University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS
Study program/ Specialization: Spring semester, 2021
MSc. Petroleum Geosciences Open

Author:
John Paul Masapanta Pozo

John Masapanta Pozo

Faculty Supervisor:
UiS — Prof, Equinor. Arild Buland

Thesis title:
MACHINE AND DEEP LEARNING FOR LITHOFACIES CLASSIFICATION
FROM WELL LOGS IN THE NORTH SEA.

Credits (ECTS): 30 ECTS

Number of pages: 194

Keywords: + enclosure: 135
Lithofacies, well logs, machine + supplement material/other: python
Learning, deep learning, neural pseudo-library and execution files,
networks. 59 pages.

Stavanger, 06" July, 2021

This page intentionally left blank.

John Paul Masapanta Pozo

Machine and Deep Learning for Lithofacies
Classification from Well Logs in the North Sea.

Master Thesis Project for the degree of
Master of Science in Petroleum Geosciences.

Stavanger, July 2021

University of Stavanger

Faculty of Science and Technology
Department of Energy Resources

University of
Stavanger

0|Acknowledgments

Abstract

Lithology identification by using well log data is an initial and fundamental step within
petroleum geosciences; same that provides essential information about the subsurface and
plays a crucial role in reservoir characterization. In addition, well log interpretation is a
process that involves a great amount of data, same that is currently handled by experts in
order to attain an accurate portrayal of the subsurface. However, as humanity enters the era
of big data in companion of the increasing technological and computational development,
data science and machine learning are progressively taking over the forefront of the future of

the oil and gas industry in order to improve and optimize processes.

In consequence, the objective of current study is to explore and compare the potentiality of
different supervised machine learning and deep learning algorithms to classify 12 different
lithology facies by using the well log data of 118 wells located in the North Sea, same that
are divided into three subsets for training, validation, and testing purposes. Additionally, we
explore and discuss a machine-learning-based feature augmentation methodology as an
attempt to improve the quality of the original dataset and consequently the final classification
results. The analyzed models include standalone algorithms such as Logistic Regression, K-
Nearest Neighbor, Supervised Vector Machines, Decision Trees, ensemble gradient boosting
tree-based algorithms such as Random Forest, Categorical Gradient Boosting, Light Gradient

Booting, and eXtreme Gradient Boosting, and a two-hidden layer Neural Network.

The results showed that by incorporating machine-learning-based feature augmentation
every model experienced a performance enhancement, where trees-based gradient boosting
algorithms along with random forest, and neural networks appeared to achieve the highest
classification performances. Finally, we compare all the models performances and discuss
possible reasons why although many algorithms offer high classification performances, they
found problems to properly predict mixed-based lithologies, as well as how the interpreters’
subjectivity impact the models performances, and possible future approaches to enhance our

best classification accuracy of 82.5% on previously unseen objects.

Keyword: Lithofacies, Well Logs, Machine Learning, Deep Learning, Neural Networks.

0|Acknowledgments

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Arild Buland for his time,
openness, and continuous support and supervision. Thank you for bringing great comments

and ideas along this great journey of continuous learning.

To my family for having a space for me in their minds and hearts regardless of the distance,
in special to my parents who have been always there with me with no excuses. My profound

gratitude to them for helping me to make my deepest dreams come true.

John. M.

0|Table of Content

Table of Content
ACKNOWIBAGMENTS ...ttt sbe e be e e aneenee e ii
TabIE OF CONENTccviiiieiee ettt sttt esneesre et enes \Y;
LSE OF FIQUIES. ...ttt n bbb ene s vii
LIS OF TaDIES ...ttt bt neeenes xiii
1. INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY.........c........ 1
I R 1 oo [0 Tod 1 o] o PSSRSO TP TRR 1
1.2 Dataset AESCITPLIONcuiiieieieeeet ettt bbb 2
1.3 MEthOAOIOQYoviiiiiiciieiee e 5
2. SUPERVISED LEARNING THEORETICAL BACKGROUNGcc.cccccvviviveeiieeen, 6
2.1 STANDARD MACHINE LEARNING ALGORITHMS ..., 6
2.1.1 LOQISHIC REGIESSION ...ttt 6
2.1.2 K-Nearest Neighbor, KNN ... 7
2.1.3 Support Vector Machings, SVM ... s 9
2.1.4 Decision or ClassifiCation TrEES........cceivereriirriee e rie e e 11
2.2 ENSEMBLE MODELS ...t 13
2.2.1 RANAOM FOrESt, RF.....ooiiieeiie ettt 13
2.2.2 Gradient Boosting Decision Tree Ensembles, GBDTcccccoevevievveieennenn, 15
2.3 NEURAL NETWORKS AND DEEP LEARNING......cccoviiriiiiieiee e 18
2.3.1 Evaluation Metrics for classifiCation...........ccoceveriiiniinienicieiesee s 22
3. DATA ANALYSISI AND PROCESSINGcccoviiiiiiieiiesieise e 24
3.1 EXPLORATORY DATA ANALYSIS ..ottt 24
3.1.1 Exploring Lithofacies Labels...........ccccooviiiiieiicie e 24
3.1.2 EXPIOriNG FEALUIES.......eeiieitieeiie sttt 27
3.2 DATAPREPARATIONccciietcesietstt ettt 33
3.2.1 Standard Data Imputation, Normalization, and Outlier Removal 33
3.2.2 Machine-learning-based data augmentation.............cccccevvvevienieesiesie e, 37
3.2.3 Feature ENQINEEIING.....ccciiiii ettt 44
4. LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING................... 47

0|Table of Content

4.1 BASELINE MODEL OVERVIEW........cooi it 47
4.2 CONVENTIONAL MACHINE-LEARNING METHODSccccccooviiiieciiees 49
4.2.1 LOQISHIC REGIESSION ..ottt 49
4.2.2 K-Nearest NeighDOr........oooiiii s 53
4.2.3 Support Vector MachinesS ..o 58
N B [T [~ o] (N I €= SRR 60
4.3 ENSEMBLE MACHINE-LEARNING METHODS.........ccocoiiiiiinice e 63
4.3.1 RANAOM FOIEST....cuiitiiiiiiiiiieieiesie ettt st 63
4.3.1.1 Recursive Feature EIMIiNation.........ccocooeiiiiniiienisineeeee s 63
4.3.1.2 Hyper-parameter TUNING........ccueieeiieieeie e seesie e sie e sre e sreesre e 65
4.3.2 Categorical Gradient BOOSHINGc.coceiieiieiieiieie e se e 67
4.3.2.1 Recursive Feature EIMIiNation..........cccooiviiiiiiinisieeeee s 68
4.3.2.2 Hyper-parameter TUNING.........cceieeiieieeir e seese e se et sre e s sre e 69
4.3.2.3 Categorical Gradient Boosting Interpretability............cccccoveviiiiniieeieennn, 73
4.3.3 Light Gradient BOOSHINGcoviiiiiiieiiiic e 76
4.3.3.1 Recursive Feature EIMINation..........cocooeiiiiiiieninneeee s 76
4.3.3.2 Hyper-parameter tUNINGcccooiriiirieieene e 77
4.3.3.3 Light Gradient Boosting Interpretabilityc.ccooviiiiiiiniiiiee 81
4.3.4 Extreme Gradient BOOSTINGccoocoiiiiiiiiiieieiec s 83
4.3.4.1 Recursive Feature EIIMINation...........ccocvoviieniinie e 83
4.3.4.2 Hyper-parameter TUNING.......cccooiriririeieienie st 85
4.3.4.3 XGBoost INterpretabilityccocooiiiiiiie e 87

4.4 Deep Learning — Neural NetWOIK...........ccociiiiiiiiiiieieseseseseee e 90
441 One-hidden Layer Base MOGEL...........ccouiiiiiiiniii s 90
4.4.2 Feature Importance INVESTIGationccoovvieriiriiniienesieeee s 93
4.4.3 Bayesian OptiMiZationccooooiiiiiiiiniiieee s 93
5. PERFORMANCE COMPARISION.......ooiiiieiiie ettt 101
6. CONCLUSIONS, AND FUTURE ENHACEMENTS......ccccoviiieiie e 113
T8 A O o (o] 1] [0 PSR OU USRS 113
6.2 FULUre eNNANCEMENTESo.viiiiiiieice et 115
7. REFERENCES.......ci ittt et 116

0|Table of Content

8. APPENDIXES ...ttt 120
8.1 Appendix A — Additional utility functions Python Codecccoceviiiiiiinnnn. 121
8.1.1 Plotting Functionalities (PIOttiNG.PY).....cccoereriririririeieeeee e 121
8.1.2 Confusion Matrix and Penalty Matrix Score (additional_functions.py) 125
8.1.3 Data formatting (data_formating.py)......cccceeerrerimrienieneeie e 127
8.1.4 Data Pre-processing (PreproCessing.PY) . cccceoeeerereresieeeeieenreseesieseessesnenns 128
8.1.5 Data machine-learning augmentation (augmentation.py)ccccceevvervenne 131
8.1.6 Data Normalization (INPUt_NOIMLPY) ..cveieeiieieiieie e 142
8.2 Appendix B — Machine and Deep Learning Models Python Code...................... 144
8.2.1 Logistic Regression (LR_MOdELPY).....ccccoeiiiieiiiiicie e 144
8.2.2 K-Nearest Neighbors (KNN_model.py).....cccccooeiiiieiieiicicicieecc e 145
8.2.3 Support Vector Machines (SVM_model.py)......ccccooveveiieiiiiieiieie e 146
8.2.4 Decision Tree (DT_MOUELPY)..cuiiiiiiiieieeie et 148
8.25 Random Forest (RF_MOdELPY) ...ccoveiviiiiiicieiecece e 149
8.2.6 Categorical Gradient Boosting (CatBoost_model.py).......ccccccevvvevviiieivenne 151
8.2.7 Extreme Gradient Boosting (XGB_mOodel.py)cccevveiveriivieiieie e 153
8.2.8 Neural Network (NN_mMOdel.py)cccooiiiiinineeeee e 155
8.3 Appendix C — Neural network Bayesian parameter optimization (Bayes_opt.py)
158
8.4 Appendix D — Execution Python Code (EXECULION.PY) ...ccvevvveveiieiieeieciiesieeias 161
8.5 Appendix E — Experimentation Python code (Experimentation.ipynb) 168
8.6 Appendix F — Lithology prediction reSUltS..........cccooeiiiininiiinicese s 169
8.6.1 Hidden teSt dataSel.........cccvvieieiiirieie e 169
8.6.2 OPEN tESE UALASEL......ccueeueeiieieiee ettt 171
8.7 Appendix G — Open set classification histograms...........ccccevvvevvririiveresieneeninns 174
8.8 Appendix H — FORCE penalty MatriX.........cccccerererenenininisieiesesie e 175
8.9 Appendix | — Categorical gradient boosting explanationccccccevveivervennns 176
8.10 Appendix J— Light gradient boosting explanationcccoovvereneienincnnnn. 177
8.11 Appendix K — Extreme gradient boosting explanation............cccccceceieveniinnnnne. 178

Vi

0| List of Figures

List of Figures

Figure 1 Wells geographical 10CatioN.ccccveiiiiiiieci e 3
Figure 2 Machine and deep leaning methodology WOrkflow.cccceviiieiiinciine, 5
Figure 3 Logistic Function (allows transforming the log-odds parameters to the probability
of an instance belonging to a certain PoSitive Class).cccccveveiieri i 7

Figure 4 Distance between (0, 0) and (15, 10) as a function of parameter (Bonaccorso, 2020).

.. 8
Figure 5 Hard (left) and soft (right) separating margins implemented on SVM (Awad and
KNANNE, 2015). ..eiiiieiecie ettt et r et e st ne e b e e re e re e nreers 9
Figure 6 Support vector machines kernel trick functioning (Sharma, 2019). 10
Figure 7 Decision tree applied on IRIS dataset (Pedregosa et al., 2011).c.cccceevevernennee. 11

Figure 8 Information gain for discrete distributions. (a) Complete dataset before splitting.
(b) Dataset after a horizontal split. (c) Dataset after a vertical split. (Criminisi et al., 2011).

Figure 9 Three different decision trees part of a random forest reproducing

different probability distribution outputs (Criminisi et al., 2011).ccccceoviiiiieniiineen 14
Figure 10 Boosting trees visual example training functionality (Chen and Guestrin, 2016).
.. 17
Figure 11 Perceptron functionality diagram for a binary output.ccccceeeeiieceeeceenne. 19
Figure 12 Neural Network BasiC StrUCTUTE.c.coiiiiiiiieeceeeseee s 19
Figure 13 Neural Network training optimization process by implementing back propagation
(NTEISEN, 2015). .eeiieeie ettt et e et e et e esaa e teeneeste e te e e e sreenas 21
Figure 14 Lithofacies presence percentage diStributionsccccecvvvveieeviccc s, 25
Figure 15 Wells geological location (NPD, 2021)ccccoeiieiiieniniinieseseeeeeesee e 26
Figure 16 Feature Presence per well — Training Set (upper center),
Open Test Set (lower left) Hidden Test Set (lower right) ..., 28

Figure 17 Wireline logs boxplots color labeled by lithology, (a) Gamma Ray,
(b) Spontaneous Potential, (c) Neutron Porosity, (d) Compressional Slowness. 29
Figure 18 Spearman's correlation between wireline logs color-coded by correlation strength.

vii

0| List of Figures

Figure 19 Bivariate correlation between most relevant logs for lithology identification,
distributions color labeled by lithology shown on the diagonal.ccccoeviiiiiieieenne, 31
Figure 20 Different normalization techniques applied on the training dataset: Before scaling
(upper-left), Min-max scaled data (upper-right), Standardized data (lower-left), (d)
Normalized data (IOWEr-16t)coveiiiee e 34
Figure 21 10% training data subsample boxplot before outlier removal (upper-left), 10%
training data subsample boxplot after LOF outlier removal (upper-right), Subsample
removed outliers’ counts by lithofacie.cccooveiiiiiiiiii e 36
Figure 22 Machine-learning-based feature imputation algorithm..............cccocceeveiiiiecnne. 38
Figure 23 (a) Actual DTS vs. predicted DTS, (b) Actual DTS probability distributions by
lithology, (c) Predicted DTS probability distributions by lithology, (d) Final ML imputed
DTS probability distributions by [ithology............coiiiiiiii s 40
Figure 24 (a) Actual NPHI vs. predicted NPHI, (b) Actual NPHI probability distributions by
lithology, (c) Predicted NPHI probability distributions by lithology, (d) Final ML imputed
NPHI probability distributions by [ithology.ccceiiiiii s 41
Figure 25 (a) Actual RHOB vs. predicted RHOB, (b) Actual RHOB probability distributions
by lithology, (c) Predicted RHOB probability distributions by lithology, (d) Final ML
imputed RHOB probability distributions by lithology.ccovveiiiiiic e 41
Figure 26 (a) Actual DTC vs. predicted DTC, (b) Actual DTC probability distributions by
lithology, (c) Predicted DTC probability distributions by lithology, (d) Final ML imputed

DTC probability distributions by [ithology.ccceoiiieiie e 42
Figure 27 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 35/9-8)............. 43
Figure 28 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 34/5-1S)........... 44
Figure 29 Optimal number of clusters based on elbow method (left), Clusters visualization
[T 1 OSSPSR 45
Figure 30 Base models average accuracies while iteratively training on 9 Kk-folds
and testing on the 10M K-TOI.ovvueveeeeeeseceeee e 48
Figure 31 Logistic Regression Classifier: Recursive feature elimination by a logistic
regresSioN-DaSEd WIAPPETc.vi it 49
Figure 32 Logistic Regression Classifier: Permutation feature importance......................... 50

viii

0| List of Figures

Figure 33 Logistic Regression Classifier: Different inverse regularization strength tested
on the training and open test set (10g C VS. ACCUTACY) ...cvvvveeireereiiiesieerie e e sie e 51
Figure 34 Logistic Regression Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (Fight)........ccoevviiieii e 53
Figure 35 K-Nearest Neighbor Classifier: Permutation feature importance. 54
Figure 36 K-Nearest Neighbor Classifier: Impact the number of training features has on the
ClaSSITICALION BCCUIACY.e.viviitieiieieeie ettt bbbttt ne bbb 55
Figure 37 K-Nearest Neighbor Classifier: Number of neighbors vs. accuracy.................... 56
Figure 38 K-Nearest Neighbor Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (Fight)........ccceeviiiicii i 57
Figure 39 Support Vector Machines Classifier: Regularization vs. accuracy. 58
Figure 40 Support Vector Machines Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (Fight)........cceov i 60
Figure 41 Decision Tree Classifier: Cost complexity factor ccp_alpha vs. accuracy
on the training and OPen teSt JAtASETS.ooiiiriiieieieee e 61

Figure 42 Decision Tree Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (Fight)........cccoeov i 63
Figure 43 Random Forest Classifier: Recursive feature elimination wrapper results.......... 64
Figure 44 Random Forest Classifier: Feature importance given by the RFE wrapper......... 64

Figure 45 Random Forest Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (Fight)........ccoeov i 66
Figure 46 Categorical Boosting Classifier: Recursive feature elimination wrapper results. 68
Figure 47 Categorical Boosting Classifier: Feature importance given by the RFE wrapper69
Figure 48 Categorical Boosting Classifier: Learning rate vs. aCCUraCyccoovererverienne 70
Figure 49 Categorical Boosting Classifier: Tree depth vs. accuracy (left) and
L2 regularization term vs. accuracy (Fight). ..o 71
Figure 50 Categorical Boosting Classifier: Tree growing policy vs. accuracy (left) and
Border count vs. aCCUracy (MgNL).coveriiiiiiiiiiiiieeeeee e 71
Figure 51 Categorical Boosting Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (FIgNt).........ccceeviiiiiiiic i 73
Figure 52 Categorical Boosting Classifier: SHAP values for each target lithology class.... 74

0| List of Figures

Figure 53 Categorical Boosting Classifier: (a) SHAP values impact while predicting
sandstone, (b) SHAP values impact while predicting shaly-sandstone, (c) SHAP values
impact while predicting Shale. ..o 75
Figure 54 Light Boosting Classifier: Recursive feature elimination wrapper...........c..c....... 77
Figure 55 Light Boosting Classifier: Feature importance given by the RFE wrapper......... 77
Figure 56 Light Boosting Classifier: Learning rate vs. aCCUraCycoevuverveseeruearvesennns 78
Figure 57 Light Boosting Classifier: Maximum tree depth vs. accuracy (left) and
Regularization lambda L2 vs. accuraCy (Fght).ccccevieiieieiieiieecie e 79
Figure 58 Light Boosting Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (Fight)........ccceeviiiicii i 80
Figure 59 Light Boosting Classifier: SHAP values for each target lithology class 81
Figure 60 Light Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b)
SHAP values impact while predicting shaly-sandstone, (c) SHAP values impact while
PrEdICHING SNAIE.cvi i 82
Figure 61 Extreme Boosting Classifier: Recursive feature elimination wrapper 84
Figure 62 Extreme Boosting Classifier: Feature importance given by the RFE wrapper84
Figure 63 Extreme Boosting Classifier: Learning rate vs. aCCUracCycccocerverreevesueene. 85
Figure 64 Extreme Boosting Classifier: Tree depth vS. aCCUracyccccecvevveieeieeiesnnenne. 86
Figure 65 Extreme Boosting Classifier: Classification confusion matrices normalized by the
number of predictions by class (a) Open test set, (b) Hidden test set..........cccccvvvverveiiereenee. 88
Figure 66 Extreme Boosting Classifier: SHAP values for each target lithology class......... 88
Figure 67 Extreme Boosting Classifier: (a) SHAP values impact while predicting dolomite,
(b) SHAP values impact while predicting shaly-sandstone, (c) SHAP values impact while
PrediCting MANL.o bbb 89
Figure 68 Neural Network: Base model StrUCLUIEccveveiieiieiecie e 91

Figure 69 Neural Network: Base model number of trainable parameters and output shape in

BACKN JAYET . ..ttt bbbttt bbb 91
Figure 70 Neural Network: 30-feature-based baseline model training history 92
Figure 71 Neural Network: Stochastic Gradient Descent-based neural network base model
accuracy history (left) and loss function history (Fight). ..o 92
Figure 72 Neural Network: Feature SEleCHION.........cccuvveiiirieiec s 94

0| List of Figures

Figure 73 Neural Network: General optimization sCheme.ccccccove e 95
Figure 74 Neural Network: Bayesian optimization neural network convergence................ 96
Figure 75 Neural Network: Hyper-parameter evaluation histograms.cccccceocevininnnnn. 97
Figure 76 Neural Network: Hyper-parameter two-dimensional partial dependence. 98

Figure 77 Neural Network: Optimized model accuracy (left) and loss function (right) training
0] (0] /OSSR 99
Figure 78 Neural Network classifier: Classification confusion matrices normalized by the
number of predictions by class (a) Open test set, (b) Hidden test set.........ccccceevvvverirnnnnne 100
Figure 79 Hidden test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

Figure 80 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for halite, marl, chalk, and tuff................................ 103

Figure 81 Hidden test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for anhydrite, coal, and dolomite.c.ccccvennee. 103
Figure 82 Prediction analysis Well 16/2-7ccoouiiiiiiiiiie e 107
Figure 83 Well 16/2-7, core taken within interval from 2285 to 2315 meters. 108
Figure 84 Prediction analysis Well 15/9-14ccccoviiiiie i 109
Figure 85 Gamma ray log response according to well locationcccceovveiiiinininins 109
Figure 86 Prediction analysis wells 34/10-16R (a), 35/6-2S (b), 35/9-8 (c), 17/4-1 (d), and
Uy T (=) PRSP P R SPR 110

Figure 87 Open test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

Figure 88 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for marl, tuff, coal, and chalk...........................o..... 174
Figure 89 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for dolomite, anhydrite, and halite. 174
Figure 90 Appendix H - FORCE penalty matrix NPD, (2021).......cccccocviiiieiiiniiieeiieeiiens 175
Figure 91 Appendix | - Categorical Boosting Classifier: SHAP values impact on each

lithology prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4),

Xi

0| List of Figures

limestone (5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures
ordered from top left to right dOWN.covvoiiiie s 176
Figure 92 Appendix J - Light Boosting Classifier: SHAP values impact on each lithology
prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone
(5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered
from top 1eft t0 MGt dOWN. ...c.veeeicecee e 177
Figure 93 Appendix K - Extreme Boosting Classifier: SHAP values impact on each lithology
prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone
(5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered
from top 1eft t0 FIGht dOWN. ...c.oeeeiieceeec e e 178

xii

0| List of Tables

List of Tables

Table 1 Training, open test, and hidden test datasets description and missing data summary.

.. 4
Table 2 Confusion matrix structure for a binary classification problem..............c.cc.coeee. 22
Table 3 Lithofacies presence percentages SUMMAIY.ccccvereieeieeresieesieesiesseesee e eeens 24

Table 4 Different data normalization techniques tested on a logistic regression base model

.. 35
Table 5 Outlier elimination methods tested on a logistic regression base model................. 36
Table 6 Feature prediction priority ranking to follow for ML imputation..............c.cc.ce...... 38
Table 7 Shear slowness DTS prediction results - Prediction substage 1............cccccovevvenee. 39
Table 8 Neutron Porosity NPHI prediction results - Prediction substage 2...........c.cc......... 40
Table 9 Bulk Density RHOB prediction results - Prediction substage 3..........cccccvevervenenne 41
Table 10 Compressional Slowness DTC prediction results - Prediction substage 4............ 42
Table 11 Additional features incorporated into datasetscccccevveveiiesieese s, 44

Table 12 Logistic regression model's performance by using median-imputed data, machine

learning-imputed data, and after including additional features.ccccoecvvvniiveieiieiiiennns 45
Table 13 Available Features for training the learning machines.cccccoceveieniicnnnnnn 48
Table 14 Logistic Regression Classifier: Optimal hyper-parameters..........ccccccevevverieennene. 51
Table 15 Logistic Regression Classifier: Classification reports for the training,
open test, and hidden teSt dAtASELS.ccveriieieiiee e 52
Table 16 K-Nearest Neighbor Classifier: Optimal hyper-parameters.ccccocevvvrerennne 56
Table 17 K-Nearest Neighbor Classifier: Classification reports for the training,
open test, and hidden teSt dataSets.c.cviiieieeii i 57
Table 18 Support Vector Machines Classifier: Classification reports for the training,
open test, and hidden teSt dAtASELS.cveiviieieee e 59
Table 19 Decision Tree Classifier: Classification reports for the training, open test, and
NIAAEN tEST AALASELS.veveeiieeeee et 62
Table 20 Random Forest Classifier: Hyper-parameter ranges defined for tuning 65
Table 21 Random Forest Classifier: Optimal Hyper-parameter............ccoocevevenencnenennnnn. 65

Table 22 Random Forest Classifier: Classification reports for the training, open test, and
NIAAEN TEST AALASELS ... ettt 66

xiii

0| List of Tables

Table 23 Categorical Boosting Classifier: Random search grid for CatBoost classifier......67

Table 24 Categorical Boosting Classifier: Optimal hyper-parameters obtained by

random search grid @PPrOaCH..........c.oi i 68
Table 25 CatBoost classifier: Manually tuned hyper-parameterscccooceeererenennnnnnn. 72
Table 26 Categorical Boosting Classifier: Classification reports for the training, open test,
and NIAAEN tESE HATASELS.eiviiriiiieiieieie e 72
Table 27 Light Boosting Classifier: Manually tuned hyper-parametersc.ccocvcerennnne. 79
Table 28 Light Boosting Classifier: Classification reports for the training, open test, and
NIAEN TEST AALASELS.vvevieieiecie et se e b reenes 80
Table 29 Extreme Boosting Classifier: Manually tuned hyper-parametersc......... 86

Table 30 Extreme Boosting Classifier: Classification reports for the training, open test, and
0T [0 [T I TS W P U] OSSPSR 87
Table 31 Neural Network: Hyper-parameter search space used during the Bayesian
(o 0 LT a L= U1 o] o OSSR 95

Table 32 Neural Network: Optimal hyper-parameters after running the optimization for 75

010 SRS 98
Table 33 Neural Network: Classification reports for the training, open test, and hidden test
0 F 1 L £SO PR 99
Table 34 Machine-learning models performance comparison: Hidden test set. 101
Table 35 Machine-learning models performance comparison: Open test set. 104

Table 36 Feature augmentation and engineering impact on the best performing model - XGB.

Table 37 Extreme gradient boosting model’s performance on each well present on
the open test and hidden test sets — low performance wells highlighted.cc.c...... 106
Table 38 Interpreter subjectivity analysis. An XGB classifier was trained several times by
keeping a particular set of wells from a specific interpreter and then tested on the wells

provided by other interpreters on the open and hidden test datasets.ccccceecvvvvervennnns 111

Xiv

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

Chapter 1

1. INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY
1.1 Introduction

Lithofacies is a term evolved from the term facies that was defined by Amnaz Gressly in the
nineteen century as the total sum of lithological and faunal characteristics of sedimentary
rocks. These characteristics include mineral composition, organic-matter content,
geomechanical properties, texture, stratification, grain size distribution, and degree of
rounding and sorting (Wang and Carr, 2012a).

Lithofacies identification is important for many geological and engineering disciplines, goals
of which might include palaeo-environmental context understanding (Wang and Carr,
2012b), hydrodynamic conditions determination sediments transport typology modelling
(Gong et al., 2012), and porosity and permeability interpretations improvements (Akatsuka,
2000). Moreover, the accurate lithofacies identification has a special significance for
reservoir characterization and stable hydrocarbon production and forecast. Standard
methodologies to recognize and identify lithology include outcrops, core data collection and
petrography, the first of which may not adequately reflect the reality of the subsurface while
the second one offers limitations due to the costs it involves. Thus, great efforts are focused
on building less costly qualitative and quantitative relationships between core data and
conventional wireline logs, which normally includes gamma ray (GR), density (RHOB),
neutron (NPHI), photoelectric index (PE), and resistivity logs (RES), in order to accurately
identify lithofacies (Wang and Carr, 2012a). In addition, even though wireline logs are able
to provide important information that leads petrophysicists into an accurate subsurface
interpretation, the massive size of the data makes of it an extremely time-consuming

assignment while, at the same time, it incorporates the interpreter’s subjectivity into it.

In the other side, as humanity enters the era of big data in companion of the increasing
technological and computational development, data science have taken over the forefront in
several industry domains. In consequence, as part of the digitalization era, machine learning

and deep learning have currently attracted great attention in petroleum geosciences because

1

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

of its advantages in addressing big data issues in a relative small amount of time, introducing
in this way exiting challenges and opportunities into the oil and gas industry (Huang et al.,
2017; Zuo, 2017; Arabameri et al., 2020). These techniques, as summarized by Anifowose
et al., (2017) and Mahmoud et al., (2021), are able to explore and learn from the hidden
patterns and connections between large multivariate datasets in order to ultimately make
informed decisions. Although, deep learning is considered a machine learning subfield, it is
also considered as the evolution of machine learning as it performs based on an auto-

regulated learning process similar to the human brain.

In addition, during the past decade, several researches have been performed to predict
litholofacies based on wireline measurements by applying different artificial intelligence
algorithms. These studies included the usage of naive bayes (NB) classifiers (Li and
Anderson-Sprecher, 2006), artificial neural networks (ANN) (Zhang et al., 1999; Dubois et
al., 2007), and support vector machines (SVM) (Al-Anazi and Gates, 2010; Sebtosheikh et
al., 2015; Hall, 2016) to mention a few.

Finally, among the methods previously investigated, the current study aims to give a
description and a fair comparison between the performances that logistic regression (LR),
Support Vector Machines (SVM), k-nearest neighbor (KNN), decision trees (DT), Random
Forest (RF), gradient boosting decision trees algorithms (GBDT), and neural networks (NN)
can provide to sort out the lithofacies classification problem, same that ultimately will help
in the near future to design a robust and automated methodology to carry out this assignment

in a human performing-comparable manner.
1.2 Dataset description

The datasets used for the current study was taken from the ‘Machine-Learning Lithology
Prediction Contest’ organized in the second semester of 2020 by FORCE, which is a
cooperating forum managed by oil and gas companies and authorities in Norway that was
created to improve exploration, enhance oil and gas recovery, and increase production
efficiency throughout cooperation between the oil and gas industry, academia and the

Norwegian government authorities.

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

The dataset used during the competition is composed by 118 wells from offshore Norway,
location of which covers the south and the north of the Viking Graben as shown in Figure 1;
besides, the wells penetrate a highly variable geology from the Permian evaporites in the
south and the deeply buried Brent delta facies in the northern area of the North Sea (NPD,
2021).

Training dataset
® Test dataset
Hidden dataset

Bergen

Oslo

Figure 1 Wells geographical location.

In addition, the provided data is conformed by three different data subsets serving to different
purposes each. The training, open test, and hidden test subsets are composed by 98, 10, and
10 wells, respectively. In addition, it is necessary to note that only the first two subsets were
available for the contestants during the FORCE competition, while the hidden test subset was
unavailable for them and was only used for assessing the final score that leaded to define the
competition winner. In fact, instead of using standard performance metrics for assessing the
models provided by the competitors, a new scoring function based on a penalty matrix was
introduced, which in brief attempts to penalize misclassification similarly as a petrophysicist

would do (See Appendix H).

Table 1 summarizes the petrophysical wireline logs measurements, and additional metadata
including lithostratigraphy, UTM location coordinates, measured depth, and the interpreted

lithofacies that make up the datasets as well as their missing data summaries, which at first

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

glance appear to represent highly sparse datasets, fact that may influence while implementing

supervised learning for lithofacies classification.

Table 1 Training, open test, and hidden test datasets description and missing data summary.

MEASURED PROPERTIES
Missing Data Percentages (%0)

DESCRIPTION LOG Training Open Hidden
Caliper CALI 7.51 4.13 2.81
Deep Resistivity RDEP 0.94 0.04 0.01
Medium Resistivity RMED 3.33 0.43 8.02
Shallow Resistivity RSHA 46.12 71.42 79.02
Flushed Zone Resistivity RXO 72.03 78018 92.73
Micro Resistivity RMIC 84.95 91.73 87.60
Spontaneous Potential Log SP 26.16 51.29 61.83
Sonic (Shear Slowness) DTS 85.08 68.40 40.46
Sonic (Compressional Slowness) DTC 6.91 0.60 3.35
Neutron Porosity NPHI 34.61 23.94 21.11
Photoelectric Absorption Factor PEF 42.62 17.02 17.94
Raw gamma data GR 0.00 0.00 0.00
Bulk Density RHOB 13.78 12.40 7.78
Density Correction DRHO 15.60 18.44 8.28
Bit Size BS 41.68 51.04 39.14
Differential Caliper DCAL 74.47 90.12 64.78
Average Rate of Penetration ROPA 83.57 59.21 47.53
Spectral Gamma Ray SGR 94.07 100.00 99.07

Weight of Drilling Mud MUDWEIGHT 72.99 85.18 100.00
Rate of Penetration ROP 54.29 50.06 25.53

METADATA

DESCRIPTION NAME Missing Data Percentages (%)

Training Open Hidden
Well Name WELL 0.00 0.00 0.00
Measured Depth DEPTH_MD 0.00 0.00 0.00
UTM coordinate X_LOC 0.92 0.04 0.01
UTM coordinate Y _LOC 0.92 0.04 0.01
True Vertical Depth Z LOC 0.92 0.04 0.01
Lithostratigraphic Group GROUP 0.11 0.00 0.00
Lithostratigraphic Formation FORMATION 11.70 5.17 6.66
Interpretation Confidence Quality LITHO _CONF 0.00 0.00 0.00

Moreover, in regard to the interpretation of the wells, the Norwegian company
EXPLOCROWD, a consultancy and services company outsourced by the FORCE organizers
committee, provided the interpretation for 104 wells, and 14 more wells were interpreted and

provided by the data science and software development company 1G2.

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

1.3 Methodology

Whenever one think about implementing machine learning for solving a particular problem,
the first question one should ask is if ML is the most suitable approach for solving it.
Additionally, considering that machine learning will never perform perfectly in real-life
problems there are a set of considerations must be fulfilled before commencing a ML project.
These considerations include that a large amount of data to be available, that a very high
accuracy not being desired, and that the problem is deeply understood so it would provide a
basis to develop suitable algorithms (Awad and Khanna, 2015). Consequently, once the basic
conditions are met, the process we will follow while developing the current machine-learning

project can be describes in the following workflow diagram.

1. DATA ANALYSIS AND PROCESSING
3. FEATURE AUGNMENTATION

{SEtIStI-CS_, CDFFEIBtiDnS_, AMND ENGINEERING BY
0. DATASET DESCRIPTION = Normalizatiun, Qutlier RET‘I’IQ\.’EL IMPLEMENTING MACHINE
Feature Augmentation and LEARNING
Engineering.)

&

4. BASE MODELS 5. OPTIMIZED MODELS
[Support Vector Machine, Logistic (Feature selection and hyper- 6. NEURAL NETWORK
Regression, Decision Tree, Random o VREr [Base Maodel and Bayesian
Forest, ¥GB, Gradient Boosting parameter optlmgatlon, training Optimized Model)
AIgoritths, a-nd Neural Network). and testing). -

W

7. MODEL COMPARITION AND
RESULTS VISUALIZATION.

Figure 2 Machine and deep leaning methodology workflow.

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

Chapter 2

2. SUPERVISED LEARNING THEORETICAL BACKGROUNG
2.1 STANDARD MACHINE LEARNING ALGORITHMS

Supervised learning is a learning mechanism that infers and learns from the underlying
relationships between the input data and a target variable that might be a continuous
numerical attribute or a multiclass categorical attribute for regression or classification
problems, respectively. The learning task uses labeled data that comprises a set of observed
vectors normally called predictors or features and a desired output called supervisory signal
or class label. Broadly, the purpose of these mechanisms is to generalize the underlying
relationship between the feature vectors and the supervisory signal in order to be able to

predict the output while unlabeled input instances are used (Awad and Khanna, 2015).

The training process is deeply dependent on the training data quality, which means that a
well-trained supervised machine-learning algorithm could accurately predict the output for
unfamiliar or unobserved data instances only if the input data used for training the algorithm
has a high-level quality. In contrast, if a poor-quality input is used for training, this might
derive in overfitting problems, which represents the difficulty for an algorithm to generalize
the underlying predictors-target relationships that will derive in an unsuccessful regression

or classification performance.

2.1.1 Logistic Regression

Logistic regression is a statistical model that follows almost the same theory as linear
regression; however, it is considered as a probabilistic algorithm used for solving binary or

multiclass problems by using a logistic function that can be mathematically expressed as

ez
1+e?’

follows were z € [—a,a]. In general, a logistic regression model predicts the

probability of occurrence of a specific event by modeling the relationship between a
dependent variable X and a categorical outcome Y (Awad and Khanna, 2015).

Mathematically the previously stated logistic function can be expressed as

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

eﬁo"'ﬁlX

P(Y|X) = T 1 ohothix €Y

were 5, and S, represent the estimated log-odds of a unit change for their respective input
they are associated with, or in other words they can be seen as weights that translates any
change in the input variables to the probability outcome. In addition, by extracting the inverse
of the logistic function a new function called logit or log-odds is obtained which allows

generating the logistic regression coefficients, 5, and 3, for a one-predictor-based case.

| PO
lOglt(P(YlX)) =1n <T(Y|X)> = ﬁo + ﬁlX (2)

Once the log-odds is calculated, a logistic function receive it as input, 5, + $;X, and returns
the likelihood probability P(Y|X) of the occurrence of the event Y belonging to a positive

class when the variable X is used as input as depicted by Figure 3.

P | X) 7

Figure 3 Logistic Function (allows transforming the log-odds parameters to the probability
of an instance belonging to a certain positive class).

To conclude, as in the case of a linear regression, we are interested on the intercept 8, and
gradient 5; coefficients, but by the aid of a logistic function, we transform these values into

the probability of a value belonging a particular class known as positive class.

2.1.2 K-Nearest Neighbor, KNN

The K-nearest neighbor classification methodology, KNN for short, is a fairly simple
clustering classification algorithm which identifies the group of k-objects in the training set
that are closest to the test object and assigns a label based on the most dominant class in the
neighborhood the instance belongs to (Awad and Khanna, 2015). KNN belongs to a particular

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

family of algorithms called instance-based learning methods. The inference, learning, and
predictions performed by a direct comparison of new samples with previously existing
instances based on the distance between each other. This methodology could be applicable
for classification, regression, and clustering purposes (Bonaccorso, 2020). The main idea of
the algorithm can be explained if we consider a bunch of data samples x;, x5, ..., x,, , each of

which has a dimensionality equal to N. Mathematically expressed as follow
X = {x;,%;, ..., x,} wherex; € RV (3)

Then we can introduce a distance function d (x4, x,) as a function of a new factor p that might
take different values. For instance, p=2 represents the Euclidean distance and p=1 represents

the Manhattan distance to mention a few.

1
N P\p

dy(ry,x) = | D [= x|)

i=1
The results obtained by the KNN algorithm when assigning an instance to a particular class
might be diverse when different distances are implemented. To exemplify this Figure 4 helps
visualize how the computed distance between the point A (0, 0) and B (15, 10) varies when

different p values are used (Bonaccorso, 2020).

Figure 4 Distance between (0, 0) and (15, 10) as a function of parameter (Bonaccorso, 2020).
Finally, once every the distances is computed, the KNN algorithm determines the k closest
samples for each training point; thus, when a new sample is presented the process is repeated
with a predefined value of k samples (Bonaccorso, 2020). The philosophy of the KNN

methodology is that similar samples should share their features or predictors, which normally

8

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

may provide high training and testing accuracies; however, since every distance has to be
computed every time a new instance is introduced, it might become an extremely slow

process for massive datasets.

2.1.3 Support Vector Machines, SVM

Support Vector Machines, SVM, is a machine-learning algorithm that from a geometrical
perspective aim to find the equation of a multidimensional surface that best separated
different classes in the feature space. SVM is a discriminant technique that solves the convex
optimization problem analytically meaning that it will always return the same hyper-plane
parameter every time the model is initialized with the same parameters. In contrast, other
popular algorithms for classification problems like perceptron accomplishes its solutions
depending on the parameters initialization and termination criteria making of it an heuristic
approach (Awad and Khanna, 2015).

Several of the characteristics that make of SVM a powerful machine-learning technique for
a large range of problems are that it is uses maximum margin separator and a kernel
technique. As a maximum margin separator, SVM not only aims to minimize or maximize a
cost function but also imposes an additional constrain or condition to the location for the
hyper-plane, which has to be situated in a way that the distances between classes are

maximized as an attempt to generalize its solution.

X X2

X1 X1
Figure 5 Hard (left) and soft (right) separating margins implemented on SVM (Awad and Khanna, 2015).

In this context, Figure 5 depicts two scenarios in which SVM constructs a separating hyper-
plane to properly classify most of the instances encounter in a training set when the data is
completely separable when there is not such a case. These hyper-planes are named hard-

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

margin and soft-margin SVM, respectively. The first attempts to maximize the distance
between classes, while the second allows for some classification error in the neighborhood

of the separating boundary or hyper-plane (Awad and Khanna, 2015).

Besides, SMV includes kernel trick functionality that helps mapping the original data into a
higher-dimensional space before solving a particular task considering that often the data
involved is not linear separable in the original input space as exemplified on Figure 6. The
principal objective for dimensionality transformation is to simplify the computational
requirements for constructing a linear separator in a higher dimensional space where a linear

separator would be able to discriminate between different classes.

e o Separation
PO ° " Hyper-plane
o [e] (8]
°o -' g ® ain® /
Rl Y Pt | b
0e®® a g% o agian ¥
® e " m g m o n_Spg¥_
o "mm & an®
© "ogEg_® o,
o ol @ e o o _ 0 fo)
o . e 0 g 0 %9 00 _0 g4 OO OO 08
> T KERNEL Y -l
0® o ‘ 8 0,0 900
00 I 050 © —
e e

Figure 6 Support vector machines kernel trick functioning (Sharma, 2019).

In addition, kernel selection is highly dependent on data nature. For instance, a linear kernel
is the simplest approach for solving medium complexity problems, a polynomial kernel is
widely used for task related to image processing, ANOVA RB kernel is reserved for
regression task mainly, and Gaussian and Laplace Radian Basis Function (RBF) kernels are
mostly applied in the absence of prior knowledge. However, the great majority of them
provide a better model performance once feature or data dimensionality reduction are
performed. Moreover, SVM is a sparse technique that requires all the training data to be
available in order to learn its optimal parameters. Once these parameters are identified, SVM
will depend only on a significantly small subset of training instances called support vectors
that would become the margins of the hyper-planes in the case of a multidimensional feature

space.

10

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

Ultimately, the complexity of the classification task with SVM depends on the number of
support vectors rather than the dimensionality of the feature space; thus, the number of
support vectors that are ultimately retained by the model depends on the class separability.
Therefore, SVM performance is highly dependent on the training and test data distributions
and when trained with data that are not representative for the overall data population, hyper-

planes are prone to poor generalization (Bonaccorso, 2020).

2.1.4 Decision or Classification Trees

Decision or classification trees are used to classify a data instance into a predefined set of
classes based on its attributes called features or predictor in machine learning. Decision trees
could be seen as expert decision or clarification systems, which partially attempt to mimic
and automate the underlying knowledge of an expert on the entrusted task. Some of the
advantages of decision trees models are that they are simple to implement and its self-
explanatory characteristic help represent them graphically as hierarchical structures (Rokach
and Maimod, 2014).

petal lenglh (cm)= 2.45
gini = 0.6667
samples = 150

50

petal width (cm)= 1.75
=00

samples = 100
value = [0, 50, 50]
class rsicol lor

tal width < 1.65
e i 646
samples = 48

value = [0, 47, 1]
class = versicolor
T

gini = 0.4444
samples = 3

samples = 6
value = [0, 2, 4] value = []D. 1.2]

class = virginica
AW |

sepal length (cm)= 6.9 =
gini = 0.4444 gini = 0.0
samples = 3 =

petal width (cm)< 1.56 sepal length (cm)< 5.9/
gini = 0.4

class = virginica
T

value = (0, 2, 1)
class = versicolor

Root Node
Internal Nodes
== Terminal Nodes

Figure 7 Decision tree applied on IRIS dataset (Pedregosa et al., 2011).

Further, a decision tree is as classifier expressed as a recursive partition on the instance space
consisting of different types of nodes called root node, internal or test node, and terminal
nodes also called leaves. The root node can be seen as the initial point with no incoming
edges, while the internal node splits the instance space into two or more partitions according

to a certain discrete attribute value to finally get to the terminal nodes, which represent the

11

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

most appropriated outcome reached through the previous internal nodes. To exemplify what
was previously stated, Figure 7 shows the implementation of decision trees for the well-

known IRIS dataset where the root, internal, and terminal nodes can be identified.

In addition, the driving concepts for decision trees, entropy and information gain, will be
discussed based on the example shown on Figure 8.

Info Gain = 0.40 top bottom
® ' 1 1
" -. ® 0.8 03
'_i %‘ ° «ﬁ. 05 05
data before split class distribution] 3 :"-11) 0.4 04
=|e '. = a°] 02 02
Gl o ® o b /le - L e
L) g8 0y ." 0G| :
2g%% ®° lnf; Gan=06 left 1 right
L - * '
.‘.‘ h - o4 08 04
"
a .] Aoe 2° o 06
i b. E '. a4 04
ﬁ EEE ol 02 02
(o} u, " [+]
o o

Figure 8 Information gain for discrete distributions. (a) Complete dataset before splitting.
(b) Dataset after a horizontal split. (c) Dataset after a vertical split. (Criminisi et al., 2011).

Figure 8a shows a number of data points distributed on a 2D space color-labeled by different
data classes. If we split the data horizontally or vertically as shown by Figure 8b and Figure
8c, respectively, two sets of data with lower entropy for the first splitting case and with higher
entropy for the second one are produced. The information gain for each split type could be
mathematically computed by equation (5), where H(S) represents the entropy for a generic

set of training points S.

Sl'
I=HE) - %H(S’) (5)

Ie[1,2]

The lower entropy split gives an information gain of 1=0.4, while higher entropy splitting
gives 1=0.6 meaning that a better class separation is achieved by the second way of splitting

the data as visible on Figure 8 (Criminisi et al., 2011).

To summarize, classification trees function by simply navigating every instance from the root
of the tree down until they reach any specific leaf according to the outcome of the internal

nodes and the information gain metric obtained afterwards. Note that the internal nodes are

12

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

able to test both numerical and nominal attributes. Moreover, according to (Breiman et al.,
1984), the decision trees accuracy is mainly influenced by its complexity, which could be
measured by either the total number of nodes, total number of leaves, tree depth, or number

of predictors used, or any possible combination of them.
2.2 ENSEMBLE MODELS

Ensemble methods are techniques that aim to combine multiple models into one to improve
their overall performance. These methods fall into two broad categories defined as sequential
and parallel ensemble techniques. Sequential ensemble techniques generate base learners
sequentially where data dependency resides, so every other subsequent learner depends on
the previous learner performance in order to get an optimized performance. Parallel ensemble
techniques, in the other hand, generate their base learners in parallel in order to encourage

independence between every learner, which aims to reduce their final performance error.

2.2.1 Random Forest, RF

Random Forest is a parallel machine learning technique founded on the decision trees theory
in which decision trees are not treated and used as individual entities anymore. In their stead,
all decision trees, also known as weak learners, are combined together in a newish emerged
and robust predictive technique known as ensemble learners that have been mostly confined
to classification tasks. They use a random feature sample to build each independent tree as
an attempt to reduce variance by decreasing the correlation between each decision tree

output.

Additionally, these kinds of machine learning algorithms are highly influenced by a number
of important components but mostly by its randomness while constructing every individual
decision tree differently from one another. Besides, forest randomness, which is introduced
into the trees during the training phase, provides the model with high robustness with respect
to noisy and imbalanced data. Moreover, randomness is normally achieved either by random
training data sampling, also known as bagging, or by randomized node optimization
(Criminisi et al., 2011).

13

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

In general terms, random forest training happens by optimizing the parameters of decision

trees, known as weak learners, at each split node j via:
8%, = argmax; (6)

For the specific case of classification problems, the objective function I, as stated in the
previous section, is the information gain computed by equation 6. Subsequently, once every
decision tree has been trained independently and efficiently, all these ‘weak’ predictions are
combined into a single forest prediction by an averaging operation using the following
expression in the case of classification tasks.

T
1
p(elv) = =) piclv) ™
t=1

Where T represents the total number of decision trees, v represents an attribute instance, and
p(c|v) is the ensemble posterior probability distribution of an attribute instance belonging to
any discrete class (Criminisi et al., 2011). In other words, classification forest produce
probabilistic outputs as they return an entire class distribution as illustrated in Figure 9.

v A
! }

it

—e.

) "" \ L VA
"I m

Figure 9 Three different decision trees part of a random forest reproducing
different probability distribution outputs (Criminisi et al., 2011).

Figure 9 describes how the same input value v is conducted differently from the root node
until it reaches a leaf node; here every posterior p;(c|v) is read off and averaged together to

an ensemble posterior p(c|v).

Finally, random forest algorithms generally yield to high accuracies and generalization;

however, their performance is importantly affected by several parameters such as their size,

14

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

number of discrete classes to be classified, classes’ similitude, training data noise or quality,

and individual performance of each decision tree included in the random forest.

2.2.2 Gradient Boosting Decision Tree Ensembles, GBDT

Gradient Boosting Machines, GBMs for short, are a family of powerful machine-learning
techniques considered to be part of the sequential ensemble models category in which each
independent learner acquires information, learns, and gets constructed based on previous
learners’ mistakes by performing gradient descent in a functional space in order to optimize

their overall performance in subsequent steps.

Unlike common ensemble techniques like random forest, which rely on simple averaging
techniques to get the final model, boosting ensemble methods base their functionality on
consecutively training each base-learner with respect to the error obtained by the whole
ensemble on previous stages. In addition, their robustness is partially attributed to their high
flexibility while using pre-established or customized loss functions during the optimization
stage, which has made of them very successful in practical applications and data challenges

worldwide compared to single strong machine-learning models (Ghori et al., 2019).

Gradient Boosting Machines rely on three main elements that are the loss function, the base
weak learner involved in the process, and the additive model receiving all the weak learners
while a gradient descent process is performed in order to minimize the final additive

performance loss.

Moreover, tree-based gradient boosting ensemble algorithms, which could be considered as
a subgroup of Gradient Boosting Machines (GBM), were originally designed to be highly
scalable to large datasets in different scenarios. These methods are able to run more than ten
times faster than other existing popular algorithms. Mathematically a tree-based GB

ensemble model can be expressed in the form

K
5=) fulbx), where fi € F (®
k=1

where, K is the number of trees, f is a function part of the functional space F, and F is the

set of possible classification or regression trees known as CARTSs. Additionally, considering

15

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

that tree boosted and random forests are really the same model with the only difference in
how they are trained. In consequence, as any other supervised machine-learning model the
first step prior to enter the training stage is to define an objective function (Prokhorenkova et
al., 2019).

Moreover, similarly to any gradient boosting model, tree-based models build an additive
expansion of the objective function by minimizing a loss function which introduces a

regularization term € in order to control the complexity of the base tree learners as follows:

0bj(®) =) 1=+) o(f) ©
i k=1

where, [is a differentiable convex loss function that measures the difference between the

prediction y, and the targetyl(t). Additionally, in order to define the regularization term or

complexity of the tree Q(f), we need first to define a decision tree f(x) as

fi(x) = Wy, weRT, ¢:R* - {1,2,....,T} (10)

where, w is a vector containing the scores on the tree leaves, q is a function that assigns each
data to its corresponding leaf, and T is the number of leaves. Thus, the regularization term

can be mathematically expressed as
1 T
Q(f) = yT + EAZ w2 (11)
j=1

Where, T represents the number of leaves of the tree, w are the output scores of the leaves,
and y controls the minimum loss reduction gain needed to split an internal node (Chen and
Guestrin, 2016). This regularization term Q penalizes the complexity of the model and serves

as a regularization technique that helps to smooth the final learn weights to avoid over-fitting.
Additionally, to exemplify how boosting tress work let’s assume the mean squared error
(MSE) as loss function, then the objective function could be redefined as

n

1
0bj® = Y |gifi) + 3 fiF) | + 0 (12)

i=1

16

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

where,
gi = ayl(t—ﬂl(yi,}?l(t_l)) (13)
hi = 0% ol 97) (14)

are the first and second derivatives of the objective function, normally called gradient

statistics. Then, the objective function is reformulated as follows

n
1
i=1

where, G; = Zie,j giand H; = Zie,j h;. Finally, after solving the equation for w, we get a

final expression that measures how good a tree structure is.

foo G (16)
YT T
bj* = 15: G +yT (17)
YAy AT R

Instanceindex gradient statistics

g1, h1 N

1

I; = {2,3,5}
g @ 92, h2 g Gs =92 +93+ g5
- L = {1} =14} Hy=hy+hs+hs
3 U= g3,h3 G =g Gy =gy
Hl = h] H.-; = h,-l
4 @ g4, hd
(‘;'2
% Obj=—zjﬁ+3'}'
5 g5, h5 '

The smaller the score s, the betterthe structure is

Figure 10 Boosting trees visual example training functionality (Chen and Guestrin, 2016).
Sometimes, understanding the whole process seems complicated, so we can intuitively
understand the boosting trees training functionality by the following particular example
described on Figure 10. Here, initially the statistics g; and h; are pushed until each instance

reaches the leaves it belongs to, then these statistics are summed up together, and the

17

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

objective function is used to calculate how good the tree is, similarly to impurity in decision

tress but taking into account the model complexity (Chen and Guestrin, 2016).

Once, the utility of a tree has been calculated, the new step is to enumerate all possible trees
and select the one that provides the best gain node by node. This can be computed by the

following expression

) 1[6,? Gr? (G, + GL)?
Gain = =

+ - - 18
2|H, +3 "Hp+3 H,+Hp+3| 7 (18)

which sums up the gain of the new leaves and subtracts the gain obtained by the original leaf
and then compare the value to the minimum accepted gain vy to decide if performing a new

split is beneficial or is not.
2.3 NEURAL NETWORKS AND DEEP LEARNING

Neural networks are an elegant programming paradigm in which computers learn how to
solve a particular problem without explicitly being told how to solve it. Instead, computers
learn by themselves how to overcome the problem at hand by solely using observed data;
however, even though neural networks were promising in past years, it was only possible to

properly train a neural network when deep neural networks were discovered in 2006.

Initially, in order to understand the mainly used neurons called sigmoid neurons, perceptrons
need to be defined beforehand. To visually understand perceptron functionality let’s assume
some binary inputs x,, x,, x3, which are afterwards weighted internally to produce a binary
output for an data instance belonging to a particular class, which is determined by comparing

the weighted sum Y. ; w;x; to a pre-established threshold as described on Figure 11.
Iy

Ta - - » output

Iy

18

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

0 if ij-x-{threshold

==

1 if D w;x; > threshold

Figure 11 Perceptron functionality diagram for a binary output.

output = {

Perceptrons can, in brief, be seen as decision makers based on evidenced data which may
lead to different decision making models by adjusting the weights w and threshold. In this
way, perceptrons are able to solve simple decision-making problems; however, by
connecting different perceptrons parallels, a new and much more powerful structure called
neural network becomes possible as described in Figure 12. Consequently, much more
complex or abstract decision-making problems can be solved when preceding layer’s outputs
are considered as the new inputs for the subsequent layer in the neural networks (Nielsen,
2015).

hidden layers

input, layer

Figure 12 Neural Network Basic Structure.

More formally, the minus threshold term —treshold is known as bias b, which can be
understood as an analogous to the constant term in a linear function and allows perceptrons
to better fit the observed data. Thus, the previous definition of a perceptron can be readjusted
as follows.
; t_{O if w-x+b<0
OuUtPUt =11 if w-'x+b>0
Furthermore, making a perceptron-based artificial neural network learn is a complicated task
since this is normally achieved by continually changing the bias and weights so that mistaken

predictions are correctly predicted. However, slight changes in these parameters lead to

19

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

completely different results while using perceptron-based networks. In consequence, this
problem is overcome by introducing a new type of artificial neuron called sigmoid neurons,
which do not affect greatly the outputs when small changes in the weights and biases are

performed, fact that is crucial to allow neural networks to learn.

Sigmoid neuron can be understood in almost the same way as perceptron, with the difference
that the output sigmoid neurons provide may take any possible value between 0 and 1 by the
aid of a sigmoid function also known as activation function. This output can be
mathematically expressed as o(wx + b), where ¢ represents the sigmoid function (See
Figure 3) defined by

O L 19
T Ye?r 1+er (19)
Consequently, the output that sigmoid neurons provide can be redefined as:
1
output = (20)

where the sigmoid or activation function smoothness help to maintain the output with no
substantial changes when the weights w and bias b are slightly varied during the training

process.

Moreover, before entering the training stage a optimization cost function has to be defined,
which in general terms is a measure of how well a neural network does with respect to the
expected outputs. Depending on the problem to be solved the cost function may take different
forms for regression, binary classification, and multi-class classification. Lastly, the cost
function as a function of the weights and biases is optimized during the training process by
implementing a gradient descent algorithm. In addition, optimizing a cost function could be
achieved analytically by implementing calculus; however, this becomes almost impossible
when the neural network involves hundreds, millions, or even billions of weights w and

biases w to be optimized (Nielsen, 2015).

20

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

Furthermore, a reduced way to explain how gradient descent works in neural networks is to
consider a particular cost function € which is a function of m variables v;, v,, ..., v,. Then
any change AC in the cost function C produced by small changes Av = (Avy, Av,, ..., Avy)T

IS expressed as
AC = VC-Av (21)

where the gradient VC is the transposed (T) vector made of the partial derivate of the cost
function with respect to each variable weight w and bias b contained in the network, v, for

simplification.

aC ac)T

VC = (avl , ,%

(22)

so if we choose a change Av = —nAC, where 7 represents a parameter called learning rate,
this guarantees that the cost function will always decrease AC < 0 in order to find its global

minimum (Nielsen, 2015).

Weight update

Backpropagation

8! =4 - ¥
X1
Optimizatien such as Gradient Descent
X2 Calculation of cost function
n Q
net = T wx, o = o(nel) = ==
=0
. Qutput
Net input Activation
function function
Xn

input

Figure 13 Neural Network training optimization process by implementing back propagation (Nielsen, 2015).
Finally, once the weights and biases have been calculated, the error is back propagated
meaning that an error vector is calculated from the last layer in order to understand how the
cost varies with earlier weights and biases. This final process is called back propagation and
is profoundly explained in (Nielsen, 2015). The complete training process of neural networks

21

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

while implementing back propagation to optimize all the trainable variables is depicted in

Figure 13.

2.3.1 Evaluation Metrics for classification

Evaluating the performance a machine-learning model is a fundamental aspect during
training, validation, and testing stages of a machine-learning project in order to understand
the quality of the output and the influence input data has on this. Normally in real-life
applications, the datasets to be used during classification tasks are imbalanced, meaning that
some classes have fewer samples than the other classes, which are referred as minority and
majority classes, respectively. This imbalance represents a great challenge while solving
classification problems by machine learning since it might cause a bias in the prediction
towards the majority class when standard machine learning are implemented, resulting in a

poor generalization.

In consequence, while dealing with imbalanced datasets, a standard accuracy would be a
biased metric for measuring the classification goodness; thus, weighted precision, weighted
recall, and weighted f1 scores would be better indicators of the classifier performance. Also,
a confusion matrix would provide a visual representation of the classification accuracy

between the predicted versus the actual classes.

A confusion matrix is the most basic form of accuracy assessment while solving classification
tasks. It provides us how many predicted classes were accurately and/or inaccurately
outputted when compared to the actual classes. A confusion matrix for a binary classification
task could be expressed as shown on Table 2, from which several classification metrics such

as precision, recall, accuracy, and f1 score can be computed.

Table 2 Confusion matrix structure for a binary classification problem

Predicted/Actual Class Positive Class Negative Class
Positive Class True Positive False Positive
Negative Class False Negative True Negative

Precision represents the fraction of the correctly identified positive classes from all the

predicted positive classes as follow:

22

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

Precisi True Positive 23)
recision =
(True Positive + False Positive)

Recall, in the other hand, represent a measure of the correctly identified positive cases from

all the actual positive cases as:

Recall = True Positive 24
ecalt = (True Positive + False Negative) (24

Accuracy is the measure of all the correctly identified cases and is used normally while
working with balanced datasets.
True Positive + True Negative

(True Positive + False Positive + True Neagtive
+False Negative)

Accuracy =

(25)

F1 score is represents the harmonic mean between precision and recall and gives a better
measure of the incorrectly classified cases than the accuracy metric.

2(precision - recall)

F1score = — (26)
precision + recall

Finally, to summarize we could say that different metrics could be used according to the
purpose and the nature of the dataset. For instance, accuracy is a good choice when the true
positive and true negative are highly important, while f1-score must be chosen when false
negative and false positive are crucial. In addition, for imbalanced datasets, even though a
standard accuracy might not be the best performance metric, it could be weighted by the
number of instances belonging to each class to account for class imbalance; this would
provide a more reliable performance metric if accuracy is used to asses a certain model

performance.

23

3| DATA ANALYSISI AND PROCESSING

Chapter 3

3. DATA ANALYSISI AND PROCESSING
3.1 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the process throughout which we study and attempt to find useful
information and existent patterns within the data. The major purpose is to understand the
nature of the data itself and establish initial potential methodologies or approaches for solving

the lithofacies classification problems.

Furthermore, by the proper recognition of the relationship, and correlation between data
readings, a new machine-learning based imputation technique will be subsequently proposed
and discussed in Section 3 as a feature augmentation methodology in order to improve the

final classification performance.

3.1.1 Exploring Lithofacies Labels

The datasets present 12 different lithofacies classes in their majority dominated by shale,
shaly lithologies, and sandstone. Table 3 shows each lithofacie description and its presence

percentage in the training, open test, and hidden test subsets.

Table 3 Lithofacies presence percentages summary.

Lithology Presence Percentage (%)

Lithofacie Label Code Training Open Test Hidden Test
Sandstone SS 0 14.40 17.60 11.50
Shaly sandstone S-S 1 12.90 12.80 10.00
Shale SH 2 61.60 61.40 58.70
Marl MR 3 2.80 2.40 3.60
Dolomite DOL 4 0.10 0.30 0.20
Limestone LIM 5 4.80 3.50 3.80
Chalk CH 6 0.90 0.50 2.40
Halite HAL 7 0.70 - 5.30
Anhydrite AN 8 0.10 0.10 0.50
Tuff TF 9 1.30 0.90 0.80
Coal CO 10 0.30 0.50 0.20
Basement BS 11 0.01 - -

24

3| DATA ANALYSISI AND PROCESSING

Along with Table 3, the bar plot presented on Figure 14 also reflects more clearly the
lithology distributions present on each data subset. As visible, there is a great class imbalance
between different lithologies, fact that may have an important role during the classification.
Besides, it is worth to mention that there is a great presence of lithology types that could be
described as a mineral mixture, fact that might also have an important relevance while
attempting to properly classify similar lithology classes as they are expected to have similar

petrophysical property readings.

LITHOFACIES PRESENCE PERCENTAGES

E1 Ee - TRAIN
[= . TEST
= - HIDDEN

PERCENTAGE

Figure 14 Lithofacies presence percentage distributions

Furthermore, based on Figure 14 and from a geological perspective, we can simply infer that
the North Sea geology is widely dominated by shaly, sandy sediments, and carbonates mainly

deposited during the Jurassic, Cretaceous, and Cenozoic ages.

This is not surprising given the geological evolution of the North Sea; which was initially
characterized by an extensive marine transgression extended along the complete North Sea
during the transition from the Triassic into the Jurassic. Subsequently, extensive deltaic
systems containing sand, shale, and coal were developed during the late Jurassic in the
northern North Sea and the Horda Platform once the marine transgression ended (See Figure

25

3| DATA ANALYSISI AND PROCESSING

15). Besides, similar deltaic systems were developed during the same age along the Danish
Basin and the Stord Basin. This sediment depositions accompanied by the major Jurassic
rifting phase leaded to faulting and the formation of the most important source rocks for the
hydrocarbon reservoirs located in the North Sea (NPD, 2015).

Figure 15 Wells geological location (NPD, 2021)

Following, the rifting phase ceased in the Early Cretaceous and the deposition two
contrasting lithologies took place, chalk at the southern North Sea and siliclastic, clay-
dominated sediment in the northern zone. Finally, chalk deposition took place and finished
in the Early followed by a thermal subsidence that leaded into the creation of the intracratonic
sedimentary basin of the North Sea as the continents moved to their current location;
consequently, due to the basin margins uplift, submarine fans were transported from the
Shetland Platform towards the east. Finally, several deltaic systems running from the
Shetland Platform towards the east were formed and characterized the central North Sea,
these correspond to the vast majority of the hydrocarbon reservoirs present in the North Sea
(NPD, 2015).

26

3| DATA ANALYSISI AND PROCESSING

3.1.2 Exploring Features

As stated previously, exploratory data analysis is a highly important step in any data science
workflow due to its implications while understanding the data contents, extents, connections,
and variations. The current datasets contain a wide group of characteristics available to be
used as input data, normally known as features or predictors. These potential features involve
20 different types of log readings and 6 additional metadata characteristics describing well
names, interpretation confidence, location, and lihtostratigraphical information (See Table
1). Unfortunately, as in many real world problems the dataset present incompleteness or
sparsity in some predictor that might have been caused different reason such as cost
considerations, borehole problems, logging tool failure, telemetry issues, or simply they were

omitted by choice.

The following figures were designed to better visualize the logs data and metadata presence
per well on the datasets before undergoing into the supervised-learning implementation.
Figure 16 shows that from the 98 wells held in the training set most of the missing data in
the training set relies on the SGR, DCAL, ROPA, RMIC, MUDWEIGHT, and DTS logs,
same which are present in only 13, 22, 25, 27, 28, and 32 wells, respectively. Further, the
open and hidden test sets (Figure 16) behave similarly in regard of data presence, where most
of the missing data once again relies on the same well logs previously mentioned with minor

differences between each testing data subsets.

Moreover, checking the statistics summary in order to have a feature values overview is
essential to identify possible abnormal values that might be outside of the physical boundaries
and may affect the classification performance. However, understanding the data based merely
on numerical values lacks of meaning; thus, box plots of the most important features from a

petrophysical point of view are displayed in Figure 17.

The gamma ray log (Figure 17a) shows that there are some values that exceed the physical
boundaries, which normally go from zero to 300 or 350 API units in most of the offshore
reservoirs. In addition, the lithology distributions for the mixed-based lithofacies such as
sandstones, shaly-sandstones, and shales overlap between each other. This could probably

indicate that some readings corresponding to these classes in the dataset may have been

27

3| DATA ANALYSISI AND PROCESSING

misinterpreted or mislabeled, or it could also be an inherent property of the formations due
to presence of some radioactive minerals such as k-feldspar, zircon or mica. These
radioactive minerals could raise sandy lithology readings over 150 API units similarly to

shale.

FEATURES PRECENSE PERCENTAGE - TRAINING DATASET

100

Number of wells

SIS FS TP FLILISLEE 08P NS

Qf* ¥ AT A7 (?
&

FEATURES PRECENSE PERCENTAGE - OPEN DATASET FEATURES PRECENSE PERCENTAGE - HIDDEN DATASET

100 100

Number of wells

PRI F TP RTR PR RTIE PP SFSIP ISP FEOES S JHFE
&

QAT AY Y o & PRI @ L
g
¢ & E & @*’" &

Figure 16 Feature Presence per well — Training Set (upper center),
Open Test Set (lower left) Hidden Test Set (lower right)

Further, the spontaneous potential log SP (Figure 17b), normally used to identify gross
lithology and differentiate between permeable and non-permeable formations, as expected
shows a quite defined shale baseline reading and little deflections to higher and lower values
based on the formation permeability and fluid content salinity. Thus, the values exceeding
the whiskers of the SP log data mainly happen in sandstones, shaly-sands, and shale

correspond to the fluid content, which might be formation water or hydrocarbons.

Besides, the neutron porosity log (Figure 17¢), which is normally combined with the bulk
density log for practicality, shows a shale trend line around 20-35% NPHI, while for other

28

3| DATA ANALYSISI AND PROCESSING

lithologies the NPHI rely around the expected values, almost cero for anhydrite, and between

10 to 45% for sandstone, dolomite and limestone.

In addition, the NPHI values that exceed the whisker values are presented mostly in
sandstones, shale, and limestone and might linked to variations in the hydrogen index caused
the formations fluid content. However, the current interpretation may still be considered
subjective do to the facts that the NPHI log is based on limestone units, it has been studied
isolately from the other wireline logs, and the gas effect on the readings has not been

considered.

GAMMA RAY LOG) SPONTANEOUS POTENTIAL LOG

400 . . - - - - - - . . . &0

350 da 400

ol | - ?é%a—+++—

i 200

: r## ISR - JEISSERERaRE

S MA DoL UM CH HAL AN T £ 55 SH MR DOL LM CH HAL AN T [xa] B5

LTHO LITHO
NETRON POROSITY LOG COMPRESSIONAL SLOWNESS LOG

08

06 - 00

‘mn®an ;ll e At ***%%

00 o

= 55 sH MA DOL UM CH HAL AN w0 BS s 55 sH MR DOL UM CH HAL AN
LITHO LITHO

Figure 17 Wireline logs boxplots color labeled by lithology, (a) Gamma Ray,
(b) Spontaneous Potential, (c) Neutron Porosity, (d) Compressional Slowness.

Finally, the compressional acoustic logs (Figure 17d) behave apparently as expected for most
of the lithologies. However, there are several DTC reading identified as shale that are lower
to 100 us/m which is not a normal range of reading for shaly lithologies.

On the other side, visually checking the relationship between wireline logs helps to
understand the internal structure of the data and more importantly discard the predictors with
high correlation in order to avoid or diminish overfitting during the training stage. For this
purpose, the Spearman’s Correlations between every possible combination of variables

29

3| DATA ANALYSISI AND PROCESSING

without considering the caliper and the bit size logs that normally do not have a direct
connection with the lithology type is displayed on Figure 18. Besides, Figure 19 shows a
scatter pair plot of the variables found to be highly correlated color-coded by lithofacie,
which helps visualize and understand variation along the data.

06

B
=
(=]
£

o4

DTC WPHI RHOB
L . .
2
]

0TS

-02

- 008

- 017

- 014 -00

-0.076 0027 0067 0026 011 0043 0048 0.037 -0.02

PEF RMED RDEP RSHA

- 025 0014 011 021 0082 025 006 00034 007 D05

-0028 0081 02 m 019 01 0094 013 018 002 =02
-0037 003 0011 0064 0028 0025 -0.028 0.0047 0.002 00071 012 016

-=0.4
- 4.13 gt 037 0s 021 0.0076 011

RXO ROPA RMIC DRHO DCAL ROP

= -0.063 01 0,24 | 1029 ECER 0.022 0.023 00015 gikrl 0061 005 013 017 E

g i i i i ! ! i | g | i -06
= § & = E P B 2 & 8 2 g2 2 & g

: i E BB FoZoEOER G oEGOE

MUDWEIGHT -

Figure 18 Spearman's correlation between wireline logs color-coded by correlation strength.

First, a great positive Spearman’s correlation of around 0.83 was found between NPHI and
DTC logs, numerically exhibited on Figure 19 were the NPHI log increases as the DTC log
does. This relationship is expected due the fact that compressional slowness depends on the
amount solid minerals encounter in the rock media and its saturation; in other words, the less
mineral material, the more porosity a rock has and for instance the higher the compressional
slowness becomes. In the other hand, a negative Spearman’s correlation of -0.84 expectedly

occurs between RHOB and DTC that we could explain as common relation if we consider

30

3| DATA ANALYSISI AND PROCESSING

rock compaction and fluid saturation, the higher the compaction, the higher the bulk density
and the compressional wave velocity, and the lower the compressional slowness gets. Refer
to Castagna’s and Gassmann’s researches to have extensive understanding of the effect and

relationship between wave velocities and other rock-fluid properties.

3

Bea~aunbswNnrHoD

seccee

e o ¢ o o . o oaeiie abe—.

o 250 00 750 1000 -1000 -500 0 500 1 2 3 000 025 050 075 100 6 100 200 300 o 1000 2000
GR Ed RHOB NPHI DTC RDEP

Figure 19 Bivariate correlation between most relevant logs for lithology identification, distributions color
labeled by lithology shown on the diagonal.

Second, most of the resistivity logs RMIC, RSHE, RMED, RDEP, RXO present high
correlations; however, the most dramatic ones were encounter between RMED, RDEP, and
RSHA and between RMIC, RSHA and RXO as numerically exhibited on Figure 18. These
strong correlations between variables might bring problems into some machine-learning

models’ performance or might reduce scalability and increase the running time a particular

31

3| DATA ANALYSISI AND PROCESSING

model requires to accomplish its task due to the increase in dimensionality we get by keeping
correlated variables. We will further investigate the informativeness of these variables in
Section 4 in order to perform a wise-driven feature selection for every machine-learning
model being analyzed so that their performances do not get affected in a high extent if the
less informative and highly correlated predictors are removed prior to start the training

process.

Third, besides the existing linear correlation between the previously mentioned features,
some other pair of variables did not show any apparent relationship at all. This occurs
principally while plotting the photoelectric factor, gamma ray, and spontaneous potential logs
against the other variables. Consequently, this apparently complex relationship between data
and overlap in the readings for different lithologies make highly difficult to identify
lithofacies based just on one or two wireline logs independently from the others. This is in
general the reason while petrophysicists have always been in the need to use different log
combinations in order to identify lithofacies in a proper manner, but also here is where
machine learning plays an important role in order to understand and predict continuous or

categorical values based on complex pre-existing patterns and relationships within the data.

Lastly, Figure 19 also displays on the diagonal the distributions for each wireline log; at first
glance some variables appear to be more normally distributed than others, some distributions
are slightly skewed towards the majority classes logs reading, and some others even present
bimodal distributions as in the case of DTC, NPHI, and RHOB. This might be a problem
while trying to find an optimal classification solution, especially while implementing
distance-based and gradient descent-based machine-learning algorithms, which in the best-
case scenario may still converge but in a quite slow manner considering that the distance
between data instances and the learning rate are highly determined by the magnitude of the
variables involved in the task. Consequently, in the incoming subsection we will attempt to
prevent possible issues regarding data distributions and magnitudes through the
implementation and evaluation of how different normalization techniques may impact the

global lithofacies classification performance.

32

3| DATA ANALYSISI AND PROCESSING

3.2 DATA PREPARATION

Even though most data-related projects follow a common process with regard of data
preparation and processing, both are the most crucial and time demanding stages while
deploying a machine or deep learning algorithm. In fact, to a certain degree the results and
success of their applications depends principally upon them, as it is well known, the quality

of the algorithms output depends strictly on the quality of the data used as input.

As consequence of the above mentioned, there is a huge need to accurately address this stages
in order to help our data-driven project succeed. Moreover, reproducing consistent
methodologies that can first handle and treat data accurately before developing appropriate
and applicable machine-learning tools is the main inspiration for the current and related

projects.

In consequence, considering that missing data from well logs is a common problem in
subsurface and may have a great impact while predicting lithofacies classes, this subsection
will mainly explore and test a machine-learning-based missing data imputation technique as
well as a feature generation process, which aim to improve the quality and reduce sparcity

on the datasets before entering the classification task.

3.2.1 Standard Data Imputation, Normalization, and Outlier Removal

The initial approach was to complete the emptiness existing in the original datasets by a
standard and simple technique called median imputation. Since most of the techniques we
analyze along this study are distance-based and gradient descent-based algorithms, it
becomes imperative to normalize the datasets inasmuch as the magnitude of the variables
might affect the size of the gradient descent step and the distance between instances that will
be used to find an optimal solution. Consequently, three of the most frequently used data
normalization techniques were implemented and tested on the datasets imputed by the

median beforehand.

Moreover, prior to implement and test the different normalization techniques, the categorical
variables present in the data such as the lithostratigraphic group and formation were label

encoded by using a cat encoding functionality and the resistivity logs were log-scaled in order

33

3| DATA ANALYSISI AND PROCESSING

to equalize their magnitude to the neighbor variables’ scales. Besides, in order avoid any kind
of data leakage every scaling technique were implemented by fitting different type of scikit-
learn scalers on the training data and then transforming the open and hidden test sets into
similar scales. Figure 20 displays some of the wireline logs before applying any sort of

scaling, and after applying a min-max scaler, an standard-scaler, and a normalizer.

N L1
1000 06 T —
500 1 _l] - -

% o 04 o T =

Bef_ore Scal_ing _ _ _ After MinMax _Scaler

2000

0 1 —o— —o— = 1
- . = Q
500 02
==
~1000 o Y o I o
GR @ NPHI DTC DTS RHOB RSHA RDEP e @ NPHI DTC DTS RHOB RSHA RDEP
After Standardization After Normalization
0
] 0.00015

— D

2 000010
000005
0 L3
_‘ I _l 000000 1= o 3 o ™ e
M= o T T 0.00005
-0.00010
o

o -0.00015 o
GR * NPHI DTC TS RHOB RSHA RDEP GR = NFPHI DnTC DTS RHOB RSHA RDEP

Figure 20 Different normalization techniques applied on the training dataset: Before scaling (upper-left),
Min-max scaled data (upper-right), Standardized data (lower-left), (d) Normalized data (lower-left)

Accordingly, being not able to visually select the most suitable scaling method for our
datasets, a logistic regression classifier was trained on a 10% stratified subsample of each
differently scaled dataset by only using 23 out of the 28 original features and subsequently
tested on the open test set. The ‘SRG’, ‘ROPA’, ‘RX0O’, ‘MUDWEIGHT, and
‘LITHO_CONF’ columns were removed for the three datasets before training basing our

judgment principally on their missing data percentages.

The results shown on Table 4 demonstrate that by standardizing our data we achieved a
greater classification performance of almost 8% when compared to the other implemented

techniques such as min-max scaling and a normalization.

Moreover, even though standardization provided better results compared with normalization

and max-min scaler methods, it also became more expensive in terms of running time and

34

3| DATA ANALYSISI AND PROCESSING

number of epochs needed to make the logistic regression model converge as described on
Table 4. In addition, as visible on Figure 20, the standardized training data seemed affected
by possible outliers and unrealistic readings, especially in the case of the GR and SP log
where the outliers are quite visible.

Table 4 Different data normalization techniques tested on a logistic regression base model

NORMALIZATION METHODS - Base model: Logistic Regression

. Test accuracy Number of iterations Time to
Normalization Method
(%) to converge converge [sec]
Without Normalization 61.4 - No convergence
Max-Min Scaler 61.0 18 11
Standardization 69.7 1126 256
Normalization 61.4 25 16

Subsequently, in order perform outlier elimination, the same 10% stratified subsample used
for testing the normalization techniques composed by 117050 instances was used for testing
four different automatic outlier elimination methodologies available on the open source
scikit-learn python library. Besides, the current training set subsample-based outlier
elimination approach was taken due to the massive size of the original training set, which

made of testing each method on the complete set a computationally expensive task.

First, the standard deviation outlier identification methodology needed seven standard
deviations away from the mean to keep a reasonable number of instances for each lithofacie,
specifically for the tuff, coal, and basement, which hold the most extreme GR and SP
readings in the datasets. Second, the tree-based outlier detection known as isolation forest
needed to establish a contamination parameter equal to 0.01 in order to keep a similar class
distribution to the original training set similarly to the fist methodology. Third, a local outlier
detection method was also tested by using different contamination fraction, where the highest
test performance was achieved by using a contamination factor of 0.01. Fourth, a one class
support vector machines outlier identification method was tested with different outlier
fractions as well achieving the highest classification performance with a contamination
fraction of 0.01.

As visible on Table 5, the accuracies obtained after applying each outlier elimination
technique do not affect widely the logistic LR classification performance. However, the local

outlier factor method LOF seemed to remove more efficiently the most isolated values based

35

3| DATA ANALYSISI AND PROCESSING

on their neighbor instances without worsening the classification performance; however, LOF
offers a great disadvantage by becoming highly expensive while handling big datasets as in

our case.

Table 5 Outlier elimination methods tested on a logistic regression base model

OTLIER ELIMINATION METHODS - Base model: Logistic Regression

Normalization Testaccuracy N° iterations to Time to N° outliers
Method (%) converge converge [sec] removed
Standardized Data
(no outliers removed) 69.70 319 8 i
Standard Deviation 69.29 17 4 3190
Isolation Forest 69.63 310 78 1171
Local Outlier Factor 69.72 94 29 1171
One-Class SVM 69.46 46 12 1171

Figure 21 presents a histogram of the removed instances by LOF, where most of the removed
values belong to the most frequent classes corresponding to sandstone, shaly-sand, shale,
marl, and limestone. Figure 21 also presents the boxplots of the 10% training set subsample
prior to outlier removal and after applying LOF, where the main difference lies on the GR,
DTC, RSHA, and SP logs.

Befare Qutlier Removal After Quther Removal with Local Outlier Factor

vl

w B &
-~ —T

i

1 i)

le4=% + 14

o -15 o

R * NPHI OTC TS RHOB RSHA ROER G ® HPHI oTe 0TS RHOB RSHA ROEP
QOUTLIERS REMOVED IN THE TRAINING SET

NUMBER OF INSTANCES

Figure 21 10% training data subsample boxplot before outlier removal (upper-left), 10% training data
subsample boxplot after LOF outlier removal (upper-right), Subsample removed outliers’ counts by lithofacie.

36

3| DATA ANALYSISI AND PROCESSING

Finally, based on the previous analysis and regardless of the expensiveness LOF demands, it
was applied to the complete training dataset removing a total number of instances equal to
10856, which compared to the initial number of instances held by the original training

dataset, represents barely 1%.

3.2.2 Machine-learning-based data augmentation

Integrating well log data into seismic data is a core process to characterize reservoirs, process
that becomes challenging if the available well log data presents missing sections. This issue
has been profoundly investigated in the past years by using different techniques that include
linear interpolation, local-based mean imputation, numerical rock models, and empirical
relationships. For instance, even though the Gardner’s and Castagna’s empirical correlations
may provide reasonable sonic-density and compressional-shear sonic relationships
respectively; in most cases they do not provide a detailed relationship between such
properties. In fact, empirical correlations and numerical rock models might tend to be
sensitive to beforehand assumptions taken without considering the structural complexities

and stratigraphic variations along the subsurface.

In this context, the FORCE datasets exposure offers an opportunity to approach this issue in
a much more statistical-automated manner through the implementation of machine learning
algorithms. Consequently, the present section presents a predictive, sequential, and multi-
stage imputation approach to overcome the missing data issue as an attempt to optimize the

final lithofacies classification task. This methodology is summarized on
Figure 22 and will be explained along the present section.

Firstly, a quick feature importance ranking is developed in order to understand which features
play the most relevant role or contribution in the classification accuracy. This leaded along
with petrophysical experience leaded us to identify that the most relevant features while
classifying lithofacies by either machine learning and manual interpretation are the GR,
NPHI, RHOB, DTS, and DTC logs.

37

3| DATA ANALYSISI AND PROCESSING

ML-BASED FEATURE IMPUTATION ALGORITHM

Pre-requisites:
1. feature_ranking: most relevant features ranked by missing data percentage from high

to low.
2. models: every possible machine-learning regressor to be evaluated against the others.

Input: training_set, test_set

for target_feature in feature_ranking:
“Splitting training set on features and target”
features_i = all variables other than target_feature
target_ i =target _feature
training_set_i = all training instances where target_i is present
test_set_i = all test instances where target i is present

for model_i in models do:
** “Training and evaluating each machine-learning model ”**
fit the model to training_set i
predict target on test_set i
end
“Imputing missing data before moving into the next target ’
compare models’ performances and best model section
predict and impute missing instances of the target_feature on training_set and test_set
end

Output: Machine-learning feature imputed training_set and test_set

Figure 22 Machine-learning-based feature imputation algorithm

Second, based on the previous analysis we developed a prediction priority ranking for the
five selected logs based on their missing data percentages in order to minimize the prediction
error by using as much data as possible for training purposes in each case. In other words,
we seek to sequentially predict each wireline log according completeness the other features
have for training and prediction purposes, so the learning machines could get much more

information from the other less sparse predictors.

Table 6 Feature prediction priority ranking to follow for ML imputation

Prediction Feature (Log) Missing Data
Priority Ranking Percentage
1 DTS 85.1 %
2 NPHI 34.6 %
3 RHOB 13.8%
4 DTC 6.9 %
5 GR 0.0%

38

3| DATA ANALYSISI AND PROCESSING

Third, based on the feature prediction priority ranking three ensemble regressors were used
to train and test their performance on the open test set based on the root mean squared error
(RMSE), mean absolute error (MAE), explained variance (EV), maximum error (ME) and
R-squared factor (R?). It is important to note that, as described on

Figure 22, the current methodology is a training-prediction multi-stage process where before
entering each training-prediction substage for a particular target feature, the training dataset
obtained during the previous training-prediction substage is splited into two smaller subsets
for training and validation purposes. Afterwards, once each training process at each substage
is completed, the regressors are tested on the open test set in order to select the best
performing ML algorithm to finally update the datasets by imputing the missing values
implementing the best performing ML regressor at each substage. This process aims to keep
the actual reading for the treated features and only use machine learning to impute the missing

values encountered along the mentioned variables.

The first prediction substage aims to predict the shear acoustic log, where Table 7 presents
prediction results obtained by the evaluated regressors. The extreme gradient boosting XGB
regressor appeared to achieve the highest performance when compared to light LGBM and
categorical CAT gradient boosting algorithms. Further, even though XGB performed better,
it faced difficulties to predict DTS values beyond 400 us/m, while the final ML imputed DTS
distribution shown on Figure 23 seemed to be highly influenced by the predicted DTS values.
This effect could be attributed to the amount of missing data the actual DTS log has, which
involves almost 85.1% of the data instances from which we could expect to have many more
shale and sand related readings given the North Sea geology nature in which the majoritarian

lithologies are essentially those.

Table 7 Shear slowness DTS prediction results - Prediction substage 1

PREDICTION SUBSTAGE 1-DTS PREDICTION

Log Model Data EV ME RMSE MAE R?
XGBOOst Train_ing 0.943 320.764 17.016 9.933 0.943
Testing 0.915 154.864 16.155 10.545 0.935
DTS CatBoost Training 0.949 288.091 16.098 9.393 0.949
Testing 0.896 164.39 20.341 12.138 0.896
LightBoost Train_ing 0.966 222.80 13.085 7.550 0.966
Testing 0.917 170.59 18.142 11.347 0.917

39

3| DATA ANALYSISI AND PROCESSING

10 4 10 4 104

400 W9l p |, c |h d L'TH‘E'

.
350 08 081 08 s 1

=]

L 06 - B o6 = 06 s 2
o 250 £ o S * 3
E S 04 |l ' £ 04 E' 04 o 4
200 | | o o 5
150 02 1 . e 6
{ S A E

100 oo 4 - - 0 0 : .
B 200 a00] 200 400 200 400 200 400 e 9
oTS DTS DTS pred DT5_COMB e« 10

Figure 23 (a) Actual DTS vs. predicted DTS, (b) Actual DTS probability distributions by lithology, (c) Predicted
DTS probability distributions by lithology, (d) Final ML imputed DTS probability distributions by lithology.

Once the DTS readings on the datasets are updated, the second prediction substage attempts
to predict the neutron porosity NPHI missing values. Table 8 presents the metrics of the
evaluated regressors used for predicting NPHI, where the LGBM performed slightly better
than the other regressors on the training and test sets.

Table 8 Neutron Porosity NPHI prediction results - Prediction substage 2

PREDICTION SUBSTAGE 2 - NPHI PREDICTION

Log Model Data EV ME RMSE MAE R?
XGBOost Trair!ing 0.822 0.598 0.055 0.039 0.823
Testing 0.795 0.458 0.054 0.041 0.795
NPHI CatBoost Training 0.811 0.583 0.057 0.041 0.812
Testing 0.789 0.473 0.055 0.041 0.789
LightBoost Traiqing 0.857 0.568 0.049 0.035 0.857
Testing 0.803 0.486 0.053 0.039 0.802

As visible on Figure 24, LGBM appeared to face difficulties to predict neutron porosity
values above 0.6. Besides, even though the predicted NPHI distribution (Figure 24c) seemed
to resemble the actual NPHI distribution (Figure 24a), the model seems to overestimate
sandstones’ porosities to values higher to 0.40, same which became less noticeable after

imputing the predicted values into the missing readings.

Figure 24d depicts how the final distribution became more alike to the initial NPHI
distribution after ML-imputation where slight overestimations may still be visible only for

sandstones.

40

3| DATA ANALYSISI AND PROCESSING

00

05

WPHI

o= e
[= =]

=]
o

NPHI_pred
=1
e

0.2

04

NPHI_pred

06

(=T =
=2 o E=]

NPHI_COMB
(=]
.

=
b

00-

oo 05

NPHI_COMB

LITHO

L N W] [N N]
WO L ode e R S

[
=

Figure 24 (a) Actual NPHI vs. predicted NPHI, (b) Actual NPHI probability distributions by lithology, (c)
Predicted NPHI probability distributions by lithology, (d) Final ML imputed NPHI probability distributions by
lithology.

Then, the third prediction substage after DTS and NPHI imputation attempts to predict

missing bulk density values. Table 9 Bulk Density RHOB prediction results - Prediction substage

3presents the metrics for the RHOB prediction, where the categorical gradient boosting

regressor seemed to predict NPHI with more confidence. In addition, Figure 25 demonstrate

how similar the actual, the predicted, and the final ML-imputed NPHI distributions are, and

hence how confident its prediction is.

Table 9 Bulk Density RHOB prediction results - Prediction substage 3

PREDICTION SUBSTAGE 3 - RHOB PREDICTION

RHOB

RHOB_pred

=
[=]

Log Model Data EV ME RMSE MAE R?
XGBOOSt Training 0.898 1.277 0.081 0.054 0.897
Testing 0.854 1.063 0.930 0.063 0.854
RHOB CatBoost Training 0.938 1.26 0.629 0.042 0.938
Testing 0.871 0.973 0.087 0.060 0.871
LiahtBoost Training 0.927 1.370 0.068 0.046 0.927
g Testing 0.866 0.958 0.089 0.060 0.865
Y b - ol (I i e [, LITHO
a3 08 1 | o8 [08 o0
v I | a e 1
& e 061 . [Eos - Z 06 (.2
@' 20 2 flip @' | | g fi| e 3
g = 04 .'I ',l glﬁ_! ol §' 0.4 [\ s 4
15 0z 4 _.-" I. 02 | Lﬁ @lll o 0z ';. I. . :
,—M_, _ oo~] g! & & B
I z : %0 2 3 1 2 00 3 e O

L]

Figure 25 (a) Actual RHOB vs. predicted RHOB, (b) Actual RHOB probability distributions by lithology, (c)
Predicted RHOB probability distributions by lithology, (d) Final ML imputed RHOB probability distributions by
lithology.

41

3| DATA ANALYSISI AND PROCESSING

Lastly, the fourth prediction substage involved the prediction of the compressional sonic
DTC missing instances. Table 10 displays the metrics obtained while predicting DTC, where

XGBoost regressor outperformed the other two algorithms on the open test dataset.

Table 10 Compressional Slowness DTC prediction results - Prediction substage 4

PREDICTION SUBSTAGE 4 - DTC PREDICTION

Log Model Data EV ME RMSE MAE R?
XGBoost Train_ing 0.977 150.226 4.451 2.828 0.977
Testing 0.974 47.8123 4.422 3.172 0.974
DTC CatBoost Training 0.988 138.046 3.168 2.007 0.988
Testing 0.975 49.690 4.263 3.056 0.975
LightBoost Train_ing 0.986 98.843 3.493 2.249 0.986
Testing 0.973 53.435 4.439 3.010 0.973

Figure 26 displays the correlation between the actual and predicted DTC, which seemed to
have the same ranges, meaning that XGBoost was able to predict this property with high
confidence as described by the regression metrics on Table 10. In addition, the confidence
while predicting DTC can be observed on the similitude between the actual, predicted, and
final ML-imputed DTC distributions.

w b | 7 107 LITHO
150 ' 0.8 0. 1 e O

- | @ e 1
E 125 | ® 06 = 06 ® 2
| = [.
t ‘_FI o 1] 3
o 100 E 04 | 04 s 4
{ | \ = | | 5

” AN f ‘-'\, 021 021 M\ ,.ff“:- * 6

0] . . . oo - _'.A—'L'A_ _ 0.0 _M, 0.0 _M e B

50 100 150 50 100 150 100 200 S0 100 150 s 0

OTC ()1 DTC_pred DTC_COMB « 10

Figure 26 (a) Actual DTC vs. predicted DTC, (b) Actual DTC probability distributions by lithology, (c) Predicted
DTC probability distributions by lithology, (d) Final ML imputed DTC probability distributions by lithology.

It is important to mention that the present ascendant-ranked feature imputation methodology
based on target features presence percentages was selected against a descendent methodology
inasmuch as the error for each predicted log increased importantly when the second method

was tried out.

Finally, Figure 27 shows the actual, predicted, and machine learning imputed logs for well
35/9-8 corresponding to the test dataset. As visible, even though this well contains complete
readings for the four treated logs, it serves to visualize and compare how similar the actual
logs are in comparison to the predicted ones. In fact, based on the explained variance and

42

3| DATA ANALYSISI AND PROCESSING

R? factors we could say that there is much more confidence while predicting the
compressional slowness (DTC), shear slowness (DTS), and density (RHOB) logs than while
predicting the neutron porosity (NPHI) log, meaning that much more of the variance held by

target variable could be explained by the independent variables used during each training

substage.
. . Compressional
Shear Slowness Neutron Porosity Bulk Density Slgwness
== E T ==
1% i‘-; 7 < T £
2600 t:f 2600 1 i:k_ 690 §_ %90 ; 2640 1 0 6Q0) g 2600 _:_..é' 2600
N . ail T I x| S
T || T |3 <
% f—,—- < = =
2100 -, o])z—if o S0 i 790 2740) E—“—f 0 A: 2740
F = Z z —.i = =
=3 = Jix 4 = = =
£ £ = L
) = = éf 3 f‘h =
= = —= — = | |==
28004 | & 28001 _ 0| = 40 2640 1 Smdo B(j0) 2 2800 < 3
1 E; [| < L
C >
3 2 {))1, %{ 3;& :"f
i _x . = = _5 _
2001 |5 2900 % 200 | 52940+ %2900 | 0 0 20 {—>—9d0
b T b by i}
3 1 2T |z
; { 5
3 =4 = "‘—'_is =R
7 2 = =
3000 §~ 3090 1 % 30do = 00 & 3040 | o 0) %mﬂ ; 30do
£ £ 3] £ £
= b 3 _“! Y =
{ < { b
3100 \;(3190 | ‘t 3140 l 340 aqe 1 10 oy 3140 é-y ado
/ | / / v
< il ! % = | |Z
.| = = s =
3200 {53200 { :E 240 -:.L: 200 1 -—= go | ——200 200) T om0 == 2o
4 - ¥ = B ~ =

00 200 150 200 025 050 02 04 15 20 25 20 25 75 100 s 100

Actual Predicted Actual Predicted Actual Predicted Actual Predicted
Figure 27 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 35/9-8).
In the other hand, well 34/5-1-S presented on Figure 28 shows how the highlighted small to
medium size missing data gaps were effectively filled up by the most accurate machine

learning model’s predictions on each treated wireline log.

To conclude, the presented missing data imputation methodology was designed and adopted
with the purpose of improving progressively the datasets quality and consequently the final
classification performance. It should be noted this methodology attempt also to minimize as
much as possible the prediction uncertainty, which might be mainly introduced while
predicting extensive missing data gaps, by predicting each well log sequentially based on the
data available to train each regressor during every training-prediction substage. Moreover, it

Is worth mentioning that the present methodology could be applied to any extent in order to

43

3| DATA ANALYSISI AND PROCESSING

predict any feature included into the datasets; however, due to timing and computational

resources constrains, it was only applied to the four most relevant wireline logs.

Shear Slowness Neutron Porosity Bulk Density Compressional Slowness
= =] = 1 = u
1:{_ _35 0 ;—_i;gg_u 1' .f;D 3550 1—_‘_;_7:3530 I 'ﬁ‘i =0 I 12?35 o z{_ 550 1—_§':$_
i3 - é - - é_. I (3 T
i (4 (4
S F - ij
ey =
Zsjo 35000 o é— 300 o i— 3890 3500 300 ;;36(0 f
S 3 U =t 2T 2
e r E r—
C b ?- ?- } F f T s
—_— — - e — - 1 —_— -
i N e .’ == . = |2 =
—_ —_] —_ p— i —F = =
S EN 0 “3 3830 %40 \3 3840 ‘;:ras 0 E 3 :\} 3650 £
™) N
SR SR IR DRI
= = = = = > -
< ||+ < < 3 S = bl =L =
T 390 740 0 3790 I7q0 3790 790 237u 3 {30 215»‘:
< 3 : }) 5
_-fl __;' = & .—’z-' — —‘j —;-
g = = 2 %
3 3
3 } B L B L Ik |
= _:-;5’:: o 0 _&; 750 = e ‘;;; E ErE = wge| = 350 :-‘g;
Z £ £ A
15¢0
1 i i i
T om0 |0 0 “f 840 R S 13 £3090 »do {3600 =
1
: 3 1 1 b %
{ = _? 3 3 ; =
= |2 = 2 2 = || 2
L =)) = > =
r_f! =TT | =T =—Ho | —=— 3830 é-ansu__:}_- 3830 -{' »j0 érr_::r T ——
= — = = = I { = | = 20 “I
I L L3 = — £ £
<, e — I =
"> || = | IO
L L - T N T = > Iy b _
150 200 150 200 150 200 025 050 02 04 025 050 20 25 24 28 20 25 s 100 7 100 s 100
Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed

Figure 28 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 34/5-185).
3.2.3 Feature Engineering
Furthermore, apart from the 23 initial pre-selected features during the data normalization
analysis, four of which were imputed and improved during the augmentation section, seven

more features were designed and included into the original datasets to be used as part of the
training, validation, and prediction stages. These additional features are enlisted on Table 11.

Table 11 Additional features incorporated into datasets

N° Feature Name Key

1 Cluster by location Cluster
2 Bulk Modulus K

3 Shear Modulus GM

4 Measured-vertical depth ratio MD_TVD
5 Slowness Ratio DT_R

6 Shear Impedance Al

7 Compressional impedance Al_P

44

3| DATA ANALYSISI AND PROCESSING

Six out of the seven engineered features were computed straightforwardly based on the
augmented wireline logs. However, deciding the optimal number of clusters to which to split
up the dataset based on well location was a big question at first while implementing
unsupervised learning, this leaded us to try to determine the number of clusters based on the
elbow method, which in brief calculates the sum of the squared distances of each data point
to the near cluster center, known as inertia, by using different number of clusters. The elbow
plot on Figure 29 shows that three clusters was be optimal for our data and adding more

clusters becomes marginal or useless.

1
f\ | --- Optimal Number of Clusters = 3 el
1
200 \ 1
\ : by
\ 1
\ |
150 "\ | 2
\ H i
= "\ ! §
= 100 \ 1 lt
\ : ° ..l
| %
o ~_ | g
~_ .
i e
——
: e s8] ,-.
0 4 T
1 2 3 4 5 6 7 8

Number of Clusters Longitude

Figure 29 Optimal number of clusters based on elbow method (left), Clusters visualization (right)

Finally, Table 12 records how the previously analyzed logistic regression classifier’s
performance improved after machine-learning feature augmentation and features engineering
were executed in comparison to the results obtained when median-imputed data was used for
training. Along with this, based on the best standardization and outlier removal techniques
that were found in previous analyses, the machine-learning imputed data was similarly
treated in regards of this by implementing a standardization and a local outlier elimination

techniques prior to enter the training and prediction stages.

Table 12 Logistic regression model's performance by using median-imputed data, machine learning-imputed
data, and after including additional features.

LOGISTIC REGRESSION (Standardized data)

Number of Testaccuracy N° iterations Time to Features
Features (%) to converge converge [sec] Comments
23 69.7 1126 256 Median-imputed
23 70.7 1127 255 + ML Augmentation
30 71.3 1103 299 + Additional Features

45

3| DATA ANALYSISI AND PROCESSING

To conclude, it is important to note that the most significant performance improvements were
obtained after the machine-learning feature augmentation process rather than from feature
engineering. Nonetheless, even though the improvements might not appear highly significant
while using a linear classifier, these might become higher after eliminating the non-
informative features, carrying out hyper-parameter tuning, and by implementing more robust

classifier types, factors that have not been addressed yet and will in the subsequent sections.

46

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Chapter 4

4. LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

In this section, we initially explored the baseline construction philosophy and its importance
to monitor model performance. Each baseline model was built and validated by implementing
a cross validation technique on 10 stratified K-Folds of the training set. This technique splits
the training dataset in 10 subsampled and tests every model on each of them, ensuring that
each data subset keeps the same lithology class distributions that the original training set
holds in order to generalize the performance and avoid a bias towards the most frequent

classes.

Subsequently, considering the massive nature of the training dataset, the hyper-parameter
tuning process for the most expensive models was executed in a smaller stratified subsample
of the original set in order to reduce running time and save computational power. Refer to

Appendix E where all the experimental process is extensively documented.

Furthermore, in the face of the efficient performance improvements previously seen on the
logistic regression baseline model presented on Section 4 after data processing, the original
readings on the training, open, and hidden datasets were replaced and complemented by the
values obtained after ML feature augmentation, feature engineering, standardization, and
outlier removal treatment, so that the other model could also experience a similar
performance enhancement from this procedures. Refer Appendix B to see python code of all
the functionalities needed to process the datasets prior to start the machine learning
implementation and Appendix A to visualize the python code for every optimized model
once the hyper-parameter and feature selection stages described in the current section, have

been completed.
4.1 BASELINE MODEL OVERVIEW

Several baseline models were created and tested on 10 different stratified K-Folds of the
training set as a cross validation technique. As shown on Figure 30, the top performing

models while iteratively using 9 folds for training and 1 for testing seemed to be a random

47

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

forest classifier. However, considering that every model was trained and tested by using only

the training data with no regularizing their learning process, these results might be prone to
overfitting.

Accuracy %

Figure 30 Base models average accuracies while iteratively training on 9 k-folds
and testing on the 10 k-fold.

Therefore, each model has to be further analyzed, tuned, and then tested on the open and
hidden datasets to have a consistent analysis and comparison between each other afterwards.
The main objectives in order to optimize each model performance in the present section will
involve an accurate hyper-parameters determination and a wise feature selection, considering
that form the 30 available features for training, some may not be informative but they may
incorporate noise and create confusion into the models. Table 13 presents all the processed

features available for training the learning machines.

Table 13 Available Features for training the learning machines.

RDEP DEPTH_MD RHOB (augmented)
RMED X_LOC NPHI (augmented)
RSHA Y_LOC DTS (augmented)
RMIC Z_1L0C Cluster (additional)
SP BS K (additional)
DCAL CALI GM (additional)
ROP GROUP ENCODED MD_TVD (additional)
DRHO FORMATION ENCODED DT_R (additional)
PEF WELL_ENCODED Al (additional)
GR DTC (augmented) Al_P (additional)

48

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

4.2 CONVENTIONAL MACHINE-LEARNING METHODS

4.2.1 Logistic Regression

In the preceding section we constructed a Logistic Regression base model, which performed
with accuracies of 72, 71.3, and 73% on the training, open, and hidden sets, respectively after
feature augmentation, future engineering, data standardization, outlier removal treatment,
and by using the default model’s hyper-parameters. Moreover, as stated previously, there is
a genuine need to appropriately select the best model hyper-parameters and predictors to be

used while training, validating, and testing in order to optimize the algorithm’s performance.

Initially we attempted to reduce the number of the features through a recursive feature
elimination process, which is normally intended to remove the least informative features that
might slow down the training process, introduce noise, or create confusion into the model.
This process did not provide much positive results for the current model since apparently 29
of the 30 original features seemed to be necessary to accomplish the highest accuracy on the
training set as shown on Figure 31. However, the recursive feature selection process provided
a better understanding on the predictors that play the most important role for the classification
as shown in Figure 32a, where accordingly the first 11 features account for most of the

variance of the training dataset and together accomplish an accuracy above 73%.

LOGISTIC REGRESSION FEATURE ELIMINATION

074 = Tain Accuracy
=== Optimal number of features = 29

ACURACY
2

10 15 0 5 0
NUMBER OF FEATURES

Figure 31 Logistic Regression Classifier: Recursive feature elimination by a logistic regression-based wrapper

49

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

In other words, this means that the 19 remaining features do not improve the training
accuracy in more than 2% and hence could be removed without affecting largely the model
performance. Besides, in order to double check our conjecture about the most influencing
features, a forward sequential feature selection method was tested in order to validate these
11 features. Figure 32b confirmed that 73% of training accuracy could be achieved by

keeping solely the 11 most informative predictors as we presumed.

Sequential Forward Selection (w. StdErr)

020 1

Importance scores

0.05 4 Number of Features

Q

0.00 1

GM
M
GA 4
oTC
RHOB 4
DT R
Z LOC
Al
K
f LOC]
uster
oded
oded
oded
CALI
RDEP
% LOC
MO _TVD
PEF
DICAL
RSHA 4
RMED -
F
ES
DRAO
ROP
RMIC

uuuuu

WELL_en

DTS _COMB -
GROUP_en

NPHI_COMB
DEFTH_MD
C

FORMATION encoded

Figure 32 Logistic Regression Classifier: Permutation feature importance

Subsequently, by keeping the 11 previously selected features, a manually hyper-parameter
tuning process was executed for the inverse regularization strength factor C, while the solver
type and the maximum number of iteration where theoretically selected due to initial

problems to make the model converge while using the default hyper-parameter values.

In addition, since any tuning process become normally expensive in terms of running time
while dealing with large datasets, we performed this by using only a 10% stratified subsample
of the original training set, which held the same class proportions present on the original

dataset in order to make the sample statistically representative for our problem.

Afterwards, based on the scikit-learn documentation, SAGA and SAG solvers offer fast
convergence when dealing with large and normalized datasets. In fact, as stated by (Defazio
et al., 2014), SAGA is an improved version of SAG, which offers a better theoretical
convergence rate and is adaptive to any inherent strong convexity of the problem. In

consequence, a SAGA solver was selected for the current classification task while keeping

50

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

the number of iterations to a high value of 4000 in order to let the model converge while
manually evaluating different Inverse Regularization Strength (C) values on the open test set

as validations set as shown in Figure 33.

___LOG INVERSE OF REGULARIZATION STRENGHT FACTOR (C) vs. ACCURACY)

Accuracy

— ftrain

=+ test
=+ Optimal C Factor = 0.1

i
-4 2 0 2 H 5
Log Factor C

Figure 33 Logistic Regression Classifier: Different inverse regularization strength tested
on the training and open test set (log C vs. accuracy)

The figure above represents how the training and validation accuracies change while the
linear logistic regression model uses different inverse regularization values ranging from
10e-5 to 10e3. Note that the accuracies are plotted against the logarithm on the evaluated
factor due to its investigation range; this leaded to find 0.1 as the optimal value for this
parameter based on the validation accuracy. Thus, the selected optimal hyper-parameters that

were implemented on the final model are summarized as follow on Table 14.

Table 14 Logistic Regression Classifier: Optimal hyper-parameters

Hyper-parameter Optimal value
Inverse Regularization Parameter 0.1
Maximum Iterations Number 4000
Solver ‘saga’

To conclude, an end-model was created and trained on the 11 most informative features by
using the optimal hyper-parameters previously selected. This provided accuracies of 74, 72,
and 75% on the training, open test, hidden test sets, respectively. The results confirm our first
guess about the non-linear relationship between features and the non-linear separation

between most of the targeted lithology classes.

51

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

A class-detailed classification report for each dataset is presented on Table 15, where even
though the open test set was used for fine tuning hyper-parameters, the hidden test set showed
a better classification accuracy. This could be easily explained by the slight difference on the
lithology distributions between the open and hidden test sets more notoriously on the
limestone, marl, chalk, halite, and anhydrite lithology types. This apparently slight class
distribution difference was enough to provide an extra improvement on the hidden set

accuracy when compared to the open test set accuracy.

Table 15 Logistic Regression Classifier: Classification reports for the training,
open test, and hidden test datasets.

LOGISTIC REGRESSION CLASSIFICATION REPORT

Training Set Open Set Hidden Set
Class Prec. = Rec. F1. Prec. Rec. FL. Prec. = Rec. F1.
Sandstone (0) 066 063 064 064 061 063 058 060 0.59
Sandstone/Shale (1) 051 015 023 030 023 026 034 013 0.19
Shale (2) 078 095 086 081 09 085 084 094 0.89
Marl (3) 044 015 023 015 001 002 022 018 0.19
Dolomite (4) 040 0.01 002 000 0.00 0.00 0.00 0.00 0.00
Limestone (5) 062 055 058 049 055 052 057 051 054
Chalk (6) 072 059 065 000 000 000 053 093 0.68
Halite (7) 098 099 098 000 000 000 099 096 0.97
Anhydrite (8) 088 067 076 000 0.00 000 088 031 046
Tuff (9) 054 016 024 066 015 025 010 003 0.04
Coal (10) 073 042 053 067 042 052 081 057 0.67
Basement (11) 0.96 0.22 0.36 - - - - - -
Weighted Metric 071 074 070 068 072 069 071 075 0.72
Accuracy Score 0.74 0.72 0.75
Matrix Score -0.69 -0.75 -0.64

Finally, the confusion matrixes normalized to the number of predictions per class are
presented on Figure 34. In general, the logistic regression classifier showed the highest
accurately while classifying shale, halite, and anhydrite; medium accuracies for limestone,
tuff and coal; and the poor accuracies while handling similar composition lithologies.
Besides, most of the misclassifications denote a tendency to the majority classes such as

sandstone, shaly-sandstone and shale.

52

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

NORMALIZED CONFUSION MATRIX s NORMALIZED CONFUSION MATRIX

Sands(uncwdn 1328 000 487 000 000 000 2230 1876 Sandstone 3124 208 1049 000 1472 1785 002 093 201 000

Sandstone/shale {1148 017 1145 1055 000 172 000 000 000 488 595 Sandstone/shale | 2411 3380 812 944 000 151 043 000 000 647
80 B
Shale 4 1492 27.79 REVERE 1756 000 1454 000 000 000 697 847 chale | 583 3312 EEROW 3922 000 468 156 008 187 2410 1235
Mari] 621 119 074 1484 000 1799 325 000 000 000 000 Mar { 143 027 266 2190 000 1380 471 000 000 241 000
_ Dolomite { 0.08 017 038 39 0.00 017 0.00 0.00 0.00 000 0.00 60 Dolomite { 008 0.00 017 0.40 000 140 014 003 194 000 0.00 &0
] T
Q £
g Limestone { 276 156 118 2227 000 [4868 000 000 000 000 g Limestone { 802 141 152 1817 000 m 1995 000 047 884 000
2 2
= (=
Chalk 4 002 000 000 000 000 1146 000 000 000 000 000 % Chal { 016 000 000 000 000 252 000 000 000 000 ©

Halite { 000 000 000 000 000 000 000 000 000 000 000 Halite { 128 000 000 000 000 003 160 Nk 000 000

fohydrite | 006 000 002 1758 000 057 000 DUl Anhydrite | 008 000 000 031 000 404 061 B oo0 000

w4038 181 078 000 000 000 000 fff{ 100 000 096 0O 000 004 002

Coal{ 016 016 003 000 000 000 000 000 000 DOON
0o T T T T T T T T T T o
v T
g 5
&

964 000

oal { 030 026 031 000 000 000 000

uff
Coal

Anhydrite

Predicted label Predicted label

Figure 34 Logistic Regression Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

The bias in the classification can be explained by the fact that linear separable algorithms as
logistic regression are highly influenced by the target’s probability distributions, which
means that the minor present lithologies tend to be misclassified as any of the most frequent
ones. This issue could corrected by equalizing the class distributions by any oversampling,
undersampling, and synthetic sampling techniques; however, due to the extent of the current

study, they were not implemented nor evaluated.

4.2.2 K-Nearest Neighbor

As previously discussed on section 4.1 the base non-parametric K-nearest neighbor model
provided accuracies an accuracy about 92% when trained and tested on the training set by
cross validating on 10-stratified k-folds. However, even though it showed promising results
on the training data, the same did not occur when testing the base model on the open and

hidden test sets, which provided classification accuracies of 72 and 74%, respectively.

In consequence, considering the high and medium-low accuracies obtained on the training
and test sets respectively, a hyper-parameter optimization had to be executed to test for
possible enhancements in performance. However, before undergoing into a hyper-parameter
optimization, which is computationally expensive particularly when implementing KNN as

previously we discussed on the theoretical background section, a feature dimensionality

53

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

reduction was performed in order to be able to run the hyper-parameter in a less expensive

manner.

Besides, there are plenty of model-based feature selection techniques, which may also
become computational expensive when dealing with large massive datasets such as the case
of recursive feature selection and permutation feature elimination. Therefore, a permutation
feature selection was performed on a 10% stratified subsample of the training data in order

to represent the label distribution existing on the original training dataset.

[=] = =
o = =}
B - @

Importance scores

=1
o
(=]

0.00 1

Al
PEF
RDEP

[

=

WELL_encoded 4

GR

FORMATION_encoded

Z1D
DT R

DEPTH_MD |
DTC 4
COuster
AP
ROP
RSHA, 4
DCAL 4
DRHOD
RMED
RMIC 4

RHOB
X Loc

BS

CALI
DTS_COMB

GM
¥ LOC

NPHI_COMB
MD_TVD -

GROUP_encoded -

Figure 35 K-Nearest Neighbor Classifier: Permutation feature importance.

Figure 35 shows the features importance obtained by the permutation feature importance,
where some predictors such as RMIC, RMED, DRHO, DCAL, RSHA, ROP, and K seem not
to play a highly important role on the classification task; however, properly selecting the
number of features that could provide the best results by only inspecting their importance
becomes a bit difficult. In consequence, we used the open test set to measure the influence
the number of features used during training has on the classification performance while
keeping the same 10% stratified training subsample. Thus, based on the importance ranking
provided by the permutation feature importance we trained and tested different KNN models
by including sequentially one additional feature for training. Interestingly, as visible on
Figure 36 the accuracy curves started to plateau while using just 6 to 10 features, and adding
additional features only added slight improvement; however, the test accuracy showed a

much more stable curve when more than 15 features were used.

54

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

MNUMBER OF FEATURES vs, ACCURACY

09

06 !
—— Train accuracy
=== Tets accuracy

05
0 3 10 15 20 25 30

Number of Features
Figure 36 K-Nearest Neighbor Classifier: Impact the number of training features has on the classification accuracy.

In addition, based on the previous analysis a new default-parameter base model by only
including the 15 most informative features was trained and tested on the open test and hidden
test sets providing practically the same accuracies the initial KNN base model obtained while
using the complete set of 30 features. In other words, by removing 15 of the less informative
features the KNN classification accuracy did not get impacted while at the same time it
reduced the running time KNN requires for training and predicting, and in consequence will

help reducing the running time while optimizing hyper-parameters.

Moreover, a manual neighbors tuning optimization was performed in order to understand
how its impact on the training and open set classification performance in order to select most
optimal values that would improve model generalization. This investigation is documented
on Figure 37, where we can observe that by using a number of neighbors lower than 25 the
model performance on the open test set worsens while the training accuracy remains high,
meaning that the model is unable to generalize well when a small number of neighbors is

used.

In the other hand, by selecting a high number of neighbors, the test accuracy does not get any
further improvement; thus, a number of neighbors bigger than 50 may be a good choice in
order to generalized well on the unseen dataset since as shown the more number of neighbors

used, the more computationally expensive the model becomes.

55

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

100 NUMBER NEIGHBORS vs. ACCURACY

0495

090

Accuracy

0.80

0.75

070 14
' —— Train accuracy

--=-- Open set accuracy

0.65

] 20 a0 60 B0 100 120 1213
Number of Features

Figure 37 K-Nearest Neighbor Classifier: Number of neighbors vs. accuracy.

In addition, once the optimal number of neighbors was set on 80, a further grid hyper-
parameter investigation on two additional relevant hyper-parameters such as the weights
applied to each instance and the metric to compute the distance between data instances was
performed. The optimal values found by the grid parameter search while implementing a 10
stratified k-fold cross validation as well as the optimal number of neighbors are summarized
on Table 16.

Table 16 K-Nearest Neighbor Classifier: Optimal hyper-parameters.

Hyper-parameter Optimal value
Number of Neighbors 80
Weights Manhattan
Metric Distance

Finally, a final model based on the optimal hyper-parameters was trained and tested,
providing accuracies of 78% on the open test and hidden test sets, which compared to the
initial test accuracies show an important enhancement. It is important to mention that the
open test set was used as validation set while finding out the optimal number of neighbors to
be used; however, KNN showed consistent results when tested on unseen objects. A detailed
classification report is presented on Table 17, where we could observe how KNN was able

to perform consistently on both test datasets.

56

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Table 17 K-Nearest Neighbor Classifier: Classification reports for the training,
open test, and hidden test datasets.

K-NEAREST NEIGHBOR CLASSIFICATION REPORT

Training Set Open Set Hidden Set
Class Prec. = Rec. F1. Prec. Rec. FI1. Prec. =@ Rec. = F1.
Sandstone (0) 08 084 084 078 082 08 075 069 0.72
Sandstone/Shale (1) 0.79 069 074 050 024 033 047 027 034
Shale (2) 0.91 097 094 081 093 087 084 094 0.89
Marl (3) 08 | 073 079 049 006 011 066 @ 029 040
Dolomite (4) 0.91 0.15 0.26 0.00 0.00 000 0.00 0.00 0.00
Limestone (5) 0.87 0.67 076 059 051 055 053 0.64 0.58
Chalk (6) 0.93 084 088 000 000 000 068 047 0.55
Halite (7) 0.97 1.00 0.98 - - - 0.97 100 0.99
Anhydrite (8) 0.92 082 087 099 058 073 093 049 0.64
Tuff (9) 084 H 08 08 066 050 057 051 @ 046 0.49
Coal (10) 0.96 029 044 098 018 030 093 037 0.53
Basement (11) 1.00 041 058 - - - - - -
Weighted Metric 0.88 089 088 074 078 074 076 078 0.76
Accuracy Score 0.89 0.78 0.78
Matrix Score -0.305 0.586 0.560

In addition, the confusion matrices for the open test and hidden test sets are displayed on
Figure 38, from which we could observe how KNN the most significant misclassifications
occur between tuff and shale, chalk and marl, limestone an marl-shale, and shaly-sandstone

and shale, while KNN was not even able to classify limestone on none of the test sets.

NORMALIZED CONFUSION MATRIX NORMALIZED CONFUSION MATRIX

Sandarane 780 347 074 000 308 000 000 1108 240 Sandstone 1294 280 137 000 1130 020 041 000 071 000

Sondstone/Shale 500 121 000 000 000 000 Sandstone/Shale 11.79 (48841 890 321 000 061 000 000 000 B7L 722

0 :v]
w Bl o o N o Shale | 607 | 3616 1346 000 414 380 029 158 3026 000
Shale : :
Mar { 030 185 191 000 1243 904 000 000 024 000
Marl 000 1209 1667 000 000 000
@ Dolomite | €10 000 018 @32 000 097 005 015 538 000 Q00 @

Dolomite { @04 003 041 000 000 000 000 137 000 000

Limastone 1 330 202 183 1546
Limestone { 141 281 172 1262 000

True label
True label

© hai | 013 000 000 oo

Chaik | 000 000 000 000 00O
Halite { 000 000 002 000

fahydrite | 000 000 005 025 000 007

Anhydrite | 000 000 002 000

wff | 091 0.00 041 0.00 0.00 Q.00 w{ 053 000 054 000

sl @81 068 031 000 000 000 sl 047 010 011 000

Limestone

H
]
H

Sandstone
Sandstone/Shale

Predicted label Predicted label
Figure 38 K-Nearest Neighbor Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

57

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

4.2.3 Support Vector Machines

Support Vector Machines, SVM, implements separation hyper-planes to perform
classification tasks. These hyper-planes achieve a good separation and the best generalization
when the nearest training data point lies far from the decision plane. However, in several
cases the data instances cannot be separated by a linear hyper-plane as we used while
pretended while constructing our SVM base model, which provided relatively low initial
classification performances of 74, 74, and 78% on the training, open test, and hidden test
sets, respectively. Further, SVM requires storing the kernel matrix, which increases as the

number of data instances increase, making SVM less feasible for massive datasets.

In consequence, a dimensionality reduction by implementing any model-based wrapper and
a any type of grid hyper-parameter search are not suitable for SVM considering the massive
number of data points contained on the training set. This leaded us to attempt to optimize
manually the most crucial hyper-parameter needed for regularization purposes while only
using a 10% stratified subsample of the training set that kept the class distributions in order
to make it representative to the original training data. This subsample allowed to investigate
the effect the regularization term C has on the SVM classification; in addition, a more
expensive RBF kernel was also introduced as an attempt to translate the data into a much
more complex dimension in which a much easier and accurate instance separation could be

possible.

REGULARIZATION C vs. ACCURACY

09

08

|
pe T —————— e
i

Accuracy
A
i
)
1

07

|
1

i ~u

H -
|

|

|

0.&
—— Train accuracy

-==- 0pen set accuracy
Optimal Regulanzation range: 0.1 - 1.0

035

4 -2 0 2 3
Log Regularization Strenght

Figure 39 Support Vector Machines Classifier: Regularization vs. accuracy.

58

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Figure 39 presents the effect C has on the training and open set accuracy, where the highest
test accuracy reached a maximum value of 76% when C was equal to 0.1. It is important to
note that the open test set was used to validate the hyper-parameter C in order to select the
optimal value, which will be used later on the final model to predict on the hidden dataset.
Moreover, due to the investigation range of the regularization term, which goes from 0.01 to
100, Figure 39 presents C in a logarithmic scale in order to be able to visualize the accuracies

variability in relation to any change in C.

Based on the previous analysis, the optimal regularization term seemed to fall on between
values of 0.1 and 1.0; thus, to allow a much wider variability and less penalized decision
hyper-planes when testing SVM on unseen objected, an intermediate value of 0.5 was

selected as optimal parameter.

Table 18 Support Vector Machines Classifier: Classification reports for the training,
open test, and hidden test datasets.

SUPPORT VECTOR MACHINES CLASSIFICATION REPORT

Training Set Open Set Hidden Set

Class Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.
Sandstone (0) 0.78 0.80 0.79 0.80 0.78 0.79 0.71 0.73 0.72
Sandstone/Shale (1) 0.54 0.72 0.62 0.27 041 0.33 0.29 052 0.37
Shale (2) 0.96 0.87 0.91 091 082 0.86 095 0.84 0.89
Marl (3) 0.44 0.77 0.56 0.07 062 0.12 0.22 048 0.30
Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Limestone (5) 0.63 0.78 0.70 0.52 045 0.49 0.65 057 061
Chalk (6) 0.70 0.89 0.78 0.00 0.00 0.00 046 0.71 0.56
Halite (7) 0.98 0.98 0.98 - - - 096 0.99 0.98
Anhydrite (8) 0.67 0.94 0.78 0.00 0.00 0.00 042 0.83 0.56
Tuff (9) 0.66 0.77 0.71 059 0.72 0.65 0.61 0.60 0.60
Coal (10) 0.40 0.87 0.54 0.36 092 0.52 0.56 0.88 0.68
Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.87 084 085 081 076 0.78 0.84 0.79 0.81

Accuracy Score 0.84 0.76 0.79

Matrix Score -0.425 -0.621 -0.536

To conclude, a final model based on the optimal regularization hyper-parameter and a radial
basis function kernel RBF was constructed, trained, and tested providing accuracies of 84,

76, and 79% on the training, open test, and hidden test sets, respectively. A class-detailed

59

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

classification report is presented on Table 18 as well as the confusion matrices normalized

by the total number of predictions per class.

NORMALIZED CONFUSION MATRIX NORMALIZED CONFUSION MATRIX

s,,,E,m,ncnn 333 401 000 335 000 000 96 295 andstone JEEKE] 1166 267 306 000 1039 021 600 133 053 000

Sandstone/Shale { 11.65 [4E388 1060 258 000 084 000 000 000 148 Sandstone/Shale | 1311 819 582 000 042 000 000 000 1508 581

0
e | 706 qﬁ 20 oo BN coo oo FER s shale | 494 30152443 000 113 425 002 233 1667 645
ale 61
i e m aoo IR 24 Goo: doo. ‘oo Mar| 126 474 206 JESSY 000 1153 734 000 000 359 000
Marl

Dolomite | ©15 000 022 020 000 053 000 000 1229 000 Q00 &0
Dolomite | 009 003 041 057 000 013 000 000 000 000

Limestone | 605 078 164 1836 000

Limestone { 194 228 149 1920 000 ‘4549 NEPEEM 000 155 000
) Chalk | 210 000 000 000 000

halk { 000 000 000 000 000 1138 000 000 000 000

True label
True label

Haite | 076 000 015 000 000

011 002 005 802 000 035 000 000 000 000
Anhydrite
’ Anhyarite | 012 000 010 000 000

wif | 054 0.00 040 000 0.00 0.00 000 000 QOSSN 000

o
=]
s

urr | 005 043 030 000

Coal { 026 058 033 000 000 000 000 000 000 Coal { 017
T v T - T ™ - 0 v
]
5

o

010 000 000

H

Dolomite
Shale |

=}
a

Sandstone

Sandst
Sandstone/Shale |

Predicted label Predicted label

Figure 40 Support Vector Machines Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

In general, SVM appeared not being able to distinguish between sandstones and shaly-
sandstones, shale and sandstones, limestone and marl, tuff and shale, while it seemed to have
high performances when classifying halite and shale. This suggests that SVM classification
presents a great tendency towards the majority classes; however, encouraging the model to
classify better the minority classes by weighting them through the weight parameter did not
provide better results but worse. Thus, various over, under, and synthetic sampling
techniques might be possible solutions to overcome SVM limitations regarding class
imbalance, same which due to computational power limitation and the extent of the present
study were not analyzed.

4.2.4 Decision Trees

The base model we initially constructed provided accuracies of 93, 62, and 63% for the
training, open test, and hidden test sets, respectively. However, it is important to note that
this accuracy was obtained only by training and testing the model on 10 stratified k-folds of
the training data without manipulating any regularization term into the model. In other words,

this great difference between accuracies on the training and test sets is a clear show of

60

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

overfitting, which will be corrected by implementing a technique called decision tree

pruning.

Cost complexity pruning is a machine-learning technique that aims to reduce the size of a
decision tree by removing redundant branches that might cause overfitting in the model, so
in brief it would counteract a poor model generalization. A common and suggested approach
Is to first decrease the maximum depth for a decision tree before undergoing into a pruning
process; in consequence, we established new maximum depth equal to 15 for the base model
obtaining new accuracies of 93, 62, and 61% for the training, open, and hidden sets,

respectively.

Later on, the cost complexity parameter, ccp_alpha and the impurities at each level of the
tree are calculated. In general, ccp_alpha influences the tree in the number of nodes a tree
ends up growing. In other words, we will try to find the best ccp_alpha parameter that would
restrict the tree growth up to an optimal number of nodes.

Accuracy vs. ccp_alpa factor

—e— Train
Test
== Optimal ccp_alpha: 0.0005817
-- Safer ccp_alpha: 0.002

L 1
0.000 0005 0010 0015 o.020 0.025

ccp_alpha

Figure 41 Decision Tree Classifier: Cost complexity factor ccp_alpha vs. accuracy
on the training and open test datasets.

Figure 41 shows how the training and open test set accuracy vary accordingly to the value
the ccp_alpha factor takes. The plot provides an idea that the optimal ccp_alpha factor should
be in order to get the highest performance when testing on the open test set used as a
validation set for the current pruning procedure. The highest performance on the test set was

obtained by using a ccp_alpha equal to 0.000587; however, using this value might still be too

61

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

specific in order to generalize the model performance on unseen objects. This analysis leaded
us to define the optimal ccp_alpha could be any value between 0.000587 and 0.003. In
consequence, with this in mind we opted for a safer ccp_alpha value of 0.002 for training and
testing final model.

Table 19 provides a detailed classification performance acquired by pruned decision tree, in
which we could observe that although the pruned tree provided accuracies of 76, 75, and 75%
on the training, open test, and hidden test sets, respectively, it was unable to predict the least

frequent classes such as chalk, halite, anhydrite, tuff, coal, and the crystalline basement.
Table 19 Decision Tree Classifier: Classification reports for the training, open test, and hidden test datasets.

DECISION TREE CLASSIFICATION REPORT

Training Set Open Set Hidden Set

Class Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.
Sandstone (0) 0.68 0.67 0.67 0.79 0.72 0.75 0.60 061 0.60
Sandstone/Shale (1) 0.75 0.21 0.33 0.50 0.02 0.03 0.78 0.11 0.19
Shale (2) 0.77 096 0.86 0.74 099 0.85 0.77 098 0.86
Marl (3) 0.64 0.18 0.28 0.74 0.02 0.04 0.48 0.03 0.06
Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Limestone (5) 0.80 0.47 | 0.59 0.63 0.29 0.40 0.57 056 0.56
Chalk (6) 0.79 0.63 0.70 0.00 0.00 0.00 0.00 0.00 0.00
Halite (7) 0.77 1.00 @ 0.87 0.00 0.00 0.00 0.87 1.00 0.93
Anhydrite (8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tuff (9) 0.00 0.00 @ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Coal (10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.74 0.76 0.72 0.70 0.75 0.67 0.70 0.75 0.69

Accuracy Score 0.76 0.75 0.75

Matrix Score -0.663 -0.690 0.665

In addition, the confusion matrices normalized by the total number of predictions per class is

presented on Figure 42.

The classification report and the confusion matrices revealed that the decision trees model
was unable to predict classes such as coal, tuff, chalk, and dolomite. The imbalance on the
prediction might be explained by the cost complexity pruning process, which is a great

technique to raise the overall model accuracy at the cost of not capturing in detail least

62

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

represented classes into the datasets. In other words, the cost complexity pruning process
improved the classifier’s performance from 62% to 75% on the test sets mainly by improving
significantly the classification on the most frequent classes but without improving the
classification for the minority classes.

NORMALIZED CONFUSION MATRIX o NORMALIZED CONFUSION MATRIX 10
Sandstone 304 572 000 000 004 000 000 000 000 000 Sandstnneﬂ 481 597 000 000 000 000 053 000 000 000
SandstonefShale | 364 MBISON 1355 000 000 000 000 000 000 000 000 Sandstone/Shale | 2374 837 000 000 000 000 000 000 000 000
Shale | 531 581 000 000 004 000 000 000 000 000 & Snale { 874 1383 000 000 084 000 152 000 000 000 &
Mari{ 174 000 235 000 977 000 000 000 000 000 Marl | 058 023 397 [S8S& 000 692 RUGE 000 000 000

Dolomite | 005 066 036 000 000 €00 000 000 000 000 000 60 _ Dolomite { 006 076 013 000 000 000 000 000 000 60
o]
£ 8
= Limestone { 323 083 236 M75 000 ﬁ 000 000 000 000 000 o Limestone | 524 193 304 2417 o000 EaEY 000 154 000 000 000
g =
= =
= =
L Cholk | 000 000 000 099 000 2759 000 000 000 000 000 w© Chalk { 004 000 000 2748 000 3474 000 000 000 000 000 ®
Halite | @00 000 000 000 000 €00 000 000 000 000 000 Halite { 200 000 000 000 000 000 000 000 000 000
sohyarite | 012 000 008 000 000 000 WSl 000 000 000 pohydrite { 014 000 001 000 000 000 000 760 000 000 000
0 2
T 055 000 101 0.00 000 000 000 000 000 | 094 000 o089 0.00 000 000 000 000 000 000 o0
coal | 7B 415 044 000 000 000 000 000 000 000 000 Coal { 059 070 016 000 000 000 000 000 000 000 000
T T T T T o T T T T T T T o
H = E = g & = T 2 : 2 5 2 g x 1] £ k]
H - = £ & = & 3 =1 2 € L G
g & & = §F § & 3 % 7 S i & & £ 5 3§ & 2 3 °
B s ¢ g =} £
i3 s & £ i B s H
& = b
H 2
& L '
Predicted label Predicted label

Figure 42 Decision Tree Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

4.3 ENSEMBLE MACHINE-LEARNING METHODS

4.3.1 Random Forest

Beforehand we constructed a Random Forest base model that performed with an accuracy of
92% while training and validating the model on 10 stratified k-folds on the preprocessed
training set. This provided accuracies of 78% and 79% on the open test and hidden test sets,
respectively. In addition, considering the base model did not consider any regularization
technique, the current section aimed to optimize the base model by performing an accurate

features and hyper-parameters selection.

4.3.1.1 Recursive Feature Elimination

Initially in order to improve the model performance a feature dimension reduction was
attempted to remove the least informative features that might slow down the training process,
introduce noise, or create confusion into the model. To do so a recursive feature elimination

wrapper was constructed and tested on a 10% stratified subsample of the training data in

63

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

order to train the model on a representative sample, handle the imbalance between lithology
classes, and avoid overfitting. Besides, it is important to mention that this approach was
adopted since random forest classifier available on the scikit-learn library only supports CPU
but not GPUs.

Optimal number of features: 27
RANDOM FOREST RECURSIVE FEATURE ELIMINATION
T

0875

0.850

0825

0800

ACURACY

077s

0750

0725

= Train Accuracy i
=== Optimal number of features = 27

0 5 10 15 2 = 0
NUMBER OF FEATURES

Figure 43 Random Forest Classifier: Recursive feature elimination wrapper results

DCAL
ROP

PEF

RSHA

Al

K

AP

M

>
FORMATION_encoded
DRHO
GROUP_encoded
WELL encoded
OT R

DTC

MD_TVD

RDEP

RMED:

cAl

RHOB

X1L0C

ZL0C
DEPTH_MD
DTS_COMB
Y.L0C
NPHI_COMB

GR

000 002 004 006 008 010 012
Score

Figure 44 Random Forest Classifier: Feature importance given by the RFE wrapper.

The recursive feature selection, documented on Figure 43, indicated 27 as the optimal number
of features in order to attain the highest training accuracy; however, we can also appreciate
how most of the accuracy is achieved by only the initial 10 features and the 17 subsequent

only contribute a slight improvement in the accuracy. In addition, RFE wrapper also provided

64

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

the apparent features importance (Figure 44), in which GR, NPHI, DTS, RHOB, and some
metadata features related to instances location seemed to influence the random forest output

the most.

4.3.1.2 Hyper-parameter Tuning

Subsequently, after we decided to reduce the number of features up to 27 in order to look for
the maximum possible accuracy, a hyper-parameter optimization process was performed
based on a randomized parameter search technique. The parameters’ evaluation ranges are

enlisted onjError! No se encuentra el origen de la referencia..

Table 20 Random Forest Classifier: Hyper-parameter ranges defined for tuning

Hyper-parameter Value ranges
n_estimators [from 100 to 500 in steps of 50]
max_features [‘sqrt’, “auto’]

max_depth [form 1 to 50 in steps of 2]
bootstrap [True, False]

The hyper-parameter grid search was executed for 25 iterations while cross validating the
training with 10 stratified folds in order to avoid overfitting the training data, the better hyper-

parameters are enlisted on Table 21.

Table 21 Random Forest Classifier: Optimal Hyper-parameter

Hyper-parameter Optimal value
n_estimators 350
max_features ‘sqrt’

max_depth 45
bootstrap False

Lastly, a new model was trained by using the 27 most informative predictors (See Figure 44)
and the optimal hyper-parameters. This final model provided accuracies of 98, 78, and 80%
on the training, open test, and hidden test, respectively. The detailed classification reports by

class can be visualized on Table 22.

Additionally, in order to help visualize the classification results Random Forest obtained, the

normalized confusion matrices are displayed on Figure 45.

65

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Table 22 Random Forest Classifier: Classification reports for the training, open test, and hidden test datasets

RANDOM FOREST CLASSIFICATION REPORT

Training Set

Class Prec. Rec. F1.
Sandstone (0) 097 097 0.97
Sandstone/Shale (1) 096 095 0.95
Shale (2) 098 099 0.99
Marl (3) 097 096 0.97
Dolomite (4) 095 0.77 0.85
Limestone (5) 097 091 094
Chalk (6) 099 099 0.99
Halite (7) 1.00 1.00 1.00
Anhydrite (8) 097 098 0.98
Tuff (9) 098 098 0.98
Coal (10) 095 0.88 0.91
Basement (11) 1.00 1.00 1.00

Weighted Metric 098 0.98 0.98

Accuracy Score 0.96

Matrix Score -0.061

675

sandstone

Sandstone/Shale

Dalomite

True label

Limestone

Chalk

Anhydrite

it

Coal { 025

274 1748 000 373 000

011 000 000 146 000

NORMALIZED CONFUSION MATRIX

000

000

Sandstone

Limestone
O

Predicted label

Anhydrite

True label

Open Set
Prec. = Rec.
0.79 0.85
050 0.27
0.83 0.92
0.48 0.01
0.00 0.00
042 057
0.00 0.00
0.00 0.00
081 041
0.84 0.53
0.79 0.85
0.75 0.78
0.78
-0.582

Sandstone

Sandstone/Shale

o 201

16.68

2167

F1.

0.82
0.35
0.87
0.03
0.00
0.48
0.00
0.00
0.55
0.65
0.82

0.75

Hidden Set
Prec. Rec.
0.72 0.80
0.57 0.26
0.85 0.96
0.43 0.25
0.00 0.00
0.60 0.61
0.56 0.34
0.99 0.98
0.72 0.76
0.66 0.26
0.86 0.64
0.77 0.80
0.80
-0.497

NORMALIZED CONFUSION MATRIX
1118 19 106 000 619

770

342 000 051

29.36 1500 246

4296 000 1192

016 000 008

o W =

578 000 1818

000 000 006

000 500 052

000 015

000 000

000 000
000 000
209 005
679 000

000 005

56.00

000 080 000

000 2447 604

112 266 769

000 000 000

1773 000 000

k= H

= E 2
5
a

3

Predicted

label

Figure 45 Random Forest Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

F1.

0.76
0.36
0.90
0.31
0.00
0.60
0.42
0.99
0.74
0.38
0.74

0.78

Finally, from both the classification reports and the confusion matrices we could observe

how the random forest perform quite well while predicting classes that have no conflict with

others; however, when it comes to similar lithologies it is prone to make many more mistakes

as the case of dolomite and chalk. In addition, it is important to note that so far random forest

66

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

is the only model capable of predicting limestone, something that did previous models were

not able to do so.

4.3.2 Categorical Gradient Boosting

Categorical Gradient Boosting, CatBoost for short, is a recently developed machine-learning
algorithm that gets its name derived from the terms Category and Boosting. ‘Cat’ references
the fact that it handles categorical features or predictors by itself without necessity of
encoding categorical data separately, which is widely required by other machine learning
techniques as part of the pre-processing stage. ‘Boost’ refers to its functionality based on

gradient boosting algorithm covered in the preceding sections (Ghori et al., 2019).

In addition, CatBoost is compatible with scikit-learn tool kit, and supports training on either
CPUs and GPUs. As a first attempt, a hyper-parameter random grid search technique was

executed considering the most relevant parameters as shown on Table 23.

Table 23 Categorical Boosting Classifier: Random search grid for CatBoost classifier

Hyper-parameter Value ranges
depth [1,2,3,4,5,6,7,8,9,10]
iterations [100, 250, 500, 1000]
learning_rate [0.001, 0.01, 0.03, 0.1, 0.2, 0.3]
12_leaf reg [1, 3,5, 10, 100]
border_count [1, 3,5, 10, 100]
random_strenght [1, 10, 100, 1000]
grow_policy ['SymmetricTree', 'Lossguide’, 'Depthwise']

The random search was executed for 100 epochs or iterations by cross validating each set of
parameters on 3 stratified k-folds of the training set. This leaded us to find the values
summarized on Table 24 as the optimal ones according to the random search approach.
However, once a new model was fitted and tested by using these hyper-parameters, it

provided poor accuracies of 71% and 75%, on the open test and hidden test sets respectively.

Besides, considering the high accuracy of 90% obtained on the training set and the
considerably low accuracy on the test sets, which is an indicator of overfitting, we decided
to implement a manual tuning process as a way to take advantage of the fast training that

CatBoost compatibility with GPUs offers. Further, prior to manually attempt to tune the

67

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

CatBoost hyper-parameters, a recursive feature selection wrap was first run in order to reduce

the possible less informative and nosy predictors held by the datasets.

Table 24 Categorical Boosting Classifier: Optimal hyper-parameters obtained by
random search grid approach

Hyper-parameter Pseudo-optimal value
depth 9
iterations 500
learning_rate 0.2
12_leaf _reg 3
border_count 100
random_strenght 1.0
grow_policy ‘Depthwise'

4.3.2.1 Recursive Feature Elimination

Recursive Feature Elimination is an effective feature selection methodology that allows
machine-learning algorithms to run more efficiently and effectively. The training data set
was treated for missing values, difference in feature scales, and outliers as previously
explained with the difference that the categorical variables were not encoded since CatBoost
handles them by itself as an attempt to avoid data leakage between the training and test sets
while using feature encoders. Data leakage normally leads to conditioned predictions by
proposing a new tree ordering principle which is profoundly described in (Prokhorenkova et
al., 2019).

090

085 I

i
| = Tain Accuracy
| === Optimal number of features = 16

L
o 5 10 15 20 25 30
NUMBER OF FEATURES

Figure 46 Categorical Boosting Classifier: Recursive feature elimination wrapper results

68

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Later, the preprocessed trainings data went into a recursive feature elimination wrap by cross
validating the model with 10 stratified k-folds of the training dataset, this process specified
16 as the optimal number of features for the present model as shown in Figure 46. This
suggested that we could remove almost 50% of the training considered to be uninformative

for the CatBoost classifier.

In addition, the selected features by the RFE wrapper and their respective importance is
depicted in Figure 47. Considering the RFE is a wrapper-type feature selection methodology,
which might take any machine-learning model as core for evaluation, the importance scores

shown below are fully dependent on the stochastic nature of the CatBoost algorithm.

DTS_CoMB
oTC

DEPTH_MD

z.10¢

RMED

®

WELL_encoded

WD TVD

RHOB

ALl

Y.LoC

NPHI_COMB

X Loc
GROUP_encoded
FORMATION_encoded

A

0 2 4 6 8 10 12 14
Score

Figure 47 Categorical Boosting Classifier: Feature importance given by the RFE wrapper

From a general perspective, we can observe how the previously machine-learning imputed
logs DTS, NPHI, DTC, and RHOB are included as the 16 most informative features for a
CatBoost model and how important and decisive the metadata features as FORMATION,
GROUP, and LOCATION are as well.

4.3.2.2 Hyper-parameter Tuning

During this stage the training performance was compared with the open set performance
which served as validation set for the current analysis. Initially, in order to prevent for under

or overfitting the number of trees or iterations had to be set to a large value of 1000. Next,

69

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

the learning rate was investigated by incorporating cross validation, the open set as validation

set, and a 25-round early stopping as callback to prevent for overfitting.

Every change accomplish on the accuracy by changes on the learning rate was documented
and compared on the open set (validation set) in order to select the best possible hyper-
parameter that generalizes well on unset objects. Figure 48 helps visualize how the train and
test accuracies evolve by using different learning rates ranging from 0.001 to 0.5 where the
optimal learning rate was found to be 0.1. From this figure, it is also visible how the model

overfits after the learning rates exceed a value of 0.2.

NUMBER OF TREES: 1000

— frain

0675 + --- test

== Optimal Learning Rate = 0.1
i

0o 01 02 03 04 05 (1
Learning Rate

Figure 48 Categorical Boosting Classifier: Learning rate vs. accuracy

Subsequently, considering the massive size of the training data and the limited RAM memory
Google Colab provides, a constrained tree depth range from 2 up to 14 was tested and
validated on the training and validation sets, respectively. As result of this procedure, a depth
of 6 was selected as the most accurate based on the validation set performance. This process
is depicted on Figure 49a where it is visible how the model starts overfitting as the tree depth

exceeds values over 6 harming in this way the validation set accuracy.

Besides, the coefficient at the L2 regularization term of the cost function was investigated
within values equally spaced from 25 to 500 (Figure 49b). An L2 factor equal to 300 showed

to give the best accuracy on the validation set and hence was selected for the final model.

70

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

TREE DEPTH vs. ACCURACY

L2 REGULARIZATION vs. ACCURACY

— wain
== test
-==- Optimal Tree Depth = 6

E — frain
1 ---- ftest
: ---- Optimal L2 Factor = 300

i H
0488 i E
085 |
i
|
086 |
i

Accuracy

'
100 200 300 00 500

Tree Depth L2 Regularization

Figure 49 Categorical Boosting Classifier: Tree depth vs. accuracy (left) and
L2 regularization term vs. accuracy (right).

Lastly, the tree growing policy and the number of splits for numerical features, also known
as border count, parameters were also investigated; however, no other value than the default
ones gave better results. These attempts are depicted on Figure 50.

TREE GROW POLICY vs. ACCURACY BORDER COUNT vs, ACCURACY

Accuracy
Accuracy

— train "
e 1
== test 1

G 8% R T T L T T
& o = 0 160 150 200 %0
gﬁﬁ‘« Border Count

Figure 50 Categorical Boosting Classifier: Tree growing policy vs. accuracy (left) and
Border count vs. accuracy (right).

The border count parameter, which mainly depends on the processing unit and has a direct
impact in the training speed on a GPU, was investigated in the range from 32 to 254 as
recommended by the CatBoost webpage. The optimal parameter was kept on the default
value of 128 as there was no other possible value able to beat its influence on the open set
performance. Furthermore, even though the Lossguide and Depthwise tree growing policies
performed reasonably on the open set, the default Symmetric tree growing policies still

71

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

provided a best performance. The optimal hyper-parameters found via the manual tuning

process can be found enlisted on Table 25 below.

Hyper-parameter Optimal Value
iterations 1000
learning_rate 0.1
depth 6
12_leaf reg 300
border_count 128 (default)
grow_policy ‘Symmetric’ (default)

Table 25 CatBoost classifier: Manually tuned hyper-parameters

Lastly, a new CatBoost classifier was fitted and tested based on the manually tuned hyper-

parameters, this provided prediction accuracies of 86, 80, and 81% on the training, open test,

and hidden test sets, respectively. Table 26 represents the detailed classification reports for

the training, open test, and hidden test data, where although the open test data was used as

validation set while tuning hyper-parameters, the model was still able to generalize well and

provide comparable results, and even slightly better results, on the hidden dataset.

Table 26 Categorical Boosting Classifier: Classification reports for the training, open test, and hidden test
datasets.

CATEGORICAL GRADIENT BOOSTING CLASSIFICATION REPORT

Class

Sandstone (0)
Sandstone/Shale (1)
Shale (2)

Marl (3)
Dolomite (4)
Limestone (5)
Chalk (6)
Halite (7)
Anhydrite (8)
Tuff (9)

Coal (10)
Basement (11)

Weighted Metric
Accuracy Score

Matrix Score

Training Set
Prec. Rec. F1.
0.83 0.81 0.82
0.77 0.58 | 0.66
0.89 096 0.92
0.79 0.60 @ 0.68
0.64 0.03 0.05
0.82 063 0.71
0.88 0.85 0.87
0.98 0.99 | 0.98
0.86 0.81 0.83
0.78 0.79 | 0.79
0.86 0.45 0.59
0.00 0.00 0.00
0.85 0.86 @ 0.85

0.86
-0.36

Prec.

0.83
0.61
0.83
0.69
0.00
0.44
0.91

0.00
0.75
0.87

0.78

Open Set
Rec.

0.83
0.29
0.96
0.08
0.00
0.55
0.02

0.00
0.71
0.45

0.80
0.80
-0.52

F1.

0.83
0.40
0.89
0.14
0.00
0.49
0.03

0.00
0.73
0.60

0.77

Hidden Set

Prec. Rec.
0.75 0.79
0.67 0.43
0.88 0.95
0.30 0.29
0.00 0.00
0.63 0.61
0.70 0.44
0.99 1.00
0.80 0.77
0.59 0.56
0.83 0.61
0.80 0.81

0.81

-0.45

F1.

0.77
0.52
0.91
0.30
0.00
0.62
0.54
0.99
0.78
0.57
0.71

0.80

72

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

From the classification reports and confusions matrices we can observe that CatBoost was
able to classify with medium and high accuracies most of the lithologies, buts it was unable
to classify dolomite and anhydrite in particular. Besides, most of the misclassifications are
predominant in tuff and dolomite which are misclassified as shaly-sandstone and shale.

Finally, even though CatBoost handles much better but not perfectly data imbalance in an
algorithm-level way, there is still a bias in the predictions towards the most frequent classes,
yet CatBoost achieved better results than any stand-alone model previously analyzed. Hence,
this less visible skew in the prediction distributions towards the most frequent classes while
implementing ensemble models has been documented broadly in multiple classification

problems, and seems to be worsened as the number of classes increases.

NORMALIZED CONFUSION MATRIX NORMALIZED CONFUSION MATRIX

272 554 000 240 D000 000 B47 392 Sandstone

151 235 000 658 000 005 000 022 000

SandstoneiShale 10.14 000 107 000 000 000 280 Sandstone/Shale 591 552 000 010 000 000 000 1231 608

CIREN 4275 000 131 271 009 246 2483 1105

Shale | 338 000 17.56 000 000 1369 586 shale

Mar{ 023 309 242 3048 000 1035 715 000 000 033 000

Marl { 065 I 000 2414 000 000 000 000 &0

Dolomite { @35 000 022 014 000 001 000 000 1054 000 000 60

Dolomite | ©00 010 041 000 000 012 000 000 000 000

Limestone { 564 090 144 1871 000

True label
True label

Limestone | 184 157 155 1636 o000 WSSNEN 905 000 274 000
Chalk | 064 000 000 005 000

Chalk { 000 000 000 000 000 1032 QEVENE 000 000 000
Halite { @07 QD0 001 000 000

Anhydrite | 011 000 003 000 000 025 DOD 000 00O 000
o Anhydrite 031 000 001 000 000

wffq 014 000 035 000 000 000 000 000 ooo w020 000 043 000 000 009 000 000 Do:ﬁnoc

Coal { 033 028 028 000 000 000 000 000 000 Coal | 014 015 008 000 000 000 000 000 000 IH]G

e 3
? a

halk 4

Anhydrite |

v
o
3

Dol

Predicted label Predicted label

Figure 51 Categorical Boosting Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

4.3.2.3 Categorical Gradient Boosting Interpretability

Although ensemble machine-learning algorithms are some of the most robust methods used
for classification tasks, their interpretation involves high complexity. This complexity gets
higher as the number of classes to be predicted raise meaning that even the most popular
feature importance techniques become inconsistent and unable to provide a clear significance
for each predictor in relation to each class involved in the prediction task. In order to address

this issue the open source SHAP python library was used to get an insight of the individual

73

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

contribution of each feature into the predictions in a consistent manner by taking into account

feature missingness.

Figure 52 briefly summarizes how important each feature is for every predicted lithology
class in the form of a bar plot. Of course, this only helps to get a relative but accurate feature
importance based on the training set but without representing each feature impact on the
model’s output range and distribution. This SHAP values bar chat is not comparable to the
recursive feature importance plot previously showed due to the difference in the way each is
computed; however, they have a general agreement on the top most important features for

the CatBoost machine-learning model.

-y]
GROUP_encoded [N
neri_coms NN
rormaTiON_encoded [HNNENGEEGEEEEE
rece I
v |
weLL_encoded [N
x roc NN

DEPTH_MD

Class 0
Class 2
Class 3
Class 10
Class 6
Class 9
Class 5
Class 1
Class 4
Class 7
Class 8
Class 11

MD_TVD

rve I

z_oc INNNEGEGEG—
caALl
OTC

DTS_COMB

5P

00 05 10 15 20 25 30 35 40
mean(|SHAP value|) (average impact on model output magnitude)

Figure 52 Categorical Boosting Classifier: SHAP values for each target lithology class

In addition, we could analyze each feature influence on the model’s output for each lithology
class, but for simplification for the current section, we only focus on some examples of the
less accurately classified lithologies such as shaly-sandstone and dolomite, which were the
ones the CatBoost model misclassified the most. Refer to Appendix I to find SHAP values

impact for all lithology types.

74

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

s -0 =5 o S 10 15 20 20 -15 -l0 65 0 05
SHAP value (impact on model output) SHAP value (impact on model output)

Figure 53 Categorical Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting shale.

Figure 53, describes how each feature influences the classification output for sandstones,
shaly-sandstones, and shale, from here we can observe that for an instance to be classified as
a shale or as a sandy-shale, the GR, NPHI, Y_LOC, X_LOC, GROUP, and FORMATION
features play the most important role. Besides, we can appreciate that there is not a well-
defined boundary for most of the mentioned features to distinguish between sandstones from

the shaly-sandstones, as there is to differentiate shale from the other two classes.

For instance, a high GR is more likely to help the CatBoost to classify such instance as a
shale as seen on Figure 53c, and a low-medium GR is needed to classify a data instance as
sandstone as seen on Figure 53a. However, there is not such boundary properly defined to
predict a data instance as a shaly-sandstone, since as we can observe on Figure 53D, either a
high or medium value is needed to do so. Thus, a medium GR values easily create confusion
while training the classifier to distinguish between sandstones and shaly-sandstones. In
consequence, this lack of a well-defined feature boundary to distinguish these two classes are
the reason why, the CatBoost classifier does better while distinguishing shale from other

classes than when sorting out shaly-sandstones from sandstones (See Table 26).

Moreover, following the same logic we could explain the CatBoost incapability to properly
classify lithologies that share similar composition and properties such as the case of
dolomites, limestone, and chalk . The poorest classification between these three classes was
encountered on dolomites (See Table 26); fact that may be explained by the almost null
presence of dolomites on the training set which could have made the CatBoost model unable
to learn how to classify them in a considerable good manner (See Figure 14).

75

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

4.3.3 Light Gradient Boosting

Light Gradient Boosting algorithm, LightGBM for short, is a highly efficient gradient
boosting decision tree that from a general perspective exclude a significant portion of the
data instances with small gradients during the estimation of the information gain. This
implies having an algorithm with almost the same efficiency but several times faster during
the training process in comparison with conventional Gradient Boosting Decision Trees
(GBDT) machine-learning models (Ke et al., 2017).

The LightGBM base model performance we constructed initially by using the complete set
of 30 features, did not consider any regularization term or technique, providing accuracies of
84, 72, and 65% on the training, open test, and hidden test sets, respectively, which means
that the model was unable to generalize its performance on unseen objects. Consequently, in
the current section we attempted to optimize the LightGBM model’s performance by fist
running a recursive feature elimination wrapper and then undergoing into a manual hyper-
parameter tuning process. In addition, it is worth to mention that LightBoost library offers
compatibility with either CPUs or GPUs, which made possible optimizing the model’s hyper-

parameters manually.

4.3.3.1 Recursive Feature Elimination

A recursive feature elimination wrapper was executed in order to study the possibility of
reducing the dataset magnitude without affecting the model performance. This process
accompanied by a 10 stratified k-fold cross validation achieved to determine 24 as the
optimal set of predictors that reached the highest training accuracy as shown on Figure 54.

The features importance obtained by the RFE wrapper are depicted on Figure 55. As visible,
the four features we improved by the ML imputation technique are still considered to be
highly relevant for LightGBM as well as the additional features we created. However,
surprisingly LightGBM provided a high importance to variables such as ROP and DRHO,

same that have not been considered highly relevant in other machine-learning algorithms.

76

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

T
— Fain Accuracy '
0,80 1 === Optimal number of features = 16

o7

ACURACY

0.65

0.60

1
'
1
I
i
T
'
|
i
I
i
i
'
i
L
1
'
i
'
|
1
|
1
i
T
i
1
1

0 5 10 5) 3 0
NUMBER OF FEATURES

Figure 54 Light Boosting Classifier: Recursive feature elimination wrapper

4.3.3.2 Hyper-parameter tuning

While many other popular Gradient Boosting Decision Trees algorithms base their
functionality on a depth-wise growing policy, LightGBM uses leaf-wise growing policy
which normally help the algorithm to converge much faster; however, this might also help to
overfit the model if wrong hyper-parameters are selected. Further, based on the extensive
number of hyper-parameter handled by LightGBM, it became time demanding to tune the
complete set of hyper-parameters by implementing either a random or a grid parameter search
techniques.

DCAL

GM
WELL_encoded
3

PEF
GROUP_encoded
DTS_COMB
X 10C
¥_Loc
z.loc

oTC

RASHA
DEPTH_MD
MD_TVD
DARHO
RMED

s

cau

DTR

RHOB

RDEP

ROP
NPHI_COMB
=]

[} 500 1000 1500 2000 2500 3000 3500

Figure 55 Light Boosting Classifier: Feature importance given by the RFE wrapper

77

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Accordingly, a manual tuning process for the three most important regularization parameters
was executed in order to establish the best set of values that outperform the default values.
These highly influencing regularization hyper-parameters were evaluated individually and
sequentially by inspecting the training and validation accuracies while the number of

estimators was set to constant value of 1000 to prevent for overfitting or underfitting.

LEARNING RATE vs. ACCURACY

085

080

070

065 '
—_— frain
-+ test
-- Optimal Learning Rate=0.15

080

I
00 01 0.2 03 04 05
Learning Rate

Figure 56 Light Boosting Classifier: Learning rate vs. accuracy

First, the learning rate was investigated in the range from 0.005 to 0.5 by the aid of the open
test dataset as validation set, a 10 K-Fold cross validation technique on the training data, and
25-round early stopping callback to stop the training process if no improvement on the
multiclass probability objective function was obtained. This process is documented on Figure
56 where the optimal learning rate was found to be 0.015; in addition, the figure also
represents how the training and validation accuracies worsen dramatically as the learning rate
exceeds a value of 0.1. In other words, training accuracy fall means that LightGBM was

unable to converge and optimize the objective function at learning rates higher than 0.1.

Second, maximum depth is a parameter that not only controls the distance or steps between
the root node and the leaf node, but also has a high influence on the model training time. In
this context, several maximum depths ranging from 2 to 30 were studied and validated on the
training and validation data. Besides, the regularization factor L2 was also looked at in the
range from 1 to 300 in order to prevent for overfitting.

78

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

LAMBDA FACTOR vs. ACCURACY

MAXIMUM DEPTH vs. ACCURACY

— ftrain — frain

== test .| === test
==. Optimal Maximum Depth=12 ---- Optimal Lambda Factor=250

H
5 10 15 20 = 0 o 100 00 300 400 500
Maximum Depth Lambda Factor

Figure 57 Light Boosting Classifier: Maximum tree depth vs. accuracy (left) and Regularization lambda L2 vs.
accuracy (right).

As result, a maximum depth of 12 and regularization factor of 250 were selected as optimal
values based on slight improvements on the validation accuracy which showed practically
constant values along the studied parameter ranges as shown on Figure 57. In addition. It is
important to note that although the last two studied parameters seemed not to have a high
impact on the model accuracy, their definition would help LightGBM generalize better on

unseen objects.

Table 27 Light Boosting Classifier: Manually tuned hyper-parameters

Hyper-parameter Optimal Value
iterations 1000
learning_rate 0.015
max_depth 12
Reg_lambda 250

Finally, a new LigthGMB model was trained and test by using the optimal hyper-parameters
found via the manual tuning process (See Table 27), obtaining classification accuracies of

88, 79, and 80% on the training, open test, and hidden test sets, respectively.

A detailed classification report for each predicted class and the confusion matrices
normalized by the number of predictions per class are presented on Table 28and Figure 58,

respectively.

79

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Table 28 Light Boosting Classifier: Classification reports for the training, open test, and hidden test datasets.

Class

Sandstone (0)
Sandstone/Shale (1)
Shale (2)

Marl (3)

Dolomite (4)

Limestone (5)

Chalk (6)
Halite (7)
Anhydrite (8)

Tuff (9)

Coal (10)

Basement (11)

LIGHT GRADIENT BOOSTING CLASSIFICATION REPORT
Training Set

Weighted Metric

Accuracy Score

Matrix Score

Sandstone

Sandstone/Shale

Shale

Marl

Dolomite

True label

Limestone

Chalk

Aahydrite

uff

oal

P

rec.

0.85
0.80
0.91
0.84
0.66
0.86
0.92
0.99
0.93
0.89
0.83
0.00

0.88

Rec.

0.84
0.64
0.97
0.76
0.16
0.68
0.93
0.99
0.91
0.85
0.65
0.00

0.88
0.88

-0.304

NORMALIZED CONFUSION MATRIX

11.84 ﬂ 963 013 000
27.42 570 000
154 ﬁ o0

34

059

0.00

180

0.00

0.00

043

160

041

000

30.96

000

0.00

1317 29 052 000 277 000

000

0.00

000

0.00

1379 640

000 G40

17.00 993

000 aoo

048 000

kLY osa

000 aoo

Sandstone

Sandstone/Shale

Limestone

Predicted label

F1.

0.85
0.71
0.94
0.80
0.26
0.76
0.93
0.99
0.92
0.87
0.73
0.00

0.88

100

True label

Open Set
Prec. Rec.
0.82 0.82
0.55 0.31
0.83 0.95
0.63 0.15
0.00 0.00
0.49 054
0.00 0.00
1.00 0.06
0.65 0.44
0.76 0.50
0.77 0.79
0.79
-0.533

Anhydrite

uft

oal

| 553

i 011

0.04

a.00

013

084

020

F1.

0.82
0.40
0.89
0.24
0.00
0.51
0.00

0.12
0.52
0.61

0.77

Hidden Set
Prec. Rec.
0.72 0.83
0.65 0.38
0.87 0.95
0.22 0.21
0.00 0.00
0.61 0.52
0.68 0.58
0.99 1.00
0.90 0.10
0.63 0.31
082 054
0.79 0.80
0.80
-0.477

NORMALIZED CONFUSION MATRIX

114

635

510 260

022 023

152 141

000 000

001 002

003 002

000 066

017 009

370 o000 278
422 000 o007
31T 476 139
n.asﬂlz.ar
009 000 103
3253
0.00
0.00
0.00
0.00

0.00

000 000

000 000

267 008

663 000

000 006

000

000

149

Shale

Sandstone/Shale

Predicted

label

Figure 58 Light Boosting Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

F1.

0.77
0.48
0.91
0.21
0.00
0.56
0.62
0.99
0.18
0.41
0.65

0.79

LightGBM seems to achieve high-medium level accuracies when there is no conflict between

similar lithologies. In other words, when predicting similar classes, LightGBM seems to have

struggled and made many more classification mistakes, particularly for dolomite for which

the model could not make any right prediction at all. In addition, all the predictions seemed

80

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

to be consistent and comparable between the open and hidden test sets; however, there are
still some minor differences on the accuracies attained on each dataset. This apparent
difference in performance is more linked to the test sets’ labels distributions than to the model
itself (See Figure 14). For instance, chalk is much better classified in the hidden test set than
in the open test set, which is greatly due to the difference on the lithologies presence on each

set from which the LightGBM model could have made either right or wrong prediction.

4.3.3.3 Light Gradient Boosting Interpretability

As discussed previously, understanding why a model makes certain predictions can be a
crucial task in regression and classification problems, overall when accuracy and
interpretability are discussed together considering that the best performing machine-learning
algorithms are also the most complex ones such as the case of ensemble and deep learning
models (Lundberg and Lee, 2017). To address this issue the open source python library
SHAP, short for Shapley Additive exPlanations, was used to dig deeper into LightGBM
interpretability.

Group_encoded [N
or. [
certi_vo [
neri_coms NG
reios [N
v oc NN
WELL_encoded _
z oc [N
x_oc NG
vo_tvo [
cau I

b |
rveo I
per [N
or_r [N
- BN Class 0
ROEP _ e Class 3
ocar [= Class 2
ors_covs [m—Class 5
ROP - s Class 10
- Class 4
P - . Class 9
« [l = Class 1
GM - = Class 6
. Class 8
prHo
mmm Class 7
rsHa [= Class 11

00 0.5 10 15 20 25
mean(|SHAP value|) (average impact on model output magnitude)

Figure 59 Light Boosting Classifier: SHAP values for each target lithology class

Figure 59 depicts how important the metadata features such as GROUP, DEPTH, Y_LOC,
Z_LOC, and Y_LOC are for classifying lithofacies while implementing LightGBM. In

81

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

addition, the SHAP impact values showed a great disagreement on some features considered
as important when compared to the RFE wrapper feature importance previously obtained.
However, the NPHI and RHOB machine-learning imputed features are still at the top of the

most relevant features helping LightGBM perform well.

o o
o e Trmm— R e ———l— o e -
GROUP_encoded —_— e— Loc T — NPHI_COMB e
NPHI_COMB ——lfp e — o r—— DrC i—
AMED — g [e x.toc ol
cau e = — WELL_encoded —fd—
RHOB e e x.Loc —ls ¥_Loc e
¥.10¢ —— e .. DEPTH_MD e cau e
wioc —a— oieD e o 1o P
PEF — z10c = GROUP_encoded ——d>
z10C —fl— cau —_——— M i
WELL_encoded s s MD_TVD - F DTS_CoMB =i g
DEPTH_MD e 2 RDEP — g 2 10C -5 3
DTS_coma e H sp G H RHOB - ‘%
RoER e 8 RHOB —4 g DEPTH_MD f— g
oM - DRHO — s 4+
MD_TVD o= PEF e DRHO —
DeAL = oTs_coms -4~ RMED -+
oTC — NPHI_COMB e RDEP —
DRHO G DCAL — PEF -+
OT_R -+~ RSHA o DeAL <+
RSHA 4 ROP —4 orn 4
» + x -+ ror +
“ a -+ GM b -4 RSHA C 4
ror H ore +4 x 1
0o o5 - -

{0 -05s 0o 05 10 15 2 Zo s 1o &5 a0 05 0 3 2 B 1
SHAP value (impact on model output) SHAP value (impact on model output) SHAP value (impact on model output)

Figure 60 Light Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values impact while
predicting shaly-sandstone, (c) SHAP values impact while predicting shale.

Moreover, Figure 59 also reveals how sandstone, shaly-sandstone, and shale classifications
are mainly impacted by the GR and NPHI logs, but when it comes to other similar lithologies
such as limestone, dolomite, and chalk, LightGBM needed other additional features such as

RHOB and the acoustic logs to take part of the classification task.

In addition, by following the same logic we used to interpret CatBoost, the LightGBM
classification performance for similar classes rely mainly on the GR, and NPHI readings
along with some other metadata features, where medium-size features readings created great
confusion while defining proper boundaries capable of separating these lithologies. For
instance, GR and NPHI have quite well defined boundaries that help LightGBM distinguish
between shale and sandstone, low GR and low NPHI for sandstones and high GR and high
NPHI for shale. However, when these boundaries fade away as while classifying shaly-
sandstones, GR, and NPHI become less informative and less useful to accomplish the
prediction task for this particular class as shown on Figure 60. Refer to Appendix J to find

SHAP values impact for all lithology types.

Therefore, the complexity that classifying similar lithologies involves along with the low

amount of training samples available for some these classes such as dolomite leaded

82

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

LightGBM to perform partially well in general, but poorly particularly while classifying

shaly-sandstones and dolomites, where the lowest performances were found (See Table 28).

4.3.4 Extreme Gradient Boosting

Extreme Gradient Boosting, XGBoost in short, is a highly robust, powerful, efficient,
scalable, and widely used Gradient Boosting Decision Trees machine-learning model
consider to lead the forefront when it comes to classification tasks. XGBoost is an almost
perfect blend of software and hardware capabilities designed to enhance the pre-existing
boosting techniques in terms of training time and efficacy. It introduced two additional
techniques that help the model prevent overfitting. The first technique known as columns or
feature subsampling, originally part of random forest, which helps to train each independent
learner more efficiently on a different subset of features. The second technique is known as
shrinkage that, similarly to a learning rate in stochastic optimization, reduces the influence
of each individual tree by scaling the output weights after each step of the tree boosting

optimization (Chen and Guestrin, 2016).

Even though during the initial part of section 5, we created a base XGBoost model that did
not consider any regularization technique to prevent for under or overfitting, it was still able
to achieve good and pseudo-balanced performance results when dealing with unseen objects,
79 and 80% in the open test and hidden test sets, respectively. However, based on the great
results XGBoost has obtained along several data science competitions for both classification
and regression task, we believed that a proper hyper-parameter selection could improve its

performance.

Consequently, the current section presents a dimensionality reduction process through RFE
accompanied by a manual hyper-parameter selection by taking advantage of the quick and
parallelized learning process offered by the XGBoost’s compatibility with GPUs, same that

allowed to process and exploit profoundly the complete datasets.

4.3.4.1 Recursive Feature Elimination

Initially, in order to be consistent with the previously analyzed boosting algorithms a costly

Recursive Feature Elimination wrapper was executed to filter out the less informative

83

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

predictors that could lead to confusion during the training stage so that higher performances

could be achieved in shorter training times.

—— Tain Accuracy
=== Optimal number of features = 28

080

0ra

ACURACY

076

074

0 5 1 B e 5 0
NUMBER OF FEATURES

Figure 61 Extreme Boosting Classifier: Recursive feature elimination wrapper

The top training accuracy seemed to go beyond 82% while only using 10 training features;
however small improvements are achieved by including 18 more features (See Figure 61).
For the context of the current model, which can be run on GPUs, we kept 28 as the optimal
number of features in order to optimize as much a possible the classification accuracy.

P
RSHA
MD_TVD
DRHO

5

RDEP
DCAL

BS

PEF

oTR
RHOB

DTC

X 10C
RMIC
DEPTH_MD

GROUP_encaded
FORMATION_encoded
WELL encoded
OTS_COMB

cau

K

oM

NPHI_COMB

R

0.00 002 004 006 0.08 010

Figure 62 Extreme Boosting Classifier: Feature importance given by the RFE wrapper

In addition, the apparent importance each feature has on XGBoost is described on Figure 62,
which in comparison to LightBoost and CatBoost confers more weight to some of the 7

84

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

additional features created on Section 4, such as bulk modulus K, Shear modulus GM,

Cluster, and Slowness ratio DT_R.

4.3.4.2 Hyper-parameter Tuning

A manual hyper-parameter tweaking was focus on the most relevant parameters consider to
be the learning rate and the tree depth. Each parameter evaluated in the current section used
a 10 stratified K-Fold cross validation, a 25-round early stopping callback, and the open set
as validation set, while the number of trees was set to a value of 1000 in order to prevent

underfitting the training data.

LERANING RATE vs. ACCURACY

-~ test

H --- Optimal Learning Rated 275
} i ---- Safer Tree Depth: 0.075

5
0o 01 02 03 04 05 06
Learning rate

Figure 63 Extreme Boosting Classifier: Learning rate vs. accuracy

First, the learning rate was investigated in ranges from 0.001 to 0.65 by incorporating cross
validation, the open test set as validation set, and a 25-round early stopping as callback to
reduce overfitting. The results of the learning rate investigation are documented on Figure
63 where the optimal learning rate according to model’s best performance on the open test
data was found to be 0.35; however, as visible on the plot there are great fluctuations on the
test accuracies while using learning rates from 0.20 to 0.35. This leaded us to think that any
slight performance improvements on these sections may have been obtained by chance and
not by the model’s capability to generalize accurately its performance. Thus, selecting a lees
greedy and more stable learning rates between 0.01 and 0.25 might be safer and more

accurate while dealing with unseen objects.

85

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Based on the previous reasoning we opted to set the optimal learning rate to 0.075 before
undergoing into the next hyper-parameter analysis. Next, an estimator depth range from 2 to
15 was looked at and documented as shown in Figure 64 were XGBoost seemed to generalize
better on the open test data when a tree depth equal to 4 is selected.

MAXIMUM TREE DEPTH vs. ACCURACY

095

0.90

0.80

- frain

-~ test

--- Optimal Tree Depth = 4
i

o710

2 4 6 6 10 12 14
Maximum Depth

Figure 64 Extreme Boosting Classifier: Tree depth vs. accuracy
Finally, based on the optimal hyper-parameters found by the manual tuning process enlisted

on Table 29, a new XGBoost model was fitted and tested obtaining training, open test, and
hidden test accuracies of 88, 80, and 82%, respectively.

Table 29 Extreme Boosting Classifier: Manually tuned hyper-parameters

Hyper-parameter Optimal Value
n_estimators 1000
learning_rate 0.075

max_depth 4

reg_lambda 1500

subsample 1 (default)
colsample_bytree 1(default)

A detailed prediction report separated by predicted classes and a confusion matric normalized
by the number of prediction per class are evidenced on Table 30 and Figure 65 where the
most remarkable observation is that XGBoost achieved better classification performance that
the other Gradient Boosting tree based model especially for mixed mineral lithologies such

as shaly-sandstones, limestone, and chalk.

86

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Table 30 Extreme Boosting Classifier: Classification reports for the training, open test, and hidden test
datasets

EXTREME GRADIENT BOOSTING CLASSIFICATION REPORT

Training Set Open Set Hidden Set

Class Prec. = Rec. F1. Prec. Rec. F1. Prec. | Rec. F1.
Sandstone (0) 083 082 083 081 082 0.82 0.75 0.83 0.78
Sandstone/Shale (1) 0.77 058 066 061 030 0.40 0.64 046 0.53
Shale (2) 089 09 093 083 095 0.89 089 094 092
Marl (3) 0.80 067 073 061 0214 0.23 031 030 031
Dolomite (4) 058 011 0.19 0.00 0.00 0.00 041 0.10 0.16
Limestone (5) 083 065 073 045 051 047 0.73 | 059 0.66
Chalk (6) 090 090 090 0.00 0.00 0.00 081 0.76 0.79
Halite (7) 0.99 099 0.99 - - - 099 0.99 0.99
Anhydrite (8) 091 0.88 0.90 1.00 0.04 0.08 0.73 0.65 0.69
Tuff (9) 082 086 084 075 059 0.66 0.64 054 059
Coal (10) 082 057 067 078 059 0.67 081 0.70 0.75
Basement (11) 1.00 0.17 0.28 - - - - - -

Weighted Metric 0.87 0.87 087 077 080 077 082 0.83 0.82

Accuracy Score 0.87 0.80 0.83

Matrix Score -0.352 -0.531 -0.433

Moreover, there is still a visible bias in the prediction obtained by XGBoost towards the
majority classes although XGBoost has built-in functions to decrease the impact class
imbalance has on classifications. Finally, even though XGBoost presented difficulties while
properly differentiating between dolomite, chalk, and limestone, it was still able to classify
with high accuracy sandy and shaly lithologies, which are normally the most relevant for oil
and gas conventional reservoirs. These and more details will be discussed on the model

comparison section of the current study.

4.3.4.3 XGBoost Interpretability

Decision trees-based machine-learning algorithms have been consider black-box models so
far due to the complexity they involve; in consequence, endowing these kind of models with
some interpretability is a major task before and after their execution. By doing this we might
provide some insight into how a model could be improved while at the same time we could
support a profound understanding on the process being modelled. SHAP values assign a
unique additive feature importance for a particular prediction, which serves to understand

how important and impactful a predictor is to a particular outcome obtained by the trained

87

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

model (Lundberg and Lee, 2017). The Shapley Additive exPlanations technique, SHAP,
implemented on python provided the following color-bar chart in which we could explore

the contribution of each feature to the model final prediction Figure 66.

NORMALIZED CONFUSION MATRIX 50 NORMALIZED CONFUSION MATRIX
sandstone JEUEE 300 039 000 273 000 000 B9 575 Sandstone 118 458 000 127 000 000 000 025 000
Sandstone/Shale 184 000 147 000 000 000 536 Sandstone/Shale 575 374 000 011 000 000 000 1219 628
0 0
. 1 oo I ox o R Shate | 610 389 667 107 282 005 206 1940 1256
Marl| 014 443 206 3122 133 1294 812 000 000 000 000
mari| 052 148 149 JCNEN 000 2124 000 000 000 000
] Dolomite | 004 000 021 010 #4133 004 000 000 1514 000 000 w
E Dolomite { 000 004 042 ooo 000 016 ooo 000 000 000 E
=2 o Limestone { 489 209 141 0.00
% Limestone 202 202 146 3373 000 #62 000 000 424 000 E
= w chalk | 204 000 o0 .00 ©
Chalk{ 000 000 000 000 000 1145 000 000 000 000
Halite | 037 011 000 000
000 000 011 000 000 022
Anhydrite annycrite | 018 000 000 0.00
) x
| 037 000 043 000 000 000 x| 048 000 046 000
Goal| 020 040 021 000 000 000 Goal { 015 010 006 000 000 000 000 000 000 000
T T T 7 o M = M M p = °
M M M M ® = = v v T & =
£z 2 § & F 2z E " i Z : F 3 2 3 "3
I I B A SRR
5k s § % & 0§ s 5 2
H g
H] &
H
& & .
Predicted label Predicted label

Figure 65 Extreme Boosting Classifier: Classification confusion matrices normalized by the number of
predictions by class (a) Open test set, (b) Hidden test set.

croup_encoded I
ey |
neri_cove I
v_oc I
rion I
oertH_vo [N
rormaTion_encoded [N

z1oc INNNEEEEE
WELL_encoded _
x toc NN
rveD [N
cau [
orc I
vo_tvo [
or_~ [N
eer [
roer [
ors_coms [l
S . Class &
se [l - Class 3
cluster [l m— Class 0
4 | == Class 9
ar M = Cam 10
orqo Ml . Class 2
oca. il . Class 1
asHa ll . Class 7
sl = s
amic | - Class 11

1 2 3 4 5
mean(|SHAP value|) (average impact on model output magnitude)

Figure 66 Extreme Boosting Classifier: SHAP values for each target lithology class

Figure 66 briefly shows a relative but accurate manner of representing the feature impact on
the XGBoost output, which in comparison to the recursive feature elimination process taken
beforehand rested importance to the shear GM, bulk modulus GM, CALI, and Cluster

88

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

features, while providing even more importance to some of the machine-learning
preprocessed features such as NPHI and RHOB.

In addition, we could attempt to analyze the importance each feature had for the prediction
for each particular lithology class, however, as a matter of simplicity, we will only take some
representative examples of the classes that XGBoost misclassified the most such as the case
of dolomite, shaly-sandstone, and marl. Refer to Appendix K to find SHAP values impact
for all lithology types.

voTvD ==ipfp—riP = —— GROUP_encoded oo @Pren mm—
orR — e i WELL_encoded —f
GROUP_encoded —f- e m————— e RHoB ——
RHOB O+ e GROUP_encoded i Promo— x10c Do
Z10c oo < DEPTH_MD -0
x.10c -t —d— oR e
e PN - NPHI_COME ey
Quster ¥ P - ® -—
cau Yo RMED —firn v.L0€ -
fars E ORMATION_encod o MD_TVD —ecac)-
AP - DTS_coMB - FORMATION_encoded Ee .=
- P Cluster ol s e) 3
ot [H z10c “— H orR - :
FORMATION_encoded 3 H E e Cluster o H
oM foo oo K ROE o cau » 3
e 4 oxio — gic +
RSHA - PHI_COMB - x s
WELL_encoded + 8BS ¢ - DCAL =
- 15 M P z10¢ 4+
- 4 rsta -+ AwED 14
ocaL ¥ w0 -+ wac -
RMED } MoV o RSHA 4
JTp— $-- oca - ors_coms +
e I e — oRio H
ors_cou | a x + b 0P 4 c
DRHO {- miiC [8s t
w v Low : e

5 o0 o5 1o 15 20 25 -5 o =5 0 o5 R 1 ‘ 1 3
SHAP value limpact on model output) SHAP value (impact on model output) SHAP value (impact on model cutput)

Figure 67 Extreme Boosting Classifier: (a) SHAP values impact while predicting dolomite, (b) SHAP values
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting marl.

As shown on Table 30, it seemed that dolomite is the hardest lithology to be predicted in
almost any gradient boosting model including XGBoost, which we presume to be linked to
the low amount of dolomite samples available for training, which accompanied by its
inherent similarity to limestone and chalk could have made XGBoost unable to properly learn
how to classify this lithology type. In addition, Figure 67a showed that the current XGBoost
model only considers a low number of features like MD_TVD ratio, slowness ratio DT_R,
GROUP, and RHOB as the ones that positively contribute to classify a particular instance as
dolomite. In other words, it means that the misclassification might have been caused by the
lack of enough dolomite samples or by the poor relationship between the variables and the

target in such specific case.

Moreover, in the case of shaly-sandstone, which normally may be confused with either
sandstones or shale, we can observe on Figure 67b how the instance Y_LOC impacts more

that the GR reading which in generally speaking helped XGBoost to get better results while

89

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

classifying such lithology class when compared to the results obtained by the other gradient
boosting tree based algorithms. Hoverer, the unclear boundary on the GR to separate
sandstone form shale and shaly-sandstones still plays an important role to properly
distinguish between these lithologies.

Finally, marl prediction relies mainly on metadata features such as GROUP, X LOC,
DEPTH_MD, and minorly on other reading such as RHOB, GR, NPHI, and SP to mention
some (See Figure 67c). Apparently, the possible reasons why XGBoost struggled to classify
marl, which is a mix of clay and calcium carbonate, was that it could easily be confused with
shaly sediments or any type of limestone such as sandy-shale, shale, dolomite, limestone and
chalk. In other words, marl encompasses a wide spectrum of analogous classes that hindered

its proper classification.
4.4 Deep Learning — Neural Network

The methodology to analyze neural network performance on the lithofacies classification
problems relies on three major steps including a one-hidden sequential fully connected base
model, feature selection process, and finally a Bayesian hyper-parameter optimization by

using scikit-optimize library skopt.
4.4.1 One-hidden Layer Base Model

A fully connected sequential model was constructed as a baseline to test how a neural
network performs to classify lithofacies. The NN structure consisted of 1 input layer, 1
hidden layer with 32 neurons, a RELU activation function, and 1 output layer using a softmax
activation function. Besides, an Adam optimizer and a sparse categorical cross-entropy loss
function to save memory and time were included into the base neural network. Finally, a
standard learning rate of 0.01 was used to back propagate and minimize the loss function.
Refer to Section 2 and Figure 13 to see how neural network weight optimization works, or
to Nielsen, (2015) for detailed information about gradient descent and back propagation. The

structure of the neural network is summarized on Figure 68.

90

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Fully connected neural network base model
def design_model({features, 1_rate):
model = Sequential({name="Litho_prediction")
num_features = features.shape[1]
model . add (layers.InputLayer(input_shape={num_features, }}) #Input Layer

model.add (Dense(32, activation='relu'}) #Hidden Layer
model . add(Dense (12, activation='softmax’)) #0utput layer
opt = Adam{learning_rate=1_rate) #Adam Optimizer
model . compile{loss="sparse categorical crossentropy’,
metrics=['accuracy'], optimizer=opt) #sparse categorical crossentropy

return model

Figure 68 Neural Network: Base model structure

The neural network base model contains 1388 trainable parameters between weights and
biases, 992 of which belong to the hidden layer and 396 to the output layer. It is important to
note that the number of trainable parameter in any hidden or output later is equal to the sum
of the number weights plus the number of biases. The number of weights is equal to the
number of neurons times the number of predictors or features contained in the training data,
and the number of biases corresponds to a one dimensional array equal to the number of

neurons present in a particular layer (See Figure 69)

Model: “"Litho_prediction™

Laysr (type) Output Shape Param #
dense_2 (Dense) (Nons, 32) 992
dense_3 (Dense) (None, 12) 396

Total params: 1,383
Trainable params: 1,338
Mon-trainable params: @

Figure 69 Neural Network: Base model number of trainable parameters and output shape in each layer.

In addition, prior to start the training stage a 40-epoch early stopping was created to monitor
the training process while cross validating the training data to open test dataset, then the
model was trained based on the original 30 features obtained after the data processing stage.

The training evolution of the base neural network is shown in Figure 70.

Consequently, the base model performed with accuracies of 76, 73, and 73% on the training,
open test, and hidden test sets, respectively. Moreover, as visible on Figure 70 the base model

showed a highly unstable learning process, and the loss function did not decrease either but

91

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

increase over each iteration. This seemed to be caused by a well-known problem know as
exploding gradient problem, which could be defined as an error in the direction and the
magnitude of the learning step while training a neural network, which consequently derives

in an unstable gradient problem.

Model Accuracy

076 —— Train set

Validation set
074
072
070

0.68

Accuracy

0.66

0.64

0.62

o 10 20 30 40
Epochs

Figure 70 Neural Network: 30-feature-based baseline model training history

As consequence of the gradient descent problem, we decided to try out several approaches in
order to stabilize the gradient descent. The main changes we included into the base model
structure were, a random normal weight initialization, a zeros bias initialization, and a
momentum based stochastic gradient descent optimizer SDG. Figure 71 documents a much
more stable learning history and how the loss gets minimized after each iteration once these

changes were effectuated.

Base model accuracy while implementing SGD Base model loss while implementing SGD

0800 —— Training loss

16 -=-=-- Validation loss
0775

0750
0725

o700

Accuracy

0675

0650

0625 1} -
! —— Training accuracy

-==- Validation accuracy

0.600

40 0 80 0 o 0
Epochs Epochs

Figure 71 Neural Network: Stochastic Gradient Descent-based neural network base model
accuracy history (left) and loss function history (right).

The new stabilized base model based on a stochastic gradient descent SGD provided much

better accuracies compared when an Adam optimizer was used of about 79, 75, and 74% on

92

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

the training, open test, and hidden test sets, respectively, and most relevantly it was able to
make the loss function get minimized. It is important to note that the current base model was
trained using the original 30 features we got after processing the data, so removing possible
noisy predictors was a must before undergoing into hyper-parameters optimization.

4.4.2 Feature Importance Investigation

Our attempt to select the most relevant features for the neural network was based on a ranking
of all the features according to the importance given by the extreme gradient boosting
gradient model considering it provided the best performance up to this point. Then, we
trained the SGD based model several times by adding a set of 5 new features at a time starting
from the most important to the least ones. These models were trained for 25 epoch in order
to select the set of features that outperforms the others while keeping constant all the
parameters included into the neural network structure (See Figure 72). Refer to Figure 62 to

see the order of the features included during the process.

This simple, heuristic, time consuming, and probably not highly accurate methodology,
leaded us opt for a group of 25 features considering that at the end of the 25th epoch the
training and validation accuracies kept growing tendencies and the training and validation

losses reached the lowest points and decreased similarly.

4.4.3 Bayesian Optimization

Normally, best parameters selection in any Machine and Deep Learning model is a time
consuming and sometimes tedious and sometimes an impossible task. Even though there are
some methodologies that might be useful such as Grid Parameter Search, it may be only be
consider applicable while optimizing very few parameters, but in cases where the number of
hyper-parameter is extended this procedures become costly in terms of computational power

and running time.

For instance, imagine we want to optimize 4 hyper-parameters with 10 possible values in
each, this means we will have to run 10 to the power of 4 neural network model, which is a
massive job and in consequence these type of approaches become less suitable when handling
big datasets as in the current case. In the other hand, another common approach is a Random

Parameter Search that is normally used to narrow down the possible ranges for the hyper-

93

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

parameters being optimized; however, if the number of parameters becomes larger, the

probability of getting the right combination of them gets very unlikely to get.

5 features 5 features 10 features 10 features
18
070 8 —— Training loss o750 —— Training loss
.- -- Validation loss 0725 16 ---- Validation loss
> 068 > >
g g B o700
5 066 £l 5 oers
g 4 g
064 . 0650 .
—— Training accuracy —— Training accuracy
i .
062 § ---- Validation accuracy] 062 - Validation accuracy
9 0.600
] 5 1 15 20 % 0 5 10 15 0 -] 0 5 10 15 0 -] 0 5 10 15 0 5
Epochs Epochs Epochs Epochs
15 features 15 features 20 features 20 features
0750 Training loss o750 ~ 16 —— Training loss
0725 -- validation loss 0725 -- Validation loss
z z w
g o700 g o700 "
5 5 012
3 0675 g 0675 k]
< tam 7 i 2 oeso - 10
b —— Training accuracy 10 —— Training accuracy
0625 / ---- Validation accuracy 08 0625 1) -==- Validation accuracy 08
0 5 10 15 0 5 0 5 10 15 k] 5 0 5 10 15 0 -] 0 5 10 15 mn -1
Epochs Epochs Epochs Epochs
25 features 25 features 30 features 30 features
orse 16 —— Training loss 0750 16 —— Training loss
0725 -- Validation loss 0r2s -- Validation loss
14 > 14
& o700 m i 0700 "
c a 2 3
12 12
3 0675 g g 0675 3
. 0650 L
< omsn ; —— Training accuracy 10 —— Training accuracy v
/ . 0625 P
0625 {1 ---- Validation accuracy 08 -- Validation accuracy 08
0.600
0 5 10 15 20 5 0 5 10 15 0 5 0 5 10 15 0 B 0 5 10 15 0 =
Epochs Epochs Epochs Epochs

Figure 72 Neural Network: Feature selection.

Consequently, in the present study we propose a hyper-parameters optimization by using an
open source library called Scikit-Optimize, which provides an implementation of a Bayesian
optimization, where a surrogate model is used to model the search space in order to get an

optimal set of hyper-parameters.
The current section attempts to optimize the following hyper-parameters:

1. Learning Rate

2. Number of hidden layers

3. Number of neuron per hidden layer
4

Activation function

Additionally, prior to commence the optimization function that will minimized the complex
cost function based on weights and biases involve in the current lithology classification task,
each parameter investigation range had to be defined. Table 31 summarizes each parameter’s

range.

94

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Table 31 Neural Network: Hyper-parameter search space used during the Bayesian optimization

Hyper-parameter Low boundary High boundary
Learning Rate le-4 le-1
Number of Hidden Layers 1 5
Number of Neurons 64 512

Activation Function

‘relu’ or ‘sigmoid’

In order to give a general understanding about what the Bayesian optimization attempts to
do, Figure 73 represent the objective function and how skopt intends to find the optimal
minimum. The red dotted line represents the true objective function that is surrounded by
noise represented by the red shade; every red point represents a sample set of hyper-
parameters from the search space and then through a Gaussian process the space between
samples is estimated, represented as the green line. In addition, the green shade represents
the uncertainty on the approximation given by skopt that normally is caused to the lack of

sufficient number of investigated point within that particular range.

x* =-0.3552, f(x*) = -1.0079

1.0 A == bzt

1
0.5 4 ¥~
/
-~
LA e
- ¢ \ :’ '

~ # 1 e
0.0 ~—Semmael e f B e—

fix)
r

1.0

T T T T T T T T T
-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
X

Figure 73 Neural Network: General optimization scheme.

Then, in order to optimized the hyper-parameters through skopt we constructed hyper-
parameter optimization wrapper. It is important to note that the neural network in which the
optimization will be based is the one based on the SGD optimizer, which previously seemed
to be much more stable than the one obtained while implementing an Adam optimizer. In
addition, we introduced a momentum into the optimizer in order to take advantage of the

knowledge accumulated in previous steps to facilitate the neural network converge faster and
much more easily.

Lastly, the Bayesian optimization was executed which aimed to create a loop to evaluate each

set of hyper-parameters until the 4™ epoch while evaluating the training process with the open

95

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

test set to provide a much more generalized trained neural network. The Bayesian
optimization loop was performed for 75 epochs or calls using different set of hyper-
parameters while updating continuously the best performing model accuracy in order
compare it with subsequent trained neural networks on different set of hyper-parameters.
Figure 74 documented the convergence process of the neural network after each iteration,
which for the current stage was stated to be a negative accuracy in order to let skop handle
the problem as a minimization exercise. Considering that the optimization process was
executed for only 75 epoch due to the Google GPUs usage limitation, it is important to
mention that the optimal value reached by the optimization is not necessarily the ultimate
optimal value since there may be a better set of hyper-parameters capable to outperform the
set selected by the optimizer as the number of epochs raises or the evaluated parameter ranges

increase.

Convergence plot

=0.735

—0.740

0,745

-0.750

-0.755

=0.760

minfix) after n calls

—0.785

=0.770

—0.775

0 10 20 30 40 50 (4] T
Number of calls m

Figure 74 Neural Network: Bayesian optimization neural network convergence.

Figure 74 describes the convergence process after each iteration, and as visible, the validation
accuracy could reach values beyond 78%. In addition, as we mention before, the Bayesian
optimization uses a surrogate model to model the expensive to evaluate the objective fiction.
In other words, the surrogate model aims to provide interpretability to a complex model as
the case of neural networks, and it is the surrogate model that is used to determine at which

points the objective function will be evaluated at each iteration.

Additionally, Figure 75 show in the diagonal a histogram for each of the evaluated hyper-
parameters, while the non-diagonal scatter plots show the spatial location of every evaluated
point, where the darker points correspond to the initial evaluated points and the lighter ones

reflect subsequent evaluations that tend to cluster around the optimal parameter marked as

96

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

red. Hence, the histograms’ major frequencies are allocated around the optimal hyper-

parameter, which implies the optimization performed correctly while looking for the minima.

leaming_rate
W W7 W 17

=T 1
umber of samples

=]

b sl nll | mdenss tapers
- 016 74 37 40 48

B o® 8

. _gu'nner of samples

Im_dense nodes
60 240 320 400 480

num
a
-
¥
—
—
f—
B B

]
L]
.
. B0 e 0
MY
EREC
Number of samples

activation
sigmoid

=
8 3 &
A
»
»
b

.
. *
b

.

-
]
12 B

40

30

20

activation

10

@
&
2
b=
[
-
of
.t
§i
o
.
ki
*
.
.
i
[
.
.
.
s
. g

Number of samples

€ [@ ® sese =
i o, = & Jie s ces =
. v > S S PO . O~ Y QP i -}
/ ; ¥ W & P
$ 0§ 0§ A E
num_dense_layers rum_dense_nodes

o

learming_rate

Figure 75 Neural Network: Hyper-parameter evaluation histograms.

Furthermore, Figure 76 shows the partial dependences of the surrogate model for each
evaluated hyper-parameter during the Bayesian optimization; in general, partial dependences
describes the marginal impact of a particular couple hyper-parameter while holding the other
parameters constant. Initially partial dependence plots is a method originally proposed to
measure feature importance in gradient boosting based learning machines and were later
introduced as a method to measure parameter importance while implementing neural

networks.

Moreover, form Figure 76, it is also noticeable that the optimal number of hidden layers
oscillates between 1 to 3, smaller learning rates provide higher accuracies while using a relu
activation function and larger number of hidden layers when using a sigmoid activation
function, the model optimized better while a high number of hidden neurons was used.
Further, it has to be noted that the partial dependence is merely based on the surrogate model
which just provides an approximation of the objective function, and hence it might not be a
good representation of the objective in places where less number of samples were evaluated

an far from the location were the minima was found.

97

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

e rate
10 107 107 10!
0600

-0625 ,,
-0650 §
§
-0675 3
%
-0.700 £

T foms
num_dense_layers
16 24 37 40 48

-0 600
0625 4
-0.650 ﬂg
]
0675 3
-0.700 g
g

-0.725
activation

®lu sigmoid

0.600
ih-osas
—0550‘:

i Ds?sé

activation

il o708
|]

PH-0725

N [S o
P R

> e R
learning rate

‘o,

num_dense _layers num_dense_nodes
Figure 76 Neural Network: Hyper-parameter two-dimensional partial dependence.

Finally, a new neural network was trained based on the hyper-parameters found by the
optimizer after 75 iterations. Table 32 summarizes the optimal hyper-parameters.

Table 32 Neural Network: Optimal hyper-parameters after running the optimization for 75 epochs.

Hyper-parameter Best Value
(After 75 epochs or calls)
Learning Rate 0.1
Number of Hidden Layers 2
Number of Neurons 512
Activation Function sigmoid

Further, since the model was overfitting immediately after the 7*" epoch, we introduced two
dropout regularization layers before each hidden layer, this helped to train the network longer
and reduce the loss function. The optimized model training accuracy and loss evolution is
documented on Figure 77 where the training accuracy increases beyond 80% while the

validation accuracy plateaus slightly above 77%.

In the other hand, the loss function decreased smoothly for the training and validation until
the 30" epoch, then the validation loss started to increase again. This implies that the
optimized neural network is unable to provide test accuracies beyond 77% and from a

certaing point it starts learning patterns only present and applicable to the training data. For

98

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

more details about the Bayesian, optimization refer to Appendix C where the complete

optimization algorithm is described.

OPTIMIZED MODEL ACCURACY OPTIMIZED MODEL LOSS

09

=
® 0
5 2 08
3 9
£ 072 A4 pn
Y 1]
o070 o7
068 | i—
—— Training accuracy 06{ — Training loss
066 -==- Validation accuracy -==- Validation loss
0 10 P 2 20 50 0 =y 0 10 20 » E) 50 0 70
Epochs Epochs

Figure 77 Neural Network: Optimized model accuracy (left) and loss function (right) training history.

A detailed classification report for each dataset is presented on Table 33 where the accuracy
reached by the optimized neural network showed performances of 83, 77, and 77% on the
training, open test, and hidden test datasets, respectively.

Table 33 Neural Network: Classification reports for the training, open test, and hidden test datasets

NEURAL NETWORK CLASSIFICATION REPORT

Training Set Open Set Hidden Set
Class Prec. = Rec. F1. Prec. Rec. F1. Prec. =@ Rec. @ F1.
Sandstone (0) 082 068 074 08 075 080 082 066 0.73
Sandstone/Shale (1) 067 039 040 047 023 031 044 019 0.26
Shale (2) 082 097 089 080 095 087 082 095 0.88
Marl (3) 0.68 @ 049 057 066 0.06 011 030 @ 022 0.26
Dolomite (4) 000 000 0.00 000 0.00 000 000 0.00 0.00
Limestone (5) 076 060 067 044 048 046 055 060 057
Chalk (6) 087 059 070 000 0.00 000 060 050 055
Halite (7) 096 @ 099 @ 0.98 - - - 098 1.00 0.99
Anhydrite (8) 086 080 083 100 0.07 013 097 038 054
Tuff (9) 073 055 062 071 061 066 062 050 055
Coal (10) 085 038 053 088 037 052 08 054 0.66
Basement (11) 0.00 | 0.00 @ 0.00 - - - - - -
Weighted Metric 0.79 081 079 075 077 074 075 0.77 0.75
Accuracy Score 0.81 0.77 0.77
Matrix Score -0.511 -0.594 -0.563

99

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

Finally, for a better understanding of the neural network classification, the confusion matrices

normalized by the total number of predictions per class are presented on Figure 78. The main

observation from it is that the neural network achieved good accuracies on both test sets;

however, its accuracy is dramatically affected while classifying carbonates, same that were

greatly misclassified as the case of chalk, while dolomites were not even predicted at all.

Sandstone

Sandstone/Shale

Shale

Marl

Dolomite

Limestone

True label

Figure 78 Neural Network classifier: Classification confusion matrices normalized by the number of

NORMALIZED CONFUSION MATRIX

19.41 393 377 000 435 o000 000 892
878 | 4662 1153 033 0.00 152 000 000 000
301 546 425 000 1513 000 000 1849
074 325 146 000 2284 526 000 000
003 01s 0.40 033 000 0.00 000 000 000
172 4121 157 2549 000 4390 0.00 1le7
000 000 000 000 000 187 000 000 000
012 000 007 000 000 038
0.05 0.00 047 0.00 0.00 0.00
041 091 027 000 000 0.00
M P = s

w w®] =
5 & & = 5 8
2 bl 5 8
A § = 3

g

H

]

Predicted label

True label

Sandstone

Sandstone/Shale

Shale

Mar

Dalomite

Limestone

Chalk

Halite

Anhydrite

ulr

Coal

NORMALIZED CONFUSION MATRIX

477 000

000 000

= El
- a8

248 256 139 000 1160 000 041 087 132 000
850 (4383 1034 610 000 104 000 000 000 1841 513
262 u.sr“ 000 222 276 020 087 1298 1026
035 166 246 3026 000 1142 749 000 000 026 000
030 000 021 009 000 075 000 011 000 000 000
537 340 162 1382 000 130
024 000 000 000 000
004 000 000 000 000
003 000 002 000 000 5%.97
055 000 048 025 000 003 000 000 000 ﬁ 000
026 015 003 000 000 000 000 000 000 000
¢ 2 2 B & & £ & ¢

s 1 2 s £
g8 & & = §FE g & 2 3
R s ¢ z
& 5 e 5 2

4

2

a

Predicted label

predictions by class (a) Open test set, (b) Hidden test set.

100

5|PERFORMANCE COMPARISION

Chapter 5

5. PERFORMANCE COMPARISION

Once the machine-learning models construction, hyper-parameter optimization, training,
validation, and testing stages have been finished, we are ready to present and compare the
machine-learning modes’ global performances while solving the lithofacies classification
problem. Besides, it is important to consider that each model went into different feature
selection and hyper-parameter optimization techniques; thus, not every model used the same
number or set of features to provide their optimal results.

First, Table 34 summarizes the classification scores all the optimized algorithms obtained on
the hidden test set. From this table we can observe that the tree-based gradient boosting
(GBDT) achieved greater results over neural networks, decision trees-based, and traditional
stand-alone machine learning algorithms. In addition, GBDT do not only offer higher
accuracy, precision, recall, f1-score classification scores, but also lower FORCE penalization
scores. This infers that GBDT algorithms perform more consistently even from a
petrophysicist perspective, which was the purpose the FORCE scoring matrix was built for.

Table 34 Machine-learning models performance comparison: Hidden test set.

Algorithm Acc Prec Rec F1Score M. Score
Extreme Boosting 82.52 81.54 82.52 81.74 -0.43
Categorical Boosting 81.38 80.16 81.38 80.36 -0.45
Light Boosting 80.39 79.01 80.39 79.00 -0.48
Random Forest 79.82 77.29 79.82 77.56 -0.50
Support Vector Machines 79.08 76.86 79.08 77.16 -0.54
K-Nearest Neighbors 78.22 76.31 78.22 76.41 -0.56
Neural Networks 77.41 74.61 77.41 74.99 -0.56
Logistic Regression 75.06 71.44 75.06 72.42 -0.64
Decision Tree 74.59 70.40 74.59 68.54 -0.67

Moreover, whether we analyze in detail the total number of predictions each model produced
per each lithology class, we can easily observe how for the most frequent classes in the
training and hidden test sets such as shale, sandstone, shaly-sandstone, and limestone, every
model achieved a quite balanced number of predictions with exemption of the decision tree

DT, which was produced by the pruning process DT went through. However, if we see closer

101

5|PERFORMANCE COMPARISION

into the number of wrong predictions every model provided, we could better see how tree-
based gradient boosting algorithms misclassify less instances as any of the most frequent

lithologies.

In addition, even though GBDT models perform better and present less bias towards the most
frequent classes than the other models, there is still a visible tendency to misclassify other
lithologies as shale, same that is particularly caused by the massive number of shale instances
present in the training dataset, 61.6%. Besides, apart from sandstone, shale, and limestone,
for which several models presented high classification accuracies, it is when it comes about
shaly-sandstone classification where GBDT models distance themselves from the other
models followed closely by K-Nearest Neighbors and Neural Networks (See Figure 79).

TOTAL PREDICTION COUNT 120000 WRONG PREDICTIONS

= REAL LITHOLOGY i = REAL LITHOLOGY

LOGISTIC REGRESSION - LR LOGISTIC REGRESSION - LR
= SUPPORT VECTOR MACHINES - SVM 100000 mmm SUPFORT VECTOR MACHINES - SVM
mm KNEAREST NEIGHBORS - KNN mmm K-NEAREST NEIGHBORS - KNN
mmm DECISION TREE -DT mmm DECISION TREE -OT
== RANDOM FOREST - RF 0000 mmm RANDOM FOREST - RF
EXTREME GRADIENT BOOSTING - XGB EXTREME GRADIENT BOOSTING - XGB
m LGHT GRADIENT BOOSTING - LGET wmm LIGHT GRADIENT BOOSTING - LGBT
CATEGORICAL GRADIENT BOOSTING - CAT 60000 CATEGORICAL GRADIENT BOOSTING - CAT
e NEURAL NETWORKS - NN mmm NEURAL NETWORKS - NN

COUNTS

40000

20000

ol
Sandstone Sandstone/Shale Limestone Shale Sandstone Sandstone/Shale Limestone

Figure 79 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

Furthermore, while classifying the medium-frequency classes such as halite, marl, chalk, and
tuff, which together represent only 5.7% of the complete training dataset, every model
appeared to perform at high level while classifying halite although only very few halite
instances are represent in the training dataset, 0.7%. Besides, chalk and tuff appeared to be
under or over misclassified moderately by most of the models; however, GBDT models and
Neural Network appeared to be able to capture and classify these lithologies in much more
accurate manner although chalk and tuff may have been underrepresented on the training
dataset, 0.9% and 1.3%, respectively. In the other hand, marl appeared to be highly
misclassified as shale or limestone by all the models, which in not surprising considering that
marl is a sedimentary rock composed mainly of clay and lime, which makes it hard to
properly define a proper boundary between these three classes (See Figure 80).

102

5|PERFORMANCE COMPARISION

TOTAL PREDICTION COUNT 5000 WRONG PREDICTIONS
= REAL LITHOLOGY m— REAL LITHOLOGY
7000 mm LOGISTIC REGRESSION - LR 70000 mmm LOGISTIC REGRESSION - LR
mmm SUPPORT VECTOR MACHINES - SVM = SUPPORT VECTOR MACHINES - SVM
W K-NEAREST NEIGHBORS - KNN mmm K-NEAREST NEIGHBORS - KNN

= DECISION TREE -DT £0000 = DECISION TREE -DT
W RANDOM FOREST - RF m—RANDOM FOREST - RF

L e B oalNe =
Halite Marl Chalk Tuff Halite Marl Chalk Tuff

mmm EXTREME GRADIENT BOOSTING - XGB 50000 mmm EXTREME GRADIENT BOOSTING - XGB
= LIGHT GRADIENT BOOSTING - LGBT s LIGHT GRADIENT BOOSTING - LGET

CATEGORICAL GRADIENT BOOSTING - CAT 40000 CATEGORICAL GRADIENT BOOSTING - CAT
mmm NEURAL NETWORKS - NN mmm NEURAL NETWORKS - NN

COUNTS
&
g
COUNTS

30000

20000

Figure 80 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for halite, marl, chalk, and tuff.

Likewise, the models provided great discrepancies while classifying the least frequent
classes, which together represent only 0.5% of the training set. As visible, anhydrite is
moderately well classified by RF, CAT, and XGB models, while the other models were not
able to classify it correctly in more than 50% of the cases. Although coal represents only
0.3% of the training set, this number of instances was enough to provide GBDT algorithms
with the information needed to classify it correctly in about 80% of the cases. In contrast,
dolomite was the lithology class every model struggle with the most, which from our
perspective is directly linked and caused by the number of instances used for training and the
similarity in wireline response that dolomite has when compared to other classes such as

limestone, chalk and marl, which hinders its proper classification (See Figure 81).

TOTAL PREDICTION COUNT 0 WRONG PREDICTIONS

mm REAL LITHOLOGY Em REAL LITHOLOGY
£oo m LOGISTIC REGRESSION - LR m= LOGISTIC REGRESSION - LR

= SUPPORT VECTOR MACHINES - SVM Lol mmm SUPPORT VECTOR MACHINES - SVM
00 mmm K-NEAREST NEIGHBORS - KNN W K-NEAREST NEIGHBORS - KNN

== DECISION TREE -DT 500 === DECISION TREE -DT

mmm RANDOM FOREST - RF = RANDOM FOREST - RF
00 === EXTREME GRADIENT BOOSTING - XGB m=m EXTREME GRADIENT BOOSTING - XGB

W LIGHT GRADIENT BOOSTING - LGBT 400 m LIGHT GRADIENT BOOSTING - LGBT

CATEGORICAL GRADIENT BOOSTING - CAT
W NEURAL NETWORKS - NN

CATEGORICAL GRADIENT BOOSTING - CAT
W NEURAL NETWORKS - NN

COUNTS
COUNTS

300

200

Anhydrite Coal Dolomite Anhydrite Coal Dolomite

Figure 81 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for anhydrite, coal, and dolomite.

Complementary, Table 35 summarizes the classification scores obtained by the optimized
model on the open test set, same that clearly shows similar results to the ones achieved on
the hidden test set (See Table 34). However, it is important to note that there are slight
differences between the performances each model obtained on the open and hidden test sets
caused mainly by the variability on the lithology distributions each test set holds. For

103

5|PERFORMANCE COMPARISION

instance, the hidden set has many more halite data point than the open test set, and
considering that most of the models perform similarly at high level while classifying this
particular lithology, the prediction on the hidden set obtains much more improvement from
this particular class on the global accuracy score. Something similar happens if we refer to
the higher number of shaly-sandstone instances the open test set holds in comparison to the
hidden test set, which considering the difficulties every model faces while predict this mixed-
based lithology, the global open test set accuracy gets much more affected by this distribution
dissimilarity.

Table 35 Machine-learning models performance comparison: Open test set.

Algorithm Acc Prec Rec F1Score M. Score
Categorical Boosting 80.02 78.19 79.91 77.22 -0.52
Extreme Boosting 80.00 77.31 79.61 77.06 -0.53
Light Boosting 79.36 76.81 79.36 76.98 -0.53
Random Forest 77.71 74.84 77.71 75.05 -0.58
K-Nearest Neighbors 77.53 74.19 77.53 74.44 -0.59
Neural Networks 77.34 74.58 77.34 74.32 -0.59
Support Vector Machines 76.10 73.41 76.10 73.79 -0.62
Decision Tree 74.55 69.67 74.55 67.14 -0.69
Logistic Regression 71.54 67.77 71.54 69.11 -0.75

Finally, following the same logic we used to analyze the results obtained on the hidden test
set, the open test set results show similar nature in regard of the classification bias towards
the majority classes in particularly to shale; besides, the classification becomes problematic
when it comes to shaly-sandstone and marl, and deficient for dolomite. Refer to Appendix G
to see the open test set classification histograms.

Secondly, in regards of the implemented machine learning imputation procedure we included
as an attempt to improve the classification performance, Table 36 summarized the impact the
imputation had on the XGB model’s classification performance when compared to the results
achieved without implementing such methodology. Additionally, it allows us to observe that
the improvement we initially achieved on a logistic regression model (See Table 12) by
implementing the proposed imputation technique remains similarly while implementing
much more robust algorithms like GBDT models as in the case of XGB. However, it is

necessary to mention that although the presented imputation technique provided clear

104

5|PERFORMANCE COMPARISION

classification enhancements, it did not provide much larger improvements while using

complex algorithms as we expected initially.

Table 36 Feature augmentation and engineering impact on the best performing model - XGB.

Accuracy
XGB MODEL Features Training Test Hidden
% % %
Base Model Median Imputed (27) 83.0 78.0 76.0
Median Imputed +
Tuned Model 2 Additional Features (30) 89.7 79.4 80.1
Tuned Model 4~ /Augmented Features + 870 800 82.5

Additional Features (28)

Moreover, different random imputation orders were initially tested to overcome the data
sparsity effect on the lithology classification, all of which provided higher error
measurements on the test sets when the four investigated wireline logs, DTC, DTS, NPHI,
and RHOB were predicted and evaluated. In consequence, the ascending priority ranking
approach we designed and proposed, based on our petrophysical experience about which
specific wireline logs play the most important role for lithology interpretation purposes and
the dataset completeness available for training, provided lower root mean squared errors and
thus better results than any other random imputation order we tested. However, considering
that, each model supports its performance on different sets of features, a much more
consistent and robust approach could be to impute the wireline logs in a consistent order
according to the treated model, data completeness, and prioritizing based on the feature

importance provided by the model itself and petrophysical experience.

Third, along with the promising and relative high results some machine-learning algorithms
offer to solve the lithofacies classification problem, most of the models exhibited great
difficulties to properly classify carbonates in particular marl, dolomite, and limestone as well
as shaly-sandstone. However, the question that arises is until what extent these
misclassifications could be consider acceptable from a geological perspective or if these
misclassifications are actually mistaken. In consequence, now we present a closer view into
some particular examples where this questioning provides interesting observations and
answers. In consequence, in order to try to give an answer to that question it is necessary to

put ourselves in perspective about which were the wells that the models struggle the most to

105

5|PERFORMANCE COMPARISION

predict accurately. Table 37 presents a performance report per each well present on both the
open and hidden test sets, from which we will initially concentrate most of our discussion on
the particular wells that presented most of the difficulties to be accurately classified by the
best performing model XGB.

Table 37 Extreme gradient boosting model’s performance on each well present on
the open test and hidden test sets — low performance wells highlighted.

OPEN TEST SET

Well Interpreter Cluster Acc Rec Prec F1Score M. Score
34/3-3 A EXP3 2 094 094 092 0.93 -0.16
25/5-3 EXP1 0 0.88 0.88 0.86 0.86 -0.32
29/3-1 EXP1 2 085 085 0.84 0.84 -0.40
34/10-16 R EXP1 2 085 0.85 0.83 0.83 -0.38
25/10-10 EXP1 0 0.83 0.83 0.82 0.81 -0.54
35/6-2 S EXP2 1 0.74 0.74 0.69 0.70 -0.69
34/6-1S EXP3 2 072 0.72 0.74 0.72 -0.67
25/11-24 EXP1 0 0.70 0.70 0.70 0.60 -0.99
35/9-8 EXP2 1 0.66 0.66 0.63 0.63 -0.85
15/9-14 EXP1 0 0.57 057 0.55 0.46 -1.02

HIDDEN TEST SET

Well Interpreter Cluster Acc Rec Prec F1Score M. Score
34/3-2S 1G2 2 090 0.90 0.85 0.87 -0.27
31/2-10 EXP1 1 0.89 0.89 0.90 0.89 -0.31
35/11-5 EXP2 1 0.86 0.86 0.84 0.84 -0.34
31/2-21'S 1G2 1 0.83 0.83 0.82 0.83 -0.41
16/7-6 EXP3 0 0.83 0.83 0.76 0.79 -0.40
35/9-7 EXP2 1 082 082 0.77 0.79 -0.48
15/9-23 EXP3 0 082 082 081 0.77 -0.42
16/2-7 EXP1 0 0.81 0.81 0.80 0.80 -0.50
25/10-9 EXP1 0 079 0.79 0.75 0.76 -0.56
17/4-1 EXP1 0 061 061 0.71 0.63 -0.90

Based on the report presented above, we can easily observe that XGB struggled more to
properly predict lithologies on the open set wells, reason why we achieved a slightly higher
performance on the hidden set. Further, along with some mistakes most of the models have
to classify carbonates and shaly-sandstones, there are also some ambiguities involved on the
provided interpretation that must be noted in order to have a fair comparison between the
performances achieved by machine learning and a human interpreter. For instance, the
predictions that the top five best performing machine-learning models obtained on well 16/2-

7 that belongs to the open test set showed a general agreement on the main predicted lithology

106

5|PERFORMANCE COMPARISION

trends (Figure 82); however, there are some particular intervals where there is a conflict
between the predicted lithologies and the interpretation given by the data provider. One of
these intervals goes from 1500 to 1950 meters (interval 1), where most of the models seem
to have misclassified marl as limestone or shale. However, if we consider the inherent nature
of marl, which is a mixed rock composed of clay and lime, we could say that making these
misclassifications is totally permissible not only for a machine learning model but even for

an experienced petrophysicist.

BS

co

AN

HAL

CH

LiM

1800

DoL

1600
4[—

800
1000
1200 I
1 400
'1

g
2000 F
&
2 [200 g i
5 n
(0]
l —
- 9 9 n
2400 t l A
T L y ;i + . y T ' ' :
100 200 50 100 150 00 05 2 30 5 200 400 10 15 -05 00 0505 00 OS5S 00 04805 00 0505 00 0505 00 04 5
GR DTC NPHI RHOB RDEP oTs cal LITHO M RF XGB LGBM AT

Figure 82 Prediction analysis well 16/2-7

Additionally, there is another conflictive, less extensive, but much more interesting interval
in the same well, 16/2-7, which goes from 2285 to 2315 meters (interval 2), showed that even
though the interpreter characterized it as a limestone interval, none of the top performing
models was able to classify that interval as limestone but as sandstone. However, when core
images were studied, they revealed that the section actually consists of conglomerate and
breccia (See Figure 83), same that although are strongly correlated to sandstone, they are

107

5|PERFORMANCE COMPARISION

technically different from each other due to the grains size they compromise (NPD, 2021).
Thus, it implies that the machine learning models classified this interval more accurately,
which is something that has to be considered as advantage that machine learning provides

against an standard human interpretation.

Figure 83 Well 16/2-7, core taken within interval from 2285 to 2315 meters.

In addition, there is a second interesting observation that comes from well 15/9-14 belonging
to the open test set, in which most of the models provided high quality prediction with regards
of sandstone and limestone lithotypes; however, there is a visible bias to over classify shale
as we discussed beforehand. Initially, it appeared that the shaly-sandstone lithology
identification was highly affected by the lack of the shear sonic log, which we attempted to
overcome by implementing machine learning for missing values imputation. However, once
we studied the feature importance that the GBDT models provided for that specific lithotype,
we observed that DTS just appeared as the 11" position of the features that contribute the
most to its proper identification (Figure 67b). In consequence, the poor ability every model
has to accurately map shaly-sandstone seemed to be linked to the way how the data was

normalized before training the classifiers, specially the GR log.

In other words, if we have a look to the way the gamma ray log responds according to the
well location (See Figure 85), we can presume that when we standardize the data as a unique
dataset, we are likely to lose sensitivity to distinguish between shaly-sandstones, and shale
since during interpretation the base line for the last is normally defined according to the
subjectivity of the interpreter, which in turns depends on the well’s geological location.
Therefore, based on Table 37, where most of the problematic wells belong to location cluster
zero which in turns are linked mostly to wrong shaly-sandstone predictions, we could say

that there is a great effect on the models’ ability to map such lithology due to the interpreter’s

108

5|PERFORMANCE COMPARISION

subjectivity, which is generally introduced while defining the shale baseline during well log

interpretation.

BS

co

1000

8 N N B |
L
1500
o
E
x
5]
2000 SR tE 2 2 @ 0 0= F E _____FE
z
S
————1—01 | B
TR) e S Sy s SR
2500
il P N DN S — — —
F I £
2000 {3
3500 g R — 2 2 ap ag | ap

] 2508 16015‘0 02050 152025 Ell F=3 —005060005]b 20 =050 505 00 0&05 00 0=05 00 0505 OIU 0E05 00 0505 00 0505 00 0805 00 0=0500 05

SH

55

55

GR DTC NPHI RHOB RDEP DTS cau LTHD LR SVM KNN oT RF XGB LGEM CAT NN

Figure 84 Prediction analysis well 15/9-14

GAMMA RAY LOG BY LOCATION WELL-LOCATION CLUSTERS
1000 & .
. °
[J o0 2e0°
L] I o
800 o gx
o L3 % °
. - ° L] ° L]
-y
.
600 ;.- "- - y
.I. g E 60
3 '. f- - E . e
o
-ﬁi X o %o g0
L] f.
El ‘e
200 © . o
. de .
s ‘.- O
°
[]

= . - 1 3
Cluster Longitude

Figure 85 Gamma ray log response according to well location

Moreover, some other observations are visible on Figure 89 from which we could note that
most of the models tend to misclassify chalk as either limestone or marl, which as stated
above could be considered permissible mistakes. However, although GBDT models tend to

confuse limestone with marl and dolomite similarly as the other models, they offer a much

109

5|PERFORMANCE COMPARISION

more robust ability to classify carbonates when they are surrounded by different types of
lithologies. Refer to Appendix F to visualize the classification results on the open and hidden

datasets.

In fact, GBDT algorithms are able to provide a detail-oriented performance due to their
capability to map sandstone, tuff, anhydrite, coal, and most importantly carbonate thin beds,
last of which may be of particular importance in unconventional reservoirs considering that
those laminations play a crucial role on hydro-fracturing acting as limitations for fracture

propagation and consequently reservoir productivity.

On the other hand, tempted by the idea that interpreters’ subjectivity could also affect in great
degree the performance of learning machines, a sensitivity analysis was executed by

implementing the best performing and fastest model XGB when different sets of data coming

from different interpreters were used for training and testing purposes.

1 l 1 !

=3 s 16 1e6 16

8s

o

T

AN

cH

UM

poL

MR

SH

ss

05 00 0505 00 0505 0.0 040500 085 00 0205 00 0505 00 040500 0%5 no 0505 00 0505 00 080500 05 no DE0.5 00 0505 00 04500 0ps 00 0505 00 0505 00 041500 05
XG6 LGAM car UTHO xGB Losm cr uTHO LGaM AT utHo LGaM cAT UtHO xs8 LGaM AT LITHO

Figure 86 Prediction analysis wells 34/10-16R (a), 35/6-25S (b), 35/9-8 (c), 17/4-1 (d), and 31/2-215 (e).
The information regarding interpreters was provided by Peter Bormann, the FORCE
competition organizer, and Table 38 records how XGB performs whether we vary the
datasets we used. Additionally, it is necessary to bring into the discussion the fact that the
FORCE datasets were provided by two different sources, 83 wells from Explocowd and 15

110

5|PERFORMANCE COMPARISION

from IG2; besides, Explocrowd’s data was interpreted by three different groups of
interpreters which for practical purposes we will call EXP1, EXP2, and EXP3 from now on.
Table 38 Interpreter subjectivity analysis. An XGB classifier was trained several times by keeping a particular

set of wells from a specific interpreter and then tested on the wells provided by other interpreters on the
open and hidden test datasets.

Accuracy % obtained by XGB on wells provided by different interpreters
Open test set Hidden test set

Training
dataset

EXP1
(6 wells)

EXP2
(2 wells)

EXP3
(2 wells)

1G2
(0 wells)

EXP1
(4 wells)

EXP2
(2 wells)

EXP3
(2 wells)

1G2
(2 wells)

EXP1
(49 wells)
88.0

78.0

29.0

89.0

78.0

68.0

75.0

88.0

EXP2
(23 wells)

60.0

70

85.0

51.0

77.0

69.0

78.0

91.0
EXP3
(11 wells)
89.0
1G2
(11 wells)
97.0

54.0 37.0 73.0 - 49.0 58.0 74.0 69.0

60.0 32.0 82.0 - 42.0 65.0 70.0 81.0

High (accuracy >80) Medium (60<accuracy<80) Low (accuracy<60)

| I | |

The first group of interpreters from Explocrowd provided 49 wells, the second one 23 wells,

and the third one 11 wells. The idea of the sensitivity analysis consisted on training XGB on
a set of wells belonging to a particular interpreter and then testing the classifier’s performance
on the other interpreter’s wells from the open and hidden test datasets, so we could quantify
the interpreter’s subjectivity influence on the performance and the possible dissimilarities

between interpretations.

The extreme gradient boosting model was trained for 100 epochs without including any
regularization technique, meaning that most likely it overfitted the training data in every case,
however, by comparing how much the training and test accuracies differ from each other is
in general the only way how we could understand any possible inconsistency between

interpretations given massive size of the datasets.

Table 38 summarizes the results we obtained, from which we can visualize that when the
model is trained based on the wells interpreted by either EXP1 or EXP2, the model was able

to provide medium-high accuracies on the wells provided by other interpreters, meaning that

111

5|PERFORMANCE COMPARISION

there is a good consistency between the them and the others’ interpretations. However,
XGB’s performance presents an important and visible drop on the accuracies when only the
wells interpreted by EXP3 are used during training, providing only medium to high results
when they are tested on the test wells provided by the same interpreter. This suggests that
excluding the wells interpreted by EXP3 from the training set may improve the global

classification performance.

In addition, if we look Table 38 in the vertical direction we can also observe how the classifier
in some cases was unable to perform at high level when it was tested on the wells interpreted
by EXP2 and EXP1 regardless of the data used for training the model. However, it does not
mean that all the wells provided by EXP2 or EXP1 went into difficulties to be precisely
classified, but it does mean that when the wells contain an important amount of mixed
sediments, especially shaly-sandstone, the model finds great difficulties to do a proper work
as in the case for wells 34/6-1 S, 25/11-24, and 15/9-14. Therefore, this analysis reinforces our
first conjecture regarding the role the interpreters’ subjectivity plays into the classifier

performance in special when it comes to properly classify shaly-sandstones.

112

6| CONCLUSIONS, AND FUTURE ENHACEMENTS

Chapter 6

6. CONCLUSIONS, AND FUTURE ENHACEMENTS

6.1 Conclusions

In the current study, the performances of stand-alone standard classifiers, random
forest (RF), generalized boosting machines (GBM), and neural networks (NN) were
compared for the lithofacies classification problem by using the FORCE competition
dataset. Generally, the highest performances were given by decision trees-based
generalized boosting machines, which accomplished to outperform standalone
classifiers, standard ensemble models, and even much more complex structures such
as neural networks. GMB produced better performances mainly while classifying the
minority and mineral-mixed lithofacies, meaning that they are able to provide a much
more detail-driven lithology classification.

Generalized boosting machines (GBM) proved to be highly robust, powerful,
efficient, and overall scalable machine learning algorithms perfectly suitable to deal
with large, imbalance, and sparse datasets. In addition, their compatibility with either
CPUs or GPUs as opposed to the other studied algorithms makes it possible
optimizing the model hyper-parameters manually in a matter of minutes. Hence,
GBM are almost a perfect blend of software and hardware capabilities designed to

enhance the pre-existing boosting techniques in terms of training time and efficacy.

By comparing the performances achieved by the base line models and the optimized
ones, we could categorically conclude that the efficiency of any leaning machine is
able to provide depends importantly upon a proper and efficient feature and hyper-
parameter selection along with other important processing steps such outlier
identification, data standardization, feature augmentation, and feature engineering. In

addition, including an extensive cross validation technique while training the learning

113

6| CONCLUSIONS, AND FUTURE ENHACEMENTS

machines provided the best results as the model avoids overfitting the training data

and thus improves generalization.

= The implemented machine learning-based feature augmentation on the DTS, NPHI,
RHOB, and DTC logs along with the addition of new features proved to provide a
small but still important enhancement on the classification, most remarkably on the
hidden test dataset rather than in the open test dataset, difference that is originated
mainly due to the dissimilarity on lithologies distributions each test dataset holds. In
addition, in regards of the feature augmentation process, there is a genuine need to
study the proposed approach in a much more detailed manner in order to measure the
uncertainty that might be introduced into the datasets by implementing machine-
learning-based imputation techniques in highly sparse datasets, especially when

dealing with big and continuous missing value gaps.

= After testing several approaches to properly clean and process the datasets, improve
the quality of the data by machine learning implementation, define, optimize, train,
and test several an diverse machine leaning algorithms, and post-process the
predictions by using the predicted class probabilities without having further
improvements beyond the boundary of 82.5% of accuracy, we could conclude that
the missed accuracy in about 17.5% derives from the uncertain nature of the datasets
themselves. This uncertainty seems principally to come from the subjectivity that
petrophysicists include when interpreting wireline logs, which in turns depends upon
the geological location that is being studied and the expertise of the interpreter.
Therefore, having a large but more importantly consistent dataset are the two most
relevant factors that could guarantee to obtain the best possible outcome while

implementing machine learning to classify lithofacies.

= In general, all the models faced more difficulties to accurately classify shaly-
sandstone, marl, and dolomite. The first two seemed to be linked to the interpretation
subjectivity as they are normally misclassifies as shale, which is not surprising given

their mineralogical composition, while the third one seems to be linked to the low

114

6| CONCLUSIONS, AND FUTURE ENHACEMENTS

number of data instances available for training. In fact, even though the top
performing generalized boosting machine algorithm, XGB, provided the highest
accuracy on unseen objects, individually speaking there were wells in which XGB
performed at higher level of precision when compared to the global accuracy of
82.5%, reaching values up to 94%. However, there were also wells that seemed to be
complicated for XGB to be properly classified reaching individual accuracies up to
57%, which in turns worsened the global accuracy that could have been achieved.
Consequently, considering the poor accuracy in some particular wells seems to be
linked mainly to shale and shaly-sandstone differentiation, further analysis is required

in order to better understand and overcome such challenge.
6.2 Future enhancements

As extensively discussed in the current study, there is a great need to find a better way to
separate shaly-sandstone and carbonates adjacent lithofacies. One initial way to overcome
the current challenge could be by normalizing the datasets based on their geological location,
especially the GR log, so that we preserve every interpreter’s subjectivity without being
affected by the others’ interpretations during data normalization. Besides, the same logic
could be followed once some other additional features are created such as volume of clay or
shale index logs. Second, a stacking or voting machine learning model could be constructed
base the other model’s predictions in order to have an agreement between each other and thus
incorporate the predictions at which the other model may be better at. Third, incorporate
inherent geological spatial continuity by developing either variograms, correlograms, or
coefficient of variations of the most relevant wireline logs so that we can quantify
heterogeneity and connect the prediction along the y-axis, aiming in this way to correct wrong
isolated interpretations. Fourth, quality check the petrophysical interpretations hold by the
datasets especially in wells with the lowest accuracies so we can base future analysis in a
much more consistent set of data. Finally, trying novel techniques in machine-learning
specially designed to identify anomalies within the data such as wavelet transformation,
which normally intends to capture data variations at different scales by extracting both
spectral and temporal information from wireline logs may help capture the major lithology

trend in the subsurface but also the minor details within it.

115

7| REFERENCES

7. REFERENCES

Akatsuka, K., 2000, 3D Geological Modeling of a Carbonate Reservoir, Utilizing Open-Hole Log
Response - Porosity & Permeability - Lithofacies Relationship: OnePetro,

doi:10.2118/87239-MS.

Al-Anazi, A., and I. D. Gates, 2010, A support vector machine algorithm to classify lithofacies and
model permeability in heterogeneous reservoirs: Engineering Geology, v. 114, no. 3, p. 267—

277, doi:10.1016/j.enggeo.2010.05.005.

Anifowose, F. A, J. Labadin, and A. Abdulraheem, 2017, Ensemble machine learning: An untapped
modeling paradigm for petroleum reservoir characterization: Journal of Petroleum Science

and Engineering, v. 151, p. 480-487, doi:10.1016/j.petrol.2017.01.024.

Arabameri, A., W. Chen, M. Loche, X. Zhao, Y. Li, L. Lombardo, A. Cerda, B. Pradhan, and D. T. Bui,
2020, Comparison of machine learning models for gully erosion susceptibility mapping:

Geoscience Frontiers, v. 11, no. 5, p. 1609-1620, doi:10.1016/j.gsf.2019.11.009.

Awad, M., and R. Khanna, 2015, Efficient Learning Machines: Theories, Concepts, and Applications

for Engineers and System Designers: Apress, Berkeley, CA, XIX, 268 p.

Bonaccorso, G., 2020, Mastering Machine Learning Algorithms: Expert Techniques for Implementing
Popular Machine Learning Algorithms, Fine-Tuning Your Models, and Understanding How

They Work.: Packt Publishing Ltd, 576 p.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen, 1984, Classification and Regression Trees:

Taylor & Francis, 372 p.

Chen, T., and C. Guestrin, 2016, XGBoost: A Scalable Tree Boosting System, in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: MIT
Press, p. 785—-794, doi:10.1145/2939672.2939785.

Criminisi, A., J. Shotton, and E. Konukoglu, 2011, Decision forests for classification, regression,
density estimation, manifold learning and semi-supervised learning: Microsoft Research

Cambridge, Tech. Rep. MSRTR-2011-114, v. 5, no. 6, p. 12, doi:10.1561/0600000035.

116

7| REFERENCES

Defazio, A., F. Bach, and S. Lacoste-Julien, 2014, SAGA: A Fast Incremental Gradient Method with
Support for Non-Strongly Convex Composite Objectives: Proceedings of the 27th

International Conference on Neural Information Processing Systems, v. 1, p. 1646—1654.

Dubois, M. K., G. C. Bohling, and S. Chakrabarti, 2007, Comparison of four approaches to a rock
facies classification problem: Computers & Geosciences, v. 33, no. 5, p. 599-617,

doi:10.1016/j.cageo0.2006.08.011.

Ghori, K. M., R. A. Abbasi, M. Awais, M. Imran, A. Ullah, and L. Szathmary, 2019, Performance
Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection:

IEEE Access, v. 8, p. 16033-16048, doi:10.1109/ACCESS.2019.2962510.

Gong, Z., Z. Wang, M. J. F. Stive, C. Zhang, and A. Chu, 2012, Process-Based Morphodynamic
Modeling of a Schematized Mudflat Dominated by a Long-Shore Tidal Current at the Central
Jiangsu Coast, China: Journal of Coastal Research, v. 28, no. 6, p. 1381-1392,
doi:10.2112/JCOASTRES-D-12-00001.1.

Hall, B., 2016, Facies classification using machine learning: The Leading Edge, v. 35, no. 10, p. 906—
909, d0i:10.1190/tle35100906.1.

Huang, L., X. Dong, and T. E. Clee, 2017, A scalable deep learning platform for identifying geologic
features from seismic attributes: The Leading Edge, v. 36, no. 3, p. 249-256,
doi:10.1190/tle36030249.1.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, 2017, LightGBM: A Highly
Efficient Gradient Boosting Decision Tree: Proceedings of the 31st International Conference

on Neural Information Processing Systems, v. 30, p. 3146—3154.

Li, Y., and R. Anderson-Sprecher, 2006, Facies identification from well logs: A comparison of
discriminant analysis and naive Bayes classifier: Journal of Petroleum Science and

Engineering, v. 53, no. 3, p. 149-157, doi:10.1016/j.petrol.2006.06.001.

Lundberg, S., and S.-I. Lee, 2017, A Unified Approach to Interpreting Model Predictions: Proceedings
of the 31st International Conference on Neural Information Processing Systems, p. 4768—

4777.

117

7| REFERENCES

Mahmoud, A. A,, S. Elkatatny, and A. Al-Abdullabbar, 2021, Application of machine learning models
for real-time prediction of the formation lithology and tops from the drilling parameters:
Journal of Petroleum Science and Engineering, v. 203, p. 108574,

doi:10.1016/j.petrol.2021.108574.

Nielsen, M. A., 2015, Neural networks and deep learning: Determination press San Francisco, CA.

NPD, 2015, CO2 atlas for the Norwegian Continental Shelf: </en/facts/publications/co2-atlases/co2-

atlas-for-the-norwegian-continental-shelf/> (accessed June 10, 2021).

NPD, 2021, FORCE 2020 Lithology Machine Learning Competition Results:
<https://www.npd.no/en/force/Previous-events/results-of-the-FORCE-2020-lithology-

competition/> (accessed June 27, 2021).

Pedregosa, F. et al., 2011, Scikit-learn: Machine Learning in Python: Journal of Machine Learning

Research, v. 12, no. 85, p. 2825-2830.

Prokhorenkova, L., G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, 2019, CatBoost: unbiased

boosting with categorical features: arXiv preprint arXiv:1706.09516.

Rokach, L., and O. Z. Maimod, 2014, Data Mining With Decision Trees: Theory and Applications:
World Scientific Publishing Co., 328 p.

Sebtosheikh, M. A., R. Motafakkerfard, M. A. Riahi, S. Moradi, and N. Sabety, 2015, Support vector
machine method, a new technique for lithology prediction in an Iranian heterogeneous
carbonate reservoir using petrophysical well logs: Carbonates and Evaporites, v. 30, no. 1,

p. 59-68, doi:10.1007/513146-014-0199-0.

Sharma, S., 2019, How to Classify Non-linear Data to Linear Data? <https://medium.com/analytics-
vidhya/how-to-classify-non-linear-data-to-linear-data-bb2df1a6b781> (accessed June 27,
2021).

Wang, G., and T. R. Carr, 2012a, Marcellus Shale Lithofacies Prediction by Multiclass Neural Network
Classification in the Appalachian Basin: Mathematical geosciences, v. 44, no. 8, p. 975-1004,
doi:10.1007/s11004-012-9421-6.

118

7| REFERENCES

Wang, G., and T. R. Carr, 2012b, Methodology of Organic-Rich Shale Lithofacies Identification and
Prediction: A Case Study from Marcellus Shale in the Appalachian Basin: Computers &

Geosciences, v. 49, p. 151-163, doi:10.1016/j.cageo.2012.07.011.

Zhang, Y., H. A. Salisch, and J. G. McPherson, 1999, Application of neural networks to identify
lithofacies from well logs: Exploration Geophysics, v. 30, no. 2, p. 45-49,
doi:10.1071/eg999045.

Zuo, R., 2017, Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of
Potential Methods: Natural resources research (New York, N.Y.), v. 26, no. 4, p. 457-464,
doi:10.1007/s11053-017-9345-4.

119

8| APPENDIXES

8. APPENDIXES

Every python appendix included or mentioned in the current section could also be found
open sourced in digital format on the following GitHub repository:

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-
Geosciences

120

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences

8| APPENDIXES

8.1 Appendix A — Additional utility functions Python Code

8.1.1 Plotting Functionalities (plotting.py)

1

""" pg plotting funciions

This script holds different functions such as raw_plot, asugmented_leogs, and litho_predictions,
which plot wireline raw logs, augmented logs, and lithology predictions, respecively.

They can be imported as & modules when needed.

They reguire some functionalities from libraries such as pandas, numpy, metplotlib,

and mpl_toolkits.

#PLOTTING RAW LOGS

def raw_logs(logs, well_num)
“*"plots the raw logs contained in the original datasets after they have besn formated.

Parameters
logs: dataframe

The raw logs once the headers and necessary columns have been formatad and fixed.
well num: int

The number of the well to be plotited. raw_logs internally defines a list of weslls

contained by the detaset, =ach of them could be called by its list index.

Returns
plot:
Different tracks hawing one well log each and & final track containing the

lithofacies interpretation.

import numpy &s np
import matplotlisb. pyplot as plt
import matplotlib. colors &5 colors

from mpl_toolkits.awes_gridl import make_axes_locatable

facies_colors = ['#F4DB3F','#7cccl9’, '#196F30", '#168559 ", '#2756c4 ", '#3891F0 ", "#80d4ff ", '#8703% ", '#acdBfc', s
faciles lsbels = ['55', '5-5', 'SH', "MR', 'DOL",'LIM', 'CH','HAL", '&N', 'TF", 'CO', 'B5']

facies_color_map = {} # creating facies color map
for ind, label in enumerate(facies_labels):

facies_color_mep[label] = facies_colors[ind]

wells = logs['WELL'].unique(} # cresting 5 wells list
logs = logs[logs['MWELL'] == wells[well_num]] # selecting well by index number
logs = logs.sort_wvalues(by='DEPTH_MD") # sorting well log by depth

cmap_facies = colors.listedColormep(facies_colors[@8:len{facies_colors)], 'indexed"’)

121

8| APPENDIXES

top = logs.DEFTH_MO.min()
bot = logs.DEPTH_MD.max()

real label = np.repeat{np.expand_dims({logs['LITHO'].values, 1}, 18@, 1)

f, ax = plt.subplots(nrows=1, ncols=17, figsize=(28, 12))

leg_colors = ['black', 'red', 'blue', ‘green', 'purple’,'black', 'red', 'blues', 'green', 'purple’, 'black’,
'red', "blue", 'green', 'purple', 'black', 'blsck', ‘red', 'blue", "green', 'purple’', 'black’,

'red', "blue", 'green', 'purple', 'black']

for i in range(7,23):

ax[1i-7].plot{logs.iloc[:,i], logs.DEPTH_MD, color=log_colors[i]) # plotting each well log on each track
al ax[1-7].set_ylim(top, bot)

ax[1-7].set_xlabel(str{logs.columns[i]})}

ax[1-7].invert_vaxis()

ax[i-71.grid()

im = ax[-1].imshow(real_label, interpolation='none', aspect='auto', cmap=cmap_facies, wmin=0G, wmax=12)

ax[-1].set_xlsbel('LITHO') # creating @ facies log on the final track

divider = make_sxes_locatable(ax[-1]) # appending legend besides the facies log

cax = divider.append_axes{"right", size="28%", pad=0.85)

char=plt.colorbar(im, cax=scax)

char.set_label{ (12*' ').3oin(['SS', '5-5', 'SH', 'MR', 'DOL','LIM', 'CH','HAL', 'AN', "TF', 'CO', "BS'I1})

char.set_ticks{rangs(®,1)): cbar.set_ticklabels('')

f.zuptitle("WELL LOGS '+stri{wells[well_num]), fontsize=156,y=0.9)

#PLOTTING LOGS AUGMENTED BY ML

def sugmented_logs(logs, well_num):

""“plots the raw, predicted, and augmented wireline logs after applying date sugmentation

Parazmeters
logs: dataframe
The raw, predicted, and augmented logs.
well num: int
The number of the well to be plotted. sugmented_logs internally defines & list of

weells contsined bv the loes dataframe. each of which could be called by its list index.

Returns
plot:
Different tracks containing the raw, predicted, and augmented logs.
Augmented logs mean that the missing walues hbeen filled up by machine-lesrning

predicted readings.

#auxiliar libraries

import numpy s np

import metplotlib.pyplot as plt
import matplotlib.colors s colors

from mpl_toolkits.sxes_gridl import make_sxes_locatable

122

8| APPENDIXES

facies_colors = ['#F4D@3F','#7cccld’, '#196F30", '#168599 ", '#2756c4 ', '#3891F0 ", '#8adaff", '#87@30e ", '#eclddfc', '#F
"Cot, 'BE']

facies_labels = ['S5', '5-5', 'SH', "MR', 'DOL','LIM', 'CH",'HAL', '&N', 'TF',

facies_color_map = {} # creating facies color map
for ind, label in enumerate(facies_lahels):

facies_color_mep[label] = facies_colors[ind]

wells = logs['WELL'].unique()
logs = logs[logs['WELL'] == wells[well_num]] # selecting well by index number
logs = logs.sort_velues(by='DERTH_MD") # sorting well log by depth

cmap_facies = colors,listedColormap(facies_colors[@:len(facies_colors)], 'indexed")

top = logs.DEPTH_MD.min()
bot = logs.DEFTH_MD.max()

real label = np.repeai{np.=sxpand_dims{logs['LITHO']J.values, 1}, 188, 1)

f, &% = plt.subplots(nrows=1, ncols=13, figsize=(2@, 12))

locg_colors = ['"black', 'red', 'blue', 'green', 'purple’,'black', 'red', 'blus',

‘green’,

‘red', "blus', 'green', 'purple', 'black', 'black', 'red', 'blue", 'green',

‘red', "blue', 'green', ‘purple', 'bBlack']

for i in rangef3,15):

'purple’,
‘purple’,

'black",
'black",

ax[i-3]1.plot{logs.iloc[:,1], logs.DEPTH_MD, color=log_colors[i]) # plotting raw, predicted, and sugmented 1

ax[i-3].set_vlim(top, bot)

ax[i-3].52t_xlabel(str{logs.columns[i]})
ax[i-37.invert_vexis()
ax[i-3].grid()

im = ax[-1].imshow(real_label, interpolation='none', @spect='auto', cmap=cmap_facies, wmin=8, wmax=12)}

ax[-1].set_xlabel('LITHO') # cresting & facies log on the final track

divider = make_axes_locsteblel{ax[-1]) # appending legend besides the facies log
cax = divider.append_axes("right", size="28%", psd=0.85)

char=plt.colorbar(im, cax=cax)

cbhar.set_label((12#' ").join(['55"', "S-5', 'SH", 'MR', 'DOL',"LIM', 'CH','HAL',

char.set_ticks{range(@,1)); char.set_ticklabels('')

f.zuptitle("WELL LOGS '+striwells[well num]), fontsize=16,y=0.9)

#PLOTTING LITHOFACIES PREDICTION

def litho_prediction{logs, well_num, n_pred}):

"8Nt, "TF', 'CO', "BE'1M)

"""Plots the raw logs, the lihtelogy interpretation, and the n_pred number of predcted

lithologies by machine learning.

Paremeters

logs: dataframe
Dataframe holding the raw wireline logs, trus lithology, and n_pred columns
containing different ML model predictions each.

well_num: imt

The number of the well to be plotted. litho_prediction internally defines a list of

weells contained by the logs dataframe, each of which could be called by its list index.

123

8| APPENDIXES

132

Returns

plot:

Different track plots representing each wireline log, the trus lihtology and the

predicted lithologies by dfferent mans-learning models.

import numpy s np

import matpleotlib.pyplot as plt

import metplotlib.colors &s colors

from mpl_toolkits.axes_gridl import make_axes_locatable

facies_colors =

facies_labels =

['#F4DA3F', '#7cccl9’, '#196F 30", '#1605599 ", '#27560c4 ", '#3691F0 ", '#30d4TT ", '#BTE3%e ", 'Hecslf’, '
['E5', '5-5', 'SH', "MR', 'DOL",'LIM', "CH','HAL', '&N', 'TF", 'CO', 'BS']

facies_color_map = {} #creating facies coorap

for ind, label in enumerate(facies_labels}):

facies_color_map[label] = facies_colors[ind]

wells = logs['WELL'].unique() # well names list
logs = logs[logs['WELL'] == wells[well _num]]
logs = logs.sort_vslues(by='DEPTH_MD') # sorting the plotted well logs by depth

cmap_ftacies = colors.listedColormeplfacies_colors[@:len(facies_colors)], 'indexed')

top = logs.DEFTH_MD.min()
bot = logs.DEPTH_MD.max()

f, 8x = plt.subplots(nrows=1, ncols={1Z+n_pred), figsize={2@, 12})

leg_colors = ['black', 'red', 'blue', 'green', 'purple','black', "red', 'blwee', 'green', 'purple", 'black’,

'red', "blue", 'green', 'purple', 'black', 'black', "red', 'blue", 'green', 'purple', 'black’,

'red', "blues", 'green', 'purple", 'black']

for i in range(7,18):

ax[i-7].plot{logs.iloc[:,1], logs.DEFTH_MD, color=log_colors[i]) # plotting continuous wireline logs

ax[i-71.zet_vlim(top, bot)

ax[i-7].set_xlsbelistr{logs.columns[1])}

ax[i-7].invert_vexis()

ax[i-7].grid()

for j in range((-1-n_pred), @): # ploting the lithology predictions obtainedby M

lebel = np.repsat{np.expand_dims{logs.iloc[:,j].values, 1), 18&, &)

im = ax[j].imshow{label, interpolation="none', aspect="auto", cmap=cmap_facies, wmin=8, wvmax=12)

ax[j].set_xlabel{str(logs.columns[3]})

divider = make_sxes_locstable(ax[-1]) # appending lithology legend

cax = divider.append_axes("right", sire="28%", pad=0.83)

cbar=plt.colorbar{im, cax=cax)

char.set_label((12*' ').j0in(['55"', 'S-5', 'SH', 'MR', 'DOL',"LIM', 'CH',"H&L', 'AN', 'TF', 'CO', 'BS'1))

char.set_ticks{range(®,1)): char.set_ticklabels('"')

f.suptitle("WELL LOGS '+str(wells[well_num]}, fontsize=14,y=0.94)

124

8| APPENDIXES

8.1.2 Confusion Matrix and Penalty Matrix Score (additional_functions.py)

L

31

"tragditional functicons

This script holds the matrix_score and confusion_matrix functiocns, which serves as

evgluation for the classification performance each machine-learning has.

They reguire some functionalities from libraries such as pandas, numpy, matplotlib,

and scikit-lean.

def matrix_score(y_true, y_pred):

“""Returns the penalty matrix score chined by the predicted lithofacies a
particular machine-learning model is able to provide. The matrix score was & metric
measure proposed by the FORCE commitee in order to provide the prediction performance

measure from @ petrophyicist perpective.

Parameters
y_true: list

The actuzl lithologies given by the datasets provider.
v_pred: list

The predicted lithofacies obtained by & particular machine learning model.

Returns
matrix penaty score

Penalty matrix score obined by a particular machine-learning model.

import numpy s np
matrix_path = 'Scontent/drive/MyDrive/Thesis_data/penalty_matrix.npy”
4 = np.load{matrix_path)
5 =08.8
y_true = y_true.astyps(int)
y_pred = y_pred.astypes({int)
for 1 in range(d, y_trus.shape[@]):
5 -= A[y_true[i], y_pred[i]]

return 5/y_true.shepelg]

Confusion Matrix Function

def confusion_matrix{y_true, v_pred):

"replats a confusion matrix normalized by the number of predictions a particular
machine learning algorithm hes. By ormalize we look at the number of predictions

the model gets right.

Parameters
y_true: list

The actusl lithologies given by the datasets provider.
y_pred: list

The predicted lithofacies obtained by & particular machine learning model.

125

8| APPENDIXES

Returns
confusion matrix:

& normalized confusion matrix by the number of predictions.

from sklearn.metrics import confusion_matrix
from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixbisplay

from itertools import product

def litho_confusion_matrix{y_true, y_pred):
facies_dict = {@:'Sandstone', 1:'Sandsteone/Shale', 2:'Shele’, 3:'Marl’,
4:'Dolomite', 5:'Limestone', 6:'Chalk', 7:'Halite',
8: "Anhydrite', 9:'Tuff', 18:'Coal', 11:'Basement']}

creating a lithofacies names
lebels = list(set{lizt{y_pred.unrique()) + list(y_true.uniqus{})})

lebel_names = [facies_dict[k] for ¥ in labels]

normalizing confusion matrix by the number of predicticns
cm = pd.DatsFramse{confusion_matrix{y_true.values, y_pred.valuess))
summ = cm.sum{axis=2)
cm_norm = pd.DateFrame(npg.zeros(cm.shapel)
for 1 in range{cm.shape[l]):
for j in range(cm.shaps[@]):
cm_morm[1][j] = em[1][J]*188/summ[i]

cm_finel = cm_norm.fillna(@).to_numpy()

fig, ax = plt.subplots{+igsize=(12,8})

plt.imshow(cm_final, interpolation='nezrest', cmap=plt.cm.Bluss)
plt.title{ 'NORMALIZED COMFUSION MATRIX', size=13)

tick_marks = np.arange(len(label_names))}

plt.xticks(tick_marks, label_names, rotation=94)
plt.yticks(tick_marks, label_names)

plt.colorbard)

creating & scores format (black and white)
fmt = 'L 2"
thresh = ocm_final.max() / 2.
for i, j in product{rangs{cm_final.shaps[2]}, range(cm_final.zhape[1])}):
plt.text(j, i, formet{cm_final[i, j], fmt),
horizontalalignment="center",

color="white" if cm_final[i, j] > thresh else "black")

plt.ylabel('True label', size=14)
plt.xlabel('Predicted label', size=14)

126

8| APPENDIXES

8.1.3 Data formatting (data_formating.py)

""“Data Formating

This script simply ren

gme the column names in a consitent menner for the training,

open test, and hidden test sets. It also maps the lithofacies labesl with numbers

from @ to 11 and drops

def formating{training

"r""Returns the train

Parameters

the imtepretation confidence column.

_raw, test_raw, hidden_raw):

ing, opsn test, and hidden test dataframes with consistent formats.

training_raw: Datzfreme

Raw training dataframe.

tesi_raw: Dataframe

Raw open test dstaframe.

hidden_raw: Dataframe

Raw hidden test dataframe.

Returns

training_formated: Dstaframe

Formated training dataframs.

tesi_formated: Dataframe

Formatsd open test

detaframe.

hidden_formated: Dateframe

Formated hidden test dataframe.

lithology_numbers =

formating raw tra
training_formated =
training_formated =

training_formated[

#formating raw test

{30ead: @, 85038 1, 55889: 2, 30089: 3, 74864: 4, TAeE3: 5,
FaG3Z: &, 38009 7, 36008: 3, 959@@d: &, 99e8d: 1a,

93088 11

H

ining set

training_rew.renamz{columns={"'FORCE_2828_LITHOFACIES LITHOLOGY':'LITHO'})
training_formated.drop(['FORCE_2820_LITHOFACIES COMWFIDEMCE®], exis=1)}

LITHCO'] = training_formated["LITHO"].map(lithology_numbers)

set

test_formated = test_raw.renams{columns={'FORCE_2826_ LITHOFACIES LITHOLOGY':'LITHD'})
test_formated['LITHO'] = test_formated["LITHO"].map{lithology_numbers)

formating raw hid

hidden_formated = hidden_raw.rename(columns={'FORCE_2628 LITHOFACIES LITHOLOGY":'LITHO"}}

hidden_formated = h
hidden_formated['LI

den set

idden_formated.drop["FORCE_2828_LITHCOFACIES_COMFIDEMCE'], axis=1)
THCZ'] = hidden_formated["LITHO'].map(lithology_numbers)

returni{training_formsted, test_formated, hidden_formated)

127

8| APPENDIXES

8.1.4 Data Pre-processing (preprocessing.py)

"""Nata preprocessing

This script preprocess the training, open test, and hidden test sets.
The preprocess involves droping wnnecessary columns bases un presence percentage,
clustering well logs by location as features, and splitting again the data into

3 subsets. Clustering performed by unsipervides K-Means algorithm.

def base_well name{row):
well_name = row["WELL']

return well_name.split()[a]
def preprocess_datal(training_formated, test_formated, hidden_formated):

“rvpeturns the training, open test, and hidden test dataframss with without
"SGR', 'ROPA', 'RX0', 'MUDWEIGHT', and including 'Cluster' as @ feature.

Parameters

training_formated: Dataframe
Formated training dataframe.

test_formated: Dataframe
Formated open test dastaframe.

hidden_formated: Dataframe

Formated hidden test dataframe.

Returns
traindats_prep: Detaframe
Pre-processed training dataframe.

testdata_prep: Dataframes

Pre-processed open test dstaframe.
hiddendata_prep: Dataframe

Pre-processed hidden test dataframe.

import pandas zs pd
import numpy as np

from sklearn.cluster import KMeans

train_len = training_formated.shape[8] # storing datasets lenghis
test_len = test_formated.shape[8]
hidden_len = hidden_formated.shape[d]

concatenating datasets and dropping indexes
df_concat = pd.concat{{training_formated,
test_formaied,

hidden_formated)).reset_index(drop=True)

drop_cols = ["5GR', "ROPA', 'RMD', 'MUDWEIGHT']

df_drop = df_concat.drop(drop_cols, axis=1) # dropping unnecesary columns

encoding GROUP, FORMATION, and WELL
df_drop['GROUP_encoded'] = df drop['GROUP'].astype('category')

128

8| APPENDIXES

df_drop["GROUP_encoded'] = df_drop['GROUP_encoded '].cat.codes

df_drop["FORMATION_encoded'] = df_drop['FORMATION'].&stype('category')
df_drop["FORMATION_ encoded'] = df_drop['FORMATION_encoded'].cat.codes

df_drop["WELL_encoded'] = df_drop['WELL'].astype(' category')
df_drop["WELL_encoded"] = df_drop['WELL_enceded'].cat.codes

creating a well names dataframe

training_wells = training_formated['WELL"].uniqus()
test_wells = test_formated['WELL'].uniquel)
hidden_wells= hidden_formated['WELL'].unique()

well_names = np.concetenate({training_wells, test_wells, hidden_wells))

well_names_df = pd.DatefFrame{{ 'WELL" :well_names})

importing wells metadata

well _meta_df = pd.read_csv('/content/drive/MyDrive/Thesis_datafwellbore_exploration_all.csw')

well meta_df.rename(columns={ "wlbllellboreName': "WELL",
'wlbllell": "WELL_HEAD",
'wlbNsDecDeg': 'lat’,
'wlbEwDesDeg': 'lon',
'wlbDrillingDperator': 'Drilling_Operator®,
'wlbPurposePlanned': "Purpose’,
‘wlbCompletionYear': "Completion_Year',
'wlbFormationAtTd': 'Formation'

¥, inplace=Trus)

well_locations_cf = well_mets_of[['WELL_HEAD', 'lat', 'lon’]].drop_duplicstes(subset=["WELL_HEAD'])
well _meta_df = well meta_df[['WELL', 'Drilling_Operator', 'Purpose’, 'Completicn_Year', '"Formation®]]

well names_df['WELL_HEAD'] = well_names_df.apply{lambds row: base_well name(row), axis=1}

locations_of = well names_df.merge(well locations_df, how="inner', on="WELL_HEAD')

locations_df = locations_df.merge{well_meta_df, how='left', on="WELL')

labeling train and test wells in & new column

locations_df.loc[locations_df["WELL"'].isin(training_wells), 'Dataset’'] = 'Train
locations_df.loc[locetions_df["WELL'].isin(test_wells), 'Dateset’'] = 'Test'
locations_df.loc[locetions_df["WELL'].izin(hidden_wells), "Dstaset'] = "Hidden®

Lonlet_df = locations_df.drop(['WELL',
"WELL_HEAD",
'Drilling_Operator',
'Purpose’,
'Completion_Year',

'Formztion’,

'Dataset'],
axis=1}

applying K-Means

location = LonLst_df[['lon', 'lat’']].values

kmeans = KMesnsz (n_clusters=3, init="k-means++', random_state=1)

labels = kmeans.fit_predict{location)

including Cluster as a feature

df_drop = df_drop.rename{columns={"'WELL" :'Cluster'})
clust_map = dict{zip(locations_df.WELL.veluss, labels))
df_drop["Cluster'] = df_drop['Cluster'].map{clust_map)

129

8| APPENDIXES

114 #dropping categorial features replaces beforehan by encoded features

115 &f_drop? = df_drop.drop{['GROUP', 'FORMATION'], axis=1)

11 # splitting dataset intc training, test, and hidden sets

118 traindata_prep = df_dropZ[:train_len].copy()

11s testdeta_prep = df_drop2[train_len:(train_len+test_len)].copyi)

124 hiddendata_prep = df_drop2[{train_len+test_len):].copy()

122 return traindats_prep, testdata_prep, hiddendata_prep

130

8| APPENDIXES

8.1.5 Data machine-learning augmentation (augmentation.py)

"mmhata augmentaion

This script test three diffrent machine learning regressors in order

to predict the four most relevant wireline logs,DTC, MPHI, DTS, and RHOB.
Afterwards, the models' results are comparsd betwesn each other in each
prediction stage in order to select the best performing model. Later,

at each stage the missing instances encountersed in the training, cpsn test,
and hidden test detasets are imputed by the predictions otained by the best
ML model at each stage. Finelly, 6 additional features are included in each

data subset.

It requires xgboost, lightgbm, catboost to be instslled before running, as

well asz pandas and numpy functionalities.

def data_augmentation(traindata, testdata, hiddendata):

"repeceives the pre-processed data and returns the deta with additional
columns named as cleened data. These additional columns include the
predicted, augmented, end 6 additional features icluding impedsnces
(5_I, P_I), bulk and shear modulus (K, G), slowness ratic (DT_R), and
trus and measure depths retioc (MD_TVD).

Parameters
training: Dataframe
Pre-processed training dataframe.
testdata: Datatrame
Pre-processed open test detaframe.
31 hiddendata: Dataframe

Pre-processed hidden test dataframe.

Returns
cleaned_traindata: Dataframe
Clegned trainig dataframe.
cleaned_testdata: Dataframe
Clegned test dataframe.
cleaned_hiddendata: Dataframe
Clesned hidden dataframe.
import numpy as np
import pandas as pd
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressar
from sklearn.model_selection import train_test_split
from sklearn.metrics import max_error, mean_absolute_srror, mesn_squared_srror

from sklearn.metrics import explained_wvariance_score, ri_score

list of regressors to be tests set to be supported by GFUs
estimgtors = [XGERegressor{n_estimators=215a,
tree_method='gpu_hist’,

learning_rate=2.85),

131

8| APPENDIXES

CetBoostRegressor{task_type="GPU'},

LGEMRegressor(device="gpu',
opu_platform_id=1,
opu_device_id=a),

estimstor_names = ['EXTREME BOOST REGRESSCR',
'CATBOOST REGRESSCR®,
'LIGHTECOST REGRESSOR'] # regressors names

predicting DTS

“""Getting data conteining DTS readings and
spliting into a new training and validation subsets.
traindata_dits = traindata[traindata.DTS.notnal)]
¥_dts = treindata_dts.drop{["LITHO', 'DTS'], &xis=1)
W_fdts = treindata_dts['DTS"]

“"“Tnputing remsnent features by their median.
¥_dts_imp = ¥_dts.apply{lsmbda x: x.fillpa(x.median{)), axis=@) #Imputaticn
¥_dts_train, X_dts_wel, Y_dts_train, Y_dts_wal = train_test_split(x dts_inp,
Y dts,
test_size=B8.3,
random_state=42) #train-validation split

“rugetting DTS testing set from open test set

testdeta_dts = testdsta[testdata.DTS.notna()]

¥_dts = testdats_dts.drop(['LITHO', 'DTS'], axis=1)

¥_dts_test = ¥_dts.apply(lambds ¥: x.fillna{x.median()), axis=@8)
Y _dis_test = testdats dis['DT3']

“rnTesting regressors

rme_errors = []

for estimator in estimators:

pripef’---mmmmm s B 0 ' format(estimator_names[i]))

estimator.fit(¥_dts_train,
¥_dts_train.values.ravel(),
early_stopping_rounds=188,
eval_set=[(X_dts_test, Y_dts_test)],
wverbose=188

) # fitting while walidationg on open test set

"tPpredicting DTS on training, walidstion, and test sets and computing metrics

train_pred = estimstor.predict(X_dts_train)
val_pred = estimator.predict(X¥_dts_val)
test_pred = estimator.predict(¥_dts_test)

varinace_train = explained_veriance_score(¥_dts_trsin, train_pred)

max_eror_train = max_error{¥_dts_train, train_pred)

132

8| APPENDIXES

ms_error_train = np.sgri{mean_squered_srror(Y_dts_trzin, train_pred))
mabs_error_train = mean_absolute_error(Y¥_dts_train, train_pred)

r2_train = r2_score{Y_dts_trein, trein_pred)

varinace_wal = explained_variance_score(¥_dts_val, wval_pred)
max_eror_val = max_error(Y_dts_val, val_pred)

ms_error_val = np.sqri(mean_squared_srror(Y_dts_wval, val_pred})
mabs_error_val = mean_absolute_error{¥_dts_val, wal_pred)

r2_val = rZ_score(¥_dts_vsl, val_pred)

varinace_test = explained_variance_score(Y_dts_test, test_pred)
max_eror_test = max_error(¥_dts_test, test_pred)

ms_error_test = np.sgrt{mean_squared_error(¥_dts_test, test_pred))
mabs_error_test = mean_sbsolute_srror(Y_dts_test, test_pred)

r2_test = r2_score(¥Y_dts_test, test_pred)
rme_srrars.append(ms_srror_test) #storing root mean sgquared errocr for model comparition

primt("''-------- TRAINIMNG 5ET METRICS--------
explianed varianve {3},

maximum error {},

root mean squared error {7},

maximum shsolute error {3},

R2 {}'"'.formet(varinace_train, mex_sror_train, ms_srror_train, mebs_error_train, r2_train})

primg(" ' ' ------- WALIDATION SET METRICS-------
explianed warianve {3},

maximum error {1,

reot mean squared errcr{},

maximum shsolute error {},

R2 {}'"'.formet(varinace_val, max_eror_vel, ms_error_val, mabs_srror_val, r2_wval))

pripE(* " " ---mmmaan TEST SET METRICS----------
explianed varianve {},

maximum error {},

root mean squared error {3},

maximum sbsolute error {},

R2 {}'"'.formet{varinace_test, max_eror_test, ms_error_test, mabs_srror_test, r2_test))
i+=1

selecting bet model to perform imputation
selected_model_index = rme_errors.indexi{min{rme_errors)}
primt (' TRAINING BEST MODEL TO PERFORM DTS IMPUTATION {}'.format{estimator_names[selected_model_index]))
mocdell@ae = estimators[selected_model_index]
modelleas, fit(¥_dts_train,
¥_dts_trein.walues.ravel(),
early_stopping_rounds=1a0,
eval_set=[(¥_dts_test, ¥Y_dts_test)],

verbose=188) # fitting best ML regresor
filling nan values before predicting DTS
Y_trein_DTS = traindsta.drop{['LITHO', 'DTS"], axis=1)}

¥_trein_ DTS2 = ¥_trein_DTS.apply(lambda ®: x.fillna(x.median()), exis=8)

¥_test DTS = testdata.drop(['LITHO', 'DTS'], axis=1)
Y_test_DTS2 = ¥_test_DTS.apply(lambda x: x.fillna{x.m=dian{)}, axis=2)

133

8| APPENDIXES

¥_hidden_DTS = hiddendata.drop(['LITHO", 'DT5'], axis=1)
¥_hidden_DT52 = ¥ _hidden_DTS5.apply(lambds x: x.fillna{x.median()), axis=8)

predicting DTS on complete datasets

traindata['0T5_pred'] = modell@@d.predict(¥_train_DTS2)
testdatal 'OTS_pred’'] = modell@@8.predict(¥_test _DTS2)
hiddendatal 'DTS_pred'] = modellB8@. predict(¥_hidden_DTS52)

imputing nan values in DTS by ML predictions
traindata['DT5_COMB'] = traindsta['DTS"]
traindatal "DT5_COMB'].fillna({traindatal 'DTS_pred®], inplace=True)

testdata['DTS_COME'] = testdatzs['DTS']
testdetal 'DTS_COMB'].fillna(testdate['DTS_pred'], inplace=True)

hiddendata['DTS_COME'] = hiddendata['DTS']
hiddendatal 'OTS_COME"'].fillna(hiddendatal 0TS _pred'], inplace=True)

predicting MPHI

"""Getting data contsining DTS readings and

spliting into & new training and wvalidation subsets.

traindata_nphi = traindata[traindata.lPHI.notnall]
¥_nphi = traindeta_nphi.drop{['LITHO', 'DTS", 'DTS_pred', "NPHI'], axis=1)
¥ _nphi = traindata_nphi['NPHI']

“"“Inputing remsnent features by their median.

¥_nphi_inp = ¥_nphi.eapply(lambda x: x.fillna(x.median()), axis=0) # imputation
¥_nphi_train, X_nphi_val, Y_nphi_train, Y_nphi_val = train_test_split(X_nphi_inp,
¥_nphi,
test_size=@.3,
random_state=42) # train-validation split
“"uGetting NPHI testing set from open test set
testdeta_nphi = testdata[testdeta.NPHI.notna()]
¥_nphi = testdata_nphi.drop(['LITHO', *DTS', 'DTS_pred', 'MPHI'], axis=1)
¥_nphi_teszt = ¥X_nphi.apply{lambde x: x.fillna(x.median()), axiz=@2})
Y¥_nohi_test = testdata_nphi["NPHI']

print('Training set sahpe {} and validation set shape {} end test set shape'.format(¥_nphi_train.shape,
¥_nphi_wal.shape,
¥_nphi_test.shape))

"""Teting regressors

i=a¢

rme_errors = []

for estimator in estimators:
print("----------------------- {} MODEL-----------------m-- - '.fermat{estimator_names[1i]1})
estimator.fit (¥ _nphi_train,

Y¥_nphi_train.values.ravel(),

early_stopping_rounds=183,

134

8| APPENDIXES

early_stopping_rounds=188,
eval_set=[{¥_nphi_test, ¥_nphi_test)],
verbose=1a0)
"""predicting DTS on treining, validation, and test sets and computing metrics
train_pred = estimator.predict(¥_nphi_train)
val_pred = estimator.predict(¥_nphi_val)
test_pred = estimator.predict(¥_nphi_test)

varinace_train = explained_veriance_score(Y_nphi_train, train_pred)
max_eror_train = mex_error(¥Y_nphi_train, train_pred}

ms_error_train = np.sqrt{mean_squared_error(¥_nphi_train, train_pred})
mabs_error_train = mean_absolute_srror(Y_nphi_train, train_pred)

r2_train = rZ_score(¥_nphi_train, train_pred}

varinace_val = explained_variance_score{¥Y_nphi_val, wvel_pred)
max_eror_vel = max_error{¥_nphi_vsl, val_pred)

ms_error_val = np.sqrt{mean_squared_error{¥_nphi_vsl, wal_pred))
mabs_error_val = mean_absolute_srror(Y_npni_val, val_pred)

r2_val = r2_score(Y_nphi_val, wal_pred)

varinace_test = explained_variance_score(Y_nphi_test, test_pred)
max_eror_test = max_error(¥_nphi_test, test_pred)

ms_error_test = np.sgrt(mean_squared_error(Y_nphi_test, test_pred))}
mabs_error_test = mean_gbsclute_error(Y_nohi_test, test_pred)

r2_test = r2_score(¥_nphi_test, test_pred)
rme_grrors.append(ms_error_test) # storing root mesn squared error for model comparition

print(""'"-------- TRAINING SET METRICS--------
explianed varianve {},
maximum error {3},

root mean squared error {},

maximum sbsolute error {},

R2 {}'"'.format{varinace_train, mex_eror_train, ms_serror_train, mabs_error_train, r2_train))

print("'"'-------VALIDATION SET METRICS-------
explianed varianve {},

maximum errocr {1,

root mean squared error{},

maximum sbsolute error {3},

R2 {}'"'.format{varinace_wal, max_eror_val, ms_error_wal, mabs_error_wval, r2_wval))

print("'"'----------- TEST SET METRICS----------
explianed varianve {},

maximum error {3},

root mean sgquared errcr {},

maximum sbsolute error {},

R2 {}'"'.format{varinace_test, max_eror_test, ms_error_test, mabs_error_test, r2_test))

selecting bet model to perform imputation

selected_model_index = rme_errors.index(min{rme_srrors))

print('TRAINIMNG BEST MODEL TO PERFORM MPHI IMPUTATION {}'.format{estimator_names[selected_model_index]))
model2Bde = estimators[selected_model_index]

model288e, Fit{¥_nphi_train,

135

8| APPENDIXES

Y¥_nphi_train.values.ravel(),
egrly_stopping_rounds=19@,
eval_set=[{¥_nphi_test, ¥_nphi_test)],
verbose=188) # fitting bets ML regressor

filling nan velues before predicting NPHI
¥_train_NPHI = traindata.drop(['LITHO', 'DTS', 'DTS_pred', 'NPHI'], axis=1)
¥_train_NPHIZ = ¥_trein_NPHI.apply(lambda x: x.fillna{x.median()}), axis=8)

¥_test_WPHI = testdata.drop(['LITHO', 'DT5', 'DTS_pred', 'MPHI'], axis=1}
¥_test MNPHIZ = ¥_test NPHI.apply({lambda x: x.fillna{x.median()), &xis=8)

Y_hidden_NPHI = hiddendata.drop{["LITHO', 'DTS', 'DTS_pred’, 'MWPHI'], &xis=1)
¥_hidden_WPHIZ = ¥_hidden_NFHI.apply(lambda x: x.fillna(x.median()), axis=8)

predicting MPHI on complete datasets

traindatal ‘NPHI_pred'] = model2@8@.predict(X_train_NPHIZ)
testdetal 'NPHI_pred'] = modell@&@d.predict{¥_test_ NFHIZ)
hiddendata["MPHI_pred'] = model28@8.predict{X_hidden_NPHIZ)

inputing nan values in NPHI by ML predictions
traindata["MPHI_COME'] = traindata["MPHI']
traindata[‘MPHI_COMB'].fillna(traindata["NPHI_pred'], inplace=True)

testdatal 'NPHI_COMB'] = testdata["MPHI']
testdatal 'NPHI_COME'1.fillna(testdatal "NPHI_pred'], inplace=Trus)

hiddendata['MPHI_COME'] = hiddendata['MPHI']
hiddendatal 'WPHI_COME'].fillna(hiddendata['MPHI_pred'], inplace=Trus)

predicting RHOB

“""Getting data containing RHOE readings and

spliting into & new training and wvalidstion subsets.

traindata_rhob = traindata[traindata.RHOE.notna()]
Y_rhob = traindsta_rhob.drop{['LITHO", 'DTS", 'DTS_pred', "HPHI®, 'NPHI_pred', 'RHOB'], axis=1)
Y_rhob = traindata_rhob['RHOB']

" Inputing remanent features by their median.

Y_rhob_inp = ¥_rhob.apply(lambda x: x.fillna{x.median{)), axis=0) #imputation

¥_rhob_trein, ¥_rhob_vesl, Y_rhob_train, ¥_rhob_wal = train_test_split(¥_rhob_inp,
Y_rhob,
test_size=2.3,

random_state=42) # train-validation split

"Getting RHOB testing set from open test set

testdata_rhob = testdata[testdeta.RHDOE.notnal)]

¥_rhob = testdata_rhob.drop(['LITHO', *DTS', 'DTS_pred', 'MPHI', 'NPHI_pred', "RHOB®], axis=1)
¥_rhob_test = ¥_rhob.apply{lambda x: ®.fillna(x.median()), awxis=@)

Y_rhob_test = testdata_rhob["RHOE"]

print('Training set sahpe {}, validation set shape {}, and test shape {}'.format{xX_rhob_train.shape,

136

8| APPENDIXES

¥_rhob_val.shape,
¥_rhob_test.shape))
""“Testing regressors
344 e
i=8
rme_errors = []

for estimator in estimators:

primt('---------------mo - {} MODEL----------------------- ' formati{estimator_names[i]))
estimator.fit(¥_rhob_train,

¥_rhob_train.valuss.ravel(},

early_stopping_rounds=188,

eval_set=[(¥_rhob_test, Y_rhob_test)],

verbose=18a)

""predicitng RHOE on training, validation, and test sets and computing metrics
train_pred = estimator.predict(X_rhob_train}

val_pred = estimator.predict(¥_rhob_val)

test_pred = estimator.predict(¥_rhob_test)}

varinace_train = explained_veriance_score(Y_rhob_train, train_pred)
max_eror_train = max_srror{¥_rhob_train, train_pred)

ms_error_train = np.sgrt{mean_squared_srror(Y_rhob_train, train_pred})
mabs_error_train = mean_absolute_error(Y_rhob_train, trein_pred)

r2_train = ri_score(Y_rhob_train, train_pred)

varinace_val = explained_wvariance_score(Y_rhob_vel, val_pred)
max_eror_val = max_error(¥_rhob_vasl, vel_pred)

ms_error_val = np.sqri{mean_squared_srror(¥_rhob_vsl, vel_pred))
mabs_error_val = mean_absolute_srror{¥_rhob_vel, wal_pred)

r2_wal = r2_score(Y_rhob_wal, val_pred)

375
varinace_test = explained_wvarisnce_score(¥_rhob_test, test_pred)
max_eror_test = max_error(Y_rhob_test, test_pred)
ms_error_test = np.sgrt(mean_squared_error(Y_rhob_teszt, test_pred))
mabs_error_test = mean_sbsolute_error(Y_rhob_test, test_pred)

r2_test = r2_score(¥_rhob_test, test_pred)
rme_grrors.append(ms_srror_test) # storing root mean squared error for model comparition

print(" " -------- TRAIMING 5ET METRICS--------

explianed varianve {},

maximum error {},

root mean squared error {},

maximum absolute error {},

R2Z {}'"'.formet{varinace_train, mex_eror_trein, ms_srror_train, mebs_error_train, r2_train})

print(""'"------- VALIDATICH SET METRICS-------
explianed varianve {},

maximum error {},

root mean squared errori},

maximum absolute error {},

R2 {}'''.format{varinace_val, max_eror_vel, ms_error_val, mabs_error_wel, r2_val))

print(’" "-mmemmeaea- TEST SET METRICS----------

explianed varianve {J},

137

8| APPENDIXES

Aad

maximum error {},
root mean squared error {7},
maximum sbsolute error {},

R2 {}'"'.format({varinace_test, max_eror_test, ms_error_test, mabs_error_test, r2_test))

i+=1

#selecting best model to perform imputation

selected_model_index = rme_errors.index(min{rme_srrors))

print('TRAINING BEST MODEL TO PERFORM RHOB IMPUTATION {}'.formzif{estimator_names[selected_model_index]))

modeldBdd = estimators[selected_model_index]

modeld®as. fit{¥_rhob_train,
¥_rhob_train.values.ravel(),
egrly_stopping_rounds=186,
eval_set=[(¥_rhob_test, ¥Y_rhob_test)],

verbose=188) #fitting best ML regressor

filling nan velues before predicting RHOE

¥_trein_RHOE = traindata.drop(['LITHO', 'DTS', 'DTS_pred', 'NPHI', 'MPHI_pred', 'RHOE'], axis=1)

Y_trein_RHOB2 = X_treinm_RHOB.apply(lamods x: x.fillna{x.median()}), axis=a)

¥_test_RHOE = testdata.drop(['LITHO', 'DTS', 'DTS_pred', 'MPHI', 'NPHI_pred®, 'RHOB'], axis=1)
¥_test RHOBZ = ¥_test RHOB.applv{lembda x: x.fillna(x.median()), sxis=8)

¥_hidden_RHOE = hiddendata.drop(['LITHO', 'DTS', 'DTS_pred", 'NPHI', 'NPHI_pred', "RHOB"], axis=1})

¥_hidden_RHOB2Z = ¥_hidden_RHOE.apply{lambda x: x.fillnafx.median()}), axis=0)

predicting RHOE on complete datasets

traindatal '"RHOB_pred'] = modeldB@e. predict(X_train_RHOEZ)
testdatal 'RHOE_pred'] = modelddd8.predict(¥_test RHOE2)
hiddendata['RHOB_pred'] = modeld@Bd.predict{X_hidden_RHOB2)

imputing nan wvalues in RHOB by ML predictions
traindata['RHOB_COMB'] = traindata['RHOB']
traindata['RHOB_COMB'].fillna(traindata["RHOE_pred'], inplace=True)

testdata['RHOB_COMB'] = testdata[RHOB']
testdetal 'RHOB_COMB'].fillna({testdata["RHOE_pred"], inplace=Trus)

hiddendatal 'RHIE_COME'] = hiddendata['RHOB']
hiddendata['RHOB_COMBE']J.fillnalhiddendatal 'RHOB_pred'], inplace=Trus)

predicting DTC

"Getting dath containing DTC readings and
spliting into a new treining and validation subsets.

traindata_dic = traindata[traindata.DTC.notnal)]

¥%_dtc = treindata_dtc.drop(['LITHO', 'DTS', 'DTS_pred’, 'NPHI', 'MPHI_pred', 'RHOB', 'RHOB_pred', 'DTC'], axis=1)

Y¥_dic = treindata_dtc['DTC']

""UInputing remsnent features by their median.

Y_dtc_ing = X_dtc.apply(lembda x: x.fillna(x.median()), axis=0) #imputation
¥_dtc_train, X_dtc_wel, Y_ditc_trein, Y_dtc_val = train_test_split(X_dtc_inp,

138

8| APPENDIXES

¥_dtc,

test_size=2.3,

rendom_state=42) #train_validation split

“""Getting DTC testing set from open test set

testdeta_dtc = testdeta[testdata.DTC.notnal)]

Y_dtc = testdats_dtc.drop(['LITHO", 'DTS', "DTS_pred', 'NPHI', 'MPHI_pred', "RHOB',
¥_dtc_test = ¥_dtc.apply{lambzds x: x.f
Y_dtc_test = testdats_ditc['DTC"]

illna{x.median()), axis=@)

'RHOB_pred',

'OTC'], exis=1)

print('Training set sahpe {}, walidstion set shepe {}, and test shape {}'.format{¥_dtc_train.shape,

¥_dtc_wval.shape,

¥_dtc_test.shape))

"""Testing regressors

rme_errors = []

for estimator in estimators:

print(’-------mmmm oo {} MODEL-----=-----mmmmmmm oo o mm 'format(estimetor_names[i]))

estimator.fit(¥_dtc_train,
¥_dtc_train.wvalues.ravel(),
egrly_stopping_rounds=18&,
eval_set=[{¥_dtc_test, Y_dtc_test)],

verbose=188)

train_pred = estimator.predict{¥_dtc_train)
val_pred = estimator.predict(¥_dtc_val)
test_pred = estimator.predict{X_ dtc_test)

varinace_train = explained_wveriance_score(¥Y_dtc_train, train_pred)
max_eror_train = max_error(¥_dtc_train, train_pred)

ms_srror_train = np.sgri{mean_squared_srror(¥_dtc_trein, train_pred))
mabs_error_trein = mean_absolute_error(¥_dtc_train, train_pred)

r2_train = r2_score(¥_ditc_trein, train_pred)

varinace_val = explained_variance_scoreY_dtc_wval, val_pred)
max_eror_val = max_srror{¥Y_dtc_vsl, wval_pred)

ms_error_wval = np.sqrifmean_squared_srrory_dtc_wal, val_pred})
mabs_error_val = mean_absolute_srror(¥_dtc_val, wal_pred)

r2_val = ri_score(¥_dtc_val, val_pred)

varinace_test = explained_variance_scorel¥_dtc_test, test_pred)
max_eror_test = max_error(Y_dtc_test, test_pred)

ms_error_test = np.sgrtimean_sguared_srror(Y_dic_test, test_pred))
mabs_error_test = mean_sbsolute_error(¥_dtc_test, test_pred)

r2_test = r2_score(¥_dtc_test, test_pred)

rme_grrors.append(ms_error_test) # storing root mesn squared error for model comparition

print{"' ' ---m-n-- TRAIMING SET METRICS--------
explianed varianve {},

maximum error {3},

root mean squared error {3},

maximum sbsclute error {},

R2 {}'"' .formet(varinace_train, mex_sror_trzin, ms_esrror_train, mebs_error_train, r2_train})

139

8| APPENDIXES

print("'"'-------VALIDATION SET METRICS-------
explianed varianve {},

maximum error {},

root mean squared error{l,

maximum sbsolute error {},

R2 {}'"'.formet{varinace_val, max_eror_vel, ms_error_val, mabs_srror_wal,

print("' "' ----------- TEST SET METRICS----------
explianed varianve {3},

maximum errcr {},

root mean squared error {},

maximum sbsclute error {},

r2_wval})

R2 {}'"'.formzt(varinace_test, max_eror_test, ms_error_test, mabs_error_test, r2_test))

i+=1
=zelecting bet model to perform imputaticn

selaected_model_index = rme_errors.index(min{rme_srrors))

print('TRAINIMG BEST MODEL TO PERFORM DTC IMPUTATION {}'.format{estimator_names[selected_model_index]))

model3sae =
model3ese. fit{¥_dtc_trzin,

Y_dtc_trein.wvalues.ravel(),

estimators[selected model_index]

egrly_stopping_rounds=18@,
eval_set=[(¥_dtc_test, Y _dtc_test)],

verbose=1@a) # fitting best ML regressor

filling man values before predicting DTC

¥_trein_0TC = traindsta.drop{['LITH]', 'DTS', 'DTS_pred', "NPHI", 'NPHI_pred', 'RHOB', 'RHOB_pred', 'DTC'], axis=1)
Y¥_trein_OTC2 = Y_trein_DTC.apply(lsmbda x: x.fillna{x.median()), sxis=8)
¥_test_DTC = testdats.drop{['LITHDO', 'DTS', 'DTS_pred’, "MPHI', 'NPHI_pred', 'RHOB', 'RHOB_pred', 'DTC'], axis=1)

¥_test_DTCZ = ¥_test_DTC.epply(lambda x: x.fillpa{x.median()), axis=@8)

¥_hidden_DTC = "NPHI",

¥_hidden_DTCZ =

hiddendata.drop(['LITHO", 'DTS', "DT5_pred’',

¥_hidden_DTC.apply(lamode x: x.fillna{x.median(}), axis=8)
predict DTC on complete datasets

traindata['DTC_pred'] = model3@@8.predict(¥_train_DTL2)

testdata['DTC_pred'] = model3@@s.predict(X_test_DTC2)
hiddendatal'DTC_pred'] = model3@8@.predict(¥_hidden_DTC2)

imputing nan values in DTC by ML predictions
traindata['DTC_COMB'] = traindstal'DTC"]

traindata['DTC_COMB'].Fillna{traindatal 'DTC_pred”], inplace=True)

testdata['DTC_COME'] = testdata['DTC']
testdatal 'DTC_COME"].fillna(testdate['DTC_pred'], inplace=True)

hiddendata['DTC_COME'] = hiddendata['DTC']
hiddendata['DTC_COMB'].fillna(hiddendata['DTC_pred'], inplace=Trus)

“""Creating additicnal well log-based features

training Set

"NPHI_pred”,

"RHOB', 'RHOB_pred', 'DTC'], awis=1)

140

8| APPENDIXES

traindata['5_I'] = traindata.RHOE * (led/traindata.DTS_COMB) # s-impedance

traindata['P_I'] = traindata.RHOE * (le6/traindata.DTC) #p-impedance

traindata['DT_R'] = traindata.DTC / traindata.DT5_COMB # slowness ratio

traindata['G'] = ({les/traindata.DTS_COME)**2) # traindata.RHDE #Shear modulus

traindata['K'] = ({{led/traindeta.0TC)*¥2) * traindata.RHOZ) - (£ * treindata.G/3) # bulk modulus
traindata['MD_TVD'] = -{traindata.DEPTH_MD/traindata.Z_LOC) #MD-TVD ratio

test Set

testdaeta['S_I'] = testdata.RHOE * (lef/testdata.DTS_COME)

testdata['P_I'] = testdata.RHOB * {le6/testdata.DTC)

testdata['OT_R'] = testdata.0TC / testdata.DTS_COME

testdatal'G'] = ((lef/testdata.DTS_COME)**2) * testdata.RHOE

testdatal'K'] = (({le6/testdate.DTC)#%2) * testdats.RHOB) - (4 * testdata.G/3)
testdata['MD_TVD'] = -(testdste.DEPTH_MD/testdata.Z_LOC)

hidden Set

hiddendata['S_I'] = hiddendata.RHOB % {les/hiddendsta.DTS_COME)

hiddendata['P_I'] = hiddendata.RHOE * (les/hiddendsta.DTC)

hiddendata['DT_R'] = hiddendsts.DTC / hiddendsta.DTS_COME

hiddendata['G'] = (({leé/hiddendata.DTS_COME)##2) * hiddendats.RHOE

hiddendata['K'] = ({(les/hiddendata.DTC)**2) * hiddendata.RHOE) - (4 * hiddendata.G/3)
hiddendata['MD_TVD'] = -(hiddendata.DEPTH MD/hiddendata.Z_LOC)

print column names held on detasets
print('Features included in the datasets: {}'.formst(irzindata.columns))

return traindata, testdata, hiddendatz

141

8| APPENDIXES

8.1.6 Data Normalization (input_norm.py)

" Data Normzlization

This script standerdize the training, open test, and hidden test sets
after the datasets have been pre-process and machine-learning augmented.

It provides the detastes reesdy to be used in any machine-lezrning model.

def normalizstion(traindata, testdata, hiddendata):

“""Returns the starndardize training, open test, and hidden test

datatrames once they have been pre-processad and augmented.

Paramsters
traindata: Dataframe

Augmented trainig dataframe.
testdata: Dataframe

Lugmented open test dateframe.
hiddendata: Dataframe

fugmented hidden test detaframe.

Returns

cleaned_traindata: Dataframe
Starndardized training dataframe.

cleansd_testdats: Dataframe
Starndardized open test dataframe.

cleaned_hiddendsta: Dataframs

Starndardized hidden test dataframe.

import pandas 25 pd

from sklearn.preprocessing import StandardScaler

"""The features that were not augmented

by ML are inputed by the median and then standardized.

train_features = traindata.drop({['LITHO'], axis=1}; train_labels = traindata['LITHI"]
test_features = testdata.drop(['LITHD'], axis=1); test_lebels = testdata['LITHO']
hidden_features = hiddendata.drop{['LITHQ'], axis=1); hidden_labels = hiddendata['LITHO"]

#Imputng features by median
train_features_inp = train_features.apply{lambde x: x.fillna(x.median{}), axisz=0)
test_features_inp = test_features.spply(lamode x: x.fillna({x.median()), axis=a)

hidden_features_inp = hidden_features.apply{lsmbdz x: x.fillna(x.median{)}, axis=0)

“""Normalizing festures on each dataset

n = train_features_inp.shape[1]
std = StandardScaler()

142

8| APPENDIXES

¥_train_std = train_features_inp.copy()
¥_test_std = test_festures_inp.copy()

¥_hidden_std = hidden_features_inp.copy()
¥_train_std.iloc[:,:n] = std.fit_transform{x_train_std.iloc[:,:n]}
¥_test_std.iloc[:,:n] = std.transform{x_test_std.iloc[:,:n])

¥_hidden_std.iloc[:,:n] = std.transform{x_hidden_std.iloc[:,:n]}

“""Concatenating features and targets

cleaned_treindata = pd.concat([x_train_std, train_labels], axiz=1)
cleansd_testdats = pd.concat{[x_test_std, test_labels], axis=1)

cleaned_hiddendete = pd.concat([x_hidden_std, hidden_labels], sxis=1}

return clesned_traindata, cleaned_testdata, clesned_hiddendata

143

8| APPENDIXES

8.2 Appendix B — Machine and Deep Learning Models Python Code

8.2.1 Logistic Regression (LR_model.py)

"""l pgistic regression machine-learning model

This script trains & logistic regression machine learning model and test it on the
open test and hidden test detaset. The functicn retuns the lithofacies predictions

obtained for the training, open test, and hidden test sets.

def run_LR{train_norm, test_norm, hidden_norm):

“""Returns the predicted lithology clesses for the training,

open test, and hidden test obtzined by Logistic Regression.

Parameters

cleaned_traindata: Dataframe
Starndardized training dataframe.

cleaned_testdate: Datatrame
tarndardized open test dataframe.

cleaned_hiddendsta: Dataframs

Starndardized hidden test dataframe.

Returns
train_pred_lr: one-dimentional array

Predicted lithology classes obtained from the training dataset.
test_pred_1lr: one-dimentional array

Predicted lithology classes obtained from the open test dataset.
hidden_pred_lr: one-dimentional array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegreszsion

selected features to be used while training

features_selected_1r = ['DTS_COME", 'G", 'P_I', "GR',"NPHI_COME",
'DTC", 'RHOB", 'DT_R', 'Z_LDC", 'S_I','K'
]

¥_train = train_norm[features_selected_1r]

v_train = train_norm['LITHO']

¥_test = test_norm[features_selected_lr]

y_test = test_norm['LITHI']

¥_hidden = hidden_norm[festures_selected_lr]
y_hidden = hidden_norm["LITHO']

¥_train_strat, X2, yv_train_stret, ¥2 = train_test_split(x_train,
y_train,
train_size=a.1,
shuffle=Trus,

8| APPENDIXES

54 stratify=y_train,
rendom_state=0)
difining model with optimsl hyper-parameters
model_lr = LogisticRegression({=8.1,
solver="saga’,
max_iter=486a,
verbose=1

)

fitting & logistic regression model

model_lr.fit{x_train_strat[features_selected_lr], y_train_strat)

predicting

train_pred_1r = model_lr.predict(x_train[features_selected_1r])
test_pred_lr = model_lr.predict(x_test[features_selected_lr])
hidden_pred_lr = model_lr.predict({x_hidden[festures_selected_1r])

return train_pred_lr, test_pred lr, hidden_pred_lr

8.2.2 K-Nearest Neighbors (KNN_maodel.py)

" -Mearest Neighbors machine-learning model

This script receives the clean dataseis and trains a K-nearest neighbor
machine-learning model and test it on the clean open test and hidden test
datasets. The function retuns the lithofacies predictions obtained for the

training, open test, and hidden test sets.

def run_KNW{train_norm, test_norm, hidden_norm):

“"*peturns the predicted litholeogy classes for the training,

open test, and hidden test obtszined by K-nearesr Neighbors.

Paramsters

cleaned_treaindata: Dataframe
tarndardized training dataframe.

cleansd_testdata: Dataframe
tarndardized open test dataframe.

cleaned_hiddendata: Dataframe

tarndardized hidden test dataframe.

Returns
train_pred_knn: one-dimentional array

Predicted lithology classes obtained from the training dataset.
test_pred_knn: one-dimentional array

Predicted lithology classes obtained from the open test dataset.
hidden_pred_knn: one-dimentionsl array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import train_test_split

from sklearn import neighbors

145

8| APPENDIXES

selected features to be used while training

selectedfestures_knn = ['GR', 'FORMATION_encoded®, "GROUP_sncoded’, "NPHI_COME', 'RRHOB',
"¥_Loc', 'BS', 'CALI', 'SP', 'WELL_encoded', 'Z_LOC', 'DT_R', 'DEPTH_MD',
'DTC", 'Cluster']

¥_train = train_norm[selectedfeatures_knn]

y_train = train_norm['LITHO']

¥_test = test_norm[selectedfeatures_knn]
y_test = test_norm['LITHI']

¥_hidden = hidden_norm[selectedfeatures_knn]
y_hidden = hidden_norm["LITHO']

¥_train_strat, X2, v_train_stret, Y2 = train_test_split(x_trzin,
y_train,
train_size=8.1,
shuffle=True,
stratify=y_train,
rendom_state=0
)
defining KMNM mdoel with optimal hyper-parameters
model_knn = neighbors.KMeighborsClassifier(n_neighbors=80,
weights="distance",
metric="manhattan
)
& fitting & logistic regression model

model_knn.fit{x_train_strat[selectedfeatures_knn], y_train_strat)

predicting
train_pred_knn = model_knn.predici(x_train[selectedfeatures_knnl)
test_pred_knn = model_knn.predict{x_test[selectedfeatures_knn])

hidden_pred_knn = model_knn.predict(x_hidden[selectedfeatures_knn])

return train_pred_knn, test_pred_knn, hidden_pred_knn

8.2.3 Support Vector Machines (SVM_maodel.py)

"rSupport Vector Machines machine-learning model

This script receives the clean datasets and trains a 5VM machine-learning
model and test it on the clean open test and hidden test datasets.
The function returns the lithofacies predicticns obtained for the training,

open test, and hidden test sets.

def run_SVH(train_norm, test_norm, hidden_norm):

“"“Returns the predicted lithology clesszes for the training,
open test, and hidden test obtained by SWM.

Parameters

cleaned_traindata: Dataframe

146

8| APPENDIXES

18

Starndardized training dataframe.
cleaned_testdatas: Dataframe

Starndardized open test dataframe.
cleaned_hiddendata: Dataframs

Starndardized hidden test dataframe.

Returns
train_pred_swm: one-dimentional array

Predicted lithology classes obtained from the training dataset.
test_pred_svm: one-dimentional array

Predicted lithology classes obtained from the open test dataset.
hidden_pred_svm: one-dimentional array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import train_test_split

from sklearn.svm import SWC

¥_train = train_norm.drop(['LITHO'], axis=1)

y_train = train_norm['LITHO']

¥_test = test_norm.drop{['LITHO'], axis=1)
y_test = test_norm['LITHI']

¥_hidden = hidden_norm.drop{['LITHO'], axis=1}
y_hidden = hidden_norm["LITHO']

¥_train_strat, X2, v_train_strat, ¥2 = train_test_split(x_train,
y_train,
train_size=a.1,
shuffle=True,

stratify=y_train,
rendom_state=8
)
Definng SVYM model with optimal hyper-parameters
model_svm = SWC(kernel="rbf',
C=0.5,
ceche_size=5088,
decision_function_shape='ovr'
)
fitting SVM model

model_svm. fit(x_train_strat, y_train_strst)

predicting
train_pred_svm = model_swvm.predict{x_train)
test_pred_svm = model_swm.predict{x_test)

hidden_pred_swm = model_swm.predict(x_hidden)

return train_pred_svm, test_pred_svm, hidden_pred_sum

147

8| APPENDIXES

8.2.4 Decision Tree (DT_model.py)

"""Decizion Tree machine-learning model

This script receives the clean datasets and trains a decision tree machine
learning model and test it on the cleam open test and hidden test datasets.
The functicn returns the lithofacies predictions obtained for the training,

open test, and hidden test sets.

def run_DT{train_norm, test_norm, hidden_norm):

neepetyurns the predicted lithology classes for the training,

open test, and hidden test obtsined by a decision tree.

Parameters

cleaned_traindata: Dataframe
tarndardized training dataframe.

cleaned_testdata: Dataframe
tarndardized open test dataframe.

cleaned_hiddendsta: Dataframe

tarndardized hidden test dataframe.

Returns
train_pred_dtp: one-dimentional array

Predicted lithology classes obtained from the training dataset.
open_pred_dtp: one-dimentional array

Predicted lithology classes obtained from the open test dataset.

hidden_pred_dtp: one-dimentionzl array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

¥_train = train_norm.drop(['LITHO"], axis=1)

y_train = train_norm["'LITHD']

¥_test = test_norm.drop{['LITHO'], &xis=1)
y_test = test_norm['LITHO']

¥_hidden = hidden_norm.drop(['LITHO'], axis=1)
yv_hidden = hidden_norm["LITHO']

¥_train_strat, %2, y_train_strat, ¥2 = train_test_split(x_trzin,
y_train,
train_size=8.1,
shuffle=True,
stratify=y_train,
rendom_state=0
)
defining DT model after pruning
tunned_dt = DecisionTreeClassifier(max_depth=15,
ccp_alpha=9.082
)

148

8| APPENDIXES

fitting the decision tres model

tunned_dt.fit{x_train_strat, v_train_strat)
predicting

train_pred_dtp = tunned_dt.predict(x_train)
open_pred_dtp = tunned_dt.predict{x_test)

hidden_pred_dtp = tunned_dt.predict(x_hidden)

return train_pred_dtp, open_pred_dtp, hidden_pred_dtp

8.2.5 Random Forest (RF_model.py)

""“Random Forest machine-lezrning model

This script receives the clean detasets and trains a rendom forest machine

learning model and test it on the clean open test and hidden test datasets.

The functicn returns the lithofacies predictions obtained for the training,

open test, and hidden test sets.

def run_RF{train_norm, test_norm, hidden_norm}:

“rupeturns the predicted lithology clesses for the training,

open test, and hidden test obtained by & random forest.

Farameters

cleaned_traindata: Dataframe
Starndardized training dataframe.

cleaned_testdata: Dataframe
Starndardized open test dstaframe.

cleaned_niddendata: Dataframs

Starndardized hidden test dataframe.

Returns
train_pred_rf: one-dimentional array

Predicted lithology classes obtained from the training dataset.
open_pred_rf: one-dimentiongl array

Predicted lithology classes obtained from the open test dataset.

hidden_pred_rf: one-dimentional array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

selected features to be used while training
features_selected_rf = ['RDEP', 'GR', "WPHI_COME", 'G", 'P_I', "S_I'
"RSHA', 'DT_R', "RHOB', 'K, 'DCAL', 'Y_LOC',

s 'DTC', "DTS_COMB',

"GROUP_encoded ',

"WELL_sncoded’, "FORMATION_encoded', 'DEPTH_MD', 'Z_LOC', 'CALI',

"¥_LocC', 'RMED', ‘PEF", 'SP', "MOD_TVD', “ROP',

¥_train = train_norm[features_selected_rf]

v train = train norml'LITHO'1

‘DRHO']

149

8| APPENDIXES

46 ¥_test = test_norm[features_selected rf]
y_test = test_norm['LITHI']

¥_hidden = hidden_norm[features_seslected_rf]
y_hidden = hidden_norm[*LITHG']

¥_train_strat, X2, v_train_stret, Y2 = train_test_split(x_train,
y_train,
train_size=8.5,
shuffle=True,
stratify=y_train,
rendom_state=a)
defining a RF model with the optimal hyper-parameters
model_rf = RandomForestClassifier{n_sstimators=358,
bootstrap=False,
max_depth=45,
max_features="sqrt'

)

fitting the random forest model
model_rf.fit(x_train_strat[features_selected_rf], y_train_strat.vslues.ravel(})}
predicting

train_pred_rf = model_rf.predict(x _train[features_selected_rf])

open_pred_rf = model_rf.predict{x_test[features_selected rf])

hidden_pred_rf = model_rf.predict{x_hidden[features_selected_rf])

return train_pred_rf, open_pred_rf, hidden_pred_rf

150

8| APPENDIXES

8.2.6 Categorical Gradient Boosting (CatBoost_model.py)

""“Categoricel gradient boosting tree-based machine-learning model

This script receives the clean detesets and trains a cstegorical tree gradient
poosting machine learning model snd test it on the clean open test and hidden
test datasets. The function returns the lithofacies predictions obtained for

the training, open test, and hidden test sets.

def run_CatBoost(train_norm, test_norm, hidden_norm):

“""Returns the predicted lithology classes for the training,
open test, and hidden test obtained by a categorical tree-based

gradient boosiing model, CAT.

Parameters

cleaned_treindata: Dataframe
Starndardized training dataframe.

cleaned_testdats: Dataframe
tarndardized open test dataframe.

cleaned_niddendasta: Dataframe

Starndardized hidden test dataframe.

Returns
train_pred_catl: one-dimenticnal array

Predicted litholeogy classes obtained from the training dataset.
open_pred_catl: one-dimentional array

Predicted litholeogy classes obtained from the cpen test dataset.
hidden_pred_catl: cne-dimentional array

Predicted lithology classes obtained from the hidden test dataset.

from sklearn.model_selection import StretifiedkFold
from catboost import CetBoostlClassitier

from sklearn.metrics import accuracy_score

import pandas &5 pd

import numpy as np

zelected festures to be used whils training

selected_features_catboost = ['GR', 'HPHI_COMB®, 'DTC, 'DTS_COME®,"RHOS',
"W_LOC', 'GROUP_encoded", '"WELL_encoded',
"FORMATION_encoded®, 'DEPTH_MD', 'Z_LOC', "CALI",
"¥_LOC', 'RMED', "SP*, "MD_TVD']

¥_train = train_norm[selected_features_catboost]

y_train = train_norm['LITHD']

¥_test = test_norm[selected_festures_catboost]
y_test = test_norm['LITHO']

¥_hidden = hidden_norm[selected_features_catboost]
y_hidden = hidden_norm["LITHZ']

“** The model is trained on 18 stratified k-folds, also uses the open set as

151

8| APPENDIXES

validation set to avoid owverfitting and & 188-round early stopping callback.

The model wses & multi-soft_probability cbjective function which returns the
probabilities predicted for each class. This probabilities are computed and

stacked by using =ach k-fold to give the final predicticn.

split = 1@
kf = StratifiedKFold(n_splits=split, shuffle=True)

train_prob_catl = np.zeros{{len{x_train), 12})
open_prob_catl = np.zeros({len(x_test), 12))}
hidden_prob_catl = np.zeros({len(x_hidden), 12))

catboost_modell = CatBoostClassifier(iterations=1888,
learning_rate=9.1,
depth = 6,
12_leaf_reg = 384,
#border_count = 128,
#bagging_temperature = 18,
grow_policy = 'SymmetricTres’,
task_type="GPU',
verbose=18a)

i=1

for (train_index, test_index) in kf.split{x_train, v_train):

¥_train, ¥_test = w_train.ilec[trein_index], »_train.iloc[test_index]

¥_traim, ¥_test = y_train.ileoc[trein_index], v_train.iloc[test_index]

catboost_modell.fit{X_train,
Y¥_train.values.ravel(),
early_stopping_rounds=180,
eval_set=[(¥_test, Y_test)],

verbose=1&83

}

prediction = catboost_modell.predict(X_test)

print{'Fold accuracy:', accuracy_score(Y_test, prediction))

staking predicted probabilities

train_prob_catl += catboost_modell.predict_proba(x_train}
open_prob_catl += catboost_modell.predict_probalx_test)
hidden_prob_cetl += catboost_modell.predict_proba{x_hidden)

getting final predicted classes
train_prob_catl = pd.DatzFramz(train_prob_catl/split)

train_pred_catl = np.array(pd.DataFrame{train_prob_catl).idxmax{axis=1))

opern_prob_catl = pd.DataFrame{open_prob_catl/split)

open_pred_catl = np.array(pd.DetaFrame{open_prob_catl).idxmax{axis=1})

hidden_prob_catl = pd.DatEFPame(hidden_prob_catlfsplit)

hidden_pred_catl = np.array(pd.Detaframe (hidden_prob_catl).idxmax(axis=1))
return train_pred_catl, open_pred_cstl, hidden_pred_catl

152

8| APPENDIXES

8.2.7 Extreme Gradient Boosting (XGB_model.py)

eXtreme gradient boosting tree-based machine-learning model

This script receives the clean datasets and trains an extreme gradisnt boosting
tree-based machine learning model and test it on the clean open test and hidden
test datasets. The function returns the lithofacies predictions obtained for

the training, open test, and hidden test sets.

def run_XGB(train_norm, test_norm, hidden_norm}:

“"“Returns the predicted lithology classes for the training,
open test, and hidden test obtained by & extreme gradient boosting
tree-based model, XGB.

Parameters

cleaned_traindata: Dataframe
Starndardized training dataframe.

cleaned_testdata: Dataframe
Starndardized open test dataframe.

cleaned_hiddendata: Dataframe

Starndardized hidden test dataframe.

Returns
train_pred_xgbl: one-dimentional array

Predicted lithology classes obtained from the training dataset.
open_pred_xgbl: ons-dimentional array

Predicted lithology classes obtained from the opsn test dataset.
hidden_pred_xgbl: one-dimentional array

Predicted litholegy classes obtsined from the hidden test dataset.

from xgboost import XGBClassifier

from sklearn.model_selection import StratifiedkKFold
import numpy as np

import pandas as pd

from sklearn.metrics import accuracy_score

selected features to be used while training

selected_fetures_xgb = ['RDEP', 'GR', 'MPHI_COMB', 'G", 'P_I', 'DTC', 'DTS_COMB', "RSHA',
'DT_R', 'RHOB", "K', 'DCAL', 'Y_LOC', 'Cluster’, 'GROUP_encoded',
"WELL_encoded®, 'FORMATION_encoded’, 'DEPTH_MD®, °Z_LOC', "CALI', 'BS',
‘¥_Loc', "RMED", 'PEF', "SP", 'MD_TWD', 'RMIC', "DRHO"]

¥_train = train_norm[selected_fetures_xgh]

y_train = train_norm['LITHO']

¥_test = test_norm[selected_fetures_xgb]
y_test = test_norm['LITHO']

»_hidden = hidden_norm[selected_fetures_xgb]
y_hidden = hidden_norm["LITHG']

153

8| APPENDIXES

“""The model iz trained on 18 stratifisd k-folds, slso uses the open set as

validation set to avoid overfitting and & 188-round early stopping callback.

The model wses @ multi-soft_probability objective function which returns the
probabilities predicted for each class. This probabilities are computed and

stacked by using each k-fold to give the final prediction.

split = 18
kf = StratifiedkFold(n_splits=split, shuffle=True)

train_prob_xgbl = np.zeros{(len{x_train), 12))
open_prob_xgbl = np.zeros((len(x_test), 12))
hidden_prob_xgbl = np.zeros{{len(x_hidden), 12})

¥gbmodel_nparg = XGEClassifier(n_estimators=1888, max_depth=4,
booster='ghtree’, objective='multi:softprob',
learning_rate=8.875, random_state=42,
subsample=1, colsample_bytree=1,
tree_method="gpu_hist', predictor='gpu_predictor’,
wverbose=2922, reg_lambda=152a
)

i=1

for (train_index, test_index) in kf.split(x_train, y_train):

¥_traim, ¥_test = w_train.iloc[train_index], ¥_train.iloc[test_index]

¥_traim, ¥_test = y_train.iloc[trein_index], y_train.iloc[test_index]

xgbmodel_noarg.fit(X_train,
¥_train.values.ravel(),
early_stopping_rounds=188,
eval_set=[(X_test, Y_test)],

verbose=188

)

prediction = xgbmodel_noarg.predict(i_test)

print({'Fold accuracy:", accuracy_scorel¥_test, prediction))
T35 1 € SR FOLD {1}------mmmmmmmmmmmm - ')
stacking probabilities
train_prob_xgbl += xgbmodel_noarg.predict_proba(x_train)
open_prob_xghl += xgbmodel_noarg.predict_proba(x_test)
hidden_prob_xgbl += xgbmodel_ noarg.predict_probalx_hidden)
i+=1

final lithology class prediction

train_prob_xgbl = pd.DataFrame(train_prob_xgbl/split)

train_pred_xgbl = np.array{pd.DataFramsz{train_prob_xgbl).idxmax(axis=1))

open_prob_xghl = pd.DataFrame(open_prob_xgbl/split)
open_pred_xghl = np.array(pd.DataFrame{open_prob_xgbl}. idxmax{axis=1})

hidden_prob_xghl = pd.DataFrame{hidden_prob_xghl/split)
hidden_pred_xgbl = np.array(pd.DztaFrame(hidden_prob_xgbl).idxmax(axis=1})

return train_pred_xgbl, open_pred_xgbl, hidden_pred_xgbl

154

8| APPENDIXES

8.2.8 Neural Network (NN_model.py)

"""Meural Metwork model

This script receives the clean dstasets and trains neural network and test it
on the clean open test and hidden test datasets. The function returns the

lithofacies predictions obtained for the training, open test, and hidden test sets.

def run_NN{train_norm, test_norm, hidden_norm}:

“"“Returns the predicted lithology classes for the training,
open test, and hidden test obtained by a bayesian optimized

two-hidden layer neural network.

Parameters

cleaned_traindata: Dataframe
Starndardized training dataframe.

cleaned_testdata: Dataframe
Starndardized open test dataframe.

cleaned_niddendata: Dataframs

Starndardized hidden test dataframe.

Returns
train_nn2: one-dimentional array

Predicted lithology classes obtained from the training dataset.
open_nn2: one-dimentional array

Predicted lithology classes obtained from the open test dataset.
hidden_nn2: one-dimentional array

Predicted lithology classes obtained from the hidden test dataset.

importing dependencies

impert numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Activation

from tensorflow.keras.layers import Inputlayer, Input

from tensorflow.keras.layers import Dense, Dropout, Activation
from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.optimizers import 5GD

selected features to be used while training
features_selected_nn = ['GROUP_encoded’, "GR', 'NPHI_COMB', *Y_LOC', 'RHOB',
"DEPTH_MD', 'FORMATION encoded', 'Z_LOC', 'WELL_encoded®, 'X_LOC',
'RMED", "CALI', 'DTC', "MD_TVD', 'DT_R",
"PEF', 'RDEP', 'DTS_COMB', 'G', 'SB',
‘Cluster', 'K', "P_I', "DRHO", "DCAL"
]

“"“hyper-parameters optimized through a Bayesian optimization process.

learning_rate = 8.1

155

8| APPENDIXES

num_layers = 2
num_nodes = 512

activation = "sigmoid’

"rUStructuring & two-hidden layer feed fordward neural network

¥_train_nn = tf.convert_to_tensor(train_norm[features_selected_nn])
¥_test_nn = tf.converi_to_tensor(test_nmorm[features_selected_nn])

¥_hidden_nn = tf.convert_to_tensor(hidden_norm[features_selected_nn])

opt_model = Sequential()
opt_model. add{InputlLayer(input_shape=(x_train_nn.shape[1]}})
opt_model. add{Dropout(8.1))

opt_model. add{Densze {num_nodes,
activation=activation,

kernel_initializer='random_normal')}} #input layer
opt_model. add{Dropout(®.7)) # drop out layer for regularization

opt_madel. add{Dense (num_nodes,
activation=activation,

kernel_initializer='random_normal’)} # hidden layer 1

opt_model. add{Dense(12,
activation="softmax",

kernel_initializer='random_normal')} # hidden layer 2

setting stochastic gradint descent optimizer

optimizer = SGD(learning_rate=learning_rzte, momentum=8.1)

a4 opt_model. compile {optimizer=optimizer,
loss="sparse_categorical_crossentropy’,
metrics=["'accuracy']

} # compiling model

monitor = EarlyStopping{monitor='val_loss"',
min_delta=1e-3,
patience=54,
verbose=1,
mode="autoc"',
restore_best_weights=True

) # early stopping callback to avoid overfitting

“"“Fitting neural network while validation on the open test set

histories = opt_model.fit(x_train_nmn,
train_norm['LITHO'],
petch_size = 258,
velidation_data = (x_test_nn, test_norm['LITHO']},
callbacks = [monitor],
verbose=1,
epochs=188
)

156

8| APPENDIXES

""" Predicting lithology classes

nn_train_prob = opt_model.predict{x_train_nn)

train_nn2 = np.array(pd.DataFrame{nn_train_prob).idxmax(axis=1))

nn_open_prob = opt_model.predict(x_test_nn)

open_nn2 = np.array(pd.DataFrame(nn_open_prob).idxmax{axis=1}))

nn_hidden_prob = opt_model.predict(x_hidden_nn)

hidden_nn2 = np.array(pd.DataFrame{nn_hidden_prob).idxmax{axis=1))

return train_nn2, open_nn2, hidden_nn2

157

8| APPENDIXES

8.3 Appendix C — Neural network Bayesian parameter optimization (Bayes_opt.py)

meny, Setting search renges for the parsmeters of interest.

dim_learning_rate = Rezl(low=le-4,
nigh=1e-1,
prior='log-uniform’,
name="learning_rate')
dim_num_dense_layers = Integer{low=1,
high=5,
neme="num_dense_layers"')
dim_num_dense_nodes = Integer{low=&4,
high=512,
name="num_dense_nodes ')

dim_activation = Categoriczl{categories=['relu', 'sigmoid'], name='activaticn')

dimensions = [dim_learning_rate, dim_num_dense_layers,

dim_num_dense_nodes, dim_activetion] #Defining & list with all the parameters
defaut_parameters = [8.1, 2, 128, 'relu'] #5etting initizl parameters

"""2, Defining & funtion top leg the treining process to visualize.

def log_dir_name(learning_rete, num_dense_layers,
num_dense_nodes, sctivetion):

s = ". /16 logs/1lr_{8:.8e} layers_{1} nodes_{2}_{3}/" &Directory name

log_dir = s.format{learning_rate, num_dense_layers,
num_dense_nodes, activation) #Directory name + parameters

return log_dir

"3, Defining & neural netwotk create model function

37 def creste_model(learning_rate, num_dense_layers, num_dense_nodes, activation):
"""Returns a tensor flow seguential fully connected neural network.
It uses a stochastic gradien descent SGD optimizer that will be used to find it global minima.
Parameters
learning_rate: int
Step size to be taken by the optimizer towards its minima.
num_dense_layers: int
Humber of hidden layers to be included im the model.
num_dense_nodes: int
Mumber of neurcns to be inlcuded in each hidden layer.
activation: str

Activation function, either 'relu’ or ‘'sigmoid.

Returns

model:

MNeural network ready to be trained.

158

8| APPENDIXES

model = Seguential()

num_features = x_train_nn.shape[1]

model.add(layers. Inputlayer (input_shape=(num_features, }))

for 1 in renge(num_dense_layers):
name = 'layer_dense_{&}'.format{i+l1)
model.add(Dense(num_danse_nodes,
activation=activation,
name=name,
kernel_initislizer='random_normal’,

bigs_initializer="zeros'}}

model.add(Dense(12,
activation='softmax",
kernel_initializer="random_normzl’',

bias_initializer="zeros'}))

opt = 5G0{learning_rate=learning_rate,

momentum=8.1)

model.compilef{optimizer=opt,
loss='sparse_categorical_crossentropy’,
metrics=["accuracy'])

return model

mend o Defining optimization fitness functicn

#Adding hidden layers

#Input layer

#Random normal welght initialization
#7eros bias initialization

#0utput layer - 12 outputs

#50ftmax activation fuction

#Random normal weight initialization

#Zeros bias initialization

#Adem optimizer

#momentum to help covergence

#Compiling the model

#Sparse categorical crossentropy loss

path_best_model = "19_best_model.h5' #Path where accuracy history will be stored

best_accuracy = @ #Initializing global accuracy

validation_dete = (x_test_nn, y_test) # Setting velidations data

def fitness(learning_rate, num_dense_layers,

num_dense_nodes, activation):

"""Fintion to be iterated several times by calling the create_model function and fitting the sequential fully

connected neural network on a different set of parameters for 7 epochs on each, then it stores the best result

and parameters on the assigned directory.

Paremeters

learning_rate: int

Step =ize to be taken by the optimizer towards its minima.

num_dense_layers: int

HNumber of hidden layers to be included in the model.

num_gdense_nodes: int

Number of neurcns to be inlcuded in each hidden layer.

activation: str

Activation function, either 'relu’ or 'sigmoid.

Returns

-8CCUracy .

The negative accuracy obtained on each set of hyper-parameters.

The minus only alows us to treat the optimization as & minimization problem by using scikit optimizer skopt.

159

8| APPENDIXES

#Displaying selected hyper-parameters

print("""learning rate: {@:.lel},
num_dense_lavers: {},
num_dense_nodes: {7},

activation: {}""".format{learning_rate, num_dense_layers, num_dense_nodes, activation))

#Calling create_model function

model = creste_model{learning_rate=lsarning_rate,
num_dense_layers=num_dense_layers,
num_dense_nodes=num_dense_nodes,

activation=activation)

#5toring parameters on the assigned directory
log_dir = log_dir_name(learning_rate, num_dense_layers,

num_dense_nodes, activetion)

#Defining & call back to be called during training to avoid overfitting
callback_log = TensorBosrd{log_dir=lecg_dir,

histogram_freg=8,

write_graph=True,

write_grads=Felse,

write_imzges=False)

#Fitting the model for 7 epochs while wvalidating on the open test data
history = model.fit{x= »_train_nn,

v= y_train,

epochs=7,

batch_size=256,

validetion_data=validation_dats,

callbacks=[callback_log])

Displaying the validation sccuracy after the 7th epoch
accuracy = history.history['val_accuracy'][-1]

print{"Accuracy: {8:.2%8}".formzt{accuracy))

#Updating and storing the globsl accuracy if the selected hyper-parameters achieves to do so
global best_accuracy

158 if sccuracy » best_accuracy:

151 model.savepath_best_model)

152 best_accuracy = accuracy

15¢ #C1learing the model from memory before runnijng the next model
155 del model

156 K.clear_session()
158 return -accuracy

15¢ # This function exactly comes from :Hvass-Labs, TensorFlow-Tutorials

""n5, Running optimization

optimization = gp_minimize(func=fitness,
dimensions=dimensions,
acg_func="EI', # Expected Improvement.
n_calls=75,

wB=defaut_parameters)

160

8| APPENDIXES

optimization = gp_minimize(func=Ffitness,
dimensicns=dimensions,
acg_func="EI", # Expected Improvement.
n_calls=75,
w@=defaut_parameters)

plot_convergenceioptimization) #Displaying best set of hyper-paremeters

sorted{zip{optimization.func_wvals, optimization.x_iters)) #Plotting convergence

8.4 Appendix D — Execution Python Code (Execution.py)

The current appendix shows how to set the environment necessary to run the functionalities
and models included in appendices A and B. In addition, the scrip includes the sequential
steps that must be taken in order to call each functionality needed and visualize each model’s
lithology prediction. Moreover, due to the extensiveness and repetitiveness involved in the
process of calling each machine-learning model running function, only the best performing
model, XGB, is included as an example for the present appendix.

To see the complete Execution.py file, please refer to the GitHub repository direction stated

at the beginning of section 8.

A. Mounting Drive into Google Colab

from google.colab import drive
drive.mount('/content/drive”)

Mounted at /content/drive

B. Installing dependencies
Before running the present script make sure you install the following library dependencies in the order stated:

1. Installing Categorical Boosting Library

2. Uninstalling pre-existing LGBM library with no GPU support
3. Cloning LGBIM reporsitory

4. Intalling LGBM dependencies ans setting up GPU support

#1. Installing CATBOOST
pip install catboost

#2. Installing [IGHTBOOST

mpip uninstall lightgbm -y

Cloning LGBM git repository
El git clone --recursive https://github.com/Microsoft/LightGBM

#4. Setting up GPU for LGBM

El cd LightGBM && rm -rf build && mkdir build && cd build && cmake -DUSE_GPU=1 ../../LightGBM && make -j4 && cd
n3 setup.py install --precompile --gpu

C. Importing custom functionalitites

Custom functionalities path
import sys
sys.path.append(' /content/drive/MyDrive/")

Impoting standard dependencies

import pandas as pd

import xgboost

from xgbhoost import XGBClassifier

from sklearn.metrics import classification_report, accuracy_score

Impoting customized functionalities

import module_lithopred

from module_lithopred.data_formating import formating

from module_lithopred import plotting

from module_lithopred.plotting import raw_logs, augmented_logs, litho_prediction
from module_lithopred.preprocessing import preprocess_data

from module_lithopred.augmentation import data_augmentation

from module_lithopred.input_norm import normalizaticn

from module lithopred.additional functions import matrix score, confusion matrix

../python-package &% pytho

161

8| APPENDIXES

D. Importing data

Setting datasets directories

directory = '/content/drive/MyDrive/Thesis data/’

Imporitng troining, open test, and hidden test sets

raw_training = pd.read_csv(directory + 'train.csv', sep=";') # rawtraining dataoset

test_data

raw_test

= pd.read_csv(directory + 'test.csv', sep=";")
test_labels = pd.read csv(directory + 'test_target.csv', sep=';

pd.merge(test data, test_labels, on=['WELL',

raw_hidden = pd.read_csv(directory + 'hidden_test.csv®, sep=";")

#Data formating

'DEPTH_MD']) #open test dataset

#hidden test dataset

Calling formating function, which renames columns and maps Lithofacies

classes values from @ to 11, and drops intepretation confidence column.

training_form, test_form, hidden_form = formating(raw_training, raw_test, raw_hidden)

#Inspecting raw data

display(training_form.head())

#Inspecting raw data

display(training_form.head())

WELL | DEPTH_MD | X_LOC Y_LOC Z Loc GROUP FORMATION | CALI RSHA |RMED RDEP RHOB |GR SGR|NPH
1] 1:]9- 494 528 437641.96875|6470972.5|-469.501831 ggRDLAND NaN 19.480835 |NaN | 1.611410 | 1.798681|1.884186 | 80.200851 | NaN | Nah
1 1?97 494 680 437641.96875| 6470972.5| -469.653809 g'C:’)RDLAND NaN 19.468800 |NaN | 1.618070 | 1.795641|1.889794 | 79.262886 | NaN | Nah
2 12’97 494.632 437641.96675| 6470972.5| -469.805786 g'C:’)RDLAND NaMN 19.468800 |NaN | 1.626459 | 1.800733 | 1.896523 | 74.621999 [NaN | Nah
3 12’9_ 494.984 437641.96675|6470972.5|-469.957794 EERDLAND NaMN 19.459282 |NaN | 1.621594 | 1.801517|1.891913 | 72.678922 | NaN | Nah
4 EB_ 495.136 437641.96675|6470972.5|-470.109772 ESRDLAND NaN 19.453100 |NaN | 1.602679 | 1.795299|1.680034 | 71.729141 [NaN | Nah
»
""" Formated well logs visualization by calling raw_Logs
customized function. Only the fist well displayed.
For plotting additionall wells change the range(@, 1).
See raw_Logs.py for further details about the function.
for i in range(®, 1):
raw_logs(training_form, i)
ELL LOGS 15/9-13
0 ey o op oo P [y
1000 10 ¥ ; 1009 ¥ f i ¥ F u
z
1500 || 15 15 15 1 15 1 ’ 504 1
2000 a0 0 2 a0 ! 20 5
—t | g w
3000 30 £ 30 30 300(300(3004 ’
B ¢ @0 m 2 2 500005000 0080 05 0 % b 100180 5 1001500050000050 1006005000 0005000005 05 00 0 5
ou RsHA RMED ROEP RHOB E per oTc E 3 rop oS bCAL | DRHO LmiD

** Only one well displayed for visualization.

162

8| APPENDIXES

E. Data Pre-processing

Preprocessing involves dropping unncesary cols, encoding categorical variables,
and incorporating well Location clustering as feature prior to feature augmentation.

See prerpocessing.py for further deatils.

traindata, testdata, hiddendata = preprocess_data(training_form, test_form, hidden_form)

#Checking dota structure befrore augmentation
display(traindata.head())

Cluster DEPTH_MD| X_LOC Y_LOC Z LocC CALI RSHA |RMED RDEP RHOB GR NPHI | PEF DTC SP
00 494528 437641 96875 |6470972.5|-469 501831 | 19.480835 |NaN [1.611410 [1.798681 | 1.884186 | 80.200851 | NaN | 20.915468 | 161.131180 | 24 61:
10 494680 437641.96675|6470972.5|-469.653809 | 19.468800 | NaN [1.618070(1.795641| 1.689794 | 79.262886 | NaN | 19.383013 | 160.603470 | 23.69.
2|0 494832 43764196875 |6470972.5|-469 805786 | 19.468800 | NaN [1.626459(1.800733| 1.896523 | 74.821999 | NaN |22 591518 |160.173615|23.91
3|0 494.984 437641.96875|6470972.5|-469.957794 | 19.459282 | NaN [1.621594(1.801517| 1.691913 | 72.878922 | NaN | 32.191910|160.149429|23.79
40 495136 43764196875 |6470972.5|-470.109772 | 19.453100 | NaN [1.602679(1.795299| 1.880034 | 71.729141 | NaN | 38 495632 | 160.128342 | 24 10

»

F. Feature augmentation by Machine-learning

First, each regressor takes as training data the 88% of the features
where the Log being predicted is present, later each regresor is validated
on the remanent 20% of this data, and tested on the apen test set.

Second, each regression model predictcs and imputes the predicted value
where the predicted log readings were originally missing on the training,
open, and hidden sets.

Finally, some other additional features are created.

See argumentation.py for further details.

training_aug, test_aug, hidden_aug = data_augmentation{traindata, testdata, hiddendata)

-----EXTREME BOOST REGRESSOR MODEL-------- -
[22:15:82] WARNING: /workspace/src/objective/regression_obj.cu:152:
[8] validation_@-rmse:185.641

KWill train until validation &-rmse hasn't improved in 1@@ rounds.
[188] validation_@-rmse:18.8687

[288] validation_@-rmse:18.2223

Stopping. Best iteration:

[143] validation_@-rmse:16.1557

reg:linear is now deprecated in favor of reg:squarsderror.

———————— TRAINING SET METRICS--- --
explianed varianve ©.9429831306549395,
maximum error 328.7644553285937,

root mean squared error 17.816241988143637,

maximum absolute error 9.933835157182124,

AA A AaanTAnSan anTAn

Inspecting dataframe after augmentation

display(training aug.head())

Cluster DEPTH_MD|X_LOC Y_LOC Z_Loc CALI RSHA |RMED RDEFP RHOB GR NPHI| PEF DTC SP
(] 494528 437641.968735 | 6470972.5|-469.501831 | 19.480835 [NaN [1.611410 | 1.7986581 | 1.884186 [80.200851 |NaN | 20.915468 | 161.131180 (24 .61
1[0 494880 437641 96875 | 6470972 5| -469.653809 | 19.468800 [NaN [1.618070|1.795641| 1.889794 | 79.262886 |NaN | 19.383013 | 160603470 23.89
2|10 494832 437641.96875 |6470972.5|-469.805786 | 19.468300 [NaN [1.626459 | 1.800733| 1.896523 [74.821999 | NaN | 22.591518 | 160.173615 [23.91
3|0 494.984 437641.96875 | 6470972.5|-469.957794 | 19.459282 [NaN [1.621594|1.801517| 1.891913 | 72.878922 |NaN | 32.191910|160.149429(23.79
4|10 495136 437641 96875 |6470972.5|-470.1059772 | 19.453100 [NaN [1.602679|1.795299| 1.8580034 [71.729141 |NaN | 38.495632 | 160.128342 (24 10.

»

163

8| APPENDIXES

"""Concatenating the actual, predited, and augmented well Logs for plotting

cols_needed = ['DTS', 'DTS_pred’, 'DTS_COMB®, 'NPHI', 'NPHI_pred’', 'NPHI_COMB', *RHOB',
"RHOE_pred’, 'RHOB_COMB', 'DTC', 'DTC_pred', 'DTC_COMB', 'LITHO']

train_predicted_logs = pd.concat({raw_training[['WELL', 'DEPTH_MD']].
training_aug[cels_needed].reset_index()), axis=1)

test_predicted_logs = pd.concat((raw_test[["WELL', 'DEPTH_MD']].
test_aug[cols_needed].reset_index()), axis=1)

hidden predicted logs = pd.concat(({raw_hidden[['WELL', 'DEPTH MD']],
hidden_aug[cols_needed].reset_index()), axis=1)

Actual, predicted, and augmented well logs visualization by calling
augmented Logs customized function. Only the fist well displayed

For plotting additionall wells change the range(@, 1).

See gugmented Logs.py for further details about the function.

for i in range(1@, 11):
augmented_logs(train_predicted_logs, i)

WWELL LUYS surens

o o o m o o .
8
1000 o x 10
o
20 e " 12 12 z
400 " v 1 " 2
5
1600 1 o 164 2 5
o
8
1500 1 100 u 1 1 1
o
2000 200 x 20 20 -
200 é_-__p 2 2
f 10go .
W0 00 B0 A0 40 20 40 035050075 025 050 025050075 20 25 20 25 20 25 S 100 120 0 120 % 100 B0 0 %
ors orsprea TS coms wern MPiped NHLCOMB RHOD RioBpws RiopCoMs | OIC otcres occows Lo

** Only one well displayed for feature augmentation visualization.

G. Data Normalization

""“First, the features that were not augmented by machine-Llearning
are inputed by median inputation technique before normalizing

Loter, a Standard Scaler is used to standerdize the datasets.

See normalization.py for further details.

train_norm, test norm, hidden_norm = normalization(training aug, test aug, hidden_aug)

H. Machine learning models’ results

164

8| APPENDIXES

AB. EXTREME GRADIENT BOOSTING MODEL (XGB)

by calling run_XGB function.

Predicting Lithofacies by using the eXtreme Gradient Boosting model (XGB)

See XGB model.py for further details about the function.

from module lithopred.ML_models.XGB_model import run_XGB

train_pred xgb, test_pred xgb, hidden_pred xgh = run_XGB(train_norm, test norm, hidden_norm)

[e]

[188]
[288]
[388]
[488]
[s88]
[686]
[788]
[s88]
[98@]
[929]
F

[e]

[10@]
[20@]
[306]
[406]
[5e@]
[E6@]
[766]
[806]
[90@]
[999]

Fold accuracy: ©.89@15898852
--FOLD 2--

[e]

Will train wntil validation_@-merror hasn't improved in 180 rounds.

[10@]
[20@]
[366]
[406]
[506]
[506]
[70@]
[8ee]
[906]
[999]

[e]

[166]
[206]
[30@]
[40@]
[506]
[606]
[70@]
[808]
[286]
[286]
[2299]

[e]

[186]
[280]
[386]

[486]
[586]
[686]
[780]
[2e0]
[o8e]
[929]

validation_@-merror:®.255724
Will train until validation_&-merror hasn't improved in 188 rounds.
.166336

validation_@-merror:

validation_@-merror:
validation_@-merror:
validation_@-merror:

validation_@-merror:
validation_e@-merror:

validation_e@-merror:
validation_e@-merror:

validation_e@-merror:

=]
=]
=]

=]

144799
134222
127485

.123236
.118896

116825

.113394
.11e618
validation_@-merror:8.188601
old accuracy: ©.8914243242319653

validation_@-merror:8.234915
Will train wntil validation_@-merror hasn't improved in 180 rounds.
validation_@-merror:

validation_@-merror:@
validation_@-merror:@
validation_@-merror:@
H:B
a8
=]
8
8

validation_e-merror

validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:

8.

2]

16621

.146329
.136@35
.129@12
123852
.12a8213
.116522
.113925
.111652

189841

54974

validation_@-merror:e.254692

validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
Fold accuracy: ©.8895353387532614

8.

8.

=]
=]
2]
2]
8.
2]
2]
=]

167671
.l1l478e4
.136197
.129636
.125219
128947
117684
.114762
.112626
1le46s

validation_@-merror:e.254308
Will train wntil validation_@-merror hasn't improved in 188 rounds.
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_@-merror:
validation_g-merror:
validation_@-merror:8.115548
validation_@-merror:8.113438
validation_@-merror:8.111336
Fold accuracy: ©.8887237187283994

8.

2]
2]
2]
=]
=]
-]

e.

168363

.147414
2136411
.13e@s3
.124869
.121272
.118481

115548

validation_@-marror:8.253385
Will train until validation_@-merror

validation_@-merror:
validation_@-merror:
validation_@-merror:

validation_@-merror:
validation_e-merror:
validation_8-marror:
validation_&-marror:
validation_@-merror:
validation_@-merror:
validation_@-merror:

a.

oo

8.

1673587
146187
135778

129284
123972
128161
117148
114482
112344
11a4g

Fold accuracy: ©.889518244184159

hasn't improved in 168@ rounds.

165

8| APPENDIXES

[e] validation_e-merror:e.257324

Will train until validation_&-merror hasn't improved in 188 rounds.

[1e@e] validation_g-merror:8.168183
[2688] validation_g-merror:6.145193
[3e8e] validation_g-merror:6.134283
[4e8] validation_g-merror:6.128486
[5ee] validation_g-merror:6.123143
[Be8] validation_g-merror:6.119264
[7ee] validation_&-merror:8.116419
[8ee] validation_@-merror:8.113967
[cee] validation_@-merror:8.111567
[889] validation_@-merror:8.188044
Fold accuracy: 8.881@8087518251271

[e] validation_@-merror:8.257469

Will train until validation_&-merror hasn't improved in 1688 rounds.

[18@] validation_@-merror:8.168713
[28@] validation_@-merror:8.147175
[3e6] validation @-merror:@.136513

[48@] validation_@-merror:0.129943
[5ea] validation_@-merror:e.12584
[688] wvalidation_@-merror:8.121667
[78@] validation_e-merror:8.117983
[88@] validation_@-merror:8.115497
[oee] validation_@-merror:0.113896
[999] validation_@-merror:0.111362
Fold accuracy: ©.8BB6382858753876
——————————————————————— FOLD 7--------
[8] validation_e-merror:8.25676

Will train until validation_8-merror

[1e@] validation_@-merror:8.16744
[28@] validation_@-merror:0.145783
[3ea] validation_@-merror:@.134856
[488] wvalidation_@-merror:8.12826%
[58@] validation_@-merror:8.123254
[68@] validation_@-merror:8.11917
[7ee] validation_@-merror:0.116445
[8ea] validation_@-merror:0.1137388
[gea] validation_@-merror:0.111592
[929] walidation_@-merror:8.18967
Fold accuracy: 8.89@329856216521
——————————————————————— FOLD 8--------
[e] validation_@-merror:8.256598

Will train wntil validation_&-merror

[1e@] validation_@-merror:0.168542
[268] wvalidation_@-merror:8.147397
[38@] validation_e-merror:8.136376
[48@] validation_@-merror:8.138837
[5ee] validation_@-merror:0.124836
[68@] validation_@-merror:©.128811
[7ea] validation_@-merror:8.11794
[8B@] wvalidation_@-merror:8.114993
[o8@a] validation_e-merror:8.112216
[9289] validation_@-merror:8.118456
Fold accuracy: ©.88954387402738125

hasn't improved in 168 rounds.

hasn't improved in 188 rounds.

[e] validation_@-merror:8.257272

Will train until validation_&-merror hasn't improved in 188 rounds.

[18@] validation_@-merror:8.16914
[28@] validation_@-merror:8.147328
[2ea] validation_@-merror:8.136547
[48@] validation_@-merror:8.13@682%
[5ea] validation_@-merror:8.124236
[68a] validation_@-merror:8.128682
[7ea] validation_@-merror:8.117496
[2ea] validation_@-merror:8.114437
[oea] validation_@-merror:8.1126862
[999] validation_@-merror:8.11€337
Fold accuracy: ©.8896728233060803

166

8| APPENDIXES

""""plotting the classification report for the hidden test set
and the matrix penalty score.

print (" -—-oo oo HIDDEN SET REPORT----=---———————————__ B
print('Hidden set penalty matrix score:', matrix_score(hidden_norm.LITHO.values, hidden_pred_xghb))
print('Hidden set report:', classification_report(hidden_norm.LITHO, hidden_pred_xgb))

Hidden set penalty matrix score: -8.4471167593976977

Hidden set report: precision recall fl-score support
e 8.76 @.86 a.8e 14645
1 @.66 @.42 @.52 12283
2 @.38 @.04 @.91 71827
3 @.27 8.31 @.29 4356
4 @.12 @.85 @.e7 287
5 @.73 8.51 a.6e 8374
6 e.7e e.73 a.71 2985
7 @.99 @.99 @.99 6458
a8 @.73 @.65 @.69 5g7
9 @.55 @.44 @.49 a4l
18 @.79 e.71 @.75 244
accuracy @.82 122397
macro avg @.65 8.68 @.62 122397
weighted avg @.81 9.82 @.81 122387

"“"Storing XGB predctions into a copy of the formated datasets.

train_xgb_res = training form.copy()
test_xgb_res = test_form.copy()
hidden_xgb_res = hidden_form.copy()

train_xgb_res["XGB_TM"] = train_pred_xgb

test_xgb_res['XGB_TM'] = test_pred_xgb
hidden_xgb_res['XGB_TM'] = hidden_pred_xgb

" Plotting hidden test set well logs, actual and predicted Litholofacies by calling
Litho prediction customized function. Only the fist well is displayed.

For plotting additionall wells change the range(e, 1).
See Litho prediction.py for further details about the function.

for i in range(@, 1):
litho_prediction(hidden_xgb_res, i, 1)

weo m e § n oo e u
o0 - 1 | 1 1e0p 1ecp g
a
00 000 1 1
2w { n n § z | i x
F b
3400 { » 0 | » o | o » N
600 24 50 4 s 4 &8
oo - o = oy P~
&
w00 { op o | e b p i M
mod,_ awl___xp s - I
B % -0 0w 8050 B 8 W P B 005 ome oo
ou RsiA [woer Hon @ s

** Only well 15/9-23 belonging to the hidden test set is used for results visualization. Refer
to Execution.ipynb to visualize the lithofacies prediction obtained by XGB for every well
included in the open test and hidden test sets.

167

8| APPENDIXES

8.5 Appendix E — Experimentation Python code (Experimentation.ipynb)

Considering the extensiveness of the experimentation code, it was not included in the current
endorsement. However, if any detail regarding, statistical visualization, feature selection, and
hyper-parameter tuning that leaded to the final machine-learning models included in the
present study is needed, this file as well as the other python appendices included in the
current study can be found open sourced on GitHub.

Experimentation.ipynb GitHub location:

https://qgithub.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-
Geosciences

168

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences

8| APPENDIXES

8.6 Appendix F — Lithology prediction results

8.6.1 Hidden test dataset
Well 15/9-23 WeII 16/2-7

e

05 DO 0505 Oﬂ 0505 DO 0505 DO 0505 00 0505 00 0805 00 0505 00 055 00 05050005 o5 cm 0505 00 0505 00 0505 cm 0505 nn 0505 00 0505 00 0505 an 0505 00 050500 05
XGB LGBM 1N LTHo M KN X8 LGBM NN LUTHO

Well 16/7-6 WeII 17/4-1

DoL LM cH HAL AN i o BS

MR

SH

55

55

le§ 166
a 8
=]

8 3
E E
H H
q g
] E]
= =
5 g
= =z
=1 =1
4

g]
=] =]
g =
= =
E ﬁ
9 9
@ @
@ 7

45 00 0505 00 0%05 DO 055 00 0505 00 0505 00 0505 00 0505 0D 0505 00 050500 05 05 Dﬂ 0505 UEI 0805 EIU 0505 I]U 0505 OEI 0505 00 0405 00 0505 OI] 0505 00 0&0.500 05
LA SVM ot RF NGB LGBM NN LITHO XGB LGBM NN UTHO

169

8| APPENDIXES

WeII 25/ 10-9

0.5 I]O 0505 0.0 0805 DO 080.5 DU 0505 OD 055 00 0805 00 0505 00 055 00 050500 05
S0 XGB LGBM NN uTHO

ii

Well 31/2-21-S

05 00 0505 Oﬂ 0505 DO 055 00 0505 OD 0505 ﬂO 0505 00 0505 OD 0505 00 050500 05

(L} or LGEM NN UTHO

v
@

Well 31/2-

10

w
8
o
8
3
o
ES
4
[
z
L
o
o
o
&
=
z
F

800008

=

BOD00T

le6
0
8
Q
o
®
o
z
5}
=
3
o
2
e
x
H
T
@

—

LA SVM KNN ot RF XoB

Well 34/3-

1ed leb

LGBM

2S

le

CAT NN

lef lef

=5

RERR=

15 DD 0805 !!EI 0&05 DO 0505 I]CI 0505 00 DES 00 DE]S 00 0!05 OD 02!5 00 0£0.500 05

RF XGB

LGBM

NN

05 00 0505 00 0%05 00 0805 00 0505 00 0505 00 0505 00 0505 0.0 0805 00 080500 05

MR DoL LM CH HAL AN i co BS

SH

55

UTHO

S5 SH MR poL LiM cH HAL AN T co BS

s5

LITHO

170

8| APPENDIXES

WeII 35/11-5 WeII 35/9-7

1le6 led 1e6 le§ "i le6 le§ 1 o 126 leb
8 8
3 8
E E
o o
Ed E]
5 3
= H
= 3
o o
o 2
a a
= z
= H
T T
i @
n i n
m i' w“
wn n
i @
45 00 0505 00 0505 00 0505 00 0505 00 0805 00 0505 00 0505 00 0805 00 D!JSDO 05 s Dﬂ 0505 BU 0505 DO 0450 5 DO 0505 OI] 085 00 0505 00 0505 OD 0505 00 080500 05
LR M KNN or RF XoB LGEM CAr NN UTHO XGB LGBM NN UTHO

8.6.2 Open test dataset
Well 15/9-4 Well 25/10-10

-

15 I]O 050.5 OU 055 00 085 DO 0505 OEI 0505 00 0%5 00 0505 00 0805 00 050.500 05 15 I]O 050.5 00 0%5 00 0805 I]O 050.5 00 055 00 0505 00 0505 00 0805 00 050500 05
KNN XGB LGBM Car LITHO KNN XGB LGEM car NN LITHO

85
BS

co
co

TF
TF

AN
AN

HAL

cH HAL
LM CH

[T

DoL

DOL

MR,
MR

SH
SH

55
55

55
55

171

8| APPENDIXES

Well 25/11-24 Well 25/5-3

Bs
8s

co
co

HAL AN TF
AN TF

HAL

cH
cH

UM
UM

DoL
DOL

MR
MR

S5 SH

s5

55 55 SH

)5 00 0505 00 0405 00 0805 00 0505 00 0805 00 0505 00 0505 00 0505 00 080500 05 15 00 0505 00 0&05 00 0505 00 0505 00 0&05 00 0S5 00 0505 00 0405 00 080500 05
LR SVM KNN ot RF MGE LGBM car NN UTHO &) SUM KAN oT RF XGB LGAM AT NN LITHO

=i
ii

Well 29/3-1 Well 34/10-16R

IE
ii

===

s

BS

co

TF

AN

HAL

cH

DoL

MR

sH

55

Ill[ﬂl}lﬂ]ﬂﬂ_ II Ill][]l.
]lI[ﬂIIIH]ﬂﬂ_ [T R

05 00 0505 00 0505 00 0805 DG 0505 ﬂﬂ 0815 00 0%5 00 0505 00 0805 00 080500 05 05 00 0505 00 0505 00 0%05 I]O 050.5 OU 055 00 0505 00 0505 OEI 0505 00 050.500 05
L) SVM KNN HGE LGBM car NN LITHO LR WM KNN XGB LGBM NN LITHO

172

8| APPENDIXES

Well 34/3-3A

SDU 0505 NI 0805 00 0505 I]O 050.5 00 085 00 0505 00 0505 0ﬂ 055 00 050500 05

Illlﬁ ‘I

LGBM NN LUTHO

Well 34/3-3A

1

L

L

i

LR

Sm KNN

or

RF X8

05 00 005 00 05 00 0505 00 0505 00 005 00 0&0.5 00 0505 00 085 00 050500 05

LGaM AT NN UTHO

M cH HAL AN TF co BS

DoL

Well 34/6-1S

£ 20000¢

5 00 0505 MI ms IJO I]EIS 0o 0505 00 ms DO DQJS 0o 0905 GEI D!OS DO 050500 05
UTHO

M

KNN

ot

RF

Well 34/6-1S

e

LGBM

car

NN

05 00 0505 00 0805 00 0505 00 0505 00 0805 00 0505 00 0505 00 0805 00 080500 05

LR

)

KN

oT

RF

HGE

LGBM

car

NN

UTHO

173

8| APPENDIXES

8.7 Appendix G — Open set classification histograms

TOTAL PREDICTION COUNTS 120000 WRONG PREDICTIONS
e = REAL LITHOLOGY = REAL LITHOLOGY
== LOGISTIC REGRESSION - LR mm LOGISTIC REGRESSION - LR
100000 = SUPPORT VECTOR MACHINES - SVM 100000 T mmm SUPPORT VECTOR MACHINES - SVM
= K-NEAREST NEIGHBORS - KNN mmm K-NEAREST NEIGHBORS - KNN
mmm DECISION TREE -OT mmm DECISION TREE -DT
E0000 . RANDOM FOREST - RF BD0OO { mmm RANDOM FOREST - RF
mmm EXTREME GRADIENT BOOSTING - XGB mmm EXTREME GRADIENT BOOSTING - XGB
K‘ e LIGHT GRADIENT BOOSTING - LGBT ﬂ = LIGHT GRADIENT BOOSTING - LGBT
£ @000 mm CATEGORICAL GRADIENT BOOSTING - CAT § 60000 | mmm CATEGORICAL GRADIENT BOOSTING - CAT
g mm NEURAL NETWORKS - NN 8 mm NEURAL NETWORKS - NN
40000 40000
20000 20000
']
’ Sandstone Sandstone/Shale Limestone Shale Sandstone Sandstone/Shale Limestone
Figure 87 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.
w000 TOTAL PREDICTION COUNTS 000 WRONG PREDICTIONS
= REAL LITHOLOGY mm REAL LITHOLOGY
3500 mmm LOGISTIC REGRESSION - LR 1750 N LOGISTIC REGRESSION - LR
mmm SUPPORT VECTOR MACHINES - SVM mmm SUPPORT VECTOR MACHINES - SVM
mmm K-NEAREST NEIGHBORS - KNN mmm K-NEAREST NEIGHBORS - KNN
000 mmm DECISION TREE -DT 1500 mmm DECISION TREE -DT
mmm RANDOM FOREST - RF == RANDOM FOREST - RF
2500 mmm EXTREME GRADIENT BOOSTING - XGB 1250 = EXTREME GRADIENT BOOSTING - XGB
mm LIGHT GRADIENT BOOSTING - LGBT E m LIGHT GRADIENT BOOSTING - LGET
= 2000 W CATEGORICAL GRADIENT BOOSTING - CAT g 1000 em CATEGORICAL GRADIENT BOOSTING - CAT
2 e NEURAL NETWORKS - NN 8 mm NEURAL NETWORKS - NN
0
500
50
0
Tuff Coal Chalk Marl Tuff Coal Chalk

Figure 88 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for marl, tuff, coal, and chalk.

w0 TOTAL PREDICTION COUNTS WRONG PREDICTIONS
500
= REAL LITHOLOGY = REAL LITHOLOGY
m= LOGISTIC REGRESSION - LR = LOGISTIC REGRESSION - LR
= SUPPORT VECTOR MACHINES - SVM = SUPPORT VECTOR MACHINES - SVM
400 mmm K-NEAREST NEIGHBORS - KNN 400 W K-NEAREST NEIGHBORS - KN
== DECISION TREE -DT == DECISION TREE -DT
W RANDOM FOREST - RF W RANDOM FOREST - RF
00 == EXTREME GRADIENT BOOSTING - XGB 00 === EXTREME GRADIENT BOOSTING - XGB
@a W LIGHT GRADIENT BOOSTING - LGBT il W LIGHT GRADIENT BOOSTING - LGBT
= === CATEGORICAL GRADIENT BOOSTING - CAT | = m=s CATEGORICAL GRADIENT BOOSTING - CAT
3 m NEURAL NETWORKS - NN g mmm NEURAL NETWORKS - NN
200
100
- = - 0 - |
Dolomite Anhydrite Halite Dolomite Anhydrite Halite

Figure 89 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for dolomite, anhydrite, and halite.

174

8| APPENDIXES

8.8 Appendix H — FORCE penalty matrix

N]
: i j i § 3 g
Sandstone ___33 3 35 35
A 1‘:'{' 2. 3
Shale L » 3.5) 3.29
Mart 3378
Dolomite as| 5 25
Limestone 2 33| 35
Chatk 3.
Malite
o :
Tutf 2 z 3375 35
coal 335
Crystalline Basement 3 32 323

Figure 90 Appendix H - FORCE penalty matrix NPD, (2021)

175

8| APPENDIXES

8.9 Appendix | — Categorical gradient boosting explanation

GR
GROUP_encoded
NPHI_COMB
Y.loc

RHOB

x.1oc
FORMATION_encoded
WELL_encoded
cau

RMED
OTS_coms

oTc

20 -1s -lo 05 00 05 10 15
SHAP value (impact on model output)

GR

GROUP_encoded
x 1oc

RHOB

RMED
NPHI_COMB
WELL_encoded
FORMATION_encoded
Y.L0c

s

oTC

DEPTH_MD

cau

z10c

MD_TVD
OTs_coms

GR
Y.oc
GROUP_encoded
WELL_encoded
DEPTH_MD

MD_TVD
FORMATION_encoded
z.10c

OTS_COMB
NPHI_COMB

3 0s 10 15
SHAP value (impact on model output)

FORMATION_encoded
GROUP_encoded
NPHI_COMB

GR

DEPTH_MD

WELL encoded

RHOB

vD_TVD
z.10c
x10c
AMED

cau
ors_coms

ummilhu”

s 1o 20

o
SHAP value (impact on model output)

ow

rgn

Feature value

Feature value

GR
WELL_encoded
GROUP_encoded
NPHI_COMB

Y.loc

xLoc
FORMATION_encoded

Feature value

oTS_coms
oTC
DEPTH_MD
MD_TVD
z1oc

Y.L0c
GR

GROUP_encoded
WELL_encoded
NPHI_COMB

MD_TVD

x10¢

RHOB

cau

z1o0c
FORMATION_encoded
DEPTH_MD

RMED

Ed

ote

DTS_coMe

GR
GROUP_encoded
FORMATION_encoded
x1oc

WELL encoded

RHOB

NPHI_COMB

RMED

Y.toc

OTs_coms

P

MD_TVD

DEPTH_MD

Feature value

z.10c
cau
oTC

RHOB
NPHI_COMB
GROUP_encoded
v.oc

DEPTH_MD
FORMATION_encoded
RMED

x10c
WELL_encoded
z1oc

cau

MD_TVD
DTS_COMB
[

20 15 10 05 00 05
SHAP value (impact on model output)

10

08 -06 —04 62 00 02 04

06
SHAP value (impact on model output)

e
e
>

o8

ET) 20

35 o o 15
SHAP value (impact on model output)

—
oo
-

o 65 00 05 10 15
SHAP value (impact on model output)

Hgh

Low

Feature value

Hgh

Low

Feature value

GR
NPHI_COMB
GROUP_encoded
Y.1oc

WELL encoded

RMED
FORMATION_encoded

Feature value

OTs_coms
DEPTH_MD
cau
x1oc
z10c
MD_TVD

GR
GROUP_encoded
Y.Loc

DEPTH_MD

RHOB
FORMATION_encoded
WELL encoded
MD_TVD

z1oc

otc

RMED

OTs_coms
NPHI_COMB

cau

x1oc

R
FORMATION_encoded
GROUP_encoded
x1oc

WELL encoded
NPHI_COMB
oTS_COMB

mD_TVD

RMED

Feature value

v.1oc
RHOB

s
DEPTH_MD
cau
z.10c

o

GROUP_encoded
Y.oc
WELL_encoded
R

Ed

x.10c
DEPTH_MD
z.10c

MD_TVD
FORMATION_encoded
DTS_coms
NPHI_COMB
RHOB

s 1o = o 05
SHAP value (impact on model output)

B

——
—ae
o
4;
-
—
p
e

05 00 05 10
SHAP value (impact on model output)

~0.050-0025 0000 0025 0050 0075 0100 0125 0150
SHAP value (impact on model output)

Feature value

Feature value

Feature value

Feature value

Figure 91 Appendix | - Categorical Boosting Classifier: SHAP values impact on each lithology prediction.
Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7),
anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered from top left to right down.

176

8| APPENDIXES

8.10 Appendix J — Light gradient boosting explanation

on on o
L Y I a— v L e T ——
GROUP_encoded gy H— Y.toc s a—— NPHICOMB. s .
NPHICOMB e WELL encoded — G ——— orc —
RMED B e — GROUP_encoded e 5 5 x10c -
cau e oTR i ——n WELL_encoded —t—
RHoB ——ef— x.toc —-o Y.Loc
Yo —p— DEPTH_MD. B et cau
xtoc —f— RMED. e vo_TVD <~
e 2100 P RouP_encoded —
210c au — o e
WELL encoded —— 2 wo_TvD P 3 ors_coms i 3
ok o p— H e —) 3 Z0c - H
oTs_coms. — H s — H [-+ H
ROEP - & RHOB — 2 EPTH MD &
o <+ oMo — *
vo_TVD = Per G- DRHO .
ocaL + ors._cows - weo
ot -+ NeHLCOMB e RoEp
o : oy . T
orn rsa oea 4
+— wor —4 o
= 1 x nor
x ™ RSHA
or] o + x {
s o 05 oo o5 o 15 70 @5 O R e P A . B) T H o
SHAP value (impact on model output) SHAP value (impact on model output) SHAP value (impact on model output)
o o o
RO encoded i ——— wvo —————— ore —————
Wl encodes mep— wion B — P00 ————
o8 o egm— orn B oerm MO ———————
x10¢ eGP KUOC —— WPHI_COMB —
Wrva_coMB B e 0EPTH MO ——— GROUP_encoded R
oau —— ¥.10c A wos e — -
o R 2u0c - — @ R e
GG ———— GAOUP_sncoded e ver —affo—
z1oc Ee o oA XLOC ————
orc - * -d vo_1vo L
Loc —p 3 = —Jr- 3 WELL encoded —— s
e —t H @ — -] au -4 1
oo g § ore - é woc —— H
AMED. e & ocAL B ocAL 4 2
= +— RoF % X e
ora 4 WELL encoded o R
ocaL < New_coms —_— orw <
ors.cons o— [N aver -
nor e rer e -
L om0 oaro ~
nsa - noer nor -
ot - ors._cous = 4
oRHO +~ en AsA v
o ™ ors_cons o
x) o o i
i O T S ;o
SHAP value (impact on model output) SHAP vaiue (impact on model output] ‘SHAP value (impact on model output)
o o £
Y100 e — GROUP_encoded - WELL encaded - —
[ERTSrS——.. S — a = = cRouP ancoded 1-- —_—
@ —— o0 %10 [
WL ancoded o — o - 1o
e —— - T e = —
- 4 wios S - ¢ p——
MOTVD wer_coma - - o -
0B —— vioc ooaL
AMED - ors_coma s
RosP o cerne o ™
s - s - - 3 nor
nor - H cau 3 ADER i
orn - i x10e i x H
xioc i Zwe i ot H
zwc RO DRHO ..
Al -+ 3 AL
e -—+ a cerTH MO
! -4 kA ors._come
ote - e zi0¢
x = o -
ocaL WiLL_sncoded e .
oo oA mEo
o ocaL vo_vo
o3 coms mED =
7w @ O 15 % - 3 e 7 7 3 7 3 - 35 @0 o 1o 15 e 5 3e e
SHAP vl (mmpact on mocel output) SHAP value (impact on morel cutpul) AP valus (Impact on mosal eutput)
. an o
e — P e —eeeeee . -] -
[rep—— - —— Z10c —— aote [-
o T cEFTH MO —fe———— WeLL_omcoded 4 -
e wewcoma ——————— X100 -
oo —— [—— -
20 — GROUP_ancoded p P
P _comp —- cau S— cerTH D
WELL encoded t noEP. 4 o_TvD
or rer e au
oau . o mos
ore s X0 B ad 3 o g
x10c 3 »o_TVO +— : NPH_COMB H
- E - H o H
- wor -+ H .
nsha - @ o p—— e
ooAL ors_coms —— oRHO.
won + WELL encoded ——
oo -+ - — oo
s + ore -4 rr—
wor —+ orn -4 2.0¢
ors cona P 4 s
P oo 4 nr
RDEP DcAL - -
- 1 - + “oc
+ o ow 1 o

RIS o 1 7 3
SHAP vahse impact on modal oUpUE)

SHAP value (impact on mode output]

SHAP value (impact on mosdel output)

Figure 92 Appendix J - Light Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone
(0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff
(9), coal (10), basement (11). Figures ordered from top left to right down.

177

8| APPENDIXES

8.11 Appendix K — Extreme gradient boosting explanation

o o o
L et — voc e o @
wv_coms e e—— - - WeLL encoded 7 e Newi_CoMB . o
o coded e e e x10c L el
RMED. e GROUP_sncoded e e orc —
o8 e orR | e WELL_encoded b
o -go—— cerm Mo —f— o —t
u e x10¢ Q- Y10 —_—
e au - z10c —
R D —_—f o
FORMATION_ ancoded . GRoUP sncoded
- D i piai 4 § onsisTion amcaded - 3
voer o 3 za0c - 3 oo e H
FoRMATION,encoded —_— H s - g ios ¢
ore - i noer -—p K oerme Mo i
ors_comn —_ oRMO. - DRHO.
™ - v coms or.n
.o [- AMeD
P T a 2
orc — asiia -+ rorr
oca ios rer
Rt oo oA
Quster oo nsaen
» e ar
ranc x Quster
+ p =
— on o e).
e o o5 W6 T e R U E R) G T
SHAP value impact on model cutput) SHAP value Gmpoct on model cutput) SHAP vaiue (mpact on model output]
o SMAP value (impact on model output) | on
GROUP_encoded OffiO— P — o i coms -
WL encoded —di ot oo —— DEPTH MO -
o8 —t— oR P e e O ——
%10 o GROUP encoted - A HOUP orcofed i
DEPTH MO Qi nom e — - OB et ——
@ —d z10c — 7100 ——
HPHI_COME ofe x10c L —eem s
P — oern MO e ettt
Y.t0c —— Custer [xtoc —_——
Vo e au 4= x —
FORMATION encoded : com goc no_vo -
e ar noer ——- 3
orn r Y10c R 3
Chstor g WELL encoded - H
pd » FORMATION sncaded s b= 4 i
% b 4 nop 4] © omsanon_encoded e
. oy
. %. o e e+
WeLL_ancoded g
20 o ar —
nueo i au -+
i otk o -
ks wmeD Custar ¢
DPLOn s comn -- @ 4
Ling rer DRHO -+
roer oMl RSHA. -
= oS ocaL —
SHAP vaue (impact on model utput] " s vaue Gmpact o0 model otput |
ah - e Gou ded N
—-— . - Npp— —
vaoc ——e — o ':.'_ P e -
RO ncoded o ——h aios - up
cerm 0 — o J— et
WHI_COME: o x10¢ + @
' - r [— 4
cluster T L [—-
vo_Tvo CEPTH_MD ore -
x10c o8, coMs - oo g
WELL_encoded - o pars
mon o e —
1 oo b 5 - -+ H
. 1 . 1 xtoc H
Per H z1oc H o E H
orn : o 3 oo - i
Lol WELL_encoded . -
FoRmaTION ancodsd ™ ceri o
- M os_coms
wr . A
wer o ‘OAMATION ancoded
eau = x
o oa 100
o e -
ors.coma = oca
P wn wED
DCAL FORMATION_encoded -
N S NN NP L - Ea— T] 7 - T T 3 3
50aP value (mpact on model usput) Srune value limpact on model autput) SHAP VBl [pACt on modH OUtpA)
- o .
T —_— N _ — -
[y o _._""_. orscoms | -
MO - RoUP_encoded E o - -
e - o pm— 1oc "
raoc - i s wr
o -+ e —— ommation sncoses ==
on +— s s oeaL
o -+ pa—— . T oerme 0
FHED EF e -
ke " p— oc
e - FORMATION_encoded -+
ar x10¢ - s H
WELL sncoded B & i i
.o % § vaoc 4 H 5
Koc £ @ - 3 H
orvo -
os_coms it o
rer x - A
e WELL encoded <4 o
Zyoc DCAL Wra_COMB
wev_comn - 3 o
@ oo an
s o mED
B orc -
on & Rsha
o 1SMA L3

ET] T 7 %
SHAP valus (impact an model sutput]

E S T N B)
SHAP value (impact on model output]

‘SHaP value (impact an model sutput

Figure 93 Appendix K - Extreme Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone (0),
shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10),
basement (11). Figures ordered from top left to right down.

178

