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Abstract

Interwell connectivity is a measure of the degree to which information is translated be-
tween wells in a reservoir. The translated information may include changes in pres-
sure, fluid flow, or other physical properties. This connectivity is separated into internal
connectivities (through the reservoir) and external connectivities (through the infras-
tructure). Understanding these interwell connectivities may improve the overall under-
standing of the reservoir, aid in optimizing oil and gas production, and avoid new and
undesired connectivities. We seek to determine if causal inference can be applied to aid
in the detection of interwell connectivities within the oil and gas field, Eldfisk, operated
by ConocoPhillips. Eldfisk is a mature field with a complex network of injection and pro-
duction wells and a large and connected infrastructure of oil and gas installations. We
examined thirteen wells, where eight are water injection wells, and five are oil and gas
producing wells. Between these, there are three injection to injection well connectivities
and five injection to production well connectivities, for a total of eight well-pair connectiv-
ities. These connectivities are known to ConocoPhillips and have been identified through
various methods, including manual comparison of pressure responses between wells. The
connectivity we seek to identify is a pressure response between a stimulating well and a
target well through the reservoir. Data is obtained from Bottom Hole Pressure sensors
where this is available and Tubing Head Pressure sensors otherwise. The pressure data is
split into smaller datasets that target periods when a stimulating well is experiencing a
change in pressure. These periods are identified by an on/off indicator, binary data indi-
cating whether a well is opened or closed. Every well is given status as a stimulating well
for each period identified by the on/off-indicator. All other wells are considered as target
wells during these periods. Two different causal inference methods were applied to the
datasets; Peter Clark Momentary Conditional Independence + (PCMCI+) and Temporal
Causal Discovery Framework (TCDF). PCMCI+ is a method that employs partial cor-
relation to infer causality, and TCDF employs convolutional neural networks. We found
that the PCMCI+ algorithm was able to identify seven out of eight well-pairs with known
connectivities. However, it was less precise, with approximately one out of five identified
connectivities being true. The TCDF-algorithm identified three out of eight well-pairs
with known connectivities. This model was more precise, with approximately one out of
four identified connectivities being true. We also found that the overall complexity of
the original dataset was effectively reduced by splitting it into smaller datasets. These
datasets specifically targeted periods when the wells experienced changes in their pres-
sure profiles. External interferences from a field-wide water supply were not effectively
reduced and were a cause of a majority of false connectivities. Group-wide interference
from wells sharing the same production installation was found to be effectively reduced.
Using tubing head pressure data when bottom hole pressure data was unavailable, was
found to be an effective substitute.
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Chapter 1

Introduction

Interwell connectivity is commonly referred to when discussing the translation of infor-
mation from a stimulating well A to a target well B. The information being translated
may be pressure, fluid flow, or some other type of information. The main idea is that the
two wells are connected in some regard. Interwell connectivity can be broken down into
three main parts; the information being translated, the degree to which the information
is translated, and the time lag of the translation.

In an oil and gas field, the topic of interwell connectivity is an important one, as
it may be a cause of sub-optimal production rates from a well due to interference from
another well. Understanding these relationships between the wells may help to better
understand the reservoir as a whole and aid in future well-planning and optimization of
already producing wells.

In this thesis, the topic is to identify interwell connectivity through causal inference
by the models; Peter Clark Momentary Conditional Independence + (PCMCI+) intro-
duced by Runge (2020), and Temporal Causal Discovery Framework (TCDF) introduced
by Nauta et al. (2019). The two models were applied to pressure data of wells from the
mature Eldfisk field in the North Sea. Eldfisk is a highly complex system of wells with
both internal (through the reservoir) and external (through the infrastructure) connec-
tivities. Pressure changes between well-pairs is the translated information that we seek
to identify. The full time-series data is split into multiple smaller datasets for each stim-
ulating well, and a hypothesis test is used to determine if there is statistically significant
evidence of interwell connectivity between a given well-pair.

This topic has previously been explored with different methods, such as; pressure
pulse testing proposed by Johnson et al. (1966) to identify a lagged response in a tar-
get well. Heffer et al. (1997) applied a Spearman rank correlation on flow rates to infer
geomechanical processes and interwell connectivity. Using Multivariate Linear Regres-
sion, Dinh (2009) describe interwell connectivity by the fluctuations in the Bottom Hole
Pressure. Mata (2010) identifies periods when a well experience a rate change and then
search a selected group of wells for a correlating peak to infer connectivity. Deep learning
models have also been attempted for both synthetic and real data (Panda and Chopra
1998; Du et al. 2020; Cheng et al. 2020).
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1.1 Overview of thesis structure

Chapter 1.2: Previous work on the inference of interwell connectivity is examined. Dif-
ferent inference methods are included in this examination, from simpler methods such as
correlation matching to more complex methods employing deep learning. The objectives
of the thesis are listed at the end.

Chapter 2: Theory related to interwell connectivity, and as no set definition of inter-
well connectivity has been found, we explain our definition of the term. We describe
some elements of time series analysis such as hypothesis testing, statistical tests, and
probability value and give detailed explanations of PCMCI+ and TCDF.

Chapter 3: Gives a short introduction to the Eldfisk field the data is collected from
and the type of data that is used (pressure and on/off-indicators). There is an overview
of the well-pairs with known connectivities presented. Additionally, a section explains
what types of external interferences are present in the data and a section that highlights
the connectivity between the well-pairs.

Chapter 4: Detailed description of the methodology used to generate the final results.
The chapter is divided into the main sections of data selection, data extraction, prepro-
cessing of data, model application, classification, and strength of connectivity measure.

Chapter 5: Results presented in sections corresponding to the different tests performed.
These results are presented in tables, boxplots, and short descriptions that examine the
results’ numerical and visual representation.

Chapter 6: Detailed interpretation of the results. Divided into sections corresponding to
each of the various tests and models applied. Focus on the sensitivity, specificity, and
precision of the models. The final classification is presented as Directed Acyclic Graphs.

Chapter 7: Conclusions are drawn from the development of the thesis. There is also
a section describing possible future work that may improve the precision of the models.

Appendix A: Lists all tables with descriptive statistics used to generate boxplots in the
Results chapter.

Appendix B: Figures of known connectivities, along with a short description for each.

Appendix C: Lists raw output from the PCMCI+ and TCDF-algorithms from the method
demonstration in Chapter 2.

1.2 Literature review

In the following, we will examine different methods used to infer interwell connectivity
by time-series data, both in terms of connectivity strength and time lag.
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1.2.1 Cross-correlation

Johnson et al. (1966) propose a method of pulse testing to identify connectivity between
well-pairs in a reservoir. The method involves applying a series of pulses in a stimulating
well and then recording the pressure changes in a responding well using a very sensitive
differential pressure gauge. The recorded data is in the form of a time series of pressure
readings, {Yt, t ∈ T}, where t is some point in time of the full length of the recorded
period, T . Generating a unique series of pressure pulses in a stimulating well, the pres-
sure response in a target well and be distinguished from other noise in the reservoir over
some time. The pulses are generated by changing the flow in the stimulating well, which
translates to a pressure wave transported through the reservoir. The response is mea-
sured by the amplitude and time lag of the pulses. They mention that reservoirs with
low transmissibility are more difficult to test due to longer time lags and weaker response
amplitude.

Heffer et al. (1997) applied a Spearman rank correlation analysis on monthly flow
rate data of injector/producer well pairs. Spearman rank correlation is a measure of the
monotonic relationship between two variables (Spearman 1987). The Spearman correla-
tion coefficient, r, is calculated as seen in (1.1):

r = 1− 6
∑n

i=1 δ
2
i

n(n2 − 1)
(1.1)

Where n is the number of samples, and δi is the difference in ranks for the two variables
being measured. The rank represents the numerically ordered values (ascending or de-
scending) in some variable. The Spearman correlation coefficient is returned in the range
[−1, 1], where −1 indicates an inverse monotonic relationship (negative correlation), 1
indicates a direct monotonic relationship (positive correlation), and 0 indicates no mono-
tonic relationship (no correlation). The analysis of Heffer et al. (1997) involves selecting
pairs of injector/producer wells and computing the Spearman correlation coefficient of
the injection and production rates over a suitable time range. Once a peak correlation
has been observed, extract the time lag and the correlation coefficient. The intent was
to infer geomechanical processes and interwell connectivity. Interestingly, they did not
find a time lag in the correlation between the well-pairs. They suggest that the missing
time lag is due to the injection rate changing the rock strain throughout the field. They
conclude that the Spearman rank correlation confirms communication between produc-
er/injector pairs. Additionally, they found that geomechanical processes indeed influence
the correlations. It should be noted here that the correlation coefficient will only hold
information about the strength and direction of the relationship, and it cannot determine
dependency (Mukaka 2012).

The Spearman rank correlation was also applied by Jansen and Kelkar (1997). They
highlight some challenges correlating the production data of well-pairs, namely the non-
stationarity and non-linear nature of the data. When the data is non-stationary, the
mean, variance, or covariance (or any combination of these) of a time series may change
over time, i.e., the data distribution is not constant over time. Non-stationarity is prob-
lematic because many statistical tools assume that the time series data is stationary
(Manuca and Savit 1996). The Augmented Dickey-Fuller (ADF) test introduced by
Dickey and Fuller (1979) can identify non-stationarity in a time series. ADF assumes
that the time series can be written on the autoregressive form (1.2):
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Yt = θYt−1 + εt (1.2)

Yt is an element of a time series, θ is a coefficient, and ε is a stationary random compo-
nent. For |θ| < 1, the time series converges to stationarity, for |θ| ≥ 1 the time series do
not converge and is non-stationary. Dickey and Fuller (1979) estimates the test statistics
for the estimate of θ, which enables a one-sided hypothesis test to be stated as; |θ| = 1
as the null hypothesis, and |θ| < 1 for the alternative hypothesis. Critical values of the
test statistic depend on the true form of the autoregressive time series and sample size.
As such, one should choose to test for stationarity, level (mean) stationarity, or trend
stationarity. Commonly, visual inspection is used to determine which type of stationarity
to test for (Kočenda and Černý 2015). Cheung and Lai (1995) calculated critical values
for different autoregressive forms and sample sizes of a time series.

To deal with the non-stationary nature of production data, Jansen and Kelkar (1997)
introduce Wavelet transformation, which allows for decomposing time series data into
frequency and smoothed components. Cross-correlation coupled with the Wavelet trans-
form was found to be capable of inferring interwell connectivity. Another method of data
transformation that is shown to transform a non-stationary time series to a stationary
one effectively is differencing (Nason 2006). When differencing is applied to a time series,
the difference is taken as shown in (1.3).

∆Yt = Yt − Yt−1 (1.3)

Yt is an element of a time series, and ∆ indicates the difference operator.

Similar to previous work, Soeriawinata and Kelkar (1999) applied the Spearman rank
coefficient to obtain interwell connectivity. Additionally, they account for the superposi-
tion effect caused by the fact that a single producer can be affected by multiple injectors.
They introduce constructive and destructive terms to describe the effect of multiple injec-
tors on a single producer’s signal. They applied a method that searched for and accepted
the injectors with a cross-correlation to a single producer higher than a set arbitrary
threshold. Once a group was defined, the combined correlation had to be greater than
a set threshold to be approved else the entire group was rejected. They show that the
method identified strong connectivities between groups of wells on both synthetic and
real data.

Ramakrishnan and Raghuraman (2004) showed that it was possible to correlate a
pressure pulse from a stimulating well to a responding well over large distances. A mea-
sure of the time lag can be obtained by searching peak correlation over a time range
between the well-pairs. They show that the time lag is related to the interwell perme-
ability by estimating the diffusion constant.

1.2.2 Linear regression

Albertoni and Lake (2003) applies a Multivariate Linear Regression (MLR) model with
oil production rate and water injection rate as input to infer connectivity. An MLR model
is a method to describe the linear relationship between a response variable and predictor
variables, as shown in (1.4).
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y = β0 +

p∑
i=1

βixi + ε (1.4)

Where y is a response variable, xi ∈ x are predictor variables, β is the coefficient
weights, p is the number of predictors, and ε is a random error term (James et al. 2013).
The input variable xi can be related to injection rates or BHP, and the output variable y
can be related to the production rate or the BHP for a responding well. The coefficient
weights, βi, act as a quantification of the connectivity between a given injector and the
producer. They also apply a diffusivity filter on each injector’s injection rate, defined by
a diffusivity constant dependent on the medium and distance between injector and pro-
ducer. This diffusivity filter accounts for the time lag and attenuation expected between
the effect of the injector and the producers’ response. The model was tested on syn-
thetic and real data, using a homogeneous setting, a heterogeneous setting, and a sealing
fault on the synthetic data. To determine how well the model performed, they applied
a tracer test on the synthetic reservoir data and compared it to the model by the injec-
tor/producer pairs’ MLR weights. The model’s performance was also visually interpreted
by looking at the symmetry of the weights between the injector/producer pairs. There
are several assumptions associated with the method. These include; no new wells added
to the model during training, constant Bottom Hole Pressure (BHP) in the producers,
constant Gas/Oil Ratio (GOR), and constant effective permeability. They conclude that
the model can quantify the connectivity between the injector/producer pairs using only
injection and production rates as inputs. The results from the model were also useful in
determining sections of differing permeability and sealing faults.

Yousef, Gentil, et al. (2006) relates the interwell connectivity problem to a Capaci-
tance Resistance Model (CRM). CRM is a non-linear multivariate regression model that
takes injection rates and, if available, BHP as input and production rates as output. This
model applies capacitance and resistance (compressibility and transmissibility) to obtain
a more accurate model than Albertoni and Lake (2003). They found that this model
could better capture the attenuation and time lag between the injector/producer pairs.
Sayarpour et al. (2009) introduced three solutions for the CRM, one for the volume of the
entire field, one for each producer’s drainage volume, and one for the drainage volume of
each producer/injector pair. The CRM was further developed in (Yousef, Jensen, et al.
2008), which introduces two plots; log-log and a Lorenz-style flow capacity/storativity
plot. These techniques show that the model can identify geological features in the reser-
voir, such as fractures and high permeability zones.

Jamali and Ettehadtavakkol (2017) highlights some challenges with the CRM in
(Yousef, Gentil, et al. 2006), especially the model’s scalability and its application to
mature, large-scale oil fields. These challenges include long computational times and dif-
ficulties in obtaining a convergent solution. They mention several assumptions associated
with CRM. These include; no changes to the well settings and slightly compressible fluids.
Their proposed solution to some of these challenges is to break up the full production
period into smaller periods with their own connectivity map. They argue that major
changes to the field, such as new or shut-in wells, will have a major effect on the connec-
tivity map. To reduce the computational power required, they show that the radius of
influence from an injection well eventually converges and decreases in connectivity error
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flattens.

In the study (Dinh 2009), they present a model in which they describe the interwell
connectivity using fluctuations in the BHP instead of the production/injection rate. This
work is a continuation of the work done by Albertoni and Lake (2003), and the same
principle of an MLR model is used. This model sets the BHP from all injectors as input
data and the producers’ BHP as the output. They also found no need to use the diffu-
sivity filters introduced by Albertoni and Lake (2003), as the results they obtained were
near perfect for a homogeneous synthetic reservoir. Assumptions on the well conditions
include a constant production and injection rate. When the total production rate is lower
than the total injection rate, the results remain the same for different constant production
rates. This indicates that the connectivity weights do not depend on the production/in-
jection rates but on the reservoir conditions. However, they found that once the total
production rate was set equal to the injection rate, the model reduced significantly in
performance.

In the report (Jensen et al. 2007), they identified and improved certain aspects of the
MLR model proposed by Albertoni and Lake (2003). They found that collinearity be-
tween injectors and non-stationarity in the production data caused negative connectivity
weights to occur. The collinearity was addressed by introducing ridge regression on the
MLR coefficients. They also found that the MLR coefficients were heavily dependent on
the assumption of a constant BHP. When the BHP changed, there were drastic differ-
ences in the coefficients. They suggest adding BHP data to the analysis, or the selection
of data is such that one obtains a near-constant BHP.

In the thesis by Mata (2010), they employ a search algorithm to identify periods
when one well is experiencing increased BHP while the other wells in the region remain
unchanged. The pressure change was then treated as a pulse test, which they used to
identify responding wells. To identify the time lag between the stimulating pressure
pulse and the responding well, they calculated the time derivatives of the pressure for the
stimulating and responding well. They noted that the time derivatives of the pressure
pulse became a series of unique peaks. From (Ramakrishnan, Thambynayagam, et al.
2006), by cross-correlating the time derivatives of the pressure in the stimulating and
responding wells, they could reliably extract the time lag. These pulses were easily
identified in some well-pairs. In others, the responding signal was too weak to be identified
as a response. For a shorter time scale, the method of cross-correlating the pressure
pulse could be used. Finally, they applied a field-wide solution to CRM obtained from
(Sayarpour et al. 2009) for longer time scales. The methods were tested on both synthetic
and real data. In conclusion, they found that the field-wide CRM solution did not apply
to the real data, as they could not identify large enough periods in which the assumptions
of CRM were satisfied. However, for the shorter time scale, the use of pressure pulses, and
cross-correlation between well-pairs, they could extract time lags consistent with well-test
analysis.

1.2.3 Deep learning

In (Panda and Chopra 1998), they applied an Artificial Neural Network (ANN) using
injection rates and production rates as input and output. In its most basic form, ANN
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consists of an input layer, a hidden layer, and an output layer. For each layer, there are
several processing units called neurons. These accept inputs and generate outputs that
depend on some activation function. The hidden layer contains weights for each neuron,
which will be updated to minimize the output error. Panda and Chopra (1998) applied
the method to synthetic data, and the trained model was accepted when the accuracy
was greater than 99%. From the trained model, they were able to identify geological
features in the reservoir, such as localized permeability trends, faults, and pinch outs.

Du et al. (2020) examines the connectivity between wells in a reservoir, using simu-
lated data of one injection well and four producing wells. They set up the reservoir as
four equal quadratic blocks with different average permeabilities and a production well in
each block. Two machine learning methods were used; Back Propagation Neural Network
(BP) and Convolutional Neural Network (CNN). The structure of a BP is very similar
to an ANN. The only difference is that the BP will feed the error terms back through
the various layers of its structure and update its weights. The error terms are calculated
as the difference between a predicted and an actual value. The CNN structure consists
of an input layer, a convolutional layer, a pooling layer, a fully connected layer, and an
output layer. The convolutional layer consists of a weight matrix that is smaller than the
input data. The weight matrix is slid over the input data, and the dot product between
the inputs and the weight matrix is calculated, thus reducing the input size. The pooling
layer is simple downsampling of the convoluted input, which further reduces the prob-
lem’s dimensionality. The input, output, and fully connected layers all perform similarly
to a traditional ANN. In (Du et al. 2020), the BP and CNN were trained using oil pro-
duction, injection pressure, and water cut in the input layer. The output layer had four
nodes, which corresponded to each of the four blocks’ average permeability. To quantify
connectivity between the injector and the producers, they define a connectivity factor as
the predicted permeability for each block over the sum of predicted permeabilities. They
conclude that the CNN model had a more accurate prediction with an Average Absolute
Relative Deviation (AARD) of 15.35%.

Cheng et al. (2020) applied a Long Short-Term Memory (LSTM) model with an Ex-
tended Fourier Amplitude Sensitivity Test (EFAST) on a synthetic dataset. A unique
feature of LSTM, compared to a traditional ANN or BP, is the memory layer. This mem-
ory layer enables the algorithm to predict on input with very large time dependencies
while keeping a constant error rate, thus avoiding exponential growth or decay on the
error gradients (Hochreiter and Schmidhuber 1997). The memory layer contains memory
cells, input and output gates, and a forget gate (Sak et al. 2014). EFAST is a global
sensitivity analysis, which quantitatively expresses how a model’s output reacts to the
change in the input parameters (Saltelli et al. 1999). Cheng et al. (2020) argues that
an LSTM model is a good fit for the non-linear and complex relationship one can find
between producing and injecting wells. An LSTM model was built for each of the pro-
ducers, using all injectors as inputs. They had one hidden layer with 20 nodes and a
single output node for the predicted production. The activation functions were logistic
sigmoid and hyperbolic tangent. Additionally, they used a dropout layer in order to avoid
overfitting the data. Once the LSTM model was trained to a satisfactory accuracy, they
applied the EFAST analysis to obtain the weights that each of the injectors contributed
to the total predicted production for each producer. Using the LSTM-EFAST method,
they obtained a good fit between the synthetic production data and the predicted pro-
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duction data, with a Root Mean Square Error (RMSE) of 0.02.

1.2.4 Knowledge gaps

No studies were found to employ Tubing Head Pressure (THP) to infer interwell connec-
tivity. THP is a pressure reading from the top of the well, usually installed upstream of
the choke valve. Due to its proximity to the choke valve and, consequently, the produc-
tion separator, it is expected to contain a higher degree of variance than the BHP. BHP
data is not always readily available for all wells in older fields, and production rate data
is usually not sampled at a similarly high frequency as the BHP data. In this thesis,
we will employ BHP data where this is available and THP otherwise. Inclusion of THP
allows for including a higher number of wells, which do not have BHP data, in the search
for interwell connectivity.

No studies were found to treat the inference of interwell connectivity as a classification
problem, demonstrate the model’s ability to identify unknown connectivities and report
a metric of the predictive power of the model they employ. In this thesis, emphasis is on
classification and reporting the success rate of the classification.

A few studies found inferring interwell connectivity on a mature, large-scale oil and
gas field. However, most of these studies had strict assumptions, such as requiring a
constant BHP or a constant production/injection rate. In the thesis by Mata (2010), the
field examined is of large scale and mature. However, they perform an initial clustering/-
grouping of the wells to reduce possible well-pair combinations. In this thesis, a highly
complex oil and gas field will be analysed, no assumptions are made on the BHP/THP
data, and there is no initial filtering to reduce the number of possible well-pair combina-
tions.

1.3 Objectives

• Classify selected well pairs consisting of a causing well and a target well into two cat-
egories: connectivity and no connectivity. Classification performed by the methods
PCMCI+ and TCDF.

• Obtain a measure of the strength of connectivity for wells that are classified with
connectivity.
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Chapter 2

Theory

2.1 Interwell connectivity

Interwell connectivity is a common term used to describe a translation of information
from one well to another in a defined open/closed system. However, we have not found
a single definition to describe or quantify this term. This term can be divided into three
parts; the information being translated, the degree of connectivity, and the time lag be-
tween the stimulating signal and the response.

The information being translated have commonly been the production rates and in-
jection rates, i.e., the fluid flow (Albertoni and Lake 2003; Cheng et al. 2020; Heffer
et al. 1997; Jamali and Ettehadtavakkol 2017; Jansen and Kelkar 1997; Soeriawinata
and Kelkar 1999; Yousef, Gentil, et al. 2006). BHP has also been used by identifying a
pressure pulse from a stimulating well to a responding well (Dinh 2009; Mata 2010; Ra-
makrishnan and Raghuraman 2004). An advantage of setting fluid flow as input/output
is the direct relation to injection rates and production rates. However, there are usually
no continuous flow measurements for each well, and it is instead measured on a weekly
to monthly well test interval. On the other hand, BHP measurements can be obtained
down to time scales of minutes or seconds. This thesis will use pressure as the translated
information and apply BHP and THP as the input and output data due to its smaller
time scales.

The degree of the response is defined by the model employed to identify connectivity.
Using Spearman rank correlation analysis, the correlation coefficients have been used as
a quantitative measure of the connectivity (Jansen and Kelkar 1997; Soeriawinata and
Kelkar 1999). With MLR models, the weight coefficients were used to define the interwell
connectivity (Albertoni and Lake 2003; Dinh 2009). CRM takes advantage of the MLR
algorithm, and the connectivity was related to the weight coefficients (Yousef, Gentil, et
al. 2006). In (Du et al. 2020), using a CNN to predict the average permeability between
wells, they defined an interwell connectivity factor as a ratio of the predicted permeability
between the wells. Cheng et al. (2020) employed an LSTM-EFAST model; the strength
of the response was related to the sensitivity analysis (EFAST). The PCMCI+ algorithm
provides p-values to evaluate the uncertainty in the connection and t-statistics to measure
the connectivity strength. The TCDF algorithm does not quantify the strength of the
connection. In this thesis, we define the connectivity strength by using the t-statistics
from the PCMCI+ algorithm.
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The time lag is defined as the time it takes for the information being initiated by a
stimulating well to be received in a responding well. This definition is common for all of
the models we have studied in this thesis. However, different methods have been used to
obtain the time lag. In Spearman rank correlation analysis, this has been obtained by
fixing the stimulating well in time and searching for a peak correlation coefficient over
a time range in the responding well (Mata 2010; Soeriawinata and Kelkar 1999). Using
CRM, the time lag was obtained through an iterative process of testing various lags and
optimizing the connectivity weights (Yousef, Gentil, et al. 2006). Through the PCMCI+
algorithm, the time lag is identified by applying a test of conditional independence and
identifying the time lag with the highest dependence. A distinction is made between
lagged and instantaneous (contemporaneous) time steps. Here, an instantaneous connec-
tion means that the temporal dependency between two variables occurs on a smaller time
scale than the sampling interval of the data. Conversely, a lagged connection means that
the temporal dependency occurs on a larger time scale than the sampling interval.

2.2 Time series analysis

In time series analysis, we aim to obtain some new information from time series data.
Where time series data are some time-ordered measurements Xt ∈ X, and t is a time
index. In this thesis, the existence (or non-existence) of a relationship between two time
series, X and Y, is what we are looking to prove and quantify.

2.2.1 Hypothesis testing

Hypothesis testing is the idea of disproving a statement made regarding a set of observa-
tions or variables. These statements should be simple and specific (Banerjee et al. 2009).
One such statement is that there is connectivity between well A and well B, this statement
can be clearly defined as either true or false. By rewriting the statement as Well A is
dependent of Well B, it can be defined in mathematical terms as (2.1).

X 6⊥⊥ Y (2.1)

Where, X and Y, represent the wells A and B, respectively, and 6⊥⊥ is the dependence
operator. To prove categorically that is true, all possible observations of the variables
in (2.1) must be known and shown to be true, which is an unfeasible amount of data
to process. Instead, we look to disprove that it is true, which is a much simpler task
as it only requires a single observation where the statement is false. We separate the
statement into two; a null hypothesis H0, and an alternative hypothesis H1, as shown in
(2.2). Where the null hypothesis is assumed to be true until proven otherwise.

H0 : X 6⊥⊥ Y
H1 : X ⊥⊥ Y

(2.2)

Where ⊥⊥ is the independence operator. We can define a measure of dependency, such
as partial correlation from the PCMCI+ algorithm or attention score from the TCDF-
algorithm, which is easier to quantify and prove, as compared to the more ambiguous
term of connectivity. Partial correlation and attention score will be further explained in
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sections 2.3.1 and 2.3.2, which details the PCMCI+ and TCDF-algorithms.

Statistical tests

For any given measurement of dependency, d, we must make an assumption of at which
level d signifies dependence or independence. This assumption may simply be that d ≥ 0
signifies dependence. However, for a series of dependency measurements, dt ∈ d, on real
data, it is unlikely that all of these measurements will be ≥ 0. Instead, we aim to disprove
that µd ≥ 0, where µd is the mean value of d. The hypothesis test (2.2) may be rewritten
as (2.3).

H0 : µd ≥ 0
H1 : µd < 0

(2.3)

To disprove that µd ≥ 0, a statistical test such as Student’s t-test or Wilcoxon Signed
Rank test may be used.

Student’s t-test is a method that compares the mean of two variables and estimates the
difference between them (Livingston 2004). The t-test is a parametric test that assumes
the underlying data is normally distributed. Additionally, there is an assumption that the
variance in both variables should be approximately equal. To perform a statistical test
using the t-test method on (2.1), we use µd as a mean of one variable, 0 as a fixed value.
Using a single variable against a fixed value is also known as a one-sample hypothesis test,
as we only test one variable. Using two variables, we refer to it as two-sample hypothesis
tests. The one-sample t-test can then be calculated as shown in (2.4).

tS =
µd − 0

σ/
√
n

(2.4)

tS is the t-statistic, σ is the standard deviation of the observations, and n is the
number of observations or measurements. The calculated t-statistic can then be used to
quantify the difference between µd and 0.

Wilcoxon Signed-Rank test is a method that compares the median of two variables
(Wilcoxon 1945). This method is a non-parametric test that does not assume that the un-
derlying data is normally distributed. For tests on a two-sample hypothesis, the Wilcoxon
Signed-Rank test requires that the two samples are paired, meaning that they are de-
pendent somehow. Calculation of the Wilcoxon test statistic, W -statistic, for (2.1) is
performed by the following steps:

1. Calculate the difference: D = dt − 0 for dt ∈ d. If dt = 0, calculate the mean
instead of taking the difference for this sample.

2. Rank all samples in D on their absolute value: R = rank(|D|)

3. Calculate the sum of all positive and negative ranks:
∑

R+ and
∑

R−. The sign
of the rank is found by the corresponding sample in D.

4. The test statistic is found by taking the smallest value of the summed ranks, W =
min(

∑
R+,

∑
R−).
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This calculation is for small sample sizes (n < 20), for larger sample sizes, the test
statistic can be approximated to a normal distribution (Bellera et al. 2010). We use
this method for all one-sample hypothesis tests where the underlying data follows a non-
normal distribution.

Mann-Whitney U-test is a test that compares the difference between two variables
(Mann and Whitney 1947). This test is a non-parametric test that does not assume the
underlying data is normally distributed. Instead, it assumes that the two variables have
distributions of the same shape. Unlike the Wilcoxon Signed Rank test, this test can be
applied to two variables of unequal size. The U-statistic is calculated as shown in (2.5).

U i =
∑

Ri − ni(ni + 1)

2
, for i ∈ {1, 2} (2.5)

All samples from both groups, 1 and 2, are ranked against each other in a single set, S.
The corresponding ranks are split into their respective groups, Ri. Here, ni is the number
of samples in each group. Calculation of U i for i ∈ {1, 2} returns two values for U , and
it is the smaller of the two that is used as the test statistic. We use this method for all
two-sample hypothesis tests where the underlying data follows a non-normal distribution.

Probability value

The t-statistic and the W -statistic can be used directly to quantify the difference between
two variables. However, it is impractical only to report the test statistics, as they do not
follow a bounded range and vary widely depending on which test is used. Instead, the
probability value (or p-value) can be used. The p-value is obtained from the probability
distribution of the respective test statistics. If the obtained test statistic is unlikely to
occur under the assumption of the null hypothesis, the corresponding p-value will be
low. To determine if the null hypothesis should be rejected, a significance threshold, α,
needs to be set. Typically a low value such as α = 0.05 or α = 0.01 is used. If p-value
< α, we reject the null hypothesis, as it is unlikely for the test-statistic to occur given the
assumption that the null hypothesis is true. Instead, we accept the alternative hypothesis
as the more likely case to be true.

2.2.2 Classification metrics

When some analysis is performed on labeled data, classification metrics may be used to
evaluate the performance of the models employed. Labeled data means that the data can
be separated into categories, such as labeling a well-pair with connectivity or no connec-
tivity. When there are only two labels to classify, we call this binary classification, and a
confusion matrix with its corresponding metrics is an appropriate method for evaluation
of the models (Cheung and Lai 2009).

The confusion matrix consists of grouping wrong and correct classifications by the
model into four groups of universal labels; True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). In this thesis, we set connectivity as Positive,
and no connectivity as Negative. Classifying a well-pair with known connectivity with the
label connectivity is counted towards TP, classifying the same well-pair with the label no
connectivity is counted towards FN. Similarly, for a well-pair with no known connectivity,
correct classification of no connectivity is counted towards TN, and classifying the same
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well-pair with connectivity is counted towards FP.

Sensitivity, specificity, and precision are three metrics that can be calculated from
the confusion matrix. Sensitivity is a ratio of the correctly classified positives against all
positives in the data, as shown in (2.6). This metric tells us how accurate the model is
at correctly classifying connectivity.

sensitivity =
TP

TP + FN
(2.6)

Specificity is similar to sensitivity, except it calculates the ratio for the negatives, as
shown in (2.7). This metric tells us how accurate the model is at classifying no connec-
tivity.

specificity =
TN

TN + FN
(2.7)

Precision is the ratio of all correctly classified positives against all classified positives,
as shown in (2.8). This metric indicates how precise the model is at classifying the label
we set as positives.

precision =
TP

TP + FP
(2.8)

2.3 Causal Inference

Similar to correlation analysis, causal inference aims to measure the relationship between
two or more variables. However, causal inference determines both the strength of the
relationship as well as the direction of causation.

An important aspect of causal inference models is the identification of a confounder.
From Reichenbach’s common cause principle: If there is a correlation between two random
variables, X, and Y, and a direct causal relationship can be excluded, then there must
be a third variable, Z, which causally influences both (Hofer-Szabó et al. 1999). This
relationship is visualized by a Directed Acyclic Graph (DAG) in Figure 2.1.

2.3.1 Peter Clark Momentary Conditional Independence +

The PCMCI+ algorithm introduced by Runge (2020) is a complete algorithm for infer-
ence of causal relationships. The algorithm takes an arbitrary number of time series
variables as inputs (limited by computational power costs) in a single dataset, and by
Conditional Independence (CI) tests, returns a complete set of inferred causal relations
for the time series variables. There are two main components to the method, the PC1
algorithm (a modification of the PC algorithm by Spirtes and Glymour (1991), and the
MCI algorithm (Runge et al. 2019)).

(Runge 2020), provides a a function, run bivci(), that plots the lagged correlations
to visually determine how to set the maximum time lag, τmax, for the PCMCI+ algo-
rithm. This function applies the chosen independence test and searches over a specified
time range. Setting a large maximum time lag does not degrade the model or make it
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Figure 2.1: Directed Acyclic Graph visualizes Reichenbach’s common cause principle.
Nodes indicate variables and arrows indicate a direct causal link. Here, Z, is the con-
founding variable.

overfit. This step is done to avoid using excessive computational power. In Figure 2.2, an
example of the generated plot by the run bivci() function is shown, using three wells
and the ParCorr independence test. In this example, peak partial-correlation occurs for
all well-pairs when τ = 0.

Figure 2.2: Unmodified plot generated by the run bivci() function from the Tigramite
package by Runge (2020). The x-axis represent the time lag, the y-axis represent the
partial correlation measure.

Conditional independence

The topic of conditional independence is a fundamental one in causal discovery (Dawid
1979), and it is a core part of the PCMCI+ algorithm. Conditional independence can be
expressed as (2.9):
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X ⊥⊥ Y|Z (2.9)

Here, X, Y, and Z are random variables, ⊥⊥ is the independence operator. The rela-
tionship in (2.9) is represented visually by the DAG in Figure 2.1, and we say that X is
independent of Y given Z. By independence, we mean that no information from X can
be related to Y. There are different methods used to test for conditional independence.
We will describe the method of Partial Correlation testing, which is the method used in
this thesis for the PCMCI+ algorithm.

Partial correlation

Partial correlation testing is a method where the linear dependence between two variables
is measured, given that the influence of all other variables has been eliminated. The
following is a short description of how to estimate partial correlation using the variables
from (2.9); we look to estimate the partial correlation between the variables X and Y:

1. Perform simple linear regression of X onto Z and return the residuals, eX.

2. Perform simple linear regression of Y onto Z and return the residuals, eY.

3. Calculate Pearson’s correlation coefficient between the residuals, eX and eY.

The correlation coefficient from step (3) in the above is known as the partial correlation
and can be noted as ρXY ·Z (Pellet and Elisseeff 2007). We shorten the partial correlation
notation to ρ.

The PCMCI+ workflow

1. Input: The PCMCI+ algorithm is given an input of a single dataset (2.10), where
N is the number of variables, and T is the end of the time series. The dataset is
formatted as a two-dimensional array, with variables in the columns and time steps
in the rows. In our case, this dataset contains columns of individual wells’ pressure
data, and each row represents a time step of 5 minutes.

S = {X i
t | t ∈ T, i ∈ N} (2.10)

2. Algorithm:

(a) A fully connected DAG is initialized (excluding contemporaneous dependen-
cies), on all X i

t for t ∈ [1, τmax] (t = 0 is excluded in this step) and i ∈ N . Here,
τmax is the maximum time lag to search for a link. We set this to τmax = 100
which translates to a maximum time lag of 8 hours and 20 minutes. The node
pair dependencies (links) are ordered by time (2.11), i.e., past nodes can only
be linked forward in time (Figure 2.3a).

X i
t−1 → X i

t (2.11)
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(b) The PC1-algorithm is applied to the time series data: A test of conditional
independence is applied to every link (2.12).

ρij = parcorr(X i
t−τmax

, Xj
t ) (2.12)

For all i, j ∈ [1, N ] and t ∈ [1, τmax]. Here, i and j, represent two separate
variables from the input (or two separate wells), N is the number of variables
used as inputs for the model (in this case, the number of wells), parcorr() is the
partial correlation function, and ρij is the partial correlation between i and j.
Every link generates a test statistic and corresponding p-value, by formulating
a hypothesis test as (2.13) and applying Student’s t-test.

H0 : X i
t−τmax

⊥⊥ Xj
t

H1 : X i
t−τmax

6⊥⊥ Xj
t

(2.13)

For all links that returned a p-value less than a set significance threshold, α,
the null hypothesis is rejected, and the test statistic and p-values are stored and
sorted. These links, (X i

t−τmax
, Xj

t ), were calculated as a subset of dimension
zero, S0, i.e., no other nodes were included in the conditioning of the given
link. The test statistic and p-value for each link are then updated by iteratively
increasing the number of nodes included in the subset. The node added is the
one with the highest test statistic from the previous iteration. Thus, a subset
of dimension one, S1, includes the given link, (X i

t−τmax
, Xj

t ), and the highest
scoring node from the previous iteration, max(S0). Updated test statistics
and p-values are calculated from the new subset, S1. The iterations stop once
the dimension of the subset covers all of the remaining nodes, Sn, setting the
time-lagged links between the nodes as shown in Figure 2.3b.

(c) A new DAG is initialized and linked on all contemporaneous node pairs (2.14).

(X i
t , X

j
t ) for i 6= j (2.14)

The MCI test is applied to all of the lagged links identified in step (b) and
all contemporaneous links to identify false positives from step 1 and remov-
ing independent contemporaneous links. Unlike the algorithm in step (b),
the MCI-algorithm does not iterate over different subsets for the conditioning
phase. Instead, it takes the final subset, Sn, from step (b) and performs a
single iteration for each node pair. The MCI-algorithm returns a test statis-
tic and p-value for all of the node pairs. The contemporaneous links are left
undirected, as shown in Figure 2.3c.

(d) The undirected contemporaneous links are given direction by applying a major-
ity or conservative rule. This determination of direction is achieved by retesting
conditional independence for the contemporaneous links on both variables Xi

and Xj, Figure 2.3d.

3. Output: The results of the PCMCI+ algorithm is matrices of dimensions
[Ncause, Ntarget, τmax+1]. There are two matrices of note, the value matrix (val matrix)
and the p-value matrix (p matrix). The value matrix contains values from the con-
ditional independence tests, in this case it is the partial correlation measure. The
p-value matrix contains p-values corresponding to the partial correlation measures.
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Runge et al. (2019) mentions that these can be directly interpreted as the uncer-
tainty (p-values) in the links and the strength (partial correlations) of the links. In
this case, the value matrix correspond to the strength of connectivity between all
wells

Figure 2.3: Visualization of the PCMCI+ algorithm. Xi for i ∈ {1, 2, 3} each represent
time-series data. Circles are single datapoints from each time series Xi, ordered hori-
zontally by the time index t. Arrows are directed dependencies and lines are undirected
dependencies. a) For simplicity, a single node is visualized. Fully connected and time-
lagged forward in time. b) Directionally linked nodes on time-order. X1 is shown to be
fully independent of X2 and X3. X2 is dependent on the time lagged X3. c) Contempora-
neously dependent nodes linked without direction using the MCI test. X2 and X1 found
to be contemporaneously linked. d) Directed contemporaneous links have been identified
between X1 and X2. Adapted from (Runge et al. 2019).

Tuning parameters associated with the PCMCI+ algorithm:

• The conditional independence test used is a partial correlation test, implemented
by the function parcorr(). This method tests for linear dependence between the
variables input to the model and returns a partial correlation measure in the range
[−1, 1]. The strength of a link between two variables can be related to the returned
partial correlation measure for the respective variables. Other options can handle
non-linear data. However, those were not tested in this thesis.
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• Selection of min/max time lag, τmin/τmax: This parameter sets the limit at which
the algorithm will search for conditional independence. We will set τmin = 0, and
τmax will be selected such that it at least encompass all time lags of known con-
nectivities between the wells in this thesis. By increasing τmax, the model does not
degrade in its ability to infer dependence. Instead, it is an increased computational
power cost.

• Significance threshold, α: Sets the threshold in which we reject the null hypothesis
for independence between two variables. Lower values mean that we fail to reject
the null hypothesis for independence more often. We will select the significance
threshold of the full-scale test by evaluating the results from the small-scale test.

• Contemporaneous collider rule and Conflict resolution: These parameters control
whether the PCMCI+ algorithm is order-independent in terms of the input vari-
ables. We chose the default values for these parameters, ensuring that the PCMCI+
algorithm is order-independent.

• Reset lagged links: Options are True or False. When the parameter is set to True,
it can improve the detection of lagged causality links by considering all lagged links
during the second phase (MCI) of the PCMCI+ algorithm. When False, it will
only consider lagged links identified and restricted by the significance threshold in
the first phase (PC). We set this parameter to True, as this can only improve the
model, though at a higher computational power cost.

Method demonstration

To demonstrate that the method works, we generate a simple synthetic time-series with
three variables, (X1

t , X
2
t , X

3
t ), where the variables, X2

t and X3
t , are dependent on the

variable, X1
t , with a time-delay of 3 and 5 steps, as shown in (2.15). The data was

generated by the var process() function provided in the Tigramite package by Runge
(2020). Each variable can be considered as the pressure time-series seen in a given well,
and the dependent variables can be considered as connected wells. This synthetic time-
series also reflects Figure 2.1. In Table 2.1, the parameters used for the demonstration is
shown.

X1
t = 0.7X1

t−1 + ε
X2
t = 0.7X2

t−1 + 0.4X1
t−3 + ε

X3
t = 0.7X3

t−2 + 0.4X1
t−5 + ε

(2.15)

Table 2.1: Parameters for the PCMCI+ algorithm used for the method demonstration.

CI test
Min/max
time delay

Significance
threshold

Contemp.
collider rule

Conflict
resolution

Reset lagged
links

ParCorr 0/10 0.01 Majority True False

The results we obtained for the demonstration is shown in (2.16). The method was
fully accurate in classifying links and relatively accurate in estimating the links’ strength
(coefficients).
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(a) DAG of (2.16). (b) DAG of (2.17).

Figure 2.4: Figures a) and b) show DAG illustrations for the method demonstration of
the PCMCI+ algorithm. Loops of self-causation were removed. Illustrations generated
by Cytoscape (Shannon et al. 2003)

X̂1
t = 0.613X1

t−1

X̂2
t = 0.614X2

t−1 + 0.375X1
t−3

X̂3
t = 0.508X3

t−2 + 0.329X1
t−5

(2.16)

What if the synthetic time-series contains a hidden confounder? In (2.17), the results
of the PCMCI+ algorithm is shown with the variable X1

t hidden from the model. Here,
we see that the method inaccurately infers some dependency between the variables X2

t

and X3
t on a zero time delay. In Figure 2.4, the corresponding DAG for (2.16) and (2.17)

is shown. Self-causation loops were removed, the width of the links

X̂2
t = 0.696X2

t−1 + 0.186X3
t

X̂3
t = 0.560X3

t−2 + 0.186X2
t

(2.17)

2.3.2 Temporal Causal Discovery Framework

The TCDF algorithm is a new approach to causal inference introduced in (Nauta et al.
2019), which attempts to employ a neural network to predict causal relationships be-
tween time series while keeping it interpretable. This method is fully separate from the
PCMCI+ algorithm mentioned above, which tests for conditional independence by simple
linear regression.

Figure 2.5: TCDF algorithm overview. From (Nauta et al. 2019)

34



2.3. CAUSAL INFERENCE CHAPTER 2. THEORY

In Figure 2.5, an overview of the TCDF algorithm is presented. TCDF can be divided
into four main parts; time series prediction using a modified CNN approach, attention
interpretation, causal validation, and delay discovery.

The TCDF workflow

1. Input: The TCDF-algorithm is given an input of a single dataset (2.18) where N
is the number of variables, and T is the end of the time series. The dataset is in
the format of a .csv file. In our case, this dataset contains columns of individual
wells’ pressure data.

S = {X i
t | t ∈ T, i ∈ N} (2.18)

2. Algorithm:

(a) In the time series prediction part, they present an architecture they call
Attention-based Dilated Depthwise Separable Temporal Convolutional Net-
works (AD-DSTCNs). The input for the model is N -number of time series,
Xi, and a separate CNN is applied to each time series, Xi, to predict X̂j (2.19).

X̂j, aj = CNN(Xi) for i, j ∈ [1, N ] (2.19)

To determine which time series in S influences the predicted time series, X̂j,
they apply an attention mechanism. Each predicted time series, X̂j, will have
an accompanying attention vector, aj, containing attention scores aji as shown
in (2.19). Where aji can be seen as the weight that the CNN has given the
time series, Xi, to predict time series, X̂j. The attention scores are initialized
as 1, and they are increased or decreased depending on whether the CNN uses
Xi to predict X̂j. The attention scores are updated after each training epoch.
A high attention score, aji > 1, implies that there is a causal link from Xi to
Xj.

(b) Attention interpretation is the next part of the algorithm and deals with pro-
cessing the attention scores, aj. After training on the CNNs, the attention
scores are truncated as shown in (2.20):

Aj =

{
aji if aji > γj

0 otherwise
(2.20)

The idea is to set a lower limit on the attention scores that implies a causal link.
The threshold, γj, is obtained by a search algorithm and a set of rules applied
to the attention scores. These rules include: γj ≥ 1, number of potential
causes can not be greater than 50% of N time series, and there must be two
or more time series as potential causes. They introduce potential causes as
Pj, where the time series Xi is added to Pj as a potential cause to Xj given
a set of rules applied to their attention scores. The relational rules are given
for Aji ∈ Aj and Aij ∈ Ai:

i. Aji = 0 and Aij = 0: No correlation between Xi and Xj.

ii. Aji = 0 and Aij > 0: Xi is added to Pj.
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iii. Aji > 0 and Aij = 0: Xj is added to Pi.

iv. Aji > 0 and Aij > 0: Xj is added to Pi and Xi is added to Pj.

(c) In the causal validation step, they introduce the Permutation Importance Val-
idation Method (PIVM). This method seeks to identify which potential causes,
Pj, are true causes, Cj, of the time series Xj. The true causes, Cj, are iden-
tified by comparing two differences in prediction losses. The first difference
in prediction loss Di

r is obtained by calculating the difference in loss from the
first and last epoch (2.21).

Di
r = RMSE(eifirst)−RMSE(eilast) for Xi ∈ Pj (2.21)

eifirst and eilast is the residuals from the first and last epoch of training on the
time series i. The second difference in prediction loss Di

R, is obtained by first
randomly permuting the values (2.22) and then training on these permuted
values as in (2.19) and calculating the difference as in (2.21).

Xi
R = rand(Xi) for Xi ∈ Pj (2.22)

By randomly permuting Xi → Xi
R, temporal precedence has been removed,

and one expects to see a degradation in the predictability of causation for Xi

onto Xj. In essence, if the loss in the second prediction is significantly greater
than the first prediction, it implies that Xi was a true cause of Xj. They
add a hyperparameter: significance, s ∈ [0,∞], used as a tuning parameter
to accept a prediction loss as significant. The s-parameter controls to what
degree we allow potential causes to be converted to validated causes. A lower
value means we allow fewer conversions from potential to validated causes.
This conversion can be observed by the expression (2.23):

Xi ∈ Cj if Di
R ≤ Di

r · s (2.23)

(d) The final step of the algorithm is delay discovery, an estimate of the time lag
between the true cause, Xi onto Xj. They found that the kernel size in the
CNN can be interpreted as the time lag for causation. Here, the kernel is a
matrix of dimensions one by K, where K ∈ [1, N ], traverses over the input
and calculates the dot-product of the variables within the kernel filter. By
traversing backward through the CNN, following the largest kernel weights,
the algorithm can identify which time step in Xi had the greatest effect on a
given time step in Xj.

3. Output: The results of the TCDF-algorithm are reported as a printout of all
validated causes, Cj, and their corresponding targets, Xj, along with a time delay.
To extract the attention scores, the variable allscores from runTCDF.main() can
be extracted. This variable is in the format of a Python dictionary, containing all
attention scores for the possible combinations of variable pairs. The target variable
is set as keys() to the Python dictionary, and the causing variable is set as a value
to the corresponding keys.

Hyperparameters associated with the TCDF-algorithm:
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• Epochs: Number of epochs to run the CNNs. Epochs refer to the number of cycles
the algorithm passes the entire dataset through a neural network. More epochs will
reduce the training error; however, it will also lead to more overfitting. Default:
1000.

• Learning rate: Specifies the learning rate of the CNNs. Lower learning rates mean
that the algorithm will take longer to fit the data, and more epochs are required.
Higher learning rates will allow the algorithm to fit the data faster. When the
learning rate is too high, there is a possibility that the algorithm does not converge
on the minimum of the loss function. Default: 0.01.

• Hidden layers: Determines the complexity of the CNNs. More hidden layers mean
a higher complexity, and the algorithm will fit the input data to the output flexibly.
Default: 0.

• Optimizer: Determines which algorithm to use for gradient descent optimization.
Default is the ”Adam” optimizer, proposed by Kingma and Ba (2014) and shown
to perform well compared to other optimization methods. We will only use the
”Adam” method in this thesis.

• Significance: This is a special parameter for the TCDF-algorithm and controls
the degree to which we allow potential causes to be converted to validated causes.
Higher values mean that more potential causes are converted to validated causes.
We will set this parameter to 1.0 to have more flexibility to interpret the attention
scores of the model.

• Kernel size and dilation coefficient: The kernel size determines how much of the
input time series the sliding kernel sees at each step. The kernel size relates to
the maximum time delay the algorithm can find by τmax = K − 1 where τmax is
the maximum time delay. Dilation coefficient is a parameter used in the CNNs to
modify the step size of the sliding kernel. Nauta et al. (2019) recommend setting
this equal to the kernel size parameter. We will set both of these parameters to
100, such that the maximum time lag to search is 8 hours and 20 minutes.

Method demonstration

To demonstrate that the method works, we apply the same synthetic time-series as used
in the demonstration of the PCMCI+ method in section 2.3.1. For readability, we repeat
the synthetic time series (2.15) in (2.24). In Table 2.2, the hyperparameters used for the
demonstration is shown.

X1
t = 0.7X1

t−1 + ε
X2
t = 0.7X2

t−1 + 0.4X1
t−3 + ε

X3
t = 0.7X3

t−2 + 0.4X1
t−5 + ε

(2.24)

In (2.25), the results of running the TCDF-algorithm on (2.24) is shown. Every depen-
dency was correctly identified. This method does not return the strength of connectivity.
As such, the links are shown without a coefficient modifier.
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Table 2.2: Hyperparameters for the TCDF-algorithm used for the method demonstration.

Dilation
coefficient

Epochs
Hidden
layers

Kernel
size

Learning
rate

Optimizer Significance

10 100 0 10 0.01 Adam 1.0

(a) DAG of (2.25). (b) DAG of (2.26).

Figure 2.6: Figures a) and b) show DAG illustrations for the method demonstration of
the TCDF-algorithm. Loops of self-causation were removed. Illustrations generated by
Cytoscape.

X̂1
t = X1

t−1

X̂2
t = X2

t−1 +X1
t−3

X̂3
t = X3

t−2 +X1
t−5

(2.25)

Similarly to the PCMCI+ method demonstration, we hide the variable X1
t from the

TCDF-algorithm. The results are shown in (2.26), and we find that the TCDF-algorithm
is able to accurately ignore the dependencies induced by the hidden confounder, X1

t . In
Figure 2.6, the results from (2.25) and (2.26) is shown as DAG illustrations.

X̂2
t = X2

t−1

X̂3
t = X3

t−2

(2.26)
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Chapter 3

Data

The data we use for this thesis is obtained from the Eldfisk field in the North Sea, pro-
vided by ConocoPhillips. Eldfisk is a mature oil and gas field that employs waterflooding
as pressure support. Production started in 1979, and since then, there have been more
than 90 wells drilled (including workovers on existing wells). The field can be divided
into two parts; North and South. The Eldfisk Complex is located in the southern region,
which includes the production installations Eldfisk 2/7-Alpha and 2/7-Sierra. In the
northern region, approximately six kilometers north of the Eldfisk Complex, the produc-
tion installation Eldfisk 2/7-Bravo is located. Eldfisk complex in the southern region also
provides injection water and gas lift by the utility installation Eldfisk 2/7-Ester. Both the
southern and northern production installations are dependent on this delivery of water
injection and gas lift.

ConocoPhillips has identified connectivity between wells over a long period. Identi-
fication of connectivities helps to understand the reservoir better, optimize oil and gas
production, and avoid new and unexpected connectivities. Different methods have been
employed to obtain this information, such as observing the pressure response between
wells or comparing water cut for a producing well before and after initiation of a stim-
ulating water injector. A more costly method, though more accurate, is tracer testing
by injecting tracer chemicals in an injection well and sampling target wells to identify
which of these are affected by the tracer chemical. Knowledge of interwell connectivities
is especially important as new wells are introduced, which may open new fluid flow paths.

3.1 Data descriptions

Pressure data from a well can usually be read from two sources, the BHP and the THP.
BHP is measured by pressure gauges deep in the well and is used to read the pressure
in the reservoir. The THP gauge is located at the top of the well tubing and measures
pressure from the well upstream of the choke valve. The THP is often seen to have a large
amount of variance due to well slugging and other factors, such as changes in the pressure
downstream the well. We refer to well slugging here as an accumulation of oil/water in
the well, which builds up under pressure and is then released up the well; this causes
an oscillating pressure profile to occur with periods of low and high pressure. From our
initial tests, we found that the THP is affected by many external factors and variance,
compared to the BHP, which causes the pressure reading to contain more noise, which
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in turn translates to more false signals in terms of detecting or not detecting connectivity.

The on/off indicators are binary data that signal an open well, 1, or a closed well, 0.
Most are triggered by a change in the automatic flow valve. This valve usually controls
the opening and closing of a well. It is possible to open or close a well using other valves.
However, this is a rare occurrence as it causes the THP gauge to lose its reading on the
well pressure. Some of the on/off indicators, especially on newer wells, have sampling
intervals of seconds and minutes instead of only registering when a change is made.

The wells used for the models are a mix of wells with known connectivities, summa-
rized in Table 3.1. In total, there are eight known well-pairs with connectivity, mixed as
five injector-producer connectivities and three injector-injector connectivities. The injec-
tion wells are water injectors, and the production wells all produce a mix of oil, water,
and gas. There were two known well-pairs with producer-producer connectivity in the
Eldfisk field. However, there was not enough data for these to be included in this thesis.
The degree of connectivity is not established for any of the well-pairs. The time lag is
visually estimated by comparing pressure trends between the two wells for each well-pair.
For the well-pair A07/THP and A20/BHP, we could not identify a period where the
pressure response between the two wells was strong enough to be visually represented in
a figure. This connectivity has previously been identified by a chemical injection method
(a tracer) in the injection well A07/THP. When the injected chemical was identified in
the well A20/BHP, it was established that there is connectivity between the two wells.
We include this well pair in our analysis even though the pressure response have not been
identified visually, to see if the models we tested in this thesis can identify this connec-
tivity.

Table 3.1: Summary table of the wells used for the models. Known connectivities are
listed as a single link from the stimulating well to the target well, however, causation may
go both ways. Time lag is the visually estimated time for a stimulus from a stimulating
well to be observed as a pressure response in a target well.

Stimulating well Target well

Well
Pressure
data

Type Type
Pressure
data

Well
Time lag
(hours)

A-04 BHP Injector Producer THP A-01 5
A-07 THP Injector Producer THP A-18 3
A-07 THP Injector Producer BHP A-20 Unknown
B-08 BHP Injector Injector THP B-15 6
B-20 BHP Injector Injector THP B-15 2
S-02 BHP Injector Producer BHP A-03 4
S-17 BHP Injector Producer THP A-12 2
S-18 BHP Injector Injector BHP B-20 1
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3.2 Connectivity examples

In Figure 3.1, the pressure response between the stimulating injection well B15/THP and
the target well B20/BHP can be seen. There is a rapid increase and subsequent decrease
of pressure from B15/THP in the middle of the shut-in period. This change in pressure
is attributed to the THP-data and maintenance work. The THP can be isolated from the
BHP and increased/decreased without affecting the BHP. This behavior of the THP adds
additional noise to the data. The time delay of the pressure response is approximately 2
hours.

Figure 3.1: Zoomed in view of a pressure response between B15/THP and B20/BHP.
Pressure is normalized on a [0,1]-range within this period.

In Figure 3.2, the pressure response between the stimulating injection well S02/BHP
and the target production well A03/BHP is shown. There is a clear response seen in the
responding well A03/BHP as the pressure in the stimulating well S02/BHP rapidly re-
duces. The time delay of the pressure response is approximately 4 hours. The reciprocal
pressure response of A03/BHP as the stimulating well and S02/BHP as the responding
well was not identified visually.

Additional short descriptions and figures of the remaining well-pair connectivities can
be found in Appendix B.

41



3.2. CONNECTIVITY EXAMPLES CHAPTER 3. DATA

Figure 3.2: Zoomed in view of a pressure response between S-02 and A-03. Pressure is
normalized on a [0,1]-range within this period. Data is smoothed with a moving average
of 10 time steps.
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3.3 External interferences

For a mature field such as the Eldfisk field, several external connectivities exist between
the wells. These external interferences include the infrastructure and day-to-day opera-
tions, which interfere with the pressure readings.

Production wells are usually always open to a production separator with a set choke
setting. Depending on the optimization of the wells, the choke setting may sometimes
be changed from its standard setting. However, it is mostly kept as stable as possible.
Stable production to a production separator suggests that the THP pressure, and to a
lesser extent, the BHP, is dependent on the pressure in the production separator for each
production installation. The production installations of Eldfisk Complex share a single
production separator, and Eldfisk 2/7-Bravo has its own production separator. We con-
sider this as external connectivity limited to each respective group of Eldfisk Complex
and Eldfisk 2/7-Bravo.

The injection wells are, similarly to the production wells, kept as stable as possible.
They are reliant on a shared water source, suggesting that the pressure of the injection
wells depends on this shared water supply during these stable periods. We consider this
as external connectivity spanning the whole field.

Both the injection and production wells may experience a simultaneous shut-in, which
occurs when the emergency shut-down logic is triggered for the respective production in-
stallations. This external connectivity may affect a single production installation, or the
whole field, depending on the severity of the underlying reason to why the shut-down
logic was triggered.

The pressure profile of a single well may change significantly from time to time due
to maintenance. During these periods, a well is shut-in, usually in periods of hours and
sometimes days. We consider these periods as the most likely to identify internal con-
nectivities, as few other wells are shut in simultaneously. However, they may be shut in
consecutively from the first well as part of a larger maintenance campaign. Consecutive
shut-ins may be a source of false signals, as it will appear as if these wells are affected by
the previous wells’ pressure change.

43



Chapter 4

Methodology

4.1 Data selection

For the type of data, we chose pressure data. We use pressure data because it is sam-
pled in time frames of seconds and minutes instead of production rates, which are only
sampled approximately once every month. Specifically, BHP where this is available and
THP otherwise. While injection rates are sampled similarly to pressure data, we have
five known connectivities between injector-producer well-pairs. To ensure that analysis
can be performed on time frames of minutes and hours, we chose not to use injection
rates coupled with production rates, as this would require analysis to be performed on
monthly time frames. Previous work using injection/production rate data has solved this
by either simply analysing connectivity on monthly time frames or having production
rates on higher sampling rates. Some have used injection rates in combination with pres-
sure data. We did not attempt to link injection rate data to pressure data. The system
is considered open, and we do not attempt to create a complete model that can describe
fully the changes a receiving well is experiencing.

There are several sources of external interferences which we attempt to filter out.
This filtering is done by specifically targeting periods when the pressure profile of a well
changes significantly. Due to this targeting of smaller periods, many smaller datasets are
generated from one original dataset. To compensate, we aggregate the data for each well
by identifying periods when a single well changes open/close configuration (well A). We
obtain multiple smaller datasets for which we can apply the algorithms PCMCI+ and
TCDF. Each of these multivariate time-series represents the stimulating well A acting on
the receiving wells B. This splitting of the original dataset is a similar approach as the one
employed by Mata (2010), in which they identified periods where one well experiences a
rate change and then search a selected group of wells for a correlating peak. We differ
in that we use the open/close signals of the wells to identify periods when a stimulating
well is changing pressure profile. We do not identify groups, clusters of wells to examine.
Instead, we allow all wells to be examined if they do not open or close during an identified
period.

Generally, under the assumption that there can be connectivity between injector to
injector and injector to producer well-pairs, one should obtain at least one well-pair with
known connectivity and a well-pair with no known connectivity to verify that the models
can identify connectivity and no connectivity. Additionally, depending on the extent
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of external interferences, there should be two well pairs for each of these interferences
for comparison. There is a field-wide water supply and an emergency shutdown logic
per production installation as interfering variables for this thesis. Since we only select
wells from a single field, the field-wide water supply will be difficult to identify as an
interfering variable. The group-wide emergency shutdown logic may be easier to identify
as an interfering variable, as there are wells with and without known connectivity from
each oil platform available.

• Wells were selected to ensure that a mix of known connectivities and no known
connectivities were added to the dataset. Additionally, it was ensured that there
was a mix of wells from the oil platforms: 2/7-Alpha, 2/7-Bravo, and 2/7-Sierra.

• Two types of data from the wells were extracted; pressure and an on/off indicator.
For the pressure data, we use BHP where this is available, THP otherwise. The
on/off indicator is a binary time series indicating when a well is shut-in or open.

4.2 Data extraction

The data is measured by sensors located within each well. There are no uniform sampling
intervals for all of the sensors. The raw pressure data had sampling intervals ranging from
every few seconds to every few minutes. Most of the on/off indicators do not have any
specific sampling interval, some are triggered by the opening/closing of the well, and a
few have sampling intervals every few seconds. The time range was selected as three years
from 2018 to 2020, and a data point interval of every five minutes was used. Five-minute
intervals were selected because much of the maintenance performed on the wells are usu-
ally completed within a few hours. Thus, we found that this interval was a good balance
between collecting enough information from most maintenance periods and adding too
many data points.

Data was extracted from PI ProcessBook 2015 R2, Version 3.6.0.82, a software that
enables real-time sensor data, such as pressure sensors, to be extracted and visual-
ized. Extraction was done in two ways: The first was using Microsoft Excel, Version
16.0.13929.20206, and a PI ProcessBook add-in; this method was used on the pressure
data and enabled a more convenient way of downloading and resampling the raw data.
Resampling was done as a time-weighted average, illustrated in Figure 4.1. The other
method was to download the raw data directly to a .txt file, and using a custom function
in the programming language Python (Van Rossum and Drake 2009), converted it to a
.csv file with the correct date/time format. We used the second method on the on/off
indicators because we did not find a good method of forward-filling (the previous data
point is copied forward in time until a new data point is met, applied in step 4.3 and
illustrated in Figure 4.1) the missing data using the PI ProcessBook add-in for Excel.
After extracting the needed data, we had one .csv file containing all of the pressure data
and separate .csv files for each of the on/off indicators for each well.

• Pressure data obtained from PI ProcessBook by Excel with a PI ProcessBook add-
in. On/off indicators obtained by downloading raw data from PI ProcessBook. All
data stored as .csv files.
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• The time range of the extracted data was set to 01.01.2018 00:00 until 31.12.2020
23:59.

Figure 4.1: Illustration of the use of the forward-fill method on the on/off indicator
data and time-weighted average on the pressure data. Filled square and circle represent
existing data points for on/off indicator and pressure data, respectively. Empty squares
and circles represent new data points obtained by forward-fill and time-weighted average.

4.3 Preprocess data

The .csv files are loaded into a Python script for further work. We use the Pandas pack-
age (McKinney 2010; Reback et al. 2021) for handling the data in Python. From the
data extraction in step 4.2, a few data points end up as erroneous entries, i.e., an error
message from the Excel PI ProcessBook add-in was posted for the erroneous cells. There
are various reasons why some data points may end up erroneous, and one common rea-
son is the sensor signal stopping for a short period. These erroneous data points were
relatively few and could be identified as text instead of numbers in the given cells. We
wrote a Python function to merge all of the .csv files from step 4.2 and remove these
erroneous data points from the dataset. Rows containing erroneous data were removed
by searching for any row containing non-numeric values.

Since the on/off indicator data has varying sampling intervals, there will be gaps in
the data once merged on the same time range and interval as the pressure data. These
gaps were forward filled using the Pandas function df.ffill(). The first data point of
the on/off indicators does not usually start immediately after the selected period. As
such, we are left with a short period without on/off data at the beginning of the dataset
due to the forward-fill method. These rows of missing data were removed.

To identify all periods in the dataset when a change in a single well is occurring,
we applied a filter (4.1) based on the on/off indicators, illustrated in Figure 4.2. The
on/off indicator columns are binary where, 1 = open and 0 = closed. This filter is a
boolean mask that creates a sliding window of two data points, calculates the mean, and
returns True if this sliding window equals 0.5. The filter allows us to identify the dates
when the binary columns switch between 0 and 1, i.e., we identify when a change in well
configuration occurs.

Boolean filter: rolling(2).mean() == 0.5. If True, signifies that a well
changed from open to close, or close to open. If False, no changes to the
well occurred.

(4.1)
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Figure 4.2: Illustration of the boolean mask applied to a dataframe. Well 1 represent
the stimulating well, Well 2 the responding well. From the Well 1 row, every time the
well changes a open/close configuration the on/off indicator switches between 0 and 1. t0
and tmax is the start and end time of the chosen time window where we allow Well 1 to
not have made any changes. After tmax, all data is dropped until a new change occurs.
Collected data is represented by the dashed lines.

The wells are, in many cases, shut in simultaneously or consecutively. To ensure that
the models do not interpret these shut-ins as interwell connectivity, we had to filter these
interferences out. This filtering was done by identifying a time window before and after
a change in the stimulating well and include these periods in the datasets, illustrated
in Figure 4.2 as dashed lines from t0 to tmax. If a target well experienced a change in
configuration during these time windows, they were removed from the dataset. Early
attempts were tested using a strict rule of removing the full dataset if ”any change to any
target well” occurred, but it was too limiting, and we could not identify enough periods
for each stimulating well to obtain good results. Instead, we apply a less strict rule of
removing only the target well experiencing changes. These configuration changes were
identified similarly, as previously mentioned, by using a rolling mean on the data column.
The target wells removed in this period will still be used as stimulating wells for the same
period in a new dataset, illustrated in Figure 4.3. This solution solves two challenges of
the data: (1) the mentioned simultaneous/consecutive shut-ins, and (2) a single response
in a third well, Well B, should only be caused by either Well A1 or Well A2 (Figure 4.3).
We argue that this solution works because, over time, the real causation of the response
in Well B will accumulate multiple datasets with the causation well present. The false
causation of the response will only be present during the specific configuration of both
Well A1 and Well A2 changing configuration.

From the above, we had to decide on the length of the time window before and after
the stimulating well changes configuration. The time window size will directly affect how
many wells are included in a given dataset for a stimulating well. As the window size
increases, fewer target wells will be included as some of them will experience a change in
configuration during this time window. When the window size decreases, more wells will
be included; however, there will be a shorter silent period before and after a change has
occurred in the stimulating well, which will become a source of additional noise in the
dataset.

To determine the optimal window size, we iterated over multiple sizes and noted how
many data points a few chosen causation/target well-pairs could obtain. Figure 4.4 show
the reduction in data points as the window size increases. To keep the period before a
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Figure 4.3: Illustration of the well selection for each dataframe. Well A1 represent
the stimulating well acting the responding Well B. Well A2 represent the second well
experiencing changes during the identified period, and consequently, acts as a stimulating
well. The dotted window is the resulting dataset after removal of Well A2. The dashed
window is the resulting dataset when Well A2 is the stimulating well acting on the
responding Well B with Well A1 removed.

change occurred as silent as possible from other interfering wells, we balanced the length
of the time window with the number of samples we were able to return for all target wells
and the general performance of the model. In Figure 4.5, we can see the attention scores
of the TCDF-algorithm change from a homogeneous setup to a more heterogeneous one
as the time window increases. This change is shown for the specific case of the stimulating
well B20/BHP acting on a selection of target wells. For the time window after a change,
we set this to be the same as the length before the change; additionally, if two changes
in the stimulating well occur within a short time interval, ex. When a well is closed and
opened within a short period. We ignore the second change (the opening), as this will
already be contained within the time window of the first change (the closing), albeit with
a shorter time window.

Figure 4.4: Plot of the number of datapoints obtained for a few causation/target well-
pairs, as the time window length is increased. The x-axis show the length of the time
window in one direction, a full dataset contains a time window of similar length in both
directions.
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(a) Attention scores using a 1 hour time-window. (b) Attention scores using a 12 hour time-window.

(c) Attention scores using a 24 hour time-window. (d) Attention scores using a 30 hour time-window.

Figure 4.5: Figures a) to d) show the overall performance of the TCDF-algorithm for
different time-window lengths prior and subsequent to a change in the stimulating well.
In this case, B-20 was used as the stimulating well. The attention scores move from a
more homogeneous setting in a) to a more heterogeneous setting in b) and c), by d) the
setting returns to a homogeneous setting. White dots represent the mean, and black
line inside box is the median, or 50% quantile. Upper and lower bound of the boxes is
the 75% and 25% quantile (Q1 and Q3), respectively. The whiskers are calculated as:
Q1− IQR · 1.5 and Q3 + IQR · 1.5, where IQR is the Inter Quantile Range, or Q3−Q1.
Black dots represent outliers in the data.
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Additional noise reduction in the datasets was attempted by applying a smoothing
function (rolling mean) on the data. We found that especially the THP could have much
variance. We attempted different window sizes for the rolling mean function, from one
(no smoothing) up to 100 data points. We found a slight reduction in the variance of the
attention scores when the size of the rolling window was set to ten data points. There
was no, or minimal, reduction of variance in the attention scores when the window size
increased beyond ten data points. Additionally, the first datapoints of the dataset would
be removed until a full window was filled. Therefore, we aimed to keep the rolling window
as small as possible to avoid unnecessary reductions of the already small datasets. The
rolling window size was set to ten data points.

The last part of the preprocessing was to normalize the data. Normalization is techni-
cally unnecessary for the PCMCI+ model as it already has a built-in normalization pro-
cedure. However, the TCDF model employs CNNs, requiring normalization of the data
to perform optimally (Sola and Sevilla 1997; Jayalakshmi and Santhakumaran 2011),
especially considering that there is a wide range between the pressure readings when
using both BHP and THP. To keep all our data similar for both models, we used the
MinMaxScaler() function from the scikit-learn library (Pedregosa et al. 2011) in Python
to normalize the data to a [0, 1] range.

• Erroneous data is removed by searching for non-numeric cells in the dataframe.

• Data is resampled to five-minute intervals. Forward-fill on the on/off indicators was
used to fill the data gaps.

• A boolean mask is applied as a filter to identify any period when a well changes
open/close configuration. If a well does not change open/close configuration after
a given time window, rows are removed until a new change occurs.

• Target wells experiencing changes in the same period as the stimulating well is
removed from the dataset.

• A moving average of ten data points is used and the data is normalized to a [0, 1]
range.

• Individual .csv files were created for each well, and each period the well changed
open/close configuration.
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4.4 Analyse data

Since we do not have any quantifiable measures for the interwell connectivities in our oil
and gas field, we decided to run three different tests. These were designed to give us a
view of the models’ performance and validate the generality of the models. The three
tests: small-scale baseline, small-scale modified, and full-scale modified.

The small-scale baseline test is used to get a rough idea of how the models perform
against a single, large dataset containing all of the information from the period. The
assumption is that the results will reflect a high degree of external interferences, which
will produce false connectivities. Though, the models may be able to identify well-pairs
that do not have connectivities, thus reducing the search-space for manual identification
of connectivities.

The small-scale modified test is used to train and optimize the models against a few
known connectivities from the field. The idea is to verify that the models can identify
known connectivities by calibrating the hyperparameters and parameters of the TCDF
and PCMCI+ algorithms. The same hyperparameters and parameters obtained in this
small-scale test will be used in the full-scale test.

The full-scale modified test is used to verify whether the models can identify known
connectivities that the models have not seen before. Additionally, more wells in the data
suggest that there will be more noise, and a less clear separation between no connectivity
and connectivity is expected.

4.4.1 Small-scale baseline

This test was used to view how the models performed with minimal modifications to
the dataset. The dataset for the small-scale baseline test was set up as seen in Table
4.1. The A-wells (A-03, A-04, and A-20) are situated far away from the B-wells (B-08,
B-15, and B-20). There is no known connectivity between the A -and B-wells. There are
known connectivities between the stimulating wells B-08 and B-20 acting on the target
well B-15. The B-wells were also specifically chosen as these are three injection wells
from the same installation, meaning that they have a strong connection through exter-
nal sources, and as a consequence, it will be difficult for the models to separate these wells.

The modifications applied to this dataset were to normalize the sampling intervals for
the data points to five-minute intervals and standardize the range of the pressure data
to a [0, 1]-range.

Table 4.1: Setup of dataset for the baseline test.

Time range
Sampling
interval

Data
sets

Length
(rows)

Wells
Known
connectivities

01.01.18 00:00 -
31.12.20 23:59

5 min 1 315 528
A-03, A-04, A-20
B-08, B-15, B-20

B-08, B-15, B-20
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PCMCI+

PCMCI+ assumes stationarity in the data, and this was tested by the Augmented Dickey-
Fuller (ADF) test (Dickey and Fuller 1979). This test returned a p-value of 1.0E-7 with a
test statistic of -10.3, which suggests that the data is stationary (Cheung and Lai 1995).
However, a comparison of the histogram with and without differencing (1.3) the data
can be seen in Figure 4.6. These histograms show that the unmodified data reaches a
hard stop as it approaches 0.8, with a few outliers. Additionally, the data looks to be
spreading towards a (normalized) pressure of 0.2. We attempt to transform the data such
that it approximates more to a normal distribution. This transformation was done by
differencing the data (1.3), which calculates the difference between each time step and
uses these values as the data instead (Nason 2006). After differencing the data once, the
ADF-test returned a p-value of 1.0E-7 with a test statistic of -67.4. A lower test statistic
indicates a higher degree of stationarity. More importantly, the data has a more even
spread over the mean value. For that reason, the data was modified by differencing, even
if the ADF-test indicates the unmodified data is already stationary.

(a) Unmodified data of B20/BHP. bins=2000.
n=315 528.

(b) Modified data of B20/BHP by differencing.
bins=2000. n=315 527.

Figure 4.6: Figures (a) and (b) illustrates the difference between the unmodified and
modified data of B20/BHP. The Count-range has been cut short for a better visual
representation.

We applied the function, run bivci(), provided by the Tigramite package (Runge
2020) for Python to search for the maximum time delay, τmax. The range [0, 100] was
searched, and the correlation was found to peak very early, after one to two time steps.
Since no indications of lagged correlation were found beyond one to two time steps, a
maximum time delay of two time steps would be sufficient. However, increasing the
maximum time delay is purely a computational cost; the maximum time delay was set
to 100 time steps. This maximum time delay was selected to validate that the model
encompassed the time lag of all known connectivities. General parameters controlling the
direction of causality was set to the default values, except for Reset lagged links which
was set to True, as seen in Table 4.2. This parameter may improve the detection of
lagged causality links by reconsidering all lagged links in the MCI-phase. The only cost
of applying this parameter is that it requires additional computational power.
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Table 4.2: Tuning parameters for the PCMCI+ algorithm used for the small-scale baseline
test.

CI test
Min/max
time delay

Significance
threshold

Contemp.
collider rule

Conflict
resolution

Reset lagged
links

ParCorr 0/100 0.01 Majority True True

TCDF

The TCDF algorithm does not perform a test on unseen data when training the model.
Instead, it performs a test on the permuted time series when validating any potential
cause. To enable any verification that tuning performed on the hyperparameters was
improving or degrading the model, a function, test(), was added to the model. This
function tests the trained model on unseen data and returns the MSE. Additionally, ten-
fold cross-validation was performed (Kohavi 1995), with a train/test-split of 60% training
data and 40% test data for each fold. The hyperparameters were tuned by grid search,
and we found the optimal setting to be as listed in Table 4.3. Interestingly, the kernel
size parameter, along with its accompanying dilation coefficient parameter, was found
to provide no benefit beyond the first couple of time steps, suggesting that this model
strongly favors the first few time steps in its inference. The signifiance parameter was
adjusted up to 1.0 such that it no longer affects the outcome of the validation of the
causes.

Table 4.3: Hyperparameters for the TCDF-algorithm used for the small-scale baseline
test. These were the defaults set by Nauta et al. (2019).

Dilation
coefficient

Epochs
Hidden
layers

Kernel
size

Learning
rate

Optimizer Significance

10 800 0 10 0.1 Adam 1.0

4.4.2 Small-scale modified

For this test, we apply modifications to the dataset as described in step 4.3. These mod-
ifications include applying a boolean filter to identify periods when a stimulating well
changes open/close configuration. Any target well that experience changes (open/close)
during these identified periods are removed from that specific dataset. The length of the
time window before and after a change in open/close configuration for the target well
generally performed optimally in the 18 to 24-hour range. We selected a 24-hour time
window before and after an identified change in well configuration. The same wells as in
the small-scale baseline test in step 4.4.1 are used to identify connectivity within a group
of wells. Since we are applying a boolean filter on every single well, the resulting data
will be split into individual datasets for each stimulating well. The setup of the datasets
can be seen in Table 4.4.

PCMCI+ and TCDF are applied to each multivariate time-series, and only the cause-
link results of the stimulating well acting on target wells are extracted from each model.
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We wrote a Python script to automate this process. This method of extracting cause and
effect is somewhat different from Runge et al. (2019), Runge (2020), and Nauta et al.
(2019), which applied their respective models on the full system, i.e., extracting cause and
effect from all variables simultaneously. We tested this method in the small-scale baseline
test in step 4.4.1. However, we were aware that the overall complexity and connectivity
through external sources would be a major source of false signals and noise. Without
controlling for this interference acting on the system, we did not find any meaningful way
of extracting information and identifying true connectivity from the model.

Table 4.4: Setup of datasets for the small-scale modified test. The data is split into
multiple smaller datasets.

Time range
Sampling
interval

Data
sets

Length
(rows)

Wells
Known
connectivities

01.01.18 00:00 -
31.12.20 23:59

5 min 430 567
A-03, A-04, A-20
B-08, B-15, B-20

B-08, B-15, B-20

PCMCI+

The PCMCI+ algorithm, as mentioned in the small-scale baseline test, assumes stationary
data. In the small-scale baseline test, it was found that the unmodified data is stationary
by the ADF-test. However, for this test, the selection of periods when the wells experi-
ence large changes causes most of the generated datasets to contain non-stationary data.
A second-order difference was found to generate stationarity in the data. This transfor-
mation is shown by the example in Table 4.5, of the well B15/THP for a specific period in
the data, and a first-order difference is not enough to transform the non-stationary data
to stationary. Though higher-order differences can further improve the ADF-statistic, we
selected the lowest order necessary to obtain a p-value less than 0.01.

Parameters of the PCMCI+ algorithm were kept similar to those in the baseline test,
shown again in Table 4.6. If the p-value generated by the PCMCI+ algorithm was higher
than the chosen significance threshold, the corresponding partial correlation measure was
removed. For each generated range of partial correlations, the mean value was taken.

Table 4.5: ADF-statistic and p-values of different orders of differencing-transformations.
Obtained from the period of 2020-07-12 to 2020-07-14 of the well B15/THP.

Unmodified 1st-order 2nd-order 3rd-order

ADF-statistic 1.089 -2.628 -7.498 -9.843
p-value 0.995 0.087 1.0E-7 1.0E-7
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Table 4.6: Tuning paremeters for the PCMCI+ algorithm used for the small-scale modi-
fied test.

CI test
Min/max
time delay

Significance
threshold

Contemp.
collider rule

Conflict
resolution

Reset lagged
links

ParCorr 0/100 0.01 Majority True True
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TCDF

Tuning the TCDF-algorithm was performed slightly differently for this test than the
baseline test because, in this test, the main dataset has been split into multiple, smaller
datasets. With few data points to train on and each dataset representing a very small
portion of the full period, we took an approach of training on a random selection of the
datasets. First, the training was performed by selecting a random 50% of the datasets as
training sets and using the previously mentioned 60/40 train/test split on each dataset.
Hyperparameter tuning was performed by setting an MSE threshold of 0.1 and checking
how many of the datasets the model could obtain an MSE less than 0.1. The idea of
the MSE threshold was to ensure that the model generalized enough to train and learn
on most of the datasets while accepting that some datasets would not provide enough
information for the model to learn. We did not remove any of the datasets that had a
higher MSE than the selected threshold, the reason being that we only wanted to use
this as an indicator and avoid adding a layer of subjectivity to the data selection.

With the hyperparameters listed in Table 4.7, we were able to obtain the highest
number of accepted trained models with corresponding datasets. We note that the hy-
perparameter for the time steps (Dilation coefficient and Kernel size) had a weak to no
effect on the overall performance of the models. We found that adding hidden layers to
the CNNs quickly degraded the performance of the models, suggesting that a simpler
model is sufficient for inference of connectivity with our datasets. Learning rates were
tested in the range [0.1, 0.001]. Higher learning rates, up to 0.1, were observed to cause
oscillations in the training error. Lower learning rates, down to 0.001, were effective.
However, the model obtained similar stable training loss using a higher learning rate of
0.05. The number of training epochs was reduced from the default value of 1000 epochs
to 400 epochs. The Significance parameter was set to 1.0.

Table 4.7: Hyperparameters, including MSE threshold, for the TCDF-algorithm used
for the small-scale modified test. Test MSE is the value of the MSE threshold used to
accept/reject a trained model with its corresponding dataset.

Dilation
coefficient

Epochs
Hidden
layers

Kernel
size

Learning
rate

Optimizer Significance
Test
MSE

100 400 0 100 0.05 Adam 1.0 <0.1

4.4.3 Full-scale modified

For the full-scale test, we apply the models on all wells with known connectivities within
the same field, intending to test the generality of the models and identify their limi-
tations. The wells included in this test introduces a higher complexity in the form of;
injection/producer well-pairs, a group of S-wells that have connectivities with both the
A-wells and B-wells and more wells with THP data. It is expected that the added com-
plexity will cause the models to become less accurate with the inference of connectivity.
The methodology is otherwise the same as the one employed in the small-scale test, and
the hyperparameters of the TCDF-algorithm will not be changed.
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4.5 Classification

PCMCI+

The PCMCI+ algorithm provides a form of classification by selecting cause-links based on
a significance threshold, α, given a p-value obtained from hypothesis testing on the partial
correlations. The Student’s t-test is used for this hypothesis test. Classification by the
Student’s t-test works by itself during the baseline test, as there is only one value obtained
for the full dataset. However, every single dataset will generate a partial correlation
measure during the small-scale and full-scale tests, which enables a second hypothesis
test. The second hypothesis is formed by defining connectivity, as all partial correlation
measures greater than or equal to some threshold, and no connectivity otherwise. The
threshold is identified as a positive value, defined by a clear separation in the distribution
of all generated partial correlations. This threshold selection is made by visual inspection.
The Wilcoxon signed-rank test is used to calculate the test statistic and accompanying
p-value for the hypothesis test. This statistical test is used as there is no assumption of
normality in the data, and it can work on few data points.

TCDF

The same principle as mentioned for the PCMCI+ algorithm is applied to the results from
the TCDF-algorithm. However, a threshold of the attention score is instead used. The
threshold is, in this case, set to 1, which is the value the attention scores are initialized.

4.6 Strength of connectivity

PCMCI+

The PCMCI+ algorithm already provided an output of the estimated strength and confi-
dence of the inferred causality with the partial correlation and p-values, respectively. As
such, we applied the partial correlation measure directly as an indication of the strength
of connectivity.

TCDF

The TCDF-algorithm does not provide any direct means of quantifying the strength
of connectivity. The natural choice for quantifying this measure became the attention
scores; however, these are not bounded. Instead, we used the p-values, which are derived
from the attention scores. The p-values are bounded in the [0,1]-range, which allows
us to measure and visualize the strength on a relational scale within a bounded range.
From the tests done on the datasets, it was noted that a strong link was given a fairly
low number, in the range of 0.1 and lower. A base 10 log-transform was applied to the
p-values in the DAG illustrations. Visualizations of the strength were made by mapping
the log-transformed p-values linearly from zero to the significance threshold selected for
the data. Unmodified p-values are presented in tables.

4.7 Overview of workflow
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Figure 4.7: Workflow of the Data extraction, Preprocess data, and Analyse data steps in
the methodology.
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Chapter 5

Results

5.1 Small-scale baseline

PCMCI+

The report produced by the PCMCI+ algorithm lists almost 30 links for each of the six
wells. Each link represents the estimated partial correlation between two given wells, for
each time lag from τmin to τmax. Since the model returns a unique partial correlation
measure for each time lag, the number of possible links for each single well is given by
Lmax = N · (τmax − τmin) − 1. Thus, the maximum number of links for a single well
is, in this case, 599 links. These links represent the predicted connectivity between the
respective wells.

We have listed some of the identified links, or connectivities, in Table 5.1. In this
table, we selected only the strongest time-delay causation-link from each well pair. Con-
sequently, only time-delays of zero and one time steps appear in the causation links.
The strength of the links, measured by partial correlation, r, ranges from 0.709 for the
strongest link to −0.036 for the weakest link. It is interesting to note that all causal links
are either on time delay 0 or 1. We can also observe that the self-causation links with a
time delay of 1 are prevalent as the strongest link for all wells, except for the stimulat-
ing well B20/BHP acting on the target well B08/BHP. The p-value, which measures the
statistical significance of each link, was not reported in Table 5.1 because it is controlled
by the significance threshold parameter and is less than 0.01 for all links.
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Table 5.1: Results obtained by applying the PCMCI+ algorithm applying minimal mod-
ifications to the dataset, and extracting the strongest cause-link for each well-pair. Stim-
ulating well represent the stimulating well acting on the Target well. Time delay is the
identified time delay for each cause-link. Partial correlation, show the relative strength
of the cause-links.

Stimulating well: A03/BHP Stimulating well: A04/BHP

Target
well

Partial
correlation

Time
delay

Target
well

Partial
correlation

Time
delay

A03/BHP 0.299 1 A03/BHP -0.036 1
A04/BHP -0.048 1 A04/BHP 0.473 1
A20/BHP 0.154 0 A20/BHP -0.305 0
B08/BHP -0.186 0 B08/BHP 0.139 0
B15/THP -0.092 0 B15/THP 0.274 0
B20/BHP -0.125 0 B20/BHP 0.196 0

Stimulating well: A20/BHP Stimulating well: B08/BHP

Target
well

Partial
correlation

Time
delay

Target
well

Partial
correlation

Time
delay

A03/BHP 0.154 0 A03/BHP -0.186 0
A04/BHP -0.305 0 A04/BHP 0.139 0
A20/BHP 0.341 1 A20/BHP -0.225 0
B08/BHP -0.225 0 B08/BHP 0.455 1
B15/THP -0.191 0 B15/THP 0.34 0
B20/BHP -0.179 0 B20/BHP 0.709 0

Stimulating well: B15/THP Stimulating well: B20/BHP

Target
well

Partial
correlation

Time
delay

Target
well

Partial
correlation

Time
delay

A03/BHP -0.092 0 A03/BHP -0.125 0
A04/BHP 0.274 0 A04/BHP 0.196 0
A20/BHP -0.191 0 A20/BHP -0.179 0
B08/BHP 0.34 0 B08/BHP 0.709 0
B15/THP 0.57 1 B15/THP 0.342 0
B20/BHP 0.342 0 B20/BHP 0.417 1

60



5.1. SMALL-SCALE BASELINE CHAPTER 5. RESULTS

TCDF

From the TCDF-algorithm, a report is produced, which includes the training loss, poten-
tial causes, validated causes, and the time delay for the validated causes. Additionally,
the test loss and attention score were extracted from the TCDF-algorithm. From Table
5.2, it is shown that the algorithm identified a validated cause (connectivity) for every
target well; these are all previous time-steps of the target itself. There were three wells
with a second validated cause. Training and test loss are shown to be relatively close
to each other, suggesting that the training did not overfit too much. Additionally, the
training and test loss is comparative for each of the six wells.

Table 5.2: Results obtained from analysis using TCDF-algorithm with default hyper-
parameters and minimal modifications to the dataset. Target, indicates the responding
well. Potential causes and Validated causes, indicates stimulating wells acting on the
Target. Train loss and Test loss is calculated as the MSE. Time delay is measured in the
given sampling interval of the dataset, i.e., a time delay of 2 is equivalent to 10 minutes.
Attention score is the coefficient-type value produced by the CNNs.

Target
Train
loss

Test
loss

Potential
causes

Validated
causes

Time
delay

Attention
score

A03/BHP 8.0E-06 1.9E-05 A03/BHP A03/BHP 1 2.87
A04/BHP 1.6E-05 3.2E-05 A04/BHP A04/BHP 1 3.60
A20/BHP 8.0E-06 8.0E-06 A20/BHP A20/BHP 1 2.77

B08/BHP B08/BHP 0 1.06
B08/BHP 6.0E-06 8.0E-06 B08/BHP B08/BHP 1 4.83

B15/THP B15/THP 0 1.00
B15/THP 1.1E-05 1.5E-05 B15/THP B15/THP 1 3.45
B20/BHP 1.1E-05 1.2E-05 B20/BHP B20/BHP 1 4.82

B15/THP B15/THP 0 1.01
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5.2 Small-scale modified

The results for the small-scale modified test are obtained from a total of 430 datasets,
each containing 567 rows of pressure data. In total, there were 243.810 rows of pressure
data analysed. Each row of each dataset contains a varying number of wells (variables),
from a maximum of six wells to a minimum of two wells. The number of wells in each
dataset depends on how many target wells did not experience changes in their on/off-
indicator during the period. It is noted that the number of data points for the two models,
PCMCI+ and TCDF, are not equal. They vary from a high of 89 data points from the
well B20/BHP acting on the wells A03/BHP and A20/BHP to a low of 5 data points
from the well B15/THP acting on the well B20/BHP. The number of data points for
self-causation represents how many datasets were obtained and used for each stimulating
well to generate the attention scores.

The results from the PCMCI+ algorithm are listed in Tables A.1-A.6, and the TCDF-
algorithm in Tables A.8-A.13 found in Appendix A. We refer to numbers from these ta-
bles in this text, however, for readability of the thesis the tables were put in the appendix.

PCMCI+

The mean and median of self-causation are shown to be relatively similar to the rest of
the well-pairs. Interestingly, all self-causation have negative mean and median partial
correlations. The mean ranges from -0.159 to -0.010, and the median ranges from -0.143
to -0.012. The mean and median of the stimulating wells acting on the other target wells
range from -0.096 to 0.097 and -0.160 to 0.146, respectively. The well-pair B15/THP
acting on B20/BHP have the highest negative partial correlation, with a mean of -0.096
and median of -0.160; this is a well-pair with known connectivity. However, this well-
pair only has five data points, which is a low number representing a distribution. The
reciprocal link, B20/BHP acting on B15/THP, has 33 data points, and a weak positive
partial correlation is seen, with a mean of 0.014 and a median of 0.008. The second
well-pair with known connectivity, B08/BHP and B15/THP, has a weak positive partial
correlation for both links.

The standard deviation ranges from a low of 0.093 to a high of 0.119 (excluding self-
causation). Self-causation has a comparatively similar standard deviation from 0.045 to
0.111. These are relatively high values considering that the mean and median are close
to zero for most wells.

Visual inspection of the boxplots in Figure 5.1 show that there is some separation
to be seen between the boxplots, though it is difficult to pinpoint any specific well-pair
with good separation. There are many outliers seen in all boxplots, and in many cases,
the boxplots did not generate properly. However, the boxplots corresponding to self-
causation are shown to have few outliers and are separated from the target wells.
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(a) Stimulating well: B15/THP (b) Stimulating well: B20/BHP

Figure 5.1: Figures a) and b) show the generated partial correlations of the small-scale
test for the wells B15/THP and B20/BHP, visualized as boxplots.
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(a) Stimulating well: B15/THP (b) Stimulating well: B20/BHP

Figure 5.2: Figures a) and b) show the generated attention scores of the stimulating wells
B15/THP and B20/BHP for the small-scale test, visualized as boxplots.

TCDF

The mean and median are shown to be consistently higher for self causation, compared to
the stimulating well acting on the other target wells (Figure 5.2). The mean of self cau-
sation is in the range 2.447 to 2.873, and the median is within a range of 2.320 to 2.973.
The mean of the stimulating well acting on other targets has a wider range of -0.177 to
0.744. We note that the lowest reported mean of -0.177 belongs to the stimulating well
B08/BHP acting on B15/THP, which has known connectivity.

From visual inspection of the generated attention scores, it is observed that there is no
clear separation between the attention scores, which could easily be interpreted as con-
nectivity or no connectivity. This observation excludes self causation, which shows a clear
separation from the target wells. The stimulating well B15/THP acting on B20/BHP is
shown to be missing the upper quantile whisker; this is a consequence of the very low
sample size of 5 data points for this well pair. It is noted that there are few outliers
shown in the data. However, there a several outliers seen in the link between the stim-
ulating well B15/THP acting on the target well A04/BHP. The attention scores of the
stimulating well B20/BHP acting on the target well B08/BHP is shown to stretch sig-
nificantly more than other well-pairs. This well-pair do not have a known connectivity.
However, this well-pair share the same production installation and the same water supply.
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5.3 Full-scale modified

There were 879 datasets obtained for the full-scale test, each with 567 rows of data for a
total of 498.393 rows of pressure data. The number of datasets for each stimulating well
was in the range of 36 for S18/BHP to 111 for B20/BHP. The well pair with the fewest
number of data points were again B15/THP acting on B20/BHP.

The results from the PCMCI+ algorithm are listed in Tables A.15-A.27, and the
TCDF-algorithm in Tables A.30-A.42 found in Appendix A. We refer to numbers from
these tables in this text, however, for readability of the thesis the tables were put in the
appendix.

PCMCI+

Similar to the small-scale modified test, the generated partial correlations’ mean value is
relatively close to zero. For self-causation, the mean ranges from -0.147 to 0.001, and the
standard deviation ranges from 0.050 to 0.128. Except for one well, A04/BHP, all wells
had a negative mean partial correlation for self causation. For stimulating wells acting
on target wells, the mean ranges from -0.077 to 0.119, and the standard deviation ranges
from 0.062 to 0.167. The range of means for stimulating wells acting on target wells is
similar in magnitude to the range of means for self causation. However, it shifted slightly
upwards to be more symmetrical over zero. The standard deviation range for stimulating
wells acting on target wells has increased in magnitude compared to standard deviations
for self causation.

In Figure 5.3, boxplots have been generated for the partial correlations of the stimulat-
ing wells A04/BHP and B15/THP. When comparing the minimum and maximum of the
generated partial correlations in Figure 5.3, it is seen that there is a very tight range from
-0.200 to 0.200, with a few outliers closer to -0.400 and 0.400. For the stimulating well
A04/BHP in Figure 5.3a, there is one target well, B20/BHP, which separates itself from
the other target wells in the figure. Here, B20/BHP is shown to have a range of partial
correlations, which are shifted higher into the positive range, with only a few data points
with negative partial correlations. This well pair, A04/BHP acting on B20/BHP, which
do not have known connectivity, also happen to be the well pair with the highest mean
of partial correlations. For the stimulating well B15/THP, there is a less pronounced
separation to be seen for any target well. In Figure 5.3b, the target well B08/BHP can
be seen to have a slight shift of the minimum and maximum range higher into the pos-
itive range, as compared to the other target wells. This well pair, B15/THP acting on
B08/BHP, has known connectivity.

From Figure 5.3, it is also shown that the boxplots consist mostly of outliers, and the
body of the boxplots does not form in most cases, which is similar to the small-scale test.
However, it is found to occur more often in this full-scale test.
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(a) Stimulating well: A04/BHP (b) Stimulating well: B15/THP

Figure 5.3: Figures a) and b) show the generated partial correlations of the full-scale test,
visualized as boxplots. Zoomed in on the range -0.4 to 0.4.
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(a) Stimulating well: B15/THP (b) Stimulating well: B20/BHP

Figure 5.4: Figures a) and b) show the generated attention scores of the full-scale test,
visualized as boxplots.

TCDF

Similar to the small-scale modified test, the mean attention score is consistently higher
for self-causation. However, compared to the small-scale modified test, these mean atten-
tion scores of self-causation are approximately 0.5 points higher, with most laying in the
3.0 range. The mean attention scores are generally higher in the full-scale test compared
to the small-scale modified test. This change was most evident by the stimulating well
A03/BHP, which had most of the mean attention scores close to zero, while in the full-
scale test, most have been shifted upwards approximately 0.3 points. The stimulating
well S18/BHP has a distinctly narrow range on the attention scores, with the highest
standard deviation being 0.601.

Visual inspection of Figure 5.4, show that there is no clear separation between the
attention scores, which could be used to clearly identify connectivity and no connectivity.
In the few occurrences when a mean attention score is distinctly higher than the rest of
the target wells, the range of the attention scores are notably higher as well, ex. Well
B20/BHP acting on B08/BHP. This well-pair do not have a known connectivity; how-
ever, it was the only well-pair with an IQR that stretches beyond an attention score of
1. The stimulating well B15/THP acting on the target well B20/BHP, a well-pair with
known connectivity, is shown to have a distinct separation with the attention scores col-
lecting well below zero. However, there are very few (n = 5) data points for this well-pair.

67



Chapter 6

Discussion

6.1 Small-scale baseline

PCMCI+

The baseline test of the PCMCI+ algorithm identifies the prevalence of self-causation by
the stimulating wells. Additionally, it can be seen that there is very little variance in the
number of time-steps identified as the strongest link. For self-causation, the strongest
link is consistently after one time step (5 minutes), and any other link is on a contem-
poraneous or, in two cases, at one time step. We note that there are a few links that
can be attributed to known connectivities. These are: B08/BHP acting on B15/THP
and the reciprocal connectivity, as well as B20/BHP acting on B15/THP, listed in Table
6.1. However, their partial correlations (their strength) are not strong enough to pick out
through classification, considering that we have a range of generated partial correlations
in the range [−0.305, 0.709], as shown in Figure 6.1.

Table 6.1: Table of true connectivities identified by the PCMCI+ algorithm in the small-
scale baseline test.

Stimulating
well

Target
well

Time
delay

Partial
correlation

B15/THP B08/BHP 0 0.340
B15/THP B20/BHP 0 0.342

We attempted a subjective classification by visual inspection of a DAG illustration.
The threshold for the partial correlation was set to be symmetric on -0.3 and 0.3, meaning
correlations above or below the threshold are taken as a true link, illustrated in Figure
6.2. We note that the true positive links between B08/BHP acting on B15/THP, and
B20/BHP acting on B15/THP, were identified. However, there are very strong links
between B08/BHP acting on B20/BHP and A04/BHP acting on A20/BHP (including
their reciprocals). These strong links lead us to believe that the model picks up exter-
nal interference acting on the system, such as the same emergency shut-down logic or
increase/decrease of source pressure. We find that more work needs to be done on the
dataset to more clearly separate false and true connectivities, especially by reducing the
interference from external sources.
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Figure 6.1: Histogram of the generated partial correlations for the PCMCI+ baseline
test. n = 36, bins = 20.

The PCMCI+ algorithm does provide a method of classification; however, it is based
on the set threshold, α, on the p-value. We found that this method still generated too
many false positive links given a threshold of α < 0.01. One option is to set the threshold
lower, though this is mostly a subjective matter, and it does not resolve the main issue
of the dataset containing external interferences, which in turn causes false connectivities
to be identified.

The PCMCI+ algorithm provides a convenient solution by setting the partial cor-
relation value as the degree of connectivity. Partial correlation values closer to zero
are considered weak, and higher or lower values are considered stronger. The degree of
connectivity for the identified links is illustrated in Figure 6.2 by the width of the arrows.
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Figure 6.2: DAG of the generated partial correlations for the PCMCI+ baseline test.
Subjective selection of links to maximize true positive links. Partial correlation greater
than 0.3 or less than -0.3 were accepted as true links. The width of the arrows is a visual
representation of the strength of connectivity.
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TCDF

In the baseline test, we did not make any modifications to the dataset. The results are
shown in Table 5.2 and illustrated in Figure 6.3 is the inferred connectivities by the
TCDF-algorithm. The TCDF-algorithm identified nine validated causes, where six of
these are attributed to self-causation. There were three validated causes for the well-pair
B15/THP acting on B20/BHP, B15/THP acting on B08/BHP, and B08/BHP acting
on A20/BHP. The link between the B-wells is true connectivities, while the indicated
connectivity of B08/BHP acting on A20/BHP is false connectivity. However, we should
note that these validated connectivities are very weak, the strongest link being 1.06 and
the two others were 1.01 and 1.00. Considering that the attention scores are initialized at
1.00, we must consider that these links may have just happened by chance. Additionally,
they were generated on a zero time lag, suggesting that the identified connectivity occurs
instantaneously. If we ignore self-causation, the model did not pick up any strong links
between the wells, unlike the PCMCI+ algorithm that identified stronger links within
the B-wells.

Figure 6.3: Visualization of the interwell connectivities listed in Table 5.2. The width
of the arrows (strength of connectivity) is calculated from a normalized range of the
attention scores.

6.2 Small-scale modified

In the small-scale modified test, the data was modified to reduce the overall noise and
control the effect external factors had on the data. To infer interwell connectivity by
the TCDF or PCMCI+ algorithms, we need to understand at what level their respective
causation measures signify connectivity versus no connectivity. When dividing the original
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dataset, we obtained many smaller datasets, each representing a specific stimulating well.
The number of datasets for each stimulating well ranges from 105 to 35, meaning that
there are varying degrees of uncertainty in the well-pairs’ connectivity measures. Since the
number of datasets has increased from one large dataset to 430 smaller ones, a hypothesis
test on the causation measures was applied. There are 30 possible links between all well-
pairs (excluding self-causation), four known connectivities, and 26 links with no known
connectivities. Thus, by classifying all links with connectivity, the baseline precision is
calculated to be 13.3%.

PCMCI+

The main assumption made regarding the well pairs is that a partial correlation of zero
signifies no connectivity, and a positive partial correlation signifies connectivity, i.e., when
the pressure is reduced in a well, the connecting well also reduces some of its pressure.
There was an expectation that the mean and median values of the partial correlations
for well-pairs with known connectivities would lean towards the positive end. However,
relatively small movements of the mean and median are beyond zero and into the positive
side. In the Results section, we also mentioned that the well-pairs with known connec-
tivities show both positive and negative mean partial correlations, suggesting that there
will be some links that will not be identified properly by this assumption.

During the PCMCI+ algorithm, a hypothesis test is applied to filter the partial corre-
lation measures, i.e., a form of classification has already been performed on each dataset.
It was considered to use the same statistical test as employed by the PCMCI+ algo-
rithm, the Student’s t-test, and while it has been shown that it can be used for small
samples sizes n ≤ 5 (De Winter 2013), it is still affected by a non-normal distribution
when the sample size is small (Lumley et al. 2002). In Figure 6.4, the distribution is
shown for three different levels of sample sizes; the stimulating well B15/THP acting on
the target well B20/BHP (n = 5), the stimulating well B20/BHP acting on the target
well B15/THP (n = 33), and the stimulating well B20/BHP acting on the target well
A20/BHP (n = 75). It is not easy to prove that the generated partial correlations follow
a normal distribution in all cases. In the two largest sample sizes, Figure 6.4b and 6.4c,
three distinct groups can be seen. In Figure 6.4b, the group centered around a partial
correlation of 0.15 is seen to have some approximation to a normal distribution; however,
this may be coincidental.

In Figure 6.5, a comparison of all generated partial correlations are shown. There is a
clear formation of three separate groups, which was similarly identified in Figure 6.4. We
find that this is sufficient evidence that the generated partial correlations do not support
an assumption of a normal distribution. For that reason, we elected to apply Wilcoxon’s
signed-rank test for the hypothesis test, which does not assume a normal distribution
(Wilcoxon 1945) and works well with few samples (Bellera et al. 2010). Wilcoxon signed-
rank test is calculated by the Scipy package (Virtanen et al. 2020) in Python. We chose
the clear separation of positive partial correlations, at approximately ρ = 0.15 in Figure
6.5, as the breakpoint for the hypothesis test.

The hypothesis test is formulated as:
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(a) Stimulating well: B15/THP.
Target well: B20/BHP.
n = 5, bins = 20.

(b) Stimulating well: B20/BHP.
Target well: B15/THP.
n = 33, bins = 20.

(c) Stimulating well: B20/BHP.
Target well: A20/BHP.
n = 75, bins = 20.

Figure 6.4: Figures (a) to (c) show histograms of the generated partial correlations for
different sample sizes.

H0 : ρji ≥ 0.15
H1 : ρji < 0.15

(6.1)

Where H0 is the null hypothesis, H1 is the alternative hypothesis, and ρji is the mean
partial correlation for the stimulating well, j, acting on the target well, i. The hypothesis
test is set up with the assumption that all well-pairs have connectivity, and the alternative
is no connectivity.

In Table 6.2, classification by the generated p-values have been performed. This clas-
sification assumes that both links between a well-pair must be identified to classify them,
i.e., we do not set both links equal to each other given that one of them has been clas-
sified. With this classification, we obtain a precision of 19.1% when sensitivity is 100%
at α = 10−8. All p-values corresponding to their respective well pairs can be found in
Appendix A.1.1.
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Figure 6.5: Histogram of all generated partial correlations. Partial correlations of self-
causation have been removed.
n = 2574, bins = 100.

Classifying by an assumption that both links within a well-pair are equal, the preci-
sion improved to 28.6% with a more reasonable significance threshold of α = 10−4.

Overall, we found the performance to be poor through this classification method with
a precision of 19.1% when sensitivity is 100%, which is a minor increase from the baseline
of 13.3%. For completeness, we will apply the algorithm to the full-scale test, using the
same parameters used in this small-scale test to obtain a sensitivity of 100%. However,
we do not expect that the precision of the model will improve.

In Figure 6.6a, a DAG is presented on the assumption that all identified links are
unique, and both links within a well-pair must be classified. This classification requires
a significance threshold on the p-values of α = 10−8 to obtain a 100% sensitivity. Inter-
estingly, the B-wells only link within their group (except for one link from B08/BHP to
A03/BHP). The A-wells do not show a similar pattern and instead link to both the A
and B groups. The greatest source of false connectivities is shown to be generated by
the A-wells. In Figure 6.6b, the DAG illustrates the classification with the assumption
that a single link represents the two-way connectivity of the well-pair. This classification
requires a significance threshold on the p-values of α = 10−4 to obtain a 100% sensitiv-
ity. The well A04/BHP is shown to be the greatest source of false connectivities in this
figure, with four links shown to be classified with connectivity. Moving from α = 10−8

to α = 10−4, a clear pattern appears in that almost every link for the injection wells
(A04/BHP, B08/BHP, B15/THP, B20/BHP) is generated when α = 10−4. Further re-
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Table 6.2: Sensitivity and specificity varied by a significance threshold, α, on the p-values,
for classification of the small-scale modified dataset using the PCMCI+ algorithm. P-
values used to generate this table can be found in Table A.7.

Significance, α 100 10−2 10−4 10−5 10−7

Sensitivity 0.0000 0.2500 0.5000 0.7500 1.0000
Specificity 1.0000 0.9615 0.7692 0.5385 0.3462
Precision N/A 0.5000 0.2500 0.2000 0.1905

ductions of the significance threshold to α = 10−8, the links for the producing wells
(A03/BHP, A20/BHP) are generated, implying that the injection wells and production
wells have different levels to their influence on target wells, i.e., the injection wells have
a stronger effect on their surrounding wells compared to the production wells.

(a) α = 10−8 (b) α = 10−4

Figure 6.6: Figures (a) and (b) show DAGs of the classification on two different assump-
tions: (a) assumes that both links of a well pair must be identified, (b) assumes that a
single link represent a two-way connectivity of the well-pair. Illustrations generated in
Cytoscape.

In Figure 6.7 the same classification is shown as in Figure 6.6, however, the links have
been given weight proportional to the partial correlation value generated for each link by
the PCMCI+ algorithm. The weighting is represented by an increase (higher correlation)
or decrease (lower correlation) of the width of the arrows. The weighting is relative, with
the widest arrow given to the link with the highest partial correlation and the smallest
arrow given to the link with the lowest partial correlation.
From Figures 6.7a and 6.7b, no clear pattern can be seen that support the idea that
the generated partial correlations represent the true strength of connectivity, as seen by
the link from the stimulating well B15/THP to the target well B20/BHP. A link that is
known to be relatively strong is given the lowest weighting. Additionally, the strength of
connectivity between the stimulating well A04/BHP and the B-wells is shown to have a
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wide range of different strengths.

(a) α = 10−8 (b) α = 10−4

Figure 6.7: Figures (a) and (b) show DAGs of the classification from Figure 6.6, with
weighting applied on the links. Illustrations generated in Cytoscape.

From a further investigation of the generated partial correlations, specifically, the
full range of time lags. We found that the mean value of the partial correlations does
not change significantly, even during periods of large changes in well pairs with known
connectivities. Instead, there is a significant increase in variance, highlighted in Figure
6.8, which shows a comparison of a rolling mean and a rolling variance window over the
whole time range. For the rolling variance, a second-order difference was first applied;
this was found to improve the separability of the wells. Figure 6.8, show one of the more
clear examples of how the separability of the data improved with this transformation.
Other well-pairs had less of an improvement. Classification using these findings may be
attempted in future work.
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(a) Rolling mean. (b) Rolling variance.

Figure 6.8: Figures (a) and (b) show a rolling mean and variance window on the lagged
partial correlations for the stimulating well B15/THP. Window size = 3. Time lag =
steps of 5 min intervals. Markers shown every 6 steps (every 30 min).
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TCDF

The attention scores are, as mentioned in chapter 2.3.2, initialized as 1 and increased or
reduced if the CNN has given it attention or not. From the boxplots in Figure 5.2, it is
evident that in our datasets, self-causation is a major factor, as self-causation is consis-
tently given a mean attention score greater than 2. By actively seeking periods when the
stimulating well is either trending upwards or downwards, we acknowledge that this is
a consequence of how we have selected our datasets, and the behavior can be described
as autoregressive. Self-causation as the main driver of causality is also evident from our
results in the baseline test, as shown in Table 5.2, every potential and validated cause is
directly linked to self-causation. In the results from Tables A.8-A.13, not a single well is
given a mean attention score greater than 1 (excluding self-causation). The closest well
pair, B20/BHP acting on B08/BHP, obtains an attention score of 0.744.

The hypothesis test is formulated as:

H0 : aji ≥ 1
H1 : aji < 1

(6.2)

Where H0 is the null hypothesis, H1 is the alternative hypothesis, and aji is the atten-
tion score for the stimulating well, j, acting on the target well, i. The way we set up the
hypothesis test is to set the null hypothesis with the assumption that all well-pairs have
connectivity, and the alternative is no connectivity. There are certain limitations in these
datasets for the statistical test, mainly sample size and undetermined distribution of the
attention scores. This limitation is especially the case for the stimulating well B15/THP
acting on the well B20/BHP, with as few as five data points.

The statistical test, Student’s t-test, assumes a normal distribution in the data, an
assumption that is difficult to prove with the limited number of samples in our datasets,
as shown by the three examples in Figure 6.9. Here, a very small sample size (n = 5)
is shown for the stimulating well B15/THP acting on B20/BHP, a medium sample size
(n = 41) is shown for the stimulating well B20/BHP acting on B15/THP, and a large
sample size (n = 89) is shown for the stimulating well B20/BHP acting on A20/BHP. It
is clear from the three histograms that the attention scores do not approximate a normal
distribution given the obtained sample sizes. The Wilcoxon signed-rank test (Wilcoxon
1945) is instead used, which is a non-parametric statistical test without the assumption
of normality and works well with few data points (Bellera et al. 2010). We use the Scipy
package (Virtanen et al. 2020) in Python to perform the Wilcoxon statistical test.

For this test, the significance level is initially set to α = 0.01. Well-pairs with a
p-value lower than 0.01 are classified with no connectivity, according to the alternative
hypothesis, and well-pairs with higher p-values are classified with connectivity, according
to the null hypothesis. We illustrate this classification with a DAG in Figure 6.10. All
p-values corresponding to their respective well pairs can be found in Appendix A.1.2.

From Figure 6.10, there are two wells classified with connectivity, as shown with the
arrows, these are; B15/THP acting on B20/BHP, and B20/BHP acting on B08/BHP.
One of the connectivities (B15/THP on B20/BHP) is correctly identified; however, the
reciprocal link, B20/BHP acting on B15/THP, is not identified. The second identified
connectivity, B20/BHP on B08/BHP, is false connectivity. Additionally, the algorithm

78



6.2. SMALL-SCALE MODIFIED CHAPTER 6. DISCUSSION

(a) Stimulating well: B15/THP.
Target well: B20/BHP.
n = 5, bins = 20.

(b) Stimulating well: B20/THP.
Target well: B15/BHP.
n = 41, bins = 20.

(c) Stimulating well: B20/THP.
Target well: A20/BHP.
n = 89, bins = 20.

Figure 6.9: Figures (a) to (c) show histograms of the generated attention scores for
different sample sizes.

did not identify connectivity for the stimulating well B08/BHP acting on the target well
B15/THP.

Classification by the p-values was tested by varying the significance level, and the
results can be seen in Table 6.3. Sensitivity reflects the correct identification of con-
nectivity, and specificity reflects the correct identification of no connectivity. The total
number of links is 30 for this dataset, which excludes links of self-causation and includes
reciprocal links. There are four links of known connectivity, and consequently, 26 links
of no known connectivity. From Table 6.3, it is shown that there is a steady increase in
the sensitivity as the significance level is reduced from 10−1 to 10−3, further reductions
required a significant increase in the number of false connectivities.

Selecting the significance level when sensitivity is 100% from Table 6.3, the corre-
sponding DAG can be seen in Figure 6.11a. From the DAG, it is noted that the B-wells
are only linking with each other by two and three links, and no links from the B-wells to
the A-wells can be seen. The A-wells have four or five links each, and they are linking
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Figure 6.10: DAG of the classification by the p-values. A hypothesis test was applied
to the estimated attention score means for each stimulating/target well-pair with a sig-
nificance level of α = 0.01. Self-causation links were manually removed. Illustration
generated in Cytoscape.

Table 6.3: Sensitivity, specificity, and precision, varied by a significance threshold, α,
on the p-values, for classification of the small-scale modified dataset using the TCDF-
algorithm.

Significance, α 10−1 10−2 10−3 10−6 10−9

Sensitivity 0.0000 0.2500 0.5000 0.7500 1.0000
Specificity 1.0000 0.9615 0.9231 0.6923 0.4231
Precision N/A 0.5000 0.5000 0.2727 0.2105

within the A-wells group and to the B-wells. When α = 10−9, and the sensitivity is 100%,
the precision is calculated to be 21.1%, suggesting that for every true connectivity iden-
tified, three false connectivities are identified. This precision assumes that each well-pair
connectivity and its reciprocal connectivity need to be identified. One could also assume
that a single link between a well pair implies that the reciprocal link also exists (but is yet
identified by the model). By the latter assumption, all links can be identified at a more
reasonable significance threshold of α = 10−3, as shown in Figure 6.11b. The precision
obtained for the latter assumption is 67.7%.

Applying a base 10 log-transform on the p-values, the modified DAGs from Figure
6.11 can be seen in Figure 6.12. Since the strength of connectivity is set as a relational
representation and based on the set significance threshold, the two Figures 6.12a and
6.12b, show different widths on the arrows for the same well-pairs.

In Figure 6.12a, we find that the injection wells (B-wells and A04/BHP) are shown
to generally have a stronger relationship compared to the production wells (A03/BHP
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(a) α = 10−9. (b) α = 10−3.

Figure 6.11: Figures (a) and (b) show DAGs of the classification on two different as-
sumptions: (a) assumes that both links of a well pair must be identified, (b) assumes
that a single link represent the full connectivity of the well pair. Illustrations generated
in Cytoscape.

and A20/BHP). The stimulating well A04/BHP is also shown to have little variance in
its connectivity strength to all other wells. This low variance is likely a consequence of
the significance threshold being set to a very low value of 10−9 and the amount of known
false connectivities added to the result. The classification shown in Figure 6.12b have
a more reasonable significance threshold of 10−3; however, the strongest link is shown
to be the stimulating well B20/BHP acting on the target well B08/BHP, which is false
connectivity. These figures show that there is likely still a somewhat high degree of
external connectivity acting on the injection wells.
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(a) α = 10−9. (b) α = 10−3.

Figure 6.12: Figures (a) and (b) show DAGs of the classification from Figure 6.11 with
the width of the arrows representing the strength of connectivity. Illustrations generated
in Cytoscape.
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6.3 Full-scale modified

In this test, the aim was to identify all known well-pair connectivities from the field.
There are a total of 156 possible links between the 13 wells, excluding self-causation. In
these 156 possible links, there are eight unique well-pair connectivities (16 connectivi-
ties if the reciprocal is included). By classifying all links with connectivity, we obtain
a baseline precision of 10.3%. We examine different scenarios of the performance of
the two algorithms PCMCI+ and TCDF. However, the final performance of the models
will be a product of the parameters and hyperparameters obtained in the small-scale test.

6.3.1 PCMCI+

Moving from the small-scale modified test to the full-scale modified one, we found the
distributions very similar, even though the number of wells has increased from six to thir-
teen. In Figure 6.13, the distribution of all partial correlations is shown for the full-scale
test. Similar to the small-scale test, the distribution seems divided into three groups cen-
tered close to a partial correlation of -0.2, 0.0, and 0.2. Considering the similarity between
the distributions of the small-scale and full-scale test, we find that the same hypothesis
test and breakpoint at r = 0.15 from the small-scale test can be used for the full-scale test.

Figure 6.13: Histogram of all generated partial correlations for the full-scale test. Partial
correlations of self-causation have been removed. n = 11414, bins = 200

In Table 6.4, the sensitivity, specificity, and precision have been listed for different
significance thresholds. If a single link between a well-pair is classified with connectivity or
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no connectivity, the reciprocal link is given the same classification. We use this assumption
as it was found to provide the highest precision when all known connectivities had been
identified in the small-scale test. All p-values corresponding to their respective well pairs
can be found in Appendix A.2.1.

Table 6.4: Sensitivity and specificity varied by a significance threshold, α, on the p-values,
for classification of the full-scale modified dataset using the PCMCI+ algorithm. P-values
used to generate this table can be found in Tables A.28 and A.29.

Significance, α 100 10−1 10−3 10−4 10−10

Sensitivity 0.0000 0.1250 0.3750 0.8750 1.0000
Specificity 1.0000 0.9857 0.7714 0.4857 0.0143
Precision N/A 0.5000 0.1579 0.1628 0.1039

From Table 6.4, a maximum precision of 50.0% is obtained when α = 10−1, how-
ever, this is with only two true connectivities identified, for the well-pair B15/THP and
B20/BHP. We ignore this result as it does not provide any new information and instead
examine the second-highest maximum precision of 16.3% obtained with α = 10−4. This
significance threshold also happens to be the same that the small-scale modified test used
to obtain its maximum precision.

Further examination of the classified links, we found that producer/producer links
generated twelve false connectivities. Since we do not have any producer/producer con-
nectivities in the dataset, we remove these links to improve the precision of the model.
With the producer/producer links removed, the precision improved to 18.9%. It is noted
that the precision of 18.9% in this full-scale test is very close to the precision of 19.1%
obtained in the small-scale test, suggesting that the model’s performance is robust to an
increase in the number of wells introduced.

In Figure 6.14, the final classification can be seen, where links have been given a
weight based on the mean partial correlation for the respective well-pairs. The width
of the links is relative, from the maximum to the minimum mean partial correlation in
this test. No clear pattern emerges from Figure 6.14, which could further improve the
classification.

A few wells appear to be major sources of false signals; A04/BHP, A07/THP, and
S18/BHP. In Table 6.5, all true and false signals from Figure 6.14 have been listed. All
three wells are injection wells which may provide some explanation. However, other in-
jection wells such as B08/BHP and B15/THP have few false signals. Comparatively, the
production wells generated fewer false signals overall, in part due to the removal of all
producer/producer links.
In Table 6.5, the precision for each individual well is also shown. Two wells stand out:
the injection well B15/THP, which has relatively high precision, and the production well
A03/BHP, which has a precision of zero. For the rest of the wells, it is found that, gener-
ally, the injection wells have a lower precision (< 25.0%), and the production wells have
a higher precision (≥ 25.0%). This difference in precisions suggests a higher degree of
interference affecting the models’ ability to infer true connectivity between the injection
wells, specifically the shared supply of water injection. We conclude that the shared water
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Figure 6.14: DAG of the full-scale test. True connectivities illustrated by a solid ar-
row, false connectivities by a dashed arrow. Injection wells illustrated by a circle, and
production wells by a rounded square.

supply is still affecting the injection wells enough to generate many false connectivities.
More work needs to be done to the datasets in order to filter out this type of interference
to improve the precision of the model.

We had previously assumed that the partial correlation measure generated by the
PCMCI+ algorithm could be directly applied for the strength of connectivity. We also
assume that true connectivity will generally return higher partial correlation measures
compared to false connectivity. In Figure 6.15, all links from Figure 6.14 have been plot-
ted in a histogram to show the distribution for True connectivity and False connectivity.
Links labeled with True connectivity in Figure 6.15, does not appear to consistently re-
turn higher partial correlation measures, as we assumed. Since the links labeled with
True connectivity are spread over a relatively narrow range and contained within the
range of links labeled with False connectivity. We do not find that there is enough evi-
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Table 6.5: Distribution of true and false connectivities for the various wells. Precision is
calculated for all true and false connectivities from each well. First section of wells are
injectors, and the second section is producers.

Well As stimulating As target

False True False True Precision

A04/BHP 8 1 3 0 8.0%
A07/THP 5 1 4 1 18.0%
B08/BHP 1 0 3 1 20.0%
B15/THP 0 2 2 0 50.0%
B20/BHP 1 0 7 2 20.0%
S02/BHP 3 0 2 0 0.0%
S17/BHP 2 1 5 0 12.0%
S18/BHP 7 1 2 0 10.0%

False True False True Precision

A01/THP 1 0 1 1 33.0%
A03/BHP 3 0 1 0 0.0%
A12/THP 0 0 3 1 25.0%
A18/THP 1 0 2 1 25.0%
A20/BHP 2 1 0 0 33.0%

dence to suggest that the partial correlation measure is representative of the strength of
connectivity. To further verify this claim that the two distributions are equal, we apply
a hypothesis test on the partial correlation measures from Figure 6.15. The hypothesis
test is formulated as (6.3), and we set a significance threshold of α = 0.05.

H0 : µT = µF

H1 : µT 6= µF
(6.3)

Where µT and µF is the mean partial correlation of the True connectivity and False
connectivity distributions, in Figure 6.15. Using Mann-Whitney U-test, we obtain a p-
value of 0.55. Since 0.55 > 0.05, we do not have enough evidence to reject the null
hypothesis and conclude that the partial correlation measures in this test do not repre-
sent the strength of connectivity.

We examine any notable difference between THP and BHP as a source of data similar
to what we did above, with the strength of connectivity measures. The same hypothesis
test as in (6.3) is performed, except we compare the distribution of partial correlations
generated by any well-pair with one or two wells using THP-data against any well-pair
that do not contain THP-data. The resulting p-value was 0.66, suggesting that we do
not have enough evidence to reject the null hypothesis and conclude that there is no
difference between the distribution means of BHP and THP data.

For the group- and field-wide external connectivities, we examine Figure 6.14. Inter-
estingly, B-wells do not have links to A- or S-wells; however, there are links from A- and
S-wells to B-wells, suggesting that the field-wide external connectivity (from the shared
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Figure 6.15: Histogram of the mean partial correlation distribution for the links labeled
as True connectivity and False connectivity. bins=20.

water supply through the injection wells) have not been effectively removed. This claim
is further supported by Table 6.5, which show that specifically the A- and S-injection
wells; A04/BHP, A07/THP, S18/BHP, and to a lesser extent, S02/BHP and S17/BHP,
produce the highest number of false signals as stimulating wells. For the group-wide ex-
ternal connectivity, we expect a high number of links identified between well-pairs from
the same group, i.e., the A-, B-, or S-wells should link within their respective groups.
We did not find that this was the case, at least not to the same extent as the field-wide
external connectivity.
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6.3.2 TCDF

In Figure 5.4, we note that there is a less clear separation between the targets’ attention
scores compared to the small-scale modified test. There is a general widening of the
attention scores; an example is given as a comparison of the standard deviation for the
stimulating wells A04/BHP and B20/BHP in Figure 6.16. Additionally, several of the
attention score ranges are stretching upwards to and above 1. This stretching will cause
an increase in false connectivities. It is uncertain why an increase in the number of wells
would cause the attention scores to widen, as the TCDF-algorithm trains a separate CNN
for each input time series. There are five producers and eight injectors in the full-scale
test and two producers and four injectors for the small-scale test, meaning that the pro-
ducer/injector distribution is relatively similar for the two tests. A difference between
these two tests is the inclusion of four additional wells using THP as the data source.
We have previously mentioned that this data contains more noise and is more prone to
external interferences. This inclusion of THP data may be why more noise is experienced
in this test, and a widening of the attention score ranges is seen.

(a) Stimulating well A04/BHP. (b) Stimulating well B20/BHP.

Figure 6.16: Figures (a) and (b) show a comparison of the standard deviation for the
ranges of the small-scale and full-scale tests.

A comparison can be drawn of the stimulating well B20/BHP from the small-scale
and full-scale test, shown in Figure 6.17. The target well B15/THP is shown to have
an increased range in the full-scale test compared to the small-scale test; additionally,
it has been shifted further down towards zero. Essentially, the conditions for inference
of connectivity have worsened for the B20/BHP and B15/THP well-pair. The target
well A04/BHP can also be seen to have been both widened and shifted downwards,
an improvement towards inference of no connectivity. The target wells A03/BHP and
A20/BHP have undergone less change, with the whiskers slightly widened. Finally, the
target well B08/BHP has been slightly shifted upwards, and the range of the upper
whisker has been widened, while the lower whisker has been shortened, which worsens
the inference of connectivity.

We make another comparison, this time with the stimulating well A04/BHP from the
small-scale and full-scale test, as shown in Figure 6.18. A04/BHP had a distinctly narrow
range for all of the target wells in the small-scale test. In the full-scale test, these ranges
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(a) Stimulating well B20/BHP from the small-scale
modified test.

(b) Stimulating well B20/BHP from the full-scale
modified test.

Figure 6.17: Figures (a) and (b) show boxplots of the stimulating well B20/BHP.

have been widened considerably. The target wells A03/BHP, and A20/BHP can be seen
to stretch upwards and closer to an attention score of 1, worsening the conditions for in-
ference of no connectivity for these well pairs. The target well B20/BHP has undergone
the biggest change, while the mean value of the attention scores is practically unchanged
(0.335 and 0.337), the standard deviation increased from 0.379 to 0.617, which again will
worsen the conditions for inference of no connectivity between the well pair.

(a) Stimulating well A04/BHP from the small-scale
modified test.

(b) Stimulating well A04/BHP from the full-scale
modified test.

Figure 6.18: Figures (a) and (b) show boxplots of the stimulating well A04/BHP.

When moving from a dataset of few, less complex wells to more wells with higher
complexity, there seem to be both degradations and improvements towards the classifi-
cation of connectivity/no connectivity. We found more cases in which the conditions for
correct inference of connectivity/no connectivity were worsened, and few cases improved.

The same classification approach as in the small-scale test will be applied, using a hy-
pothesis test on the attention scores. In Table 6.6, the sensitivity, specificity and precision
is listed for the full-scale test. These results are without the assumption that an iden-
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tified connectivity signifies that the reciprocal link exists, mentioned in the small-scale
test. The maximum precision was 15.8%, with a sensitivity of 56.3%. However, using the
significance threshold from the small-scale test, α = 10−3, the precision reduces to 14.3%
with a sensitivity of 18.8%. These results can easily be improved with the assumption
mentioned above. All p-values corresponding to their respective well pairs can be found
in Appendix A.2.2.

Table 6.6: Sensitivity, specificity and precision varied by a significance threshold, α, on the
p-values, for classification of the full-scale modified dataset using the TCDF-algorithm.

Significance, α 100 10−3 10−5 10−8 10−11

Sensitivity 0.0000 0.1875 0.5625 0.7500 1.0000
Specificity 1.0000 0.8714 0.6571 0.3000 0.0786
Precision N/A 0.1429 0.1579 0.1091 0.1103

In Table 6.7. the sensitivity, specificity, and precision are listed with the assumption
of a single link representing the two-way connectivity between the well pairs. While the
maximum precision only had a marginal improvement, the model was able to identify all
connectivities when the significance threshold was lowered to 10−5. When the significance
threshold was set equal to the small-scale test, α = 10−3, we obtain a precision of 17.7%
with a sensitivity of 37.5%.

Table 6.7: Sensitivity, specificity and precision varied by a significance threshold, α, on the
p-values, for classification of the full-scale modified dataset using the TCDF-algorithm.
Assumption of single link representing two-way connectivity.

Significance, α 100 10−2 10−3 10−4 10−5

Sensitivity 0.0000 0.1250 0.3750 0.7500 1.0000
Specificity 1.0000 0.9143 0.8000 0.6000 0.4714
Precision N/A 0.1429 0.1765 0.1765 0.1778

After examining the connectivities identified by the model, it was noted that a
large number of false connectivities were occurring between producer/producer well-pairs.
There are known connectivities between producers in the Eldfisk field. However, there
are no known connectivities between the producers in this dataset. As such, we do not at-
tempt to identify this type of relationship, and all producer/producer links were manually
removed, reducing the total number of possible links from 156 to 136, and the baseline
precision increased to 11.8%. With the producer/producer links removed, the sensitivity
increased to 37.5%, specificity increased to 86.7%, and precision increased to 27.3%. The
final result is shown in Figure 6.19; unfortunately, there was only one additional well-pair,
A04/BHP and A01/THP, identified at this significance threshold.

While we would have liked to see a larger portion of the known connectivities to be
identified by the model, achieved by lowering the significance threshold below α = 10−3,
we find it difficult to justify such as an action. Simply by the fact that the full-scale test
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was implemented to verify that all parameters calibrated by the small-scale test could be
used to identify new connectivities. There may be some justification for lowering the sig-
nificance threshold, given that the precision in Table 6.7 holds a surprisingly stable level
even when we change the significance threshold from α = 10−3 to α = 10−5. However, if
the TCDF-algorithm performs similarly for several different levels of α, this would have
to be further tested in future work. We conclude that the TCDF-algorithm is effective
at identifying interwell connectivity with a precision of 27.3%.

Figure 6.19: DAG of the full-scale test by the TCDF-algorithm. True connectivities illus-
trated by a solid arrow, false connectivities by a dashed arrow. Injection wells illustrated
by a circle, and production wells by a rounded square.

In Table 6.8, we examine the distribution of true and false connectivities. The produc-
ing wells seem to be a large source of error, especially considering that twelve links were
already removed, which were producer-producer links. More work needs to be done before
the producing wells can be applied effectively for causal inference of interwell connectivity.
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Table 6.8: Distribution of true and false connectivities for the various wells. First section
of wells are injectors, and the second section is producers.

Well As stimulating As target

False True False True Precision

A04/BHP 3 1 0 0 25.0%
A07/THP 1 0 1 0 0.0%
B08/BHP 1 0 1 1 33.3%
B15/THP 2 0 0 0 100.0%
B20/BHP 1 0 1 1 33.3%
S02/BHP 2 0 0 0 0.0%
S17/BHP 0 0 1 0 0.0%
S18/BHP 0 0 0 0 0.0%

False True False True

A01/THP 0 0 1 1 50.0%
A03/BHP 0 0 1 0 0.0%
A12/THP 0 0 0 0 0.0%
A18/THP 0 0 2 0 0.0%
A20/BHP 0 0 1 0 0.0%

To evaluate if the inferred strength of connectivity was indicative of the actual strength
of connectivity, we again examined the distributions of the true and false connectivities,
illustrated in Figure 6.20. We note that the three links of True connectivity are shown to
be very close to the center of the distribution of False connectivity. The TCDF-algorithm
generated very few links at a significance threshold of α = 10−3, and a visual inspection
makes it very clear that there is little difference between the two distributions.

Figure 6.20: Histogram of the mean partial correlation distribution for the links labeled
as True connectivity and False connectivity. bins=20.

To verify that the two distributions are indeed similar, we formulate a hypothesis test
as seen in (6.4).
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H0 : µT = µF

H1 : µT 6= µF
(6.4)

Where µT and µF is the mean of the True connectivity and False connectivity distri-
butions, in Figure 6.20. Using Mann-Whitney U-test, we obtain a p-value of 0.71. Since
0.71 > 0.05, we do not have enough evidence to reject the null-hypothesis, and conclude
that the base 10 log-transformed p-values in this test do not represent strength of con-
nectivity.
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Chapter 7

Conclusion

• Both models, PCMCI+ and TCDF, required significant changes to the original
dataset to be applied effectively. Without modifications, identified connectivities
were predominantly caused by external connectivities.

• The PCMCI+ algorithm identified and classified seven out of eight well-pairs with
known connectivities, giving a sensitivity of 87.5%. The precision obtained was
18.9%, meaning that approximately one of five identified links are true connectivi-
ties. It was further found that the mean partial correlations obtained did not reflect
the strength of connectivity between the identified links.

• The TCDF-algorithm, was able to identify and classify three out of eight well-pairs
with known connectivities, giving a sensitivity of 37.5%. The precision obtained
was 27.3%, meaning that approximately one of four identified links are true con-
nectivities. It was further found that the base 10 log-transformed p-values obtained
did not reflect the strength of connectivity between the identified links.

• The complexity of the original dataset was reduced effectively by splitting it into
smaller datasets, which specifically targeted periods of change in the stimulating
wells. The external connectivity of a common pressure source for the injection
wells was not effectively reduced. The external connectivity of a shared production
installation for the wells was effectively reduced.

• Using THP as a data source where BHP was unavailable was found to be an effec-
tive substitute. No notable difference was found for the results of the THP data
compared to the BHP data.

7.1 Future work

• It was found that the size of the time window controlling the number of data points
for each well-pair was a limiting factor. Larger window sizes provide more data
points per dataset; however, it reduces the number of datasets. Applying a more
dynamic selection of window sizes, fit for each well-pair, may improve the number
of total data points.

• The PCMCI+ algorithm showed signs of improving by calculating the variance
as a rolling window on the second-order difference of the full time-lagged partial
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correlations. By applying an appropriate classification technique on the variance
data, the results from the PCMCI+ algorithm may improve.

• Inclusion of other variables may improve the performance of the models. We high-
light; the pressure data of the shared water supply for the water injectors and
pressure data downstream of the THP. Other variables include; bottom hole tem-
perature data, injection rates, and production rates if sampled on higher rates such
as seconds or minutes.
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Appendix A

Tables of descriptive statistics

A.1 Small-scale modified

A.1.1 PCMCI+

Descriptive statistics

Table A.1: Descriptive statistics of the stimulating well A03/BHP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 62 28 21 38 43 22
mean -0.035 0.011 0.025 0.014 0.000 -0.061
std 0.045 0.120 0.075 0.129 0.119 0.121
min -0.154 -0.209 -0.139 -0.221 -0.188 -0.287
25% -0.055 -0.064 -0.006 -0.067 -0.117 -0.165
50% -0.027 0.008 0.000 0.024 -0.004 -0.062
75% -0.003 0.140 0.053 0.143 0.124 0.038
max 0.053 0.184 0.163 0.189 0.192 0.144

Table A.2: Descriptive statistics of the stimulating well A04/BHP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 15 34 15 15 18 13
mean 0.048 -0.010 0.009 -0.056 0.000 0.097
std 0.074 0.062 0.051 0.094 0.117 0.170
min -0.143 -0.180 -0.143 -0.170 -0.153 -0.195
25% 0.017 -0.046 -0.003 -0.145 -0.131 0.012
50% 0.046 -0.012 0.024 -0.060 0.018 0.146
75% 0.075 0.035 0.040 -0.008 0.069 0.164
max 0.165 0.106 0.061 0.159 0.174 0.390
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Table A.3: Descriptive statistics of the stimulating well A20/BHP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 32 32 62 32 37 29
mean 0.004 0.001 -0.054 0.009 -0.009 0.002
std 0.130 0.107 0.054 0.124 0.111 0.130
min -0.201 -0.200 -0.233 -0.203 -0.189 -0.164
25% -0.035 -0.065 -0.074 -0.081 -0.075 -0.144
50% 0.011 0.005 -0.048 -0.002 -0.028 0.023
75% 0.039 0.067 -0.022 0.123 0.060 0.146
max 0.452 0.169 0.087 0.237 0.214 0.165

Table A.4: Descriptive statistics of the stimulating well B08/BHP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 55 66 56 91 37 10
mean -0.007 -0.006 -0.023 -0.112 0.007 -0.022
std 0.128 0.094 0.105 0.088 0.109 0.112
min -0.199 -0.217 -0.176 -0.476 -0.209 -0.172
25% -0.143 -0.058 -0.140 -0.160 -0.053 -0.126
50% -0.003 -0.004 -0.015 -0.094 0.020 -0.005
75% 0.142 0.046 0.023 -0.051 0.087 0.025
max 0.182 0.251 0.166 0.027 0.169 0.164

Table A.5: Descriptive statistics of the stimulating well B15/THP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 52 58 48 19 75 5
mean -0.034 0.015 -0.028 0.028 -0.159 -0.096
std 0.114 0.101 0.109 0.116 0.098 0.122
min -0.205 -0.211 -0.201 -0.190 -0.483 -0.211
25% -0.143 -0.046 -0.139 -0.044 -0.224 -0.166
50% -0.041 0.007 -0.008 0.007 -0.143 -0.160
75% 0.055 0.066 0.033 0.061 -0.095 -0.029
max 0.175 0.263 0.173 0.323 0.114 0.084
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Table A.6: Descriptive statistics of the stimulating well B20/BHP acting on the target
wells. count is the number of datapoints (partial correlations) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 75 74 59 27 33 105
mean 0.002 -0.004 -0.007 0.043 0.014 -0.108
std 0.116 0.093 0.113 0.114 0.119 0.111
min -0.187 -0.192 -0.176 -0.225 -0.199 -0.493
25% -0.085 -0.071 -0.118 -0.026 -0.057 -0.155
50% -0.001 -0.003 -0.002 0.059 0.008 -0.094
75% 0.142 0.030 0.058 0.086 0.139 -0.040
max 0.190 0.220 0.227 0.255 0.213 0.140
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P-values

Table A.7: Generated p-values for every well-pair combination of the small-scale modified
test using the PCMCI+ algorithm. Rows represent the stimulating wells and columns
represent the target wells.

A03/
BHP

A04/
BHP

A20/
BHP

B08/
BHP

B15/
THP

B20/
BHP

A03/BHP 7.58E-12 1.86E-05 1.81E-05 5.84E-06 1.60E-07 4.77E-07
A04/BHP 3.05E-04 3.65E-07 6.10E-05 1.22E-04 1.45E-04 4.55E-01
A20/BHP 1.56E-05 4.62E-06 7.58E-12 1.44E-05 7.20E-07 6.62E-05
B08/BHP 2.91E-08 7.66E-12 4.60E-10 1.19E-16 3.28E-07 3.91E-03
B15/THP 1.39E-09 5.19E-10 6.43E-09 6.45E-04 5.28E-14 6.25E-02
B20/BHP 1.86E-11 3.89E-13 4.75E-10 4.13E-04 1.47E-05 5.84E-19
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A.1.2 TCDF

Descriptive statistics

Table A.8: Descriptive statistics of the stimulating well A03/BHP acting on the target
wells. count is the number of datapoints (attention scores) for the respective wellpairs.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 62 47 32 46 51 42
mean 2.861 -0.116 0.348 -0.082 -0.07 -0.155
std 0.639 0.517 0.382 0.532 0.41 0.462
min 1.836 -1.564 -0.429 -1.853 -1.198 -1.379
25% 2.415 -0.434 0.055 -0.277 -0.268 -0.447
50% 2.678 -0.012 0.412 -0.004 -0.016 -0.149
75% 3.262 0.198 0.565 0.302 0.209 0.169
max 4.675 0.75 1.007 0.694 0.68 0.618

Table A.9: Descriptive statistics of the stimulating well A04/BHP acting on the target
wells.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 24 35 26 17 25 19
mean 0.535 2.471 0.572 0.465 0.289 0.337
std 0.267 0.675 0.319 0.282 0.352 0.379
min 0.22 1.213 0.019 -0.068 -1.101 -0.935
25% 0.316 1.991 0.358 0.308 0.315 0.284
50% 0.482 2.343 0.526 0.39 0.338 0.377
75% 0.683 2.773 0.75 0.595 0.435 0.504
max 1.19 4.317 1.374 1.015 0.638 0.796

104



A.1. SMALL-SCALE MODIFIEDAPPENDIX A. TABLES OF DESCRIPTIVE STATISTICS

Table A.10: Descriptive statistics of the stimulating well A20/BHP acting on the target
wells.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 36 45 61 38 50 40
mean 0.363 0.265 2.467 0.443 0.229 0.329
std 0.541 0.372 0.484 0.32 0.284 0.311
min -1.168 -0.707 1.524 -0.289 -0.632 -0.19
25% -0.018 0.094 2.057 0.256 0.071 0.157
50% 0.462 0.316 2.472 0.36 0.289 0.277
75% 0.661 0.511 2.663 0.686 0.411 0.436
max 1.56 1.001 3.605 1.349 0.687 1.396

Table A.11: Descriptive statistics of the stimulating well B08/BHP acting on the target
wells.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 79 71 78 91 44 19
mean 0.304 0.037 0.379 2.873 -0.177 0.211
std 0.606 0.482 0.532 0.722 0.395 0.768
min -2.032 -1.1 -0.762 1.045 -1.39 -1.133
25% 0.05 -0.226 -0.034 2.164 -0.367 -0.061
50% 0.319 0.008 0.435 2.973 -0.223 0.142
75% 0.638 0.368 0.763 3.508 0.075 0.225
max 1.705 1.687 1.739 4.422 0.914 2.835

Table A.12: Descriptive statistics of the stimulating well B15/THP acting on the target
wells.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 64 61 63 22 75 5
mean 0.277 0.236 0.25 0.508 2.493 0.442
std 0.558 0.484 0.525 0.604 0.552 0.223
min -1.588 -1.164 -1.218 -0.637 1.545 0.087
25% -0.081 0.123 -0.136 0.112 2 0.353
50% 0.369 0.376 0.34 0.534 2.462 0.587
75% 0.608 0.544 0.631 0.759 2.976 0.591
max 1.76 1.044 1.308 1.686 4.052 0.591
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Table A.13: Descriptive statistics of the stimulating well B20/BHP acting on the target
wells.

A03/BHP A04/BHP A20/BHP B08/BHP B15/THP B20/BHP

count 89 81 89 29 41 105
mean 0.342 0.318 0.426 0.744 0.45 2.447
std 0.543 0.431 0.566 0.974 0.689 0.581
min -1.937 -0.811 -1.001 -1.229 -0.497 0.972
25% 0.12 0.13 0.022 0.066 0.046 1.993
50% 0.505 0.426 0.605 0.353 0.457 2.32
75% 0.639 0.562 0.732 1.496 0.566 2.953
max 1.727 1.491 1.785 3.35 3.535 3.771
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P-values

Table A.14: Generated p-values for every well-pair combination of the small-scale modi-
fied test using the TCDF-algorithm. Rows represent the stimulating wells and columns
represent the target wells.

A03/
BHP

A04/
BHP

A20/
BHP

B08/
BHP

B15/
THP

B20/
BHP

A03/BHP 1.00E+00 1.20E-09 4.81E-07 1.76E-09 2.57E-10 8.24E-09
A04/BHP 1.72E-05 1.00E+00 2.29E-05 2.10E-04 6.15E-06 6.59E-05
A20/BHP 1.13E-06 2.77E-09 1.00E+00 1.00E-07 3.78E-10 3.03E-08
B08/BHP 1.83E-12 2.84E-13 2.50E-12 1.00E+00 3.81E-09 1.11E-03
B15/THP 4.79E-11 5.84E-12 7.04E-12 1.83E-03 1.00E+00 2.16E-02
B20/BHP 1.20E-15 2.61E-14 2.18E-13 6.64E-02 2.96E-06 1.00E+00

A.2 Full-scale modified

A.2.1 PCMCI+

Descriptive statistics

Table A.15: Descriptive statistics of the stimulating well A01/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 51 21 21 25 20 12
mean -0.043 -0.019 -0.039 0.021 0.004 0.047
std 0.085 0.104 0.103 0.117 0.160 0.088

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

8 21 33 18 23 26 27
-0.042 0.012 -0.007 0.046 -0.001 0.007 0.030
0.106 0.110 0.118 0.129 0.098 0.114 0.107
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Table A.16: Descriptive statistics of the stimulating well A03/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 25 66 27 26 18 21
mean -0.018 -0.031 0.035 -0.019 0.002 -0.030
std 0.105 0.052 0.138 0.150 0.105 0.096

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

19 32 41 17 29 25 44
0.022 0.024 -0.016 -0.064 -0.009 -0.077 -0.033
0.113 0.135 0.119 0.114 0.116 0.095 0.118

Table A.17: Descriptive statistics of the stimulating well A04/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 13 19 42 12 16 13
mean -0.005 0.005 0.001 0.021 -0.011 -0.054
std 0.115 0.103 0.077 0.106 0.119 0.100

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

16 16 19 12 14 15 21
-0.006 -0.035 0.046 0.119 0.012 0.009 0.013
0.103 0.118 0.115 0.165 0.111 0.062 0.093

Table A.18: Descriptive statistics of the stimulating well A07/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 23 18 14 50 23 16
mean -0.045 0.009 -0.056 -0.096 0.002 0.000
std 0.110 0.112 0.128 0.128 0.135 0.120

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

25 20 33 16 27 16 25
-0.024 -0.039 0.025 0.027 0.022 0.041 0.034
0.114 0.097 0.129 0.121 0.112 0.121 0.107

Table A.19: Descriptive statistics of the stimulating well A12/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 24 31 31 36 70 27
mean 0.014 -0.030 0.045 0.019 -0.045 0.037
std 0.111 0.114 0.088 0.120 0.088 0.091

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

31 29 45 23 37 43 34
0.002 -0.012 -0.030 0.009 0.008 0.020 0.017
0.101 0.116 0.105 0.121 0.114 0.115 0.121
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Table A.20: Descriptive statistics of the stimulating well A18/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 26 28 28 30 24 75
mean -0.019 0.001 0.010 0.009 0.034 -0.014
std 0.112 0.102 0.138 0.133 0.139 0.050

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

18 22 39 19 31 23 27
0.015 0.016 -0.005 0.042 -0.022 0.013 0.042
0.110 0.111 0.123 0.109 0.110 0.132 0.115

Table A.21: Descriptive statistics of the stimulating well A20/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 13 25 25 30 28 15
mean 0.018 0.033 0.008 0.051 0.018 0.049
std 0.105 0.128 0.107 0.122 0.107 0.109

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

62 28 35 19 36 31 34
-0.052 0.012 0.022 -0.011 0.006 0.026 -0.047
0.055 0.114 0.114 0.148 0.084 0.127 0.124

Table A.22: Descriptive statistics of the stimulating well B08/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 38 54 59 55 48 35
mean -0.050 0.019 -0.017 0.021 0.012 0.011
std 0.118 0.119 0.110 0.125 0.136 0.134

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

58 96 36 13 51 46 60
-0.020 -0.106 0.002 0.003 0.000 -0.004 0.014
0.108 0.091 0.113 0.121 0.091 0.113 0.129

Table A.23: Descriptive statistics of the stimulating well B15/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 26 43 56 54 36 30
mean -0.014 -0.028 0.013 -0.020 -0.021 -0.005
std 0.118 0.115 0.121 0.131 0.124 0.132

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

40 20 79 4 50 42 55
0.006 0.053 -0.147 0.014 -0.016 0.013 0.020
0.124 0.123 0.106 0.163 0.113 0.109 0.104
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Table A.24: Descriptive statistics of the stimulating well B20/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 45 68 68 66 58 37
mean -0.033 0.011 0.020 0.027 -0.007 0.006
std 0.122 0.123 0.150 0.119 0.122 0.128

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

61 26 34 111 62 60 77
-0.015 0.036 0.006 -0.103 0.016 -0.004 0.030
0.118 0.107 0.117 0.104 0.101 0.125 0.117

Table A.25: Descriptive statistics of the stimulating well S02/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 27 34 22 34 35 29
mean 0.009 -0.002 -0.012 0.040 0.020 0.018
std 0.104 0.106 0.123 0.148 0.115 0.106

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

32 19 32 19 63 17 35
0.012 -0.011 -0.004 -0.023 -0.126 0.082 0.000
0.119 0.098 0.191 0.159 0.087 0.113 0.110

Table A.26: Descriptive statistics of the stimulating well S17/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 24 30 30 35 27 25
mean -0.014 -0.022 -0.003 0.002 0.050 -0.036
std 0.110 0.119 0.094 0.115 0.111 0.124

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

31 30 43 27 29 77 42
-0.015 -0.005 0.025 0.083 -0.011 -0.087 0.050
0.110 0.116 0.126 0.097 0.104 0.109 0.139

Table A.27: Descriptive statistics of the stimulating well S18/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 15 16 18 15 20 10
mean -0.022 0.021 0.006 0.023 0.025 0.045
std 0.122 0.097 0.167 0.127 0.118 0.132

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

21 17 21 16 12 11 36
0.012 -0.070 -0.044 0.022 -0.002 0.064 -0.031
0.104 0.103 0.121 0.108 0.096 0.099 0.094
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P-values

Table A.28: Generated p-values for all well-pair combinations with the A-wells as target
wells. Obtained from the full-scale modified test using the PCMCI+ algorithm. Rows
represent the stimulating wells and columns represent the target wells.

A01/
THP

A03/
BHP

A04/
BHP

A07/
THP

A12/
THP

A18/
THP

A20/
BHP

A01/THP 5.15E-10 9.54E-06 9.54E-07 5.25E-06 7.08E-04 2.44E-03 7.81E-03
A03/BHP 8.34E-07 1.64E-12 1.52E-03 1.62E-04 5.34E-05 4.77E-06 3.36E-04
A04/BHP 1.71E-03 1.26E-04 1.65E-08 4.88E-04 3.05E-04 4.88E-04 3.05E-05
A07/THP 3.34E-06 7.63E-05 6.10E-04 7.56E-10 3.49E-04 5.80E-04 4.17E-07
A12/THP 3.02E-05 3.41E-06 1.77E-05 1.01E-05 3.56E-13 6.02E-05 3.41E-06
A18/THP 2.35E-05 5.86E-06 8.17E-05 5.31E-05 5.68E-04 5.28E-14 5.34E-04
A20/BHP 2.44E-04 1.20E-04 1.13E-06 2.83E-04 4.58E-05 8.36E-03 7.58E-12
B08/BHP 1.35E-07 1.11E-07 1.15E-10 1.64E-07 4.55E-06 4.53E-05 2.72E-10
B15/THP 1.67E-05 4.82E-08 6.97E-09 1.46E-09 1.79E-06 5.79E-05 5.73E-07
B20/BHP 4.83E-08 6.26E-10 1.89E-08 1.54E-09 2.22E-09 8.87E-06 3.36E-10
S02/BHP 1.53E-05 1.77E-06 3.34E-05 6.90E-04 7.77E-06 6.53E-06 1.11E-05
S17/BHP 1.19E-07 1.36E-05 3.18E-06 1.47E-06 1.33E-04 8.17E-06 3.41E-06
S18/BHP 1.22E-04 6.10E-05 7.69E-03 4.27E-03 4.83E-04 6.45E-02 4.10E-05
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Table A.29: Generated p-values for all well-pair combinations with the B and S-wells as
target wells. Obtained from the full-scale modified test using the PCMCI+ algorithm.
Rows represent the stimulating wells and columns represent the target wells.

B08/
BHP

B15/
THP

B20/
BHP

S02/
BHP

S17/
BHP

S18/
BHP

A01/THP 6.68E-05 2.98E-06 4.75E-03 2.38E-07 7.04E-05 7.37E-05
A03/BHP 1.59E-04 5.45E-08 1.53E-05 7.23E-06 1.19E-07 3.17E-08
A04/BHP 4.27E-04 3.92E-03 7.33E-01 6.10E-04 6.10E-05 6.68E-06
A07/THP 3.81E-06 1.27E-04 3.36E-03 2.91E-05 1.68E-03 8.80E-05
A12/THP 1.60E-05 1.41E-08 2.10E-05 8.41E-07 4.77E-07 1.25E-05
A18/THP 5.25E-05 1.20E-06 5.34E-05 4.53E-06 4.75E-04 1.78E-04
A20/BHP 6.13E-05 9.76E-06 4.20E-04 3.03E-07 1.68E-04 9.67E-07
B08/BHP 1.78E-17 1.31E-06 4.64E-03 1.57E-09 4.28E-08 1.72E-09
B15/THP 1.21E-03 1.15E-14 3.75E-01 3.17E-09 4.24E-07 6.62E-10
B20/BHP 1.07E-04 3.46E-06 6.15E-20 1.14E-10 1.72E-09 4.89E-10
S02/BHP 7.63E-06 8.57E-06 9.65E-04 5.17E-12 1.74E-02 2.39E-06
S17/BHP 1.13E-05 1.11E-05 5.32E-03 4.80E-06 2.46E-14 1.34E-04
S18/BHP 1.53E-05 1.34E-05 4.27E-04 9.77E-04 2.44E-02 1.68E-07
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A.2.2 TCDF

Descriptive statistics

Table A.30: Descriptive statistics of the stimulating well A01/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 51 26 33 38 26 22
mean 3.119 0.672 0.282 0.221 0.656 0.863
std 0.665 0.550 0.483 0.438 0.553 0.759

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

11 34 43 35 36 39 40
0.432 0.212 0.240 0.110 0.394 0.048 0.233
0.440 0.404 0.313 0.375 0.480 0.403 0.472

Table A.31: Descriptive statistics of the stimulating well A03/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 34 66 45 45 29 33
mean 0.613 3.422 0.293 0.490 0.599 0.744
std 0.411 0.910 0.601 0.500 0.392 0.460

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

30 44 50 41 44 47 56
0.667 0.248 0.252 0.362 0.490 0.226 0.375
0.402 0.582 0.426 0.544 0.468 0.475 0.502
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Table A.32: Descriptive statistics of the stimulating well A04/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 26 24 42 20 30 26
mean 0.700 0.786 3.063 0.404 0.295 0.622
std 0.572 0.595 0.613 0.719 0.423 0.585

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

26 17 25 19 20 21 29
0.705 0.309 0.226 0.335 0.578 0.468 0.189
0.613 0.279 0.463 0.617 0.330 0.425 0.586

Table A.33: Descriptive statistics of the stimulating well A07/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 36 30 22 50 36 34
mean 0.647 0.502 0.171 3.319 0.138 0.549
std 0.737 0.582 0.322 0.871 0.418 0.576

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

36 25 38 27 31 28 35
0.556 0.115 0.143 0.191 0.275 0.268 0.150
0.606 0.299 0.545 0.387 0.447 0.531 0.625

Table A.34: Descriptive statistics of the stimulating well A12/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 44 44 55 56 70 44
mean 0.577 0.350 0.493 0.546 2.943 0.534
std 0.555 0.587 0.530 0.564 0.574 0.601

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

46 46 60 38 53 55 56
0.518 0.277 0.413 0.260 0.274 0.557 0.499
0.612 0.448 0.644 0.384 0.466 0.972 0.616

Table A.35: Descriptive statistics of the stimulating well A18/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 35 40 49 54 39 75
mean 0.806 0.419 0.465 0.422 0.588 2.792
std 0.769 0.667 0.556 0.415 0.703 0.500

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

26 35 57 40 45 45 56
0.679 0.289 0.137 0.145 0.332 0.145 0.318
0.588 0.478 0.476 0.522 0.535 0.454 0.528
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Table A.36: Descriptive statistics of the stimulating well A20/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 19 32 41 47 33 23
mean 0.623 0.567 0.267 0.259 0.582 0.795
std 0.778 0.599 0.585 0.510 0.632 0.879

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

62 34 46 36 47 47 50
2.988 0.326 0.040 0.298 0.335 0.087 0.254
0.603 0.429 0.709 0.505 0.576 0.462 0.495

Table A.37: Descriptive statistics of the stimulating well B08/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 79 78 70 75 78 65
mean 0.489 0.573 0.341 0.395 0.299 0.632
std 0.646 0.483 0.548 0.480 0.496 0.501

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

77 96 44 19 66 67 79
0.645 3.147 0.352 0.669 0.358 0.253 0.374
0.600 0.714 0.618 0.860 0.625 0.475 0.692

Table A.38: Descriptive statistics of the stimulating well B15/THP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 67 63 59 62 69 56
mean 0.278 0.427 0.227 0.346 0.158 0.467
std 0.603 0.579 0.491 0.524 0.513 0.524

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

61 21 79 5 56 60 73
0.407 0.379 3.175 -0.378 0.288 0.089 0.205
0.521 0.883 0.700 0.382 0.536 0.532 0.582

Table A.39: Descriptive statistics of the stimulating well B20/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 91 87 78 82 90 77
mean 0.296 0.485 0.176 0.261 0.169 0.366
std 0.614 0.589 0.644 0.533 0.568 0.572

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

86 27 40 111 76 77 93
0.451 1.062 0.209 3.097 0.320 0.278 0.400
0.619 1.271 0.982 0.747 0.634 0.791 0.747
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Table A.40: Descriptive statistics of the stimulating well S02/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 40 40 35 43 46 36
mean 0.478 0.556 0.306 0.414 0.430 0.826
std 0.526 0.590 0.438 0.517 0.604 0.692

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

41 30 39 34 63 28 45
0.613 0.351 0.247 0.273 3.067 0.566 0.355
0.520 0.391 0.338 0.408 0.794 0.668 0.661

Table A.41: Descriptive statistics of the stimulating well S17/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 52 46 45 49 56 44
mean 0.660 0.587 0.367 0.336 0.268 0.590
std 0.687 0.697 0.340 0.561 0.488 0.481

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

52 39 52 39 35 77 56
0.627 0.288 0.262 0.259 0.342 3.018 0.590
0.637 0.428 0.433 0.439 0.730 0.755 0.875

Table A.42: Descriptive statistics of the stimulating well S18/BHP acting on the target
wells.

A01/THP A03/BHP A04/BHP A07/THP A12/THP A18/THP

count 27 25 22 23 26 22
mean 0.451 0.473 0.449 0.328 0.587 0.466
std 0.573 0.425 0.442 0.554 0.369 0.384

A20/BHP B08/BHP B15/THP B20/BHP S02/BHP S17/BHP S18/BHP

27 18 27 19 15 16 36
0.604 0.362 0.368 0.400 0.551 0.498 3.036
0.503 0.280 0.394 0.376 0.332 0.391 0.601
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P-values

Table A.43: Generated p-values for all well-pair combinations with the A-wells as target
wells. Obtained from the full-scale modified test using the TCDF-algorithm. Rows
represent the stimulating wells and columns represent the target wells.

A01/
THP

A03/
BHP

A04/
BHP

A07/
THP

A12/
THP

A18/
THP

A20/
BHP

A01/THP 1.00E+00 1.70E-02 1.93E-06 6.25E-08 2.60E-02 2.74E-01 2.92E-03
A03/BHP 4.68E-05 1.00E+00 4.26E-08 8.27E-07 1.41E-02 1.38E-03 6.27E-02
A04/BHP 5.35E-03 3.16E-02 1.00E+00 1.02E-01 1.44E-06 2.76E-02 6.87E-02
A07/THP 2.85E-03 1.80E-03 4.00E-05 1.00E+00 2.11E-07 2.09E-03 6.39E-04
A12/THP 3.76E-01 7.82E-04 8.61E-06 2.11E-06 1.00E+00 4.53E-02 2.25E-02
A18/THP 3.45E-02 7.94E-05 1.12E-07 6.14E-09 7.30E-03 1.00E+00 1.20E-03
A20/BHP 2.00E-02 1.82E-04 7.80E-08 1.85E-09 9.81E-03 1.51E-01 1.00E+00
B08/BHP 2.56E-06 2.27E-06 6.44E-11 3.83E-10 7.20E-13 1.71E-08 4.48E-05
B15/THP 7.87E-09 2.83E-08 1.26E-11 9.66E-08 5.41E-12 9.18E-10 5.52E-09
B20/BHP 1.38E-09 9.51E-09 5.40E-13 8.74E-11 6.42E-15 5.20E-11 2.77E-10
S02/BHP 5.33E-03 1.86E-02 3.47E-07 2.11E-06 6.14E-05 3.36E-01 1.32E-04
S17/BHP 2.45E-03 7.76E-03 3.63E-09 7.72E-08 2.48E-09 6.61E-02 1.55E-04
S18/BHP 2.66E-03 7.83E-05 3.49E-05 4.36E-05 1.84E-05 4.38E-04 1.45E-03
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Table A.44: Generated p-values for all well-pair combinations with the B and S-wells as
target wells. Obtained from the full-scale modified test using the TCDF-algorithm. Rows
represent the stimulating wells and columns represent the target wells.

B08/
BHP

B15/
THP

B20/
BHP

S02/
BHP

S17/
BHP

S18/
BHP

A01/THP 1.83E-07 3.16E-08 1.91E-07 3.30E-05 3.59E-08 2.32E-07
A03/BHP 4.08E-09 3.58E-09 1.13E-07 7.08E-08 4.03E-09 9.10E-09
A04/BHP 2.10E-04 3.23E-05 4.19E-04 6.19E-03 8.29E-04 1.30E-05
A07/THP 6.15E-06 7.92E-08 5.50E-06 4.74E-06 5.54E-06 1.71E-05
A12/THP 2.98E-09 6.26E-10 3.87E-08 1.13E-08 7.06E-04 3.84E-07
A18/THP 1.24E-07 1.30E-10 1.14E-07 1.19E-08 4.00E-08 3.04E-08
A20/BHP 2.00E-07 2.36E-07 8.40E-08 1.13E-06 1.28E-08 8.84E-10
B08/BHP 1.00E+00 4.85E-05 7.88E-03 5.24E-08 1.63E-11 5.71E-09
B15/THP 4.81E-03 1.00E+00 3.98E-02 4.03E-09 4.54E-10 3.45E-11
B20/BHP 2.82E-01 2.02E-03 1.00E+00 1.77E-10 3.60E-10 4.02E-10
S02/BHP 6.19E-06 1.13E-07 7.45E-07 1.00E+00 1.14E-02 5.28E-05
S17/BHP 1.31E-07 6.97E-10 3.90E-07 4.52E-06 1.00E+00 9.96E-04
S18/BHP 9.82E-05 4.97E-05 6.59E-05 3.46E-02 6.73E-04 1.00E+00
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Data descriptions and figures

A-04 & A-01

Figure B.1 show the pressure response between the stimulating production well A01/THP
and the target injection well A04/BHP. The maximum time delay is approximately 1 hour.
We were not able to visually identify a similar type of pressure response with A04/BHP
as the stimulating well and A01/THP as the target well.

Figure B.1: Zoomed in view of a pressure response between A01/THP and A04/BHP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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A-07 & A-18

In Figure B.2, the pressure response between the stimulating injection well A07/THP and
the target production well A18/THP can be seen. It is uncertain whether the pressure
in A18/THP responds with a time delay of approximately 3 hours, or a near instanta-
neous response when A07/THP reaches a certain pressure threshold. We were not able
to identify a reciprocal link with A18/THP as the stimulating well.

Figure B.2: Zoomed in view of a pressure response between A07/THP and A18/THP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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B-08 & B-15

In Figure B.3, the pressure response between the stimulating injection well B08/BHP and
the target injection well B15/THP is shown. The time delay of the response in B15/THP
is approximately 6 hours. Interestingly, the pressure response in B15/THP appears to
be weaker when the pressure in B08/BHP is increasing, as opposed to a decrease in the
pressure of B08/BHP.

Figure B.3: Zoomed in view of a pressure response between B08/BHP and B15/THP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.

In Figure B.4, the pressure response between the stimulating injection well B15/THP
and the target injection well B08/BHP is shown, along with the injection well B20/BHP.
The wells B15/THP and B20/BHP have a strong coupling in that they are often closed
and opened in the same period. This makes it difficult to separate these as stimulating
wells. The pressure response in B08/BHP is near instantaneous for the coupled stimulus
from B15/THP and B20/BHP.
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Figure B.4: Zoomed in view of a pressure response between B15/THP and B08/BHP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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B-20 & B-15

In Figure B.5, the reciprocal pressure response between the stimulating injection well
B20/BHP and the target injection well B15/THP can be seen. This includes the injection
well S18/BHP, which closes in the same period as B20/BHP. Similarly to the B15/THP
and B20/BHP coupling, there is a strong coupling between B20/BHP and B08/BHP.
Since there is a known connectivity between B08/BHP and B15/THP, we selected one
of very few periods when B08/BHP did not close at the same time as B20/BHP. The
maximum time delay is approximately 2 to 3 hours.

Figure B.5: Zoomed in view of a pressure response between B20/BHP and B15/THP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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S-17 & A-12

In Figure B.6, a very weak pressure response between the stimulating injection well
S17/BHP and the target production well A12/THP can be seen. The maximum time
delay is approximately 2.5 hours. We were not able to identify a reciprocal link with
A12/THP as the stimulating well.

Figure B.6: Zoomed in view of a pressure response between S17/BHP and A12/THP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.

S-18 & B-20

In Figure B.7, a pressure response between the stimulating injection well S18/BHP and
the target injection well B20/BHP can be seen. The maximum time delay is approxi-
mately 1.5-2 hours. During the opening of S18/BHP and the subsequent pressure increase,
the pressure response in B20/BHP seem to be triggered at a certain pressure threshold,
with the response occurring approximately 0.5 to 1 hour later.

In Figure B.8, the reciprocal pressure response of the stimulating injection well B20/BHP
and the target injection well S18/BHP can be seen. The maximum time delay is approxi-
mately 0.5 hours. Similarly to S18/BHP acting on B20/BHP, there is a pressure threshold
that needs to be hit before the pressure responds after 0.5 to 1 hour in S18/BHP.
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Figure B.7: Zoomed in view of a pressure response between S18/BHP and B20/BHP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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Figure B.8: Zoomed in view of a pressure response between B20/BHP and S18/BHP.
Pressure is normalized on a [0,1]-range within this period. Data is smoothed with a
moving average of 10 time steps.
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Method demonstration raw output

C.1 PCMCI+ no hidden confounder

##

## Step 1: PC1 algorithm with lagged conditions

##

Parameters:

independence test = par_corr

tau_min = 1

tau_max = 10

pc_alpha = [0.01]

max_conds_dim = None

max_combinations = 1

## Resulting lagged parent (super)sets:

Variable $X^1$ has 2 parent(s):

($X^1$ -1): max_pval = 0.00000, min_val = 0.601

($X^3$ -5): max_pval = 0.00885, min_val = -0.156

Variable $X^2$ has 2 parent(s):

($X^2$ -1): max_pval = 0.00000, min_val = 0.734

($X^1$ -3): max_pval = 0.00000, min_val = 0.365

Variable $X^3$ has 2 parent(s):

($X^3$ -2): max_pval = 0.00000, min_val = 0.614

($X^1$ -5): max_pval = 0.00000, min_val = 0.335

##

## Step 2: PC algorithm with contemp. conditions and MCI tests

##

Parameters:
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independence test = par_corr

tau_min = 0

tau_max = 10

pc_alpha = 0.01

contemp_collider_rule = majority

conflict_resolution = True

reset_lagged_links = False

max_conds_dim = None

max_conds_py = None

max_conds_px = None

max_conds_px_lagged = None

fdr_method = none

## Significant links at alpha = 0.01:

Variable $X^1$ has 1 link(s):

($X^1$ -1): pval = 0.00000 | val = 0.613

Variable $X^2$ has 2 link(s):

($X^2$ -1): pval = 0.00000 | val = 0.614

($X^1$ -3): pval = 0.00000 | val = 0.375

Variable $X^3$ has 2 link(s):

($X^3$ -2): pval = 0.00000 | val = 0.508

($X^1$ -5): pval = 0.00000 | val = 0.329

C.2 PCMCI+ hidden confounder

##

## Step 1: PC1 algorithm with lagged conditions

##

Parameters:

independence test = par_corr

tau_min = 1

tau_max = 10

pc_alpha = [0.01]

max_conds_dim = None

max_combinations = 1

## Resulting lagged parent (super)sets:

Variable $X^2$ has 1 parent(s):

($X^2$ -1): max_pval = 0.00000, min_val = 0.693

Variable $X^3$ has 1 parent(s):

($X^3$ -2): max_pval = 0.00000, min_val = 0.635
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##

## Step 2: PC algorithm with contemp. conditions and MCI tests

##

Parameters:

independence test = par_corr

tau_min = 0

tau_max = 10

pc_alpha = 0.01

contemp_collider_rule = majority

conflict_resolution = True

reset_lagged_links = False

max_conds_dim = None

max_conds_py = None

max_conds_px = None

max_conds_px_lagged = None

fdr_method = none

## Significant links at alpha = 0.01:

Variable $X^2$ has 2 link(s):

($X^2$ -1): pval = 0.00000 | val = 0.696

($X^3$ 0): pval = 0.00186 | val = 0.186 | unoriented link

Variable $X^3$ has 2 link(s):

($X^3$ -2): pval = 0.00000 | val = 0.560

($X^2$ 0): pval = 0.00186 | val = 0.186 | unoriented link

## Ambiguous triples:

($X^3$ -2) --> $X^3$ o-o $X^2$
($X^2$ -1) --> $X^2$ o-o $X^3$

C.3 TCDF no hidden confounder

Arguments: Namespace(cuda=False, data=[’data/tcdf_demo_1.csv’],

dilation_coefficient=10, epochs=100, ground_truth=None, hidden_layers=0,

kernel_size=10, learning_rate=0.01, log_interval=500, optimizer=’Adam’,

plot=True, seed=1111, significance=1.0)

Dataset: tcdf_demo_1.csv

Analysis started for target: X^1

Epoch: 1 [1%] Loss: 2.625633

Epoch: 100 [100%] Loss: 0.935598

Potential causes: [0]

Validated causes: [0]

129
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Analysis started for target: X^2

Epoch: 1 [1%] Loss: 5.410668

Epoch: 100 [100%] Loss: 1.234993

Potential causes: [1, 0]

Validated causes: [1, 0]

Analysis started for target: X^3

Epoch: 1 [1%] Loss: 3.954392

Epoch: 100 [100%] Loss: 1.153275

Potential causes: [2, 0]

Validated causes: [2, 0]

===================Results for tcdf_demo_1.csv

==================================

X^1 causes X^1 with a delay of 1 time steps.

X^2 causes X^2 with a delay of 1 time steps.

X^1 causes X^2 with a delay of 3 time steps.

X^3 causes X^3 with a delay of 2 time steps.

X^1 causes X^3 with a delay of 5 time steps.

==================================================================================

C.4 TCDF hidden confounder

Arguments: Namespace(cuda=False, data=[’data/tcdf_demo_2.csv’],

dilation_coefficient=10, epochs=100, ground_truth=None, hidden_layers=0,

kernel_size=10, learning_rate=0.01, log_interval=500, optimizer=’Adam’,

plot=True, seed=1111, significance=1.0)

Dataset: tcdf_demo_2.csv

Analysis started for target: X^2

Epoch: 1 [1%] Loss: 4.860878

Epoch: 100 [100%] Loss: 1.420413

Potential causes: [0]

Validated causes: [0]

Analysis started for target: X^3

Epoch: 1 [1%] Loss: 3.277262

Epoch: 100 [100%] Loss: 1.148035

Potential causes: [1]

Validated causes: [1]

===================Results for tcdf_demo_2.csv

==================================

X^2 causes X^2 with a delay of 1 time steps.

X^3 causes X^3 with a delay of 2 time steps.

==================================================================================
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