of the most used implementations is the Lattice Bhatnagar-

Gross-Krook (LBGK) model. This model is regarded as simple and effective despite some new

limitations about the single relaxation time for specific applications (Succi, 2001). Kinetic the-

ory is based on statistical mechanics, and it describes the properties of gases on a microscopic

level. At a microscopic level, individual molecules are observed and at a macroscopic level, the

fluid is viewed as an entity with continuous properties where individual molecules cannot be

distinguished. In between lies the mesoscopic scale where molecules are grouped into distri-

butions. On the mesoscopic level, the locations of molecules are not monitored, because they

dislimn to the position of the respective distribution. Also, the macroscopic properties of the

fluid are not tracked directly but can be computed by the aid of the distributions that describe

the density and velocity of the distribution at a certain location. This scale is utilized by the

5



Figure 2.1: Streaming and collision step

LBM, where the fluid is modelled by these fictive particles or distributions that are moving and

interacting across the computational domain. The LBM consists of two steps called streaming

or propagation and collision or relaxation (Krüger et al., 2017) as visualized in figure 2.1. The

collision step describes the redistribution of molecules. During this part of the LBM, molecules

can switch from one fictive group to another, while the number of molecules in one distribu-

tion remains constant during the streaming step. The equation that describes the redistribution

is called collision operator Ω, and obeys the Boltzmann equation (Mohamad, 2011; Mattila,

2010):

∂ f
∂ t

+u
∂ f
∂ r

+
F
m

∂ f
∂u

= Ω, (2.1)

Where the distribution function f is a function of the position r, the velocity u and the time t,

and Ω is a function of f . F
m = du

dt according to Newton’s second law with the mass m and the

force F . The first two terms of equation 2.1 can be viewed as the movement of the particles

with the velocity u. The third term represents forces like for example intermolecular forces that

appear when two particles collide. Commonly, the simpler Bhatnagar-Gross-Krook (BGK)

collision operator is used, which will be introduced in equation 2.3. Before that, the readers

attention is directed to the distribution function f and its meaning for the LBM.

The distinctiveness of the LBM lays in the Discrete Velocity (DV) distribution function fα(r, t)

which is also called the particle population. fα is dependent on space and time and holds the
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Discrete Velocities (DVs) of the respective position r at the respective time t. Instead of a

continuous distribution function, the velocities are discretized according to a chosen velocity

set. Therefore, the DV distribution function describes the velocity in each of the DV directions

of the fluid at position r and time t. Each time step during the streaming step the particle

population, or element of f , can move along its DV direction to a neighboring node. The

number of particles that will indeed move to that node is determined by the collision step, which

updates the DV distribution function for the next time step. When choosing the velocity set,

few velocities are preferred to minimize the required computational resources such as memory

and computing power, while more DVs provide higher accuracy (Krüger et al., 2017). In this

work, the velocities are discretized with the D2Q9 velocity set shown in figure 2.2, which is

one of the most used velocity sets to solve Navier-Stokes equations in two dimensions. The

abbreviation refers to nine DVs in two-dimensional space (Krüger et al., 2017). The table in

figure 2.2 shows the explicit form with the indices α , the weights wα and the direction of the

vector by coordinates in x- and y-direction cαx and cαy. Figure 2.2 shows one black node in

the middle with the DVs indicated as arrows that lead to the neighboring gray nodes. The

black numbers indicate the indices α of the vectors and the weights wα are displayed in red.

The indexing α is based on the weight of the respective velocity direction. In the literature,

multiple other indexing sequences can be found (Krüger et al., 2017; Pingen et al., 2007; Zou

and He, 1997). The weights wα and the direction of the DVs cα = (cαx,cαy) are required for

the computation and will come into focus especially during the implementation process.

Now it is clear that the distribution function fα contains one particle population for each DV

direction at every positions r in the computational domain at the time t. To conduct a simula-

tion, these distributions must stream and collide as shown in figure 2.1. The LBE that evolved

out of the Lattice Gas Cellular Automata is obtained when discretizing the Boltzmann equation

in velocity space, physical space, and time:

fα(r+ur∆t, t +∆t) = fα(r, t)+Ωα(r, t). (2.2)
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α 0 1 2 3 4 5 6 7 8

wα
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

cαx 0 0 1 0 -1 -1 1 1 -1

cαy 0 1 0 -1 0 1 1 -1 -1

Figure 2.2: D2Q9 velocity set

The discrete-velocity distribution function of the next time step t +∆t is obtained by apply-

ing the collision operator Ωα to the particle population of the current time t. The particles

represented by fα(r, t) move to the next node within one time step ∆t and with the velocity ur

(Krüger et al., 2017). The previously mentioned LBGK model refers to the LBM which applies

the BGK collision operator:

Ωα(r, t) =−
fα(r, t)− f eq

α (r, t)
τ

∆t, (2.3)

Where f eq
α (r, t) is the equilibrium distribution of the DVs and τ is the relaxation time. This

collision operator is still the simplest one available for solving Navier-Stokes problems (Krüger

et al., 2017) and will be used in this work. The main purpose of the collision operator is

to conserve mass and momentum (Krüger et al., 2017). To maintain stability when using the

BGK collision operator, all equilibrium populations f eq
α must be positive or zero. The additional

stability criterion τ

∆t >
1
2 follows from the Chapman-Enskog analysis, that is mentioned in more

detail in section 2.1.1 (Krüger et al., 2017).

In this work the equilibrium distribution f eq
α (r, t) is determined by the aid of a Taylor series

expansion of the Maxwell-Boltzmann equilibrium distribution as described by He and Luo
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(1997):

f eq
α (r, t) = wαρr

[
1+3(cαur)+

9
2
(cαur)

2− 3
2

u2
r

]
, (2.4)

Where ur is the macroscopic velocity vector, ρr is the macroscopic pressure and cα = (cαx,cαy)

is the velocity vector describing the direction of the respective DV. This approach is also used

by Pingen et al. (2007) and Pingen et al. (2009) and it is applicable for low Mach number flow

conditions. The LBGK equation can be obtained by combining the equations 2.2 and 2.3:

fα(r+ur∆t, t +∆t) = fα(r, t)−
fα(r, t)− f eq

α (r, t)
τ

∆t. (2.5)

The result is then divided into two separate equations for the collision and streaming step,

respectively as they will be conducted individually:

f ∗α(r, t) = fα(r, t)−
fα(r, t)− f eq

α (r, t)
τ

∆t = (1− ∆t
τ
) fα(r, t)+

∆t
τ

f eq
α (r, t), (2.6)

fα(r+ur∆t, t +∆t) = f ∗α(r, t). (2.7)

For notational clarity, the dependence of f , f eq and Ω on r and t will not be explicitly written

in the following.

2.1.1 Macroscopic Moments

Now it is clear how to determine the equilibrium distribution by the aid of the velocity set

suitable to the grid geometry. However, it is still unclear how the non-equilibrium distribution

f is obtained so that kinetic theory is preserved. This is described by the Chapman-Enskog

9



analysis (Chapman, 1939). By the aid of solvability conditions that conserve mass and mo-

mentum in combination with, in this case the Taylor expansion and the BGK collision operator,

it can be concluded that the LB equation solves the continuity equation and the Navier-Stokes

equation (He and Luo, 1997). The Chapman-Enskog analysis is utilized to connect the ki-

netic theory with the conservation equations and provides the missing piece to calculate the

non-equilibrium distribution and the macroscopic moments. However, the LBM does not di-

rectly solve the Navier-Stokes equation, but solves the LB equation. Under certain conditions

this approximates Navier-Stokes flow. For the D2Q9 velocity set this is achieved by calculat-

ing the macroscopic density ρr according to equation 2.8 and the macroscopic flow velocity

ur = (ux,uy) by equation 2.9 (Krüger et al., 2017; Zou and He, 1997):

ρr =
8

∑
α=0

fα = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (2.8)

ux =
1
ρr

8

∑
α=1

cαx fα =
1
ρr

[( f2 + f6 + f7)− ( f4 + f5 + f8)]

uy =
1
ρr

8

∑
α=1

cαy fα =
1
ρr

[( f1 + f5 + f6)− ( f3 + f7 + f8)] .

(2.9)

The interested reader is referred to Chapman (1939), Krüger et al. (2017), Mohamad (2011)

and Zou and He (1997) for more information and a detailed derivation. When performing the

LB simulation, the macroscopic moments must be updated every iteration. Other macroscopic

properties like the pressure can be calculated based on the density and velocity. The pressure p

is related to the density by the isothermal ideal gas equation of state (Pingen et al., 2007):

p(r, t) = c2
s ρ(r, t), (2.10)

10



Where cs is the lattice speed of sound cs =
c√
3

with the lattice speed c = δx
δ t .

2.1.2 Closed Boundaries

Describing appropriate BCs is a major challenge in every CFD problem. The boundaries are to

represent the interaction between the fluid molecules and the molecules in the solid wall (Succi,

2001). In other cases, the boundaries describe how a force, speed, density, or temperature is

applied on the fluid on an open boundary meaning an inlet or outlet where the fluid enters

or leaves the computational domain (Krüger et al., 2017). In this work, only a few BCs are

applied like a no-slip boundary at solid walls, a velocity condition, and a density condition on

the open boundaries. Information about additional BCs can be found in Succi (2001), Krüger

et al. (2017), Mohamad (2011) and Guo and Shu (2013).

The no-slip BC generates a fluid velocity of zero at the respective solid surface. The two

types of implementations are called on-grid and mid-grid (Succi, 2001) or fullway and halfway

(Krüger et al., 2017) bounce-back BC . In both cases the solid wall is aligned with the grid of

the lattice. Regarding the fullway bounce-back condition, the theoretical boundary is positioned

exactly on the grid line as visualized in figure 2.3a. In that case the velocities at the boundary

node are simply reversed. This BC is first-order accurate. In contrast, the halfway bounce-back

condition positions the boundary between the last fluid and the first solid nodes as shown in

figure 2.3b. This BC is second-order accurate. With both methods the physical boundary lays

midway between the last fluid and the first solid node (Krüger et al., 2017). From the perspec-

tive of the implementation procedure, the theoretical wall of the fullway bounce-back BC is not

aligned with the physical wall, because the distributions are stored at the solid boundary and

only reflected at the subsequent time step. However, the physical wall is situated in between

the last fluid and the first solid node as for the halfway bounce-back BC. The bounce-back

BC enforces the no-slip condition by bouncing the particles back instead of reflecting them

forward. Consequently, the fluid does not slip on the wall Krüger et al. (2017). As the fullway

bounce-back approach is the easiest way to implement solid walls and as Pingen et al. (2007)

applies only this approach for topology optimization, this BC is used in this work.

11



(a) Fullway (b) Halfway

Figure 2.3: Bounce-back, no-slip boundary condition

2.1.3 Open Boundaries

Besides the boundaries representing the interaction between fluid and solid, the open bound-

aries must be described. There are numerous schemes that can be applied on open boundaries

(Yu et al., 2005; Noble et al., 1995; Zou and He, 1997). In the following, the approach of Zou

and He (1997) is discussed. The general approach is to calculate the unknown DVs with the

known ones. At every boundary node, six DVs are known after streaming and at every corner

node, three DVs are known. These and the macroscopic properties that are given at the open

boundary are employed to determine the unknown DVs. To do this, the equations 2.8 and 2.9

are used to derive the following expressions:

ρr = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

ρrux = ( f2 + f6 + f7)− ( f4 + f5 + f8)

ρruy = ( f1 + f5 + f6)− ( f3 + f7 + f8),

(2.11)

ρr−ρrux = f0 + f1 + f3 +2( f4 + f5 + f8)

ρrux +ρruy = ( f1 + f2 +2 f6)− ( f3 + f4 +2 f8)

ρrux−ρruy = ( f2 + f3 +2 f7)− ( f1 + f4 +2 f5),

(2.12)
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Figure 2.4: Density boundary

ρr−ρruy = f0 + f2 + f4 +2( f3 + f7 + f8)

ρrux +ρruy = ( f1 + f2 +2 f6)− ( f3 + f4 +2 f8)

ρruy−ρrux = ( f1 + f4 +2 f5)− ( f2 + f3 +2 f7).

(2.13)

The subtractions and additions in equations 2.12 and 2.13 are used to derive the equations for

the missing DVs for boundaries along the y- and x-axis, respectively.

Density Boundary Condition

The density boundary is implemented with a non-equilibrium density BC . Due to the direct

relation of pressure and density described in equation 2.10, this boundary is also applied when

the pressure is prescribed. Figure 2.4 shows an open boundary at the bottom of a domain. The

green DVs indicate that they are known after streaming while the red ones are undetermined.

Grey dots indicate a neighboring node, and the numbers describe the indices α of the DVs.

After the streaming step is conducted, f0, f2, f3, f4, f7 and f8 are known as visualized in figure

2.4. Additionally, ρr = ρout is the density at the outlet, which is known and uout = (ux,uy) =

(0,uout) is the velocity at the outlet, which is unknown. However, the velocity in x-direction

is supposed to be zero (ux = 0) when the fluid flows solely along the y-axis. To determine the

missing properties, the equations 2.13 are used as the density boundary lays along the x-axis at

the bottom of the domain. ρr−ρruy is reorganized to calculate the unknown velocity along the

13



y-axis uy:

uy = 1− 1
ρout

[ f0 + f2 + f4 +2( f3 + f7 + f8)] . (2.14)

Now, only the DVs f1, f5 and f6 remain unknown. The DV f1 is obtained by applying the

bounce-back rule to the non-equilibrium distribution normal to the outlet:

f1− f eq
1 = f3− f eq

3 . (2.15)

Besides, ρrux +ρruy and ρruy−ρrux in 2.13 are reorganized to obtain the equation for f6 and

f5 respectively:

f1 = f eq
1 +( f3− f eq

3 )

f5 =
1
2
(ρr(uy−ux)− f1 + f2 + f3− f4 +2 f7)

f6 =
1
2
(ρr(ux +uy)− f1− f2 + f3 + f4 +2 f8).

(2.16)

The expressions in equation 2.16 are further simplified by Zou and He (1997). The equilibrium

distributions for f eq
1 and f eq

3 are inserted according to the Taylor expansion in equation 2.4 into:

f1 = f eq
1 +( f3− f eq

3 )

= f3 + f eq
1 − f eq

3

= f3 +
1
9

ρout

[
1+3uy +

9
2

u2
y−

3
2

u2
y

]
− 1

9
ρout

[
1−3uy +

9
2

u2
y−

3
2

u2
y

]
= f3 +

1
3

ρoutuy +
1
3

ρoutuy

= f3−
2
3

ρoutuy.

(2.17)
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The result is then inserted into the expressions for f5 and f6 in equation 2.16:

f6 =
1
2
(ρr(ux +uy)− f1− f2 + f3 + f4 +2 f8)

= f8−
1
2
( f2− f4)−

1
2
( f1− f3)+

1
2

ρoutux +
1
2

ρoutuy

= f8−
1
2
( f2− f4)−

1
2
( f3−

2
3

ρoutuy− f3)+
1
2

ρoutux +
1
2

ρoutuy

= f8−
1
2
( f2− f4)−

1
3

ρoutuy +
1
2

ρoutux +
1
2

ρoutuy

= f8−
1
2
( f2− f4)+

1
6

ρoutuy +
1
2

ρoutux

= f8−
1
2
( f2− f4)+

1
6

ρoutuy,

(2.18)

f5 =
1
2
(ρr(uy−ux)− f1 + f2 + f3− f4 +2 f7)

= f7 +
1
2
( f2− f4)+

1
6

ρoutuy.

(2.19)

As ux = 0 at the pressure boundary, the term 1
2ρoutux can be neglected when calculating f5

and f6. Now, all the unknown DVs for a density boundary at the bottom of the domain can be

calculated. f1, f5 and f6 are obtained with equation 2.17, 2.19 and 2.18 respectively. Every

iteration, the unknown DVs of the nodes on the density boundary must be calculated accord-

ingly. For density boundaries at other locations like the top, the right or the left, the equations

for the unknown DVs can be derived by the same concept.

Velocity Boundary Condition

The other type of open boundary that will be used in this work is an equilibrium distribution

velocity condition. Figure 2.5 shows a node on that boundary on the left of the computational

domain. The green DVs indicate that they are known after streaming while the red ones are

undetermined. Grey dots indicate a neighboring node, and the numbers describe the indices α

of the DVs.

After the streaming step is conducted, f0, f1, f3, f4, f5 and f8 are known. Additionally, uin =
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Figure 2.5: Velocity boundary

(ux,uy) = (uinx,0) is the velocity at the inlet, which is known and ρr = ρin is the density at the

inlet, which is unknown. To determine the missing properties, the equations 2.12 are used as

the velocity boundary lays along the y-axis on the left of the domain. ρr−ρrux is reorganized

to calculate the unknown density ρin:

ρin =
1

1−ux
[ f0 + f1 + f3 +2( f4 + f5 + f8)] . (2.20)

Now, only the DVs f2, f6 and f7 remain unknown. Again, the bounce-back rule is used to

obtain the DV f2. Besides, ρrux +ρruy and ρrux−ρruy in 2.12 are reorganized to obtain the

equation for f6 and f7 respectively:

f2 = f eq
2 +( f4− f eq

4 )

f6 =
1
2
(ρr(ux +uy)− f1− f2 + f3 + f4 +2 f8)

f7 =
1
2
(ρr(ux−uy)+ f1− f2− f3 + f4 +2 f5).

(2.21)
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As with the pressure boundary, the expressions in 2.21 can be further simplified to:

f2 = f4 +
2
3

ρinux

f6 = f8−
1
2
( f1− f3)+

1
6

ρinux

f7 = f5 +
1
2
( f1− f3)+

1
6

ρinux.

(2.22)

Now, all the unknown DVs for a velocity boundary at the right of the domain can be calculated.

f2, f6 and f7 are obtained with the equations 2.22. As with the pressure boundary, velocity

boundaries at other locations than the right would require the derivation for the respective

unknown DVs. For the following application, only the described open boundaries are applied,

so that all the required theory to implement the LBM is covered.

2.2 Porosity

To conduct topology optimization, a variable in the system must be adjustable. In this case,

the porosity of the nodes in the domain will be subject to change. Depending on the porosity

model, the key variables defining the porous medium can vary. Pingen et al. (2007) adopts

the LBM porosity model by Spaid and Phelan (1997) which will also be applied in this work.

The porosity of the system is described by the kinematic viscosity ν and the permeability

ktow. Viscosity can be viewed as a measure of the internal friction between the molecules of a

fluid. Consequently, the viscosity defines the resistance to deformation of a given fluid (Barnes,

2002). The permeability describes the rate at which a fluid can pass through a permeable

material and is governed by Darcy’s law (Hwang and Advani, 2010). For the porosity model

by Spaid and Phelan (1997), a parameter β is introduced that defines the porosity of each node.

For the D2Q9 velocity set, the kinematic viscosity can be described by:

ν = (τ− 1
2
)c2

s ∆t =
2τ−1

6
, (2.23)
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And recovers the Brinkman equation when β = ν

ktow
. More information about the recovery of

the Brinkman equation is provided by Spaid and Phelan (1997).

The adjustable parameter for the topology optimization will be the porosity measure of the

nodes β . As the relation between the viscosity and the permeability defines the porosity mea-

sure, only one of them can be fixed for the simulation. Unlike the suggestion by Spaid and

Phelan (1997), the viscosity is set, the porosity measure is optimized, and the permeability is

adjusted accordingly. The recommendation of Spaid and Phelan (1997) is to predefine the per-

meability, so that the viscosity and the porosity can be adjusted by the optimization algorithm.

Due to the interconnection of the viscosity and the relaxation time, this leads to a changing

upper limit for the porosity measure. As the level of porosity is set by the algorithm, it is more

convenient to have a defined range of possible values rather than a dynamic one. Consequently,

the viscosity is chosen to be constant for all nodes and time steps. However, the porosity and

the ability of a fluid to pass through the computational domain of each node is determined

individually. Thereby, a solid node is represented by a low-porous material that does not let

fluid pass through it. By contrast, a fluid node is modelled by a highly porous medium through

which fluid can pass easily. This approach enables a smooth transition between fluid and solid

nodes.

As shown in equation 2.23, the viscosity has a direct relation to the relaxation time. The re-

laxation time τ mentioned in equation 2.3 has a major influence on the collision step. When

τ

∆t > 1, f (t +∆t) continuously approaches f eq. However, the bigger τ , the smaller is the influ-

ence of f eq so that the equilibrium distribution has a negligible influence for large relaxation

times. This is called under-relaxation. When τ

∆t = 1, f (t +∆t) equals the equilibrium distri-

bution f eq, which is called full relaxation. When 0.5 < τ

∆t < 1, f (t +∆t) fluctuates around

f eq and continuously approaches it when regarding successive time steps, which is called over-

relaxation. To maintain stability, the relaxation time cannot be smaller than 0.5 as this would

lead to a fluctuation with increasing amplitude. (Krüger et al., 2017)

When adding the porosity model to the LBM a modification of the equilibrium distribution
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calculation is required. The velocity u(t,r) is replaced with the velocity U(t,r):

U(t,r) = (1− (β (r)τ)k)u(t,r) = d(r)u(t,r), (2.24)

Where 0 ≤ dr ≤ 1, and 1 translates to a pure fluid while 0 represents a fluid and everything

in between is a porous medium. k is a factor for polynomial scaling to improve convergence.

Pingen et al. (2007) recommend k ∈ [2,3] for best results. For the porosity model with the

introduced variable dr the Taylor expansion in equation 2.4 is modified to:

f eq
α = wαρr

[
1+3(drcαur)+

9
2
(drcαur)

2− 3
2
(drur)

2
]
, (2.25)

Where βτ ∈ [0,1] (Evgrafov, 2005). This model is not limited to specific kinds of flow and is

therefore applicable for the same range of applications as the LBM. It should be noted that the

porosity model is not intended to represent porous media in this implementation but to provide

a smooth transition from liquid to solid material for the optimization method that is described

in the following chapter.

2.3 Topology Optimization

To find the optimal topology of the problem without optimization algorithm, every combination

of solid and fluid nodes must be calculated and the combination that meets the objectives best

would be the solution. In a problem with as many parameters as nodes, this requires enormous

computational resources. For a computational domain with 10∗10 = 100 nodes (excluding the

marginal boundaries) and two possible properties that are solid or fluid, this leads to 2100 =

1,27 ∗ 1030 simulations. Consequently, this approach is infeasible, especially for real-world

applications with significantly higher node numbers. The adjoint method provides a solution

to this issue by calculating the gradient of the cost function independently from the number of

optimization parameters (Cheylan et al., 2019).
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Optimization approaches with the adjoint method in combination with the LBM are chosen by

Pingen and Maute (2010) for topology optimization with non-Newtonian fluids, Dugast et al.

(2018) for thermal fluid flows, Cheylan et al. (2019) for aerodynamic applications, Rutkowski

et al. (2020) for wing movement, Li et al. (2018) for airfoil design and Vergnault and Sagaut

(2014) for noise control problems. Besides, Hamed and Ramin (2020) use an adjoint LBM

for unsteady flow. Hekmat and Mirzaei (2014) extract continuous and discrete adjoint LB

equations that can be used for steady and unsteady flow. In this case, the adjoint method is

implemented in the LBM instead of running the LB simulation multiple times with the results

of the adjoint method. The adjoint method is explained in a general manner by Cao et al.

(2003), Errico (1997), Strang (2007) and Johnson (pers. comm., 2021) who gave a lecture on

adjoint methods with notes on https://math.mit.edu/~stevenj/18.336/adjoint.pdf,

while Plessix (2006) and Cheylan et al. (2019) describe the steps of the adjoint Lagrange mul-

tiplier method in more detail and are recommended for additional guidance and a deeper un-

derstanding.

2.3.1 Adjoint Method

First, the theory of the adjoint method is explained for linear equations to introduce the method

in an understandable way. Later the theory of the Lagrange multiplier method and a corre-

sponding example are presented.

Linear System

The aim is to optimize the system A(κ)u = b(κ) with respect to the scalar function F (u,κ).

Thereby, Au = b is a system of M equations that are dependent on the design variables κ . A

constitutes a M×M matrix and u is the column-vector that solves the system. In the literature,

F is called objective function, cost function or constraint. The objective function F is depen-

dent on the solution of the linear equation system Au = b and the design variables κ which the

linear equation system depends on. Since A and b are dependent on κ , the gradient of the func-

tion F with respect to the design variables κ must be obtained for the topology optimization
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and can be calculated as follows (Johnson, pers. comm., 2021):

dF

dκ
=

∂F

∂κ
+

∂F

∂u
∂u
∂κ

. (2.26)

This equation describes the sensitivities of the objective function with respect to changes in

the design variables. Since the function F (u,κ) is known, ∂F
∂κ

and ∂F
∂u can be calculated

analytically. However, calculating ∂u
∂κ

is difficult as u can be obtained only by calculating A(κ)

and b(κ), so that A(κ)u = b(κ) must be differentiated by κ first. When M is large and the

number of design variables P is large as well, this leads to a cumbersome calculation (Strang,

2007):

∂u
∂κ

= A−1︸︷︷︸
M×M

(
∂b
∂κ
− ∂A

∂κ
x)︸ ︷︷ ︸

M×P

. (2.27)

Here the adjoint method is applied to rephrase the problem and avoid the calculation of the

term ∂u
∂κ

as follows:

∂F

∂u
∂u
∂κ

=
∂F

∂u︸︷︷︸
1×M

A−1︸︷︷︸
M×M

(
∂b
∂κ
− ∂A

∂κ
u
)

︸ ︷︷ ︸
M×P

=

λ T︷ ︸︸ ︷∂F

∂u
A−1︸ ︷︷ ︸

1×M

( ∂b
∂κ
− ∂A

∂κ
u
)

︸ ︷︷ ︸
M×P

. (2.28)

Depending on the problem, the exact approach of the adjoint method slightly varies. The adjoint

method can be applied to linear systems, nonlinear systems and dualities (Strang, 2007). For

topology optimization commonly the Lagrange multiplier method is applied, which is described

next. For that reason, the first part of the rephrased equation 2.28 is denoted as λ T . The

Lagrange multipliers are called λ and they can be viewed as the specified part of the rearranged

expression.
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Lagrange Multiplier Method

The next problem is nonlinear and more abstract. The aim is to optimize the scalar function

F (u,κ) with respect to design variables κ while satisfying the set of equations g(u,κ) = 0.

Again, κ represents the design variables and u is a vector of physical variables. In topology

optimization, g(u,κ) is viewed as a set of constraints of the system. Universally, g is a set

of functions. The Lagrange multiplier method is used to combine the scalar function and the

constraints. The augmented objective function L (u,κ,λ ), the Lagrangian function, is defined

by introducing Lagrange multipliers λ so that:

L = F −λ
T g. (2.29)

One Lagrange multiplier is added to each function g as a factor. While λ T g are subtracted from

F in this explanation, the sign is irrelevant as the factor λ will be chosen based on the respec-

tive definition. In the literature, both expressions can be found. When the Lagrangian equals

zero, the constraints are fulfilled and the objective function indicates the ideal solution. The

gradient of the Lagrangian with respect to the physical parameters u is called adjoint equation:

dL

du
=

dF

du
−λ

T ∂g
∂u

. (2.30)

The adjoint equations are needed to determine the Lagrange multipliers. The last term −λ T ∂g
∂u

is only a partial derivative with respect to u to later recover the sensitivity of the Lagrangian with

respect to the design variables. By choosing λ , so that dL
du = 0, the gradient of the Lagrangian

equals equation 2.30 (Strang, 2007). In this way, the computation of the sensitivity of the

Lagrangian with respect to the design variables can be expressed as:

∇L =
dL

dκ
=

dF

dκ
−λ

T ∂g
∂κ

. (2.31)

By introducing λ , the order of the computations is adjusted, so that the physical parameters of

the system are determined before the design variables are changed. This simplifies the calcula-
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tion when the number of design variables is higher than the number of physical parameters. By

choosing the Lagrange multipliers as described, the gradient of the Lagrangian is equivalent to

the gradient of the objective function ∇L = ∇F . The update of the design variables can now

be calculated independently of the other design variables by an iterative algorithm such as for

example the steepest descent method or the Newton method.

The Lagrange multiplier method can be applied to the linear problem that was discussed previ-

ously. In that case, the linear system Au = b must be reorganized so that g(u,κ) = 0 resulting

in g = Au−b. Next, λ is determined by setting equation 2.30 to zero. With ∂g
∂u = ∂ (Au−b)

∂u = A

the equation can be simplified to:

dL

du
=

dF

du
−λ

T A = 0

λ
T A =

dF

du

λ
T =

dF

du
A−1,

(2.32)

Which equals the term that is denoted as λ T in equation 2.28.

To apply the adjoint Lagrange multiplier method on a topology optimization problem, the de-

scription above can be summarized to these steps:

• Define the problem including objective function F , governing equations g, and design

variables κ .

• Define the Lagrangian L with the Lagrange multipliers λ and the constraints g.

• Differentiate the Lagrangian L with respect to the design variables κ and simplify to

obtain the adjoint equations.

• Identify the adjoint equations where the physical variables u are dependent on the change

of the design variables κ which should look similar to the governing equations. Deter-

mine the Lagrange multipliers λ so that dL
du = 0. Rename the Lagrange multipliers if

desired.

23



Figure 2.6: Problem definition for adjoint method example

• Find the sensitivity variables ∂L
∂κ

= ∂F
∂κ

.

• Conduct the optimization with the obtained sensitivities.

2.3.2 Example

Now the adjoint method is applied to a 1D problem to enhance understanding.

Problem Definition

The problem describes a pipe with varying diameter which is defined by multiple shape pa-

rameters that are subject to optimization. The inlet has a velocity BC and the outlet a pressure

boundary. The pressure p(x) depending on the position in the pipe x is supposed to match a

target pressure curve pt(x) as visualized in figure 2.6. The target pressure is predefined. Addi-

tionally, one set of initial shape parameters must be given. These parameters are then adjusted

by the adjoint method until the pressure curve matches the target pressure sufficiently. For

this problem, the Euler equations for mass and momentum conservation are used as governing

equations:

∂

∂x
(Au) = 0, (2.33)
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u
∂u
∂x

+
∂ p
∂x

= 0, (2.34)

Where A is the diameter of the pipe, x is the position along the pipe, p is the pressure, and u is

the velocity. The design variables κ define the area of the pipe:

A(x,κ1,κ2,κ3,κ4) = κ1(−x3 +3x2−3x+1)+κ2(3x3−6x2 +3x)+κ3(−3x3 +3x2)+κ4x3,

(2.35)

And the objective function F is:

F =
1
2

∫ 1

0
[p− pt ]

2 dx. (2.36)

The observed part of the pipe reaches from x = 0 to x = 1 which are incorporated into the

objective as lower and upper boundaries. When the pressure matches the target pressure, the

objective equals zero. The further they are apart, the bigger the objective becomes. The opti-

mization algorithm is supposed to move the pressure closer to the target pressure which is done

by minimizing the objective. After the problem is defined the adjoint method is applied.

Definition of the Lagrangian

The example is governed by the mass and momentum conservation as constraints g. Both must

be zero to maintain the physical properties of the system. Theoretically, g is described as a set

of equations. To conduct the adjoint method, they can be incorporated into the Lagrangian as

follows:

L = F +
∫ 1

0
λ1

∂

∂x
(Au)dx+

∫ 1

0
λ2

(
u

∂u
∂x

+
∂ p
∂x

)
dx, (2.37)

Where the constraints are multiplied with the Lagrange multipliers λ1 and λ2 and define the

Lagrangian together with the objective function. The Lagrangian of the best possible solution

equals zero. To reinforce physical behavior, the accumulated deviations from the governing
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equations are added to the objective function. The Lagrange multipliers define how strongly

the governing equation must be satisfied. To compute the constraints, the governing equations

are integrated over the coordinates of the system, which is x in this example. The whole com-

putational domain that is subject to optimization is covered by setting the boundaries of the

integral accordingly. In this example the lower boundary is 0 and the upper boundary is 1.

Derivation of the Lagrangian

Even though the adjoint equations have been determined by calculation equation 2.30 in section

2.3.1, the same result can be achieved by differentiating with respect to κ . To explain this, the

Lagrangian L must first be differentiated with respect to the design variables as follows:

∂L

∂κ
=

∂F

∂κ
+
∫ 1

0
λ1

∂

∂κ

∂

∂x
(Au)dx+

∫ 1

0
λ2

∂

∂κ

(
u

∂u
∂x

+
∂ p
∂x

)
dx. (2.38)

It can be clearer to first differentiate the objective function F and the governing equations with

respect to the design variables κ , before inserting the derivatives into equation 2.38. The objec-

tive function defined in 2.36 and the Euler equations defined in 2.33 and 2.34 are differentiated,

respectively:

∂F

∂κ
=

1
2

∫ 1

0

∂

∂κ
[p− pt ]

2 dx =
∫ 1

0
[p− pt ]

∂ p
∂κ

dx, (2.39)

∂

∂κ

∂

∂x
(Au) =

∂

∂κ

(
u

∂A
∂x

+A
∂u
∂x

)
=

∂u
∂κ

∂A
∂x

+u
∂

∂κ

∂A
∂x

+
∂A
∂κ

∂u
∂x

+A
∂

∂κ

∂u
∂x

= 0, (2.40)

∂

∂κ

(
u

∂u
∂x

+
∂ p
∂x

)
= u

∂

∂κ

∂u
∂x

+
∂u
∂κ

∂u
∂x

+
∂

∂κ

∂ p
∂x

= 0. (2.41)

The derivative of the mass conservation equation seems more complicated than the initial form.

Therefore, the initial form is retained. Consequently, the partially differentiated Lagrangian can
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be described as:

∂L

∂κ
=
∫ 1

0
[p− pt ]

∂ p
∂κ

dx+
∫ 1

0
λ1

∂

∂κ

∂

∂x
(Au)dx

+
∫ 1

0
λ2

(
u

∂

∂κ

∂u
∂x

+
∂u
∂κ

∂u
∂x

+
∂

∂κ

∂ p
∂x

)
dx.

(2.42)

Next, integration by parts is applied to solve equation 2.42:

∫ 1

0
λ1

∂

∂κ

∂Au
∂x

dx =
[

λ1
∂Au
∂κ

]x=1

x=0
−
∫ 1

0

∂Au
∂κ

∂λ1

∂x
dx

∫ 1

0
λ2u

∂

∂κ

∂u
∂x

dx =
[

λ2u
∂u
∂κ

]x=1

x=0
−
∫ 1

0

∂u
∂κ

∂λ2u
∂x

dx

∫ 1

0
λ2

∂

∂κ

∂ p
∂x

dx =
[

λ2
∂ p
∂κ

]x=1

x=0
−
∫ 1

0

∂ p
∂κ

∂λ2

∂x
dx,

(2.43)

Where
[
λ1

∂Au
∂κ

]x=1

x=0
=
[
λ1A ∂u

∂κ
+λ1u∂A

∂κ

]x=1

x=0
so that equation 2.38 can be simplified to:

∂L

∂κ
=
∫ 1

0

[
p− pt−

∂λ2

∂x

]
∂ p
∂κ

dx+
[

λ2
∂ p
∂κ

]x=1

x=0
−
∫ 1

0

∂Au
∂κ

∂λ1

∂x
dx

+

[
λ1A

∂u
∂κ

+λ1u
∂A
∂κ

]x=1

x=0
+
∫ 1

0
λ2

∂u
∂κ

∂u
∂x

dx−
∫ 1

0

∂u
∂κ

∂λ2u
∂x

dx+
[

λ2u
∂u
∂κ

]x=1

x=0

=
∫ 1

0

[
λ2

∂u
∂x
− ∂λ2u

∂x
−A

∂λ1

∂x

]
∂u
∂κ

dx+
∫ 1

0

[
p− pt−

∂λ2

∂x

]
∂ p
∂κ

dx

−
∫ 1

0
u

∂λ1

∂x
∂A
∂κ

dx+
[
(λ1A+λ2u)

∂u
∂κ

]x=1

x=0
+

[
λ2

∂ p
∂κ

]x=1

x=0
+

[
λ1u

∂A
∂κ

]x=1

x=0
.

(2.44)

Adjoint equations

The simplified equations are now observed to identify the adjoint equations. As described in

section 2.3.1, the Lagrange multipliers are determined so that dL
du = 0, where u are the physical

variables. In this case, the first and the second term of equation 2.44 are differentiating one of

the physical variables (the velocity u or the pressure p) with respect to κ . Consequently, these
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expressions that are not yet differentiated are the adjoint equations. The physical parameters

in the remaining terms are not sensitive to changes of the design variables and are therefore no

adjoint equations.

A byproduct of the adjoint method is the similarity between the adjoint equations and the gov-

erning equations. This condition can be used to rename the Lagrange multipliers. The adjoint

equations of equation 2.44 are like the governing equations when the Lagrange multipliers λ1

and λ2 are renamed to the adjoint pressure pa and the adjoint velocity ua, respectively:

∂L

∂κ
=
∫ 1

0

similar to the momentum conservation︷ ︸︸ ︷[
ua

∂u
∂x
− ∂uau

∂x
−A

∂ pa

∂x

]
∂u
∂κ

dx+
∫ 1

0

similar to F︷ ︸︸ ︷[
p− pt−

∂ua

∂x

]
∂ p
∂κ

dx

−
∫ 1

0
u

∂ pa

∂x
∂A
∂κ

dx+
[
(paA+uau)

∂u
∂κ

]x=1

x=0
+

[
ua

∂ p
∂κ

]x=1

x=0
+

[
pau

∂A
∂κ

]x=1

x=0
,

(2.45)

Where −∂uau
∂x is called an Adjoint Transpose Convection (ATC) term as it lacks in the momen-

tum conservation equation. It can lead to instability in some cases and therefore prevents the

use of the adjoint method for these problems (Karpouzas et al., 2016). The isolated adjoint

equations of this problem with the newly introduced adjoint variables are:

ua
∂u
∂x

ATC term︷ ︸︸ ︷
−∂uau

∂x
−A

∂ pa

∂x
= 0

p− pt−
∂ua

∂x
= 0.

(2.46)

Sensitivity variables

As the Lagrange multipliers are chosen so that ∂L
∂u = 0, only the sensitivity variables remain for

the calculation of ∂L
∂κ

= ∂F
∂κ

. The sensitivity variables are the terms of equation 2.45 where the

area is differentiated with respect to the design variables ∂A
∂κ

, because A is directly dependent
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on κ:

∂L

∂κ
=

∂F

∂κ
=−

∫ 1

0
u

∂ pa

∂x
∂A
∂κ

dx+
[

pau
∂A
∂κ

]x=1

x=0

=−
∫ 1

0
u

∂ pa

∂x
∂A
∂κ

dx+ pau
∂A
∂κ

∣∣∣∣
x=1
− pau

∂A
∂κ

∣∣∣∣
x=0

.

(2.47)

From equation 2.47 the objective functions differentiated with respect to each of the shape

parameters are determined:

∂F

∂κ1
=−

∫ 1

0
u

∂ pa

∂x
(−x3 +3x2−3x+1)dx− pau|x=0

∂F

∂κ2
=−

∫ 1

0
u

∂ pa

∂x
(3x3−6x2 +3x)dx

∂F

∂κ3
=−

∫ 1

0
u

∂ pa

∂x
(−3x3 +3x2)dx

∂F

∂κ4
=−

∫ 1

0
u

∂ pa

∂x
x3dx+ pau|x=1,

(2.48)

Where A(x = 0,κ1,κ2,κ3,κ4) = κ1 and A(x = 1,κ1,κ2,κ3,κ4) = κ4. With these sensitivities,

the implementation procedure can begin.

29



3. Implementation

This chapter describes the implementation process of the two dimensional LBM combined

with the porosity model by Spaid and Phelan (1997) as well as the implementation of the one

dimensional topology optimization using the adjoint method. Python is used as programming

language and the complete code can be found in appendix B. The corresponding user manual

in appendix A gives an overview of the structure of the attached code beyond the comments

contained in the code itself.

3.1 Lattice Boltzmann Method with Porosity Model

The theory of the LBM described in the previous chapter is now implemented in code. The

complete code for this implementation is attached as appendix B.1 and excerpts of it are in-

corporated in the following description. Figure 3.1 visualizes the steps of one cycle of the LB

algorithm. The blue boxes represent the consecutive steps of the cycle, which starts with the

propagation step and repeats until the simulation converged. The black arrow indicates that

the cycle can be exited after convergence is reached. It should be noted that according to the

applied BCs, steps can be left out or must be added. Consequently, this schematic is applicable

only for a setup with similar BCs.

The objective is to later optimize blood flow. Therefore, the setup of Pingen et al. (2007) is

adopted, as it represents a possible problem when choosing the topology of a stent that replaces

a blood vessel. The setup is visualized in figure 3.2. The grid size for the example setup is

chosen to be equal in x and y direction. In the following, the Python code of the LBM is

particularized in the order shown in figure 3.1. Beforehand, some variables and their content
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Figure 3.1: Schematic of one cycle of the LB algorithm

Figure 3.2: Geometry of the computational domain
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must be introduced for the reader to understand the remarks in this section. The DVs of the

distribution functions f and f eq are stored in matrices of the shape (ny,nx,nv) where ny is the

number of nodes along the y-axis, nx is the number of nodes along the x-axis and nv is the

index of DVs per node. For each type of BC, one Boolean matrix with the shape (ny,nx) is

introduced where True indicates that the respective node constitutes such a boundary. Matrices

with the same shape are created for the macroscopic properties ρ , ux and uy. The remaining

variables are either specified in the comments of the respective excerpt, in the user manual or

in the code itself.

The cycle begins with the propagation or streaming of the DVs according to equation 2.7. Each

velocity travels along the respective vector of the velocity set introduced with figure 2.2, which

is incorporated into code as follows:

1 def D2Q9 ():

2 ’’’ Velocity set D2Q9

3 nv: number of velocities

4 idxs: indices of the velocities

5 cxs: x- coordinates of each velocity vector

6 cys: y- coordinates of each velocity vector

7 wghts: weights of the respective velocity vectors

8 ’’’

9 nv = 9

10 idxs = np. arange (nv)

11 cxs = np.array ([ 0, 0, 1, 0,-1, -1, 1, 1,-1])

12 cys = np.array ([ 0, 1, 0,-1, 0, 1, 1,-1,-1])

13 wghts = np.array ([4/9 ,1/9 ,1/9 ,1/9 ,1/9 ,1/36 ,1/36 ,1/36 ,1/36])

14 return nv , idxs , cxs , cys , wghts

Code Listing 3.1: D2Q9 function

During the streaming step the DVs with index 0 remain at the same position, while the ones

with indexes 2, 4, 5, 6, 7 and 8 travel along the x-axis and indexes 1, 3, 5, 6, 7 and 8 travel along

the y-axis. Even though propagation does not apply to the boundary nodes, this is neglected

here and considered at a later point. The incorrectly propagated values will be overwritten in

32



the steps Calculate fluid boundaries and Apply bounce-back boundary. This results in a simple

propagation function:

1 def propagation (f, idxs , cxs , cys):

2 ’’’ Propagation step of the Lattice Boltzmann Method

3 f: discrete velocities

4 idxs: indices of the velocity set

5 cxs: x- coordinates of the velocity set

6 cys: y- coordinates of the velocity set

7 ’’’

8 for i, cx , cy in zip(idxs , cxs , cys): # for each velocity

discretization direction

9 f[:,:,i] = np.roll(f[:,:,i], cx , axis =1) # stream along x axis

10 f[:,:,i] = np.roll(f[:,:,i], cy , axis =0) # stream along y axis

11 return f

Code Listing 3.2: Propagation function

The fullway bounce-back BC reflects the DVs it receives, so that they are propagated back to

the neighboring fluid cell they came from at the next time step:

1 # Store bounce -back values

2 if bndry.any:

3 bb = f[bndry]

4 bb = bb [: ,[0 ,3 ,4 ,1 ,2 ,7 ,8 ,5 ,6]]

Code Listing 3.3: Store bounce-back values

These DVs are not subject to collision. Therefore, they must be stored before the collision step,

so that they can be reflected to the sender unchanged. In the presented implementation, the

DVs of the solid nodes are reflected and stored right after propagation. It should be noted that

this step can be conducted at any time between the propagation and the collision step. When

using Python and numpy, it is necessary to either copy the respective values as follows bb =

np.copy(f[bndry]) or to reflect the DVs before f is modified. Otherwise, bb = f [ bndry]

links bb to f and bb is modified likewise.
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Now, the macroscopic parameters of each node are updated. This is done by calculating the

density and the velocity of all nodes according to equation 2.8 and 2.9, respectively. After-

wards, the properties at the boundary nodes are overwritten with the correct ones. The applied

equations are 2.8, 2.9, 2.14 and 2.20:

1 def macroscopicParam (f, vbndry , pbndry , bndryCond , cxs ,cys):

2 ’’’ Calculate the macroscopic parameters of the

3 f: discrete velocities

4 vbndry : boolean matrix that is True for the velocity boundary

5 pbndry : boolean matrix that is True for the pressure boundary

6 bndryCond : list of variables of the boundary conditions

7 cxs: x- coordinates of the velocity set

8 cys: y- coordinates of the velocity set

9 rho: densities

10 ux: velocities in x- direction

11 uy: velocities in y- direction

12 ’’’

13 uxIn = bndryCond [0]

14 uyIn = bndryCond [1]

15 rhoOut = bndryCond [2]

16

17 # Calculate macroscopic parameters

18 rho = np.sum(f ,2)

19 ux = np.sum(f*cxs ,2)/rho

20 uy = np.sum(f*cys ,2)/rho

21

22 # At the boundary (velocity , inlet)

23 if vbndry .any:

24 ux[ vbndry ] = uxIn

25 uy[ vbndry ] = uyIn

26 rho[ vbndry ] = 1/(1 - ux[ vbndry ]) * (f[vbndry ,0]+f[vbndry ,1]+f[

vbndry ,3]+2*( f[vbndry ,4]+f[vbndry

,5]+f[vbndry ,8]))
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28 # At the boundary (pressure , outlet )

29 if pbndry .any:

30 rho[ pbndry ] = rhoOut

31 ux[ pbndry ] = 0

32 uy[ pbndry ] = 1-((f[pbndry ,0] + f[pbndry ,2] + f[pbndry ,4] + 2*(f

[pbndry ,3] + f[pbndry ,7] + f[pbndry

,8]))) /rho[ pbndry ]

33

34 return rho , ux , uy

Code Listing 3.4: Macroscopic parameter function

With the updated macroscopic parameters, the equilibrium distributions can be determined as

described in equation 2.4:

1 def equiPoro (feq , rho , ux , uy , idxs , cxs , cys , wghts , poro):

2 ’’’ Calculate the equilibrium distribution

3 feq: equilibrium distribution

4 rho: density

5 ux: velocities in x- direction

6 uy: velocities in y- direction

7 idxs , cxs , cys , wghts: variables of the D2Q9 velocity set

8 poro: porosity measure ; 1: fluid; 0: porous

9 ’’’

10 for i, cx , cy , w in zip(idxs , cxs , cys , wghts):

11 feq [:,:,i] = rho * w * ( 1 + 3*( cx*ux*poro+cy*uy*poro) + 9/2*(

cx*ux*poro+cy*uy*poro)**2 - 3/2*((

ux*poro)**2+( uy*poro)**2) )

12 return feq

Code Listing 3.5: Equilibrium distribution function

Eventually, the DVs at the fluid boundaries are updated. As the equilibrium distribution and the

macroscopic parameters must be up to date for this, the fluid boundaries are calculated right

before collision. The applied equations are 2.16 and 2.21:
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1 def fcorrection (f, feq , rho , ux , uy , vbndry , pbndry ):

2 ’’’ Correct the discrete velocities at the open boundaries

3 f: discrete velocities

4 feq: equilibrium distribution

5 rho: densities

6 ux: velocities in x- direction

7 uy: velocities in y- direction

8 vbndry : boolean matrix that is True for the velocity boundary

9 pbndry : boolean matrix that is True for the pressure boundary

10 bndryCond : list of variables of the boundary conditions

11 ’’’

12 # At the boundary (velocity , inlet)

13 if vbndry .any:

14 #f[ vbndry ] = np.copy(feq[ vbndry ])

15

16 f[vbndry ,2]= feq[vbndry ,2]+f[vbndry ,4]- feq[vbndry ,4]

17 f[vbndry ,6]=0.5*( rho[ vbndry ]*( ux[ vbndry ]+uy[ vbndry ])-f[vbndry

,1]-f[vbndry ,2]+f[vbndry ,3]+2* f[

vbndry ,8]+f[vbndry ,4])

18 f[vbndry ,7]=0.5*( rho[ vbndry ]*( ux[ vbndry ]-uy[ vbndry ])+f[vbndry

,1]-f[vbndry ,2]-f[vbndry ,3]+f[

vbndry ,4]+2* f[vbndry ,5])

19

20 # At the boundary (pressure , outlet )

21 if pbndry .any:

22 f[pbndry ,1] = feq[pbndry ,1] + (f[pbndry ,3] - feq[pbndry ,3])

23 f[pbndry ,5] = 1/2 * (rho[ pbndry ]*( uy[ pbndry ]-ux[ pbndry ]) - f[

pbndry ,1] + f[pbndry ,2] + f[pbndry

,3] - f[pbndry ,4] + 2*f[pbndry ,7])

24 f[pbndry ,6] = 1/2 * (rho[ pbndry ]*( ux[ pbndry ]+uy[ pbndry ]) - f[

pbndry ,1] - f[pbndry ,2] + f[pbndry

,3] + f[pbndry ,4] + 2*f[pbndry ,8])

25

26 return f
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Code Listing 3.6: Open boundaries function

After all corrections of the propagated values at the boundaries have been conducted, the colli-

sion step takes place according to equation 2.6:

1 def collision (f, feq , tau , dt , nv):

2 ’’’ Collision step for the Lattice Boltzmann Method

3 f: discrete velocities

4 feq: equilibrium distribution

5 tau: relaxation time

6 dt: time step

7 nv: number of discrete velocities

8 ’’’

9 for i in range(nv): # Apply collision for all the nodes

10 f[:,:,i] -= (dt/tau) * (f[:,:,i]-feq [:,:,i])

11 return f

Code Listing 3.7: Collision function

Collision applies to all nodes except the solid nodes. Their DVs have been stored in a sepa-

rate matrix in the step Store bounce-back boundary. These will be applied next, where they

replace the incorrect results of the collision. The step of overwriting the incorrect DVs must be

conducted between collision and propagation:

1 # Collision for fullway bounce -back boundary

2 if bndry.any:

3 f[bndry] = bb

Code Listing 3.8: Bounce-back collision

Before the next iteration is calculated, the convergence criterion must be checked. If the crite-

rion is satisfied, the simulation stops. In the following, two different convergence criteria are

implemented:

1 def convergenceVelo (ux ,uy , umaxOld ):

2 # Check convergence with the max velocity
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3 umaxNew = np.max(np.sqrt(ux **2+ uy **2)) # save maximum velocity

4 criterion = np.abs (( umaxOld - umaxNew )/ umaxNew )

5 umaxOld = umaxNew

6 return criterion , umaxOld

7

8 def convergenceF (f, fOld , ny , nx , nv):

9 f = np.array(f)

10 criterion = abs(f - fOld). reshape (ny*nx*nv)

11 fOld = np.copy(f)

12 return max( criterion ), fOld

Code Listing 3.9: Convergence criterion

The first one accounts only for the difference between the maximum velocity in the entire

system and has been used for testing. However, the more expressive criterion describes the

difference between two consecutive flow steps as follows (Pingen et al., 2007):

|| ft− ft−1|| ≤ ε. (3.1)

After all these steps are conducted, one cycle is completed, and the time is increased by one

time step.

3.2 Topology Optimization

The theory of the adjoint method described in the previous chapter is now implemented in code.

Therefore, figure 3.3 visualizes the steps of one cycle of the adjoint algorithm. The blue boxes

again represent the consecutive steps of the cycle, and the black arrow indicates that the cycle

can be exited after convergence has been reached.
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Figure 3.3: Schematic of one cycle of the adjoint method

The method begins with the calculation of the domain properties. This step equals the CFD

simulation whenever the adjoint method is combined with a CFD problem. With the proper-

ties of the system, the objective can be computed, and the convergence is checked using the

convergence criterion. As soon as this criterion is satisfied, the algorithm stops, and the results

can be visualized as desired. When the result of the objective function is still too large, the

optimization begins by calculating the Lagrange multipliers λ . Afterwards, the sensitivities of

the objective function with respect to the design variables are determined, so that the design

variables can be updated. Various algorithms are applicable here as for example the steepest

descent method and the Newton method (Farahbakhsh, 2020). Once the design variables have

been updated, the cycle repeats until convergence is reached.

3.2.1 Example

The procedure is now shown based on the example introduced in chapter 2.3.2. The complete

code for this implementation is attached as appendix B.2 and excerpts of it are incorporated in

the following description.
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The 1D problem reaches from x = 0 to x = 1 with N nodes and the distance between nodes

∆x = 1
N . The pressure at the end of the tube is specified as p0 = 0 and the velocity at the

entrance of the tube is defined as u0 = 1. With this information and the initial guess for the

design variables κ , the adjoint method cycle can be entered. Additional parameters are needed

for some steps and will be introduced at the corresponding section to preserve the context.

Calculate Domain Properties

The first step is to calculate the domain properties which are the area A, the velocity u, and

the pressure p of the system. The area is calculated by equation 2.35 and the velocity can be

obtained by the continuity equation. As the velocity u0 at the entrance of the tube is defined as

BC of the system, x = 0 is used as reference for the velocity calculation of all the remaining

grid points:

A0u0 =Akuk for k ∈ [1,N[

uk =
A0

Ak
u0.

(3.2)

The pressure is determined with the momentum conservation equation 2.34 which can be trans-

formed to:

∂ p
∂x

=−u
∂u
∂x∫ k+1

k

∂ p
∂x

dx =−
∫ k+1

k
u

∂u
∂x

dx for k ∈ [0,N−2]

[p]k+1
k =−uk

∂uk

∂x
∆x

pk+1− pk =−uk
∂uk

∂x
∆x

pk = pk+1 +uk
∂uk

∂x
∆x.

(3.3)

To obtain the pressure the equation is integrated. The velocity is dependent on x and must be
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integrated individually. However, for very small distances ∆x between the grid points, it can be

assumed that
∫ k+1

k u∂u
∂x dx = uk

∂uk
∂x ∆x. With this simplification, the pressure can be calculated

by equation 3.3. The pressure p(x = 1) = p0 at the end of the tube is defined as BC of the

system. Consequently, x = 1 is used as reference for the pressure calculation, so that pN−1 is

determined by the aid of pN and so on. The calculations are incorporated in the code as follows:

1 def properties (a,u0 ,p0 ,dx ,n):

2 ’’’ Calculate the domain properties

3 a: area of the tube

4 u0: velocity at the boundary / entrance of the tube

5 p0: pressure at the boundary /exit of the tube

6 dx: distance between the grid points

7 n: number of grid points

8 u: velocity along the tube

9 p: pressure along the tube

10 ’’’

11 # Calculate velocity ; Continuity equation : A1*u1=A2*u2

12 c = u0*a[0]

13 u = c/a

14 # Calculate pressure ; Momentum conservation

15 dudx = gradient (u,dx)

16 p = np.zeros(n)

17 p[-1] = p0

18 for i in range(n-2,-1,-1):

19 p[i] = p[i+1] + u[i]* dudx[i]*dx

20 return u,p

Code Listing 3.10: Domain properties
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Objective and Convergence

Now that the pressure is known, the objective in equation 2.36 can be calculated. Again, the

integral can be approximated for small distances ∆x between the grid points:

F =
1
2

∫ 1

0
[p− pt ]

2 dx' 1
2

N∆x
N−1

∑
k=0

[pk− ptk]
2 =

1
2

N−1

∑
k=0

[pk− ptk]
2 . (3.4)

The aim is to minimize the value of the objective function F → 0. When the objective is

smaller than the convergence criterion, the solution has converged, and the algorithm stops. In

the following code, the target pressure pt is calculated by the function pTarget(x) and the

convergence criterion conv is defined at an earlier part of the code:

1 # Calculate objective

2 pt = pTarget (x)

3 dp = p-pt

4 F = 0.5* np.sum(dp **2)

5

6 # Check for convergence

7 if F < conv:

8 break

Code Listing 3.11: Objective and convergence
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Calculate Lagrange Multipliers

Next, the Lagrange multipliers that were renamed to adjoint variables are calculated. This is

done by the aid of the adjoint equations 2.46 derived in the theory chapter:

∂ua

∂x
=p− pt∫ k

k−1

∂ua

∂x
dx =

∫ k

k−1
p− ptdx for k ∈ [1,N[

[ua]
k
k−1 =(pk− ptk)∆x

uak−uak−1 =(pk− ptk)∆x

uak =uak−1 +(pk− ptk)∆x.

(3.5)

The expression is integrated to obtain the adjoint velocity. With the approximation
∫ k

k−1 p−

ptdx = (pk− ptk)∆x, the adjoint velocity can be calculated by equation 3.5. The adjoint pres-

sure is calculated with the remaining adjoint equation by the same concept:

ua
∂u
∂x
− ∂uau

∂x
−A

∂ pa

∂x
= 0

∂ pa

∂x
=

ua
∂u
∂x −

∂uau
∂x

A
∂ pa

∂x
=

ua
∂u
∂x

A
−

u∂ua
∂x
A
−

ua
∂u
∂x

A
∂ pa

∂x
=− u

A
∂ua

∂x

[pa]
k+1
k =−

∫ k+1

k

u
A

∂ua

∂x
dx for k ∈ [0,N−2]

pak = pak+1 +
uk

Ak

∂uak

∂x
dx.

(3.6)

As with the domain properties u and p, the adjoint velocity and adjoint pressure at the bound-

aries are utilized to calculate the adjoint variables along the whole tube. ua(x= 0) and pa(x= 1)

are obtained by the aid of the solved integrals in equation 2.45 derived in the theory chapter

and the BCs u0 = 1 and p0 = 0. The BCs at the inlet and outlet are constant and independent of
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the design variables κn. Consequently, the derivative of the velocity with respect to the design

variables at x = 0 is zero ∂u
∂κn
|x=0 = 0 and the derivative of the pressure with respect to the

design variables at x = 1 is also zero ∂ p
∂κn
|x=1 = 0. These expressions are used to calculate the

adjoint velocity and the adjoint pressure, respectively:

[
ua

∂ p
∂κn

]x=1

x=0
= 0

ua
∂ p
∂κn

∣∣∣∣
x=0
−0 = 0

∂ p
∂κn

∣∣∣∣
x=0
6= 0 ua(x = 0) = 0,

(3.7)

[
(paA+uau)

∂u
∂κn

]x=1

x=0
= 0

0− (paA+uau)
∂u
∂κn

∣∣∣∣
x=1

= 0

∂u
∂κn

∣∣∣∣
x=1
6= 0 (paA+uau)|x=1 = 0

pa(x = 1) =−uau
A

.

(3.8)

As ∂ p
∂κn
|x=0 and ∂u

∂κn
|x=1 are unknown, the adjoint velocity at x = 0 must be zero and paA+uau

at x = 1 must be zero to fulfill the requirement of the whole term being zero, respectively.

After these derivations have been completed, the equations can be incorporated as a function

as follows:

1 def lm(a,u,dp ,dx ,n):

2 ’’’ Calculate Lagrange multipliers

3 a: area of the tube

4 u: velocity along the tube

5 dp: difference between the actual pressure and the target pressure

along the tube

6 dx: distance between the grid points

7 n: number of grid points
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8 ua: adjoint velocity along the tube

9 pa: adjoint pressure along the tube

10 ’’’

11 # Calculate adjoint velocity by adjoint equation

12 ua = np.zeros(n)

13 for i in range (1,n):

14 ua[i] = ua[i -1]+ dp[i]*dx

15 # Calculate adjoint pressure by adjoint equation

16 duadx = gradient (ua , dx)

17 pa = np.zeros(n)

18 pa[-1] = - (u[ -1]* ua [ -1])/a[-1]

19 for i in range(n-2,-1,-1):

20 pa[i] = pa[i+1] + u[i]/a[i] * duadx[i] * dx

21 return ua ,pa

Code Listing 3.12: Lagrange multipliers

Sensitivities and Design Variable Update

After the adjoint variables have been computed, the sensitivities for the design variables can be

calculated by equations 2.48. They are calculated in Python as follows, where dFdkappa is a

list comprising the sensitivities of each design variable:

1 def sensitivities (x,u,pa ,dx ,kappa):

2 ’’’ Calculate the sensitivities ’’’

3 dpadx = gradient (pa ,dx)

4 # Solve sensitivity equations

5 dFdkappa = np.zeros(len(kappa))

6 dFdkappa [0] = - np.trapz(u*dpadx *(-x **3+3* x**2 -3*x+1) ,x,dx) - pa

[0]*u[0]

7 dFdkappa [1] = - np.trapz(u*dpadx *(3*x**3 -6*x **2+3* x),x,dx)

8 dFdkappa [2] = - np.trapz(u*dpadx *( -3*x **3+3* x**2) ,x,dx)

9 dFdkappa [3] = - np.trapz(u*dpadx*x**3,x,dx) + pa [ -1]*u[-1]

10 return dFdkappa
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Code Listing 3.13: Sensitivities

Once the sensitivities have been determined, the current design variables are updated with the

steepest descent method, which can be described as an iterative procedure of modifying the

design variables. Steps in the direction of the sensitivities ∂F∂κit are taken from the design

variables κit of the iteration it. The magnitude of each step is defined by the sensitivities itself

and the step length η :

κit+1 = κit−η
∂F

∂κit
, (3.9)

Which is implemented in code as follows:

1 # Update the design variables

2 kappa -= eta* dFdkappa

Code Listing 3.14: Design variable update

The procedure is repeated with the resulting design variables κit+1.

3.2.2 Combination with the Lattice Boltzmann Method

When combining the LBM with the adjoint method, the procedure shown in figure 3.3 can

be followed likewise. The properties of the computational domain and the BCs are defined in

the setup of the LB simulation and the initial guess of the design variables is used to conduct

a simulation, which represents the step Calculate domain properties in the figure. After the

simulation is converged, the objective can be calculated. In the topology optimization prob-

lem of chapter 3.1, a possible objective function determines the pressure drop that should be

minimized:

pdrop = ∑
inlet

pin− ∑
outlet

pout , (3.10)
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Which can be used for flows with a small Mach number and a negligible elevation change

(Pingen et al., 2007). Using equation 2.10 this can be written as:

pdrop = c2
s

[
∑

inlet
ρin− ∑

outlet
ρout

]
. (3.11)

Also, the drag or the flow rate can be used as an objective function subject to minimization as

described by Pingen et al. (2007) and Pingen et al. (2009). Besides, it is possible to incorporate

multiple objective functions when using the adjoint method. Next to the mentioned objective

functions, Pingen et al. (2007) uses a volume constraint describing the maximum fraction of

nodes that are allowed to be fluid.
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4. Results

Now that the implementation of the methods is complete, the simulations can be run.

Even though the LBM and the adjoint method have not been combined, several important

aspects have been discovered that should be considered when using the LBM for topology

optimization.

4.1 Lattice Boltzmann Method

First, the LBM is discussed. Before the simulation results are presented, the computational

setup is specified including important variables, the grid size and the BCs.

4.1.1 Computational Setup

Until now, the implementation of the general method including the BCs has been described and

the test case has been visualized in figure 3.2. Some missing parameters are described here.

The computational domain is composed of 27 nodes in x- and y-direction whereof the first and

last ones represent solid boundaries or open boundaries. This results in 25× 25 = 625 nodes

that are subject to topology optimization plus the nodes of the open boundaries. Depending on

the required precision the number of nodes must be increased. As a high number of nodes

requires considerable computational resources, a small number of nodes is chosen for this

illustration. The grid size can be adjusted as described in the manual in appendix A.

The velocity boundary is defined by the maximum velocity at the boundary. The velocities at

the solid boundaries are supposed to be zero, so that the parabolic velocity profile at the inlet

can be determined as follows:
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1 def parabolVelo (Y, uxInMax , vbndry ):

2 ’’’ Calculate inlet velocities with parabolic profile

3 ny: number of nodes in y- direction

4 Y: matrix with y- coordinates of the nodes

5 uxInMax : maximum velocity in x- direction at the inlet

6 uxLen: Size of the inlet

7 uxIn: velocities in x- direction at the inlet

8 ’’’

9 inletLen = np. count_nonzero ( vbndry )

10 uxLen = inletLen +2

11 a = -4* uxInMax /( uxLen -1) **2

12 uxIn = a*Y[: uxLen ,0]**2 - a*Y[: uxLen ,0]*( uxLen -1)

13 return uxIn [1: -1]

Code Listing 4.1: Parabolic inlet velocity profile

The pressure at the outlet is constant. All the nodes at the open pressure boundary show the

same pressure. The maximum velocity of the parabolic velocity profile at the inlet is 0.025 and

the pressure at the outlet is 0.33. All values are in lattice units.

The porosity model provides the design variables β for the topology optimization. To run a

simulation, a β matrix must be chosen. When running the simulation in combination with

topology optimization, this matrix is provided by the adjoint algorithm except for the initial

guess. In the following, the LB simulation is conducted for three different β matrices.

As explained in chapter 2.2, the expression β = ν

ktow
must be fulfilled to recover the Brinkman

equation. This is realized by fixing the viscosity for the whole computational domain. By

determining β , the permeability varies likewise. As the permeability is not required for further

calculations for the LBM, there is no need to calculate it. When the maximum value is chosen

for the porosity measure which translates to a solid, the permeability adapts, meaning that no

fluid can pass through the permeable material anymore.

On the contrary, fixing the permeability is not viable when determining β with the adjoint

method. If doing so, the viscosity varies with the porosity measure. As the relaxation time
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(a) all fluid nodes (b) all porous nodes (c) fluid and porous nodes

Figure 4.1: Porosities of the simulations

τ is dependent on the viscosity and the relaxation time determines the maximum value of the

porosity measure, the algorithm cannot be given a specific range in which the porosity measure

has to be optimized. Consequently, keeping the viscosity and the relaxation time constant

throughout the computational domain and the iterations of the adjoint method is recommended

for the optimization algorithm to work smoothly.

In the following simulations the viscosity is chosen to be ν = 0.4 which leads to a relaxation

time of τ = 1.7. Different guesses are chosen for the porosity measure β as visualized in figure

4.1. It shows the computational domain with the solid boundary in black. A light color indicates

a highly fluid node while a dark color indicates a solid or porous medium. Depending on the β

value at the respective node, the cell will show a white, grey, or black color. The shade of grey

translates to the level of porosity.

4.1.2 All Fluid Nodes

First, the test case is simulated with all fluid nodes. Figure 4.1a presents the corresponding

visualization with cells that are all white except the solid boundary. This translates to a β

matrix with all zero elements as 0 translates to a fluid and 1
τ
≈ 0.588 translates to a porous

node, more specifically a solid.

The simulation converges after 2258 iterations. Figure 4.3 presents three velocity profiles at

distinct locations of the computational domain after convergence. These locations are visual-
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Figure 4.2: Illustration of locations
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Figure 4.3: Velocity profiles with fluid nodes

ized in figure 4.2 which depicts the computational domain of figure 3.2 with the dashed colored

lines in blue, red and orange for the inlet, middle and outlet velocity profile, respectively. The

blue curve shows the profile at the inlet. For this profile, the velocities at x = 0 along the y-axis

are visualized. This means, that the x-axis of figure 4.3 refers to the y-coordinates in the com-

putational domain. The orange curve represents the outlet velocity profile which refers to the

velocities at y = 0 along the x-axis as visualized by the dashed orange line in figure 4.2. The

red curve shows the velocity profile of the diagonal or the middle between the inlet and outlet

where x = y.

51



inlet middle outlet

2

2.2

2.4

2.6

2.8

pr
es

su
re

Pressure drop

fluid
porous
mixed

Figure 4.4: Pressure drop

The velocity curve at the inlet shows the parabolic profile that was created based on the maxi-

mum inlet velocity that is predefined before the simulation. The outlet velocity profile is similar

to the one of the inlet although the parabolic shape is slightly deformed. As the profile in the

middle is not constraint by solid nodes, the curve stretches from the left to the right and shows

a lower maximum. Figure 4.4 shows the pressure at the same locations. It can be observed

that the pressure drops continuously starting at the inlet passing the diagonal and ending at the

outlet. The pressure drop can be used as an objective function as described in equation 3.11.

For this simulation, the pressure drop is approx. 0.0678.

Figure 4.5 shows the representations of the computational domain with the different porosity

setups. Figure 4.5a belongs to the current setup with all fluid nodes. The solid boundaries are

presented in black; the white areas are the nodes that are subject to topology optimization and

the open boundaries. The velocities are indicated by small arrows that point in the direction of

the macroscopic velocity of the respective node. The length of the arrow implies the magni-

tude. Additionally, the vorticity is indicated by a red or blue background of the grid. Here the

magnitude is visualized by the intensity of the color.
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(a) all fluid nodes (b) all porous nodes (c) fluid and porous nodes

Figure 4.5: Velocity and vorticity of the simulations

4.1.3 All Porous Nodes

Second, the test case is simulated with all porous nodes, which is visualized in figure 4.1b. All

elements of β are set to 0.45 which lays inside the porosity range 0 < β < 0.588. This setup

takes much longer to converge with 29783 time steps. Due to the porous medium the flow

travels slower so that more time is required to reach convergence.

In figure 4.6, the results of this simulation can be observed. The figure has the same setup as

the figure 4.3 with the velocity profiles at three locations across the domain. When viewing the

velocity profiles, there are conspicuous changes. The velocity profile at the inlet can be used

as a reference as the same BCs are used and the profile matches the one of the simulation with

all fluid nodes. However, the outlet profile does not show a parabolic profile, but a ramp with

the maximum at the left-hand side of the outlet and a continuous decrease when moving to the

right. Additionally, the velocity profile in the middle of the tube shows a lower amplitude while

the curve is flatter so that the velocities at the corners are faster. This can also be observed in

figure 4.5b where the length of the arrows indicating the velocity magnitude show less variation

in comparison with figure 4.5a. The pressure drop is now greater than with all fluid nodes as

it can be examined in figure 4.4. The pressure drop that is calculated by equation 3.11 equals

0.7777 compared to the previously achieved 0.0678. According to the objective function, the

β matrix with all fluid nodes performs better than the one with all porous nodes.
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Figure 4.6: Velocity profiles with porous nodes

4.1.4 Fluid and Porous Nodes

Finally, the test case is simulated with fluid and porous nodes, which is visualized in figure

4.1c. Most elements of β are set to 0.45 as in the example with all porous nodes, while the

elements drawing a diagonal between the open boundaries are set to 0. With 8517 time steps

this setup is faster to converge than the previous setup with all porous nodes but takes nearly

four times as long as the setup with all fluid nodes.

In figure 4.7, the results of this simulation can be observed. For a better comparison with the

previous plots, the velocity profiles in the middle and at the outlet are summarized in figure

4.8 and 4.9 respectively. In figure 4.9 the flow profile of the fluid is close to the profile on the

inlet. The flow profile of the mixed porosity reaches the same magnitude, but the shape is no

longer parabolic. The profile with the fully porous medium has the same shape as the mixed

medium, but with a lower magnitude. In figure 4.8 the porous medium also results in the lowest

flow magnitude. Another conspicuity is the location of the peak of the profiles. While the peak

of the fluid medium matches the center of the domain, the other simulations result in a peak

that is slightly moved to the left. This can be explained by the location of the inlet and outlet.
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Figure 4.7: Velocity profiles with fluid and porous nodes
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Figure 4.8: Velocity profiles in the middle
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Figure 4.9: Velocity profiles at the outlet

The pressure drop of each simulation can be compared in figure 4.4. The simulation with

all fluid nodes shows the smallest pressure drop with 0.0678, followed by the mixed domain

with 0.2352. The pressure drops significantly more in the domain with all porous nodes which

obtains a score of 0.7777 according to equation 3.11. Consequently, the all fluid domain is the

best performing of the tested configurations.

4.2 Topology Optimization

The results of topology optimization using the adjoint method are presented next. Beforehand,

the computational setup is specified including important variables, the grid size and the initial

guess of the design variables.

4.2.1 Computational Setup

Until now, the implementation of the general adjoint method has been described and the test

case has been visualized in figure 2.6. Some parameters that have not been given are described
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Figure 4.10: Target pressure functions

in the following. The simulations are conducted with n = 50 grid points along the x-axis

starting at x = 0 until x = 1. The update factor of the steepest descent method η = 0.02, and

the convergence criterion is 0.01. The initial guesses for the design variables κ are set to 0.6,

0.6, 1 and 0.5. As for the LBM, these parameters can be adjusted in the code as described in

the manual in appendix A.

Three different target pressure functions are chosen for the simulations as visualized in figure

4.10, which all meet the pressure BC p0 = 0 at the end of the tube x = 1. This is important as

the optimization algorithm cannot change the boundaries. If the pressure at x = 1 dissents from

the boundary p0, the algorithm cannot approach the target function at the specified location.

This either prevents the algorithm from converting or, if the target pressure differs only slightly

from the BC, leads to an imperfect fit at the boundary. When choosing a function where the

pressure at the end of the tube x = 1 is different, the BC p0 must be adjusted accordingly.
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Figure 4.11: Pressure along the tube for −x3 +1

4.2.2 Target Pressure with Exponent 3

First, the target pressure is set to −x3 + 1. The optimization converges after 1338 iterations

and figure 4.11 visualizes the target pressure along the tube as solid blue line, the optimization

result as dashed blue line and the pressure before the optimization as solid green line. The result

looks similar to the target pressure. For an even better fit, the convergence criterion should be

decreased. The shape of the tube is shown in figure 4.12, where the green lines indicate the

initial shape, and the blue lines represent the result of this optimization.

4.2.3 Target Pressure with Exponent 3, Doubled

Second, the target pressure is set to −2x3 + 2, which is a steeper pressure drop than at the

previous example. The optimization converges after 3277 iterations, which are more than twice

as many iterations as previously. The initial guess might be the reason for this, as it is much

closer to the first example than this one. Figure 4.13 shows the target pressure along the tube as

solid red line, the optimization result as dashed red line and the pressure before the optimization
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Figure 4.12: Shape of the tube

as solid green line.

The red line in figure 4.12 represents the resulting shape of the tube, where it can be compared

to the previous shape in blue. While the inlet is bigger, the outlet is approximately the same

size. The bigger pressure drop results in a larger change of the tube diameter for the same tube

length. It also leads to a greater increase of the velocity in the tube as can be seen in figure

4.14.

4.2.4 Target Pressure with Exponent 4

Finally, the target pressure is set to−x4+1 and the optimization converges after 1642 iterations,

which are slightly more than for the first example. Again, figure 4.15 visualizes the target

pressure as solid line and the optimization result as dashed line along with the pressure before

the optimization as solid green line. The color of this example is orange, which is also used for

the shape in figure 4.12 and the velocity in figure 4.14. The geometry of the tube is remarkably

similar to the one of the first example which makes sense given the similar target pressure

curves.

59



0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

x-coordinate

pr
es

su
re

Pressure along the tube for −2x3 +2

−2x3 +2
start
result

Figure 4.13: Pressure along the tube for −2x3 +2
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Figure 4.14: Velocity along the tube
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Figure 4.15: Pressure along the tube for −x4 +1

The development of the objective for the first 50 iterations of each optimization are visualized

in figure 4.16. The objectives of the first and last optimization in blue and orange respectively

start with a low objective and drop steadily, while the second starts at an elevated level and

oscillates considerably. This is also the one that took most iterations to reach convergence. This

illustrates that the initial guess for the design variables is a crucial factor for fast convergence.
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Figure 4.16: Objective at the first 50 iterations
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5. Discussion

The topics LBM, topology optimization, adjoint method and blood flow modelling have been

examined to prepare and conduct the described simulations. The LBM has been implemented

in Python for two dimensions as well as a one dimensional adjoint method problem. The next

step is to combine both approaches so that the porosities in the computational domain of the

LBM are solved by the adjoint method. With the provided code, resources, and explanations, it

should be possible to combine the LBM with topology optimization using the adjoint method

relatively quickly. Numerical validations for the presented implementations are not given here.

In future work, appropriate validations should be considered.

5.1 Usage of the Lattice Boltzmann Method

In the following, some of the difficulties that have been faced during the implementation pro-

cess of the LBM are listed. The first difficulty was to transfer the theoretical knowledge into

code. Even though the theory is quite straightforward, the implementation process requires

high-level abstract thinking. It might have been of advantage to have more experience with

implementing conventional CFD solvers or solvers for problems that exceed one dimension.

The main, but not the only, challenge was to decide how to store the required information in

a logical manner that supports efficient computation. By observing and comparing publicly

available implementations, some conclusions were drawn. It appears reasonable to store the

DVs in a matrix of the shape (ny,nx,nv) where ny is the number of nodes along the y-axis,

nx is the number of nodes along the x-axis and nv is the index of DVs per node. For each

type of BC, one Boolean matrix with the shape (ny,nx) is introduced where True indicates that
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the respective node constitutes such a boundary. Matrices with the same shape are created for

the macroscopic properties. Another drawback of few experiences in the implementation of

CFD solvers is the insufficient knowledge about handy functions that are available in the stan-

dard libraries of the programming language. Useful sources for improvements are therefore

other implementations that can be found on the internet. Using these functions helps create a

well-structured code that is easily comprehensible.

The second obstacle was the ordering of the simulation steps. The final order is visualized in

figure 3.1 and was explained in chapter 3.1. Conducting the steps in the proper order is essential

for correct results. However, it can seem as if the procedures are interconnected, especially as

the theory of the open and closed boundaries is usually explained separately and both must be

divided to provide correct, updated information for each calculation. A deep understanding

is necessary to decide where to begin the cycle and where to end it so that the convergence

criterion is placed at a reasonable position. Also, the location to calculate the macroscopic

parameters should be well-conceived. Overall, when being introduced to the theory of the

LBM, it is still not obvious which steps must be conducted before others, which can lead to

mistakes.

This entails the difficulty of appropriately grouping the individual steps into functions. As the

logical unit of the calculation of open boundaries and the calculation of closed boundaries must

be divided, in the beginning it is ambiguous how to arrange functions to add structure to the

implementation.

The adjustments of the collision step for the different boundary types are another part where

the initial approach was more complicated than necessary. At first, each boundary type that

requires a change of the collision calculation had an individual collision function to perform

these adjustments. However, the adjustments can be conducted at the velocity distribution f ,

so that the collision step remains unchanged for every node, independently of its type. The new

function that accounts for these changes is called fcorrection and was discussed in chapter

3.1. Afterwards the general collision function is executed.

Another source of mistakes is the derivation of the BCs. The equations to calculate the unknown
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DVs must be derived depending on the indexing of the velocity set and the location of the

boundary. These calculations are prone to careless mistakes which are extremely hard to detect

especially in combination with the BCs.

When being introduced to the LBM, a considerable amount of time was spent on understanding

the different BCs and how they operate, some of which are fairly complex. This time is neces-

sary to develop a deeper understanding from the general overview of the LBM and to gain the

ability of choosing proper BCs for the problem at hand. Especially the details must be consid-

ered carefully when working with the LBM even if they are not relevant for the implementation

in the end. This can appear overwhelming in the beginning, when the knowledge of the method

is still not consolidated. Therefore, whenever possible, the BCs to be applied should be defined

by a more experienced person, to limit the amount of different BC concepts that must be learnt

at the same time. Then a deeper understanding of the concepts can be gained without confusing

the methods among themselves.

Even though the implementation process can bring some difficulties, there are still good rea-

sons for the use of the LBM, especially when examining blood flow. The LBM operates on the

mesoscopic scale, which makes it applicable for a wider range of problems than standard CFD

methods. Micro scale flows behave differently than macro scale flows which is simpler to con-

sider with the LBM. As the LBM is based on kinetic theory, the interaction between molecules

can be incorporated easily (Suga, 2013). This may be useful for the further development of the

LBM in combination with topology optimization in the context of blood flow. Even though the

background of this work is the optimization of larger blood vessels, the ability to model micro

flows opens the possibility to extend the approach to tiny blood vessels.

Also, for topology optimization, the LBM is well suited as

• it is easy to implement the porosity model and

• the flow through complex geometries and through porous media has a better accuracy

than with conventional CFD methods.
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5.2 Usage of the Adjoint Method

The implementation that illustrates topology optimization has been conducted with the adjoint

method, which is widely used for topology optimization. However, only a few descriptions

of the procedure were found (Strang, 2007; Cao et al., 2003; Errico, 1997) even though the

method can be applied to various problems for example in meteorology (Errico, 1997), for

eigenproblems (Johnson, pers. comm., 2021) and for topology optimization (Strang, 2007).

Most explanations are kept general, so that they can appear very abstract. This resulted in some

difficulties when gaining understanding and during the implementation process. Firstly, the

abstract explanations in combination with abstract examples make it hard to transfer the theory

to a practical application. Beyond, different approaches must be considered depending on the

nature of the problem. Consequently, each approach needs to be understood to decide on the

correct one for the problem in question. Once everything is understood the next challenge is

to simplify the derivative of the augmented objective function. As the integration by parts is

utilized, the two parts must be chosen correctly to receive a reasonable result. Overall, the

calculation to receive the equations for the topology optimization can be cumbersome. As it

must be conducted only once for one system, the effort can be viewed as acceptable.

For topology optimization, usually the Lagrangian multiplier approach is applied. However,

the Eulerian method is used for example by Kim and Chang (2005) and Sato et al. (2019).

Currently, the advantages and disadvantages of the Lagrangian over the Eulerian method are

not yet sufficiently analyzed (Sigmund and Maute, 2013). Therefore, no conclusion can be

drawn about which approach should be preferred. As both approaches follow similar concepts,

the differences are expected to be small.

5.3 Blood Flow

To model blood flow, several details must be considered. The models that are usually added to

the LBM, implement a shear rate dependent viscosity by adjusting the relaxation time. They
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are called power-law models and the Casson model as well as the Carreau-Yasuda model are

most used (Boyd et al., 2007). Pingen and Maute (2010) mention the need to scale the non-

Newtonian effects in porous regions for the simulation to maintain stability. After reading and

understanding Boyd et al. (2007) Pingen et al. (2009) and Pingen and Maute (2010), adding a

non-Newtionian model to the LBM implementation should be viable.

The example of the adjoint method was applied to the Euler equations which describe adiabatic

and inviscid flow. Blood flow is usually modelled by integrating the continuity and Navier-

Stokes equations along the radius of the blood vessel. For a one-dimensional model with vari-

able internal radius R(x, t) of the vessel depending on the axial distance x and time t, this can be

expressed in the equation of mass and the equation of momentum respectively(Wang, 2014):

∂A
∂ t

+
∂Q
∂x

= 0, (5.1)
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∂ t

+
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(α

Q2

A
)+

A
ρ
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=−2πν

[
∂ux

∂x

]
r=R

, (5.2)

Where A is the cross-sectional area, Q is the flow rate, p is the internal pressure, ρ is the

density of the fluid, ν is the kinematic viscosity of the fluid and ux is the axial velocity of

the fluid, which is dependent on the profile of the vessel that can be described by the radius

(Wang, 2014). The momentum correction coefficient α , sometimes called Coriolis coefficient,

is described in more detail by Formaggia et al. (2003). For blood flow α = 11
10 should be

used, while for a parabolic velocity profile (Poiseuille flow) α = 4
3 is suitable (Formaggia

et al., 2003). For implementing a two-dimensional model, the reader is referred to Ghigo et al.

(2017), Chakravarty and Mandal (1996), Chow and Mak (2006) and Chabannes et al. (2013)

who describe blood flow in axisymmetric arteries.

During topology optimization, the geometry cannot always be described as a tube, so that

the standard models for blood flow as described above provide limited applicability. Instead

Pingen et al. (2009) and Pingen and Maute (2010) describe how the adjoint method can be

applied to the LBM by using the streaming and collision step as governing equations. Pingen
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et al. (2009) describe the procedure for Newtonian fluids and Pingen and Maute (2010) explain

the additional changes to account for non-Newtonian effects. The reader is referred to these

resources to implement the adjoint method for topology optimization using the LBM for non-

Newtonian fluids. Other studies using the LBM in combination with non-Newtonian fluids are

conducted by Chuanhu et al. (2016), Vikhansky (2012) and Conrad et al. (2015).

Besides the non-Newtonian effects of blood flow, for topology optimization of stents and ar-

terial bypasses it might be necessary to consider the varying flow parameters of blood inside

the vessels depending on the heart rate of the individual (Jiang and Strother, 2009). The ideal

solution should therefore be suitable for a range of flow parameters instead of being ideal for

only one pair of parameters. Further research is needed to examine how big the influence of

the varying heart rates on the geometry of the blood vessels is and what measures can be taken

to obtain the ideal topology for the entire range of occurring flow parameters.

5.4 Porosity

The topology optimization approach that this work aims at, is based on the idea of an initial

guess of the design variable matrix β which is then optimized. The results regarding the pres-

sure drop in figure 4.4 indicate that the domain will be predominantly occupied by fluid nodes

ad the simulation with all fluid nodes received the lowest score of the objective function calcu-

lating the pressure drop. To prevent this, a volume constraint can be added as done by Pingen

et al. (2007).

Moreover, the solution of the final β matrix contains values between 0 and 1
τ
. It should be

evaluated if the result with the minimal score of the objective function mainly consists of fluid

and solid nodes or rather a great variety of porous nodes. As the real-world applications in a

patient’s body are not designed to involve porous media, a result with predominantly porous

nodes might lead to issues when transferring the obtained results to the application in stent and

bypass design. Careful adjustment of a volume constraint might minimize porous nodes to a

sufficient degree. Otherwise, an activation function can be applied to transform the solution
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Figure 5.1: Diagonal inlet flow

matrix β to a matrix with 0 and 1
τ

elements without intermediate values. Besides, a non-

homogenization method might be considered to avoid solely theoretical outcomes (Rozvany

et al., 1992).

5.5 Unidirectional Inlet Flow

The current perpendicular in- and outflow of the domain are another detail, where the imple-

mentation can be improved. The implemented setup of the LBM assumes perpendicular flow

in and out of the domain. However, a patient will rarely need a replacement of a blood vessel

where the in- and outlet are placed at an angle of exactly 90 degrees or its multiple.

Therefore, it should be examined how to approximate real-world behavior of blood flow at spe-

cific angles. As the LBM is only defined for equidistant Cartesian grids, it is not possible to

adjust the computational domain to a non-rectangular one. Additionally, no unidirectional, an-

gled BCs are available for the LBM yet (Mattila, 2010). However, the elements of the porosity

matrix can be fixed until a diagonal as visualized in figure 5.1. The inlet BC will still be per-

pendicular to the wall on the left-hand side, but the desired flow profile with correct direction

will enter the domain that is subject to topology optimization at the diagonal. The tube length

might need to be extended to reach the desired flow profile at the diagonal. Also the flow ve-

locity should be checked and adjusted. Also Zhang and Liu (2015) achieve an angled in- and

outflow by guiding the flow in a pipe before entering the domain that is subject to topology

optimization.
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5.6 Applicability in Medicine

The most important question about the implementation of topology optimization using the

LBM is the applicability of the result to real-world problems. Customized stent adjustment

might be reasonable for bifurcation lesions and for very unusual coronary geometries. For

most lesions, the current approach with a flexible stent that adapts to the coronary geometry

to a reasonable level appears to be a sophisticated treatment with reliable results and afford-

able costs. However, stent flexibility can influence clinical outcome, especially in bifurcation

lesions. When a stent is ill-fitting, mechanical stress can be imposed on the artery at the stent

edges and modify arterial geometry and blood flow dynamics in bifurcations. These issues are

commonly referable to the rigidity of the stent rather than a poor geometry (Saito et al., 2020).

A detailed analysis should be performed to identify if stents with customized geometry provide

an adequate advantage over the current standard.

Nevertheless, topology optimization might already be applicable for arterial bypass operations

where parts of the artery of the patient are replaced with artificial material. The geometry is

usually determined by the surgeon based on experience (Abraham et al., 2005) and research

on arterial bypass configurations has been done (Zhang and Liu, 2015; Abraham et al., 2005;

Quarteroni and Rozza, 2003)

Another challenge is then to transfer the knowledge about the topology optimization software to

the surgeons and ensure a convenient applicability. Also, the manufacturability in the available

time while maintaining medical standards should be considered.
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6. Conclusion

Even though the LBM is recognized among the scientific community as easy to implement,

especially the implementation of BCs can be cumbersome depending on the case of application

and the required complexity. For industrial applications, the lack of unidirectional BCs that are

not perpendicular to the wall of the domain is especially unpractical. However, the benefit of

the method might be found in the ease to incorporate various models into the LBM to model

difficult flow problems or special fluids with uncommon behavior. The implementation of

the porosity model was expedient and the procedure to incorporate the non-Newtonian effects

seems to be simple likewise.

Regarding the applicability of the examined methods for medical problems, customized stent

adjustment might be reasonable for bifurcation lesions and for very unusual coronary geome-

tries. For most lesions, the current approach with a flexible stent that adapts to the coronary

geometry to a reasonable level appears to be a sophisticated treatment with reliable results and

affordable costs. The geometry of arterial bypasses on the contrary is always customized to the

patient, so that the usage of topology optimization to improve bypass geometries seems more

promising.

To model blood flow and use it as a tool to improve stent or arterial bypass geometries further

work needs to be done to

• validate the implementations,

• combine the implemented LBM with the adjoint method,

• incorporate a volume constraint,

71



• add a model for non-Newtonian fluids to the LBM implementation,

• optimize geometries based on a range of heart rates instead of one set of flow parameters,

and

• create a simple approach for implementing unidirectional, angled boundary flow.

Beyond that, interesting research topics regarding the LBM might include

• the comparison of different approaches of topology optimization using the LBM, and

• the implementation and validation of a porosity model to optimize topologies containing

porous areas instead of only fluids and solids.
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A. User Manual

This user manual gives an overview of the structure of the attached code beyond the comments

contained in the code itself.

A.1 Lattice Boltzmann Method

The code of the LBM is divided into two parts:

• the file myLBM.py, where the simulation is run and

• the collection of functions lbfuns.py.

The former is used to run the provided and described test case and make changes on:

• the number of nodes in x- and y-direction n,

• the maximum number of time steps nt,

• the maximum velocity at the inlet uxInMax,

• the pressure at the outlet pOut,

• the viscosity v,

• the factor for polynomial scaling of the porosity k, described in 2.2 and

• the initial guess for the porosity matrix beta.

Additionally, the Boolean variable plot specifies if the domain is plotted during the simulation

in addition to the final plots.
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The latter provides the function solveTestCase that solves the described test case, the func-

tions that have been described in the chapter 3.1 and functions for plotting. To set up a new

test case, either a separate function can be created for the new setup, or the existing one can be

modified.

A.2 Adjoint Method

The code of the adjoint method is also divided into two parts:

• the file myAdjoint.py, where the simulation is run and

• the collection of functions adjointfuns.py.

The former conducts the adjoint sensitivity analysis of the example described in chapter 2.3.2,

where the following properties are designed for adjustment/can be adjusted:

• the number of grid points n,

• the maximum number of iterations maxIt,

• the velocity u0 at the entrance of the tube (x = 0),

• the pressure p0 at the exit of the tube (x = 1),

• the convergence criterion conv,

• the update factor eta of the steepest descent method,

• the initial guess for the design variables kappa.

The latter provides the functions used in the optimization loop of myAdjoint.py which are pre-

dominantly specific to the example and must be adjusted or recreated for a new problem. The

function pTarget, defining the target pressure, was adjusted for the results presented in chapter

4.2
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B. Python Code

B.1 Lattice Boltzmann Method

1 import matplotlib . pyplot as plt

2 import numpy as np

3 import matplotlib as mpl

4 import copy

5

6 def solveTestCase (n,nt ,plot ,uxInMax ,pOut ,beta ,v,k):

7 ’’’

8 Lattice Boltzmann Method

9

10 5 1 6

11 \ | /

12 \ | /

13 D2Q9 4 --0-- 2

14 / | \

15 / | \

16 8 3 7

17

18 Solve the test case with quadratic domain and velocity inlet at the

left and pressure outlet at the

bottom .

19 General variables :

20 n: number of nodes in x and y direction

21 nt: number of time steps
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22 plot: enable real -time plotting

23

24 Boundary conditions :

25 uxInMax : maximum velocity at the inlet

26 pOut: pressure at the outlet

27

28 Variables for the porosity model:

29 beta: guess for beta matrix

30 ktow: tow permeability

31 k: factor for polynomial scaling of the porosity model; k

> 1; Recommendation : 2 < k < 3

32 fluidLimit : value between 0 and 1 below which the node is treated

as bounce -back boundary ; 0: solid;

1: fluid

33 ’’’

34 # Simulation parameters

35 nx = n # number of nodes in x- direction

36 ny = n # number of nodes in y- direction

37 rho0 = 1 # initial density

38 dt = 1 # size of a time step

39 cs = 1/np.sqrt (3) # lattice speed of sound

40 fluidLimit = 0.2 # when poro exceeds fluidLimit , the node is

considered solid

41 # Calculate variables related to porosity

42 tau , poro , fluid = porosityParam (beta , v, fluidLimit , k)

43

44 # Lattice parameters

45 X, Y = np. meshgrid (range(nx), range(ny))

46 nv , idxs , cxs , cys , wghts = D2Q9 ()

47

48 # Initial conditions

49 f = np.ones ((ny ,nx ,nv)) # matrix for the results of the current

time step

50 fOld = np.copy(f)
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51 feq = np.zeros ((ny ,nx ,nv), dtype=float) # matrix for the collision

step ( Equilibrium )

52 rho = np.sum(f ,2) # sum up the velocities of each grid point

53 for i in idxs:

54 f[:,:,i] *= rho0 / rho

55

56 # Boundaries

57 # Solid boundary

58 bndry = np.full ((ny ,nx), False)

59 bndry[fluid == False] = True

60 bndry[ 0] = True

61 bndry [-1] = True

62 bndry [:, 0] = True

63 bndry [:,-1] = True

64 # pressure boundary

65 pbndry = np.full ((ny ,nx), False)

66 pbndry [0, int(ny *0.7):int(ny *0.9)] = True

67 bndry[ pbndry ] = False

68 # Velocity boundary

69 vbndry = np.full ((ny ,nx), False)

70 vbndry [int(ny *0.7):int(ny *0.9) ,0] = True

71 bndry[ vbndry ] = False

72

73 # Inlet Velocity

74 uxIn = parabolVelo (Y, uxInMax , vbndry )

75 uyIn = 0

76 # Outlet Pressure

77 rhoOut = pOut / (cs **2)

78 bndryCond = [uxIn , uyIn , rhoOut ]

79

80 # Initial velocities

81 ux = 0 # velocity in x direction

82 uy = 0 # velocity in y direction

83 umaxOld = np.max(np.sqrt(ux **2+ uy **2)) # save maximum velocity
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84

85 # Initiate plot

86 if plot:

87 fig , ax = plt. subplots ()

88

89 # for each time step

90 for time in range(nt):

91 #if time % 100 == 0:

92 print(’Time step: ’, time)

93

94 # Propagation ( Streaming )

95 f = propagation (f, idxs , cxs , cys)

96

97 # Store bounce -back values

98 if bndry.any:

99 bb = f[bndry]

100 bb = bb [: ,[0 ,3 ,4 ,1 ,2 ,7 ,8 ,5 ,6]]

101

102 # Calculate macroscopic parameters

103 rho , ux , uy = macroscopicParam (f, vbndry , pbndry , bndryCond ,

cxs ,cys)

104

105 # Calculate equilibrium distribution

106 feq = equiPoro (feq , rho , ux , uy , idxs , cxs , cys , wghts , poro)

107

108 # Calculate boundary distributions

109 f = fcorrection (f, feq , rho , ux , uy , vbndry , pbndry )

110

111 # Collision

112 f = collision (f, feq , tau , dt , nv)

113

114 # Collision for fullway bounce -back boundary

115 if bndry.any:

116 f[bndry] = bb
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117

118 # Check convergence

119 criterion , fOld = convergenceF (f, fOld , ny , nx , nv)

120 if ( criterion < 1e -16 and time > 10):

121 print(’Converged .’)

122 break

123

124 # plot in real time

125 if (plot and (time % 10) == 0) or (time == nt -1):

126 plotQuiverPoro (X,Y, ux , uy , bndry , ax , poro)

127 print( criterion )

128

129 # Calculate macroscopic parameters

130 rho , ux , uy = macroscopicParam (f, vbndry , pbndry , bndryCond , cxs ,

cys)

131

132 print(’Pressure drop: ’, ( np.sum(rho[ vbndry ]) - np.sum(rho[ pbndry

]) )* (cs **2))

133 plotFinal (ux ,uy ,bndry ,nx ,ny ,X,Y,rho ,vbndry ,pbndry ,cs ,poro)

134 return f, rho , ux , uy

135

136 def D2Q9 ():

137 ’’’ Velocity set D2Q9

138 nv: number of velocities

139 idxs: indices of the velocities

140 cxs: x- coordinates of each velocity vector

141 cys: y- coordinates of each velocity vector

142 wghts: weights of the respective velocity vectors

143 ’’’

144 nv = 9

145 idxs = np. arange (nv)

146 cxs = np.array ([ 0, 0, 1, 0,-1, -1, 1, 1,-1])

147 cys = np.array ([ 0, 1, 0,-1, 0, 1, 1,-1,-1])

148 wghts = np.array ([4/9 ,1/9 ,1/9 ,1/9 ,1/9 ,1/36 ,1/36 ,1/36 ,1/36])
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149 return nv , idxs , cxs , cys , wghts

150

151 def parabolVelo (Y, uxInMax , vbndry ):

152 ’’’ Calculate inlet velocities with parabolic profile

153 ny: number of nodes in y- direction

154 Y: matrix with y- coordinates of the nodes

155 uxInMax : maximum velocity in x- direction at the inlet

156 uxLen: Size of the inlet

157 uxIn: velocities in x- direction at the inlet

158 ’’’

159 inletLen = np. count_nonzero ( vbndry )

160 uxLen = inletLen +2

161 a = -4* uxInMax /( uxLen -1) **2

162 uxIn = a*Y[: uxLen ,0]**2 - a*Y[: uxLen ,0]*( uxLen -1)

163 return uxIn [1: -1]

164

165 def porosityParam (beta , v, fluidLimit , k):

166 ’’’ Calculate the parameters for the porosity model when the

viscosity is fixed

167 beta: porosity measure ; 0: fluid , 1/ tau: porous

168 v: viscosity

169 fluidLimit : value between 0 and 1 below which the node is treated

as bounce -back boundary ; 0: solid;

1: fluid

170 k: factor for polynomial scaling

171 tau: relaxation time; must be greater 0.5

172 poro: porosity measure ; 1: fluid; 0: porous

173 fluid: boolean matrix that is True for fluid nodes

174 ’’’

175 tau = (6*v+1) /2 # relation with viscosity is defined by the

velocity set D2Q9

176 poro = 1-( beta*tau)**k # 1: fluid; 0: porous

177 fluid = poro > fluidLimit

178 return tau , poro , fluid
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179

180 def check(v,beta ,k=2.5):

181 ’’’ Check the possible range of ktow , given a viscosity v

182 v: viscosity

183 ktow: permeability

184 k: factor for polynomial scaling

185 tau: relaxation time; must be greater 0.5

186 betamax : maximum beta to respect the porosity model

187 ktowmin : minimum ktow to respect the porosity model

188 beta: porosity measure ; 0: fluid , 1/ tau: porous

189 poro: porosity measure ; 1: fluid; 0: porous

190 fluid: boolean matrix that is True for fluid nodes

191 ’’’

192 tau = (6*v+1) /2

193 betamax = 1/ tau

194 ktowmin = v/ betamax

195 print(’Tau: ’, tau , ’\ nPossible range of beta: 0 to ’, betamax , ’\

nPossible range of ktow: ’, ktowmin

, ’ to infinity ’)

196 poro = 1-( beta*tau)**k

197 return poro

198

199 def propagation (f, idxs , cxs , cys):

200 ’’’ Propagation step of the Lattice Boltzmann Method

201 f: discrete velocities

202 idxs: indices of the velocity set

203 cxs: x- coordinates of the velocity set

204 cys: y- coordinates of the velocity set

205 ’’’

206 for i, cx , cy in zip(idxs , cxs , cys): # for each velocity

discretization direction

207 f[:,:,i] = np.roll(f[:,:,i], cx , axis =1) # stream along x axis

208 f[:,:,i] = np.roll(f[:,:,i], cy , axis =0) # stream along y axis

209 return f
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210

211 def macroscopicParam (f, vbndry , pbndry , bndryCond , cxs ,cys):

212 ’’’ Calculate the macroscopic parameters of the

213 f: discrete velocities

214 vbndry : boolean matrix that is True for the velocity boundary

215 pbndry : boolean matrix that is True for the pressure boundary

216 bndryCond : list of variables of the boundary conditions

217 cxs: x- coordinates of the velocity set

218 cys: y- coordinates of the velocity set

219 rho: densities

220 ux: velocities in x- direction

221 uy: velocities in y- direction

222 ’’’

223 uxIn = bndryCond [0]

224 uyIn = bndryCond [1]

225 rhoOut = bndryCond [2]

226

227 # Calculate macroscopic parameters

228 rho = np.sum(f ,2)

229 ux = np.sum(f*cxs ,2)/rho

230 uy = np.sum(f*cys ,2)/rho

231

232 # At the boundary (velocity , inlet)

233 if vbndry .any:

234 ux[ vbndry ] = uxIn

235 uy[ vbndry ] = uyIn

236 rho[ vbndry ] = 1/(1 - ux[ vbndry ]) * (f[vbndry ,0]+f[vbndry ,1]+f[

vbndry ,3]+2*( f[vbndry ,4]+f[vbndry

,5]+f[vbndry ,8]))

237

238 # At the boundary (pressure , outlet )

239 if pbndry .any:

240 rho[ pbndry ] = rhoOut

241 ux[ pbndry ] = 0
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242 uy[ pbndry ] = 1-((f[pbndry ,0] + f[pbndry ,2] + f[pbndry ,4] + 2*(f

[pbndry ,3] + f[pbndry ,7] + f[pbndry

,8]))) /rho[ pbndry ]

243

244 return rho , ux , uy

245

246 def equi(feq , rho , ux , uy , idxs , cxs , cys , wghts):

247 ’’’ Calculate the equilibrium distribution

248 feq: equilibrium distribution

249 rho: density

250 ux: velocities in x- direction

251 uy: velocities in y- direction

252 idxs , cxs , cys , wghts: variables of the D2Q9 velocity set

253 ’’’

254 for i, cx , cy , w in zip(idxs , cxs , cys , wghts):

255 feq [:,:,i] = rho * w * ( 1 + 3*( cx*ux+cy*uy) + 9/2*( cx*ux+cy*uy

)**2 - 3/2*( ux **2+ uy **2) )

256 return feq

257

258 def equiPoro (feq , rho , ux , uy , idxs , cxs , cys , wghts , poro):

259 ’’’ Calculate the equilibrium distribution

260 feq: equilibrium distribution

261 rho: density

262 ux: velocities in x- direction

263 uy: velocities in y- direction

264 idxs , cxs , cys , wghts: variables of the D2Q9 velocity set

265 poro: porosity measure ; 1: fluid; 0: porous

266 ’’’

267 for i, cx , cy , w in zip(idxs , cxs , cys , wghts):

268 feq [:,:,i] = rho * w * ( 1 + 3*( cx*ux*poro+cy*uy*poro) + 9/2*(

cx*ux*poro+cy*uy*poro)**2 - 3/2*((

ux*poro)**2+( uy*poro)**2) )

269 return feq

270
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271 def fcorrection (f, feq , rho , ux , uy , vbndry , pbndry ):

272 ’’’ Correct the discrete velocities at the open boundaries

273 f: discrete velocities

274 feq: equilibrium distribution

275 rho: densities

276 ux: velocities in x- direction

277 uy: velocities in y- direction

278 vbndry : boolean matrix that is True for the velocity boundary

279 pbndry : boolean matrix that is True for the pressure boundary

280 bndryCond : list of variables of the boundary conditions

281 ’’’

282 # At the boundary (velocity , inlet)

283 if vbndry .any:

284 #f[ vbndry ] = np.copy(feq[ vbndry ])

285

286 f[vbndry ,2]= feq[vbndry ,2]+f[vbndry ,4]- feq[vbndry ,4]

287 f[vbndry ,6]=0.5*( rho[ vbndry ]*( ux[ vbndry ]+uy[ vbndry ])-f[vbndry

,1]-f[vbndry ,2]+f[vbndry ,3]+2* f[

vbndry ,8]+f[vbndry ,4])

288 f[vbndry ,7]=0.5*( rho[ vbndry ]*( ux[ vbndry ]-uy[ vbndry ])+f[vbndry

,1]-f[vbndry ,2]-f[vbndry ,3]+f[

vbndry ,4]+2* f[vbndry ,5])

289

290 # At the boundary (pressure , outlet )

291 if pbndry .any:

292 f[pbndry ,1] = feq[pbndry ,1] + (f[pbndry ,3] - feq[pbndry ,3])

293 f[pbndry ,5] = 1/2 * (rho[ pbndry ]*( uy[ pbndry ]-ux[ pbndry ]) - f[

pbndry ,1] + f[pbndry ,2] + f[pbndry

,3] - f[pbndry ,4] + 2*f[pbndry ,7])

294 f[pbndry ,6] = 1/2 * (rho[ pbndry ]*( ux[ pbndry ]+uy[ pbndry ]) - f[

pbndry ,1] - f[pbndry ,2] + f[pbndry

,3] + f[pbndry ,4] + 2*f[pbndry ,8])

295

296 return f
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297

298 def collision (f, feq , tau , dt , nv):

299 ’’’ Collision step for the Lattice Boltzmann Method

300 f: discrete velocities

301 feq: equilibrium distribution

302 tau: relaxation time

303 dt: time step

304 nv: number of discrete velocities

305 ’’’

306 for i in range(nv): # Apply collision for all the nodes

307 f[:,:,i] -= (dt/tau) * (f[:,:,i]-feq [:,:,i])

308 return f

309

310 def convergenceVelo (ux ,uy , umaxOld ):

311 # Check convergence with the max velocity

312 umaxNew = np.max(np.sqrt(ux **2+ uy **2)) # save maximum velocity

313 criterion = np.abs (( umaxOld - umaxNew )/ umaxNew )

314 umaxOld = umaxNew

315 return criterion , umaxOld

316

317 def convergenceF (f, fOld , ny , nx , nv):

318 f = np.array(f)

319 criterion = abs(f - fOld). reshape (ny*nx*nv)

320 fOld = np.copy(f)

321 return max( criterion ), fOld

322

323 def plotQuiverPoro (X,Y, ux , uy , bndry ,ax ,poro):

324 ’’’ Plot the computational domain with velocity arrows and porosity

’’’

325 plt.cla () # clear the current axes

326 ux[bndry] = 0

327 uy[bndry] = 0

328
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329 q = ax. quiver (X[bndry == False], Y[bndry == False], ux[bndry == False],

uy[bndry == False], np.hypot(ux[bndry

== False], uy[bndry == False ]) , pivot

=’mid ’)

330

331 vorticity = (np.roll(ux , -1, axis =0) - np.roll(ux , 1, axis =0)) - (

np.roll(uy , -1, axis =1) - np.roll(

uy , 1, axis =1))

332 vorticity [bndry] = np.nan

333 cmap = copy.copy(mpl.cm. get_cmap ("bwr"))

334 cmap. set_bad (’black ’)

335 plt. imshow (vorticity , cmap=cmap)

336

337 # Show porosity

338 cmapPoro = copy.copy(mpl.cm. get_cmap (’Greens ’))

339 cmapPoro . set_bad (color=’black ’)

340 norm = mpl. colors . Normalize (vmin =0, vmax =1)

341 poro[bndry] = np.nan

342 plt. imshow (1-poro , cmap=cmapPoro , norm=norm , alpha =0.5)

343 ax. invert_yaxis ()

344 ax = plt.gca ()

345 ax. get_xaxis (). set_visible (False)

346 ax. get_yaxis (). set_visible (False)

347 ax. set_aspect (’equal ’)

348 plt.pause (0.001)

349 return

350

351 def plotFinal (ux ,uy ,bndry ,nx ,ny ,X,Y,rho ,vbndry ,pbndry ,cs ,poro):

352 ’’’ Final figure and axes ’’’

353 f = plt. figure ( figsize =(10 ,10))

354 ax = [f. add_subplot (221) ,f. add_subplot (222) ,f. add_subplot (223) ,f.

add_subplot (224)]

355 ax [0]. set_title (’Velocity profile ’)

356 ax [0]. set_xlabel (’x’)
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357 ax [1]. set_title (’Pressure drop ’)

358 ax [2]. set_title (’Velocity and vorticity ’)

359 ax [2]. set_xlabel (’x’)

360 ax [2]. set_ylabel (’y’)

361 ax [3]. set_title (’Porosity ’)

362 ax [3]. set_xlabel (’x’)

363 ax [3]. set_ylabel (’y’)

364

365 ux[bndry] = 0

366 uy[bndry] = 0

367

368 # Plot velocity profile

369 varx = np. arange (nx -2) +1

370 vary = np. arange (ny -2) +1

371 ax [0]. plot(Y[vary ,varx],np.sqrt(ux[vary ,varx ]**2+ uy[vary ,varx ]**2) ,

’-o’,color=’red ’, label=’middle ’)

372 ax [0]. plot(Y[:,0],ux[:,0],’-o’,label=’inlet ’)

373 ax [0]. plot(X[0,:],-uy[0,:],’-o’,label=’outlet ’)

374 ax [0]. set_xlabel ("x/y- coordinate ")

375 ax [0]. grid ()

376 ax [0]. legend ()

377

378 # Plot pressure drop

379 x = [0,nx/2,nx]

380 p = [np.sum(rho[ vbndry ]) * (cs **2) , np.trace(rho[int(ny *0.4) :int(ny

*0.6) ,int(nx *0.4):int(nx *0.6) ]) * (

cs **2) , np.sum(rho[ pbndry ]) * (cs

**2)]

381 ax [1]. plot(x,p,’-o’, color=’green ’)

382 ax [1]. set_xticks (x)

383 ax [1]. set_xticklabels ([’inlet ’, ’middle ’, ’outlet ’])

384 ax [1]. grid ()

385

386 # Plot velocity and vorticity
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387 q = ax [2]. quiver (X[bndry == False], Y[bndry == False], ux[bndry == False

], uy[bndry == False], np.hypot(ux[

bndry == False], uy[bndry == False ]) ,

pivot=’mid ’)

388 vorticity = (np.roll(ux , -1, axis =0) - np.roll(ux , 1, axis =0)) - (

np.roll(uy , -1, axis =1) - np.roll(

uy , 1, axis =1))

389 vorticity [bndry] = np.nan

390 cmap = copy.copy(mpl.cm. get_cmap ("bwr"))

391 cmap. set_bad (’black ’)

392 ax [2]. imshow (vorticity , cmap=cmap)

393 ax [2]. invert_yaxis ()

394 ax [2]. set_aspect (’equal ’)

395 ax [2]. set_xticks ([])

396 ax [2]. set_yticks ([])

397

398 # Show porosity

399 cmapPoro = copy.copy(mpl.cm. get_cmap (’Greys ’))

400 cmapPoro . set_bad (color=’black ’)

401 norm = mpl. colors . Normalize (vmin =0, vmax =1)

402 poro[bndry] = np.nan

403 ax [3]. imshow (1-poro , cmap=cmapPoro , norm=norm)

404 ax [3]. invert_yaxis ()

405 ax [3]. set_aspect (’equal ’)

406 ax [3]. set_xticks ([])

407 ax [3]. set_yticks ([])

408

409 plt.show ()

410 return

Code Listing B.1: lbfuns

1 import matplotlib . pyplot as plt

2 import numpy as np

3 import pandas as pd
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4 from lbfuns import *

5

6 ’’’

7 Lattice Boltzmann Method

8

9 5 1 6

10 \ | /

11 \ | /

12 D2Q9 4 --0-- 2

13 / | \

14 / | \

15 8 3 7

16 ’’’

17

18 n = 27 # Number of nodes on the x and y axis

19 nt = 100000 # Max number of time steps

20 plot = True # Enable or disable plotting during the simulation

21 uxInMax = 0.025 # Velocity boundary condition ; max velocity of the

parabolic profile at the inlet

22 pOut = 0.33 # Pressure boundary condition ; pressure at the outlet

23

24 # initial guess for the porosity (beta * tau should be in between 0 to

1)

25 beta0 = 0.45 # 0: fluid; 1/ tau: porous

26 beta1 = 0

27 beta = np.full ((n,n),beta0)

28 #beta[np. arange (n -1) ,np. arange (n-2,-1,-1)] = 0.1

29 beta[np. arange (n -2) ,np. arange (n-3,-1,-1)] = beta1

30 beta[np. arange (n -3) ,np. arange (n-4,-1,-1)] = beta1

31 beta[np. arange (n -4) ,np. arange (n-5,-1,-1)] = beta1

32 beta[np. arange (n -5) ,np. arange (n-6,-1,-1)] = beta1

33 beta[np. arange (n -6) ,np. arange (n-7,-1,-1)] = beta1

34 beta[np. arange (n -7) ,np. arange (n-8,-1,-1)] = beta1

35 beta[np. arange (n -8) ,np. arange (n-9,-1,-1)] = beta1
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36

37 v = 0.4 # viscosity

38 k = 2.5 # factor for polynomial scaling of the porosity

39

40 poro = check(v,beta ,k)

41 print(poro) # 1: fluid; 0: porous

42

43 f, rho , ux , uy = solveTestCase (n,nt ,plot ,uxInMax ,pOut ,beta ,v,k)

44

45 # Save results

46 dfrho = pd. DataFrame (rho)

47 dfrho. to_csv (’./ rho.csv ’, index=False)

48 dfux = pd. DataFrame (ux)

49 dfux. to_csv (’./ux.csv ’, index=False)

50 dfuy = pd. DataFrame (uy)

51 dfuy. to_csv (’./uy.csv ’, index=False)

Code Listing B.2: myLBM

B.2 Adjoint Method

1 import numpy as np

2 import matplotlib . pyplot as plt

3 import scipy. integrate as integrate

4 import pandas as pd

5

6 def pTarget (x):

7 return -x + 1 #1.8*x**2 + 1.2 #1-x**4

8

9 def area(x,kappa):

10 ’’’ Calculate the area of the tube

11 x: x- coordinates

12 kappa: design variabels
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13 ’’’

14 return kappa [0]*( -x **3+3* x**2 -3*x+1) + kappa [1]*(3* x**3 -6*x **2+3* x)

+ kappa [2]*( -3*x **3+3* x**2) +

kappa [3] *x**3

15

16 def gradient (var ,dx):

17 ’’’ Calculate the change per step dx of the variable var(x) ’’’

18 grad = np.zeros(len(var))

19 grad [1: -1] = (var [2:] - var [: -2]) /(2* dx)

20 grad [0] = (var [1] - var [0])/dx

21 grad [-1] = (var [-1] - var [ -2])/dx

22 return grad

23

24 def properties (a,u0 ,p0 ,dx ,n):

25 ’’’ Calculate the domain properties

26 a: area of the tube

27 u0: velocity at the boundary / entrance of the tube

28 p0: pressure at the boundary /exit of the tube

29 dx: distance between the grid points

30 n: number of grid points

31 u: velocity along the tube

32 p: pressure along the tube

33 ’’’

34 # Calculate velocity ; Continuity equation : A1*u1=A2*u2

35 c = u0*a[0]

36 u = c/a

37 # Calculate pressure ; Momentum conservation

38 dudx = gradient (u,dx)

39 p = np.zeros(n)

40 p[-1] = p0

41 for i in range(n-2,-1,-1):

42 p[i] = p[i+1] + u[i]* dudx[i]*dx

43 return u,p

44
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45 def lm(a,u,dp ,dx ,n):

46 ’’’ Calculate Lagrange multipliers

47 a: area of the tube

48 u: velocity along the tube

49 dp: difference between the actual pressure and the target pressure

along the tube

50 dx: distance between the grid points

51 n: number of grid points

52 ua: adjoint velocity along the tube

53 pa: adjoint pressure along the tube

54 ’’’

55 # Calculate adjoint velocity by adjoint equation

56 ua = np.zeros(n)

57 for i in range (1,n):

58 ua[i] = ua[i -1]+ dp[i]*dx

59 # Calculate adjoint pressure by adjoint equation

60 duadx = gradient (ua , dx)

61 pa = np.zeros(n)

62 pa[-1] = - (u[ -1]* ua [ -1])/a[-1]

63 for i in range(n-2,-1,-1):

64 pa[i] = pa[i+1] + u[i]/a[i] * duadx[i] * dx

65 return ua ,pa

66

67 def sensitivities (x,u,pa ,dx ,kappa):

68 ’’’ Calculate the sensitivities ’’’

69 dpadx = gradient (pa ,dx)

70 # Solve sensitivity equations

71 dFdkappa = np.zeros(len(kappa))

72 dFdkappa [0] = - np.trapz(u*dpadx *(-x **3+3* x**2 -3*x+1) ,x,dx) - pa

[0]*u[0]

73 dFdkappa [1] = - np.trapz(u*dpadx *(3*x**3 -6*x **2+3* x),x,dx)

74 dFdkappa [2] = - np.trapz(u*dpadx *( -3*x **3+3* x**2) ,x,dx)

75 dFdkappa [3] = - np.trapz(u*dpadx*x**3,x,dx) + pa [ -1]*u[-1]

76 return dFdkappa
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77

78 def plotInit ():

79 ’’’ Initialize figure and axes ’’’

80 f = plt. figure ( figsize =(10 ,4))

81 ax = [f. add_subplot (141) ,f. add_subplot (142) ,f. add_subplot (143) ,f.

add_subplot (144)]

82 ax [0]. set_title (’Shape of the Tube ’)

83 ax [0]. set_xlabel (’x’)

84 ax [1]. set_title (’Pressure ’)

85 ax [1]. set_xlabel (’x’)

86 ax [2]. set_title (’Velocity ’)

87 ax [2]. set_xlabel (’x’)

88 ax [3]. set_title (’Objective ’)

89 ax [3]. set_xlabel (’Iteration ’)

90 return f, ax

91

92 def plot(ax ,a,p,u,x,it ,c):

93 ’’’ Plot current parameters during optimization ’’’

94 r = a/np.pi **2

95 ax [0]. plot(x,r,color=c,alpha =0.1)

96 ax [0]. plot(x,-r,color=c,alpha =0.1)

97 ax [1]. plot(x,p,color=c,alpha =0.1)

98 ax [2]. plot(x,u,color=c,alpha =0.1)

99 return

100

101 def plotLegend (ax ,a,p,u,x,it ,c,label):

102 ’’’ Plot current parameters with label to be shown in the legend

’’’

103 r = a/np.pi **2

104 ax [0]. plot(x,r,color=c)

105 ax [0]. plot(x,-r,color=c)

106 pl = ax [1]. plot(x,p,label=label ,color=c)

107 ax [2]. plot(x,u,color=c) #label=f ’{it}’

108 return pl
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Code Listing B.3: adjointfuns

1 import numpy as np

2 import matplotlib . pyplot as plt

3 from matplotlib . pyplot import cm

4 import scipy. integrate as integrate

5 import pandas as pd

6 from adjointfuns import *

7

8

9 # Define Grid

10 n = 50 # number of grid points

11 x = np. linspace (0,1,n)

12 dx = 1/n # distance between grid points

13

14 # Boundary conditions

15 p0 = 0 # pressure at x=1

16 u0 = 1 # # Flow velocity at the entrance of the tube (x=0)

17

18 # Optimization parameters

19 eta = 0.02 # Update

20 maxIt = 2000 # Max iterations

21 conv = 0.01 # Convergence criterion

22 # Initial guess for design variables

23 kappa = [0.6 ,0.6 ,1 ,0.5]

24

25 # Store optimization steps

26 results = []

27 # Plot results

28 f, ax = plotInit ()

29 itPlot = 200000

30 color = iter(cm. rainbow (np. linspace (0,1, int(maxIt/ itPlot ))))

31
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32 for it in range(maxIt):

33 # Calculate domain properties

34 a = area(x,kappa)

35 u,p = properties (a,u0 ,p0 ,dx ,n)

36

37 # Plot starting properties

38 if it == 0:

39 p1 , = plotLegend (ax ,a,p,u,x,it ,’g’,’Start ’)

40

41 # Calculate objective

42 pt = pTarget (x)

43 dp = p-pt

44 F = 0.5* np.sum(dp **2)

45

46 # Check for convergence

47 if F < conv:

48 break

49

50 # Calculate Lagrange multipliers

51 ua , pa = lm(a,u,dp ,dx ,n)

52

53 # Calculate sensitivities of the design variables

54 dFdkappa = sensitivities (x,u,pa ,dx ,kappa)

55 # Update the design variables

56 kappa -= eta* dFdkappa

57

58 # Store results

59 results . append ([it ,F,kappa [0], kappa [1], kappa [2], kappa [3]])

60

61 if (it % itPlot == 0 and it != 0):

62 c=next(color)

63 plot(ax ,a,p,u,x,it ,c)

64

65 # Visualize results
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66 tbl = pd. DataFrame (results , columns =[’it’, ’F’, ’kappa1 ’, ’kappa2 ’, ’

kappa3 ’, ’kappa4 ’])

67 tbl = tbl. set_index (’it’)

68 print(tbl)

69 p2 , = plotLegend (ax ,a,p,u,x,it ,’r’,’Result ’)

70 p3 , = ax [1]. plot(x,pt ,label=’Target ’,c=’black ’)

71 plt. legend ( handles =[p1 ,p2 ,p3], title=’Legend ’, bbox_to_anchor =( -1.25 ,

1), loc=’upper left ’)

72 ax [3]. plot(tbl[’F’])

73 plt.show ()

Code Listing B.4: myAdjoint

102


	List of Figures
	Code Listings
	Acronyms
	List of Symbols
	Introduction
	State of the Art
	Motivation

	Theory
	Lattice Boltzmann Method
	Macroscopic Moments
	Closed Boundaries
	Open Boundaries

	Porosity
	Topology Optimization
	Adjoint Method
	Example


	Implementation
	Lattice Boltzmann Method with Porosity Model
	Topology Optimization
	Example
	Combination with the Lattice Boltzmann Method


	Results
	Lattice Boltzmann Method
	Computational Setup
	All Fluid Nodes
	All Porous Nodes
	Fluid and Porous Nodes

	Topology Optimization
	Computational Setup
	Target Pressure with Exponent 3
	Target Pressure with Exponent 3, Doubled
	Target Pressure with Exponent 4


	Discussion
	Usage of the Lattice Boltzmann Method
	Usage of the Adjoint Method
	Blood Flow
	Porosity
	Unidirectional Inlet Flow
	Applicability in Medicine

	Conclusion
	Bibliography
	Appendices
	User Manual
	Lattice Boltzmann Method
	Adjoint Method

	Python Code
	Lattice Boltzmann Method
	Adjoint Method


