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Abstract 

Estimation of reservoir parameters is important in reservoir evaluation and estimation of 

petroleum volume. Reservoir parameters such as oil saturation, water saturation and porosity 

are derived from petrophysical logs or time-consuming, expensive core analyses. Not all wells 

are cored in a field, and the number of fully cored wells and recovery is limited. In this study, 

a time-efficient and economical method to estimate oil saturation, water saturation and porosity 

is employed. An artificial neural network (ANN) model, a multilayer feedforward network 

(MLP) is developed to predict the reservoir parameters. The model is based on 1042 

petrophysical log data, oil saturation and water saturation data, and 1697 petrophysical log data 

and porosity data from five wells in the Varg field, Central North Sea. The MLP model 

optimised using a backpropagating algorithm, the Levenberg-Marquardt algorithm. In the 

study, six wells are used in total. The sixth well is excluded from the data set of the calibrated 

model and employed to validate the performance of the calibrated models. Feature selection is 

conducted on the petrophysical logs in the study: Gamma-ray, Self-potential, Acoustic, Neutron 

porosity, bulk density, deep resistivity, and medium resistivity. Feature selection aims to 

identify the most relevant petrophysical logs and remove those that are considered less relevant. 

The feature selection is conducted using correlation coefficients and a combination of trial-and-

error and a stepwise regression approach. The estimated oil saturation shows a very weak linear 

(Pearson) and non-linear (Spearman and Distance) correlation (R2 (Pearson) = 0.1, R2 

(Spearman)=0.17 and R2 (Distance)=0.11). The estimated water saturation shows weak linear 

(Pearson) and non-linear (Spearman and Distance) correlation (R2 (Pearson) = 0.29, R2 

(Spearman)=0.41 and R2 (Distance)=0.40. The estimated porosity shows moderately strong 

linear (Pearson) and non-linear (Spearman and Distance) correlation (R2 (Pearson) = 0.67, R2 

(Spearman)=0.45 and R2 (Distance)=0.74). The estimated parameters are not fully reliable on 

data outside the calibrated models data sets range, and the most reliable estimation is the 

porosity. Increasing the number of wells may increase the data set range and improve the 

accuracy of the models. For future works, by increasing the number of wells, the models can 

be employed and tested in other fields. 
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1 Introduction 
Understanding the shape and spatial distribution in reservoirs is vital in estimating the 

petroleum volume in the petroleum industry. The key petrophysical parameters such as 

porosity, permeability and fluid saturation are crucial for characterising a petroleum reservoir. 

Porosity, permeability and fluid saturation can be used to estimate the volume of 

hydrocarbons in the reservoir. Accurate estimation of these properties can be crucial in 

improving the petroleum recovery, CO2 sequestration, reducing costs, and optimising the 

production of a field (Ahmadi & Chen, 2019). Furthermore, evaluating hydrocarbon 

accumulation, fluid migration and identifying potential pressure seals to reduce drilling 

hazards also relies on accurate estimations of reservoir parameters (e.g. fluid saturations and 

porosity) (Helle et al., 2001). In addition, it can also be necessary for the improvement of 

developing geothermal energy schemes, management of water supplies and radioactive waste 

storage (Ahmadi & Chen, 2019).   

 A relationship exists between petrophysical well logging data and approximation of fluid 

saturations and porosity measurements. Petrophysical logs such as sonic, density and 

resistivity logs can be used to determine approximate values of fluid saturation (e.g. oil and 

water) and porosity. Several empirical formulas exist for predicting reservoir parameters such 

as porosity, permeability and fluid saturation (Wyllie et al., 1958). The permeability is often 

dependent on the porosity, e.g., through the Carman-Kozeny equation (Helle et al., 2001). 

However, most petrophysical formulas are only applicable for specific reservoir types, such as 

sandstones, unconsolidated sands, and homogeneous porous media (Ahmadi & Chen, 

2019).The empirical formulas often contain terms and factors that depend on specific 

lithologies or specific locations (Helle et al., 2001). In addition, the vertical resolution of 

petrophysical logs is larger than for core data (Ahmadi & Chen, 2019). 

Well log data cannot determine porosity directly; this is determined from cores in 

laboratories. Not all wells are cored, and fully cored recovery is often not achieved. The 

process can be expensive, time-consuming and it is not a routine operation. Core data from 

wells are important in constructing representative simulation models, evaluating well 

locations, and perforation strategies (Stiles & Hutfilz, 1992). Determining porosity is 

dependent on the number of drilled cores. If there is not enough data, this will affect the 

results (Newman & Martin, 1977). Having a limited number of cores may increase the 
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uncertainty related to the prediction of properties. Thus, mathematical models that simulate 

potential possibilities are used.  Machine learning approaches create models that can predict 

or estimate values using mathematical algorithms. Machine learning techniques can be 

applied as a quick, cost-effective solution for reservoir evaluation (Ahmadi & Chen, 2019). 

Many machine learning approaches such as artificial neural networks have been applied to 

predict reservoir parameters (Huang et al., 1996; Huang & Williamson, 1997; Helle et al., 

2001; Helle & Bhatt, 2002; Rwechungura et al., 2011; Mahmoudi & Mahmoudi, 2014; 

Saputro et al., 2016; Ahmadi & Chen, 2019; Hamada et al., 2020).   

Neural networks have been applied to various fields, such as biology, chemistry, and the 

petroleum industry.  Artificial neural networks are superior to other methods in the following 

after Masters (1993): 

1. Data which a conclusion is unclear, irregular, or subject to large errors. In this case, the 

robustness of the neural network is essential.  

2. The patterns in the data are important, and one of the advantages of neural networks is 

their ability to recognise patterns in the data. 

3. The data exhibits significant, unpredictable non-linearity, which is not a problem for 

neural networks since they are adaptable.  

4. The data is noisy, and neural networks are robust with inputs of this type.  

These conditions overlap with the features of data commonly used in geoscience and 

petroleum engineering. Artificial neural networks can be used to predict future values of noisy 

multivariate data from previous data values (Adamowski et al., 2012).  

The study aims to use machine learning techniques to solve a complex non-linear problem 

and find the best models using statistical approaches. The model aims to predict oil saturation, 

water saturation and porosity using a series of petrophysical well logging data. Three different 

models are calibrated with each of the petrophysical parameters from the core data to predict 

oil saturation, water saturation and porosity. The data set consists of petrophysical logs and 

core data, and it is divided into a training set, test set and validation set. The model is 

calibrated with the data set from the training set and tuned with hyperparameters, and lastly 

tested on the test set. Feature selection of the most relevant petrophysical logs for each 

estimation is employed to increase the accuracy of the calibrated models.   

In addition, the accuracy of the calibrated models is verified using another well outside of the 

data set used for the calibrated models.   
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The Varg field, Central North Sea, contains the relevant data (petrophysical logs and core 

data) for the study. The study tries to match the petrophysical log responses with the 

information from the core data and predict oil saturation, water saturation and porosity using 

machine learning techniques. The type of machine learning model selected in this study is an 

Artificial Neural Network (ANN), specifically a feedforward network or multilayer 

perceptron network (MLP). All the models are optimised using Levenberg-Marquardt 

optimisation.  

The main objectives are summarised by the following:  

• Train a model using the Levenberg-Marquardt algorithms to predict reservoir 

parameters (oil saturation, water saturation and porosity) from petrophysical data. 

• Find the models that give the best predictions on the validation set using statistical 

evaluation methods such as R2 (coefficient of determinant).  

• Evaluate the influence of the petrophysical logs on the calibrated models through 

variations of the petrophysical logs and Partial derivatives method (PaD method). 

• Compare the predictions from the calibrated model with the data from core analysis. 

• Verify the model using another well excluded from the training set and validation used 

to calibrate the model. 
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2 Well logs and key parameter 
The calibrated models are trained by the petrophysical logs and core data from the Varg field. 

The petrophysical logs are Gamma-ray, self-potential, Caliper, sonic, neutron porosity, bulk 

density, and resistivity logs. This study presents a detailed description of these eight 

petrophysical logs available from the Varg field. In addition, a description of the reservoir 

parameters from the core data is presented. The petrophysical log in the study were selected 

on the basis that there exists a relation between the petrophysical logs and reservoir 

parameters. 

2.1 Porosity 

Porosity (𝜑) is defined as the fraction of pore volume (𝑉𝑝) divided by the total volume, grain 

and void space, of the rock (𝑉𝑡) (Eq. 2.1). It is the void space in a porous rock that may be able 

to store fluids such as hydrocarbons.  

𝜑 =
𝑉𝑝

𝑉𝑡
 

Eq. 2.1 

Porosity can be divided into the total porosity (𝜑𝑡) and the effective porosity (𝜑𝑒). The total 

porosity is the total pore volume (𝑉𝑡𝑝) divided by the total rock volume (𝑉𝑡) while the effective 

porosity is the interconnected pore volume (𝑉𝑖𝑝) divided by the total rock volume (𝑉𝑡):  

𝜑𝑡 =
𝑉𝑡𝑝

𝑉𝑡
 

Eq. 2.2 

𝜑𝑒 =
𝑉𝑖𝑝

𝑉𝑡
 

Eq. 2.3 

2.2 Permeability 

Permeability is defined as rocks ability for fluids to flow through. It is measured in millidarcies 

(mD) or darcies (D). Permeable sandstones typically have large pores that are interconnected, 

while impermeable formations such as shales tend to have smaller pores and less interconnected 

pores. Darcy’s law for fluid flow in permeable rocks can only be used when there is a single 

fluid or phase present in the rock. The steady-state flow (𝑞𝑖) is defined as the permeability (𝑘), 

flow area (A) and pressure drop (∆𝑝𝑖) divided by the fluid viscosity (µ𝑖) and flow distance (L) 

of a particular fluid I (i=oil, gas, water) (Eq. 2.4).  
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𝑞
𝑖
=

𝑘𝐴∆𝑝
𝑖

µ
𝑖
𝐿

 
Eq. 2.4 

The permeability from the steady-state flow equation is called the absolute permeability. By 

rearranging the steady-state equation the absolute permeability of a fluid 𝑘𝑖 (i=oil, gas or water) 

is: 

𝑘𝑖 =
𝐴∆𝑝

𝑖

𝑞
𝑖
µ

𝑖
𝐿

 
Eq. 2.5 

If there are more than one single fluid another equation for the permeability applies, relative 

permeability (𝑘𝑟𝑖). The relative permeability is the ability for another fluid to enter the rock 

when there are multiple fluids present. The relative permeability (𝑘𝑟𝑖) is the fraction of effective 

permeability (𝑘𝑖) of a particular fluid (i=oil, gas or water) divided by the fully saturated 

permeability (𝑘): 

𝑘𝑟𝑖 = 
𝑘𝑖

𝑘
 

Eq. 2.6 

 

2.3 Fluid saturation 

An inverse relationship between permeability and water saturation exists, such that when the 

water saturation increases the permeability decreases.  

The hydrocarbon pore volume is the total volume in the reservoir that is filled with 

hydrocarbons: 

𝐻𝐶𝑃𝑉 = 𝑉𝑡𝜑(1 − 𝑆𝑤𝑖𝑟𝑟) Eq. 2.7 

Where Sw is the irreducible (connate) water saturation expressed as a fraction of the pore space 

in the rock. The saturation in the rock volume is the fraction of the interconnected void space 

occupied by a given phase such as oil, gas and water.  

𝑆𝑤 + 𝑆𝑜 + 𝑆𝑔 = 1 Eq. 2.8 

Porosity can be obtained either directly from cores or indirectly from well logging tools, while 

the permeability is obtained from either well testing or core analysis in laboratories. Core data 

defines the basis for determining permeability distribution, a good understanding of the 

permeability distribution is critical for planning a successful secondary oil recovery by water-

flooding of a stratified interval (Pyle & Sherborne, 1939; Stiles & Hutfilz, 1992). It is important 
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to keep in mind that usually not all wells that are drilled in a field are cored, and even in cored 

wells a full recovery of the core is not achieved. The porosity, permeability and saturations of 

the formations can be obtained from cores through Special core analyses (SCAL) or routine 

core analyses (RCAL) in laboratories. 

A summary of the measured petrophysical properties obtained from the analyses: 

i. Routine core analysis (RCAL) 

The routine core analysis or conventional core analysis measures basic petrophysical properties 

of the core sample (reservoir formations or intervals of interest). The routine core analysis is 

widely used, and it is cheaper than the special core analysis. The basic properties obtained in 

this analysis is the: grain density, rock dimensions, porosity, gas permeability (absolute 

permeability), Klinkenberg permeability and water saturation (Figure 2.1). The limitations of 

the RCAL arise from the laboratory procedure to obtain porosity and permeability. The porosity 

and permeability are obtained using gases on preserved clean, dried core samples at room 

conditions, not at reservoir conditions (Stiles & Hutfilz, 1992). 

The routine special core analysis procedure is used to establish a relationship between the 

porosity and permeability. The routine core data and the porosity data calculated from well logs 

can be used to estimate the permeabilities in the wells without cores. If there are large variations 

between the porosity and permeability data for the same formations in different wells suggests 

that a routine core is not appropriated for the selected reservoir (Stiles & Hutfilz, 1992)  

 

Figure 2.1 A conventional core analysis (RCAL) of well 15/12-4, Varg field (Statoil, 1984).  nmp = 

no measurement possible, nvpp = no vertical plug possible. 

ii. Special core analysis (SCAL) 
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The special core analysis is a more advanced test on the core samples compared to RCAL. The 

procedure includes flow experiments on core samples of two fluids or two-phases, obtaining 

capillary pressure, relative permeability, Archie factors and wettability. A potential problem in 

the SCAL studies is the use of oil based drilling mud in deviated wells from the North Sea, 

which may alter the wettability of the reservoir rock (Stiles & Hutfilz, 1992). The cores used 

for the SCAL is preserved using either wax coat, samples are kept under simulated brine or in 

deoxygenated formation brine. A special core analysis on 16 samples from well 15/12-6S is 

shown in Figure 2.2. The brine permeability was measured with simulated formation water.  

 

Figure 2.2 A special core analysis (SCAL) report from Well 15/12-9S, Varg field (Statoil, 1991). 

2.4 Gamma-ray (GR) 

The gamma-ray log is one of the most common well logging tools (REF). The well logging tool 

measures the natural radiation in the penetrated formations. In shales there are three naturally 

occurring elements that can be easily detected by the gamma ray log, such as potassium, 

thorium, and uranium (Donaldson Erle C & Tiab Djebbar, 2012).  

A clean sandstone has low shale content and will produce a lower gamma-ray reading compared 

to a shale layer. However, if there are heavy mineral present in the sandstone the gamma-ray 

readings may be unreliable. The presence of potassium rich feldspars and heavy minerals such 

as micas, glauconite and uranium rich waters may produce a higher gamma-ray log reading 

(Asquith & Krygowski, 2004). If there are heavy minerals present in the formation a spectral 

gamma-ray log is the preferred option. 



 

8 

 

The gamma-ray readings can be useful to identify lithologies, shale volume calculations and 

geological assessments (continuity between wells). Typical GR log readings and the 

corresponding lithology are listed in Table 2.1.   

Table 2.1 Overview of common gamma-ray reference values from Baker et al.,2015 

Lithology APIo 

Shale 80-140 

Sandstone 15-30 

Dolomite 8-15 

Limestone 10-20 

Gypsym 5-10 

Coal 5-10 

Salt 5-10 

Anhydrite ~ 15 

 

2.5 Spontaneous potential log (SP) 

The spontaneous potential log or self-potential log (SP) is a useful tool to identify permeable 

rocks, the shaliness of the interval, the salinity of the formation. The SP log can be used to 

determine the formation-water resistivity (Rw).  

The SP log measures the electrical potential between an electrode in the borehole and a 

reference electrode at surface. The electrical potential is the sum of the contacts between 

formations, contact between different fluids and fluid flow in the formation. The electrical 

potential between the formations is called the membrane potential. Secondly, the electrical 

potential between the contacts with different fluids is called the fluid junction potential. Lastly, 

the electrical potential of the fluid flow is the electrokinetic potential (Baker et al., 2015). 

i. Membrane potential 

Shales mainly consists of clays that are permeable to positive ions (Na+) and impermeable to 

negative ions (Cl-). The positive ions move from the saline fluids (e.g saline formation water) 

towards less saline fluids (e.g less saline mud) (Baker et al., 2015). In the presence of 

nonconductive mud, the SP log readings are not recorded, the tool requires conductive borehole 

fluids e.g water-based mud (Glover, 2000). 

ii. Fluid junction potential 
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If the mud filtrate is in contact with the formation water if creates an electrical potential. The 

negative ions (Cl-) are more mobile than the positive ions and generated a negatively charged 

current. 

iii. Electrokinetic potential 

In a permeable rock the flow of an electrolyte can generate an electrokinetic potential and 

current. The electrokinetic potential occurs in the mud-cake and in the formation. 

The SP log is shown with negative and positive log readings between -10 and 10 milivolts [mV] 

(Figure 2.3). When a shale baseline is defined using the GR log as a guide, the deflections to 

positive or negative current can be identified. Information about the salinity of resistivity of the 

formation water and the mud filtrate can be used to indicate the salinity of the formation water. 

(Glover, 2000). Factors that affects the SP log readings is the baseline shift, high-resistivity 

formations, and invasion effects (Baker et al., 2015). In many offshore wells the use of 

saltwater-based drilling muds results in ineffective estimation of the resistivity of the formation 

water (Rw) and the SP log can not be used in cased holes (Selley & Sonnenberg, 2015) 

 

Figure 2.3 A synthetic log with log readings representing lithologies (Baker et al., 2015) 

In addition, to use the SP log readings quantitatively a value of the total potential drop must be 

derived. The value can be derived directly from the SP log deflections or indirectly from 

correction charts (Glover, 2000). It is called the static spontaneous potential (SSP) and it is 
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obtained from clean sandstones if no current is flowing, however in shaly formations after 

correction of layer thickness it is called the pseudo-static spontaneous potential (PSP).  

2.6 Caliper log (CAL) 

The Caliper logging tool measures the changes in the wellbore diameter and shape. The tool 

has several spring-loaded arms that can detect electrical signals when they are released or 

withdrawn. The well bore diameter and the well bore shape may change during drilling when 

different lithologies are penetrated. In addition, the occurrence of mud cake and caving along 

the wellbore can be identified from the Caliper log. A simple illustration of an openhole logging 

in a vertical well with some key elements that can affect the quality of the petrophysical data is 

shown in Figure 2.4. The accuracy of the petrophysical data is affected by the presence of 

mudcake, invasion or caving (sloughing) (Baker et al., 2015). The Caliper log reading and bit 

size shows different scenarios that can be summarized into the following:  

i. Caliper reading (wellbore diameter) smaller than bit size 

If the wellbore diameter is smaller than the bit size this may indicate the presence of mudcake 

in the formation. The most probable lithology at this depth is a permeable rock layer e.g. 

permeable sandstone, carbonate, or swelling shales (Glover, 2000). 

ii. Caliper reading (wellbore diameter) equal to the bit size 

If the wellbore diameter is equal to the bit size it may indicate that the tool is going through a 

well consolidate rock layer. Possible lithologies are well consolidated sandstones or tight 

lithologies e.g thick sandstone layers, calcareous shales, igneous and metamorphic rocks 

(Glover, 2000). When there is a match between the bit size and the Caliper log, the other log 

readings are considered reliable. 

iii. Caliper reading (wellbore diameter) larger than the bit size 

If the well bore diameter is larger than the bit size the tool is penetrating a formation that is 

possible soft or unconsolidated. During this drilling interval caving or sloughing may occur. 

Suggested lithologies when this occurs e.g. unconsolidated sands, brittle shales or salt 

formations drilled with freshwater drilling mud (Glover, 2000).  
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Figure 2.4 A synthetic log showing common characteristics of the Caliper log and bit size modified 

from (Baker et al., 2015).  

Using the Caliper log in combination with the bit size measured in diameter can be used to 

calculate the mud-cake thickness (hm). The mud-cake is a used as an indicator of permeability, 

which is typically only present in permeable rocks. The size of the mud-cake can be used to 

delimit the potential reservoir. 

ℎ𝑚 =
𝐵𝑖𝑡 𝑠𝑖𝑧𝑒 (𝑑𝑖𝑎𝑚) − 𝐶𝑎𝑙𝑖𝑝𝑒𝑟 𝑙𝑜𝑔 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 (𝑑𝑖𝑎𝑚)

2
 

Eq. 2.9 

 

2.7 Sonic log (AC) 

The sonic log, also called acoustic log measures the travel time or transit time of sound waves 

through the formations. The tool has two transmitters and two or four receivers, where the 

averaged travel time for the transmitters are used to compensate for borehole quality (size of 

the borehole) (Baker et al., 2015). The sonic log is a useful tool to link the petrophysical data 

and the seismic data (calibrate), it can also be used to derive the porosity of the formation. Some 

common lithologies and the corresponding sonic travel times and velocities is presented in 

Table 2.2.  
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Table 2.2 Common sonic travel times and velocities after Tixier et al., 1959 

Lithology Tma µ/ft. V ft. /s 

Oil 232 4.3 

Water 189-200 5.3-5 

Sandstones 55.6 ≤18 

Dolomite 42 24 

Anhydrite 50 20 

Carbonates 43.5-47.6 23-21 

Shales 62.5-167 16-6 

Salt 15 66.7 

 

The sonic log can be used to calculate the porosity of the formations, however porosity derived 

from density and neutron porosity logs are superior. The velocity of the sound waves through 

a given lithology can be described as a function of porosity. Wyllie’s equation or the time 

average equation is only applicable in homogeneous rocks (Wyllie et al., 1958). 

𝜑𝑠𝑜𝑛𝑖𝑐 =
 ∆𝑡𝑙𝑜𝑔 − ∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥

∆𝑡𝑓𝑙𝑢𝑖𝑑 − ∆𝑡𝑚𝑎𝑡𝑟𝑖𝑥
 

Eq. 2.10 

where ∆𝑡𝑙𝑜𝑔 is the transit travel time observed in the log readings, and ∆𝑡matrix is the 

corresponding travel time through the rock matrix. The ∆𝑡fluid is the transit travel time through 

fluids in the formation if it is present.  

2.8 Neutron porosity log (NPHI) 

The neutron logging tool have a neutron source that emits neutrons, which are absorbed by 

nuclei of atoms in the rock formation and the wellbore. The neutrons are affected by the 

presence of hydrogen atoms in the formation such as hydrogen atoms in e.g. water or 

hydrocarbons. The measured neutrons will vary with the pore space (porosity) in the rock 

formation. High porosity and low porosity results in low and high measurements of neutrons, 

respectively (Donaldson Erle C & Tiab Djebbar, 2012). The resolution of the neutron porosity 

log is less than the density log (approximately 3 feet or 0.94 m)  (Baker et al., 2015).  The 

neutron log is affected by rare earth elements (REE), chlorine and boron, which are often 

present in shales. The presences of these elements lead to overestimation of the porosity in 

formations interbedded with shales (Figure 2.5).  
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Figure 2.5 A synthetic log of gamma ray readings and neutron porosity readings with common 

lithologies.  

The neutron porosity logs can be used to identify gas zones and fluid contacts. If the neutron 

porosity log and density log is combined, if provides a clear indication of fluid contacts 

(Donaldson Erle C & Tiab Djebbar, 2012). The neutron density log is affected by the hydrogen 

content, in oil and water the hydrogen content is similar while the hydrogen content in gas is 

much lower. The effect of the presence of gas in the formation results in lower amounts of 

neutron and underestimated porosity (Baker et al., 2015). 

The neutron log is usually calibrated to a limestone matrix or sandstone matrix, such as the 

density log and also requires correction for all other rock types (Baker et al., 2015) (Figure 2.6). 
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Figure 2.6 A neutron density cross plot, used to determine the porosity and lithology of simple 

lithologies (Schlumberger Educational Services., 1989) 

2.9 Density log (RHOB) 

The density log measures the bulk density of the formations using a radioactive source and 

detectors. The gamma rays enter the formation and the logging tool measured the reduced 

gamma ray count due to Compton scattering and photoelectric absorption (Glover, 2000). The 

density logging tool measures the matrix bulk density with corrections for mud cake thickness 

and irregularities in the wellbore (Donaldson Erle C & Tiab Djebbar, 2012). The total density 

or bulk density (𝜌𝑏𝑢𝑙𝑘) of a formation is the average densities of matrix (𝜌𝑚𝑎𝑡𝑟𝑖𝑥) and fluid 

(𝜌𝑓𝑙𝑢𝑖𝑑) in the pores. The porosity in the formation is affected by the presences of shale, which 
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have a density range that varies depending on the clay minerals present in the shale (Donaldson 

Erle C & Tiab Djebbar, 2012). In addition, it can be used to identify evaporites and gas-bearing 

formations.  

The density log is used to estimate the effective porosity, the effective porosity derived from 

the density log can be obtained by the following: 

𝜑𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑏𝑢𝑙𝑘

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 − 𝜌𝑓𝑙𝑢𝑖𝑑
 Eq. 2.11 

The fluid density is normally assumed to be 1.0 gm/cc in wells with water-based mud and 1.1 

gm/cc for saline muds (Alger & Raymer, 1963; Glover, 2000). This may lead to incorrect 

porosities if there are gas, oil or no mud invasion. The fluid density in an uninvaded zone of oil 

and gas is typically 0.9 gm/cc and 0.7 gm/cc, respectively.  If there is salt-water in the formation 

the density readings increase (Alger & Raymer, 1963). The typical matrix density is limestone 

density (2.71 g/cm3) or sandstone matrix density (2.65 g/cm3) (Table 2.3). If a log is based on 

a specific matrix density (e.g limestone or sandstone) it gives the correct measured porosity 

value of the specified matrix filled with fresh water. The porosity require corrections for all 

other lithologies. (Baker et al., 2015) 

Table 2.3 Common matrix densities and different lithologies from (Donaldson Erle C & Tiab 

Djebbar, 2012) 

Lithologies ρmatrix g/cm3 

Carbonate(limestone) 2.71 

Calcareous sand 2.69 

Consolidated sand 2.65 

Unconsolidated sand 2.60 

Shaly sand 2.6 

Sand 2.2-2.85 

 

2.10 Resistivity logs (RD and RM) 

The three main ways of measuring the electrical resistivity of formations penetrated by the 

wellbore: conventional log, laterolog and induction log. The conventional resistivity log 

measures the electric potential and flow of the current between a transmitter and a receiver at 

the surface. For low resistivity or salty muds laterologs are generally used, while the induction 

log is generally used for freshwater or oil-based muds with low resistivity (Selley & 
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Sonnenberg, 2015). The electrical resistivity measured from the formations varies greatly. 

Rocks filled with hydrocarbons and solid rocks are highly resistive, while shales and permeable 

rocks have low resistivities (Figure 2.7).  

The electrical resistivity along a wellbore measures the resistivity of the invaded (Rxo) and 

uninvaded zone (Rt) (Figure 2.7). The invaded or flushed zone is where the mud cake squeezes 

into the formation and original pore fluid is displaced. The responses of Rt is measured in deep 

resistivity logs, while the resistivity of the flushed zone (Rxo) and resistivity of the mud filtrate 

(Rmf) is measured by medium and shallow resistivity logs, respectively. The shallow and 

medium resistivity logs is used in the invaded zones (Baker et al., 2015). The shallow resistivity 

log measures the resistivity of the flushed zones, and the medium resistivity logs measures the 

invaded zones (flushed zone and transition zone). Using the resistivity log and SP log combined 

allows for a qualitative interpretation of lithology and fluids in the formation. The resistivity 

log measures the resistivity of the formation which depends on the porosity, water saturation 

and the salinity (Baker et al., 2015).  

 

Figure 2.7 Self-potential and resistivity log in a permeable formation and the different measured 

resistivities (Selley & Sonnenberg, 2015).  

The resistivity logs are used to determine the water saturations in the formation using Archies 

law (Archie, 1942). The general relationship is given by the formation factor resistivity (F) (Eq. 

2.12).  

(
𝑅𝑜

𝑅𝑤
) = 𝐹 = (

𝑎

𝜑𝑚
)  

Eq. 2.12 

Where Ro is the resistivity of the rock at 100% saturated water resistivity, Rw is the water 

resistivity, a is a constant and m is the cementation factor. The water resistivity can be 
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determined from the SP log, a geographical constant Rw, from formation water samples or 

measure resistivity and porosity of the water zone assuming 100% water saturation. There exist 

several values for the cementation factor and the constant. In a flushed zone the equation for 

the formation resistivity is:  

𝐹 = (
𝑅𝑥𝑜

𝑅𝑚𝑓
) 

Eq. 2.13 

In general the Humble formula for soft formations (e.g. sandstone) is used (Donaldson Erle C 

& Tiab Djebbar, 2012; Selley & Sonnenberg, 2015). The constant a is 0.62 and the cementation 

factor is 2.15 for the Humble formula, given by the following:  

𝐹 = (
0.62

𝜑2.15
)  

Eq. 2.14 

Then the saturation in the uninvaded zone (Eq. 2.15) and in the flushed zone (Eq. 2.16) yields:   

𝑆𝑤 = (
𝐹𝑅𝑤

𝑅𝑡
)

1
2
 

Eq. 2.15 

𝑆𝑥𝑜 = (
𝐹𝑅𝑚𝑓

𝑅𝑥𝑜
)

1
2
 

Eq. 2.16 

If the mud invasion is too deep the water saturation may give an incorrect water saturation 

(Baker et al., 2015). 
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3 Machine learning techniques 
Machine learning can be defined as a computational method that uses experience to improve 

performance or make accurate predictions (Mohri et al., 2018). The experience that is referred 

to is past information available to the learner. The success of the predictions relies on the quality 

and size of the data in the training sets (Mohri et al., 2018). 

In the learning stage of machine learning algorithms, there are examples used as a guide, for 

instance, the data used for learning and evaluation. The data set is divided into the training set, 

validation set and test set. The training set is used to train the learning algorithm, while the 

validation set is used to tune the parameters of the learning algorithm, and lastly, the test set is 

used to evaluate the performance of the learning algorithm (Mohri et al., 2018). The data set 

used in the training stage consists of input data (X) and the desired outputs, target data (T), 

where the network aims to describe the relationship between the input data and the target data.  

The main aim of machine learning is to construct a model that learns a function to describe a 

certain pattern of a dataset where another unknown pattern exists. The model learns prediction 

rules to predict data where the desired output (T) is unknown (Boulesteix et al., 2020) . The 

models in Artificial Neural Networks (ANN) consists of computational stages and an algorithm 

that minimizes the error value of the model. In addition, there are a series of free parameters 

such as hyper-parameters that can be obtained to make the machine learning model the best 

description of the selected data set. A hyperparameter is a free parameter that is user-defined 

and needs to be manually adjusted rather than from the learning stage, such as input weighting 

or bias value etc. 

In machine learning, there are two main types of learning: active learning and passive learning. 

Active learning is used to describe a learning problem where the data set is somewhat controlled 

by the user. On the other hand, passive learning has a training set that is not controlled by the 

user.  Active learning is used when obtaining target data for the data set is expensive or time-

consuming. 

The standard machine learning model is either classification (prediction) from data or 

regression, which is prediction of a continuous variable (Nichols et al., 2019). Linear regression 

is the simplest form of machine learning, assuming a linear function for the model the slope 

(β1) and intercept (β0) is the training of the model (Figure 3.1). 
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Figure 3.1 Illustration of a simple linear model function with one variable: 𝑌 = 𝛽0 + 𝛽1𝑋1 +

𝜀 (error term).  

The machine learning process can be divided into divided into supervised, unsupervised, and 

reinforced or semi-supervised learning. These machine learning techniques are used to solve 

different problems (Figure 3.2). The supervised learning method uses a method that trains the 

network by using a vast amount of target data. The supervised machine learning process mainly 

used for classification and regression since the output can be divided into categories or classes. 

The contrast to supervised learning is unsupervised learning that aims to recognise patterns in 

the data set. Unsupervised learning processes are typically self-organising maps, association 

rules and clustering. The last machine learning process is the reinforced or semi-supervised 

learning, which is like supervised learning. It uses sequential decision making and does not 

have examples such as target data. 
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Figure 3.2  An overview of some of the most common machine learning techniques modified from 

(Sharma & Wang, 2018; Duc et al., 2019) 

Prediction of rock properties from petrophysical logs such as porosity or permeability is a 

supervised process. The model aims to predict the rock properties using the petrophysical logs 

and desired output values or target values, such as core data.  

The main problems for the supervised learning method are overfitting and underfitting of the 

data (Müller & Guido, 2016). Underfitting occurs when the supervised model fails to capture 

the patterns of most of the data in the training set. The constructed model is too simple to capture 

the variation in the data. On the other hand, overfitting is when the supervised model is 

particularly fitting to a set of data rather than capturing the pattern of the remaining training set 

(Figure 3.3). The overfitted model is unable to be used for new data, and the fit is too good to 

be realistic. An appropriate fit is a fit that lies between overfitting and underfitting, and a good 

fit of the supervised model is the main aim.  

Machine learning 
techniques

Supervised learning

Regression

Neural network, 
Decision trees, 

Ensembles, Hierarchical, 
Linear regression

¨Classification

Support vector machines, 
Naïve Bayes, Nearest 
neighbours, Neural 

network, Discriminant 
analysis

Unsupervised learning Clustering

K-means,  Hierarchical,  
Gaussian mixture, 

Hidden Markov, Neural 
Networks

Reinforced learning
Policy- or value-iteration 

based
Montecarlo based, fuzzy-

Q, Q-learning



 

21 

 

 

Figure 3.3 Two examples with one prediction (above) and two predictions, classsification (below) 

showing illustrations of underfitting(left), good fitting (middle) and overfitting (right) 

(Boulesteix et al., 2020).  

The performance of the machine learning model over time when it is learning is important for 

the fitting of the data. The machine learning model learns over a certain period and tries to 

reduce the error of the model on the training set. The learning curves in machine learning is 

used in two different contexts: the accuracy of the predictions for a certain number of training 

examples and the inaccuracy of the predictions over a certain number of training iterations 

(Sammut & Webb, 2011). In the learning curve, the error in the prediction decreases 

proportionally with the errors in the training set. If the model using the training set is overly 

trained, the performance on the training set may continuously decrease, and result in overfitting. 

If the model is overfitting the model’s ability to generalise decreases and the error in the training 

set increases. The iteration where the generalisation and training error initially have decreased 

and reached a minimum prior to the generalisation error increasing is the optimal iteration for 

a good fit of the model (Figure 3.4).  
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Figure 3.4 (a) Learning curve of the accuracy of the model as a function of samples. (b) Learning 

curve of  an artificial neural network modified from (Sammut & Webb, 2011) 

There are two types of machine learning, shallow and deep learning. Shallow learning is based 

on user-defined information requiring additional information to aid in the learning process. 

Deep learning has flexible architectures that can learn directly from raw data, such that the 

accuracy of the prediction increases with the number of data samples (Motamedie, 2020).  Some 

examples of shallow learning are support vector machines (SVMs) or decision trees. The 

examples of deep learning are multilayer feed-forward neural networks or recurrent neural 

networks.  

3.1 Application of machine learning techniques 

Machine learning techniques have been utilised to model progression and the treatment of 

cancerous patients (Kourou et al., 2015). Machine learning techniques have also been proven 

successful in clustering, classification or regression (Schmidt et al., 2019). Self-driving cars are 

also a result of machine learning techniques (Bojarski et al., 2016). Image classification using 

machine learning techniques have been applied and as a result  have resulted in image and 

speech recognition, web-searches and email or spam filtering (Kourou et al., 2015). Using 

machine learning to optimise existing water supply systems, such as forecasting urban water 

demand (Adamowski et al., 2012) 

In the petroleum industry various machine learning techniques have been applied to predict 

porosity, permeability, and fluid saturations. Neural networks have been applied to predict 

porosity and/or permeability (e.g. Huang et al., 1996; Huang & Williamson, 1997; Helle et al., 

2001; Rwechungura et al., 2011; Saputro et al., 2016; Ahmadi & Chen, 2019). In addition, there 
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are studies where neural networks are applied to predict porosity and/or fluid saturation (Helle 

& Bhatt, 2002; Mahmoudi & Mahmoudi, 2014; Hamada et al., 2020). 

3.2 Artificial Neural Network (ANN) 

The first proposed computational model using neurons as architecture was in 1943 (Mcculloch 

& Pitts, 1943) . The findings compared the model parameter values to determine the output, 

thus the model was not able to learn since some of the model parameters (weights) were fixed 

(YEGNANARAYANA, 2009). The introduction of computers allowed to develop and test 

artificial neurological networks (Vandeginste et al., 1998). The first artificial neural networks 

on computers were the perceptron (Rosenblatt, 1957, 1958) and the Adaptive linear element 

(Adaline) (Widrow & Hoff, 1960) (Vandeginste et al., 1998). In a paper by Minsky & Papert, 

1969 it was proven that a network with two layers is incapable of representing or approximate 

functions outside a narrow range. Eventually, the first published article on neural network 

application was published in 1989 using a neural network where the input data propagates 

through the network in a forward direction from input to output (feedforward neural network) 

(Hornik et al., 1989).  The main difference between the networks is mainly the learning rules 

or functions. Learning strategies such as back propagation was proposed originally in 1974 and 

rediscovered in 1986 with a new technique and a clear framework (Werbos & John, 1974; 

Rumelhart et al., 1986).  

Artificial Neural Networks (ANN) are computational models that are constructed based on the 

structure of biological neural networks, like a human brain (Sammut & Webb, 2011). The 

computational model can be defined as a network of simple processing neurons that can perform 

simple numerical manipulations (Adamowski et al., 2012). The data-driven process with ANNs 

using mathematical algorithms can solve complex problems that are non-linear using the 

relationship between the input data and output data (Adamowski et al., 2012). In most cases 

ANNs are adaptive systems that changes structured based on external or internal information 

used in the training phase of the network (Sammut & Webb, 2011).  

The structure of an artificial network consists of three key elements: Input layer, hidden layers, 

and output (Wang, 2003). A simple illustration of a single neural network with one input(𝑥), 

hidden layer and output (𝑦) (Figure 3.5). In addition, the connections between the input layer 

and hidden layer are represented by input weights and the connections between hidden layer 

and the output layer are layer weights. If there are multiple hidden layers the connections have 
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several layer weights. Other elements are bias (𝑏) and the activation or transfer function of the 

hidden layer (𝑓(𝑦)) (Anastassiou, 2011).  

 

Figure 3.5 Model of a simple network with one input and one hidden layer where information is 

forwarded from left to the right. 

The artificial neural network can be expressed mathematically by the following equations in 

this chapter.  

The function of a single network with one input neuron can mathematically be expressed by:  

𝑦 = 𝑓(𝑦) = 𝑓(𝑤𝑥 + 𝑏) Eq. 3.1 

Where the predicted output (𝑦)  is obtained from the activation or training function (𝑓(𝑦)) 

calculated from the input (𝑥), weight (𝑤) and bias (𝑏). A network can consist of several neurons 

that connect one to several hidden layers between the input neurons and output neurons. When 

the number of nodes in the layers increases or varies the network architecture changes. In a 

network with multiple inputs the output (𝑦𝑘) is the weighted sum of all inputs, and biases. A 

simple example with multiple inputs ( 𝑥𝑖) and one hidden layer 𝑗 is shown in Figure 3.6. The 

illustration is a special case with simple connections between the neurons in the input layer and 

hidden layer, usually, the connection from input neurons are connected to every neuron in the 

hidden layer (see section 3.2.1, Table 3.1). The multiple inputs (𝑥1, 𝑥2 … .  𝑥𝑖) , are connected to 

weights (𝑤1,1, 𝑤1,2 … .  𝑤𝑖,𝑗) from the input layer 𝑖 to a hidden layer 𝑗 and from the hidden layer 

to the output layer (𝑤2,1, 𝑤2,2 … .  𝑤𝑗,𝑘). The weights in a network can be divided into the input 

weights ( 𝑤𝑖,𝑗) and the layer weights ( 𝑤𝑗,𝑘). The number of biases in the network are the sum 

of the number of nodes in the input (𝑏𝑖), hidden layers (𝑏𝑗) and the output layer (𝑏𝑘) 
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Figure 3.6 A simplified network structure with multiple inputs, with connected weights (wij and 

wjk) from the input layer and hidden layer, respectively.  

Then the net output of the network can be expressed as the sum of weights, inputs and biases 

from all the layers (Eq. 3.2). The predicted output, 𝑦𝑘, in the output layer  𝑘 in a hidden layer 

is generated using an activation or transfer function (f). The predicted output depends on the 

transfer function that is chosen. 

∑𝑦𝑘 = 𝑓 ∑(𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑖,𝑗) + (𝑤𝑗,𝑘𝑥𝑖 + 𝑏𝑗,𝑘) Eq. 3.2 

There are different types of transfer function, such as Sigmoid function, arc tangent and 

hyperbolic tangent, hard limit function and linear function. sigmoid and hyperbolic tangent 

functions are usually selected (Özbek & Fidan, 2009). 

The three most used activation functions are: linear function, Hard Limit function and log-

sigmoid function. Other activation or transfer functions are arc tangent and hyperbolic tangent. 

I. Linear functions 

The linear function gives a result where the input is equal to the output: 

𝑓(𝑦) = 𝑦 Eq. 3.3 

II. Hard Limit function 

The Hard Limit function is defined by the following function: 
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𝑓(𝑦) = {
1 𝑖𝑓 𝑦 ≥  0
0 𝑖𝑓 𝑦 < 0

 
Eq. 3.4 

If the hard Limit function is symmetrical the function yields: 

𝑓(𝑦) = {
1 𝑖𝑓 𝑦 ≥  0

−1 𝑖𝑓 𝑦 < 0
 

Eq. 3.5 

III. Log-sigmoid function 

The most common example of transfer function is the sigmoid (or logistic) function(Wang, 

2003). It is one of the most used transfer functions for back-propagation. The transfer function 

distributes the outputs into a range between 1 and 0 (Figure 3.7). The log-sigmoid function is 

expressed by the following equation.  

𝑓(𝑦) =
1

1 + 𝑒−𝑦 
 

Eq. 3.6 

 

Figure 3.7 A simple illustration of a Sigmoid function 

3.2.1 Network Architecture  

Selecting a network type that is robust for approximation and the connectivity between the 

nodes are important. The connection between the nodes determines how the information is 

forwarded through the network (Vandeginste et al., 1998). Many researchers agree that the 

quality of the result is dependent on the network size used to solve the problem (Bebis & 

Georgiopoulos, 1994). 

A crucial step for the construction of a neural network consists of selecting an appropriate 

architecture or network size (Bebis & Georgiopoulos, 1994). The size of the network is related 
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to the number of hidden layers, neurons in the hidden layers, connectivity between each of the 

layers. In general, the network size affects the following: 

I. The complexity of the network 

II.  learning time of the network 

III. Generalisation capabilities 

The complexity of the network is related to the number of unknowns (e.g. weights and biases) 

generated from the network. The generalisation capabilities are the ability of the neural network 

to produce accurate outputs that are outside the range of the training set. The accuracy of the 

model is dependent on the weights and biases in the network since they are used to fine-tune 

the model fitting. The generalisation of the network can be influenced by the number of training 

samples in the training set. With a large number of data points in the training set, the influence 

on the generalisation abilities are preserved, even with a larger number of neurons (Hunter et 

al., 2012). The number of training samples required depends on the size and distribution of the 

data (Kavzoglu, 2009). The maximum number of training samples in a neural network can be 

specified by the Vapnik-Chervonenkis (VC) dimension to obtain a perfect fitting for almost any 

data set (Friedland & Krell, 2018).  

The number of hidden layers in a neural network is user-defined. According to research a 

network with two hidden layers is considered as acceptable for approximating any non-linear 

functions for classification problems (Hecht-Nielsen, 1989). It is also proven that one hidden 

layer is enough for a close approximation of any continuous function  by a continuous neural 

network using a sigmoidal function (Cybenkot, 1989). In many cases, the neural networks are 

large and trained to very small errors since it is easier to train with a larger number of neurons. 

The problem with training the large networks to small errors is that the networks respond poorly 

to patterns outside the training set (Hunter et al., 2012).  

The selected method in this study is neural networks, precisely feedforward network types. The 

neural networks can vary significantly in the structure or architecture depending on the problem. 

The feedforward network type in the thesis is multilayer perceptron or multilayer feedforward 

network architecture (MLP). Networks that have similar architecture to the MLP is Cascade 

network and Single-Layer Perceptron (SLP) (Table 3.1). The most widely used neural network 

type is the Multiple-Layer Perceptron (MLP) (Pun et al., 2019). In a comparison study the MLP 

was proven as one of the most robust methods with only one or two hidden layers (Yu et al., 

2019). 
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Table 3.1 Simplified illustrations and a brief description of relevant network architectures in this 

study  

Network 

types 

Network 

description 

Architecture  

F
ee

d
 f

o
rw

a
rd

 n
et

w
o

rk
 

Single-layer perceptron: 

Single-layer perceptron, 

with one hidden layer and 

multiple nodes. The 

information is sent in a 

forward direction. 

 

Multilayer feedforward 

network/Multilayer 

perceptron: 

Consists of a single 

hidden layer or multiple 

hidden layers, with 

connections from input to 

hidden layer(s) and to 

output. The information is 

sent in a forward direction.  

 

O
th

er
s 

Cascade network: 

There are some 

similarities between the 

MLP feedforward net and 

cascade network. The 

network has additional 

connections from the 

input to every layer, and 

from each layer to all 

following layers. 

 

3.2.2 Feedforward networks 

There are different types of feed forward networks, however they are similar in the way the 

information is transported through the network. The feedforward neural network has a hidden 
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layer with sigmoid activation function and in the output layer a linear activation function that 

would be able to estimate each complex function.  

3.2.2.1 Perceptron network (SLP and MLP) 

The earliest artificial network is the perceptron after Rosenblatt 1957. A simple perceptron 

network architecture where the input is connected to one output layer (Figure 3.8). A single 

perceptron is mainly used for classification of the input vectors into two categories of output 

(output is either 0 or 1). 

 

Figure 3.8 A simple perceptron where the information is forwarded from left to right. 

The perceptron network uses the hard limit transfer function (see section 3.2) and the output of 

the network is given by: 

𝑦 = 𝑓(𝑤𝑥 + 𝑏) = ℎ𝑎𝑟𝑑𝑙𝑖𝑚𝑖𝑡 (𝑤𝑥 + 𝑏) Eq. 3.7 

Where x, the input vector is connected to the weight vector (w) and the bias vector (b). The 

perceptron network is limited to give a combination of weights and bias that yields a correct 

classification, which relies on the number of hidden layers in the network (Vandeginste et al., 

1998).  

The single perceptron architecture was limited to two outputs and only able to solve simple 

linear problems. An new version of the perceptron was proposed in 1958, the multiple layer 

perceptron (MLP) (Rosenblatt, 1958). A multilayer perceptron usually has three layers one 

input layer, one hidden layer and one output layer, with log-sigmoid transfer function in the 

other layers and a linear transfer function in the output layer (Figure 3.9). It has been proven 

that a perceptron with only two hidden layers is incapable of predicting values outside a narrow 

and special range (Hornik et al., 1989).  



 

30 

 

 

Figure 3.9 A schematic illustration of a multilayer perceptron with one input layer, one hidden 

layer and one output layer. The hidden layer consists of 4 neurons in this illustration.  

The MLP is the most widely used neural network (Pun et al., 2019). The MLP network consists 

of multiple hidden layers that can classify inputs into several categories, compared to the 

perceptron. The multi-layer perceptron is also called multilayer feedforward network with 

layers that are fully connected to each other from the input to the output. The input is sent in a 

forward direction from the input layer to the output layer, where the output of each layer is 

forwarded to the following layer. At the output layer, the error between the predicted outputs 

and target values is compared. The error (𝜀) from the perceptron network and the MLP is the 

difference between the for the targeted output (𝑇) and the predicted output (𝑌) for the kth 

iteration. 

𝜀𝑘 = 𝑇𝑘 − 𝑌𝑘 Eq. 3.8 

After the error is calculated the network weights are adjusted using a supervised learning 

algorithm. The updated weights for the Perceptron are expressed by: 

𝑤𝑘+1 = 𝑤𝑘 + 𝜀𝑘  𝑥𝑘 Eq. 3.9 

𝑏𝑘+1 = 𝑏𝑘 + 𝜀𝑘   Eq. 3.10 

One of the most popular neural network models is multilayer networks, trained by a learning 

algorithm called Back-propagation (BP) algorithm (Li et al., 2012).  

3.2.2.2 Adaline 

The Adaptive Linear Neuron network was probosed by Widrow and Hoff in 1960. The Adaline 

network have the same architecture as the perceptron (Figure 3.8), however the transfer function 
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applied is linear. The Adaline network can solve linear problems and classifications, the 

predicted output is described by: 

𝑦 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 (𝑤𝑥 + 𝑏) Eq. 3.11 

The Adaline network uses a delta rule or least mean square (LMS) algorithm instead of hard-

limit. The LMS algorithm minimises mean squared error making it more powerful than the 

single perceptron  (M. Hagan T. et al., 2002). The LMS learning algorithm is the squared errors 

between the predicted and desired outputs (Eq. 3.12Eq. 2.1). 

𝜀(𝑘) = [𝑇𝑘 − 𝑌𝑘]2 Eq. 3.12 

The weights and bias are adjusted by the following equations: 

𝑤𝑘+1 = 𝑤𝑘 + 𝑘 𝑥𝑘 Eq. 3.13 

𝑏𝑘+1 = 𝑏𝑘 + 𝑘 𝑏(𝑘 + 1) Eq. 3.14 

 

3.2.3 Other neural networks 

An improved version of the MLP is the Bridged Multilayer perceptron (BMLP), with 

connections across the hidden layers (Hunter et al., 2012). In a Bridged Multilayer Perceptron, 

the connections between the layers is from the input layer to all the hidden layers.  

The cascade-forward neural network architecture is similar to the MLP, however the 

connections are different. The cascade network has connections from the input and every 

previous layer to the next layers. requires at least 12 to 19 neurons in the hidden layers and if 

some of the connections are removed the network will be reduced to a Bridged multilayer 

perceptron (Hunter et al., 2012). The cascade networks use backpropagation algorithms like the 

MLP.  
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4 Optimisation techniques 
Many algorithms have been developed for training a neural network aiming to update weights 

and biases and reduce the errors. The main aim of the learning algorithm is to reduce the 

learning error of the network to very small values. When the errors are very small the 

generalisation abilities of the network may be poor.  

The most popular training algorithm is the Error Back Propagation (EBP). The simple EBP 

algorithm is inefficient and improved versions of the EBP algorithm have been proposed such 

as e.g momentum, stochastic learning rate, flat-spot elimination, RMSPROP and QUICKPROP 

(Hunter et al., 2012). Better results can be obtained using second-order methods since the search 

process in the EBP algorithm follows the gradient and can be trapped in a local minimum 

(Hunter et al., 2012). The Levenberg Marquardt (LM) algorithm is the most efficient second-

order learning algorithm, and it is written such that it is only applicable for training multilayer 

networks. (Hunter et al., 2012). 

Swarm intelligence is another discipline that studies the collective behaviour of systems with 

many individual points that interacts locally with each other, like e.g colonies of ants, flock of 

birds. There are two types of optimisation algorithms using swarm intelligence: ant colony 

optimisation and particle swarm optimisation.  

4.1 Ant colony optimisation (ACO) 

As the name suggest the ant colony optimisation was inspired by the behaviour of ant species. 

In the paper of  Beckers et al., 1992, the results show that ants tend to find and select the shortest 

path between two points.  

The ant colony optimisation is a population-based algorithm that is used to solve complex 

mathematical problems, such as estimation of reservoir parameters.  In the ACO each individual 

data point in the population is a computational agent or ant that builds a solution to the 

considered problem (Maniezzo et al., 2004). The algorithm is based on moving stepwise and 

each step define which solution components that will be added in the final solution.  In addition, 

a probabilistic model is associated with the movements and used to bias the choices of the 

computational agents in the population, to increase the accuracy (Kakas et al., 2011). 

4.2 Particle swarm optimisation (PSO) 

Particle Swarm Optimisation (PSO) was inspired by the behaviour of animals (such as a flock 

of birds) (Kennedy & Eberhart, 1995). The PSO algorithm is used to optimise continuous non-
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linear functions (Rwechungura et al., 2011). The main aim of the algorithm is to optimise the 

model parameters and increase the model performance according to a minimising function e.g 

Mean Squared Error (MSE). 

The algorithm describes the position of a particle (Pi) in a population of 20 to 50 with several 

random decision values. Each of the particles consists of three parameters, the new particle 

position (Pnewi), velocity (vi) of the particle and the best particle position (Pbest). Each of the 

particles moves through the problem space with a random velocity aiming to find the best 

solution for the particle and the best solution on the whole population (Pbest and Pglobal). The 

parameters in the PSO algorithm are listed in Table 4.1.  

Table 4.1 The parameters used in the Particle Swarm Optimisation (PSO) algorithm with 

descriptions of each parameter. 

Variable Descritption 

Pi Particle position 

vi Particle velocity 

Pbest Best solution of individual particle 

PGlobal Best solution of the whole population 

C1, C2 Cognitive social parameters 

nVar  Number of variables  

minVar Lower bound range 

maxVar Upper bound range 

w Inertia weight 

The new velocity is obtained by the following equation:  

𝑣𝑖,𝑛𝑒𝑤 = 𝑣𝑖,𝑜𝑙𝑑 + 𝐶1 × 𝑟𝑎𝑛𝑑𝑜𝑚[𝑚𝑖𝑛𝑉𝑎𝑟, 𝑚𝑎𝑥𝑉𝑎𝑟](𝑃
𝑏𝑒𝑠𝑡

− 𝑃𝑖)

+ 𝐶2 × 𝑟𝑎𝑛𝑑𝑜𝑚[𝑚𝑖𝑛𝑉𝑎𝑟,𝑚𝑎𝑥𝑉𝑎𝑟](𝑃𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑃𝑖) 

Eq. 4.1 

Then the new particle position is updated by adding the velocity to the old particle position (Eq. 

4.2). 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝑣𝑖,𝑛𝑒𝑤 Eq. 4.2 

 

4.3 Back-propagation algorithms 

The Backpropagation learning algorithm is a steepest descent algorithm, using the gradient of 

the error function (𝐸). In addition, the error function can also be expressed as a function of the 
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weights or bias. The flow of the network input is sent in a forward direction and backward 

direction. The term backpropagation network is often used to describe a multilayer perceptron 

architecture (Bishop, 2006). The simplest optimization technique uses gradient descent 

(Rumelhart et al., 1986). In the Error backpropagation algorithm, the error function of a specific 

input pattern (𝐸n) set can be defined as: 

𝐸𝑛 =
1

2
∑(𝑇𝑛𝑘 − 𝑌𝑛𝑘)2

𝑘

 
Eq. 4.3 

The gradient of the error backpropagation with respect to a given weight (wj,i) (). 

𝜕𝐸𝑘

𝜕𝑤𝑗,𝑖
= (𝑇𝑛𝑘 − 𝑌𝑛𝑘)𝑥𝑛𝑖 

Eq. 4.4 

The backpropagation optimisation has some limitations such as slow convergence, incapable 

of handling multiple objectives and a high probability to be trapped in local minima during 

training (Santos et al., 2012). 

4.3.1 Gradient Descent (GD) and Stochastic Gradient Descent 

(SGD) 

The Gradient Descent and Stochastic Gradient Descent algorithm are similar optimisation 

algorithms. Both optimisation algorithms update the weights in an iterative process to minimize 

the errors in the network.  

In the Gradient Descent algorithm, the weights are updated every time the training set runs 

through the algorithm, after each epoch.  In the Gradient descent the algorithm updates the 

weights and biases by moving small steps for each epoch until the algorithm reaches a cost 

gradient. The Gradient Descent uses all the training samples, while the Stochastic Gradient 

Descent uses one sample or a subset of the training samples to update the weights. Both 

optimisation algorithms use the same equation to update the weights (Eq. 4.5). 

𝑤𝑘+1 = 𝑤𝑘 − 𝛼
𝜕𝐸𝑘

𝜕𝑤𝑘

 

 

Eq. 4.5 

The updated parameter vector at ith iteration is equal to the parameter vector at ith iteration 

with the learning rate and the gradient of the transfer function. In addition, if a momentum is 

added to reduce oscillation (Murphy 2012) in the updated parameter vector is is called the 

Stochastic Gradient Descent with Momentum (SGDM). The equation is expanded to the 
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following equation. The momentum value (𝛾) is the contribution of the previous iteration to the 

current iteration.  

𝑤𝑘+1 = 𝑤𝑘 − 𝛼
𝜕𝐸𝑘

𝜕𝑤𝑘

+ 𝛾(𝑤𝑘 − 𝑤𝑘−1) 
Eq. 4.6 

 

4.3.2 Newton and Gauss-Newton algorithm  

The Newton algorithm calculates the second order derivatives of the sum of errors in a matrix 

called the Hessian matrix. Thus, the updated weights by the Netwon’s algorithm is: 

𝑤𝑘+1 = 𝑤𝑘 − 𝐻𝑘 

𝜕𝐸𝑘

𝜕𝑤𝑘
 

Eq. 4.7 

The Gauss-Newton algorithm minimises the sum of squared errors, and converges much faster 

than the Gradient-descent method (Gavin, 2020). The Gauss-Newton algorithm uses the 

Jacobian matrix with the first order derivatives of the sum of errors. This results in an 

approximation of the Hessian matrix (Eq. 4.9). The updated weights with the Gauss-Newton 

algorithm is then defined as: 

𝑤𝑘+1 = 𝑤𝑘 − [𝐽𝑇𝐽]−1𝐽𝑇𝑒 Eq. 4.8 

The convergence in the Newton algorithm and the Gauss-Newton algorithms are fast, however 

the convergence is unstable (Mayyahi et al., 2015). 

4.3.3 Levenberg-Marquardt Algorithm 

The Levenberg-Marquart algorithm is a nonlinear least square method for neural networks (M. 

T. Hagan & Menhaj, 1994). The main aim of the algorithm is fitting the model to the data 

samples and minimising the sum of squared errors between the model and data samples (Gavin, 

2020). The Levenberg-Marquardt algorithm combines the gradient descent method and the 

Gauss-Newton method. In the Gauss-Newton method the sum of squared errors is reduced by 

assuming that the function is quadratic and finding the minimum of this. If the parameters in 

the Levenberg-Marquardt method is further from the optimal value it acts like the Gradient-

descent method and like Gauss-Newton method when parameters are close to the optimal value 

(Gavin, 2020).  

The Levenberg-Marquardt algorithm does not compute the Hessian matrix with second order 

derivatives, it is approximated by the Jacobian matrix with first order derivatives of the errors 
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using a minimised sum of errors of the form from Eq. 4.3. The errors are computed using a 

standard backpropagation technique, which is less complex than computing a Hessian matrix. 

The Hessian matrix is approximated by the following: 

𝐻 = 𝐽𝑇𝐽 Eq. 4.9 

 

And the gradient of the approximated Hessian matrix can be computed by: 

𝜕𝐻

𝜕
= 𝐽𝑇𝑒 

Eq. 4.10 

Where the Jacobian matrix 𝐽𝑇 which contains the first derivatives of the network errors (e) with 

respect to the weights and biases. Then the updated weights in the Levenberg-Marquardt 

algorithm is: 

𝑤𝑘+1 = 𝑤𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒 Eq. 4.11 

Where µ is the controlling parameter or damping factor of the algorithm and I is the identity 

matrix. If µ is equal to zero the algorithm follows the Newton method, if the parameter is higher 

it becomes gradient descent with a small step size (Zayani et al., 2008; Gavin, 2020). The 

convergence in the Levenberg-Marquardt algorithm is stable and fast (Mayyahi et al., 2015). 

 

4.4 Advantages and disadvantages of the Levenberg-

Marquardt algorithm 

The network type in this study is a feedforward network, using the Levenberg-Marquardt 

algorithm for optimisation. Some of the advantages and disadvantages of the selected method 

are presented in this section.  

The Levenberg-Marquardt algorithm finds the local minima of a function and not necessarily 

the global minimum, compared to the Particle Swarm Optimisation algorithm. The Levenberg-

Marquardt may get stuck at a local minimum (Jabri & Jerbi, 2009) 

In comparison study between Gradient Decent algorithms and Newton methods the Levenberg-

Marquardt was deemed as the fastest and ensures the best convergence towards a minimum of 

error (Zayani et al., 2008). The Levenberg-Marquardt algorithm performs better than steepest 

descent and other conjugate methods (Arif et al., 2009) 
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The Levenberg-Marquardt algorithm is sensitive to the input weights and does not consider 

outliers in the data set. This is countered by quality checking and pre-processing the data prior 

to it being loaded to the model. The outliers may lead to overfitting of data samples that are 

outside the range of the general distribution in the data set. In general, regularisation techniques 

can also be applied to avoid overfitting of these data samples. In the following section some 

regularisation techniques will be briefly explained.  

4.4.1 Overfitting  

Regularisation is the most common way to reduce overfitting/generalization of the data set. In 

a neural network the regularisation term modifies the performance function, which is normally 

chosen as the sum of squared errors in the neural network.  

A regularisation term for the weights and the transfer function can be added to reduce overfitting 

of the network (Bishop, 2006; Murphy, 2012). L1 regularisation (sum of absolute values of 

model parameters) and L2 regularisation (sum of squared absolute values of model parameters), 

are two commonly used regularisation methods (Demir-Kavuk et al., 2011).  The regularisation 

is added to the loss function that minimises the errors. It is important to keep in mind that the 

biases are not regularised (Murphy, 2012). Selecting correct regularisation values for the 

function is the main problem with implementing regularisation (Kayri, 2016). 

Another regularisation technique is early stopping to avoid overfitting, however early stopping 

can also reduce the variance and increase bias (Kayri, 2016). The Levenberg-Marquardt 

algorithm is an algorithm that mainly relies on the training process to stop when certain 

conditions are met, early stopping, to reduce overfitting (section 5.6).  

Another way to reduce overfitting is using a Bayesian regularisation backpropagation network 

(BR), which has an added regularisation term. The BR network updates the weights according 

to the Levenberg-Marquardt algorithm with using Baye’s rule and the regularisation parameters 

α and β (Eq. 4.12). 

𝑃(𝑤 ∣ 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡, 𝛼, 𝛽,𝑀) =   
𝑃(𝑑𝑎𝑡𝑎 𝑠𝑒𝑡|𝑤, 𝛽,𝑀)𝑃(𝑤|𝛼,𝑀)

𝑃(𝑑𝑎𝑡𝑎 𝑠𝑒𝑡|𝛼, 𝛽,𝑀)
 

Eq. 4.12 

In studies the Bayesian regularisation have been proven to give better performance based on 

the mean absolute error, however the required time for training is much longer than the 

Levenberg-Marquardt algorithm (Jazayeri et al., 2016; Kayri, 2016) 
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5 Methodology 
5.1 Study area  

The Varg field is in the central part of the North Sea, located to the South of the Sleipner Øst 

field (Figure 5.1). The field was discovered in 1984 and production started in 1998. A 

decommissioning plan was approved in 2001, and a new plan was submitted in 2015, eventually 

it was shut down in 2016. The field mainly produced oil from Upper Jurassic sandstones at 

approximately 2700 metres. The available and comparable petrophysical logs and core data in 

Well 15/12-1, 15/12-4, 15/12-5, 15/12-6S, 15/12-9S and 15/12-A8 is used in this study. A short 

summary of the well information is presented in Table 5.1. 

 

Figure 5.1 Location of the Varg field in the Central North Sea. The black circles are the wells used 

to calibrate the model, and the red circle is the well the calibrated model is tested on.  

Table 5.1 Well information of the selected wells in the study  

Wells Type and Purpose 

Total 

depth [m 

RKB] 

Oldest 

penetrated 

age 

Top depth 

core [m] 

bottom 

depth core 

[m] 

15/12-1 
Exploration, 

Wildcat 
3269 Late Triassic 2635.8 3150.1 

15/12-4 
Exploration, 

Wildcat 
3157 

Middle 

Jurassic 
2439 2919.7 

15/12-5 
Exploration, 

Appraisal 
3150 Late Triassic 2892 2967 
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15/12-6S 
Exploration, 

Appraisal 
3050 Triassic 2838 2988.3 

15/12-9S 
Exploration, 

Appraisal 
3848 Triassic 3389 3670.5 

15/12-A8 
Development, 

Injection 
3345 - 3785 3959.7 

 

The petrophysical data used in the study are limited to the depth of the core samples presented 

in Table 5.1. The depth of the cores defines the sections of interest, thus and the lithological 

description from each well will focus on the section at these depths (see section 5.3). The 

lithological description of the cores samples is divided into seven main units. The lithological 

description in the completion log and well report might differ. Thus, the general lithology of 

the formations may differ from the lithology described in the core analysis.   

5.2 Stratigraphy 

The study is focused on these units: Lista formation, Maureen formation, Tor formation, 

Heather formation, Hugin formation and Sleipner formation (Table 5.2).  

Table 5.2 Stratigraphic column of the units in used in the study.  

Chronostratigraphy Formations (FM) Group (GP) 

Paleocene 
Late Lista FM 

Rogaland GP 
Early Maureen FM 

Cretaceous Late Tor FM Shetland GP 

Jurassic 

Late Heather FM 

 

Viking GP 

Middle Vestland GP 
Hugin FM 

 

Sleipner FM 

Triassic 
Late 

Skagerrak FM Hegre GP 
Middle 
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This section summarises the lithological description of the main units in this study. 

Lista Formation 

The Lista Formation is a part of the Rogaland Group. It consists of poorly laminated shales, 

stringers of limestone, dolomite, pyrite, and locally thin sections of sandstones closer to the 

formation base. The depositional environment of the formation is deep marine with low-

energy conditions (Isaksen & Tonstad, 1989).  

Maureen Formation 

The Rogaland Group's Maureen Formation consists mainly of slightly to very calcareous 

sandstones, reworked limestones and interbedded shales. The depositional environment of the 

formation is open marine, dominated by sand influx from the northwest and local erosion 

(Isaksen & Tonstad, 1989). 

Tor Formation  

The Tor formation of the Shetland Group consists of hard, chalky limestones, alternating 

mudstones or wackestones chalky limestones or limestones. The formation rarely consists of 

packstones and calcareous shale. The depositional environment in the formation is open 

marine with calcareous debris (Isaksen & Tonstad, 1989). 

Heather Formation 

The Heather Formation of Viking Group consists of two divisions: the upper division consists 

of silty claystone, often micromicaceous and calcareous. The lower division consists of silty 

claystone with some carbonaceous sections (limestone streaks). The depositional environment 

of the formation is open marine (Vollset & Doré, 1984). 

Hugin Formation 

The Hugin Formation consists of sandstones (often calcareous and glauconitic) with shale, 

siltstone partings, carbonaceous material, and coal fragments are abundant in the formation 

and occasionally thin coal beds. The depositional environment is shallow marine with some 

influence of continental fluviodeltaic conditions (Vollset & Doré, 1984). 

Sleipner Formation 

The Sleipner formation of the Vestland Group consists mainly of non-calcareous sandstone 

and micromicaceous, hard and slightly fissile silty claystone with coal measures. The 
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depositional environment of the formation is a continental fluviodeltaic coaly sequence 

(Vollset & Doré, 1984). 

Skagerrak Formation 

The Skagerrak Formation is characterised by interbedded conglomerates, sandstone 

(orthoquartzitic or highly lithic), siltstones and shales. The depositional environment of the 

formation is a prograding system of alluvial fans (Deegan & Scull, 1977). 

5.3 Data set (Petrophysical logs and core data) 

In this section key information about the petrophysical logs and core data is presented. The 

models are calibrated with the measurements of from routine core analysis, the evaluated 

lithologies are sandstones and carbonates (e.g. chalk). The information about the findings 

from each well is either from the Norwegian Petroleum Directorate (NPD), well reports or 

core analysis (Statoil-Esso, 1975; Statoil, 1984; Statoil-Esso, 1986; Statoil, 1993; Saga 

Petroleum, 1999; Statoil, 2004; NPD, 2020). 

The well measurements for well 15/12-1 was taken in feet units, in this study it is converted to 

meters, since the other wells have measurements in meters. 51.5 m of core were taken for well 

15/12-1 in intervals at 2612-3181 m depth (Table 5.3). They include shale and sandstone from 

Palaeocene sand of the Lista and Maureen formations, the siltstone and shale of the Jurassic 

Heather Formation and sandstone of the Jurassic Hugin Formation, as well as coal, shale, 

siltstone and sandstone of the Triassic Sleipner formation. The Palaeocene sandstones at 2633 

m to 2643 m were water-wet with good porosity (26%) (Statoil-Esso, 1975). The 

petrophysical logs from well 15/12-1 shows low gamma-ray readings (30-35 API°), possibly 

tight lithology, with no significant hydrocarbon indicators (Figure 5.2 and Figure 5.3). 

Table 5.3  The depth of the core samples and the corresponding formation in well 15/12-1 

Core depth [m MD RKB] Formation  

2612.1-2635 Lista FM 

2635-2651 Maureen FM 

3067.2-3073.3 Heather FM 

3125.7-3143.7 Hugin FM 

3143.7-3181.5 Sleipner FM 
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Figure 5.2 From left to right the gamma-ray, self-potential and a cross plot of the neutron porosity 

and bulk density is displayed. The petrophysical logs are taken from core samples of Hugin FM 

and Sleipner FM of well 15/12-1. 

 

Figure 5.3 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-1- The petrophysical logs are taken from core sample of Hugin FM and Sleipner 

FM of well 15/12-1 . 
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46 m of core were taken for well 15/12-4 in intervals 2439-2919.7 m depth (Table 5.4). They 

include shale and sandstones from the Paleocene Lista and Maureen formations, siltstone and 

shale from the Jurassic Heather Formation, and sandstones from the Jurassic Hugin Formation. 

In addition, Late Cretaceous chalk of the Tor Formation is cored in this well.   

The petrophysical logs shows that the cored interval have positive separation in the crossplot 

of the neutron and bulk density plot in the section with lower gamma-ray readings (Figure 5.4). 

In the upper part of the Cretaceous chalk the core analysis indicates poor reservoir properties 

with low permeabilities (0.01-0.5 mD) and high water saturation (60-80%). In the Jurassic and 

Triassic age an oil column of 1.5 m was proven at 2911.5 to 2913 m (transition zone down to 

2915.5) (Figure 5.5). The thickness of the oil zone and the interbedded shale may affect the 

resistivity log. 

Table 5.4 The depth of the core samples and the corresponding formation in well 15/12-4 

Depth [m MD RKB] Colour 

2439-2450 Lista FM 

2494.5-2513.5 Tor FM 

2902-2920 Heather FM 

2912-2919.7 Hugin FM 
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Figure 5.4 From left to right the gamma-ray, self-potential and a cross plot of the neutron porosity 

and bulk density is displayed. The petrophysical logs are taken from core sample of the Heather 

FM and Hugin FM of well 15/12-1. 

 

Figure 5.5 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-4. The petrophysical logs are taken from core sample of Heather FM and Hugin 

FM of well 15/12-1. 
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68 m of core were taken for well 15/12-5 in intervals 2892-2967 m depth (Table 5.5). They 

include siltstone, claystone and shale from the base of the Jurassic Heather Formation and 

sandstones from the Jurassic Hugin Formation. The top of the reservoir was encountered at 

2918 m and an oil-water contact (OWC) was observed at 2942 m. An oil column of 25 m was 

proven in the Hugin Formation. The gamma-ray and self-potential logs shows higher readings 

until around 2918 metres. The cross plot with the neutron density and bulk density log shows 

positive separation indicating hydrocarbons as well as the separation and decrease in the 

resistivity logs (Figure 5.6 and Figure 5.7).  

Table 5.5 Lithological description of the cores from well 15/12-5 

Depth [m MD RKB] Colour 

2892-2918 Heather FM 

2918-2967 Hugin FM 

 

 

Figure 5.6 From left to right the gamma-ray, self-potential and a cross plot of the neutron porosity 

and bulk density is displayed. The petrophysical logs are taken from the cored depth of well 

15/12-5. 
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Figure 5.7 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-5. The petrophysical logs are taken from the cored depth of well 15/12-5. 

131.7 m of core were taken for well 15/12-6S in intervals 2838-2988 m depth (Table 5.6). one 

of the samples contained a mix of mudfiltrate and formation water with traces of hydrocarbons, 

at 2935.5 m. The cores include claystone, siltstone and interbedded sandstone from the Jurassic 

Heather Formation, sandstones from the Jurassic Hugin Formation. The cored interval of the 

Middle Jurassic Sleipner Formation consists of claystone, interbedded sandstone, coal and 

minor siltstone. The last cored formation is the Late to Middle Triassic Skagerrak formation 

consisting of claystone, interbedded sandstones and some stringers of siltstone.  

The cross plot of the bulk density and neutron porosity, and the resistivity logs indicate 

hydrocarbons around 2870 m (Figure 5.8 and Figure 5.9). In well 15/12-6S Late Jurassic 

Oxfordian sandstones (Hugin Formation) contained oil and an oil-water contact (OWC) was 

found at 2943. There were no hydrocarbons below the depth of this OWC. The well changed to 

a development well (15/12-A-2) after being suspended as an oil appraisal well.  

Table 5.6 Lithological description of the cores from well 15/12-6S 

Depth [m MD RKB] Colour 

2838-2870.5 Heather FM 

2870.5-2949 Hugin FM 
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2949-2978.5 Sleipner FM 

2978.5-2988.5 Skagerrak FM 

 

 

Figure 5.8 From left to right the gamma-ray, self-potential and a cross plot of the neutron porosity 

and bulk density is displayed. The petrophysical logs are taken from the cored depth of well 

15/12-6S. 
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Figure 5.9 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-6S. 

184 m of core were taken for well 15/12-6S in intervals 3389-3670 m depth (Table 5.7). The 

cores include sandstone, siltstone, argillaceous sandstone and stringers of limestone from 

Middle Jurassic Oxfordian sandstone unit, and sandstone, coal and shale from the Middle 

Jurassic Sleipner Formation. 

The petrophysical logs indicate hydrocarbons to 3550 m, due to the positive separation in the 

neutron porosity and bulk density cross plot, and the resistivity log (Figure 5.10 and Figure 

5.11). The reservoir was oil-bearing down to an oil-water contact (OWC) at around 3501 m. 

Table 5.7 Lithological description of the cores from well 15/12-9S 

Depth [m MD RKB] Colour 

3389-3620 Hugin FM  

3620-3670 Sleipner FM  
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Figure 5.10 From left to right the gamma-ray, self-potential and a cross plot of the neutron 

porosity and bulk density is displayed. The petrophysical logs are taken from the core depth of 

well 15/12-9S. 

 

Figure 5.11 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-9S. 
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116.2 m of core were taken for well 15/12-A8 in intervals 3125-3254.2 m depth (Table 5.8). 

The cores include sandstones from the Jurassic Heather Formation. 

Around 3215 m there is a positive separation in the neutron porosity and bulk density 

crossplot, and the separation in the resistivity logs indicates hydrocarbons at this depth 

(Figure 5.12 and Figure 5.13). There is no oil-water contact in this well, it is considered oil-

down to (ODT) (Saga Petroleum, 1999). 

Table 5.8 Lithological description of the cores from well 15/12-A8 

Depth [m MD RKB] Colour 

3135-3251 Heather FM 

3251-3254.2 Sleipner FM 

 

 

Figure 5.12 From left to right the gamma-ray, self-potential and a cross plot of the neutron 

porosity and bulk density is displayed. The petrophysical logs are taken from the core depth of 

well 15/12-A 8. 
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Figure 5.13 From left to right the Sonic log and the resistivity logs (deep and medium resistivity) 

from well 15/12-A 8. 

5.4 Data preparation 

The original data set and the selected model parameters can have a high impact on the accuracy, 

performance, and quality of the proposed model in the thesis. Consequently, the data pre-

processing and removing outliers are essential. The quality check of the data is required on the 

original data set, such that that the data set is representative. The data set used in the model 

consists of wells from the Varg field. The total number of wells in this study is of 6 wells, five 

wells for the training, validation and test set, and one well used to test the calibrated model. The 

total number of data points from the 6 wells are: 1094 data points of oil saturation and water 

saturation, and 1697 data points of porosity. Each datapoints have log readings of oil saturation, 

water saturation and porosity.  

An outline of the statistics in the data set is important to identify outliners and the distribution 

of the data. The data points that are fed to the models are the pre-processed data points, the 

amount of data from each of the wells are shown in Figure 5.14, Figure 5.15and Figure 5.16. 

The data set for the models are randomly divided into training set, validation set and test set 

with a user-defined percentage. The number of data points for the training process of the 

calibrated models are 1052 for oil saturation and water saturation. The data set is divided into 
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796 data points (75%), 156 data points (15%), and lastly 107 data points (10%), respectively. 

The number of data points for the porosity prediction from the wells are 1697. The data set is 

divided into 1270 data points (75%), 254 data points (15%), and lastly 173 data points (10%), 

respectively.  

 

Figure 5.14 The amount of data points of oil saturation in each wells. 

 

Figure 5.15 The amount of data points of water saturation in each wells. 
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Figure 5.16 The amount of data points of porosity in each wells. 

The uncertainty in the match between the well logging data and core data was calculated using 

the difference between the well logging depth and core depth. The resulting depth error was 

calculated as less than 0.05 m. The minimum and maximum difference between the well 

logging depth and core depth is shown in Table 5.9. In addition, some values in the data set are 

set as lower than 0.01,0.02 or 0.04. To avoid selecting values, a random distribution range 

between 0 and 0.01,0.02 or 0.04 is used.  

Table 5.9 The errors between the cored depth and the well logging depths 

 Difference [m] 

Min 0.0002 

Max 0.09 

Average 0.05 

 

The data set for the model have well logging data for Caliper (CALI), Gamma-ray (GR), Self-

Potential (SP), Sonic Transit time (AC or DT), Bulk density (RHOB), Density correction 

(DRHO), Neutron porosity (NPHI), Resistivity log (RD) and Resistivity log (RM). In addition, 

the data set have core data for oil saturation (So), water saturation (Sw) and porosity (POR). 

The number of datapoints in the oil saturation and water saturation is less than the data points 

in the porosity, due to the frequency of the measurements.  

For large data set the difficulty in validating the results increases, since the data distribution of 

the data samples may vary largely. For data sets with many variations in the data distribution 
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the constructed model could become overfitted. The constructed model may mistake the 

variations as important variance which leads to larger errors (Hira & Gillies, 2015). Other 

variations are from measurement errors or the natural variation in the data set, such as variations 

in the data distribution of wells. Identifying noise and which features to include is necessary to 

improve the efficiency of the model. There are two techniques: feature selection (selecting a 

smaller subset) and feature extraction (e.g. filtering)  (Hira & Gillies, 2015). Thus, the data set 

is pre-processed to avoid or reduce unnecessary complexity of the problem the model tries to 

address (Kothari & Oh, 1993). 

Scaling, normalising, or rescaling the data set are common methods to handle data. In this study 

the data is normalised using Eq. 5.1. The technique is called Min-Max normalization where the 

data is fitted to the boundary [-1, 1] in this study. The shape of the original data distribution 

will remain the same since the z-score is preserved (Patro & sahu, 2015). 

𝑑𝑎𝑡𝑎𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = −1 +
𝑑𝑎𝑡𝑎 − 𝑑𝑎𝑡𝑎𝑚𝑖𝑛

𝑑𝑎𝑡𝑎𝑚𝑎𝑥 − 𝑑𝑎𝑡𝑎𝑚𝑖𝑛
(1 − 1) 

Eq. 5.1 

Prior to the data being loaded to the model outliers in the data set is identified. The outliers can 

either be removed or replaced (e.g. with mean value). Boxplot displays a statistical summary 

of variables such as mean, median, upper quartile (P75), lower quartile (P25), upper and lower 

extremes (P10 and P90). The upper and lower extremes are also called whisker length, the 

values extend from the inter quartile range (IQR) from the upper and lower quartiles. The values 

that are outside the upper and lower extremes are considered as outliers Eq. 5.2.  

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑖𝑓 {
    𝑣𝑎𝑙𝑢𝑒 > 𝑃75 + 1.5(𝑃75 − 𝑃25)
𝑣𝑎𝑙𝑢𝑒 < 𝑃25 − 1.5(𝑃75 − 𝑃25)

 Eq. 5.2 

The statistical distribution of each of the well logs and core data is conducted (Figure 5.17 and 

Figure 5.18).  The outliers are indicated by red crosses in the figures. The boxplots indicate that 

some outliers appear in the well logs and the core data. The number of outliers for well 15/12-

1, 15/12-6S and15/12-9S are significant in the NPHI, RHOB, RD, RM. The presence of 

hydrocarbons and fluids in these logs affect the well log readings. Thus, outliers in these wells 

can indicate the presence of hydrocarbons or fluids.  The data points may not have an impact 

on the model performance since the values are within specific ranges. There are no extreme, 

impossible values identified in the boxplots such as porosity values above 100 or other 

extremely high unnatural values. The outliers in the data set contains valuable information and 

will be kept, no modification of the data set is needed. 
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Figure 5.17 A statistic summary of the outliers in the Gamma-ray (GR), Self-Potential (SP), Caliper 

(CAL) and Sonic (AC) log in each wells. 

From observation there are few outliers in the gamma-ray log and self-potential log and the 

sonic log shows a few outliers in all the wells except well 15/12-4 (Figure 5.17).  



 

56 

 

 

Figure 5.18 A statistic summary of the outliers in the Neutron porosity (NPHI), Bulk density 

(RHOB), deep resistivity (RD) and medium resistivity (RM) log in each wells. 

The boxplot of the NPHI, RHOB, RD and RM shows many outliers in well 15/12-6S and 15/12-

9S, and some in well 15/12-1.  

The statistical distribution of the desired parameters, oil saturation, water saturation and 

porosity is shown in Figure 5.19. 
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Figure 5.19 A statistic summary of the outliers in the desired parameters: Oil saturation,  water 

saturation and porosity in each wells. 

The boxplot of the desired values shows high water saturation and oil saturation, the highest 

water saturation is above 95% in well 15/12-4.  

The boxplots are used as a visual representation of the data distribution, and a quantitative 

measure is shown using numeric values (Table 5.10, Table 5.11, Table 5.12, Table 5.13 and 

Table 5.14). In Appendix A, the data distribution of the individual wells and petrophysical logs 

is summarised. The original petrophysical data of 5 wells excluding well 15/12-4. is an 

overview of the data used prior to dividing it into training set, validation, and test set.  

Table 5.10 Statistical indexes of the original data used in the model without well 15/12-4 

 max min mean P10 P25 P50 P75 P90 

GR 

[API°] 
152.10 6.22 38.56 17.71 20.74 28.85 47.93 68.07 
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SP [mV] 121.78 -7.04 45.38 14.00 18.73 25.16 65.96 105.92 

CAL 

[in.] 
67.95 6.22 14.00 8.60 8.65 11.22 18.89 22.14 

AC 

[µs/sec] 
128.56 6.22 58.40 17.71 20.74 76.36 86.40 92.45 

NPHI 

[frac.] 
67.95 3.74 20.26 15.25 17.59 20.23 22.58 24.68 

RHOB 

[g/cm3] 
67.95 1.49 9.61 2.21 2.33 2.50 18.89 22.14 

Log 

(RD) 

[Ωm] 

4.22 -1.61 1.62 -0.12 0.57 1.45 2.95 3.11 

Log 

(RM) 

[Ωm] 

4.22 -1.78 1.71 0.30 0.70 1.50 2.96 3.11 

So [frac.] 97.23 2.90 33.02 16.88 18.51 21.91 43.43 74.91 

Sw 

[frac.] 
78.40 0.00 17.44 5.77 13.90 18.43 21.40 24.14 

POR 

[frac] 
67.95 1.70 18.69 9.50 14.77 19.65 22.49 25.30 

Table 5.11 The statistical indexes of the data used in the training set of the model 

 
max min mean P10 P25 P50 P75 P90 

GR 

[API°] 

152.10 6.22 38.20 17.75 20.74 28.50 47.50 66.92 

SP [mV] 121.40 -7.04 44.86 13.99 18.69 24.90 65.82 105.51 

CAL 

[in.] 

67.95 6.22 14.08 8.60 8.67 11.26 19.05 22.33 

AC 

[µs/sec] 

128.56 6.22 58.00 17.75 20.74 75.07 86.20 92.51 

NPHI 

[frac.] 

67.95 3.74 20.24 14.96 17.61 20.26 22.65 24.65 

RHOB 

[g/cm3] 

67.95 1.65 9.73 2.21 2.33 2.52 19.05 22.33 

Log 

(RD) 

[Ωm] 

4.22 -1.61 1.63 -0.11 0.57 1.48 2.96 3.11 

Log 

(RM) 

[Ωm] 

4.22 -1.78 1.72 0.30 0.71 1.53 2.96 3.11 

So 

[frac.] 

97.23 2.90 32.41 16.86 18.46 21.79 42.26 73.30 

Sw 

[frac.] 

78.40 0.00 17.66 6.01 14.09 18.56 21.45 24.26 

POR 

[frac] 

67.95 1.70 18.68 9.50 14.36 19.61 22.53 25.33 

 

Table 5.12 The statistical indexes of the validation set of the model 

 max min mean P10 P25 P50 P75 P90 

GR 

[API°] 

144.44 9.91 39.64 17.68 20.56 31.17 49.46 67.50 

SP [mV] 121.78 -5.58 46.92 15.88 19.11 35.09 66.44 106.23 
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CAL 

[in.] 

27.15 7.32 13.67 8.59 8.67 11.31 18.27 21.37 

AC 

[µs/sec] 

122.16 9.91 59.42 17.68 20.56 79.13 86.57 91.88 

NPHI 

[frac.] 

58.93 5.99 20.25 15.78 17.55 19.94 22.15 24.70 

RHOB 

[g/cm3] 

27.15 1.56 9.04 2.21 2.33 2.49 18.27 21.37 

Log (RD) 

[Ωm] 

3.37 -1.59 1.53 -0.25 0.55 1.33 2.94 3.09 

Log 

(RM) 

[Ωm] 

3.70 -1.78 1.62 0.29 0.69 1.37 2.94 3.08 

So [frac.] 94.80 9.91 35.07 17.18 18.74 22.02 47.58 77.69 

Sw 

[frac.] 

53.30 0.00 16.34 1.03 13.05 18.05 20.82 23.37 

POR 

[frac] 

35.40 3.51 18.03 9.49 14.50 19.23 21.93 23.60 

 

Table 5.13 The statistical indexes of the testing set of the model 

 max min mean P10 P25 P50 P75 P90 

GR 

[API°] 

80.17 9.00 31.48 10.79 13.42 28.01 39.79 65.66 

SP 

[mV] 

126.14 97.24 107.09 98.49 102.24 104.94 107.76 120.11 

CAL 

[in.] 

16.35 8.81 11.59 8.84 8.91 12.70 12.75 15.08 

AC 

[µs/sec] 

121.29 67.73 85.11 72.08 73.61 78.19 94.31 114.59 

NPHI 

[frac.] 

32.09 11.26 18.44 12.41 13.81 17.87 22.43 25.37 

RHOB 

[g/cm3] 

2.54 2.03 2.37 2.15 2.26 2.43 2.48 2.50 

Log 

(RD) 

[Ωm] 

1.42 -1.42 0.21 -1.17 -0.40 0.48 0.84 1.10 

Log 

(RM) 

[Ωm] 

1.21 -1.63 0.14 -1.23 -0.45 0.47 0.76 0.93 

So 

[frac.] 

97.70 32.70 75.22 40.56 57.80 81.70 90.40 94.89 

Sw 

[frac.] 

89.70 0.00 5.42 0.00 0.00 0.85 3.60 13.43 

POR 

[frac] 

31.60 8.90 17.08 10.01 11.25 13.70 23.30 29.19 

 

Table 5.14 The statistical indexes of the well 15/12-4 

 max min mean P10 P25 P50 P75 P90 

GR 

[API°] 

40.02 21.29 29.02 24.01 26.39 28.42 31.72 35.20 

SP [mV] 100.40 54.05 63.87 57.40 58.92 61.82 68.81 73.15 
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CAL 

[in.] 

14.86 7.21 7.98 7.32 7.39 7.45 7.62 11.76 

AC 

[µs/sec] 

128.56 53.20 84.47 60.94 84.96 88.68 90.53 91.19 

NPHI 

[frac.] 

41.07 6.82 21.85 15.28 21.88 22.78 23.98 24.58 

RHOB 

[g/cm3] 

2.70 1.92 2.38 2.29 2.33 2.35 2.40 2.56 

Log 

(RD) 

[Ωm] 

15.90 0.50 1.35 0.59 0.62 0.88 1.17 2.10 

Log 

(RM) 

[Ωm] 

9.84 0.96 2.47 1.34 1.68 1.97 2.40 4.36 

So 

[frac.] 

73.30 3.10 39.50 10.82 34.15 42.30 47.68 52.12 

Sw 

[frac.] 

43.30 4.30 14.38 8.76 10.48 11.70 15.63 25.56 

POR 

[frac] 

28.00 1.70 18.28 7.90 15.20 20.85 23.00 23.83 

 

The statistical summary of the oil saturation, water saturation and porosity can be found in 

APPENDIX B. The saturation data is usually measured in the reservoir interval, missing data 

in the saturation data may be due to how often the measurements are done between each sample 

and the location of the reservoir interval. A visual representation of the saturations and the 

distribution is shown in Figure 5.20. Well 15/12-4 and 15/12-5 have the highest observed oil 

saturations, the water saturation in all the wells varies greatly between 0 and around 100. Well 

15/12-4 and Well 15/12-A8 have water saturations that are above 95%, with 4 data points and 

1 data point, respectively.  
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Figure 5.20 The data distribution of the oil saturation, water saturation and porosity from core 

data.  

5.5 Feature selection 

Feature selection is a useful process in machine learning, the main aim of feature selection is 

selecting input features that are relevant for the desired target or problem. Usually feature 

selection is applied to increase the accuracy and performance of the model by removing 

irrelevant features. A good feature selection can increase the performance of the model with 

lower errors and avoid overfitting. Correlation coefficients such as Pearson, Spearman and 

distance correlation are methods that can be applied to evaluate the relevance between features 

in the data.  

1. Pearson correlation 

Pearson correlation coefficient measures the statistical relationship between two variables. The 

correlation between the input values in the model can be evaluated for the feature selection and 
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the direction of the relationship (positive or negative). In addition, the statistical relationship 

between the desired values (T) and the predicted values (Y) can be evaluated. The Pearson 

correlation coefficient assumes that the variables are normally distributed (parametric), a 

linear(straight-line) relationship between the variables and that the data is distributed along the 

regression line. 

1. Pearson Coefficient of determination (R): 

𝑅𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =
∑(𝑇𝑖 − 𝑇𝑚𝑒𝑎𝑛)(𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)

√∑(𝑇𝑖 − 𝑇𝑚𝑒𝑎𝑛)2 √(𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)2
 

Eq. 5.3 

The Pearson correlation coefficients lies in the range [-1,1], the interpretation of the correlation 

coefficients values: 

• -1, means negative correlation. The values of one variable increases as the other value 

decreases. 

• 0, means no linear correlation between the variables 

• 1, means positive correlation, when one variable increase along with the other 

valuable. 

• Other values such as ±0.8 and ±0.6 indicate moderately strong and fairly strong 

correlation, respectively.  

 

2. Spearman linear rank correlation 

Spearman’s rank correlation coefficient is used to evaluate two variables that can be related in 

a nonlinear relationship, and the strength of the relationship in the data distribution. It measures 

the degree of association between the two variables in a range [-1,1]. The Spearman rank 

correlation coefficient does not have any assumptions about the distribution of the data, such 

as the Pearson correlation. 

𝑅𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 1 −
6∑𝑑2

𝑛𝑝𝑎𝑖𝑟𝑠(𝑛𝑝𝑎𝑖𝑟𝑠
2 − 1)

 
Eq. 5.4 

The Spearman linear rank correlation uses the differences between ranks (𝑑) and the number of 

data pairs (𝑛𝑝𝑎𝑖𝑟𝑠). The interpretation of the Spearman correlation is the same as the Pearson 

correlation: ±1 strong positive or negative correlation, ±0.8 moderately strong positive or 

negative correlation, ±0.6 moderately strong positive or negative correlation. 0 indicates no 

correlation between the data.  
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3. Distance correlation.  

Measures the dependence between the desired value (T) and predicted value (Y), the 

distance are based on certain Euclidean distances between the data samples (Székely et 

al., 2007). The dependence between each variable is given in the range [0,1], where 0 

means that the variables are totally independent.  

𝐷𝑐𝑜𝑟𝑟(𝑇, 𝑌) =
√𝐷𝑐𝑜𝑣(𝑇, 𝑌)

√𝐷𝐶𝑜𝑣(𝑇, 𝑇)𝐷𝐶𝑜𝑣(𝑌, 𝑌)
 

Eq. 5.5 

 

5.5.1 Statistical evaluation of performance 

Several statistical evaluation methods are applied in the study to assess the relationship between 

the reference data (T) and the predicted data. The methods are used to evaluate the performance 

of the model.  

1. Mean squared error (MSE) 

𝑀𝑆𝐸 =
∑‖𝑇𝑖 − 𝑌𝑖‖2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Eq. 5.6 

2. Root-Mean squared error (RMSE) 

𝑅𝑀𝑆𝐸 = √
∑‖𝑇𝑖 − 𝑌𝑖‖2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Eq. 5.7 

3. Sum of squared error (SSE) 

𝑆𝑆𝐸 =  ∑‖𝑇𝑖 − 𝑌𝑖‖2  Eq. 5.8 

 

 

4. Mean average absolute error (MAE) 

𝑀𝐴𝐸 =
∑‖𝑇𝑖 − 𝑌𝑖‖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Eq. 5.9 

 

5.6 MLP-LM model and design 

The study has selected a multilayer network architecture which is trained with a 

backpropagating algorithm, Levenberg-Marquardt algorithm, to improve the accuracy of the 

calibrated model. The need for a robust and fast method such as the Levenberg-Marquardt 
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algorithm, is needed due to the time-constraints of the thesis.  The main aim of the Levenberg-

Marquardt algorithm is minimising the squared errors in the network. The network is trained 

with the Levenberg-Marquardt algorithm using log-sigmoid functions in the hidden layers. The 

mathematical equations applied in the model construction is specified in section 4.3.3. The well 

data is pre-processed, and quality checked prior to being loaded to the constructed model. A 

simplified flow chart of the Levenberg-Marquardt parameter optimisation is shown in Figure 

5.21. The Jacobian matrix (Eq. 5.10) and the gradient is calculated from Eq. 4.9 and Eq. 4.10, 

respectively. The sum of squared errors are calculated using Eq. 4.3, The weights and bias are 

updated according to Eq. 4.11, and the optimisation does not end until a performance goal is 

met.  

 𝐽(𝑥) =  

[
 
 
 
 

 

𝜕𝐸1(𝑥)

𝜕𝑥1

𝜕𝐸1(𝑥)

𝜕𝑥2
⋯

⋮ ⋮ ⋱ 
𝜕𝐸𝑖(𝑥)

𝜕𝑥1

𝜕𝐸𝑖(𝑥)

𝜕𝑥1
…

   

𝜕𝐸1(𝑥)

𝜕𝑥𝑘

⋮
𝜕𝐸𝑖(𝑥)

𝜕𝑥𝑘

  

]
 
 
 
 

 

Eq. 5.10 
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Figure 5.21 Flow chart of the Levenberg-Marquardt parameter optimisation.  

The training of the network does not end until one of these performance goals is reached:  

➢ The performance of the model, the sum of squared errors is minimised to 0.  

➢ The control parameter (µ) is adjusted during the training process. If the control 

parameter exceeds the threshold value of µ, which is 10 in this study the training process 

stops. 

➢  The performance on the validation set has increased more than the number of maximum 

failures since the last time it decreased 

➢ The number of epochs for training the model is reached, 1000 in the study.  

➢ A time constraint where the training stops when the maximum time is exceeded. This is 

set to infinity. 

➢ If the performance gradient is less than the value of the minimum performance gradient 

(1E-8). 
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If the conditions are not reached in one epoch the epoch increases by 1, k=k+1 epoch (Figure 

5.21).  The parameter selection in the model is important to obtain convergence of the model 

(Table 5.15). The controlling (µ), is an important parameter to achieve convergence of the 

model. 

Table 5.15 A summarised overview of the parameter selections for the Levenberg-Marquardt  

Parameters Selected values 

µ 0.001 

µincrease 0.1 

µdecrease 10 

µmax 1E10 

Maximum failures 6  

Minimum gradient 1E8 

Performance goal 0 

 

A simplified pseudo-code of the work in the study is presented in Figure 5.22,  the first loop 

creates 10 000 calibrated model and the second loop creates random combinations of hidden 

layers and neurons. The global seed is set for reproducibility of the calibrated model. 

Load pre-processed data set 

%Define input data and output data 

%Divided the data set into training set, validation set and test set.  

%Configure for loop to construct the different models 

for main_loop=1:10 000 number of models (10 000) 

    for sub_loop=1:max(main_loop) 

%Configure a minor for loop to select random hidden layer sizes (3 to 5) 

with a random number of neurons (1 to 10) in each layer 

        Select network architecture: feedforward network 

        select Levenberg-Marquardt parameters 

        %Parameters are optimised using the Levenberg-Marquardt algorithm 

        Errors on the data set are calculated and the weights are updated     

according to the algorithm.  

       Print (‘The best results on the validation set’)  

    end 

end 
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Figure 5.22 A Pseudo-code of the workflow used to construct the calibrated models. 

Another method using the Particle Swarm Optimisation algorithm was tested, however the 

algorithm performed poorly on the data set and the training time was slow with few iterations 

(50 iterations).  Thus, the Particle Swarm optimisation algorithm was not proceeded with any 

further.  

5.6.1 Network architecture  

The data set used in the model consists of input variables from the petrophysical logs (X) and 

target or reference variables, porosity and fluid saturations (oil and water) (T). 

[

𝑋1
𝑋2
⋮
𝑋𝑖

] = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝𝑒𝑡𝑟𝑜𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑙𝑜𝑔𝑠, 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑋) 

[

𝑇1
𝑇2
⋮
𝑇𝑖

] =

𝑡ℎ𝑒 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑎𝑛𝑑 𝑓𝑙𝑢𝑖𝑑 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑐𝑜𝑟𝑒 𝑑𝑎𝑡𝑎 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑇)  

The network is calibrated with the target values to predict a porosity value. The training 

algorithm Levenberg-Marquardt is selected to optimise the model. The network is calculated 

from the matrix with X input values, bias, and weights (input and layer weights) and calibrated 

with the desired target values (Porosity, water saturation and oil saturation). Lastly, a training 

algorithm in each layer of the network to train the network. Eventually the prediction value Y 

is derived from the network model using input variables X.  

Usually the number of hidden layers and nodes are tested through trial and error, in this study 

a method for randomly selecting number of neurons and layers of a certain range in the network 

is tested. The range for the number of layers is set to 3 and 5 hidden layers, while the number 

of nodes varies in a range from 1 to 10. In each layer the number of nodes is randomly generated 

to check which combinations that are optimal.  

The hidden layer size can be represented as a row vector where each layer is represented as 

number of neurons nL where L is the layer number (Table 5.16). The input data is transported 

from left to right through the first layer with n nodes (n1) to the fifth layer with n nodes (n5), 

and lastly resulting in a predicted output data. The number of layers and nodes are selected with 

the number of unknown variables in mind as it affects the generalisation abilities of the model. 
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 Table 5.16 The number of layers in the network and a the vectors of the number of neurons in 

each layer. 

Layers  Hidden layers (nL) 

3 = [n1 n2 n3] 

4 = [n1 n2 n3 n4] 

5 = [n1 n2 n3 n4 n5] 

 

The number of unknown variables in a network with input variables (I), three hidden layers (n1, 

n2, n3) and the number of output variables O and the sum of biases from each layer is calculated 

from the following formula:  

𝜃 = 𝐼 ∗ 𝐿1 + [𝐿1 𝐿2 𝐿3][𝐿2 𝑙3 𝑂] + 𝑏 Eq. 5.11 

The results from each generated network is based on the correlation coefficients from the 

random selector is selected as the best network architecture. The main parameters for the 

network architecture of the model is summarised below. 

Table 5.17 A summary of the network architecture  

Parameter Parameter selection 

Network type  Feedforward network 

Number of layers 3-5 

Layers with bias 1: Yes  

2: Yes 

3: Yes 

4: Yes 

5: Yes 

Input to Layer connection(s) Yes (from input layer to first layer) 

Layer Connection(s)  Yes (from previous layer to following layer) 

Layer to Output connection(s) Yes (from last hidden layer to output layer) 
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6 Results 
In general, the model accuracy is highly affected by the input features in the training and 

validation sets since this trains and tunes the model to a specific range. The water saturation 

and oil saturations in the well selected to be excluded had a water saturation above 95%. The 

high-water saturation from well 15/12-4 might impact the quality of the model during the blind 

well test since the model is calibrated against lower water saturation (<95%). 

The input features may affect the model’s ability to generalise well, so it is necessary to evaluate 

the input features to the model. In this study, the correlation between the petrophysical data and 

the core data is measured using correlation coefficients. The feature selection in this study relies 

on selecting higher correlation coefficient values, petrophysical logs that may be more relevant 

for the specific predictions. The input features for each desired values, oil saturation, water 

saturation and porosity, are selected from the correlation relationships. Thus, the petrophysical 

logs that have higher correlation coefficient values for the individual desired values are selected 

as input features for the predictions in the model.   

The correlation is the only correlation where the correlation is classified as independent only 

when the value is equal to 0. The distance correlation makes no assumptions about the data, 

making it a more generalised approach than Pearson correlation or Spearman correlation. The 

Pearson correlation assumes a normal distribution for the data set (parametric), while Spearman 

correlation and Distance correlation is non-parametric. The Pearson correlation, Linear 

Spearman rank correlation and distance correlation are calculated from the complete data set of 

five wells, and the training and validation set combined since these are the inputs that calibrate 

and tune the model. The correlations are used to investigate the relationships between the 

petrophysical logs, oil saturation, water saturation and porosity to determine the inputs in the 

model. The correlation of the data set used in the training, validation and test set can be seen in 

APPENDIX D. 

The petrophysical logs have different correlations with the oil saturation, water saturation and 

porosity (Figure 6.1). This section focuses on the correlation between the petrophysical logs 

and the oil saturation, water saturation and porosity, not the correlation between the reservoir 

parameters. The Pearson correlation of the oil saturation (So) has the strongest positive 

correlation with AC and NPHI and the strongest negative correlation with RHOB. The 

correlation with the GR log is weakest. The strongest positive correlation of the oil saturation 

is  ̴ 0.49, and the strongest negative correlation is  ̴ -0.51. The water saturation (Sw) correlation 
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indicates that the strongest correlation is with the SP and CAL logs. The water saturation 

correlates poorly with the GR, AC, RD and RM logs. The strongest positive correlation of the 

water saturation is  ̴ 0.4, and the strongest negative correlation is  ̴ -0.06. The Pearson correlation 

of the porosity (POR) shows that the strongest positive correlation is with the AC and NPHI, 

while the strongest negative correlation is with the RHOB. The negative correlations of the GR 

and SP are probably due to high readings in both logs, usually indicate less porous rocks such 

as shale where porosity is lower. The strongest positive correlation of the porosity is  ̴ 0.71, and 

the strongest negative correlation is  ̴ -0.75. 

 

Figure 6.1 Pearson correlation results of the training set and validation set 

The Spearman linear rank correlation is presented in Figure 6.2. The Spearman correlation of 

the oil saturation shows the strongest positive correlations with AC, NPHI, RD and RM, while 

the strongest negative correlations are observed with SP, CAL and RHOB. The strongest 

positive correlation is ̴ 0.53 with AC, and the strongest negative correlation is  ̴ -0.58 with 

RHOB. The water saturation shows that the strongest positive correlation is with the NPHI, 

while the strongest negative correlations are with the GR, ̴ 0.55 and   ̴ -0.21, respectively. The 
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correlation of the porosity shows strong positive correlations with AC and NPHI. The strongest 

negative correlations are observed with RHOB ( ̴ -0.71) and SP ( ̴ -0.46). 

 

Figure 6.2 Spearman correlation results of the training set and validation set 

The results from the distance correlation for the oil saturation shows the strongest positive 

correlations with CAL, AC, NPHI, and RHOB (Figure 6.3).  In general, the RHOB shows a 

better correlation than the NPHI with the oil saturation, water saturation and porosity. The 

resistivity logs appear to have the strongest correlation with oil saturation compared to water 

saturation and porosity in all the correlations (Pearson, Spearman and Distance). The distance 

correlation of the water saturation shows that the strongest positive correlation is with SP, CAL 

and RHOB. Lastly, the best distance correlation of the porosity is the CAL, AC, NPHI and 

RHOB.   
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Figure 6.3 Distance correlation results of the training set and validation set 

The feature selection results from the correlation analysis from Pearson, Spearman and Distance 

correlation had different correlations with each of the desired parameters. The four 

petrophysical logs that displayed the most relevant correlation with the desired parameters were 

selected as input variable (Table 6.1).  

Table 6.1 The feature selections obtained from the correlation analysis of the oil saturation, water 

saturation and porosity.  

First feature selection 

Parameter Input features petrophysical logs 

Oil saturation CAL AC, NPHI, RHOB 

Water saturation SP, CAL, NPHI, RHOB 

Porosity CAL, AC NPHI, RHOB 

  

The selected input features of the model are selected because it is most likely that a relationship 

exists between these petrophysical logs and oil saturation, water saturation and porosity. The 

Caliper log correlates well with the water saturation and the porosity, however no relationship 

between these parameters are known.  

Secondly, a trial-and-error approach by manually adding and removing the petrophysical logs 

one at the time, that had the lowest correlation values with the desired parameters. By observing 
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the average changes in R2 on the validation set of 10 different calibrated models for each desired 

parameter. The method starts with all the petrophysical logs and removing them one at the time. 

If the R2 increased the variable was removed, if the R2 increased it was included. This process 

continued until no improvement was possible, and variables where added again one at the time 

to check how other combinations of the petrophysical logs affected R2. The results from this 

feature selection is summarised in (Table 6.2). 

Table 6.2 Summary of feature selection from trial-and-error. 

Parameter Input features petrophysical 

logs 

Features removed 

Oil saturation GR, AC, NPHI, RHOB, RD SP, CAL, RM 

Water saturation SP, CAL, AC, NPHI, RHOB, 

RD 

GR, RM 

Porosity GR, CAL, NPHI, RHOB, RD SP, AC, RM 

 

In addition, a statistical approach using stepwise regression analysis is done. Stepwise 

regression adds or removes individual variables, using the feature inputs statistical significance 

to increase the R2. Variable selection using stepwise regression is a standard procedure (Chong 

& Jun, 2005). The petrophysical logs and the core data are evaluated using the stepwise 

regression to identify variables that increase the R2 on the validation set. The stepwise 

regression either adds the most significant variable or removes the least significant variable 

using a least-squares approach. The approach may be locally optimal, however, not necessarily 

globally optimal (Thompson, 1989). The significance value (α) is set at 0.05 for the stepwise 

regression and a variable is added when the p-value is less than 0.05. The variables are removed 

if the p-value is greater than 0.1 (Table 6.3). 

Table 6.3 Results from stepwise regression  

Oil saturation  
Coefficient    Std.error Status P     

GR 0.1639 0.0117 Include 1.37E-40 

SP -0.031 0.0103 Include 0.0027 

CAL -2.9196 0.2473 Include 4.44E-30 

AC -0.2513 0.0415 Include 1.96E-09 

NPHI 0.5252 0.0573 Include 3.08E-19 

RHOB -30.5915 2.8522 Include 2.19E-25 

RD -0.5492 0.3761 Exclude 0.1446 
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RM 1.3358 0.3082 Include 1.62E-05 

Water saturation 

 Coefficient    Std.error Status P     

GR -0.4045 0.0274 Include 1.45E-44 

SP 0.1892 0.0237 Include 4.43E-15 

CAL 9.2328 0.575 Include 2.10E-51 

AC 0.7576 0.0961 Include 9.13E-15 

NPHI 2.1195 0.1326 Include 5.09E-51 

RHOB 125.023 6.5139 Include 1.91E-69 

RD 5.3127 0.5361 Include 4.48E-22 

RM 0.9665 1.1667 Exclude 0.4077 

Porosity  

Coefficient    Std.error Status P     

GR -0.0439 0.0068 Include 1.70E-10 

SP 0.0145 0.005 Include 0.0039 

CAL -1.6525 0.0796 Include 2.02E-84 

AC 0.0119 0.0211 Exclude 0.5727 

NPHI 0.3831 0.0301 Include 2.64E-35 

RHOB -14.4412 1.2641 Include 4.71E-29 

RD -0.1492 0.2129 Exclude 0.4837 

RM -0.3778 0.1706 Include 0.0269 

 

The results from the stepwise regression of which variables to include in the model is 

summarised in (Table 6.4). 

Table 6.4 The parameter selection from the stepwise regression analysis. 

Parameter Input features petrophysical logs 

Oil saturation GR, SP, CAL, AC, NPHI, RHOB, RM 

Water saturation GR, SP, CAL, AC NPHI, RHOB, RD 

Porosity GR, SP, CAL, NPHI, RHOB, RM 

 

6.1 Model validation and calibration 

The first models utilise all the petrophysical logs to find the best model in the set boundaries of 

layers and neurons based on the accuracy performance R2. The accuracy of the predictions on 

the test set is considered as valid results of the calibrated models performance. However, testing 

the calibrated models against well 15/12-4 may validate the generalisation abilities and 

robustness of the model. The model is initialised with the training set and, secondly, run for the 

validation set to acquire the predicted values of oil saturation, water saturation and porosity on 
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the testing set. The proposed method of creating 10 000 models to obtain the best-calibrated 

model based on R2 on the validation set resulted in three different models prior to feature 

selection. The selection of the calibrated models from the highest R2 on the validation set is 

based on the Pearson, Spearman or Distance coefficient of determinant (R2) 

The calibrated models have a different number of hidden layers and neurons (Table 6.5). The 

most common network architecture using all the petrophysical logs are either 3 or 4 layers and 

between 4-10 neurons in each layer. In most of the calibrated models, there are more than 5 

neurons in the layers. The smallest number of neurons in the hidden layer is 2 for the water 

saturation model with 5 layers. The best calibrated model of the porosity remains the same for 

the Pearson, Spearman and Distance selection with 3 hidden layers and the number of neurons 

is from 6 to 8.  

Table 6.5 Summary of the calibrated model architectures and the model number from 10 000 

iterations. The results are from calibrated models using all petrophysical logs. 

 
 Model # Architecture 

Pearson Oil saturation 7669 10-8-8-10-7 
 

Water saturation 2519 8-10-4-7 
 

Porosity 4730 8-6-7 

Spearman Oil saturation 5617 4-8-4-6 
 

Water saturation 5636 8-10-4-7 
 

Porosity 4730 8-6-7 

Distance Oil saturation 3569 6-8-6 
 

Water saturation 2519 7-5-7-6-2 
 

Porosity 4730 8-6-7 

 

The detailed performance results of the model on the training, validation and testing set and on 

new data (Well 15/12-4) is included in APPENDIX E. A visual representation of the results 

from the calibrated model are presented using histograms of the coefficients of determinant of 

the predictions and core data. The Pearson selection resulted in the highest value for the 

prediction of water saturation (Figure 6.4). The results shows that the R2 of the oil saturation 

and water saturation predictions on the testing set and well 15/12-4 is in the range 0-20 (Figure 

6.4, Figure 6.5 and Figure 6.6).  
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Figure 6.4 The results of the calibrated models selecting the models with highest R2 using Pearson 

correlation coefficient (Table 6.5).   

 

Figure 6.5 The results of the calibrated models selecting the models with highest R2 using 

Spearman correlation coefficient (Table 6.5).    
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Figure 6.6 The results of the calibrated models selecting the models with highest R2 using Distance 

correlation coefficient (Table 6.5).    

The numerical results from the selection of the best models are summarised in Table 6.6. The 

predictions from the calibrated model gave model accuracy, R2 in the range 0.4-0.6 on the test 

set for all the predictions, which is considered fairly good. The performance of the calibrated 

model on well 15/12-4 was reduced significantly, where R2 is in the range 0-0.4. The calibrated 

model of the oil saturation has the lowest R2 result on well 15/12-4. 

Table 6.6 The coefficient of determinant R2 of the training set, validation set, testing set and well 

15/12-4, based on the calibrated model attained from the Pearson, Spearman and Distance 

selection.  

Pearson selection 
  Training Validation Testing Well 15/12-4 

Oil 

saturation 
Pearson 

0.67 0.80 0.43 0.01 

 Spearman 0.72 0.84 0.46 0.17 
 distance 0.71 0.81 0.46 0.11 

Water 

saturation 
Pearson 

0.72 0.80 0.62 0.07 

 Spearman 0.79 0.88 0.61 0.03 
 distance 0.77 0.79 0.59 0.18 

Porosity Pearson 0.78 0.75 0.41 0.39 
 Spearman 1.00 0.78 0.61 0.20 
 distance 0.73 0.75 0.59 0.38 
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Spearman selection 
  Training Validation Testing Well 15/12-4 

Oil 

saturation 
Pearson 

0.68 0.78 0.41 0.02 

 Spearman 0.76 0.87 0.53 0.09 
 distance 0.71 0.78 0.50 0.09 

Water 

saturation 
Pearson 

0.72 0.80 0.62 0.07 

 Spearman 0.79 0.88 0.61 0.03 
 distance 0.77 0.79 0.59 0.18 

Porosity Pearson 0.78 0.75 0.41 0.39 
 Spearman 1.00 0.78 0.61 0.20 
 distance 0.73 0.75 0.59 0.38 

Distance selection 
  Training Validation Testing Well 15/12-4 

Oil 

saturation 
Pearson 

0.66 0.79 0.45 0.01 

 Spearman 0.74 0.86 0.56 0.07 
 distance 0.70 0.81 0.56 0.06 

Water 

saturation 
Pearson 

0.65 0.77 0.48 0.14 

 Spearman 0.72 0.85 0.57 0.22 
 distance 0.67 0.80 0.54 0.24 

Porosity Pearson 0.78 0.75 0.41 0.39 
 Spearman 1.00 0.78 0.61 0.20 
 distance 0.73 0.75 0.59 0.38 

 

The predicted results can be compared with the target values from the core analysis. The results 

from the predictions shows that the accuracy of the porosity prediction is higher on well 15/12-

4, than the accuracy of the prediction of oil saturation and water saturation.  

6.2 Model performance comparison 

In this section the results from the three feature selections are presented. The detailed 

performance results of the models on the training, validation and testing set and on new data 

(Well 15/12-4) presented in this section is included in APPENDIX E.  

The network architecture from the feature selection varies greatly, and  the most common 

architecture from the feature selection consists of 4 layers with neurons between 1-10 (Table 

6.7).  

The results from the feature selection resulted in no correlation of the predicted water saturation 

and the best model performed unsatisfactory (Figure 6.7 and Figure 6.8). The correlation 
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between the predicted values and desired values may have been reduced with too few 

petrophysical logs. The best accuracy of the oil saturation predictions improved significantly ( 

R2 =0.6-0.7), however the performance on the test set was reduced (R2 =0.2-0.3) (Figure 6.7 

and Figure 6.8). The results from the Spearman and Distance selection gave the same results 

for the best calibrated model and is summarised in one figure (Figure 6.8). 

Table 6.7 Summary of the calibrated model architectures and the model number from 10 000 

iterations. The results are from calibrated models using the petrophysical logs in Table 6.1 

 
 Model # Architecture 

Pearson Oil saturation 8387 2-3-9-1  
Water saturation 8743 8-1-7-8  
Porosity 24 5-10-7-9 

Spearman Oil saturation 6906 2-3-9  
Water saturation 8743 8-10-2-1  
Porosity 1 9-9-10-5-5 

Distance Oil saturation 6906 2-3-9-1  
Water saturation 8743 8-10-2  
Porosity 1 9-9-10-5-5 

  

 

Figure 6.7 The results of the calibrated models from the feature selection with highest R2 using 

Pearson correlation.   
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Figure 6.8 The results of the calibrated models from the feature selection, the models with highest 

R2 using Spearman and Distance selection.   

The oil saturation prediction improved when irrelevant logs were removed, while the prediction 

of the water saturation significantly decreased. The petrophysical logs from the feature selection 

is CAL, AC, NPHI and RHOB for the oil saturation and porosity, and SP, CAL, NPHI and 

RHOB for the water saturation. The accuracy of porosity prediction was also reduced to R2 

between 0.2-0.3 using fewer petrophysical logs.  

The results from selecting the second feature selection had different network architectures, with 

layers varying between 3 and five and nodes between 1-10 (Table 6.8).  

Table 6.8 Summary of the calibrated model architectures and the model number from 10 000 

iterations. The results are from calibrated models using the petrophysical logs in Table 6.2. 

 
 Model # Architecture 

Pearson Oil saturation 8387 9-9-10-9  
Water saturation 8743 9.8-1  
Porosity 3005 6-10-6-10 

Spearman Oil saturation 6906 7-2-9-4-3  
Water saturation 8743 6-8-8  
Porosity 7050 9-6-7-6-1 

Distance Oil saturation 6906 10-6-4-5-6  
Water saturation 8743 7-5-4  
Porosity 7050 9-6-7-6-1 
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The results from Pearson selection improved the accuracy of water saturation predictions on 

the test set ( ̴ 0.7), while it accuracy on the predictions of well 15/12-4 where in the range 0-0.3 

(Figure 6.9). The porosity prediction in the Spearman selection and Distance selection selected 

the same model for predictions. The accuracy of the porosity prediction on well 15/12-4 

improved to R2 (Distance)=0.74 (Figure 6.10). The accuracy of the oil saturation improved on 

the test set, however it was unable to predict reliably on well. 15/12.4 (Figure 6.9, Figure 6.10 

and Figure 6.11).  

 

Figure 6.9 The results of the calibrated models from the second feature selection, using models 

with highest R2 based on Pearson 
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Figure 6.10 The results of the calibrated models from the second feature selection, using models 

with highest R2 based on Spearman 

 

 

Figure 6.11 The results of the calibrated models from the second feature selection, using models 

with highest R2 based on Distance 
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The architecture of the calibrated models from the stepwise regression approach consists mainly 

of 3 or 4 layers (Table 6.9). The number of neurons in each calibrated model varies greatly 

between 1-10.  

The stepwise regression selection increased the performance on the predictions of oil saturation 

(R2 =0.6-0.7) and water saturation (R2 =0.6-0.7) on the test set (Figure 6.12, Figure 6.13 and 

Figure 6.14). The performance of the water saturation prediction increased (R2 =0.3-0.4) 

(Figure 6.12). The performance of the porosity predictions was reduced (R2 =0.0-0.1). 

Table 6.9 Summary of the calibrated model architectures and the model number from 10 000 

iterations. The results are from calibrated models using the petrophysical logs in Table 6.4 

 
 Model # Architecture 

Pearson Oil saturation 3005 6-5-9-2  
Water saturation 4738 9-8-1  
Porosity 5791 6-10-6-10 

Spearman Oil saturation 2236 7-2-9-4-3  
Water saturation 4399 6-8-8  
Porosity 1856 9-9-9 

Distance Oil saturation 3005 10-6-4-5-6  
Water saturation 168 5-9-10-9-4-1  
Porosity 260 6-10-6-10 

 

 

Figure 6.12 The results of the calibrated models from the feature selection with highest R2 using 

Pearson selection.  
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Figure 6.13 The results of the calibrated models from the feature selection, the models with 

highest R2 using Spearman selection.  

 

Figure 6.14 The results of the calibrated models from the feature selection, the models with 

highest R2 using Distance selection.   
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6.3 Best results 

The best prediction results on well 15/12-4 of the oil saturation, water saturation and porosity 

are summarised in this section. The results from the predictions are presented using regression 

plot of the predicted value and desired values.   

The best model to predict oil saturation is obtained using the original model using all 

petrophysical logs. The best model is obtained using Pearson selection, with R2 (Pearson)=0.01, 

R2 (Spearman)=0.17, R2 (Distance)=0.11. The Pearson coefficient of determinant is low, 

however the model has the highest Spearman and Distance coefficient of determinant. The 

model number is 7669 with 5 hidden layers and neurons between 7-10 (hidden layer:10-8-8-

10-7). The feature selection did not improve the performance of oil prediction on well 15/12-4. 

The oil saturation in well 15/12-4 are very low and the model predicts higher oil saturation 

values of 5-20 (Figure 6.15). There is one sample with very high oil saturation around 90.  

 

Figure 6.15 Regression plot of the predicted oil saturation and oil saturation from core data. 

The best model water saturation is obtained from the stepwise regression method using the 

Pearson coefficient of determinant. The model best model with R2 (Pearson)=0.29, R2 

(Spearman)=0.41, R2 (Distance)=0.40. The model number is 4738 with 3 hidden layers. There 
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is a higher number of neurons in the first two layers (9 and 8) and only neuron in the last layer. 

The predictions of the water saturation appears to overestimate in the range 60-80, and 

underestimate at higher  water saturations (Figure 6.16).  When the water saturation from core 

data increases to very high values the model predicts outside the range to negative values.  

 

 

Figure 6.16 Regression plot of the predicted water saturation and water saturation from core data. 

The best model of porosity was obtained from the second feature selection in the Spearman and 

distance selection. The model best model with R2 (Pearson)=0.67, R2 (Spearman)=0.45, R2 

(Distance)=074. The best model for porosity it is model number 3005 with 4 hidden layers, and 

6 and 10 neurons in the hidden layers. The porosity predictions underestimate the porosity 

around the lower porosity values (15-20) (Figure 6.17). The predictions around the lower values 

are concentrated in the range 0-10 when it should increase. 
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Figure 6.17 Regression plot of the predicted porosity and porosity from core data.  

6.4 Sensitivity analysis of input variables 

In the following section two sensitivity analysis have been applied in the study. The first one 

using partial derivatives and a second one by varying the input variables and evaluating how it 

influences the predictions, if it increases, decreases or remains stable.  

6.4.1 Partial derivatives method (PaD)  

The partial derivatives of the input variables and the predictions can be used to obtain a plot of 

prediction variations for small changes in each input variable and the relative contribution of 

each variable on the predictions (Gevrey et al., 2003). To obtain the plot of variations of the 

predictions for small changes, the partial derivatives of each input variable and predictions are 

calculated (Y. Dimopoulos et al., 1995; I. Dimopoulos et al., 1999). 

The Partial derivatives (PaD) method calculates the sensitivity of each input feature on the 

predicted output from the model, using partial derivatives of the predicted output and input 

values (Eq. 6.1). If the partial derivatives are negative, the output decrease when the input 

feature increases. 
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𝑆𝑖 =
1

𝑁
∑

𝜕𝑦𝑘
𝑝

𝜕𝑥𝑖
𝑝

𝑝

 
Eq. 6.1 

where N is the total number of data variables and p is the number of patterns. The relative 

contribution of each input feature is determined from the sum of squared partial derivatives: 

𝑆𝑆𝐷𝑖 = ∑
𝜕𝑦𝑘

𝑝

𝜕𝑥𝑖
𝑝

𝑝

 
Eq. 6.2 

Using these equations, the input features can be ranked in order of their influence on the output 

(Table 6.10). The contribution is calculated from the partial derivatives of the predicted output 

with respect to the input variables (Y. Dimopoulos et al., 1995; I. Dimopoulos et al., 1999)  

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖 =
𝑆𝑆𝐷𝑖

∑ 𝑆𝑆𝐷𝑖𝑖
 

Eq. 6.3 

 

The sensitivity and contribution using partial derivatives of the oil saturation, water saturation 

and porosity is presented in Table 6.10. This analyses the sensitivity of each individual variable, 

where positive and negative values demonstrate than an increase in the variable results in 

increase or decrease in output variable (Gevrey et al., 2003). In addition, the high or low value 

of the sensitivity implies higher or lower efficiency of the variables on the predicted output. 

Table 6.10 summary of the relative importance of each input variable using partial derivatives of 

from the oil saturation, water saturation and porosity predictions from the training and validation 

set.  

Oil saturation 

Log Si SSDi Relative contribution Rank 

GR 0.51 23.9 0.0000025 8 

SP 0.06 113057.1 0.0120322 3 

CAL 1.02 209.6 0.0000223 5 

AC 0.05 2.4 0.0000003 7 

NPHI 0.08 57.7 0.0000061 6 

RHOB 1.74 4594.8 0.0004890 4 

RD -37.23 505134263.6 53.7592907 1 

RM 121.19 434370054.4 46.2281569 2 
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Water saturation 

Log Si SSD Relative contribution Rank 

GR 0.44 31.8 0.000409 5 

SP 0.06 119664.9 0.000007 8 

CAL 1.59 267.3 0.005304 4 

AC 0.13 3.0 0.000037 7 

NPHI 0.33 70.5 0.000221 6 

RHOB 2.07 6091.0 0.008992 3 

RD -128.31 349405842.2 34.481534 2 

RM 176.84 369792547.0 65.503495 1 

Porosity 

Log Si SSD Relative contribution Rank 

GR 0.95 25.7 0.0000023 7 

SP 0.26 194330.1 0.0170713 3 

CAL 3.08 159.4 0.0000140 5 

AC 0.19 1.5 0.0000001 8 

NPHI 0.72 40.6 0.0000036 6 

RHOB 4.53 3587.7 0.0003152 4 

RD -21.41 590602998.0 51.8826640 1 

RM 155.91 547542482.6 48.0999296 2 

 

The contribution and ranking of each variable show that the two highest ranking variables are 

the resistivity logs RD and RM. The third highest ranked variable for the Oil saturation and 

porosity predictions is SP and RHOB for the water saturation predictions. The three lowest 

ranking variables are the SP, AC and NPHI for water saturation, and GR, AC and NPHI for the 

oil saturation and porosity predictions. The highest variables, RD and RM, are the variables that 

influence the output variable most. The dominant direction of sensitivity is positive for all 

variables, except the RD. That means when the RD increase, the prediction value decreases. 

The accuracy of the model is relying on the data in the training and validation set to fit and tune 

the model. Sensitivity plots can be applied to assess the influence of the variables on the 

predicted output. The results of the predicted oil saturation, water saturation and porosity from 
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the original model with all petrophysical logs can be evaluated using the sensitivity of each 

variable calculated from the partial derivatives method (Figure 6.18).  

All variables have positive and negative sensitivity (Figure 6.18, Figure 6.19 and Figure 6.20). 

The model for the predicted oil saturation is most sensitive to changes in the RD and RM (Figure 

6.18). The highest sensitivity of GR, SP CAL, NPHI and RHOB is attained at the lowest value 

of each variable. The sensitivity of the AC is unclear from the profile, however it is slightly in 

the positive direction according to the sensitivity of the input variable (Table 6.10). The highest 

sensitivity of RD and RM is attained at the higher values of each variable.  

 

Figure 6.18 Partial derivatives of each input features vs sensitivity of the predicted oil saturation 

The model for the predicted water saturation indicates that it is most sensitive to changes in the 

resistivity logs (RD and RM), and the highest sensitivity is attained at the higher values of these 

variables (Figure 6.19). The highest sensitivity of GR, SP CAL, NPHI and RHOB is attained at 

the lowest value of each variable. The sensitivity of AC is the same as the predictions for oil 

saturation. 
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Figure 6.19 Partial derivatives of each input features vs sensitivity of the predicted water 

saturation 

The model for the predicted porosity indicates that it is most sensitive to changes in the 

resistivity logs (RD and RM), and the highest sensitivity is attained at the higher values of these 

variables (Figure 6.19). The highest sensitivity of GR, SP CAL, NPHI and RHOB is attained at 

the lowest value of each variable. The sensitivity of AC remains the same as oil saturation and 

water saturation.  

 

Figure 6.20 Partial derivatives of each input features vs sensitivity of the predicted porosity 

6.4.2 Variation of input variables  

In the following section, a sensitivity analysis of how variations in each variable affect the 

prediction accuracy is presented. The sensitivity analysis of the variables is conducted on the 

data from well 15/12-4. According to the statistical summary of  P50 of well 15/12-4, there are 
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lower gamma-ray readings than most of the wells, high SP value than most wells (except well 

15/12-A8), high CAL value, lowest AC value and NPHI value and the highest RHOB value 

(APPENDIX A). Thus, there are some values outside the data range in the training and 

validation set. In this case, the model tries to predict values outside the range of the training and 

validation set, which tests the generalisation ability of the model. The accuracy of the original 

calibrated models is summarised in Table 6.11. 

Table 6.11 Reference values to evaluate how the model is affected by variations of the input 

variables.  

 R pearson R spearman R distance 

Oil saturation 0.01 0.17 0.11 

Water saturation 0.07 0.03 0.18 

Porosity  0.39 0.20 0.38 

 

The models that were calibrated with all petrophysical logs are applied to evaluate how 

variations of each variable affect the prediction accuracy. Each individual variable is increased 

by 10%, 20% 30%, 40% and 50% by turn, while the other variables are kept at their reference 

values. A summary of the sensitivity results by measurements of MSE, MAE and R2 are shown 

in (Table 6.12). The variations in CAL and AC reduced R2 significantly to a range of 0.0-0.2, 

compared to the reference value 0.38. The increase of CAL by 50% improved the accuracy of 

the model to 0.44. 

Table 6.12 Summary of the calibrated models performance of porosity on the data set from well 

15/12-4. 

 
Variation [%] MSE MAE R pearson R spearman R distance 

GR 10 606.10 21.93 0.42 0.22 0.40 

20 587.64 21.31 0.41 0.22 0.40 

30 565.59 20.55 0.41 0.23 0.40 

40 543.50 19.80 0.41 0.23 0.40 

50 524.16 19.24 0.40 0.23 0.39 

SP 10 915.16 23.40 0.29 0.26 0.31 

20 879.89 21.89 0.29 0.29 0.33 

30 561.35 15.81 0.23 0.32 0.28 

40 327.43 10.93 0.15 0.34 0.20 

50 230.85 9.37 0.15 0.39 0.21 

CAL 10 80.18 8.11 0.04 0.07 0.16 



 

93 

 

20 79.00 8.10 0.03 0.06 0.12 

30 73.34 7.80 0.08 0.10 0.13 

40 61.19 6.95 0.21 0.26 0.29 

50 45.54 5.53 0.37 0.39 0.44 

AC 10 548.56 21.66 0.05 0.00 0.14 

20 605.67 22.77 0.03 0.01 0.13 

30 674.94 23.98 0.01 0.01 0.12 

40 746.47 25.09 0.00 0.01 0.12 

50 804.09 25.81 0.00 0.00 0.11 

NPHI 10 432.05 17.25 0.41 0.18 0.38 

20 433.02 17.04 0.42 0.21 0.40 

30 436.80 16.95 0.43 0.24 0.41 

40 443.22 16.95 0.44 0.23 0.41 

50 452.20 17.06 0.43 0.22 0.41 

RHOB 10 525.91 20.03 0.33 0.23 0.33 

20 519.72 19.74 0.34 0.19 0.34 

30 516.31 19.53 0.34 0.16 0.35 

40 513.14 19.31 0.34 0.15 0.35 

50 509.75 19.09 0.35 0.15 0.36 

RD 10 480.72 17.97 0.39 0.21 0.38 

20 478.02 17.89 0.39 0.22 0.38 

30 475.40 17.81 0.39 0.22 0.38 

40 473.60 17.75 0.39 0.23 0.38 

50 472.28 17.69 0.39 0.24 0.38 

RM 10 557.45 20.13 0.45 0.27 0.45 

20 542.75 19.75 0.45 0.26 0.44 

30 527.21 19.36 0.44 0.24 0.44 

40 511.42 18.96 0.43 0.23 0.43 

50 496.61 18.54 0.42 0.23 0.41 

 

The results from the oil saturation and water saturation is found in (APPENDIX F). 

According to sensitivity analysis results, some observations on how the uncertainties affect the 

calibrated model’s prediction accuracy and the relationship between the petrophysical logs and 

oil saturation, water saturation and porosity.  

I. The resistivity logs (RD and RM) have the highest contribution and most influence on the 

predictions of oil saturation, water saturation and porosity according to the PaD method. 

II. The lowest sensitivity contribution on the prediction of oil saturation and porosity are GR 

and AC according to the PaD method. The lowest sensitivity contribution on water 

saturation is SP and AC. 
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III. The water saturation prediction is less influenced by the changes in RM and more 

influenced by the RD according to the PaD method.  

IV. According to the PaD method, the calibrated model either predicts high or low values of 

the predictions when the value of most input variables is low, except for the resistivity logs 

(RD and RM), which predicts high and low values for higher values of the input variable.  

V. In addition, the porosity prediction of well 15/12-4 is highly affected by uncertainties in 

the CAL and AC. When the AC is varied slightly (10%), it reduces the accuracy of the 

predictions to 0.16. Until AC increases (50%), it improves the accuracy to 0.44. 

VI. The porosity prediction of well 15/12-4 is slightly affected by variations in RHOB and SP. 

When the variables increase, it reduces the accuracy of the predictions from approximately 

R2 in the range 0.15 to 0.3 of Pearson and Distance, while the R2 of Spearman increases 

to 0.39. 

VII. The oil saturation prediction of well 15/12-4 is highly affected by variations in SP, AC and 

NPHI. When the SP has increased, the accuracy of the predictions is initially increased to 

approximately 0.2 and reduced to 0 as the variable increases. However, when the AC 

increases up to 50%, the accuracy of the predictions increases to approximately 0.2. The 

increase in NPHI improves the accuracy of the model.  

VIII. The water saturation prediction of well 15/12-4 is highly affected by variations in SP and 

RHOB. When the variable increases, the accuracy initially increases to approximately 0.2, 

and as it reaches 50%, the accuracy is reduced. 

IX. In the sensitivity analysis using variations, the most stable input variables are the RD for 

porosity and water saturation and RM for oil saturation (See APPENDIX F). The water 

saturation prediction also shows some stability for RD. 
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7 Discussion 
In this chapter, the results from the models are discussed, and the advantages and limitations of 

the method are addressed.  The focus in this section is the best results from well 15/12-4 to 

verify the generalisation ability and accuracy of the models. Keep in mind that the accuracy of 

the predictions on the test set was usually moderately strong for the reservoir parameter (R2 

=0.6-0.8).  

The results from the calibrated model showed that the calibrated model of oil saturation and 

water saturation could predict reservoir parameters, with linear and non-linear very weak 

positive association (R2 =0-0.2) and weak negative association (R2 =0.2-0.4), respectively. 

There are fewer data points from the water saturation and oil saturation than porosity and it may 

make it difficult for the model to predict with a limited amount of data. The number of data 

points and the data range of the training and validation set may be the cause of low accuracy of 

the models. The results from the calibrated models also showed that the model for porosity 

prediction can predict porosity values with linear and non-linear moderate to moderately strong 

association (R2 =0.6-0.8).  

The feature selection aimed to improve the accuracy of the models using targeted petrophysical 

logs that are more relevant for the reservoir parameters. The oil saturation was predicted using 

all petrophysical logs since feature selection, unfortunately did not improve the accuracy. The 

model built on 5 petrophysical logs: GR, AC, NPHI, RHOB and RD gave a similar result as the 

original model with R2 (Pearson)=0.05, R2 (Spearman)=0.23 and R2 (Distance)=0.31. The R2 of 

Spearman is higher in the original model. The model for the water saturation predictions is built 

on 7 petrophysical logs: GR, SP, CAL, AC NPHI, RHOB, and RD, and the model for porosity 

predictions is built on 5 logs: GR, CAL, NPHI, RHOB and RD. 

The stepwise regression approach was used and obtained the best results on the water saturation. 

However, using cross-validation of different significance levels may give a different result in 

the variable selection. The stepwise regression may lead to overfitting in the calibrated model 

if SSE is underestimated, and the confidence interval is too narrow (Smith, 2018). Stepwise 

regression is widely used in substantive and validity research (Thompson, 1989). It is also 

applied as variable selection (Chong & Jun, 2005) or sensitivity analysis (Gevrey et al., 2003).  

Feature selection aims to improve the accuracy and generalisability of the model. However, 

when there are fewer data points from fewer petrophysical logs, it may not recognise patterns. 

This can be seen in the first feature selection of water saturation, using only four petrophysical 
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logs. In addition, the accuracy may be improved on the training and validation set, while the 

generalisation ability is reduced. There is uncertainty in the data distribution when the model 

tries to predict values outside the range of the training and validation set. In the statistical 

summary of well 15/12-4 there is very low GR and AC and very high SP, CAL and NPHI 

(APPENDIX A). In addition, in the training and validation set, there are few wells with very 

high-water saturation, well 15/12-4 are one of the wells with water saturation above 95%, only 

one data sample from 15/12-A8. This leads to uncertainty in the predictions, which may result 

in the underestimated water saturation and predictions outside the data range.  

The performance of the oil saturation and water saturation, and porosity models may increase 

by increasing the number of wells. The model can predict oil saturation, water saturation and 

porosity. However, the results show some uncertainties between the core data and predictions 

on well 15/12-4. The best models either overestimates (oil saturation) or underestimate 

(porosity and water saturation). If the number of wells increases, the models can learn to 

recognise more patterns and improve the generalisation. If the accuracy is increased by 

increasing the number of wells, the models can be applied for predictions in other fields in the 

North Sea.  

The performance of the models can be improved by adjusting the control factor in the 

Levenberg-Marquardt algorithm to improve the accuracy, convergence stability and robustness 

of the algorithm. This factor can be adjusted with iterative numbers in the Levenberg-Marquardt 

algorithm, such as the method proposed in Cui et al., (2017). 

The advantages of using these models to predict oil saturation, water saturation and porosity 

are summarised in the following: 

➢ Time-efficient and economical method to obtain reservoir parameters than RCAL.  

➢ Identifying the relevant petrophysical logs that are needed for the model, which can 

reduce petrophysical logging costs by removing irrelevant logs.  

➢ It can be used for reservoir evaluation and reservoir modelling to evaluate potential 

hydrocarbons.  
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8 Conclusion 
This section summarises the main findings in the study.  

The best calibrated model for the oil saturation is obtained from the original model using all 

petrophysical logs. The calibrated model presented the best oil estimation results with R2 

(Pearson) = 0.1, R2 (Spearman)=0.17 and R2 (Distance)=0.11 on well 15/12-4. The best 

calibrated model for water saturation is obtained from the stepwise regression method using 7 

petrophysical logs: GR, SP, CAL, AC NPHI, RHOB and RD. The calibrated model presented 

the best water estimation results with R2 (Pearson) = 0.29, R2 (Spearman)=0.41 and R2 

(Distance)=0.40 on well 15/12-4. The best calibrated model of the porosity obtained from the 

second feature selection using 5 petrophysical logs: 5 logs: GR, CAL, NPHI, RHOB and RD. 

The calibrated model presented the best porosity estimation results with R2 (Pearson) = 0.67, 

R2 (Spearman)=0.45 and R2 (Distance)=0.74 on well 15/12-4. The best models of the oil 

saturation and water saturation was obtained from the Pearson selection, while the best models 

for porosity prediction is obtained in the Spearman selection.  

The prediction accuracy of the oil saturation, water saturation and porosity on the Varg field is 

very weak, weak and moderately strong, respectively. The prediction accuracy on the test set is 

moderately strong. If the models are trained using more wells and targeted petrophysical logs, 

it could potentially provide a fast and reliable method for predictions of reservoir parameters, 

which is very useful in both exploration and production in the petroleum industry. 

The Distance correlation is usually better to evaluate the relationship between non-linear 

variables, such a petrophysical logs. The Pearson correlation and correlation results showed an 

insignificant correlation between the resistivity logs and the water and porosity saturation. In 

addition, the Spearman correlation showed an insignificant correlation between the resistivity 

logs and the water saturation. The oil saturation showed a significant correlation with the 

resistivity logs in all correlations.  

The most relevant petrophysical logs can be obtained according to the PaD method, and the 

relative contribution of each input variable on the predictions. The resistivity logs (RD and RM) 

are found as the most important petrophysical log as an input variable in the estimations. The 

most irrelevant input variables are GR and AC for the oil saturation and porosity estimation and 

SP and AC for the water saturation estimation. The data quality of RM can slightly influence 

the results on porosity and oil saturation. It is stable as an input variable for water saturation. 
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The estimation and prediction results may not be reliable when the input variable increases up 

to 50%.  

The findings from feature selection show that irrelevant petrophysical logs that reduce the 

accuracy of the models can be removed and improve the accuracy of the model (water saturation 

and porosity). This can help reduce the cost of well logging operations by targeting the 

petrophysical logs that improve the model's accuracy. Increasing the number of wells and re-

evaluate the correlations between the parameters may help in further studies and well logging 

operations.  
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APPENDIX A 

Statistical indexes of all petrophysical logs (input variables) in each well. 

Gamma-ray [API°] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 40.02 21.29 29.02 24.01 26.39 28.42 31.72 35.20 

15/12-4 80.17 9.00 31.48 10.79 13.42 28.01 39.79 65.66 

15/12-5 102.2

0 

25.90 53.30 26.87 35.94 41.28 84.15 96.68 

15/12-6S 66.39 21.40 40.06 26.18 30.64 39.07 49.56 55.87 

15/12-9S 108.0

3 

13.19 59.09 40.38 46.06 53.76 76.25 87.24 

15/12-

A8 

152.1

0 

35.02 80.72 49.21 56.44 68.71 113.0

3 

126.6

3 

Self-potential [mV] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 100.4

0 

54.05 63.87 57.40 58.92 61.82 68.81 73.15 

15/12-4 126.1

4 

97.24 107.0

9 

98.49 102.2

4 

104.9

4 

107.7

6 

120.1

1 

15/12-5 105.7

1 

57.92 73.17 59.86 61.32 65.52 77.28 103.6

1 

15/12-6S 74.63 -7.04 35.73 2.38 12.30 40.50 58.14 67.53 

15/12-9S 93.68 0.25 37.06 3.91 7.33 28.06 72.86 83.42 

15/12-

A8 

121.7

8 

100.0

8 

110.7

8 

104.0

1 

105.7

5 

108.7

3 

116.8

2 

119.3

5 

Caliper [in.] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 14.86 7.21 7.98 7.32 7.39 7.45 7.62 11.76 

15/12-4 16.35 8.81 11.59 8.84 8.91 12.70 12.75 15.08 

15/12-5 9.33 8.57 8.70 8.59 8.60 8.61 8.76 8.95 

15/12-6S 18.27 8.50 10.96 8.60 9.00 10.70 11.71 14.50 

15/12-9S 9.86 8.46 8.68 8.46 8.55 8.56 8.85 9.05 

15/12-

A8 

10.43 8.55 8.71 8.57 8.60 8.63 8.83 8.89 

Sonic [µsec/ft] 

Well max min mean P10 P25 P50 P75 P90 
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15/12-1 128.5

6 

53.20 84.47 60.94 84.96 88.68 90.53 91.19 

15/12-4 121.2

9 

67.73 85.11 72.08 73.61 78.19 94.31 114.5

9 

15/12-5 116.3

4 

77.16 88.78 81.20 81.88 87.24 93.03 99.45 

15/12-6S 122.1

6 

50.91 83.03 69.33 77.95 82.16 90.02 97.27 

15/12-9S 129.3

8 

54.14 88.57 80.43 82.74 88.28 94.25 98.78 

15/12-

A8 

96.53 60.10 83.88 73.51 79.52 84.81 90.04 93.12 

Neutron porosity [frac.] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 41.07 6.82 21.85 15.28 21.88 22.78 23.98 24.58 

15/12-4 32.09 11.26 18.44 12.41 13.81 17.87 22.43 25.37 

15/12-5 27.81 17.03 21.95 19.67 20.53 21.76 23.23 24.93 

15/12-6S 64.34 3.74 19.79 12.93 16.47 19.24 22.14 25.75 

15/12-9S 67.95 6.22 20.22 16.28 17.73 20.06 22.13 23.93 

15/12-

A8 

31.58 5.55 19.40 14.38 16.58 19.53 22.06 24.76 

Bulk density [g/cm3] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 2.70 1.92 2.38 2.29 2.33 2.35 2.40 2.56 

15/12-4 2.54 2.03 2.37 2.15 2.26 2.43 2.48 2.50 

15/12-5 2.51 2.12 2.29 2.18 2.21 2.25 2.43 2.48 

15/12-6S 2.73 1.49 2.35 2.13 2.24 2.39 2.46 2.52 

15/12-9S 2.66 1.31 2.25 2.11 2.14 2.23 2.38 2.42 

15/12-

A8 

3.09 1.61 2.44 2.26 2.32 2.42 2.58 2.63 

Log Deep resistivity [ohmm] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 2.77 -0.69 0.00 -0.53 -0.48 -0.13 0.16 0.74 

15/12-4 1.42 -1.42 0.21 -1.17 -0.40 0.48 0.84 1.10 

15/12-5 0.65 -1.61 -0.29 -1.43 -1.06 -0.11 0.51 0.57 

15/12-6S 3.58 -0.36 1.02 0.22 0.52 0.78 1.34 2.30 

15/12-9S 3.56 -1.66 0.43 -1.41 -0.94 0.36 1.52 2.36 

15/12-

A8 

3.49 0.40 1.10 0.65 0.78 1.06 1.34 1.56 
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Log Medium resistivity [ohmm] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 2.29 -0.04 0.77 0.29 0.52 0.68 0.88 1.47 

15/12-4 1.21 -1.63 0.14 -1.23 -0.45 0.47 0.76 0.93 

15/12-5 0.63 -1.78 -0.34 -1.64 -1.13 -0.07 0.39 0.55 

15/12-6S 3.90 0.15 1.28 0.64 0.71 1.12 1.57 2.22 

15/12-9S 3.40 -1.54 0.49 -1.35 -0.72 0.48 1.52 2.23 

15/12-

A8 

3.30 0.18 0.94 0.35 0.62 0.98 1.21 1.38 
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APPENDIX B 

Statistical indexes of the oil saturation, water saturation and porosity in each well. 

Oil saturation [frac.] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 43.30 4.30 14.38 8.76 10.48 11.70 15.63 25.56 

15/12-4 89.70 0.00 5.42 0.00 0.00 0.85 3.60 13.43 

15/12-5 17.20 0.00 4.22 0.00 0.00 0.90 9.00 13.11 

15/12-6S 78.40 0.00 8.63 0.00 0.00 5.10 13.00 20.02 

15/12-9S 46.90 0.00 10.91 0.60 2.70 9.10 17.10 24.85 

15/12-A8 42.89 0.00 17.09 6.02 10.03 15.27 23.40 30.30 

Water saturation [frac.] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 73.30 3.10 39.50 10.82 34.15 42.30 47.68 52.12 

15/12-4 97.70 32.70 75.22 40.56 57.80 81.70 90.40 94.89 

15/12-5 90.00 2.90 61.77 23.41 37.30 73.60 84.70 88.45 

15/12-6S 91.70 13.30 62.96 35.36 44.50 66.40 83.85 88.24 

15/12-9S 89.50 26.30 61.30 38.55 49.80 63.50 73.00 78.15 

15/12-A8 97.23 26.52 65.54 44.55 55.48 67.05 78.15 82.28 

Porosity [frac.] 

Well max min mean P10 P25 P50 P75 P90 

15/12-1 28.00 1.70 18.28 7.90 15.20 20.85 23.00 23.83 

15/12-4 31.60 8.90 17.08 10.01 11.25 13.70 23.30 29.19 

15/12-5 27.81 17.03 21.95 19.67 20.53 21.76 23.23 24.93 

15/12-6S 43.40 2.10 16.10 7.50 10.30 13.25 22.40 28.20 

15/12-9S 36.10 6.70 21.77 12.38 15.00 22.40 28.80 31.10 

15/12-A8 29.09 3.51 16.67 8.42 9.48 17.13 23.02 26.73 
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APPENDIX C 

Statistical index of the data set including well 15/12-4  

 max min mean P10 P25 P50 P75 P90 

GR 

[API°] 

152.10 9.00 52.80 27.05 35.85 47.78 61.78 88.11 

SP [mV] 126.14 -7.04 55.92 5.12 21.20 59.68 85.04 107.14 

CAL 

[in.] 

18.27 7.21 9.47 8.47 8.56 8.70 9.17 12.70 

AC 

[µs/sec] 

129.38 50.91 86.08 74.29 80.84 85.69 91.42 97.84 

NPHI 

[frac.] 

67.95 3.74 20.14 14.46 17.46 20.14 22.57 24.76 

RHOB 

[g/cm3] 

3.09 1.31 2.32 2.13 2.20 2.32 2.44 2.50 

Log 

(RD) 

[Ωm] 

3.58 -1.66 0.56 -1.14 -0.11 0.58 1.20 2.04 

Log 

(RM) 

[Ωm] 

3.90 -1.78 0.66 -1.09 0.22 0.70 1.30 2.08 

So 

[frac.] 

97.70 2.90 34.64 17.00 18.68 22.20 47.20 79.10 

Sw 

[frac.] 

89.70 0.00 16.97 1.72 12.71 18.27 21.34 24.04 

POR 

[frac] 

67.95 1.70 18.59 9.60 13.77 19.47 22.51 25.50 
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APPENDIX D 

The results from the Pearson, Spearman and distance correlation of the wells used in the 

training, validation, and test set. 
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APPENDIX E 

Here are the performance results from the calibrated models from the original models, first 

feature selection, second feature selection and the stepwise regression feature selection 

A detailed overview of the performance result from the calibrated models using all 

petrophysical logs. 

P
ea

rs
o
n

 s
el

ec
ti

o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 25.57 5.06 20149.12 2.46 0.82 0.85 0.84 

Validation 13.35 3.65 2015.11 1.96 0.89 0.91 0.90 

Testing 29.90 5.47 3318.77 3.29 0.66 0.68 0.68 

Well 15/12-4 285.86 16.91 12006.10 12.61 0.10 0.42 0.33 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 22.14 4.71 17449.20 2.05 0.85 0.89 0.88 

Validation 12.89 3.59 1946.84 1.80 0.90 0.94 0.89 

Testing 19.31 3.59 2143.37 2.67 0.79 0.78 0.77 

Well 15/12-4 3625.45 60.21 152268.82 55.14 -0.26 -0.18 0.42 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 13510.81 0.00 0.88 1.00 0.86 

Validation 11.19 3.35 2843.09 2.10 0.87 0.89 0.86 

Testing 25.31 5.03 4378.81 2.52 0.64 0.78 0.77 

Well 15/12-4 478.44 21.87 55499.24 17.82 0.63 0.45 0.62 

S
p

ea
rm

a
n

 s
el

ec
ti

o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 25.39 5.04 20008.22 2.45 0.82 0.87 0.85 

Validation 14.41 3.80 2176.44 2.05 0.88 0.93 0.88 

Testing 30.49 5.52 3383.93 3.03 0.64 0.73 0.70 

Well 15/12-4 250.34 15.82 10514.15 10.93 0.13 0.29 0.30 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 22.14 4.71 17449.20 2.05 0.85 0.89 0.88 

Validation 12.89 3.59 1946.84 1.80 0.90 0.94 0.89 

Testing 19.31 3.59 2143.37 2.67 0.79 0.78 0.77 

Well 15/12-4 3625.45 60.21 152268.82 55.14 -0.26 -0.18 0.42 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 13510.81 0.00 0.88 1.00 0.86 

Validation 11.19 3.35 2843.09 2.10 0.87 0.89 0.86 

Testing 25.31 5.03 4378.81 2.52 0.64 0.78 0.77 

Well 15/12-4 
478.44 21.87 55499.24 17.82 0.63 0.45 

 

0.62  
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D
is

ta
n

ce
 s

el
ec

ti
o

n
 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 26.72 5.17 21056.67 2.53 0.81 0.86 0.84 

Validation 13.69 3.70 2066.50 2.03 0.89 0.93 0.90 

Testing 28.56 5.34 3170.54 2.92 0.67 0.75 0.75 

Well 15/12-4 356.65 18.89 14979.29 14.89 -0.07 -0.27 0.25 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 27.50 5.24 21671.38 2.76 0.81 0.85 0.82 

Validation 15.14 3.89 2286.71 2.17 0.88 0.92 0.90 

Testing 26.57 3.89 2949.07 3.17 0.69 0.76 0.73 

Well 15/12-4 4589.37 67.74 192753.60 63.94 -0.37 -0.47 0.49 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 13510.81 0.00 0.88 1.00 0.86 

Validation 11.19 3.35 2843.09 2.10 0.87 0.89 0.86 

Testing 25.31 5.03 4378.81 2.52 0.64 0.78 0.77 

Well 15/12-4 478.44 21.87 55499.24 17.82 0.63 0.45 0.62 

A detailed overview of the performance result from the calibrated models from the first feature 

selection 

P
ea

rs
o
n

 s
el

ec
ti

o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 42.99 6.56 33875.57 3.91 0.67 0.63 0.62 

Validation 27.51 5.24 4153.81 3.28 0.76 0.81 0.74 

Testing 41.78 6.46 4637.60 3.91 0.43 0.57 0.53 

Well 15/12-4 226.79 15.06 9525.15 5.48 -0.11 -0.21 0.20 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 78.24 8.85 61649.42 5.86 - - - 

Validation 64.57 8.04 9750.16 5.42 - - - 

Testing 48.76 8.04 5412.24 4.74 - - - 

Well 15/12-4 3703.87 60.86 155562.45 57.67 - - - 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 28391.11 0.00 0.73 1.00 0.67 

Validation 19.69 4.44 5001.82 2.80 0.76 0.72 0.73 

Testing 26.61 5.16 4603.47 3.28 0.52 0.53 0.56 

Well 15/12-4 105.98 10.29 12293.55 9.54 -0.44 -0.40 0.48 

S
p

ea
rm

a
n

 s
el

ec
ti

o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 31.50 5.61 24822.07 3.09 0.77 0.81 0.77 

Validation 24.15 4.91 3647.15 2.64 0.79 0.86 0.80 

Testing 37.02 6.08 4108.67 3.55 0.53 0.66 0.63 

Well 15/12-4 233.72 15.29 9816.40 10.53 0.03 0.12 0.24 

Water saturation 



 

115 

 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 42.99 6.56 33875.57 3.91 0.67 0.63 0.62 

Validation 27.51 5.24 4153.81 3.28 0.76 0.81 0.74 

Testing 41.78 6.46 4637.60 3.91 0.43 0.57 0.53 

Well 15/12-4 226.79 15.06 9525.15 5.48 -0.11 -0.21 0.20 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 78.22 8.84 61636.55 5.88 - - - 

Validation 64.58 8.04 9751.47 5.45 - - - 

Testing 48.78 8.04 5415.07 4.77 - - - 

Well 15/12-4 3718.04 60.98 156157.78 57.80 - - - 

D
is

ta
n

ce
 s

el
ec

ti
o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 26114.72 0.00 0.75 1.00 0.70 

Validation 20.13 4.49 5112.04 2.73 0.76 0.75 0.75 

Testing 25.41 5.04 4395.84 3.06 0.54 0.58 0.60 

Well 15/12-4 59.66 7.72 6920.20 5.49 0.29 0.21 0.38 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 109.97 10.49 86765.41 5.48 0.89 0.86 0.89 

Validation 62.68 7.92 9464.31 3.92 0.92 0.88 0.93 

Testing 226.67 7.92 25160.20 7.38 0.76 0.76 0.79 

Well 15/12-4 2009.16 44.82 84384.55 37.90 -0.30 -0.36 0.44 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 26114.72 0.00 0.75 1.00 0.70 

Validation 20.13 4.49 5112.04 2.73 0.76 0.75 0.75 

Testing 25.41 5.04 4395.84 3.06 0.54 0.58 0.60 

Well 15/12-4 59.66 7.72 6920.20 5.49 0.29 0.21 0.38 

A detailed overview of the performance result from the calibrated models from the second 

feature selection 

P
ea

rs
o

n
 s

el
ec

ti
o

n
 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 26.27 5.13 20699.42 2.75 0.82 0.83 0.81 

Validation 19.94 4.46 3010.24 2.67 0.83 0.85 0.81 

Testing 28.41 5.33 3153.11 3.33 0.67 0.69 0.69 

Well 15/12-4 982.87 31.35 41280.64 18.75 0.05 0.23 0.31 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 89.00 9.43 70217.69 5.21 0.91 0.84 0.91 

Validation 60.78 7.80 9177.85 4.34 0.93 0.82 0.93 

Testing 128.33 7.80 14244.20 6.36 0.87 0.78 0.87 

Well 15/12-4 2419.89 49.19 101635.34 42.16 -0.41 -0.49 0.54 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 
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Training 0.00 0.00 14098.95 0.00 0.88 1.00 0.85 

Validation 12.69 3.56 3224.11 2.22 0.85 0.82 0.82 

Testing 20.39 4.52 3527.98 2.54 0.69 0.76 0.77 

Well 15/12-4 97.65 9.88 11327.50 7.14 0.59 0.57 0.68 

S
p

ea
rm

a
n

 s
el

ec
ti

o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 31.50 5.61 24822.07 3.09 0.77 0.81 0.77 

Validation 24.15 4.91 3647.15 2.64 0.79 0.86 0.80 

Testing 37.02 6.08 4108.67 3.55 0.53 0.66 0.63 

Well 15/12-4 233.72 15.29 9816.40 10.53 0.03 0.12 0.24 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 94.45 9.72 74523.29 5.04 0.91 0.88 0.91 

Validation 85.88 9.27 12967.16 3.96 0.89 0.92 0.92 

Testing 208.88 9.27 23185.40 7.18 0.78 0.71 0.80 

Well 15/12-4 999.66 31.62 41985.57 25.55 0.49 0.41 0.53 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 14651.92 0.00 0.87 1.00 0.85 

Validation 15.88 3.99 4034.12 2.52 0.81 0.83 0.80 

Testing 22.24 4.72 3847.09 2.59 0.66 0.76 0.78 

Well 15/12-4 45.55 6.75 5283.82 5.20 0.82 0.67 0.86 

D
is

ta
n

ce
 s

el
ec

ti
o
n

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 30.77 5.55 24250.66 2.97 0.78 0.82 0.78 

Validation 22.72 4.77 3430.17 2.64 0.81 0.86 0.82 

Testing 36.92 6.08 4098.59 3.52 0.52 0.67 0.64 

Well 15/12-4 1376.05 37.10 57794.25 31.67 0.23 0.47 0.29 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 109.97 10.49 86765.41 5.48 0.89 0.86 0.89 

Validation 62.68 7.92 9464.31 3.92 0.92 0.88 0.93 

Testing 226.67 7.92 25160.20 7.38 0.76 0.76 0.79 

Well 15/12-4 2009.16 44.82 84384.55 37.90 -0.30 -0.36 0.44 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 14098.95 0.00 0.88 1.00 0.85 

Validation 12.69 3.56 3224.11 2.22 0.85 0.82 0.82 

Testing 20.39 4.52 3527.98 2.54 0.69 0.76 0.77 

Well 15/12-4 45.55 6.75 5283.82 5.20 0.82 0.67 0.86 

A detailed overview of the performance result from the calibrated models using stepwise 

regression for feature selection. 

 

Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 33.26 5.77 26207.71 3.21 0.76 0.77 0.75 
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Validation 18.26 4.27 2757.74 2.56 0.85 0.86 0.81 

Testing 30.99 5.57 3439.49 3.24 0.61 0.68 0.65 

Well 15/12-4 332.75 18.24 13975.61 15.01 0.09 0.05 0.18 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 73.26 8.56 57798.74 4.34 0.93 0.87 0.93 

Validation 66.44 8.15 10032.55 4.13 0.92 0.88 0.92 

Testing 210.75 8.15 23393.18 7.03 0.79 0.74 0.81 

Well 15/12-4 5109.97 71.48 214618.84 61.92 -0.54 -0.64 0.63 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 23403.57 0.00 0.78 1.00 0.75 

Validation 15.35 3.92 3898.65 2.47 0.81 0.80 0.77 

Testing 23.33 4.83 4036.89 2.98 0.59 0.64 0.64 

Well 15/12-4 95.56 9.78 11084.78 7.19 0.13 0.19 0.23 
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Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 37.01 6.08 29165.80 3.28 0.73 0.74 0.71 

Validation 20.79 4.56 3139.07 2.61 0.83 0.88 0.82 

Testing 42.56 6.52 4724.02 3.63 0.43 0.61 0.58 

Well 15/12-4 287.75 16.96 12085.37 11.37 -0.16 -0.12 0.22 

Water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 56.03 7.49 44209.92 4.05 0.94 0.88 0.94 

Validation 94.68 9.73 14296.57 4.17 0.89 0.92 0.89 

Testing 155.59 9.73 17270.10 6.15 0.84 0.77 0.86 

Well 15/12-4 1122.04 33.50 47125.71 27.98 0.14 0.07 0.31 

Porosity 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 23403.57 0.00 0.78 1.00 0.75 

Validation 15.35 3.92 3898.65 2.47 0.81 0.80 0.77 

Testing 23.33 4.83 4036.89 2.98 0.59 0.64 0.64 

Well 15/12-4 95.56 9.78 11084.78 7.19 0.13 0.19 0.23 
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Oil saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 37.01 6.08 29165.80 3.28 0.73 0.74 0.71 

Validation 20.79 4.56 3139.07 2.61 0.83 0.88 0.82 

Testing 42.56 6.52 4724.02 3.63 0.43 0.61 0.58 

Well 15/12-4 287.75 16.96 12085.37 11.37 -0.16 -0.12 0.22 

water saturation 

 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 90.54 9.52 71435.86 5.46 0.91 0.79 0.91 

Validation 69.73 8.35 10528.49 4.00 0.91 0.79 0.93 

Testing 185.36 8.35 20575.11 6.84 0.81 0.71 0.83 

Well 15/12-4 821.80 28.67 34515.63 22.14 0.22 0.12 0.35 

Porosity 
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 MSE RMSE SSE MAE PEARSON SPEARMAN DISTANCE 

Training 0.00 0.00 17132.82 0.00 0.85 1.00 0.81 

Validation 16.04 4.01 4074.77 2.62 0.81 0.80 0.78 

Testing 18.75 4.33 3244.08 2.69 0.68 0.71 0.72 

Well 15/12-4 862.97 29.38 100104.52 23.04 -0.11 -0.05 0.37 
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APPENDIX F 

Summary of the results from variations of each variable and the statistical evaluations. 

Oil saturation 

 Variation [%] MSE MAE R pearson R spearman R distance 

GR 

10.00 222.00 12.09 0.00 0.02 0.06 

20.00 89.38 7.52 0.02 0.00 0.08 

30.00 88.54 7.44 0.00 0.01 0.05 

40.00 86.67 7.19 0.00 0.01 0.05 

50.00 85.05 6.97 0.00 0.01 0.07 

SP 

10.00 123.71 9.80 0.26 0.22 0.26 

20.00 151.74 11.04 0.21 0.13 0.22 

30.00 124.06 9.84 0.14 0.11 0.15 

40.00 111.30 8.70 0.03 0.00 0.08 

50.00 125.89 8.81 0.00 0.01 0.07 

CAL 

10.00 49.33 6.36 0.11 0.36 0.16 

20.00 50.68 6.35 0.12 0.36 0.16 

30.00 51.83 6.41 0.12 0.36 0.16 

40.00 53.54 6.49 0.10 0.34 0.14 

50.00 60.68 6.90 0.04 0.07 0.06 

AC 

10.00 466.99 19.52 0.04 0.02 0.07 

20.00 511.20 20.59 0.05 0.02 0.07 

30.00 546.53 21.74 0.07 0.08 0.09 

40.00 564.68 22.42 0.06 0.00 0.08 

50.00 524.27 22.00 0.26 0.18 0.28 

NPHI 

10.00 115.84 8.65 0.19 0.05 0.26 

20.00 110.53 8.42 0.17 0.04 0.26 

30.00 104.99 8.16 0.15 0.03 0.25 

40.00 99.47 7.88 0.12 0.03 0.23 

50.00 94.30 7.59 0.08 0.02 0.19 

RHOB 
10.00 96.88 7.96 0.07 0.01 0.12 

20.00 93.82 7.75 0.05 0.01 0.11 
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30.00 91.07 7.56 0.04 0.00 0.11 

40.00 88.70 7.38 0.03 0.00 0.10 

50.00 86.75 7.19 0.02 0.00 0.10 

RD 

10.00 86.53 6.64 0.00 0.02 0.13 

20.00 86.12 6.63 0.00 0.02 0.13 

30.00 85.72 6.61 0.00 0.02 0.13 

40.00 85.33 6.59 0.00 0.02 0.14 

50.00 84.96 6.56 0.00 0.02 0.14 

RM 

10.00 81.81 6.49 0.00 0.01 0.15 

20.00 81.85 6.46 0.00 0.01 0.15 

30.00 81.93 6.45 0.00 0.01 0.15 

40.00 82.08 6.44 0.00 0.01 0.15 

50.00 82.29 6.45 0.00 0.01 0.15 

Water saturation 

 Variation [%] MSE MAE R pearson R spearman R distance 

GR 

10.00 290.80 15.74 0.11 0.03 0.18 

20.00 271.11 15.21 0.11 0.02 0.18 

30.00 255.22 14.76 0.10 0.02 0.17 

40.00 242.56 14.36 0.10 0.02 0.18 

50.00 232.39 14.01 0.10 0.01 0.18 

SP 

10.00 110.69 8.79 0.16 0.18 0.24 

20.00 131.72 10.11 0.19 0.16 0.25 

30.00 134.22 10.22 0.13 0.22 0.18 

40.00 162.24 10.81 0.02 0.03 0.03 

50.00 213.43 11.82 0.02 0.03 0.07 

CAL 

10.00 129.09 9.94 0.06 0.02 0.11 

20.00 159.10 11.06 0.01 0.01 0.09 

30.00 185.65 11.94 0.00 0.00 0.09 

40.00 203.64 12.46 0.01 0.00 0.10 

50.00 212.27 12.68 0.02 0.00 0.10 

AC 
10.00 218.49 12.76 0.21 0.22 0.27 

20.00 197.55 12.59 0.27 0.24 0.29 
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30.00 178.70 12.09 0.21 0.10 0.27 

40.00 151.88 10.95 0.09 0.00 0.26 

50.00 105.45 9.16 0.02 0.00 0.11 

NPHI 

10.00 1156.73 26.44 0.23 0.15 0.32 

20.00 933.35 23.91 0.21 0.14 0.31 

30.00 721.88 21.34 0.21 0.15 0.29 

40.00 536.71 18.78 0.21 0.16 0.26 

50.00 391.18 16.40 0.20 0.19 0.24 

RHOB 

10.00 465.58 18.87 0.39 0.36 0.38 

20.00 399.31 17.02 0.36 0.34 0.35 

30.00 316.32 14.91 0.29 0.29 0.28 

40.00 233.21 12.35 0.21 0.19 0.21 

50.00 175.46 10.05 0.12 0.10 0.18 

RD 

10.00 222.63 12.70 0.08 0.01 0.16 

20.00 218.67 12.61 0.08 0.01 0.16 

30.00 214.93 12.52 0.08 0.01 0.16 

40.00 211.36 12.43 0.08 0.01 0.16 

50.00 207.96 12.34 0.07 0.01 0.15 

RM 

10.00 194.72 11.52 0.01 0.00 0.10 

20.00 190.10 11.28 0.02 0.00 0.11 

30.00 187.02 11.29 0.03 0.00 0.12 

40.00 185.18 11.35 0.03 0.00 0.12 

50.00 186.21 11.44 0.04 0.00 0.13 

 


