

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/ Specialization:

MSc. Petroleum Geosciences

Spring semester, 2021

Open

Author:

John Paul Masapanta Pozo

……………………………….

John Masapanta Pozo

Faculty Supervisor:

UiS – Prof, Equinor. Arild Buland

Thesis title:

MACHINE AND DEEP LEARNING FOR LITHOFACIES CLASSIFICATION

FROM WELL LOGS IN THE NORTH SEA.

Credits (ECTS): 30 ECTS

Keywords:

Lithofacies, well logs, machine

Learning, deep learning, neural

networks.

Number of pages: 194

+ enclosure: 135

+ supplement material/other: python

pseudo-library and execution files,

59 pages.

Stavanger, 06th July, 2021

This page intentionally left blank.

John Paul Masapanta Pozo

Machine and Deep Learning for Lithofacies

Classification from Well Logs in the North Sea.

Master Thesis Project for the degree of

Master of Science in Petroleum Geosciences.

Stavanger, July 2021

University of Stavanger

Faculty of Science and Technology

Department of Energy Resources

0|Acknowledgments

ii

Abstract

Lithology identification by using well log data is an initial and fundamental step within

petroleum geosciences; same that provides essential information about the subsurface and

plays a crucial role in reservoir characterization. In addition, well log interpretation is a

process that involves a great amount of data, same that is currently handled by experts in

order to attain an accurate portrayal of the subsurface. However, as humanity enters the era

of big data in companion of the increasing technological and computational development,

data science and machine learning are progressively taking over the forefront of the future of

the oil and gas industry in order to improve and optimize processes.

In consequence, the objective of current study is to explore and compare the potentiality of

different supervised machine learning and deep learning algorithms to classify 12 different

lithology facies by using the well log data of 118 wells located in the North Sea, same that

are divided into three subsets for training, validation, and testing purposes. Additionally, we

explore and discuss a machine-learning-based feature augmentation methodology as an

attempt to improve the quality of the original dataset and consequently the final classification

results. The analyzed models include standalone algorithms such as Logistic Regression, K-

Nearest Neighbor, Supervised Vector Machines, Decision Trees, ensemble gradient boosting

tree-based algorithms such as Random Forest, Categorical Gradient Boosting, Light Gradient

Booting, and eXtreme Gradient Boosting, and a two-hidden layer Neural Network.

The results showed that by incorporating machine-learning-based feature augmentation

every model experienced a performance enhancement, where trees-based gradient boosting

algorithms along with random forest, and neural networks appeared to achieve the highest

classification performances. Finally, we compare all the models performances and discuss

possible reasons why although many algorithms offer high classification performances, they

found problems to properly predict mixed-based lithologies, as well as how the interpreters’

subjectivity impact the models performances, and possible future approaches to enhance our

best classification accuracy of 82.5% on previously unseen objects.

Keyword: Lithofacies, Well Logs, Machine Learning, Deep Learning, Neural Networks.

0|Acknowledgments

iii

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Arild Buland for his time,

openness, and continuous support and supervision. Thank you for bringing great comments

and ideas along this great journey of continuous learning.

To my family for having a space for me in their minds and hearts regardless of the distance,

in special to my parents who have been always there with me with no excuses. My profound

gratitude to them for helping me to make my deepest dreams come true.

John. M.

0|Table of Content

iv

Table of Content

Acknowledgments ... iii

Table of Content .. iv

List of Figures ... vii

List of Tables ... xiii

1. INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY 1

1.1 Introduction .. 1

1.2 Dataset description ... 2

1.3 Methodology .. 5

2. SUPERVISED LEARNING THEORETICAL BACKGROUNG 6

2.1 STANDARD MACHINE LEARNING ALGORITHMS 6

2.1.1 Logistic Regression .. 6

2.1.2 K-Nearest Neighbor, KNN ... 7

2.1.3 Support Vector Machines, SVM .. 9

2.1.4 Decision or Classification Trees ... 11

2.2 ENSEMBLE MODELS ... 13

2.2.1 Random Forest, RF ... 13

2.2.2 Gradient Boosting Decision Tree Ensembles, GBDT 15

2.3 NEURAL NETWORKS AND DEEP LEARNING .. 18

2.3.1 Evaluation Metrics for classification .. 22

3. DATA ANALYSISI AND PROCESSING .. 24

3.1 EXPLORATORY DATA ANALYSIS ... 24

3.1.1 Exploring Lithofacies Labels.. 24

3.1.2 Exploring Features .. 27

3.2 DATA PREPARATION .. 33

3.2.1 Standard Data Imputation, Normalization, and Outlier Removal 33

3.2.2 Machine-learning-based data augmentation ... 37

3.2.3 Feature Engineering .. 44

4. LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING 47

0|Table of Content

v

4.1 BASELINE MODEL OVERVIEW ... 47

4.2 CONVENTIONAL MACHINE-LEARNING METHODS 49

4.2.1 Logistic Regression .. 49

4.2.2 K-Nearest Neighbor .. 53

4.2.3 Support Vector Machines ... 58

4.2.4 Decision Trees .. 60

4.3 ENSEMBLE MACHINE-LEARNING METHODS ... 63

4.3.1 Random Forest .. 63

4.3.1.1 Recursive Feature Elimination .. 63

4.3.1.2 Hyper-parameter Tuning ... 65

4.3.2 Categorical Gradient Boosting ... 67

4.3.2.1 Recursive Feature Elimination .. 68

4.3.2.2 Hyper-parameter Tuning ... 69

4.3.2.3 Categorical Gradient Boosting Interpretability ... 73

4.3.3 Light Gradient Boosting ... 76

4.3.3.1 Recursive Feature Elimination .. 76

4.3.3.2 Hyper-parameter tuning .. 77

4.3.3.3 Light Gradient Boosting Interpretability .. 81

4.3.4 Extreme Gradient Boosting .. 83

4.3.4.1 Recursive Feature Elimination .. 83

4.3.4.2 Hyper-parameter Tuning ... 85

4.3.4.3 XGBoost Interpretability .. 87

4.4 Deep Learning – Neural Network .. 90

4.4.1 One-hidden Layer Base Model ... 90

4.4.2 Feature Importance Investigation ... 93

4.4.3 Bayesian Optimization ... 93

5. PERFORMANCE COMPARISION ... 101

6. CONCLUSIONS, AND FUTURE ENHACEMENTS ... 113

6.1 Conclusions .. 113

6.2 Future enhancements ... 115

7. REFERENCES .. 116

0|Table of Content

vi

8. APPENDIXES .. 120

8.1 Appendix A – Additional utility functions Python Code 121

8.1.1 Plotting Functionalities (plotting.py) .. 121

8.1.2 Confusion Matrix and Penalty Matrix Score (additional_functions.py) 125

8.1.3 Data formatting (data_formating.py) .. 127

8.1.4 Data Pre-processing (preprocessing.py) ... 128

8.1.5 Data machine-learning augmentation (augmentation.py) 131

8.1.6 Data Normalization (input_norm.py) ... 142

8.2 Appendix B – Machine and Deep Learning Models Python Code 144

8.2.1 Logistic Regression (LR_model.py)... 144

8.2.2 K-Nearest Neighbors (KNN_model.py) ... 145

8.2.3 Support Vector Machines (SVM_model.py) .. 146

8.2.4 Decision Tree (DT_model.py) .. 148

8.2.5 Random Forest (RF_model.py) .. 149

8.2.6 Categorical Gradient Boosting (CatBoost_model.py) 151

8.2.7 Extreme Gradient Boosting (XGB_model.py) ... 153

8.2.8 Neural Network (NN_model.py) .. 155

8.3 Appendix C – Neural network Bayesian parameter optimization (Bayes_opt.py)

 158

8.4 Appendix D – Execution Python Code (Execution.py) 161

8.5 Appendix E – Experimentation Python code (Experimentation.ipynb) 168

8.6 Appendix F – Lithology prediction results .. 169

8.6.1 Hidden test dataset .. 169

8.6.2 Open test dataset ... 171

8.7 Appendix G – Open set classification histograms ... 174

8.8 Appendix H – FORCE penalty matrix ... 175

8.9 Appendix I – Categorical gradient boosting explanation 176

8.10 Appendix J – Light gradient boosting explanation .. 177

8.11 Appendix K – Extreme gradient boosting explanation .. 178

0|List of Figures

vii

List of Figures

Figure 1 Wells geographical location. .. 3

Figure 2 Machine and deep leaning methodology workflow. .. 5

Figure 3 Logistic Function (allows transforming the log-odds parameters to the probability

of an instance belonging to a certain positive class). ... 7

Figure 4 Distance between (0, 0) and (15, 10) as a function of parameter (Bonaccorso, 2020).

 .. 8

Figure 5 Hard (left) and soft (right) separating margins implemented on SVM (Awad and

Khanna, 2015). ... 9

Figure 6 Support vector machines kernel trick functioning (Sharma, 2019). 10

Figure 7 Decision tree applied on IRIS dataset (Pedregosa et al., 2011). 11

Figure 8 Information gain for discrete distributions. (a) Complete dataset before splitting.

(b) Dataset after a horizontal split. (c) Dataset after a vertical split. (Criminisi et al., 2011).

 .. 12

Figure 9 Three different decision trees part of a random forest reproducing

different probability distribution outputs (Criminisi et al., 2011). 14

Figure 10 Boosting trees visual example training functionality (Chen and Guestrin, 2016).

 .. 17

Figure 11 Perceptron functionality diagram for a binary output. ... 19

Figure 12 Neural Network Basic Structure. ... 19

Figure 13 Neural Network training optimization process by implementing back propagation

(Nielsen, 2015). .. 21

Figure 14 Lithofacies presence percentage distributions ... 25

Figure 15 Wells geological location (NPD, 2021) ... 26

Figure 16 Feature Presence per well – Training Set (upper center),

Open Test Set (lower left) Hidden Test Set (lower right) .. 28

Figure 17 Wireline logs boxplots color labeled by lithology, (a) Gamma Ray,

(b) Spontaneous Potential, (c) Neutron Porosity, (d) Compressional Slowness. 29

Figure 18 Spearman's correlation between wireline logs color-coded by correlation strength.

 .. 30

0|List of Figures

viii

Figure 19 Bivariate correlation between most relevant logs for lithology identification,

distributions color labeled by lithology shown on the diagonal. .. 31

Figure 20 Different normalization techniques applied on the training dataset: Before scaling

(upper-left), Min-max scaled data (upper-right), Standardized data (lower-left), (d)

Normalized data (lower-left) .. 34

Figure 21 10% training data subsample boxplot before outlier removal (upper-left), 10%

training data subsample boxplot after LOF outlier removal (upper-right), Subsample

removed outliers’ counts by lithofacie. .. 36

Figure 22 Machine-learning-based feature imputation algorithm .. 38

Figure 23 (a) Actual DTS vs. predicted DTS, (b) Actual DTS probability distributions by

lithology, (c) Predicted DTS probability distributions by lithology, (d) Final ML imputed

DTS probability distributions by lithology. .. 40

Figure 24 (a) Actual NPHI vs. predicted NPHI, (b) Actual NPHI probability distributions by

lithology, (c) Predicted NPHI probability distributions by lithology, (d) Final ML imputed

NPHI probability distributions by lithology. .. 41

Figure 25 (a) Actual RHOB vs. predicted RHOB, (b) Actual RHOB probability distributions

by lithology, (c) Predicted RHOB probability distributions by lithology, (d) Final ML

imputed RHOB probability distributions by lithology. .. 41

Figure 26 (a) Actual DTC vs. predicted DTC, (b) Actual DTC probability distributions by

lithology, (c) Predicted DTC probability distributions by lithology, (d) Final ML imputed

DTC probability distributions by lithology. ... 42

Figure 27 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 35/9-8). 43

Figure 28 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 34/5-1S). 44

Figure 29 Optimal number of clusters based on elbow method (left), Clusters visualization

(right) .. 45

Figure 30 Base models average accuracies while iteratively training on 9 k-folds

and testing on the 10th k-fold. ... 48

Figure 31 Logistic Regression Classifier: Recursive feature elimination by a logistic

regression-based wrapper ... 49

Figure 32 Logistic Regression Classifier: Permutation feature importance 50

0|List of Figures

ix

Figure 33 Logistic Regression Classifier: Different inverse regularization strength tested

on the training and open test set (log C vs. accuracy) .. 51

Figure 34 Logistic Regression Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 53

Figure 35 K-Nearest Neighbor Classifier: Permutation feature importance. 54

Figure 36 K-Nearest Neighbor Classifier: Impact the number of training features has on the

classification accuracy. ... 55

Figure 37 K-Nearest Neighbor Classifier: Number of neighbors vs. accuracy. 56

Figure 38 K-Nearest Neighbor Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 57

Figure 39 Support Vector Machines Classifier: Regularization vs. accuracy. 58

Figure 40 Support Vector Machines Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 60

Figure 41 Decision Tree Classifier: Cost complexity factor ccp_alpha vs. accuracy

on the training and open test datasets. .. 61

Figure 42 Decision Tree Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 63

Figure 43 Random Forest Classifier: Recursive feature elimination wrapper results 64

Figure 44 Random Forest Classifier: Feature importance given by the RFE wrapper......... 64

Figure 45 Random Forest Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 66

Figure 46 Categorical Boosting Classifier: Recursive feature elimination wrapper results. 68

Figure 47 Categorical Boosting Classifier: Feature importance given by the RFE wrapper 69

Figure 48 Categorical Boosting Classifier: Learning rate vs. accuracy 70

Figure 49 Categorical Boosting Classifier: Tree depth vs. accuracy (left) and

L2 regularization term vs. accuracy (right). ... 71

Figure 50 Categorical Boosting Classifier: Tree growing policy vs. accuracy (left) and

Border count vs. accuracy (right). .. 71

Figure 51 Categorical Boosting Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 73

Figure 52 Categorical Boosting Classifier: SHAP values for each target lithology class 74

0|List of Figures

x

Figure 53 Categorical Boosting Classifier: (a) SHAP values impact while predicting

sandstone, (b) SHAP values impact while predicting shaly-sandstone, (c) SHAP values

impact while predicting shale. .. 75

Figure 54 Light Boosting Classifier: Recursive feature elimination wrapper 77

Figure 55 Light Boosting Classifier: Feature importance given by the RFE wrapper 77

Figure 56 Light Boosting Classifier: Learning rate vs. accuracy ... 78

Figure 57 Light Boosting Classifier: Maximum tree depth vs. accuracy (left) and

Regularization lambda L2 vs. accuracy (right). ... 79

Figure 58 Light Boosting Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right). ... 80

Figure 59 Light Boosting Classifier: SHAP values for each target lithology class 81

Figure 60 Light Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b)

SHAP values impact while predicting shaly-sandstone, (c) SHAP values impact while

predicting shale. .. 82

Figure 61 Extreme Boosting Classifier: Recursive feature elimination wrapper 84

Figure 62 Extreme Boosting Classifier: Feature importance given by the RFE wrapper 84

Figure 63 Extreme Boosting Classifier: Learning rate vs. accuracy 85

Figure 64 Extreme Boosting Classifier: Tree depth vs. accuracy .. 86

Figure 65 Extreme Boosting Classifier: Classification confusion matrices normalized by the

number of predictions by class (a) Open test set, (b) Hidden test set................................... 88

Figure 66 Extreme Boosting Classifier: SHAP values for each target lithology class......... 88

Figure 67 Extreme Boosting Classifier: (a) SHAP values impact while predicting dolomite,

(b) SHAP values impact while predicting shaly-sandstone, (c) SHAP values impact while

predicting marl. ... 89

Figure 68 Neural Network: Base model structure .. 91

Figure 69 Neural Network: Base model number of trainable parameters and output shape in

each layer. ... 91

Figure 70 Neural Network: 30-feature-based baseline model training history 92

Figure 71 Neural Network: Stochastic Gradient Descent-based neural network base model

accuracy history (left) and loss function history (right). .. 92

Figure 72 Neural Network: Feature selection... 94

0|List of Figures

xi

Figure 73 Neural Network: General optimization scheme. .. 95

Figure 74 Neural Network: Bayesian optimization neural network convergence................ 96

Figure 75 Neural Network: Hyper-parameter evaluation histograms. 97

Figure 76 Neural Network: Hyper-parameter two-dimensional partial dependence. 98

Figure 77 Neural Network: Optimized model accuracy (left) and loss function (right) training

history. .. 99

Figure 78 Neural Network classifier: Classification confusion matrices normalized by the

number of predictions by class (a) Open test set, (b) Hidden test set................................. 100

Figure 79 Hidden test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

 .. 102

Figure 80 Hidden test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for halite, marl, chalk, and tuff. 103

Figure 81 Hidden test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for anhydrite, coal, and dolomite. 103

Figure 82 Prediction analysis well 16/2-7 .. 107

Figure 83 Well 16/2-7, core taken within interval from 2285 to 2315 meters. 108

Figure 84 Prediction analysis well 15/9-14 .. 109

Figure 85 Gamma ray log response according to well location ... 109

Figure 86 Prediction analysis wells 34/10-16R (a), 35/6-2S (b), 35/9-8 (c), 17/4-1 (d), and

31/2-21S (e). ... 110

Figure 87 Open test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

 .. 174

Figure 88 Open test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for marl, tuff, coal, and chalk. 174

Figure 89 Open test set prediction histograms: Total predictions count (left)

and wrong predictions counts (right) for dolomite, anhydrite, and halite. 174

Figure 90 Appendix H - FORCE penalty matrix NPD, (2021) ... 175

Figure 91 Appendix I - Categorical Boosting Classifier: SHAP values impact on each

lithology prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4),

0|List of Figures

xii

limestone (5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures

ordered from top left to right down. ... 176

Figure 92 Appendix J - Light Boosting Classifier: SHAP values impact on each lithology

prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone

(5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered

from top left to right down. .. 177

Figure 93 Appendix K - Extreme Boosting Classifier: SHAP values impact on each lithology

prediction. Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone

(5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered

from top left to right down. .. 178

0|List of Tables

xiii

List of Tables

Table 1 Training, open test, and hidden test datasets description and missing data summary.

 .. 4

Table 2 Confusion matrix structure for a binary classification problem 22

Table 3 Lithofacies presence percentages summary. ... 24

Table 4 Different data normalization techniques tested on a logistic regression base model

 .. 35

Table 5 Outlier elimination methods tested on a logistic regression base model 36

Table 6 Feature prediction priority ranking to follow for ML imputation 38

Table 7 Shear slowness DTS prediction results - Prediction substage 1 39

Table 8 Neutron Porosity NPHI prediction results - Prediction substage 2 40

Table 9 Bulk Density RHOB prediction results - Prediction substage 3.............................. 41

Table 10 Compressional Slowness DTC prediction results - Prediction substage 4 42

Table 11 Additional features incorporated into datasets .. 44

Table 12 Logistic regression model's performance by using median-imputed data, machine

learning-imputed data, and after including additional features. ... 45

Table 13 Available Features for training the learning machines. ... 48

Table 14 Logistic Regression Classifier: Optimal hyper-parameters 51

Table 15 Logistic Regression Classifier: Classification reports for the training,

open test, and hidden test datasets. ... 52

Table 16 K-Nearest Neighbor Classifier: Optimal hyper-parameters. 56

Table 17 K-Nearest Neighbor Classifier: Classification reports for the training,

open test, and hidden test datasets. ... 57

Table 18 Support Vector Machines Classifier: Classification reports for the training,

open test, and hidden test datasets. ... 59

Table 19 Decision Tree Classifier: Classification reports for the training, open test, and

hidden test datasets. .. 62

Table 20 Random Forest Classifier: Hyper-parameter ranges defined for tuning 65

Table 21 Random Forest Classifier: Optimal Hyper-parameter ... 65

Table 22 Random Forest Classifier: Classification reports for the training, open test, and

hidden test datasets ... 66

0|List of Tables

xiv

Table 23 Categorical Boosting Classifier: Random search grid for CatBoost classifier...... 67

Table 24 Categorical Boosting Classifier: Optimal hyper-parameters obtained by

random search grid approach .. 68

Table 25 CatBoost classifier: Manually tuned hyper-parameters .. 72

Table 26 Categorical Boosting Classifier: Classification reports for the training, open test,

and hidden test datasets. ... 72

Table 27 Light Boosting Classifier: Manually tuned hyper-parameters 79

Table 28 Light Boosting Classifier: Classification reports for the training, open test, and

hidden test datasets. .. 80

Table 29 Extreme Boosting Classifier: Manually tuned hyper-parameters 86

Table 30 Extreme Boosting Classifier: Classification reports for the training, open test, and

hidden test datasets ... 87

Table 31 Neural Network: Hyper-parameter search space used during the Bayesian

optimization .. 95

Table 32 Neural Network: Optimal hyper-parameters after running the optimization for 75

epochs. .. 98

Table 33 Neural Network: Classification reports for the training, open test, and hidden test

datasets ... 99

Table 34 Machine-learning models performance comparison: Hidden test set. 101

Table 35 Machine-learning models performance comparison: Open test set. 104

Table 36 Feature augmentation and engineering impact on the best performing model - XGB.

 .. 105

Table 37 Extreme gradient boosting model’s performance on each well present on

the open test and hidden test sets – low performance wells highlighted. 106

Table 38 Interpreter subjectivity analysis. An XGB classifier was trained several times by

keeping a particular set of wells from a specific interpreter and then tested on the wells

provided by other interpreters on the open and hidden test datasets. 111

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

1

Chapter 1

1. INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

1.1 Introduction

Lithofacies is a term evolved from the term facies that was defined by Amnaz Gressly in the

nineteen century as the total sum of lithological and faunal characteristics of sedimentary

rocks. These characteristics include mineral composition, organic-matter content,

geomechanical properties, texture, stratification, grain size distribution, and degree of

rounding and sorting (Wang and Carr, 2012a).

Lithofacies identification is important for many geological and engineering disciplines, goals

of which might include palaeo-environmental context understanding (Wang and Carr,

2012b), hydrodynamic conditions determination sediments transport typology modelling

(Gong et al., 2012), and porosity and permeability interpretations improvements (Akatsuka,

2000). Moreover, the accurate lithofacies identification has a special significance for

reservoir characterization and stable hydrocarbon production and forecast. Standard

methodologies to recognize and identify lithology include outcrops, core data collection and

petrography, the first of which may not adequately reflect the reality of the subsurface while

the second one offers limitations due to the costs it involves. Thus, great efforts are focused

on building less costly qualitative and quantitative relationships between core data and

conventional wireline logs, which normally includes gamma ray (GR), density (RHOB),

neutron (NPHI), photoelectric index (PE), and resistivity logs (RES), in order to accurately

identify lithofacies (Wang and Carr, 2012a). In addition, even though wireline logs are able

to provide important information that leads petrophysicists into an accurate subsurface

interpretation, the massive size of the data makes of it an extremely time-consuming

assignment while, at the same time, it incorporates the interpreter’s subjectivity into it.

In the other side, as humanity enters the era of big data in companion of the increasing

technological and computational development, data science have taken over the forefront in

several industry domains. In consequence, as part of the digitalization era, machine learning

and deep learning have currently attracted great attention in petroleum geosciences because

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

2

of its advantages in addressing big data issues in a relative small amount of time, introducing

in this way exiting challenges and opportunities into the oil and gas industry (Huang et al.,

2017; Zuo, 2017; Arabameri et al., 2020). These techniques, as summarized by Anifowose

et al., (2017) and Mahmoud et al., (2021), are able to explore and learn from the hidden

patterns and connections between large multivariate datasets in order to ultimately make

informed decisions. Although, deep learning is considered a machine learning subfield, it is

also considered as the evolution of machine learning as it performs based on an auto-

regulated learning process similar to the human brain.

In addition, during the past decade, several researches have been performed to predict

litholofacies based on wireline measurements by applying different artificial intelligence

algorithms. These studies included the usage of naive bayes (NB) classifiers (Li and

Anderson-Sprecher, 2006), artificial neural networks (ANN) (Zhang et al., 1999; Dubois et

al., 2007), and support vector machines (SVM) (Al-Anazi and Gates, 2010; Sebtosheikh et

al., 2015; Hall, 2016) to mention a few.

Finally, among the methods previously investigated, the current study aims to give a

description and a fair comparison between the performances that logistic regression (LR),

Support Vector Machines (SVM), k-nearest neighbor (KNN), decision trees (DT), Random

Forest (RF), gradient boosting decision trees algorithms (GBDT), and neural networks (NN)

can provide to sort out the lithofacies classification problem, same that ultimately will help

in the near future to design a robust and automated methodology to carry out this assignment

in a human performing-comparable manner.

1.2 Dataset description

The datasets used for the current study was taken from the ‘Machine-Learning Lithology

Prediction Contest’ organized in the second semester of 2020 by FORCE, which is a

cooperating forum managed by oil and gas companies and authorities in Norway that was

created to improve exploration, enhance oil and gas recovery, and increase production

efficiency throughout cooperation between the oil and gas industry, academia and the

Norwegian government authorities.

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

3

The dataset used during the competition is composed by 118 wells from offshore Norway,

location of which covers the south and the north of the Viking Graben as shown in Figure 1;

besides, the wells penetrate a highly variable geology from the Permian evaporites in the

south and the deeply buried Brent delta facies in the northern area of the North Sea (NPD,

2021).

Figure 1 Wells geographical location.

In addition, the provided data is conformed by three different data subsets serving to different

purposes each. The training, open test, and hidden test subsets are composed by 98, 10, and

10 wells, respectively. In addition, it is necessary to note that only the first two subsets were

available for the contestants during the FORCE competition, while the hidden test subset was

unavailable for them and was only used for assessing the final score that leaded to define the

competition winner. In fact, instead of using standard performance metrics for assessing the

models provided by the competitors, a new scoring function based on a penalty matrix was

introduced, which in brief attempts to penalize misclassification similarly as a petrophysicist

would do (See Appendix H).

Table 1 summarizes the petrophysical wireline logs measurements, and additional metadata

including lithostratigraphy, UTM location coordinates, measured depth, and the interpreted

lithofacies that make up the datasets as well as their missing data summaries, which at first

Training dataset
Test dataset
Hidden dataset

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

4

glance appear to represent highly sparse datasets, fact that may influence while implementing

supervised learning for lithofacies classification.

Table 1 Training, open test, and hidden test datasets description and missing data summary.

MEASURED PROPERTIES

DESCRIPTION LOG
Missing Data Percentages (%)

Training Open Hidden

Caliper CALI 7.51 4.13 2.81

Deep Resistivity RDEP 0.94 0.04 0.01

Medium Resistivity RMED 3.33 0.43 8.02

Shallow Resistivity RSHA 46.12 71.42 79.02

Flushed Zone Resistivity RXO 72.03 78018 92.73

Micro Resistivity RMIC 84.95 91.73 87.60

Spontaneous Potential Log SP 26.16 51.29 61.83

Sonic (Shear Slowness) DTS 85.08 68.40 40.46

Sonic (Compressional Slowness) DTC 6.91 0.60 3.35

Neutron Porosity NPHI 34.61 23.94 21.11

Photoelectric Absorption Factor PEF 42.62 17.02 17.94

Raw gamma data GR 0.00 0.00 0.00

Bulk Density RHOB 13.78 12.40 7.78

Density Correction DRHO 15.60 18.44 8.28

Bit Size BS 41.68 51.04 39.14

Differential Caliper DCAL 74.47 90.12 64.78

Average Rate of Penetration ROPA 83.57 59.21 47.53

Spectral Gamma Ray SGR 94.07 100.00 99.07

Weight of Drilling Mud MUDWEIGHT 72.99 85.18 100.00

Rate of Penetration ROP 54.29 50.06 25.53

METADATA

DESCRIPTION NAME
Missing Data Percentages (%)

Training Open Hidden

Well Name WELL 0.00 0.00 0.00

Measured Depth DEPTH_MD 0.00 0.00 0.00

UTM coordinate X_LOC 0.92 0.04 0.01

UTM coordinate Y_LOC 0.92 0.04 0.01

True Vertical Depth Z_LOC 0.92 0.04 0.01

Lithostratigraphic Group GROUP

FORMATION

0.11 0.00 0.00

Lithostratigraphic Formation 11.70 5.17 6.66

Interpretation Confidence Quality LITHO_CONF 0.00 0.00 0.00

Moreover, in regard to the interpretation of the wells, the Norwegian company

EXPLOCROWD, a consultancy and services company outsourced by the FORCE organizers

committee, provided the interpretation for 104 wells, and 14 more wells were interpreted and

provided by the data science and software development company IG2.

1|INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY

5

1.3 Methodology

Whenever one think about implementing machine learning for solving a particular problem,

the first question one should ask is if ML is the most suitable approach for solving it.

Additionally, considering that machine learning will never perform perfectly in real-life

problems there are a set of considerations must be fulfilled before commencing a ML project.

These considerations include that a large amount of data to be available, that a very high

accuracy not being desired, and that the problem is deeply understood so it would provide a

basis to develop suitable algorithms (Awad and Khanna, 2015). Consequently, once the basic

conditions are met, the process we will follow while developing the current machine-learning

project can be describes in the following workflow diagram.

Figure 2 Machine and deep leaning methodology workflow.

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

6

Chapter 2

2. SUPERVISED LEARNING THEORETICAL BACKGROUNG

2.1 STANDARD MACHINE LEARNING ALGORITHMS

Supervised learning is a learning mechanism that infers and learns from the underlying

relationships between the input data and a target variable that might be a continuous

numerical attribute or a multiclass categorical attribute for regression or classification

problems, respectively. The learning task uses labeled data that comprises a set of observed

vectors normally called predictors or features and a desired output called supervisory signal

or class label. Broadly, the purpose of these mechanisms is to generalize the underlying

relationship between the feature vectors and the supervisory signal in order to be able to

predict the output while unlabeled input instances are used (Awad and Khanna, 2015).

The training process is deeply dependent on the training data quality, which means that a

well-trained supervised machine-learning algorithm could accurately predict the output for

unfamiliar or unobserved data instances only if the input data used for training the algorithm

has a high-level quality. In contrast, if a poor-quality input is used for training, this might

derive in overfitting problems, which represents the difficulty for an algorithm to generalize

the underlying predictors-target relationships that will derive in an unsuccessful regression

or classification performance.

2.1.1 Logistic Regression

Logistic regression is a statistical model that follows almost the same theory as linear

regression; however, it is considered as a probabilistic algorithm used for solving binary or

multiclass problems by using a logistic function that can be mathematically expressed as

follows
𝑒𝑧

1+𝑒𝑧
, were 𝑧 ∈ [−𝛼, 𝛼]. In general, a logistic regression model predicts the

probability of occurrence of a specific event by modeling the relationship between a

dependent variable X and a categorical outcome Y (Awad and Khanna, 2015).

Mathematically the previously stated logistic function can be expressed as

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

7

𝑃(𝑌|𝑋) =
𝑒𝛽𝑜+𝛽1𝑋

1 + 𝑒𝛽𝑜+𝛽1𝑋
 (1)

were 𝛽𝑜 and 𝛽1 represent the estimated log-odds of a unit change for their respective input

they are associated with, or in other words they can be seen as weights that translates any

change in the input variables to the probability outcome. In addition, by extracting the inverse

of the logistic function a new function called logit or log-odds is obtained which allows

generating the logistic regression coefficients, 𝛽𝑜 and 𝛽1 for a one-predictor-based case.

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌|𝑋)) = ln (
𝑃(𝑌|𝑋)

1 − 𝑃(𝑌|𝑋)
) = 𝛽𝑜 + 𝛽1𝑋 (2)

Once the log-odds is calculated, a logistic function receive it as input, 𝛽0 + 𝛽1𝑋, and returns

the likelihood probability 𝑃(𝑌|𝑋) of the occurrence of the event Y belonging to a positive

class when the variable X is used as input as depicted by Figure 3.

Figure 3 Logistic Function (allows transforming the log-odds parameters to the probability
of an instance belonging to a certain positive class).

To conclude, as in the case of a linear regression, we are interested on the intercept 𝛽0 and

gradient 𝛽1 coefficients, but by the aid of a logistic function, we transform these values into

the probability of a value belonging a particular class known as positive class.

2.1.2 K-Nearest Neighbor, KNN

The K-nearest neighbor classification methodology, KNN for short, is a fairly simple

clustering classification algorithm which identifies the group of k-objects in the training set

that are closest to the test object and assigns a label based on the most dominant class in the

neighborhood the instance belongs to (Awad and Khanna, 2015). KNN belongs to a particular

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

8

family of algorithms called instance-based learning methods. The inference, learning, and

predictions performed by a direct comparison of new samples with previously existing

instances based on the distance between each other. This methodology could be applicable

for classification, regression, and clustering purposes (Bonaccorso, 2020). The main idea of

the algorithm can be explained if we consider a bunch of data samples 𝑥1, 𝑥2, … , 𝑥𝑛 , each of

which has a dimensionality equal to N. Mathematically expressed as follow

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ ℝ𝑁 (3)

Then we can introduce a distance function 𝑑(𝑥1, 𝑥2) as a function of a new factor 𝑝 that might

take different values. For instance, p=2 represents the Euclidean distance and p=1 represents

the Manhattan distance to mention a few.

𝑑𝑝(𝑥1, 𝑥2) = (∑|𝑥1
(𝑗)

− 𝑥2
(𝑗)

|

𝑁

𝑖=1

𝑝

)

1
𝑝

 (4)

The results obtained by the KNN algorithm when assigning an instance to a particular class

might be diverse when different distances are implemented. To exemplify this Figure 4 helps

visualize how the computed distance between the point A (0, 0) and B (15, 10) varies when

different p values are used (Bonaccorso, 2020).

Figure 4 Distance between (0, 0) and (15, 10) as a function of parameter (Bonaccorso, 2020).

Finally, once every the distances is computed, the KNN algorithm determines the k closest

samples for each training point; thus, when a new sample is presented the process is repeated

with a predefined value of k samples (Bonaccorso, 2020). The philosophy of the KNN

methodology is that similar samples should share their features or predictors, which normally

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

9

may provide high training and testing accuracies; however, since every distance has to be

computed every time a new instance is introduced, it might become an extremely slow

process for massive datasets.

2.1.3 Support Vector Machines, SVM

Support Vector Machines, SVM, is a machine-learning algorithm that from a geometrical

perspective aim to find the equation of a multidimensional surface that best separated

different classes in the feature space. SVM is a discriminant technique that solves the convex

optimization problem analytically meaning that it will always return the same hyper-plane

parameter every time the model is initialized with the same parameters. In contrast, other

popular algorithms for classification problems like perceptron accomplishes its solutions

depending on the parameters initialization and termination criteria making of it an heuristic

approach (Awad and Khanna, 2015).

Several of the characteristics that make of SVM a powerful machine-learning technique for

a large range of problems are that it is uses maximum margin separator and a kernel

technique. As a maximum margin separator, SVM not only aims to minimize or maximize a

cost function but also imposes an additional constrain or condition to the location for the

hyper-plane, which has to be situated in a way that the distances between classes are

maximized as an attempt to generalize its solution.

Figure 5 Hard (left) and soft (right) separating margins implemented on SVM (Awad and Khanna, 2015).

In this context, Figure 5 depicts two scenarios in which SVM constructs a separating hyper-

plane to properly classify most of the instances encounter in a training set when the data is

completely separable when there is not such a case. These hyper-planes are named hard-

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

10

margin and soft-margin SVM, respectively. The first attempts to maximize the distance

between classes, while the second allows for some classification error in the neighborhood

of the separating boundary or hyper-plane (Awad and Khanna, 2015).

Besides, SMV includes kernel trick functionality that helps mapping the original data into a

higher-dimensional space before solving a particular task considering that often the data

involved is not linear separable in the original input space as exemplified on Figure 6. The

principal objective for dimensionality transformation is to simplify the computational

requirements for constructing a linear separator in a higher dimensional space where a linear

separator would be able to discriminate between different classes.

Figure 6 Support vector machines kernel trick functioning (Sharma, 2019).

 In addition, kernel selection is highly dependent on data nature. For instance, a linear kernel

is the simplest approach for solving medium complexity problems, a polynomial kernel is

widely used for task related to image processing, ANOVA RB kernel is reserved for

regression task mainly, and Gaussian and Laplace Radian Basis Function (RBF) kernels are

mostly applied in the absence of prior knowledge. However, the great majority of them

provide a better model performance once feature or data dimensionality reduction are

performed. Moreover, SVM is a sparse technique that requires all the training data to be

available in order to learn its optimal parameters. Once these parameters are identified, SVM

will depend only on a significantly small subset of training instances called support vectors

that would become the margins of the hyper-planes in the case of a multidimensional feature

space.

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

11

Ultimately, the complexity of the classification task with SVM depends on the number of

support vectors rather than the dimensionality of the feature space; thus, the number of

support vectors that are ultimately retained by the model depends on the class separability.

Therefore, SVM performance is highly dependent on the training and test data distributions

and when trained with data that are not representative for the overall data population, hyper-

planes are prone to poor generalization (Bonaccorso, 2020).

2.1.4 Decision or Classification Trees

Decision or classification trees are used to classify a data instance into a predefined set of

classes based on its attributes called features or predictor in machine learning. Decision trees

could be seen as expert decision or clarification systems, which partially attempt to mimic

and automate the underlying knowledge of an expert on the entrusted task. Some of the

advantages of decision trees models are that they are simple to implement and its self-

explanatory characteristic help represent them graphically as hierarchical structures (Rokach

and Maimod, 2014).

Figure 7 Decision tree applied on IRIS dataset (Pedregosa et al., 2011).

Further, a decision tree is as classifier expressed as a recursive partition on the instance space

consisting of different types of nodes called root node, internal or test node, and terminal

nodes also called leaves. The root node can be seen as the initial point with no incoming

edges, while the internal node splits the instance space into two or more partitions according

to a certain discrete attribute value to finally get to the terminal nodes, which represent the

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

12

most appropriated outcome reached through the previous internal nodes. To exemplify what

was previously stated, Figure 7 shows the implementation of decision trees for the well-

known IRIS dataset where the root, internal, and terminal nodes can be identified.

In addition, the driving concepts for decision trees, entropy and information gain, will be

discussed based on the example shown on Figure 8.

Figure 8 Information gain for discrete distributions. (a) Complete dataset before splitting.
(b) Dataset after a horizontal split. (c) Dataset after a vertical split. (Criminisi et al., 2011).

Figure 8a shows a number of data points distributed on a 2D space color-labeled by different

data classes. If we split the data horizontally or vertically as shown by Figure 8b and Figure

8c, respectively, two sets of data with lower entropy for the first splitting case and with higher

entropy for the second one are produced. The information gain for each split type could be

mathematically computed by equation (5), where 𝐻(𝑆) represents the entropy for a generic

set of training points 𝑆.

𝐼 = 𝐻(𝑆) − ∑
|𝑆𝑖|

|𝑆|
𝐼𝜖[1,2]

𝐻(𝑆𝐼) (5)

The lower entropy split gives an information gain of I=0.4, while higher entropy splitting

gives I=0.6 meaning that a better class separation is achieved by the second way of splitting

the data as visible on Figure 8 (Criminisi et al., 2011).

To summarize, classification trees function by simply navigating every instance from the root

of the tree down until they reach any specific leaf according to the outcome of the internal

nodes and the information gain metric obtained afterwards. Note that the internal nodes are

a

b

c

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

13

able to test both numerical and nominal attributes. Moreover, according to (Breiman et al.,

1984), the decision trees accuracy is mainly influenced by its complexity, which could be

measured by either the total number of nodes, total number of leaves, tree depth, or number

of predictors used, or any possible combination of them.

2.2 ENSEMBLE MODELS

Ensemble methods are techniques that aim to combine multiple models into one to improve

their overall performance. These methods fall into two broad categories defined as sequential

and parallel ensemble techniques. Sequential ensemble techniques generate base learners

sequentially where data dependency resides, so every other subsequent learner depends on

the previous learner performance in order to get an optimized performance. Parallel ensemble

techniques, in the other hand, generate their base learners in parallel in order to encourage

independence between every learner, which aims to reduce their final performance error.

2.2.1 Random Forest, RF

Random Forest is a parallel machine learning technique founded on the decision trees theory

in which decision trees are not treated and used as individual entities anymore. In their stead,

all decision trees, also known as weak learners, are combined together in a newish emerged

and robust predictive technique known as ensemble learners that have been mostly confined

to classification tasks. They use a random feature sample to build each independent tree as

an attempt to reduce variance by decreasing the correlation between each decision tree

output.

Additionally, these kinds of machine learning algorithms are highly influenced by a number

of important components but mostly by its randomness while constructing every individual

decision tree differently from one another. Besides, forest randomness, which is introduced

into the trees during the training phase, provides the model with high robustness with respect

to noisy and imbalanced data. Moreover, randomness is normally achieved either by random

training data sampling, also known as bagging, or by randomized node optimization

(Criminisi et al., 2011).

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

14

In general terms, random forest training happens by optimizing the parameters of decision

trees, known as weak learners, at each split node j via:

𝜃∗
𝐽 = arg max 𝐼𝑗 (6)

For the specific case of classification problems, the objective function 𝐼, as stated in the

previous section, is the information gain computed by equation 6. Subsequently, once every

decision tree has been trained independently and efficiently, all these ‘weak’ predictions are

combined into a single forest prediction by an averaging operation using the following

expression in the case of classification tasks.

𝑝(𝑐|𝑣) =
1

𝑇
∑ 𝑝𝑡(𝑐|𝑣)

𝑇

𝑡=1

 (7)

Where 𝑇 represents the total number of decision trees, 𝑣 represents an attribute instance, and

𝑝(𝑐|𝑣) is the ensemble posterior probability distribution of an attribute instance belonging to

any discrete class (Criminisi et al., 2011). In other words, classification forest produce

probabilistic outputs as they return an entire class distribution as illustrated in Figure 9.

Figure 9 Three different decision trees part of a random forest reproducing
different probability distribution outputs (Criminisi et al., 2011).

Figure 9 describes how the same input value 𝑣 is conducted differently from the root node

until it reaches a leaf node; here every posterior 𝑝𝑡(𝑐|𝑣) is read off and averaged together to

an ensemble posterior 𝑝(𝑐|𝑣).

Finally, random forest algorithms generally yield to high accuracies and generalization;

however, their performance is importantly affected by several parameters such as their size,

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

15

number of discrete classes to be classified, classes’ similitude, training data noise or quality,

and individual performance of each decision tree included in the random forest.

2.2.2 Gradient Boosting Decision Tree Ensembles, GBDT

Gradient Boosting Machines, GBMs for short, are a family of powerful machine-learning

techniques considered to be part of the sequential ensemble models category in which each

independent learner acquires information, learns, and gets constructed based on previous

learners’ mistakes by performing gradient descent in a functional space in order to optimize

their overall performance in subsequent steps.

Unlike common ensemble techniques like random forest, which rely on simple averaging

techniques to get the final model, boosting ensemble methods base their functionality on

consecutively training each base-learner with respect to the error obtained by the whole

ensemble on previous stages. In addition, their robustness is partially attributed to their high

flexibility while using pre-established or customized loss functions during the optimization

stage, which has made of them very successful in practical applications and data challenges

worldwide compared to single strong machine-learning models (Ghori et al., 2019).

Gradient Boosting Machines rely on three main elements that are the loss function, the base

weak learner involved in the process, and the additive model receiving all the weak learners

while a gradient descent process is performed in order to minimize the final additive

performance loss.

Moreover, tree-based gradient boosting ensemble algorithms, which could be considered as

a subgroup of Gradient Boosting Machines (GBM), were originally designed to be highly

scalable to large datasets in different scenarios. These methods are able to run more than ten

times faster than other existing popular algorithms. Mathematically a tree-based GB

ensemble model can be expressed in the form

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑓𝑘 ∈ ℱ (8)

𝐾

𝑘=1

where, 𝐾 is the number of trees, 𝑓 is a function part of the functional space ℱ, and ℱ is the

set of possible classification or regression trees known as CARTs. Additionally, considering

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

16

that tree boosted and random forests are really the same model with the only difference in

how they are trained. In consequence, as any other supervised machine-learning model the

first step prior to enter the training stage is to define an objective function (Prokhorenkova et

al., 2019).

Moreover, similarly to any gradient boosting model, tree-based models build an additive

expansion of the objective function by minimizing a loss function which introduces a

regularization term Ω in order to control the complexity of the base tree learners as follows:

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 − 𝑦𝑖̂) + ∑ Ω(𝑓𝑖)

𝐾

𝑘=1

 (9)

𝑛

𝑖

where, 𝑙 is a differentiable convex loss function that measures the difference between the

prediction 𝑦𝑖̂ and the target 𝑦𝑖̂
(𝑡)

. Additionally, in order to define the regularization term or

complexity of the tree Ω(𝑓), we need first to define a decision tree 𝑓(𝑥) as

𝑓𝑖(𝑥) = 𝑤𝑞(𝑥), 𝑤𝜖ℝ𝑇 , 𝑞: ℝ𝑑 → {1,2, … . , 𝑇} (10)

where, 𝑤 is a vector containing the scores on the tree leaves, q is a function that assigns each

data to its corresponding leaf, and 𝑇 is the number of leaves. Thus, the regularization term

can be mathematically expressed as

 Ω(𝑓𝑖) = 𝛾𝑇 +
1

2
ℷ ∑ 𝑤𝑗

2

𝑇

𝑗=1

 (11)

Where, 𝑇 represents the number of leaves of the tree, 𝑤 are the output scores of the leaves,

and γ controls the minimum loss reduction gain needed to split an internal node (Chen and

Guestrin, 2016). This regularization term Ω penalizes the complexity of the model and serves

as a regularization technique that helps to smooth the final learn weights to avoid over-fitting.

Additionally, to exemplify how boosting tress work let’s assume the mean squared error

(MSE) as loss function, then the objective function could be redefined as

𝑜𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑖) (12)

𝑛

𝑖=1

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

17

where,

𝑔𝑖 = 𝜕
𝑦𝑖̂

(𝑡−1)𝑙(𝑦𝑖, 𝑦𝑖̂
(𝑡−1)

) (13)

ℎ𝑖 = 𝜕2
𝑦𝑖̂

(𝑡−1)𝑙(𝑦𝑖, 𝑦𝑖̂
(𝑡−1)

) (14)

are the first and second derivatives of the objective function, normally called gradient

statistics. Then, the objective function is reformulated as follows

𝑜𝑏𝑗(𝑡) = ∑ [𝐺𝑖𝑤𝑖 +
1

2
(𝐻𝑖 + ℷ)𝑤𝑖

2] + 𝛾𝑇 (15)

𝑛

𝑖=1

where, 𝐺𝑖 = ∑ 𝑔𝑖𝑖𝜖𝐼𝑗
 and 𝐻𝑖 = ∑ ℎ𝑖𝑖𝜖𝐼𝑗

. Finally, after solving the equation for 𝑤, we get a

final expression that measures how good a tree structure is.

𝑤∗
𝑖 = −

𝐺𝑖

𝐻𝑖 + ℷ
 (16)

𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑖
2

𝐻𝑖 + ℷ
 + 𝛾𝑇 (17)

𝑇

𝑖=1

Figure 10 Boosting trees visual example training functionality (Chen and Guestrin, 2016).

Sometimes, understanding the whole process seems complicated, so we can intuitively

understand the boosting trees training functionality by the following particular example

described on Figure 10. Here, initially the statistics 𝑔𝑖 and ℎ𝑖 are pushed until each instance

reaches the leaves it belongs to, then these statistics are summed up together, and the

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

18

objective function is used to calculate how good the tree is, similarly to impurity in decision

tress but taking into account the model complexity (Chen and Guestrin, 2016).

Once, the utility of a tree has been calculated, the new step is to enumerate all possible trees

and select the one that provides the best gain node by node. This can be computed by the

following expression

𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿 + ℷ
+

𝐺𝑅
2

𝐻𝑅 + ℷ
−

(𝐺𝐿 + 𝐺𝐿)2

𝐻𝐿 + 𝐻𝑅 + ℷ
] − 𝛾 (18)

which sums up the gain of the new leaves and subtracts the gain obtained by the original leaf

and then compare the value to the minimum accepted gain γ to decide if performing a new

split is beneficial or is not.

2.3 NEURAL NETWORKS AND DEEP LEARNING

Neural networks are an elegant programming paradigm in which computers learn how to

solve a particular problem without explicitly being told how to solve it. Instead, computers

learn by themselves how to overcome the problem at hand by solely using observed data;

however, even though neural networks were promising in past years, it was only possible to

properly train a neural network when deep neural networks were discovered in 2006.

Initially, in order to understand the mainly used neurons called sigmoid neurons, perceptrons

need to be defined beforehand. To visually understand perceptron functionality let’s assume

some binary inputs 𝑥1, 𝑥2, 𝑥3, which are afterwards weighted internally to produce a binary

output for an data instance belonging to a particular class, which is determined by comparing

the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗 to a pre-established threshold as described on Figure 11.

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

19

Figure 11 Perceptron functionality diagram for a binary output.

Perceptrons can, in brief, be seen as decision makers based on evidenced data which may

lead to different decision making models by adjusting the weights 𝑤 and threshold. In this

way, perceptrons are able to solve simple decision-making problems; however, by

connecting different perceptrons parallels, a new and much more powerful structure called

neural network becomes possible as described in Figure 12. Consequently, much more

complex or abstract decision-making problems can be solved when preceding layer’s outputs

are considered as the new inputs for the subsequent layer in the neural networks (Nielsen,

2015).

Figure 12 Neural Network Basic Structure.

More formally, the minus threshold term −𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is known as bias 𝑏, which can be

understood as an analogous to the constant term in a linear function and allows perceptrons

to better fit the observed data. Thus, the previous definition of a perceptron can be readjusted

as follows.

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0

Furthermore, making a perceptron-based artificial neural network learn is a complicated task

since this is normally achieved by continually changing the bias and weights so that mistaken

predictions are correctly predicted. However, slight changes in these parameters lead to

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

20

completely different results while using perceptron-based networks. In consequence, this

problem is overcome by introducing a new type of artificial neuron called sigmoid neurons,

which do not affect greatly the outputs when small changes in the weights and biases are

performed, fact that is crucial to allow neural networks to learn.

Sigmoid neuron can be understood in almost the same way as perceptron, with the difference

that the output sigmoid neurons provide may take any possible value between 0 and 1 by the

aid of a sigmoid function also known as activation function. This output can be

mathematically expressed as 𝜎(𝑤𝑥 + 𝑏), where 𝜎 represents the sigmoid function (See

Figure 3) defined by

𝜎(𝑧) =
1

1 + 𝑒−𝑧
=

𝑒𝑧

1 + 𝑒𝑧
 (19)

Consequently, the output that sigmoid neurons provide can be redefined as:

𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + exp (− ∑ 𝑤𝑗𝑏𝑗 − 𝑏)𝑗
 (20)

where the sigmoid or activation function smoothness help to maintain the output with no

substantial changes when the weights 𝑤 and bias 𝑏 are slightly varied during the training

process.

Moreover, before entering the training stage a optimization cost function has to be defined,

which in general terms is a measure of how well a neural network does with respect to the

expected outputs. Depending on the problem to be solved the cost function may take different

forms for regression, binary classification, and multi-class classification. Lastly, the cost

function as a function of the weights and biases is optimized during the training process by

implementing a gradient descent algorithm. In addition, optimizing a cost function could be

achieved analytically by implementing calculus; however, this becomes almost impossible

when the neural network involves hundreds, millions, or even billions of weights 𝑤 and

biases 𝑤 to be optimized (Nielsen, 2015).

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

21

Furthermore, a reduced way to explain how gradient descent works in neural networks is to

consider a particular cost function 𝐶 which is a function of m variables 𝑣1, 𝑣2, … , 𝑣𝑚. Then

any change ∆C in the cost function 𝐶 produced by small changes ∆𝑣 = (∆𝑣1, ∆𝑣2, … ., ∆𝑣𝑚)𝑇

is expressed as

∆𝐶 ≈ ∇𝐶 ∙ ∆𝑣 (21)

where the gradient ∇C is the transposed (T) vector made of the partial derivate of the cost

function with respect to each variable weight 𝑤 and bias 𝑏 contained in the network, 𝑣𝑠 for

simplification.

∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣1
, … ,

𝜕𝐶

𝜕𝑣𝑚
)

𝑇

 (22)

so if we choose a change ∆𝑣 = −𝜂Δ𝐶, where 𝜂 represents a parameter called learning rate,

this guarantees that the cost function will always decrease ∆𝐶 ≤ 0 in order to find its global

minimum (Nielsen, 2015).

Figure 13 Neural Network training optimization process by implementing back propagation (Nielsen, 2015).

Finally, once the weights and biases have been calculated, the error is back propagated

meaning that an error vector is calculated from the last layer in order to understand how the

cost varies with earlier weights and biases. This final process is called back propagation and

is profoundly explained in (Nielsen, 2015). The complete training process of neural networks

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

22

while implementing back propagation to optimize all the trainable variables is depicted in

Figure 13.

2.3.1 Evaluation Metrics for classification

Evaluating the performance a machine-learning model is a fundamental aspect during

training, validation, and testing stages of a machine-learning project in order to understand

the quality of the output and the influence input data has on this. Normally in real-life

applications, the datasets to be used during classification tasks are imbalanced, meaning that

some classes have fewer samples than the other classes, which are referred as minority and

majority classes, respectively. This imbalance represents a great challenge while solving

classification problems by machine learning since it might cause a bias in the prediction

towards the majority class when standard machine learning are implemented, resulting in a

poor generalization.

In consequence, while dealing with imbalanced datasets, a standard accuracy would be a

biased metric for measuring the classification goodness; thus, weighted precision, weighted

recall, and weighted f1 scores would be better indicators of the classifier performance. Also,

a confusion matrix would provide a visual representation of the classification accuracy

between the predicted versus the actual classes.

A confusion matrix is the most basic form of accuracy assessment while solving classification

tasks. It provides us how many predicted classes were accurately and/or inaccurately

outputted when compared to the actual classes. A confusion matrix for a binary classification

task could be expressed as shown on Table 2, from which several classification metrics such

as precision, recall, accuracy, and f1 score can be computed.

Table 2 Confusion matrix structure for a binary classification problem

Predicted/Actual Class Positive Class Negative Class

Positive Class True Positive False Positive

Negative Class False Negative True Negative

Precision represents the fraction of the correctly identified positive classes from all the

predicted positive classes as follow:

2|SUPERVISED LEARNING THEORETICAL BACKGROUNG

23

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (23)

Recall, in the other hand, represent a measure of the correctly identified positive cases from

all the actual positive cases as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (24)

Accuracy is the measure of all the correctly identified cases and is used normally while

working with balanced datasets.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑎𝑔𝑡𝑖𝑣𝑒
+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

 (25)

F1 score is represents the harmonic mean between precision and recall and gives a better

measure of the incorrectly classified cases than the accuracy metric.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (26)

Finally, to summarize we could say that different metrics could be used according to the

purpose and the nature of the dataset. For instance, accuracy is a good choice when the true

positive and true negative are highly important, while f1-score must be chosen when false

negative and false positive are crucial. In addition, for imbalanced datasets, even though a

standard accuracy might not be the best performance metric, it could be weighted by the

number of instances belonging to each class to account for class imbalance; this would

provide a more reliable performance metric if accuracy is used to asses a certain model

performance.

3|DATA ANALYSISI AND PROCESSING

24

Chapter 3

3. DATA ANALYSISI AND PROCESSING

3.1 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the process throughout which we study and attempt to find useful

information and existent patterns within the data. The major purpose is to understand the

nature of the data itself and establish initial potential methodologies or approaches for solving

the lithofacies classification problems.

Furthermore, by the proper recognition of the relationship, and correlation between data

readings, a new machine-learning based imputation technique will be subsequently proposed

and discussed in Section 3 as a feature augmentation methodology in order to improve the

final classification performance.

3.1.1 Exploring Lithofacies Labels

The datasets present 12 different lithofacies classes in their majority dominated by shale,

shaly lithologies, and sandstone. Table 3 shows each lithofacie description and its presence

percentage in the training, open test, and hidden test subsets.

Table 3 Lithofacies presence percentages summary.

 Lithology Presence Percentage (%)

Lithofacie Label Code Training Open Test Hidden Test

Sandstone SS 0 14.40 17.60 11.50

Shaly sandstone S-S 1 12.90 12.80 10.00

Shale SH 2 61.60 61.40 58.70

Marl MR 3 2.80 2.40 3.60

Dolomite DOL 4 0.10 0.30 0.20

Limestone LIM 5 4.80 3.50 3.80

Chalk CH 6 0.90 0.50 2.40

Halite HAL 7 0.70 - 5.30

Anhydrite AN 8 0.10 0.10 0.50

Tuff TF 9 1.30 0.90 0.80

Coal CO 10 0.30 0.50 0.20

Basement BS 11 0.01 - -

3|DATA ANALYSISI AND PROCESSING

25

Along with Table 3, the bar plot presented on Figure 14 also reflects more clearly the

lithology distributions present on each data subset. As visible, there is a great class imbalance

between different lithologies, fact that may have an important role during the classification.

Besides, it is worth to mention that there is a great presence of lithology types that could be

described as a mineral mixture, fact that might also have an important relevance while

attempting to properly classify similar lithology classes as they are expected to have similar

petrophysical property readings.

Figure 14 Lithofacies presence percentage distributions

Furthermore, based on Figure 14 and from a geological perspective, we can simply infer that

the North Sea geology is widely dominated by shaly, sandy sediments, and carbonates mainly

deposited during the Jurassic, Cretaceous, and Cenozoic ages.

This is not surprising given the geological evolution of the North Sea; which was initially

characterized by an extensive marine transgression extended along the complete North Sea

during the transition from the Triassic into the Jurassic. Subsequently, extensive deltaic

systems containing sand, shale, and coal were developed during the late Jurassic in the

northern North Sea and the Horda Platform once the marine transgression ended (See Figure

3|DATA ANALYSISI AND PROCESSING

26

15). Besides, similar deltaic systems were developed during the same age along the Danish

Basin and the Stord Basin. This sediment depositions accompanied by the major Jurassic

rifting phase leaded to faulting and the formation of the most important source rocks for the

hydrocarbon reservoirs located in the North Sea (NPD, 2015).

Figure 15 Wells geological location (NPD, 2021)

Following, the rifting phase ceased in the Early Cretaceous and the deposition two

contrasting lithologies took place, chalk at the southern North Sea and siliclastic, clay-

dominated sediment in the northern zone. Finally, chalk deposition took place and finished

in the Early followed by a thermal subsidence that leaded into the creation of the intracratonic

sedimentary basin of the North Sea as the continents moved to their current location;

consequently, due to the basin margins uplift, submarine fans were transported from the

Shetland Platform towards the east. Finally, several deltaic systems running from the

Shetland Platform towards the east were formed and characterized the central North Sea,

these correspond to the vast majority of the hydrocarbon reservoirs present in the North Sea

(NPD, 2015).

3|DATA ANALYSISI AND PROCESSING

27

3.1.2 Exploring Features

As stated previously, exploratory data analysis is a highly important step in any data science

workflow due to its implications while understanding the data contents, extents, connections,

and variations. The current datasets contain a wide group of characteristics available to be

used as input data, normally known as features or predictors. These potential features involve

20 different types of log readings and 6 additional metadata characteristics describing well

names, interpretation confidence, location, and lihtostratigraphical information (See Table

1). Unfortunately, as in many real world problems the dataset present incompleteness or

sparsity in some predictor that might have been caused different reason such as cost

considerations, borehole problems, logging tool failure, telemetry issues, or simply they were

omitted by choice.

The following figures were designed to better visualize the logs data and metadata presence

per well on the datasets before undergoing into the supervised-learning implementation.

Figure 16 shows that from the 98 wells held in the training set most of the missing data in

the training set relies on the SGR, DCAL, ROPA, RMIC, MUDWEIGHT, and DTS logs,

same which are present in only 13, 22, 25, 27, 28, and 32 wells, respectively. Further, the

open and hidden test sets (Figure 16) behave similarly in regard of data presence, where most

of the missing data once again relies on the same well logs previously mentioned with minor

differences between each testing data subsets.

Moreover, checking the statistics summary in order to have a feature values overview is

essential to identify possible abnormal values that might be outside of the physical boundaries

and may affect the classification performance. However, understanding the data based merely

on numerical values lacks of meaning; thus, box plots of the most important features from a

petrophysical point of view are displayed in Figure 17.

The gamma ray log (Figure 17a) shows that there are some values that exceed the physical

boundaries, which normally go from zero to 300 or 350 API units in most of the offshore

reservoirs. In addition, the lithology distributions for the mixed-based lithofacies such as

sandstones, shaly-sandstones, and shales overlap between each other. This could probably

indicate that some readings corresponding to these classes in the dataset may have been

3|DATA ANALYSISI AND PROCESSING

28

misinterpreted or mislabeled, or it could also be an inherent property of the formations due

to presence of some radioactive minerals such as k-feldspar, zircon or mica. These

radioactive minerals could raise sandy lithology readings over 150 API units similarly to

shale.

Figure 16 Feature Presence per well – Training Set (upper center),
Open Test Set (lower left) Hidden Test Set (lower right)

Further, the spontaneous potential log SP (Figure 17b), normally used to identify gross

lithology and differentiate between permeable and non-permeable formations, as expected

shows a quite defined shale baseline reading and little deflections to higher and lower values

based on the formation permeability and fluid content salinity. Thus, the values exceeding

the whiskers of the SP log data mainly happen in sandstones, shaly-sands, and shale

correspond to the fluid content, which might be formation water or hydrocarbons.

Besides, the neutron porosity log (Figure 17c), which is normally combined with the bulk

density log for practicality, shows a shale trend line around 20-35% NPHI, while for other

3|DATA ANALYSISI AND PROCESSING

29

lithologies the NPHI rely around the expected values, almost cero for anhydrite, and between

10 to 45% for sandstone, dolomite and limestone.

In addition, the NPHI values that exceed the whisker values are presented mostly in

sandstones, shale, and limestone and might linked to variations in the hydrogen index caused

the formations fluid content. However, the current interpretation may still be considered

subjective do to the facts that the NPHI log is based on limestone units, it has been studied

isolately from the other wireline logs, and the gas effect on the readings has not been

considered.

Figure 17 Wireline logs boxplots color labeled by lithology, (a) Gamma Ray,
(b) Spontaneous Potential, (c) Neutron Porosity, (d) Compressional Slowness.

Finally, the compressional acoustic logs (Figure 17d) behave apparently as expected for most

of the lithologies. However, there are several DTC reading identified as shale that are lower

to 100 us/m which is not a normal range of reading for shaly lithologies.

On the other side, visually checking the relationship between wireline logs helps to

understand the internal structure of the data and more importantly discard the predictors with

high correlation in order to avoid or diminish overfitting during the training stage. For this

purpose, the Spearman’s Correlations between every possible combination of variables

a a

c d

3|DATA ANALYSISI AND PROCESSING

30

without considering the caliper and the bit size logs that normally do not have a direct

connection with the lithology type is displayed on Figure 18. Besides, Figure 19 shows a

scatter pair plot of the variables found to be highly correlated color-coded by lithofacie,

which helps visualize and understand variation along the data.

Figure 18 Spearman's correlation between wireline logs color-coded by correlation strength.

First, a great positive Spearman’s correlation of around 0.83 was found between NPHI and

DTC logs, numerically exhibited on Figure 19 were the NPHI log increases as the DTC log

does. This relationship is expected due the fact that compressional slowness depends on the

amount solid minerals encounter in the rock media and its saturation; in other words, the less

mineral material, the more porosity a rock has and for instance the higher the compressional

slowness becomes. In the other hand, a negative Spearman’s correlation of -0.84 expectedly

occurs between RHOB and DTC that we could explain as common relation if we consider

3|DATA ANALYSISI AND PROCESSING

31

rock compaction and fluid saturation, the higher the compaction, the higher the bulk density

and the compressional wave velocity, and the lower the compressional slowness gets. Refer

to Castagna’s and Gassmann’s researches to have extensive understanding of the effect and

relationship between wave velocities and other rock-fluid properties.

Figure 19 Bivariate correlation between most relevant logs for lithology identification, distributions color
labeled by lithology shown on the diagonal.

Second, most of the resistivity logs RMIC, RSHE, RMED, RDEP, RXO present high

correlations; however, the most dramatic ones were encounter between RMED, RDEP, and

RSHA and between RMIC, RSHA and RXO as numerically exhibited on Figure 18. These

strong correlations between variables might bring problems into some machine-learning

models’ performance or might reduce scalability and increase the running time a particular

3|DATA ANALYSISI AND PROCESSING

32

model requires to accomplish its task due to the increase in dimensionality we get by keeping

correlated variables. We will further investigate the informativeness of these variables in

Section 4 in order to perform a wise-driven feature selection for every machine-learning

model being analyzed so that their performances do not get affected in a high extent if the

less informative and highly correlated predictors are removed prior to start the training

process.

Third, besides the existing linear correlation between the previously mentioned features,

some other pair of variables did not show any apparent relationship at all. This occurs

principally while plotting the photoelectric factor, gamma ray, and spontaneous potential logs

against the other variables. Consequently, this apparently complex relationship between data

and overlap in the readings for different lithologies make highly difficult to identify

lithofacies based just on one or two wireline logs independently from the others. This is in

general the reason while petrophysicists have always been in the need to use different log

combinations in order to identify lithofacies in a proper manner, but also here is where

machine learning plays an important role in order to understand and predict continuous or

categorical values based on complex pre-existing patterns and relationships within the data.

Lastly, Figure 19 also displays on the diagonal the distributions for each wireline log; at first

glance some variables appear to be more normally distributed than others, some distributions

are slightly skewed towards the majority classes logs reading, and some others even present

bimodal distributions as in the case of DTC, NPHI, and RHOB. This might be a problem

while trying to find an optimal classification solution, especially while implementing

distance-based and gradient descent-based machine-learning algorithms, which in the best-

case scenario may still converge but in a quite slow manner considering that the distance

between data instances and the learning rate are highly determined by the magnitude of the

variables involved in the task. Consequently, in the incoming subsection we will attempt to

prevent possible issues regarding data distributions and magnitudes through the

implementation and evaluation of how different normalization techniques may impact the

global lithofacies classification performance.

3|DATA ANALYSISI AND PROCESSING

33

3.2 DATA PREPARATION

Even though most data-related projects follow a common process with regard of data

preparation and processing, both are the most crucial and time demanding stages while

deploying a machine or deep learning algorithm. In fact, to a certain degree the results and

success of their applications depends principally upon them, as it is well known, the quality

of the algorithms output depends strictly on the quality of the data used as input.

As consequence of the above mentioned, there is a huge need to accurately address this stages

in order to help our data-driven project succeed. Moreover, reproducing consistent

methodologies that can first handle and treat data accurately before developing appropriate

and applicable machine-learning tools is the main inspiration for the current and related

projects.

In consequence, considering that missing data from well logs is a common problem in

subsurface and may have a great impact while predicting lithofacies classes, this subsection

will mainly explore and test a machine-learning-based missing data imputation technique as

well as a feature generation process, which aim to improve the quality and reduce sparcity

on the datasets before entering the classification task.

3.2.1 Standard Data Imputation, Normalization, and Outlier Removal

The initial approach was to complete the emptiness existing in the original datasets by a

standard and simple technique called median imputation. Since most of the techniques we

analyze along this study are distance-based and gradient descent-based algorithms, it

becomes imperative to normalize the datasets inasmuch as the magnitude of the variables

might affect the size of the gradient descent step and the distance between instances that will

be used to find an optimal solution. Consequently, three of the most frequently used data

normalization techniques were implemented and tested on the datasets imputed by the

median beforehand.

Moreover, prior to implement and test the different normalization techniques, the categorical

variables present in the data such as the lithostratigraphic group and formation were label

encoded by using a cat encoding functionality and the resistivity logs were log-scaled in order

3|DATA ANALYSISI AND PROCESSING

34

to equalize their magnitude to the neighbor variables’ scales. Besides, in order avoid any kind

of data leakage every scaling technique were implemented by fitting different type of scikit-

learn scalers on the training data and then transforming the open and hidden test sets into

similar scales. Figure 20 displays some of the wireline logs before applying any sort of

scaling, and after applying a min-max scaler, an standard-scaler, and a normalizer.

Figure 20 Different normalization techniques applied on the training dataset: Before scaling (upper-left),
Min-max scaled data (upper-right), Standardized data (lower-left), (d) Normalized data (lower-left)

Accordingly, being not able to visually select the most suitable scaling method for our

datasets, a logistic regression classifier was trained on a 10% stratified subsample of each

differently scaled dataset by only using 23 out of the 28 original features and subsequently

tested on the open test set. The ‘SRG’, ‘ROPA’, ‘RXO’, ‘MUDWEIGHT, and

‘LITHO_CONF’ columns were removed for the three datasets before training basing our

judgment principally on their missing data percentages.

The results shown on Table 4 demonstrate that by standardizing our data we achieved a

greater classification performance of almost 8% when compared to the other implemented

techniques such as min-max scaling and a normalization.

Moreover, even though standardization provided better results compared with normalization

and max-min scaler methods, it also became more expensive in terms of running time and

3|DATA ANALYSISI AND PROCESSING

35

number of epochs needed to make the logistic regression model converge as described on

Table 4. In addition, as visible on Figure 20, the standardized training data seemed affected

by possible outliers and unrealistic readings, especially in the case of the GR and SP log

where the outliers are quite visible.

Table 4 Different data normalization techniques tested on a logistic regression base model

NORMALIZATION METHODS - Base model: Logistic Regression

Normalization Method
Test accuracy

(%)

Number of iterations

to converge

Time to

converge [sec]

Without Normalization 61.4 - No convergence

Max-Min Scaler 61.0 18 11

Standardization 69.7 1126 256

Normalization 61.4 25 16

Subsequently, in order perform outlier elimination, the same 10% stratified subsample used

for testing the normalization techniques composed by 117050 instances was used for testing

four different automatic outlier elimination methodologies available on the open source

scikit-learn python library. Besides, the current training set subsample-based outlier

elimination approach was taken due to the massive size of the original training set, which

made of testing each method on the complete set a computationally expensive task.

First, the standard deviation outlier identification methodology needed seven standard

deviations away from the mean to keep a reasonable number of instances for each lithofacie,

specifically for the tuff, coal, and basement, which hold the most extreme GR and SP

readings in the datasets. Second, the tree-based outlier detection known as isolation forest

needed to establish a contamination parameter equal to 0.01 in order to keep a similar class

distribution to the original training set similarly to the fist methodology. Third, a local outlier

detection method was also tested by using different contamination fraction, where the highest

test performance was achieved by using a contamination factor of 0.01. Fourth, a one class

support vector machines outlier identification method was tested with different outlier

fractions as well achieving the highest classification performance with a contamination

fraction of 0.01.

As visible on Table 5, the accuracies obtained after applying each outlier elimination

technique do not affect widely the logistic LR classification performance. However, the local

outlier factor method LOF seemed to remove more efficiently the most isolated values based

3|DATA ANALYSISI AND PROCESSING

36

on their neighbor instances without worsening the classification performance; however, LOF

offers a great disadvantage by becoming highly expensive while handling big datasets as in

our case.

Table 5 Outlier elimination methods tested on a logistic regression base model

Figure 21 presents a histogram of the removed instances by LOF, where most of the removed

values belong to the most frequent classes corresponding to sandstone, shaly-sand, shale,

marl, and limestone. Figure 21 also presents the boxplots of the 10% training set subsample

prior to outlier removal and after applying LOF, where the main difference lies on the GR,

DTC, RSHA, and SP logs.

Figure 21 10% training data subsample boxplot before outlier removal (upper-left), 10% training data
subsample boxplot after LOF outlier removal (upper-right), Subsample removed outliers’ counts by lithofacie.

OTLIER ELIMINATION METHODS - Base model: Logistic Regression

Normalization

Method

Test accuracy

(%)

N° iterations to

converge

Time to

converge [sec]

N° outliers

removed

Standardized Data

(no outliers removed)
69.70 319 78 -

Standard Deviation 69.29 17 4 3190

Isolation Forest 69.63 310 78 1171

Local Outlier Factor 69.72 94 29 1171

One-Class SVM 69.46 46 12 1171

3|DATA ANALYSISI AND PROCESSING

37

Finally, based on the previous analysis and regardless of the expensiveness LOF demands, it

was applied to the complete training dataset removing a total number of instances equal to

10856, which compared to the initial number of instances held by the original training

dataset, represents barely 1%.

3.2.2 Machine-learning-based data augmentation

Integrating well log data into seismic data is a core process to characterize reservoirs, process

that becomes challenging if the available well log data presents missing sections. This issue

has been profoundly investigated in the past years by using different techniques that include

linear interpolation, local-based mean imputation, numerical rock models, and empirical

relationships. For instance, even though the Gardner’s and Castagna’s empirical correlations

may provide reasonable sonic-density and compressional-shear sonic relationships

respectively; in most cases they do not provide a detailed relationship between such

properties. In fact, empirical correlations and numerical rock models might tend to be

sensitive to beforehand assumptions taken without considering the structural complexities

and stratigraphic variations along the subsurface.

In this context, the FORCE datasets exposure offers an opportunity to approach this issue in

a much more statistical-automated manner through the implementation of machine learning

algorithms. Consequently, the present section presents a predictive, sequential, and multi-

stage imputation approach to overcome the missing data issue as an attempt to optimize the

final lithofacies classification task. This methodology is summarized on

Figure 22 and will be explained along the present section.

Firstly, a quick feature importance ranking is developed in order to understand which features

play the most relevant role or contribution in the classification accuracy. This leaded along

with petrophysical experience leaded us to identify that the most relevant features while

classifying lithofacies by either machine learning and manual interpretation are the GR,

NPHI, RHOB, DTS, and DTC logs.

3|DATA ANALYSISI AND PROCESSING

38

ML-BASED FEATURE IMPUTATION ALGORITHM

Pre-requisites:

1. feature_ranking: most relevant features ranked by missing data percentage from high

to low.

2. models: every possible machine-learning regressor to be evaluated against the others.

Input: training_set, test_set

for target_feature in feature_ranking:

 “Splitting training set on features and target”

 features_i = all variables other than target_feature

 target_i = target _feature

 training_set_i = all training instances where target_i is present

 test_set_i = all test instances where target_i is present

 for model_i in models do:

 “Training and evaluating each machine-learning model”

 fit the model to training_set_i

 predict target on test_set_i

 end

 “Imputing missing data before moving into the next target”

 compare models’ performances and best model section

 predict and impute missing instances of the target_feature on training_set and test_set

end

Output: Machine-learning feature imputed training_set and test_set

Figure 22 Machine-learning-based feature imputation algorithm

Second, based on the previous analysis we developed a prediction priority ranking for the

five selected logs based on their missing data percentages in order to minimize the prediction

error by using as much data as possible for training purposes in each case. In other words,

we seek to sequentially predict each wireline log according completeness the other features

have for training and prediction purposes, so the learning machines could get much more

information from the other less sparse predictors.

Table 6 Feature prediction priority ranking to follow for ML imputation

Prediction

Priority Ranking
Feature (Log)

Missing Data

Percentage

1 DTS 85.1 %

2 NPHI 34.6 %

3 RHOB 13.8 %

4 DTC 6.9 %

5 GR 0.0 %

3|DATA ANALYSISI AND PROCESSING

39

Third, based on the feature prediction priority ranking three ensemble regressors were used

to train and test their performance on the open test set based on the root mean squared error

(RMSE), mean absolute error (MAE), explained variance (EV), maximum error (ME) and

R-squared factor (R2). It is important to note that, as described on

Figure 22, the current methodology is a training-prediction multi-stage process where before

entering each training-prediction substage for a particular target feature, the training dataset

obtained during the previous training-prediction substage is splited into two smaller subsets

for training and validation purposes. Afterwards, once each training process at each substage

is completed, the regressors are tested on the open test set in order to select the best

performing ML algorithm to finally update the datasets by imputing the missing values

implementing the best performing ML regressor at each substage. This process aims to keep

the actual reading for the treated features and only use machine learning to impute the missing

values encountered along the mentioned variables.

The first prediction substage aims to predict the shear acoustic log, where Table 7 presents

prediction results obtained by the evaluated regressors. The extreme gradient boosting XGB

regressor appeared to achieve the highest performance when compared to light LGBM and

categorical CAT gradient boosting algorithms. Further, even though XGB performed better,

it faced difficulties to predict DTS values beyond 400 us/m, while the final ML imputed DTS

distribution shown on Figure 23 seemed to be highly influenced by the predicted DTS values.

This effect could be attributed to the amount of missing data the actual DTS log has, which

involves almost 85.1% of the data instances from which we could expect to have many more

shale and sand related readings given the North Sea geology nature in which the majoritarian

lithologies are essentially those.

Table 7 Shear slowness DTS prediction results - Prediction substage 1

PREDICTION SUBSTAGE 1 – DTS PREDICTION

Log Model Data EV ME RMSE MAE R2

DTS

XGBoost
Training 0.943 320.764 17.016 9.933 0.943

Testing 0.915 154.864 16.155 10.545 0.935

CatBoost
Training 0.949 288.091 16.098 9.393 0.949

Testing 0.896 164.39 20.341 12.138 0.896

LightBoost
Training 0.966 222.80 13.085 7.550 0.966

Testing 0.917 170.59 18.142 11.347 0.917

3|DATA ANALYSISI AND PROCESSING

40

Figure 23 (a) Actual DTS vs. predicted DTS, (b) Actual DTS probability distributions by lithology, (c) Predicted
DTS probability distributions by lithology, (d) Final ML imputed DTS probability distributions by lithology.

Once the DTS readings on the datasets are updated, the second prediction substage attempts

to predict the neutron porosity NPHI missing values. Table 8 presents the metrics of the

evaluated regressors used for predicting NPHI, where the LGBM performed slightly better

than the other regressors on the training and test sets.

Table 8 Neutron Porosity NPHI prediction results - Prediction substage 2

PREDICTION SUBSTAGE 2 – NPHI PREDICTION

Log Model Data EV ME RMSE MAE R2

NPHI

XGBoost
Training 0.822 0.598 0.055 0.039 0.823

Testing 0.795 0.458 0.054 0.041 0.795

CatBoost
Training 0.811 0.583 0.057 0.041 0.812

Testing 0.789 0.473 0.055 0.041 0.789

LightBoost
Training 0.857 0.568 0.049 0.035 0.857

Testing 0.803 0.486 0.053 0.039 0.802

As visible on Figure 24, LGBM appeared to face difficulties to predict neutron porosity

values above 0.6. Besides, even though the predicted NPHI distribution (Figure 24c) seemed

to resemble the actual NPHI distribution (Figure 24a), the model seems to overestimate

sandstones’ porosities to values higher to 0.40, same which became less noticeable after

imputing the predicted values into the missing readings.

Figure 24d depicts how the final distribution became more alike to the initial NPHI

distribution after ML-imputation where slight overestimations may still be visible only for

sandstones.

a b c d

3|DATA ANALYSISI AND PROCESSING

41

Figure 24 (a) Actual NPHI vs. predicted NPHI, (b) Actual NPHI probability distributions by lithology, (c)
Predicted NPHI probability distributions by lithology, (d) Final ML imputed NPHI probability distributions by

lithology.

Then, the third prediction substage after DTS and NPHI imputation attempts to predict

missing bulk density values. Table 9 Bulk Density RHOB prediction results - Prediction substage

3presents the metrics for the RHOB prediction, where the categorical gradient boosting

regressor seemed to predict NPHI with more confidence. In addition, Figure 25 demonstrate

how similar the actual, the predicted, and the final ML-imputed NPHI distributions are, and

hence how confident its prediction is.

Table 9 Bulk Density RHOB prediction results - Prediction substage 3

PREDICTION SUBSTAGE 3 – RHOB PREDICTION

Log Model Data EV ME RMSE MAE R2

RHOB

XGBoost
Training 0.898 1.277 0.081 0.054 0.897

Testing 0.854 1.063 0.930 0.063 0.854

CatBoost
Training 0.938 1.26 0.629 0.042 0.938

Testing 0.871 0.973 0.087 0.060 0.871

LightBoost
Training 0.927 1.370 0.068 0.046 0.927

Testing 0.866 0.958 0.089 0.060 0.865

Figure 25 (a) Actual RHOB vs. predicted RHOB, (b) Actual RHOB probability distributions by lithology, (c)
Predicted RHOB probability distributions by lithology, (d) Final ML imputed RHOB probability distributions by

lithology.

a b c d

a b c d

3|DATA ANALYSISI AND PROCESSING

42

Lastly, the fourth prediction substage involved the prediction of the compressional sonic

DTC missing instances. Table 10 displays the metrics obtained while predicting DTC, where

XGBoost regressor outperformed the other two algorithms on the open test dataset.

Table 10 Compressional Slowness DTC prediction results - Prediction substage 4

PREDICTION SUBSTAGE 4 – DTC PREDICTION

Log Model Data EV ME RMSE MAE R2

DTC

XGBoost
Training 0.977 150.226 4.451 2.828 0.977

Testing 0.974 47.8123 4.422 3.172 0.974

CatBoost
Training 0.988 138.046 3.168 2.007 0.988

Testing 0.975 49.690 4.263 3.056 0.975

LightBoost
Training 0.986 98.843 3.493 2.249 0.986

Testing 0.973 53.435 4.439 3.010 0.973

Figure 26 displays the correlation between the actual and predicted DTC, which seemed to

have the same ranges, meaning that XGBoost was able to predict this property with high

confidence as described by the regression metrics on Table 10. In addition, the confidence

while predicting DTC can be observed on the similitude between the actual, predicted, and

final ML-imputed DTC distributions.

Figure 26 (a) Actual DTC vs. predicted DTC, (b) Actual DTC probability distributions by lithology, (c) Predicted
DTC probability distributions by lithology, (d) Final ML imputed DTC probability distributions by lithology.

It is important to mention that the present ascendant-ranked feature imputation methodology

based on target features presence percentages was selected against a descendent methodology

inasmuch as the error for each predicted log increased importantly when the second method

was tried out.

Finally, Figure 27 shows the actual, predicted, and machine learning imputed logs for well

35/9-8 corresponding to the test dataset. As visible, even though this well contains complete

readings for the four treated logs, it serves to visualize and compare how similar the actual

logs are in comparison to the predicted ones. In fact, based on the explained variance and

a b c d

3|DATA ANALYSISI AND PROCESSING

43

𝑅2 factors we could say that there is much more confidence while predicting the

compressional slowness (DTC), shear slowness (DTS), and density (RHOB) logs than while

predicting the neutron porosity (NPHI) log, meaning that much more of the variance held by

target variable could be explained by the independent variables used during each training

substage.

Shear Slowness Neutron Porosity Bulk Density
Compressional

Slowness

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

Figure 27 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 35/9-8).

In the other hand, well 34/5-1-S presented on Figure 28 shows how the highlighted small to

medium size missing data gaps were effectively filled up by the most accurate machine

learning model’s predictions on each treated wireline log.

To conclude, the presented missing data imputation methodology was designed and adopted

with the purpose of improving progressively the datasets quality and consequently the final

classification performance. It should be noted this methodology attempt also to minimize as

much as possible the prediction uncertainty, which might be mainly introduced while

predicting extensive missing data gaps, by predicting each well log sequentially based on the

data available to train each regressor during every training-prediction substage. Moreover, it

is worth mentioning that the present methodology could be applied to any extent in order to

3|DATA ANALYSISI AND PROCESSING

44

predict any feature included into the datasets; however, due to timing and computational

resources constrains, it was only applied to the four most relevant wireline logs.

Shear Slowness Neutron Porosity Bulk Density Compressional Slowness

Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed

 Figure 28 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 34/5-1S).

3.2.3 Feature Engineering

Furthermore, apart from the 23 initial pre-selected features during the data normalization

analysis, four of which were imputed and improved during the augmentation section, seven

more features were designed and included into the original datasets to be used as part of the

training, validation, and prediction stages. These additional features are enlisted on Table 11.

Table 11 Additional features incorporated into datasets

N° Feature Name Key

1 Cluster by location Cluster

2 Bulk Modulus K

3 Shear Modulus GM

4 Measured-vertical depth ratio MD_TVD

5 Slowness Ratio DT_R

6 Shear Impedance AI

7 Compressional impedance AI_P

3|DATA ANALYSISI AND PROCESSING

45

Six out of the seven engineered features were computed straightforwardly based on the

augmented wireline logs. However, deciding the optimal number of clusters to which to split

up the dataset based on well location was a big question at first while implementing

unsupervised learning, this leaded us to try to determine the number of clusters based on the

elbow method, which in brief calculates the sum of the squared distances of each data point

to the near cluster center, known as inertia, by using different number of clusters. The elbow

plot on Figure 29 shows that three clusters was be optimal for our data and adding more

clusters becomes marginal or useless.

Figure 29 Optimal number of clusters based on elbow method (left), Clusters visualization (right)

Finally, Table 12 records how the previously analyzed logistic regression classifier’s

performance improved after machine-learning feature augmentation and features engineering

were executed in comparison to the results obtained when median-imputed data was used for

training. Along with this, based on the best standardization and outlier removal techniques

that were found in previous analyses, the machine-learning imputed data was similarly

treated in regards of this by implementing a standardization and a local outlier elimination

techniques prior to enter the training and prediction stages.

Table 12 Logistic regression model's performance by using median-imputed data, machine learning-imputed
data, and after including additional features.

LOGISTIC REGRESSION (Standardized data)

Number of

Features

Test accuracy

(%)

N° iterations

to converge

Time to

converge [sec]

Features

Comments

23 69.7 1126 256 Median-imputed

23 70.7 1127 255 + ML Augmentation

30 71.3 1103 299 + Additional Features

3|DATA ANALYSISI AND PROCESSING

46

To conclude, it is important to note that the most significant performance improvements were

obtained after the machine-learning feature augmentation process rather than from feature

engineering. Nonetheless, even though the improvements might not appear highly significant

while using a linear classifier, these might become higher after eliminating the non-

informative features, carrying out hyper-parameter tuning, and by implementing more robust

classifier types, factors that have not been addressed yet and will in the subsequent sections.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

47

Chapter 4

4. LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

In this section, we initially explored the baseline construction philosophy and its importance

to monitor model performance. Each baseline model was built and validated by implementing

a cross validation technique on 10 stratified K-Folds of the training set. This technique splits

the training dataset in 10 subsampled and tests every model on each of them, ensuring that

each data subset keeps the same lithology class distributions that the original training set

holds in order to generalize the performance and avoid a bias towards the most frequent

classes.

Subsequently, considering the massive nature of the training dataset, the hyper-parameter

tuning process for the most expensive models was executed in a smaller stratified subsample

of the original set in order to reduce running time and save computational power. Refer to

Appendix E where all the experimental process is extensively documented.

Furthermore, in the face of the efficient performance improvements previously seen on the

logistic regression baseline model presented on Section 4 after data processing, the original

readings on the training, open, and hidden datasets were replaced and complemented by the

values obtained after ML feature augmentation, feature engineering, standardization, and

outlier removal treatment, so that the other model could also experience a similar

performance enhancement from this procedures. Refer Appendix B to see python code of all

the functionalities needed to process the datasets prior to start the machine learning

implementation and Appendix A to visualize the python code for every optimized model

once the hyper-parameter and feature selection stages described in the current section, have

been completed.

4.1 BASELINE MODEL OVERVIEW

Several baseline models were created and tested on 10 different stratified K-Folds of the

training set as a cross validation technique. As shown on Figure 30, the top performing

models while iteratively using 9 folds for training and 1 for testing seemed to be a random

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

48

forest classifier. However, considering that every model was trained and tested by using only

the training data with no regularizing their learning process, these results might be prone to

overfitting.

Figure 30 Base models average accuracies while iteratively training on 9 k-folds
and testing on the 10th k-fold.

Therefore, each model has to be further analyzed, tuned, and then tested on the open and

hidden datasets to have a consistent analysis and comparison between each other afterwards.

The main objectives in order to optimize each model performance in the present section will

involve an accurate hyper-parameters determination and a wise feature selection, considering

that form the 30 available features for training, some may not be informative but they may

incorporate noise and create confusion into the models. Table 13 presents all the processed

features available for training the learning machines.

Table 13 Available Features for training the learning machines.

RDEP DEPTH_MD RHOB (augmented)

RMED X_LOC NPHI (augmented)

RSHA Y_LOC DTS (augmented)

RMIC Z_LOC Cluster (additional)

SP BS K (additional)

DCAL CALI GM (additional)

ROP GROUP ENCODED MD_TVD (additional)

DRHO FORMATION ENCODED DT_R (additional)

PEF WELL_ENCODED AI (additional)

GR DTC (augmented) AI_P (additional)

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

49

4.2 CONVENTIONAL MACHINE-LEARNING METHODS

4.2.1 Logistic Regression

In the preceding section we constructed a Logistic Regression base model, which performed

with accuracies of 72, 71.3, and 73% on the training, open, and hidden sets, respectively after

feature augmentation, future engineering, data standardization, outlier removal treatment,

and by using the default model’s hyper-parameters. Moreover, as stated previously, there is

a genuine need to appropriately select the best model hyper-parameters and predictors to be

used while training, validating, and testing in order to optimize the algorithm’s performance.

Initially we attempted to reduce the number of the features through a recursive feature

elimination process, which is normally intended to remove the least informative features that

might slow down the training process, introduce noise, or create confusion into the model.

This process did not provide much positive results for the current model since apparently 29

of the 30 original features seemed to be necessary to accomplish the highest accuracy on the

training set as shown on Figure 31. However, the recursive feature selection process provided

a better understanding on the predictors that play the most important role for the classification

as shown in Figure 32a, where accordingly the first 11 features account for most of the

variance of the training dataset and together accomplish an accuracy above 73%.

Figure 31 Logistic Regression Classifier: Recursive feature elimination by a logistic regression-based wrapper

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

50

In other words, this means that the 19 remaining features do not improve the training

accuracy in more than 2% and hence could be removed without affecting largely the model

performance. Besides, in order to double check our conjecture about the most influencing

features, a forward sequential feature selection method was tested in order to validate these

11 features. Figure 32b confirmed that 73% of training accuracy could be achieved by

keeping solely the 11 most informative predictors as we presumed.

Figure 32 Logistic Regression Classifier: Permutation feature importance

Subsequently, by keeping the 11 previously selected features, a manually hyper-parameter

tuning process was executed for the inverse regularization strength factor C, while the solver

type and the maximum number of iteration where theoretically selected due to initial

problems to make the model converge while using the default hyper-parameter values.

In addition, since any tuning process become normally expensive in terms of running time

while dealing with large datasets, we performed this by using only a 10% stratified subsample

of the original training set, which held the same class proportions present on the original

dataset in order to make the sample statistically representative for our problem.

Afterwards, based on the scikit-learn documentation, SAGA and SAG solvers offer fast

convergence when dealing with large and normalized datasets. In fact, as stated by (Defazio

et al., 2014), SAGA is an improved version of SAG, which offers a better theoretical

convergence rate and is adaptive to any inherent strong convexity of the problem. In

consequence, a SAGA solver was selected for the current classification task while keeping

a

b

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

51

the number of iterations to a high value of 4000 in order to let the model converge while

manually evaluating different Inverse Regularization Strength (C) values on the open test set

as validations set as shown in Figure 33.

Figure 33 Logistic Regression Classifier: Different inverse regularization strength tested

on the training and open test set (log C vs. accuracy)

The figure above represents how the training and validation accuracies change while the

linear logistic regression model uses different inverse regularization values ranging from

10e-5 to 10e3. Note that the accuracies are plotted against the logarithm on the evaluated

factor due to its investigation range; this leaded to find 0.1 as the optimal value for this

parameter based on the validation accuracy. Thus, the selected optimal hyper-parameters that

were implemented on the final model are summarized as follow on Table 14.

Table 14 Logistic Regression Classifier: Optimal hyper-parameters

Hyper-parameter Optimal value

Inverse Regularization Parameter 0.1

Maximum Iterations Number 4000

Solver ‘saga’

To conclude, an end-model was created and trained on the 11 most informative features by

using the optimal hyper-parameters previously selected. This provided accuracies of 74, 72,

and 75% on the training, open test, hidden test sets, respectively. The results confirm our first

guess about the non-linear relationship between features and the non-linear separation

between most of the targeted lithology classes.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

52

A class-detailed classification report for each dataset is presented on Table 15, where even

though the open test set was used for fine tuning hyper-parameters, the hidden test set showed

a better classification accuracy. This could be easily explained by the slight difference on the

lithology distributions between the open and hidden test sets more notoriously on the

limestone, marl, chalk, halite, and anhydrite lithology types. This apparently slight class

distribution difference was enough to provide an extra improvement on the hidden set

accuracy when compared to the open test set accuracy.

Table 15 Logistic Regression Classifier: Classification reports for the training,
open test, and hidden test datasets.

Finally, the confusion matrixes normalized to the number of predictions per class are

presented on Figure 34. In general, the logistic regression classifier showed the highest

accurately while classifying shale, halite, and anhydrite; medium accuracies for limestone,

tuff and coal; and the poor accuracies while handling similar composition lithologies.

Besides, most of the misclassifications denote a tendency to the majority classes such as

sandstone, shaly-sandstone and shale.

LOGISTIC REGRESSION CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.66 0.63 0.64 0.64 0.61 0.63 0.58 0.60 0.59

Sandstone/Shale (1) 0.51 0.15 0.23 0.30 0.23 0.26 0.34 0.13 0.19

Shale (2) 0.78 0.95 0.86 0.81 0.90 0.85 0.84 0.94 0.89

Marl (3) 0.44 0.15 0.23 0.15 0.01 0.02 0.22 0.18 0.19

Dolomite (4) 0.40 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.62 0.55 0.58 0.49 0.55 0.52 0.57 0.51 0.54

Chalk (6) 0.72 0.59 0.65 0.00 0.00 0.00 0.53 0.93 0.68

Halite (7) 0.98 0.99 0.98 0.00 0.00 0.00 0.99 0.96 0.97

Anhydrite (8) 0.88 0.67 0.76 0.00 0.00 0.00 0.88 0.31 0.46

Tuff (9) 0.54 0.16 0.24 0.66 0.15 0.25 0.10 0.03 0.04

Coal (10) 0.73 0.42 0.53 0.67 0.42 0.52 0.81 0.57 0.67

Basement (11) 0.96 0.22 0.36 - - - - - -

Weighted Metric 0.71 0.74 0.70 0.68 0.72 0.69 0.71 0.75 0.72

Accuracy Score 0.74 0.72 0.75

Matrix Score -0.69 -0.75 -0.64

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

53

Figure 34 Logistic Regression Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

The bias in the classification can be explained by the fact that linear separable algorithms as

logistic regression are highly influenced by the target’s probability distributions, which

means that the minor present lithologies tend to be misclassified as any of the most frequent

ones. This issue could corrected by equalizing the class distributions by any oversampling,

undersampling, and synthetic sampling techniques; however, due to the extent of the current

study, they were not implemented nor evaluated.

4.2.2 K-Nearest Neighbor

As previously discussed on section 4.1 the base non-parametric K-nearest neighbor model

provided accuracies an accuracy about 92% when trained and tested on the training set by

cross validating on 10-stratified k-folds. However, even though it showed promising results

on the training data, the same did not occur when testing the base model on the open and

hidden test sets, which provided classification accuracies of 72 and 74%, respectively.

In consequence, considering the high and medium-low accuracies obtained on the training

and test sets respectively, a hyper-parameter optimization had to be executed to test for

possible enhancements in performance. However, before undergoing into a hyper-parameter

optimization, which is computationally expensive particularly when implementing KNN as

previously we discussed on the theoretical background section, a feature dimensionality

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

54

reduction was performed in order to be able to run the hyper-parameter in a less expensive

manner.

Besides, there are plenty of model-based feature selection techniques, which may also

become computational expensive when dealing with large massive datasets such as the case

of recursive feature selection and permutation feature elimination. Therefore, a permutation

feature selection was performed on a 10% stratified subsample of the training data in order

to represent the label distribution existing on the original training dataset.

Figure 35 K-Nearest Neighbor Classifier: Permutation feature importance.

Figure 35 shows the features importance obtained by the permutation feature importance,

where some predictors such as RMIC, RMED, DRHO, DCAL, RSHA, ROP, and K seem not

to play a highly important role on the classification task; however, properly selecting the

number of features that could provide the best results by only inspecting their importance

becomes a bit difficult. In consequence, we used the open test set to measure the influence

the number of features used during training has on the classification performance while

keeping the same 10% stratified training subsample. Thus, based on the importance ranking

provided by the permutation feature importance we trained and tested different KNN models

by including sequentially one additional feature for training. Interestingly, as visible on

Figure 36 the accuracy curves started to plateau while using just 6 to 10 features, and adding

additional features only added slight improvement; however, the test accuracy showed a

much more stable curve when more than 15 features were used.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

55

Figure 36 K-Nearest Neighbor Classifier: Impact the number of training features has on the classification accuracy.

In addition, based on the previous analysis a new default-parameter base model by only

including the 15 most informative features was trained and tested on the open test and hidden

test sets providing practically the same accuracies the initial KNN base model obtained while

using the complete set of 30 features. In other words, by removing 15 of the less informative

features the KNN classification accuracy did not get impacted while at the same time it

reduced the running time KNN requires for training and predicting, and in consequence will

help reducing the running time while optimizing hyper-parameters.

Moreover, a manual neighbors tuning optimization was performed in order to understand

how its impact on the training and open set classification performance in order to select most

optimal values that would improve model generalization. This investigation is documented

on Figure 37, where we can observe that by using a number of neighbors lower than 25 the

model performance on the open test set worsens while the training accuracy remains high,

meaning that the model is unable to generalize well when a small number of neighbors is

used.

In the other hand, by selecting a high number of neighbors, the test accuracy does not get any

further improvement; thus, a number of neighbors bigger than 50 may be a good choice in

order to generalized well on the unseen dataset since as shown the more number of neighbors

used, the more computationally expensive the model becomes.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

56

Figure 37 K-Nearest Neighbor Classifier: Number of neighbors vs. accuracy.

In addition, once the optimal number of neighbors was set on 80, a further grid hyper-

parameter investigation on two additional relevant hyper-parameters such as the weights

applied to each instance and the metric to compute the distance between data instances was

performed. The optimal values found by the grid parameter search while implementing a 10

stratified k-fold cross validation as well as the optimal number of neighbors are summarized

on Table 16.

Table 16 K-Nearest Neighbor Classifier: Optimal hyper-parameters.

Hyper-parameter Optimal value

Number of Neighbors 80

Weights Manhattan

Metric Distance

Finally, a final model based on the optimal hyper-parameters was trained and tested,

providing accuracies of 78% on the open test and hidden test sets, which compared to the

initial test accuracies show an important enhancement. It is important to mention that the

open test set was used as validation set while finding out the optimal number of neighbors to

be used; however, KNN showed consistent results when tested on unseen objects. A detailed

classification report is presented on Table 17, where we could observe how KNN was able

to perform consistently on both test datasets.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

57

Table 17 K-Nearest Neighbor Classifier: Classification reports for the training,
open test, and hidden test datasets.

 In addition, the confusion matrices for the open test and hidden test sets are displayed on

Figure 38, from which we could observe how KNN the most significant misclassifications

occur between tuff and shale, chalk and marl, limestone an marl-shale, and shaly-sandstone

and shale, while KNN was not even able to classify limestone on none of the test sets.

Figure 38 K-Nearest Neighbor Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right).

K-NEAREST NEIGHBOR CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.85 0.84 0.84 0.78 0.82 0.80 0.75 0.69 0.72

Sandstone/Shale (1) 0.79 0.69 0.74 0.50 0.24 0.33 0.47 0.27 0.34

Shale (2) 0.91 0.97 0.94 0.81 0.93 0.87 0.84 0.94 0.89

Marl (3) 0.85 0.73 0.79 0.49 0.06 0.11 0.66 0.29 0.40

Dolomite (4) 0.91 0.15 0.26 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.87 0.67 0.76 0.59 0.51 0.55 0.53 0.64 0.58

Chalk (6) 0.93 0.84 0.88 0.00 0.00 0.00 0.68 0.47 0.55

Halite (7) 0.97 1.00 0.98 - - - 0.97 1.00 0.99

Anhydrite (8) 0.92 0.82 0.87 0.99 0.58 0.73 0.93 0.49 0.64

Tuff (9) 0.84 0.86 0.85 0.66 0.50 0.57 0.51 0.46 0.49

Coal (10) 0.96 0.29 0.44 0.98 0.18 0.30 0.93 0.37 0.53

Basement (11) 1.00 0.41 0.58 - - - - - -

Weighted Metric 0.88 0.89 0.88 0.74 0.78 0.74 0.76 0.78 0.76

Accuracy Score 0.89 0.78 0.78

Matrix Score -0.305 0.586 0.560

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

58

4.2.3 Support Vector Machines

Support Vector Machines, SVM, implements separation hyper-planes to perform

classification tasks. These hyper-planes achieve a good separation and the best generalization

when the nearest training data point lies far from the decision plane. However, in several

cases the data instances cannot be separated by a linear hyper-plane as we used while

pretended while constructing our SVM base model, which provided relatively low initial

classification performances of 74, 74, and 78% on the training, open test, and hidden test

sets, respectively. Further, SVM requires storing the kernel matrix, which increases as the

number of data instances increase, making SVM less feasible for massive datasets.

In consequence, a dimensionality reduction by implementing any model-based wrapper and

a any type of grid hyper-parameter search are not suitable for SVM considering the massive

number of data points contained on the training set. This leaded us to attempt to optimize

manually the most crucial hyper-parameter needed for regularization purposes while only

using a 10% stratified subsample of the training set that kept the class distributions in order

to make it representative to the original training data. This subsample allowed to investigate

the effect the regularization term C has on the SVM classification; in addition, a more

expensive RBF kernel was also introduced as an attempt to translate the data into a much

more complex dimension in which a much easier and accurate instance separation could be

possible.

Figure 39 Support Vector Machines Classifier: Regularization vs. accuracy.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

59

Figure 39 presents the effect C has on the training and open set accuracy, where the highest

test accuracy reached a maximum value of 76% when C was equal to 0.1. It is important to

note that the open test set was used to validate the hyper-parameter C in order to select the

optimal value, which will be used later on the final model to predict on the hidden dataset.

Moreover, due to the investigation range of the regularization term, which goes from 0.01 to

100, Figure 39 presents C in a logarithmic scale in order to be able to visualize the accuracies

variability in relation to any change in C.

Based on the previous analysis, the optimal regularization term seemed to fall on between

values of 0.1 and 1.0; thus, to allow a much wider variability and less penalized decision

hyper-planes when testing SVM on unseen objected, an intermediate value of 0.5 was

selected as optimal parameter.

Table 18 Support Vector Machines Classifier: Classification reports for the training,
open test, and hidden test datasets.

To conclude, a final model based on the optimal regularization hyper-parameter and a radial

basis function kernel RBF was constructed, trained, and tested providing accuracies of 84,

76, and 79% on the training, open test, and hidden test sets, respectively. A class-detailed

SUPPORT VECTOR MACHINES CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.78 0.80 0.79 0.80 0.78 0.79 0.71 0.73 0.72

Sandstone/Shale (1) 0.54 0.72 0.62 0.27 0.41 0.33 0.29 0.52 0.37

Shale (2) 0.96 0.87 0.91 0.91 0.82 0.86 0.95 0.84 0.89

Marl (3) 0.44 0.77 0.56 0.07 0.62 0.12 0.22 0.48 0.30

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.63 0.78 0.70 0.52 0.45 0.49 0.65 0.57 0.61

Chalk (6) 0.70 0.89 0.78 0.00 0.00 0.00 0.46 0.71 0.56

Halite (7) 0.98 0.98 0.98 - - - 0.96 0.99 0.98

Anhydrite (8) 0.67 0.94 0.78 0.00 0.00 0.00 0.42 0.83 0.56

Tuff (9) 0.66 0.77 0.71 0.59 0.72 0.65 0.61 0.60 0.60

Coal (10) 0.40 0.87 0.54 0.36 0.92 0.52 0.56 0.88 0.68

Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.87 0.84 0.85 0.81 0.76 0.78 0.84 0.79 0.81

Accuracy Score 0.84 0.76 0.79

Matrix Score -0.425 -0.621 -0.536

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

60

classification report is presented on Table 18 as well as the confusion matrices normalized

by the total number of predictions per class.

Figure 40 Support Vector Machines Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

In general, SVM appeared not being able to distinguish between sandstones and shaly-

sandstones, shale and sandstones, limestone and marl, tuff and shale, while it seemed to have

high performances when classifying halite and shale. This suggests that SVM classification

presents a great tendency towards the majority classes; however, encouraging the model to

classify better the minority classes by weighting them through the weight parameter did not

provide better results but worse. Thus, various over, under, and synthetic sampling

techniques might be possible solutions to overcome SVM limitations regarding class

imbalance, same which due to computational power limitation and the extent of the present

study were not analyzed.

4.2.4 Decision Trees

The base model we initially constructed provided accuracies of 93, 62, and 63% for the

training, open test, and hidden test sets, respectively. However, it is important to note that

this accuracy was obtained only by training and testing the model on 10 stratified k-folds of

the training data without manipulating any regularization term into the model. In other words,

this great difference between accuracies on the training and test sets is a clear show of

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

61

overfitting, which will be corrected by implementing a technique called decision tree

pruning.

Cost complexity pruning is a machine-learning technique that aims to reduce the size of a

decision tree by removing redundant branches that might cause overfitting in the model, so

in brief it would counteract a poor model generalization. A common and suggested approach

is to first decrease the maximum depth for a decision tree before undergoing into a pruning

process; in consequence, we established new maximum depth equal to 15 for the base model

obtaining new accuracies of 93, 62, and 61% for the training, open, and hidden sets,

respectively.

Later on, the cost complexity parameter, ccp_alpha and the impurities at each level of the

tree are calculated. In general, ccp_alpha influences the tree in the number of nodes a tree

ends up growing. In other words, we will try to find the best ccp_alpha parameter that would

restrict the tree growth up to an optimal number of nodes.

Figure 41 Decision Tree Classifier: Cost complexity factor ccp_alpha vs. accuracy
on the training and open test datasets.

Figure 41 shows how the training and open test set accuracy vary accordingly to the value

the ccp_alpha factor takes. The plot provides an idea that the optimal ccp_alpha factor should

be in order to get the highest performance when testing on the open test set used as a

validation set for the current pruning procedure. The highest performance on the test set was

obtained by using a ccp_alpha equal to 0.000587; however, using this value might still be too

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

62

specific in order to generalize the model performance on unseen objects. This analysis leaded

us to define the optimal ccp_alpha could be any value between 0.000587 and 0.003. In

consequence, with this in mind we opted for a safer ccp_alpha value of 0.002 for training and

testing final model.

Table 19 provides a detailed classification performance acquired by pruned decision tree, in

which we could observe that although the pruned tree provided accuracies of 76, 75, and 75%

on the training, open test, and hidden test sets, respectively, it was unable to predict the least

frequent classes such as chalk, halite, anhydrite, tuff, coal, and the crystalline basement.

Table 19 Decision Tree Classifier: Classification reports for the training, open test, and hidden test datasets.

In addition, the confusion matrices normalized by the total number of predictions per class is

presented on Figure 42.

The classification report and the confusion matrices revealed that the decision trees model

was unable to predict classes such as coal, tuff, chalk, and dolomite. The imbalance on the

prediction might be explained by the cost complexity pruning process, which is a great

technique to raise the overall model accuracy at the cost of not capturing in detail least

DECISION TREE CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.68 0.67 0.67 0.79 0.72 0.75 0.60 0.61 0.60

Sandstone/Shale (1) 0.75 0.21 0.33 0.50 0.02 0.03 0.78 0.11 0.19

Shale (2) 0.77 0.96 0.86 0.74 0.99 0.85 0.77 0.98 0.86

Marl (3) 0.64 0.18 0.28 0.74 0.02 0.04 0.48 0.03 0.06

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.80 0.47 0.59 0.63 0.29 0.40 0.57 0.56 0.56

Chalk (6) 0.79 0.63 0.70 0.00 0.00 0.00 0.00 0.00 0.00

Halite (7) 0.77 1.00 0.87 0.00 0.00 0.00 0.87 1.00 0.93

Anhydrite (8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tuff (9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Coal (10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.74 0.76 0.72 0.70 0.75 0.67 0.70 0.75 0.69

Accuracy Score 0.76 0.75 0.75

Matrix Score -0.663 -0.690 0.665

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

63

represented classes into the datasets. In other words, the cost complexity pruning process

improved the classifier’s performance from 62% to 75% on the test sets mainly by improving

significantly the classification on the most frequent classes but without improving the

classification for the minority classes.

Figure 42 Decision Tree Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

4.3 ENSEMBLE MACHINE-LEARNING METHODS

4.3.1 Random Forest

Beforehand we constructed a Random Forest base model that performed with an accuracy of

92% while training and validating the model on 10 stratified k-folds on the preprocessed

training set. This provided accuracies of 78% and 79% on the open test and hidden test sets,

respectively. In addition, considering the base model did not consider any regularization

technique, the current section aimed to optimize the base model by performing an accurate

features and hyper-parameters selection.

4.3.1.1 Recursive Feature Elimination

Initially in order to improve the model performance a feature dimension reduction was

attempted to remove the least informative features that might slow down the training process,

introduce noise, or create confusion into the model. To do so a recursive feature elimination

wrapper was constructed and tested on a 10% stratified subsample of the training data in

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

64

order to train the model on a representative sample, handle the imbalance between lithology

classes, and avoid overfitting. Besides, it is important to mention that this approach was

adopted since random forest classifier available on the scikit-learn library only supports CPU

but not GPUs.

Figure 43 Random Forest Classifier: Recursive feature elimination wrapper results

Figure 44 Random Forest Classifier: Feature importance given by the RFE wrapper.

The recursive feature selection, documented on Figure 43, indicated 27 as the optimal number

of features in order to attain the highest training accuracy; however, we can also appreciate

how most of the accuracy is achieved by only the initial 10 features and the 17 subsequent

only contribute a slight improvement in the accuracy. In addition, RFE wrapper also provided

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

65

the apparent features importance (Figure 44), in which GR, NPHI, DTS, RHOB, and some

metadata features related to instances location seemed to influence the random forest output

the most.

4.3.1.2 Hyper-parameter Tuning

Subsequently, after we decided to reduce the number of features up to 27 in order to look for

the maximum possible accuracy, a hyper-parameter optimization process was performed

based on a randomized parameter search technique. The parameters’ evaluation ranges are

enlisted on¡Error! No se encuentra el origen de la referencia..

Table 20 Random Forest Classifier: Hyper-parameter ranges defined for tuning

Hyper-parameter Value ranges

n_estimators [from 100 to 500 in steps of 50]

max_features [‘sqrt’, ‘auto’]

max_depth [form 1 to 50 in steps of 2]

bootstrap [True, False]

The hyper-parameter grid search was executed for 25 iterations while cross validating the

training with 10 stratified folds in order to avoid overfitting the training data, the better hyper-

parameters are enlisted on Table 21.

Table 21 Random Forest Classifier: Optimal Hyper-parameter

Hyper-parameter Optimal value

n_estimators 350

max_features ‘sqrt’

max_depth 45

bootstrap False

Lastly, a new model was trained by using the 27 most informative predictors (See Figure 44)

and the optimal hyper-parameters. This final model provided accuracies of 98, 78, and 80%

on the training, open test, and hidden test, respectively. The detailed classification reports by

class can be visualized on Table 22.

Additionally, in order to help visualize the classification results Random Forest obtained, the

normalized confusion matrices are displayed on Figure 45.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

66

Table 22 Random Forest Classifier: Classification reports for the training, open test, and hidden test datasets

Figure 45 Random Forest Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

Finally, from both the classification reports and the confusion matrices we could observe

how the random forest perform quite well while predicting classes that have no conflict with

others; however, when it comes to similar lithologies it is prone to make many more mistakes

as the case of dolomite and chalk. In addition, it is important to note that so far random forest

RANDOM FOREST CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.97 0.97 0.97 0.79 0.85 0.82 0.72 0.80 0.76

Sandstone/Shale (1) 0.96 0.95 0.95 0.50 0.27 0.35 0.57 0.26 0.36

Shale (2) 0.98 0.99 0.99 0.83 0.92 0.87 0.85 0.96 0.90

Marl (3) 0.97 0.96 0.97 0.48 0.01 0.03 0.43 0.25 0.31

Dolomite (4) 0.95 0.77 0.85 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.97 0.91 0.94 0.42 0.57 0.48 0.60 0.61 0.60

Chalk (6) 0.99 0.99 0.99 0.00 0.00 0.00 0.56 0.34 0.42

Halite (7) 1.00 1.00 1.00 0.00 0.00 0.00 0.99 0.98 0.99

Anhydrite (8) 0.97 0.98 0.98 0.81 0.41 0.55 0.72 0.76 0.74

Tuff (9) 0.98 0.98 0.98 0.84 0.53 0.65 0.66 0.26 0.38

Coal (10) 0.95 0.88 0.91 0.79 0.85 0.82 0.86 0.64 0.74

Basement (11) 1.00 1.00 1.00 - - - - - -

Weighted Metric 0.98 0.98 0.98 0.75 0.78 0.75 0.77 0.80 0.78

Accuracy Score 0.96 0.78 0.80

Matrix Score -0.061 -0.582 -0.497

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

67

is the only model capable of predicting limestone, something that did previous models were

not able to do so.

4.3.2 Categorical Gradient Boosting

Categorical Gradient Boosting, CatBoost for short, is a recently developed machine-learning

algorithm that gets its name derived from the terms Category and Boosting. ‘Cat’ references

the fact that it handles categorical features or predictors by itself without necessity of

encoding categorical data separately, which is widely required by other machine learning

techniques as part of the pre-processing stage. ‘Boost’ refers to its functionality based on

gradient boosting algorithm covered in the preceding sections (Ghori et al., 2019).

In addition, CatBoost is compatible with scikit-learn tool kit, and supports training on either

CPUs and GPUs. As a first attempt, a hyper-parameter random grid search technique was

executed considering the most relevant parameters as shown on Table 23.

Table 23 Categorical Boosting Classifier: Random search grid for CatBoost classifier

Hyper-parameter Value ranges

depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

iterations [100, 250, 500, 1000]

learning_rate [0.001, 0.01, 0.03, 0.1, 0.2, 0.3]

l2_leaf_reg [1, 3, 5, 10, 100]

border_count [1, 3, 5, 10, 100]

random_strenght [1, 10, 100, 1000]

grow_policy ['SymmetricTree', 'Lossguide', 'Depthwise']

The random search was executed for 100 epochs or iterations by cross validating each set of

parameters on 3 stratified k-folds of the training set. This leaded us to find the values

summarized on Table 24 as the optimal ones according to the random search approach.

However, once a new model was fitted and tested by using these hyper-parameters, it

provided poor accuracies of 71% and 75%, on the open test and hidden test sets respectively.

Besides, considering the high accuracy of 90% obtained on the training set and the

considerably low accuracy on the test sets, which is an indicator of overfitting, we decided

to implement a manual tuning process as a way to take advantage of the fast training that

CatBoost compatibility with GPUs offers. Further, prior to manually attempt to tune the

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

68

CatBoost hyper-parameters, a recursive feature selection wrap was first run in order to reduce

the possible less informative and nosy predictors held by the datasets.

Table 24 Categorical Boosting Classifier: Optimal hyper-parameters obtained by
random search grid approach

Hyper-parameter Pseudo-optimal value

depth 9

iterations 500

learning_rate 0.2

l2_leaf_reg 3

border_count 100

random_strenght 1.0

grow_policy ‘'Depthwise'

4.3.2.1 Recursive Feature Elimination

Recursive Feature Elimination is an effective feature selection methodology that allows

machine-learning algorithms to run more efficiently and effectively. The training data set

was treated for missing values, difference in feature scales, and outliers as previously

explained with the difference that the categorical variables were not encoded since CatBoost

handles them by itself as an attempt to avoid data leakage between the training and test sets

while using feature encoders. Data leakage normally leads to conditioned predictions by

proposing a new tree ordering principle which is profoundly described in (Prokhorenkova et

al., 2019).

Figure 46 Categorical Boosting Classifier: Recursive feature elimination wrapper results

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

69

Later, the preprocessed trainings data went into a recursive feature elimination wrap by cross

validating the model with 10 stratified k-folds of the training dataset, this process specified

16 as the optimal number of features for the present model as shown in Figure 46. This

suggested that we could remove almost 50% of the training considered to be uninformative

for the CatBoost classifier.

In addition, the selected features by the RFE wrapper and their respective importance is

depicted in Figure 47. Considering the RFE is a wrapper-type feature selection methodology,

which might take any machine-learning model as core for evaluation, the importance scores

shown below are fully dependent on the stochastic nature of the CatBoost algorithm.

Figure 47 Categorical Boosting Classifier: Feature importance given by the RFE wrapper

From a general perspective, we can observe how the previously machine-learning imputed

logs DTS, NPHI, DTC, and RHOB are included as the 16 most informative features for a

CatBoost model and how important and decisive the metadata features as FORMATION,

GROUP, and LOCATION are as well.

4.3.2.2 Hyper-parameter Tuning

During this stage the training performance was compared with the open set performance

which served as validation set for the current analysis. Initially, in order to prevent for under

or overfitting the number of trees or iterations had to be set to a large value of 1000. Next,

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

70

the learning rate was investigated by incorporating cross validation, the open set as validation

set, and a 25-round early stopping as callback to prevent for overfitting.

Every change accomplish on the accuracy by changes on the learning rate was documented

and compared on the open set (validation set) in order to select the best possible hyper-

parameter that generalizes well on unset objects. Figure 48 helps visualize how the train and

test accuracies evolve by using different learning rates ranging from 0.001 to 0.5 where the

optimal learning rate was found to be 0.1. From this figure, it is also visible how the model

overfits after the learning rates exceed a value of 0.2.

Figure 48 Categorical Boosting Classifier: Learning rate vs. accuracy

Subsequently, considering the massive size of the training data and the limited RAM memory

Google Colab provides, a constrained tree depth range from 2 up to 14 was tested and

validated on the training and validation sets, respectively. As result of this procedure, a depth

of 6 was selected as the most accurate based on the validation set performance. This process

is depicted on Figure 49a where it is visible how the model starts overfitting as the tree depth

exceeds values over 6 harming in this way the validation set accuracy.

Besides, the coefficient at the L2 regularization term of the cost function was investigated

within values equally spaced from 25 to 500 (Figure 49b). An L2 factor equal to 300 showed

to give the best accuracy on the validation set and hence was selected for the final model.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

71

Figure 49 Categorical Boosting Classifier: Tree depth vs. accuracy (left) and

L2 regularization term vs. accuracy (right).

Lastly, the tree growing policy and the number of splits for numerical features, also known

as border count, parameters were also investigated; however, no other value than the default

ones gave better results. These attempts are depicted on Figure 50.

Figure 50 Categorical Boosting Classifier: Tree growing policy vs. accuracy (left) and
Border count vs. accuracy (right).

The border count parameter, which mainly depends on the processing unit and has a direct

impact in the training speed on a GPU, was investigated in the range from 32 to 254 as

recommended by the CatBoost webpage. The optimal parameter was kept on the default

value of 128 as there was no other possible value able to beat its influence on the open set

performance. Furthermore, even though the Lossguide and Depthwise tree growing policies

performed reasonably on the open set, the default Symmetric tree growing policies still

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

72

provided a best performance. The optimal hyper-parameters found via the manual tuning

process can be found enlisted on Table 25 below.

Table 25 CatBoost classifier: Manually tuned hyper-parameters

Hyper-parameter Optimal Value

iterations 1000

learning_rate 0.1

depth 6

l2_leaf_reg 300

border_count 128 (default)

grow_policy ‘Symmetric’ (default)

Lastly, a new CatBoost classifier was fitted and tested based on the manually tuned hyper-

parameters, this provided prediction accuracies of 86, 80, and 81% on the training, open test,

and hidden test sets, respectively. Table 26 represents the detailed classification reports for

the training, open test, and hidden test data, where although the open test data was used as

validation set while tuning hyper-parameters, the model was still able to generalize well and

provide comparable results, and even slightly better results, on the hidden dataset.

Table 26 Categorical Boosting Classifier: Classification reports for the training, open test, and hidden test
datasets.

CATEGORICAL GRADIENT BOOSTING CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.83 0.81 0.82 0.83 0.83 0.83 0.75 0.79 0.77

Sandstone/Shale (1) 0.77 0.58 0.66 0.61 0.29 0.40 0.67 0.43 0.52

Shale (2) 0.89 0.96 0.92 0.83 0.96 0.89 0.88 0.95 0.91

Marl (3) 0.79 0.60 0.68 0.69 0.08 0.14 0.30 0.29 0.30

Dolomite (4) 0.64 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.82 0.63 0.71 0.44 0.55 0.49 0.63 0.61 0.62

Chalk (6) 0.88 0.85 0.87 0.91 0.02 0.03 0.70 0.44 0.54

Halite (7) 0.98 0.99 0.98 - - - 0.99 1.00 0.99

Anhydrite (8) 0.86 0.81 0.83 0.00 0.00 0.00 0.80 0.77 0.78

Tuff (9) 0.78 0.79 0.79 0.75 0.71 0.73 0.59 0.56 0.57

Coal (10) 0.86 0.45 0.59 0.87 0.45 0.60 0.83 0.61 0.71

Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.85 0.86 0.85 0.78 0.80 0.77 0.80 0.81 0.80

Accuracy Score 0.86 0.80 0.81

Matrix Score -0.36 -0.52 -0.45

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

73

From the classification reports and confusions matrices we can observe that CatBoost was

able to classify with medium and high accuracies most of the lithologies, buts it was unable

to classify dolomite and anhydrite in particular. Besides, most of the misclassifications are

predominant in tuff and dolomite which are misclassified as shaly-sandstone and shale.

Finally, even though CatBoost handles much better but not perfectly data imbalance in an

algorithm-level way, there is still a bias in the predictions towards the most frequent classes,

yet CatBoost achieved better results than any stand-alone model previously analyzed. Hence,

this less visible skew in the prediction distributions towards the most frequent classes while

implementing ensemble models has been documented broadly in multiple classification

problems, and seems to be worsened as the number of classes increases.

Figure 51 Categorical Boosting Classifier: Classification confusion matrices for
the open test set (left) and hidden test set (right).

4.3.2.3 Categorical Gradient Boosting Interpretability

Although ensemble machine-learning algorithms are some of the most robust methods used

for classification tasks, their interpretation involves high complexity. This complexity gets

higher as the number of classes to be predicted raise meaning that even the most popular

feature importance techniques become inconsistent and unable to provide a clear significance

for each predictor in relation to each class involved in the prediction task. In order to address

this issue the open source SHAP python library was used to get an insight of the individual

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

74

contribution of each feature into the predictions in a consistent manner by taking into account

feature missingness.

Figure 52 briefly summarizes how important each feature is for every predicted lithology

class in the form of a bar plot. Of course, this only helps to get a relative but accurate feature

importance based on the training set but without representing each feature impact on the

model’s output range and distribution. This SHAP values bar chat is not comparable to the

recursive feature importance plot previously showed due to the difference in the way each is

computed; however, they have a general agreement on the top most important features for

the CatBoost machine-learning model.

Figure 52 Categorical Boosting Classifier: SHAP values for each target lithology class

In addition, we could analyze each feature influence on the model’s output for each lithology

class, but for simplification for the current section, we only focus on some examples of the

less accurately classified lithologies such as shaly-sandstone and dolomite, which were the

ones the CatBoost model misclassified the most. Refer to Appendix I to find SHAP values

impact for all lithology types.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

75

Figure 53 Categorical Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting shale.

Figure 53, describes how each feature influences the classification output for sandstones,

shaly-sandstones, and shale, from here we can observe that for an instance to be classified as

a shale or as a sandy-shale, the GR, NPHI, Y_LOC, X_LOC, GROUP, and FORMATION

features play the most important role. Besides, we can appreciate that there is not a well-

defined boundary for most of the mentioned features to distinguish between sandstones from

the shaly-sandstones, as there is to differentiate shale from the other two classes.

For instance, a high GR is more likely to help the CatBoost to classify such instance as a

shale as seen on Figure 53c, and a low-medium GR is needed to classify a data instance as

sandstone as seen on Figure 53a. However, there is not such boundary properly defined to

predict a data instance as a shaly-sandstone, since as we can observe on Figure 53b, either a

high or medium value is needed to do so. Thus, a medium GR values easily create confusion

while training the classifier to distinguish between sandstones and shaly-sandstones. In

consequence, this lack of a well-defined feature boundary to distinguish these two classes are

the reason why, the CatBoost classifier does better while distinguishing shale from other

classes than when sorting out shaly-sandstones from sandstones (See Table 26).

Moreover, following the same logic we could explain the CatBoost incapability to properly

classify lithologies that share similar composition and properties such as the case of

dolomites, limestone, and chalk . The poorest classification between these three classes was

encountered on dolomites (See Table 26); fact that may be explained by the almost null

presence of dolomites on the training set which could have made the CatBoost model unable

to learn how to classify them in a considerable good manner (See Figure 14).

a c b

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

76

4.3.3 Light Gradient Boosting

Light Gradient Boosting algorithm, LightGBM for short, is a highly efficient gradient

boosting decision tree that from a general perspective exclude a significant portion of the

data instances with small gradients during the estimation of the information gain. This

implies having an algorithm with almost the same efficiency but several times faster during

the training process in comparison with conventional Gradient Boosting Decision Trees

(GBDT) machine-learning models (Ke et al., 2017).

The LightGBM base model performance we constructed initially by using the complete set

of 30 features, did not consider any regularization term or technique, providing accuracies of

84, 72, and 65% on the training, open test, and hidden test sets, respectively, which means

that the model was unable to generalize its performance on unseen objects. Consequently, in

the current section we attempted to optimize the LightGBM model’s performance by fist

running a recursive feature elimination wrapper and then undergoing into a manual hyper-

parameter tuning process. In addition, it is worth to mention that LightBoost library offers

compatibility with either CPUs or GPUs, which made possible optimizing the model’s hyper-

parameters manually.

4.3.3.1 Recursive Feature Elimination

A recursive feature elimination wrapper was executed in order to study the possibility of

reducing the dataset magnitude without affecting the model performance. This process

accompanied by a 10 stratified k-fold cross validation achieved to determine 24 as the

optimal set of predictors that reached the highest training accuracy as shown on Figure 54.

The features importance obtained by the RFE wrapper are depicted on Figure 55. As visible,

the four features we improved by the ML imputation technique are still considered to be

highly relevant for LightGBM as well as the additional features we created. However,

surprisingly LightGBM provided a high importance to variables such as ROP and DRHO,

same that have not been considered highly relevant in other machine-learning algorithms.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

77

Figure 54 Light Boosting Classifier: Recursive feature elimination wrapper

4.3.3.2 Hyper-parameter tuning

While many other popular Gradient Boosting Decision Trees algorithms base their

functionality on a depth-wise growing policy, LightGBM uses leaf-wise growing policy

which normally help the algorithm to converge much faster; however, this might also help to

overfit the model if wrong hyper-parameters are selected. Further, based on the extensive

number of hyper-parameter handled by LightGBM, it became time demanding to tune the

complete set of hyper-parameters by implementing either a random or a grid parameter search

techniques.

Figure 55 Light Boosting Classifier: Feature importance given by the RFE wrapper

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

78

Accordingly, a manual tuning process for the three most important regularization parameters

was executed in order to establish the best set of values that outperform the default values.

These highly influencing regularization hyper-parameters were evaluated individually and

sequentially by inspecting the training and validation accuracies while the number of

estimators was set to constant value of 1000 to prevent for overfitting or underfitting.

Figure 56 Light Boosting Classifier: Learning rate vs. accuracy

First, the learning rate was investigated in the range from 0.005 to 0.5 by the aid of the open

test dataset as validation set, a 10 K-Fold cross validation technique on the training data, and

25-round early stopping callback to stop the training process if no improvement on the

multiclass probability objective function was obtained. This process is documented on Figure

56 where the optimal learning rate was found to be 0.015; in addition, the figure also

represents how the training and validation accuracies worsen dramatically as the learning rate

exceeds a value of 0.1. In other words, training accuracy fall means that LightGBM was

unable to converge and optimize the objective function at learning rates higher than 0.1.

Second, maximum depth is a parameter that not only controls the distance or steps between

the root node and the leaf node, but also has a high influence on the model training time. In

this context, several maximum depths ranging from 2 to 30 were studied and validated on the

training and validation data. Besides, the regularization factor L2 was also looked at in the

range from 1 to 300 in order to prevent for overfitting.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

79

Figure 57 Light Boosting Classifier: Maximum tree depth vs. accuracy (left) and Regularization lambda L2 vs.
accuracy (right).

As result, a maximum depth of 12 and regularization factor of 250 were selected as optimal

values based on slight improvements on the validation accuracy which showed practically

constant values along the studied parameter ranges as shown on Figure 57. In addition. It is

important to note that although the last two studied parameters seemed not to have a high

impact on the model accuracy, their definition would help LightGBM generalize better on

unseen objects.

Table 27 Light Boosting Classifier: Manually tuned hyper-parameters

Hyper-parameter Optimal Value

iterations 1000

learning_rate 0.015

max_depth 12

Reg_lambda 250

Finally, a new LigthGMB model was trained and test by using the optimal hyper-parameters

found via the manual tuning process (See Table 27), obtaining classification accuracies of

88, 79, and 80% on the training, open test, and hidden test sets, respectively.

A detailed classification report for each predicted class and the confusion matrices

normalized by the number of predictions per class are presented on Table 28and Figure 58,

respectively.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

80

Table 28 Light Boosting Classifier: Classification reports for the training, open test, and hidden test datasets.

Figure 58 Light Boosting Classifier: Classification confusion matrices for

the open test set (left) and hidden test set (right).

LightGBM seems to achieve high-medium level accuracies when there is no conflict between

similar lithologies. In other words, when predicting similar classes, LightGBM seems to have

struggled and made many more classification mistakes, particularly for dolomite for which

the model could not make any right prediction at all. In addition, all the predictions seemed

LIGHT GRADIENT BOOSTING CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.85 0.84 0.85 0.82 0.82 0.82 0.72 0.83 0.77

Sandstone/Shale (1) 0.80 0.64 0.71 0.55 0.31 0.40 0.65 0.38 0.48

Shale (2) 0.91 0.97 0.94 0.83 0.95 0.89 0.87 0.95 0.91

Marl (3) 0.84 0.76 0.80 0.63 0.15 0.24 0.22 0.21 0.21

Dolomite (4) 0.66 0.16 0.26 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.86 0.68 0.76 0.49 0.54 0.51 0.61 0.52 0.56

Chalk (6) 0.92 0.93 0.93 0.00 0.00 0.00 0.68 0.58 0.62

Halite (7) 0.99 0.99 0.99 - - - 0.99 1.00 0.99

Anhydrite (8) 0.93 0.91 0.92 1.00 0.06 0.12 0.90 0.10 0.18

Tuff (9) 0.89 0.85 0.87 0.65 0.44 0.52 0.63 0.31 0.41

Coal (10) 0.83 0.65 0.73 0.76 0.50 0.61 0.82 0.54 0.65

Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.88 0.88 0.88 0.77 0.79 0.77 0.79 0.80 0.79

Accuracy Score 0.88 0.79 0.80

Matrix Score -0.304 -0.533 -0.477

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

81

to be consistent and comparable between the open and hidden test sets; however, there are

still some minor differences on the accuracies attained on each dataset. This apparent

difference in performance is more linked to the test sets’ labels distributions than to the model

itself (See Figure 14). For instance, chalk is much better classified in the hidden test set than

in the open test set, which is greatly due to the difference on the lithologies presence on each

set from which the LightGBM model could have made either right or wrong prediction.

4.3.3.3 Light Gradient Boosting Interpretability

As discussed previously, understanding why a model makes certain predictions can be a

crucial task in regression and classification problems, overall when accuracy and

interpretability are discussed together considering that the best performing machine-learning

algorithms are also the most complex ones such as the case of ensemble and deep learning

models (Lundberg and Lee, 2017). To address this issue the open source python library

SHAP, short for Shapley Additive exPlanations, was used to dig deeper into LightGBM

interpretability.

Figure 59 Light Boosting Classifier: SHAP values for each target lithology class

Figure 59 depicts how important the metadata features such as GROUP, DEPTH, Y_LOC,

Z_LOC, and Y_LOC are for classifying lithofacies while implementing LightGBM. In

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

82

addition, the SHAP impact values showed a great disagreement on some features considered

as important when compared to the RFE wrapper feature importance previously obtained.

However, the NPHI and RHOB machine-learning imputed features are still at the top of the

most relevant features helping LightGBM perform well.

Figure 60 Light Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values impact while

predicting shaly-sandstone, (c) SHAP values impact while predicting shale.

Moreover, Figure 59 also reveals how sandstone, shaly-sandstone, and shale classifications

are mainly impacted by the GR and NPHI logs, but when it comes to other similar lithologies

such as limestone, dolomite, and chalk, LightGBM needed other additional features such as

RHOB and the acoustic logs to take part of the classification task.

In addition, by following the same logic we used to interpret CatBoost, the LightGBM

classification performance for similar classes rely mainly on the GR, and NPHI readings

along with some other metadata features, where medium-size features readings created great

confusion while defining proper boundaries capable of separating these lithologies. For

instance, GR and NPHI have quite well defined boundaries that help LightGBM distinguish

between shale and sandstone, low GR and low NPHI for sandstones and high GR and high

NPHI for shale. However, when these boundaries fade away as while classifying shaly-

sandstones, GR, and NPHI become less informative and less useful to accomplish the

prediction task for this particular class as shown on Figure 60. Refer to Appendix J to find

SHAP values impact for all lithology types.

Therefore, the complexity that classifying similar lithologies involves along with the low

amount of training samples available for some these classes such as dolomite leaded

a c b

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

83

LightGBM to perform partially well in general, but poorly particularly while classifying

shaly-sandstones and dolomites, where the lowest performances were found (See Table 28).

4.3.4 Extreme Gradient Boosting

Extreme Gradient Boosting, XGBoost in short, is a highly robust, powerful, efficient,

scalable, and widely used Gradient Boosting Decision Trees machine-learning model

consider to lead the forefront when it comes to classification tasks. XGBoost is an almost

perfect blend of software and hardware capabilities designed to enhance the pre-existing

boosting techniques in terms of training time and efficacy. It introduced two additional

techniques that help the model prevent overfitting. The first technique known as columns or

feature subsampling, originally part of random forest, which helps to train each independent

learner more efficiently on a different subset of features. The second technique is known as

shrinkage that, similarly to a learning rate in stochastic optimization, reduces the influence

of each individual tree by scaling the output weights after each step of the tree boosting

optimization (Chen and Guestrin, 2016).

Even though during the initial part of section 5, we created a base XGBoost model that did

not consider any regularization technique to prevent for under or overfitting, it was still able

to achieve good and pseudo-balanced performance results when dealing with unseen objects,

79 and 80% in the open test and hidden test sets, respectively. However, based on the great

results XGBoost has obtained along several data science competitions for both classification

and regression task, we believed that a proper hyper-parameter selection could improve its

performance.

Consequently, the current section presents a dimensionality reduction process through RFE

accompanied by a manual hyper-parameter selection by taking advantage of the quick and

parallelized learning process offered by the XGBoost’s compatibility with GPUs, same that

allowed to process and exploit profoundly the complete datasets.

4.3.4.1 Recursive Feature Elimination

Initially, in order to be consistent with the previously analyzed boosting algorithms a costly

Recursive Feature Elimination wrapper was executed to filter out the less informative

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

84

predictors that could lead to confusion during the training stage so that higher performances

could be achieved in shorter training times.

Figure 61 Extreme Boosting Classifier: Recursive feature elimination wrapper

The top training accuracy seemed to go beyond 82% while only using 10 training features;

however small improvements are achieved by including 18 more features (See Figure 61).

For the context of the current model, which can be run on GPUs, we kept 28 as the optimal

number of features in order to optimize as much a possible the classification accuracy.

Figure 62 Extreme Boosting Classifier: Feature importance given by the RFE wrapper

In addition, the apparent importance each feature has on XGBoost is described on Figure 62,

which in comparison to LightBoost and CatBoost confers more weight to some of the 7

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

85

additional features created on Section 4, such as bulk modulus K, Shear modulus GM,

Cluster, and Slowness ratio DT_R.

4.3.4.2 Hyper-parameter Tuning

A manual hyper-parameter tweaking was focus on the most relevant parameters consider to

be the learning rate and the tree depth. Each parameter evaluated in the current section used

a 10 stratified K-Fold cross validation, a 25-round early stopping callback, and the open set

as validation set, while the number of trees was set to a value of 1000 in order to prevent

underfitting the training data.

Figure 63 Extreme Boosting Classifier: Learning rate vs. accuracy

First, the learning rate was investigated in ranges from 0.001 to 0.65 by incorporating cross

validation, the open test set as validation set, and a 25-round early stopping as callback to

reduce overfitting. The results of the learning rate investigation are documented on Figure

63 where the optimal learning rate according to model’s best performance on the open test

data was found to be 0.35; however, as visible on the plot there are great fluctuations on the

test accuracies while using learning rates from 0.20 to 0.35. This leaded us to think that any

slight performance improvements on these sections may have been obtained by chance and

not by the model’s capability to generalize accurately its performance. Thus, selecting a lees

greedy and more stable learning rates between 0.01 and 0.25 might be safer and more

accurate while dealing with unseen objects.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

86

Based on the previous reasoning we opted to set the optimal learning rate to 0.075 before

undergoing into the next hyper-parameter analysis. Next, an estimator depth range from 2 to

15 was looked at and documented as shown in Figure 64 were XGBoost seemed to generalize

better on the open test data when a tree depth equal to 4 is selected.

Figure 64 Extreme Boosting Classifier: Tree depth vs. accuracy

Finally, based on the optimal hyper-parameters found by the manual tuning process enlisted

on Table 29, a new XGBoost model was fitted and tested obtaining training, open test, and

hidden test accuracies of 88, 80, and 82%, respectively.

Table 29 Extreme Boosting Classifier: Manually tuned hyper-parameters

Hyper-parameter Optimal Value

n_estimators 1000

learning_rate 0.075

max_depth 4

reg_lambda 1500

subsample 1 (default)

colsample_bytree 1(default)

A detailed prediction report separated by predicted classes and a confusion matric normalized

by the number of prediction per class are evidenced on Table 30 and Figure 65 where the

most remarkable observation is that XGBoost achieved better classification performance that

the other Gradient Boosting tree based model especially for mixed mineral lithologies such

as shaly-sandstones, limestone, and chalk.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

87

Table 30 Extreme Boosting Classifier: Classification reports for the training, open test, and hidden test
datasets

Moreover, there is still a visible bias in the prediction obtained by XGBoost towards the

majority classes although XGBoost has built-in functions to decrease the impact class

imbalance has on classifications. Finally, even though XGBoost presented difficulties while

properly differentiating between dolomite, chalk, and limestone, it was still able to classify

with high accuracy sandy and shaly lithologies, which are normally the most relevant for oil

and gas conventional reservoirs. These and more details will be discussed on the model

comparison section of the current study.

4.3.4.3 XGBoost Interpretability

Decision trees-based machine-learning algorithms have been consider black-box models so

far due to the complexity they involve; in consequence, endowing these kind of models with

some interpretability is a major task before and after their execution. By doing this we might

provide some insight into how a model could be improved while at the same time we could

support a profound understanding on the process being modelled. SHAP values assign a

unique additive feature importance for a particular prediction, which serves to understand

how important and impactful a predictor is to a particular outcome obtained by the trained

EXTREME GRADIENT BOOSTING CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.83 0.82 0.83 0.81 0.82 0.82 0.75 0.83 0.78

Sandstone/Shale (1) 0.77 0.58 0.66 0.61 0.30 0.40 0.64 0.46 0.53

Shale (2) 0.89 0.96 0.93 0.83 0.95 0.89 0.89 0.94 0.92

Marl (3) 0.80 0.67 0.73 0.61 0.14 0.23 0.31 0.30 0.31

Dolomite (4) 0.58 0.11 0.19 0.00 0.00 0.00 0.41 0.10 0.16

Limestone (5) 0.83 0.65 0.73 0.45 0.51 0.47 0.73 0.59 0.66

Chalk (6) 0.90 0.90 0.90 0.00 0.00 0.00 0.81 0.76 0.79

Halite (7) 0.99 0.99 0.99 - - - 0.99 0.99 0.99

Anhydrite (8) 0.91 0.88 0.90 1.00 0.04 0.08 0.73 0.65 0.69

Tuff (9) 0.82 0.86 0.84 0.75 0.59 0.66 0.64 0.54 0.59

Coal (10) 0.82 0.57 0.67 0.78 0.59 0.67 0.81 0.70 0.75

Basement (11) 1.00 0.17 0.28 - - - - - -

Weighted Metric 0.87 0.87 0.87 0.77 0.80 0.77 0.82 0.83 0.82

Accuracy Score 0.87 0.80 0.83

Matrix Score -0.352 -0.531 -0.433

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

88

model (Lundberg and Lee, 2017). The Shapley Additive exPlanations technique, SHAP,

implemented on python provided the following color-bar chart in which we could explore

the contribution of each feature to the model final prediction Figure 66.

Figure 65 Extreme Boosting Classifier: Classification confusion matrices normalized by the number of
predictions by class (a) Open test set, (b) Hidden test set.

Figure 66 Extreme Boosting Classifier: SHAP values for each target lithology class

Figure 66 briefly shows a relative but accurate manner of representing the feature impact on

the XGBoost output, which in comparison to the recursive feature elimination process taken

beforehand rested importance to the shear GM, bulk modulus GM, CALI, and Cluster

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

89

features, while providing even more importance to some of the machine-learning

preprocessed features such as NPHI and RHOB.

In addition, we could attempt to analyze the importance each feature had for the prediction

for each particular lithology class, however, as a matter of simplicity, we will only take some

representative examples of the classes that XGBoost misclassified the most such as the case

of dolomite, shaly-sandstone, and marl. Refer to Appendix K to find SHAP values impact

for all lithology types.

Figure 67 Extreme Boosting Classifier: (a) SHAP values impact while predicting dolomite, (b) SHAP values
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting marl.

As shown on Table 30, it seemed that dolomite is the hardest lithology to be predicted in

almost any gradient boosting model including XGBoost, which we presume to be linked to

the low amount of dolomite samples available for training, which accompanied by its

inherent similarity to limestone and chalk could have made XGBoost unable to properly learn

how to classify this lithology type. In addition, Figure 67a showed that the current XGBoost

model only considers a low number of features like MD_TVD ratio, slowness ratio DT_R,

GROUP, and RHOB as the ones that positively contribute to classify a particular instance as

dolomite. In other words, it means that the misclassification might have been caused by the

lack of enough dolomite samples or by the poor relationship between the variables and the

target in such specific case.

Moreover, in the case of shaly-sandstone, which normally may be confused with either

sandstones or shale, we can observe on Figure 67b how the instance Y_LOC impacts more

that the GR reading which in generally speaking helped XGBoost to get better results while

a c b

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

90

classifying such lithology class when compared to the results obtained by the other gradient

boosting tree based algorithms. Hoverer, the unclear boundary on the GR to separate

sandstone form shale and shaly-sandstones still plays an important role to properly

distinguish between these lithologies.

Finally, marl prediction relies mainly on metadata features such as GROUP, X_LOC,

DEPTH_MD, and minorly on other reading such as RHOB, GR, NPHI, and SP to mention

some (See Figure 67c). Apparently, the possible reasons why XGBoost struggled to classify

marl, which is a mix of clay and calcium carbonate, was that it could easily be confused with

shaly sediments or any type of limestone such as sandy-shale, shale, dolomite, limestone and

chalk. In other words, marl encompasses a wide spectrum of analogous classes that hindered

its proper classification.

4.4 Deep Learning – Neural Network

The methodology to analyze neural network performance on the lithofacies classification

problems relies on three major steps including a one-hidden sequential fully connected base

model, feature selection process, and finally a Bayesian hyper-parameter optimization by

using scikit-optimize library skopt.

4.4.1 One-hidden Layer Base Model

A fully connected sequential model was constructed as a baseline to test how a neural

network performs to classify lithofacies. The NN structure consisted of 1 input layer, 1

hidden layer with 32 neurons, a RELU activation function, and 1 output layer using a softmax

activation function. Besides, an Adam optimizer and a sparse categorical cross-entropy loss

function to save memory and time were included into the base neural network. Finally, a

standard learning rate of 0.01 was used to back propagate and minimize the loss function.

Refer to Section 2 and Figure 13 to see how neural network weight optimization works, or

to Nielsen, (2015) for detailed information about gradient descent and back propagation. The

structure of the neural network is summarized on Figure 68.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

91

Figure 68 Neural Network: Base model structure

The neural network base model contains 1388 trainable parameters between weights and

biases, 992 of which belong to the hidden layer and 396 to the output layer. It is important to

note that the number of trainable parameter in any hidden or output later is equal to the sum

of the number weights plus the number of biases. The number of weights is equal to the

number of neurons times the number of predictors or features contained in the training data,

and the number of biases corresponds to a one dimensional array equal to the number of

neurons present in a particular layer (See Figure 69)

Figure 69 Neural Network: Base model number of trainable parameters and output shape in each layer.

In addition, prior to start the training stage a 40-epoch early stopping was created to monitor

the training process while cross validating the training data to open test dataset, then the

model was trained based on the original 30 features obtained after the data processing stage.

The training evolution of the base neural network is shown in Figure 70.

Consequently, the base model performed with accuracies of 76, 73, and 73% on the training,

open test, and hidden test sets, respectively. Moreover, as visible on Figure 70 the base model

showed a highly unstable learning process, and the loss function did not decrease either but

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

92

increase over each iteration. This seemed to be caused by a well-known problem know as

exploding gradient problem, which could be defined as an error in the direction and the

magnitude of the learning step while training a neural network, which consequently derives

in an unstable gradient problem.

Figure 70 Neural Network: 30-feature-based baseline model training history

As consequence of the gradient descent problem, we decided to try out several approaches in

order to stabilize the gradient descent. The main changes we included into the base model

structure were, a random normal weight initialization, a zeros bias initialization, and a

momentum based stochastic gradient descent optimizer SDG. Figure 71 documents a much

more stable learning history and how the loss gets minimized after each iteration once these

changes were effectuated.

Figure 71 Neural Network: Stochastic Gradient Descent-based neural network base model
accuracy history (left) and loss function history (right).

 The new stabilized base model based on a stochastic gradient descent SGD provided much

better accuracies compared when an Adam optimizer was used of about 79, 75, and 74% on

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

93

the training, open test, and hidden test sets, respectively, and most relevantly it was able to

make the loss function get minimized. It is important to note that the current base model was

trained using the original 30 features we got after processing the data, so removing possible

noisy predictors was a must before undergoing into hyper-parameters optimization.

4.4.2 Feature Importance Investigation

Our attempt to select the most relevant features for the neural network was based on a ranking

of all the features according to the importance given by the extreme gradient boosting

gradient model considering it provided the best performance up to this point. Then, we

trained the SGD based model several times by adding a set of 5 new features at a time starting

from the most important to the least ones. These models were trained for 25 epoch in order

to select the set of features that outperforms the others while keeping constant all the

parameters included into the neural network structure (See Figure 72). Refer to Figure 62 to

see the order of the features included during the process.

This simple, heuristic, time consuming, and probably not highly accurate methodology,

leaded us opt for a group of 25 features considering that at the end of the 25th epoch the

training and validation accuracies kept growing tendencies and the training and validation

losses reached the lowest points and decreased similarly.

4.4.3 Bayesian Optimization

Normally, best parameters selection in any Machine and Deep Learning model is a time

consuming and sometimes tedious and sometimes an impossible task. Even though there are

some methodologies that might be useful such as Grid Parameter Search, it may be only be

consider applicable while optimizing very few parameters, but in cases where the number of

hyper-parameter is extended this procedures become costly in terms of computational power

and running time.

For instance, imagine we want to optimize 4 hyper-parameters with 10 possible values in

each, this means we will have to run 10 to the power of 4 neural network model, which is a

massive job and in consequence these type of approaches become less suitable when handling

big datasets as in the current case. In the other hand, another common approach is a Random

Parameter Search that is normally used to narrow down the possible ranges for the hyper-

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

94

parameters being optimized; however, if the number of parameters becomes larger, the

probability of getting the right combination of them gets very unlikely to get.

Figure 72 Neural Network: Feature selection.

Consequently, in the present study we propose a hyper-parameters optimization by using an

open source library called Scikit-Optimize, which provides an implementation of a Bayesian

optimization, where a surrogate model is used to model the search space in order to get an

optimal set of hyper-parameters.

The current section attempts to optimize the following hyper-parameters:

1. Learning Rate

2. Number of hidden layers

3. Number of neuron per hidden layer

4. Activation function

Additionally, prior to commence the optimization function that will minimized the complex

cost function based on weights and biases involve in the current lithology classification task,

each parameter investigation range had to be defined. Table 31 summarizes each parameter’s

range.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

95

Table 31 Neural Network: Hyper-parameter search space used during the Bayesian optimization

Hyper-parameter Low boundary High boundary

Learning Rate 1e-4 1e-1

Number of Hidden Layers 1 5

Number of Neurons 64 512

Activation Function ‘relu’ or ‘sigmoid’

In order to give a general understanding about what the Bayesian optimization attempts to

do, Figure 73 represent the objective function and how skopt intends to find the optimal

minimum. The red dotted line represents the true objective function that is surrounded by

noise represented by the red shade; every red point represents a sample set of hyper-

parameters from the search space and then through a Gaussian process the space between

samples is estimated, represented as the green line. In addition, the green shade represents

the uncertainty on the approximation given by skopt that normally is caused to the lack of

sufficient number of investigated point within that particular range.

Figure 73 Neural Network: General optimization scheme.

Then, in order to optimized the hyper-parameters through skopt we constructed hyper-

parameter optimization wrapper. It is important to note that the neural network in which the

optimization will be based is the one based on the SGD optimizer, which previously seemed

to be much more stable than the one obtained while implementing an Adam optimizer. In

addition, we introduced a momentum into the optimizer in order to take advantage of the

knowledge accumulated in previous steps to facilitate the neural network converge faster and

much more easily.

Lastly, the Bayesian optimization was executed which aimed to create a loop to evaluate each

set of hyper-parameters until the 4th epoch while evaluating the training process with the open

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

96

test set to provide a much more generalized trained neural network. The Bayesian

optimization loop was performed for 75 epochs or calls using different set of hyper-

parameters while updating continuously the best performing model accuracy in order

compare it with subsequent trained neural networks on different set of hyper-parameters.

Figure 74 documented the convergence process of the neural network after each iteration,

which for the current stage was stated to be a negative accuracy in order to let skop handle

the problem as a minimization exercise. Considering that the optimization process was

executed for only 75 epoch due to the Google GPUs usage limitation, it is important to

mention that the optimal value reached by the optimization is not necessarily the ultimate

optimal value since there may be a better set of hyper-parameters capable to outperform the

set selected by the optimizer as the number of epochs raises or the evaluated parameter ranges

increase.

.

Figure 74 Neural Network: Bayesian optimization neural network convergence.

Figure 74 describes the convergence process after each iteration, and as visible, the validation

accuracy could reach values beyond 78%. In addition, as we mention before, the Bayesian

optimization uses a surrogate model to model the expensive to evaluate the objective fiction.

In other words, the surrogate model aims to provide interpretability to a complex model as

the case of neural networks, and it is the surrogate model that is used to determine at which

points the objective function will be evaluated at each iteration.

Additionally, Figure 75 show in the diagonal a histogram for each of the evaluated hyper-

parameters, while the non-diagonal scatter plots show the spatial location of every evaluated

point, where the darker points correspond to the initial evaluated points and the lighter ones

reflect subsequent evaluations that tend to cluster around the optimal parameter marked as

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

97

red. Hence, the histograms’ major frequencies are allocated around the optimal hyper-

parameter, which implies the optimization performed correctly while looking for the minima.

Figure 75 Neural Network: Hyper-parameter evaluation histograms.

Furthermore, Figure 76 shows the partial dependences of the surrogate model for each

evaluated hyper-parameter during the Bayesian optimization; in general, partial dependences

describes the marginal impact of a particular couple hyper-parameter while holding the other

parameters constant. Initially partial dependence plots is a method originally proposed to

measure feature importance in gradient boosting based learning machines and were later

introduced as a method to measure parameter importance while implementing neural

networks.

Moreover, form Figure 76, it is also noticeable that the optimal number of hidden layers

oscillates between 1 to 3, smaller learning rates provide higher accuracies while using a relu

activation function and larger number of hidden layers when using a sigmoid activation

function, the model optimized better while a high number of hidden neurons was used.

Further, it has to be noted that the partial dependence is merely based on the surrogate model

which just provides an approximation of the objective function, and hence it might not be a

good representation of the objective in places where less number of samples were evaluated

an far from the location were the minima was found.

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

98

Figure 76 Neural Network: Hyper-parameter two-dimensional partial dependence.

Finally, a new neural network was trained based on the hyper-parameters found by the

optimizer after 75 iterations. Table 32 summarizes the optimal hyper-parameters.

Table 32 Neural Network: Optimal hyper-parameters after running the optimization for 75 epochs.

Hyper-parameter Best Value

(After 75 epochs or calls)

Learning Rate 0.1

Number of Hidden Layers 2

Number of Neurons 512

Activation Function sigmoid

Further, since the model was overfitting immediately after the 7th epoch, we introduced two

dropout regularization layers before each hidden layer, this helped to train the network longer

and reduce the loss function. The optimized model training accuracy and loss evolution is

documented on Figure 77 where the training accuracy increases beyond 80% while the

validation accuracy plateaus slightly above 77%.

In the other hand, the loss function decreased smoothly for the training and validation until

the 30th epoch, then the validation loss started to increase again. This implies that the

optimized neural network is unable to provide test accuracies beyond 77% and from a

certaing point it starts learning patterns only present and applicable to the training data. For

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

99

more details about the Bayesian, optimization refer to Appendix C where the complete

optimization algorithm is described.

Figure 77 Neural Network: Optimized model accuracy (left) and loss function (right) training history.

A detailed classification report for each dataset is presented on Table 33 where the accuracy

reached by the optimized neural network showed performances of 83, 77, and 77% on the

training, open test, and hidden test datasets, respectively.

Table 33 Neural Network: Classification reports for the training, open test, and hidden test datasets

NEURAL NETWORK CLASSIFICATION REPORT

Class
Training Set Open Set Hidden Set

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

Sandstone (0) 0.82 0.68 0.74 0.85 0.75 0.80 0.82 0.66 0.73

Sandstone/Shale (1) 0.67 0.39 0.40 0.47 0.23 0.31 0.44 0.19 0.26

Shale (2) 0.82 0.97 0.89 0.80 0.95 0.87 0.82 0.95 0.88

Marl (3) 0.68 0.49 0.57 0.66 0.06 0.11 0.30 0.22 0.26

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Limestone (5) 0.76 0.60 0.67 0.44 0.48 0.46 0.55 0.60 0.57

Chalk (6) 0.87 0.59 0.70 0.00 0.00 0.00 0.60 0.50 0.55

Halite (7) 0.96 0.99 0.98 - - - 0.98 1.00 0.99

Anhydrite (8) 0.86 0.80 0.83 1.00 0.07 0.13 0.97 0.38 0.54

Tuff (9) 0.73 0.55 0.62 0.71 0.61 0.66 0.62 0.50 0.55

Coal (10) 0.85 0.38 0.53 0.88 0.37 0.52 0.85 0.54 0.66

Basement (11) 0.00 0.00 0.00 - - - - - -

Weighted Metric 0.79 0.81 0.79 0.75 0.77 0.74 0.75 0.77 0.75

Accuracy Score 0.81 0.77 0.77

Matrix Score -0.511 -0.594 -0.563

4|LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING

100

Finally, for a better understanding of the neural network classification, the confusion matrices

normalized by the total number of predictions per class are presented on Figure 78. The main

observation from it is that the neural network achieved good accuracies on both test sets;

however, its accuracy is dramatically affected while classifying carbonates, same that were

greatly misclassified as the case of chalk, while dolomites were not even predicted at all.

Figure 78 Neural Network classifier: Classification confusion matrices normalized by the number of
predictions by class (a) Open test set, (b) Hidden test set.

5|PERFORMANCE COMPARISION

101

Chapter 5

5. PERFORMANCE COMPARISION

Once the machine-learning models construction, hyper-parameter optimization, training,

validation, and testing stages have been finished, we are ready to present and compare the

machine-learning modes’ global performances while solving the lithofacies classification

problem. Besides, it is important to consider that each model went into different feature

selection and hyper-parameter optimization techniques; thus, not every model used the same

number or set of features to provide their optimal results.

First, Table 34 summarizes the classification scores all the optimized algorithms obtained on

the hidden test set. From this table we can observe that the tree-based gradient boosting

(GBDT) achieved greater results over neural networks, decision trees-based, and traditional

stand-alone machine learning algorithms. In addition, GBDT do not only offer higher

accuracy, precision, recall, f1-score classification scores, but also lower FORCE penalization

scores. This infers that GBDT algorithms perform more consistently even from a

petrophysicist perspective, which was the purpose the FORCE scoring matrix was built for.

Table 34 Machine-learning models performance comparison: Hidden test set.

Algorithm Acc Prec Rec F1 Score M. Score

Extreme Boosting 82.52 81.54 82.52 81.74 -0.43

Categorical Boosting 81.38 80.16 81.38 80.36 -0.45

Light Boosting 80.39 79.01 80.39 79.00 -0.48

Random Forest 79.82 77.29 79.82 77.56 -0.50

Support Vector Machines 79.08 76.86 79.08 77.16 -0.54

K-Nearest Neighbors 78.22 76.31 78.22 76.41 -0.56

Neural Networks 77.41 74.61 77.41 74.99 -0.56

Logistic Regression 75.06 71.44 75.06 72.42 -0.64

Decision Tree 74.59 70.40 74.59 68.54 -0.67

Moreover, whether we analyze in detail the total number of predictions each model produced

per each lithology class, we can easily observe how for the most frequent classes in the

training and hidden test sets such as shale, sandstone, shaly-sandstone, and limestone, every

model achieved a quite balanced number of predictions with exemption of the decision tree

DT, which was produced by the pruning process DT went through. However, if we see closer

5|PERFORMANCE COMPARISION

102

into the number of wrong predictions every model provided, we could better see how tree-

based gradient boosting algorithms misclassify less instances as any of the most frequent

lithologies.

In addition, even though GBDT models perform better and present less bias towards the most

frequent classes than the other models, there is still a visible tendency to misclassify other

lithologies as shale, same that is particularly caused by the massive number of shale instances

present in the training dataset, 61.6%. Besides, apart from sandstone, shale, and limestone,

for which several models presented high classification accuracies, it is when it comes about

shaly-sandstone classification where GBDT models distance themselves from the other

models followed closely by K-Nearest Neighbors and Neural Networks (See Figure 79).

Figure 79 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

Furthermore, while classifying the medium-frequency classes such as halite, marl, chalk, and

tuff, which together represent only 5.7% of the complete training dataset, every model

appeared to perform at high level while classifying halite although only very few halite

instances are represent in the training dataset, 0.7%. Besides, chalk and tuff appeared to be

under or over misclassified moderately by most of the models; however, GBDT models and

Neural Network appeared to be able to capture and classify these lithologies in much more

accurate manner although chalk and tuff may have been underrepresented on the training

dataset, 0.9% and 1.3%, respectively. In the other hand, marl appeared to be highly

misclassified as shale or limestone by all the models, which in not surprising considering that

marl is a sedimentary rock composed mainly of clay and lime, which makes it hard to

properly define a proper boundary between these three classes (See Figure 80).

5|PERFORMANCE COMPARISION

103

Figure 80 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for halite, marl, chalk, and tuff.

Likewise, the models provided great discrepancies while classifying the least frequent

classes, which together represent only 0.5% of the training set. As visible, anhydrite is

moderately well classified by RF, CAT, and XGB models, while the other models were not

able to classify it correctly in more than 50% of the cases. Although coal represents only

0.3% of the training set, this number of instances was enough to provide GBDT algorithms

with the information needed to classify it correctly in about 80% of the cases. In contrast,

dolomite was the lithology class every model struggle with the most, which from our

perspective is directly linked and caused by the number of instances used for training and the

similarity in wireline response that dolomite has when compared to other classes such as

limestone, chalk and marl, which hinders its proper classification (See Figure 81).

Figure 81 Hidden test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for anhydrite, coal, and dolomite.

Complementary, Table 35 summarizes the classification scores obtained by the optimized

model on the open test set, same that clearly shows similar results to the ones achieved on

the hidden test set (See Table 34). However, it is important to note that there are slight

differences between the performances each model obtained on the open and hidden test sets

caused mainly by the variability on the lithology distributions each test set holds. For

5|PERFORMANCE COMPARISION

104

instance, the hidden set has many more halite data point than the open test set, and

considering that most of the models perform similarly at high level while classifying this

particular lithology, the prediction on the hidden set obtains much more improvement from

this particular class on the global accuracy score. Something similar happens if we refer to

the higher number of shaly-sandstone instances the open test set holds in comparison to the

hidden test set, which considering the difficulties every model faces while predict this mixed-

based lithology, the global open test set accuracy gets much more affected by this distribution

dissimilarity.

Table 35 Machine-learning models performance comparison: Open test set.

Algorithm Acc Prec Rec F1 Score M. Score

Categorical Boosting 80.02 78.19 79.91 77.22 -0.52

Extreme Boosting 80.00 77.31 79.61 77.06 -0.53

Light Boosting 79.36 76.81 79.36 76.98 -0.53

Random Forest 77.71 74.84 77.71 75.05 -0.58

K-Nearest Neighbors 77.53 74.19 77.53 74.44 -0.59

Neural Networks 77.34 74.58 77.34 74.32 -0.59

Support Vector Machines 76.10 73.41 76.10 73.79 -0.62

Decision Tree 74.55 69.67 74.55 67.14 -0.69

Logistic Regression 71.54 67.77 71.54 69.11 -0.75

Finally, following the same logic we used to analyze the results obtained on the hidden test

set, the open test set results show similar nature in regard of the classification bias towards

the majority classes in particularly to shale; besides, the classification becomes problematic

when it comes to shaly-sandstone and marl, and deficient for dolomite. Refer to Appendix G

to see the open test set classification histograms.

Secondly, in regards of the implemented machine learning imputation procedure we included

as an attempt to improve the classification performance, Table 36 summarized the impact the

imputation had on the XGB model’s classification performance when compared to the results

achieved without implementing such methodology. Additionally, it allows us to observe that

the improvement we initially achieved on a logistic regression model (See Table 12) by

implementing the proposed imputation technique remains similarly while implementing

much more robust algorithms like GBDT models as in the case of XGB. However, it is

necessary to mention that although the presented imputation technique provided clear

5|PERFORMANCE COMPARISION

105

classification enhancements, it did not provide much larger improvements while using

complex algorithms as we expected initially.

Table 36 Feature augmentation and engineering impact on the best performing model - XGB.

XGB MODEL Features

Accuracy

Training

%

Test

%

Hidden

%

Base Model Median Imputed (27) 83.0 78.0 76.0

Tuned Model 2
Median Imputed +

Additional Features (30)
89.7 79.4 80.1

Tuned Model 4
Augmented Features +

Additional Features (28)
87.0 80.0 82.5

Moreover, different random imputation orders were initially tested to overcome the data

sparsity effect on the lithology classification, all of which provided higher error

measurements on the test sets when the four investigated wireline logs, DTC, DTS, NPHI,

and RHOB were predicted and evaluated. In consequence, the ascending priority ranking

approach we designed and proposed, based on our petrophysical experience about which

specific wireline logs play the most important role for lithology interpretation purposes and

the dataset completeness available for training, provided lower root mean squared errors and

thus better results than any other random imputation order we tested. However, considering

that, each model supports its performance on different sets of features, a much more

consistent and robust approach could be to impute the wireline logs in a consistent order

according to the treated model, data completeness, and prioritizing based on the feature

importance provided by the model itself and petrophysical experience.

Third, along with the promising and relative high results some machine-learning algorithms

offer to solve the lithofacies classification problem, most of the models exhibited great

difficulties to properly classify carbonates in particular marl, dolomite, and limestone as well

as shaly-sandstone. However, the question that arises is until what extent these

misclassifications could be consider acceptable from a geological perspective or if these

misclassifications are actually mistaken. In consequence, now we present a closer view into

some particular examples where this questioning provides interesting observations and

answers. In consequence, in order to try to give an answer to that question it is necessary to

put ourselves in perspective about which were the wells that the models struggle the most to

5|PERFORMANCE COMPARISION

106

predict accurately. Table 37 presents a performance report per each well present on both the

open and hidden test sets, from which we will initially concentrate most of our discussion on

the particular wells that presented most of the difficulties to be accurately classified by the

best performing model XGB.

Table 37 Extreme gradient boosting model’s performance on each well present on
the open test and hidden test sets – low performance wells highlighted.

Based on the report presented above, we can easily observe that XGB struggled more to

properly predict lithologies on the open set wells, reason why we achieved a slightly higher

performance on the hidden set. Further, along with some mistakes most of the models have

to classify carbonates and shaly-sandstones, there are also some ambiguities involved on the

provided interpretation that must be noted in order to have a fair comparison between the

performances achieved by machine learning and a human interpreter. For instance, the

predictions that the top five best performing machine-learning models obtained on well 16/2-

7 that belongs to the open test set showed a general agreement on the main predicted lithology

OPEN TEST SET

Well Interpreter Cluster Acc Rec Prec F1 Score M. Score

34/3-3 A EXP3 2 0.94 0.94 0.92 0.93 -0.16

25/5-3 EXP1 0 0.88 0.88 0.86 0.86 -0.32

29/3-1 EXP1 2 0.85 0.85 0.84 0.84 -0.40

34/10-16 R EXP1 2 0.85 0.85 0.83 0.83 -0.38

25/10-10 EXP1 0 0.83 0.83 0.82 0.81 -0.54

35/6-2 S EXP2 1 0.74 0.74 0.69 0.70 -0.69

34/6-1 S EXP3 2 0.72 0.72 0.74 0.72 -0.67

25/11-24 EXP1 0 0.70 0.70 0.70 0.60 -0.99

35/9-8 EXP2 1 0.66 0.66 0.63 0.63 -0.85

15/9-14 EXP1 0 0.57 0.57 0.55 0.46 -1.02

HIDDEN TEST SET

Well Interpreter Cluster Acc Rec Prec F1 Score M. Score

34/3-2 S IG2 2 0.90 0.90 0.85 0.87 -0.27

31/2-10 EXP1 1 0.89 0.89 0.90 0.89 -0.31

35/11-5 EXP2 1 0.86 0.86 0.84 0.84 -0.34

31/2-21 S IG2 1 0.83 0.83 0.82 0.83 -0.41

16/7-6 EXP3 0 0.83 0.83 0.76 0.79 -0.40

35/9-7 EXP2 1 0.82 0.82 0.77 0.79 -0.48

15/9-23 EXP3 0 0.82 0.82 0.81 0.77 -0.42

16/2-7 EXP1 0 0.81 0.81 0.80 0.80 -0.50

25/10-9 EXP1 0 0.79 0.79 0.75 0.76 -0.56

17/4-1 EXP1 0 0.61 0.61 0.71 0.63 -0.90

5|PERFORMANCE COMPARISION

107

trends (Figure 82); however, there are some particular intervals where there is a conflict

between the predicted lithologies and the interpretation given by the data provider. One of

these intervals goes from 1500 to 1950 meters (interval 1), where most of the models seem

to have misclassified marl as limestone or shale. However, if we consider the inherent nature

of marl, which is a mixed rock composed of clay and lime, we could say that making these

misclassifications is totally permissible not only for a machine learning model but even for

an experienced petrophysicist.

Figure 82 Prediction analysis well 16/2-7

Additionally, there is another conflictive, less extensive, but much more interesting interval

in the same well, 16/2-7, which goes from 2285 to 2315 meters (interval 2), showed that even

though the interpreter characterized it as a limestone interval, none of the top performing

models was able to classify that interval as limestone but as sandstone. However, when core

images were studied, they revealed that the section actually consists of conglomerate and

breccia (See Figure 83), same that although are strongly correlated to sandstone, they are

1

2

5|PERFORMANCE COMPARISION

108

technically different from each other due to the grains size they compromise (NPD, 2021).

Thus, it implies that the machine learning models classified this interval more accurately,

which is something that has to be considered as advantage that machine learning provides

against an standard human interpretation.

Figure 83 Well 16/2-7, core taken within interval from 2285 to 2315 meters.

In addition, there is a second interesting observation that comes from well 15/9-14 belonging

to the open test set, in which most of the models provided high quality prediction with regards

of sandstone and limestone lithotypes; however, there is a visible bias to over classify shale

as we discussed beforehand. Initially, it appeared that the shaly-sandstone lithology

identification was highly affected by the lack of the shear sonic log, which we attempted to

overcome by implementing machine learning for missing values imputation. However, once

we studied the feature importance that the GBDT models provided for that specific lithotype,

we observed that DTS just appeared as the 11th position of the features that contribute the

most to its proper identification (Figure 67b). In consequence, the poor ability every model

has to accurately map shaly-sandstone seemed to be linked to the way how the data was

normalized before training the classifiers, specially the GR log.

In other words, if we have a look to the way the gamma ray log responds according to the

well location (See Figure 85), we can presume that when we standardize the data as a unique

dataset, we are likely to lose sensitivity to distinguish between shaly-sandstones, and shale

since during interpretation the base line for the last is normally defined according to the

subjectivity of the interpreter, which in turns depends on the well’s geological location.

Therefore, based on Table 37, where most of the problematic wells belong to location cluster

zero which in turns are linked mostly to wrong shaly-sandstone predictions, we could say

that there is a great effect on the models’ ability to map such lithology due to the interpreter’s

5|PERFORMANCE COMPARISION

109

subjectivity, which is generally introduced while defining the shale baseline during well log

interpretation.

Figure 84 Prediction analysis well 15/9-14

Figure 85 Gamma ray log response according to well location

Moreover, some other observations are visible on Figure 89 from which we could note that

most of the models tend to misclassify chalk as either limestone or marl, which as stated

above could be considered permissible mistakes. However, although GBDT models tend to

confuse limestone with marl and dolomite similarly as the other models, they offer a much

5|PERFORMANCE COMPARISION

110

more robust ability to classify carbonates when they are surrounded by different types of

lithologies. Refer to Appendix F to visualize the classification results on the open and hidden

datasets.

In fact, GBDT algorithms are able to provide a detail-oriented performance due to their

capability to map sandstone, tuff, anhydrite, coal, and most importantly carbonate thin beds,

last of which may be of particular importance in unconventional reservoirs considering that

those laminations play a crucial role on hydro-fracturing acting as limitations for fracture

propagation and consequently reservoir productivity.

On the other hand, tempted by the idea that interpreters’ subjectivity could also affect in great

degree the performance of learning machines, a sensitivity analysis was executed by

implementing the best performing and fastest model XGB when different sets of data coming

from different interpreters were used for training and testing purposes.

Figure 86 Prediction analysis wells 34/10-16R (a), 35/6-2S (b), 35/9-8 (c), 17/4-1 (d), and 31/2-21S (e).

The information regarding interpreters was provided by Peter Bormann, the FORCE

competition organizer, and Table 38 records how XGB performs whether we vary the

datasets we used. Additionally, it is necessary to bring into the discussion the fact that the

FORCE datasets were provided by two different sources, 83 wells from Explocowd and 15

5|PERFORMANCE COMPARISION

111

from IG2; besides, Explocrowd’s data was interpreted by three different groups of

interpreters which for practical purposes we will call EXP1, EXP2, and EXP3 from now on.

Table 38 Interpreter subjectivity analysis. An XGB classifier was trained several times by keeping a particular
set of wells from a specific interpreter and then tested on the wells provided by other interpreters on the

open and hidden test datasets.

Accuracy % obtained by XGB on wells provided by different interpreters

Training

dataset

Open test set Hidden test set

EXP1
(6 wells)

EXP2
(2 wells)

EXP3
(2 wells)

IG2
(0 wells)

EXP1
(4 wells)

EXP2
(2 wells)

EXP3
(2 wells)

IG2
(2 wells)

EXP1
(49 wells)

88.0
78.0 29.0 89.0 - 78.0 68.0 75.0 88.0

EXP2
(23 wells)

91.0
60.0 70 85.0 - 51.0 77.0 69.0 78.0

EXP3
(11 wells)

89.0
54.0 37.0 73.0 - 49.0 58.0 74.0 69.0

IG2
(11 wells)

97.0
60.0 32.0 82.0 - 42.0 65.0 70.0 81.0

High (accuracy >80) Medium (60<accuracy<80) Low (accuracy<60)

The first group of interpreters from Explocrowd provided 49 wells, the second one 23 wells,

and the third one 11 wells. The idea of the sensitivity analysis consisted on training XGB on

a set of wells belonging to a particular interpreter and then testing the classifier’s performance

on the other interpreter’s wells from the open and hidden test datasets, so we could quantify

the interpreter’s subjectivity influence on the performance and the possible dissimilarities

between interpretations.

The extreme gradient boosting model was trained for 100 epochs without including any

regularization technique, meaning that most likely it overfitted the training data in every case,

however, by comparing how much the training and test accuracies differ from each other is

in general the only way how we could understand any possible inconsistency between

interpretations given massive size of the datasets.

Table 38 summarizes the results we obtained, from which we can visualize that when the

model is trained based on the wells interpreted by either EXP1 or EXP2, the model was able

to provide medium-high accuracies on the wells provided by other interpreters, meaning that

5|PERFORMANCE COMPARISION

112

there is a good consistency between the them and the others’ interpretations. However,

XGB’s performance presents an important and visible drop on the accuracies when only the

wells interpreted by EXP3 are used during training, providing only medium to high results

when they are tested on the test wells provided by the same interpreter. This suggests that

excluding the wells interpreted by EXP3 from the training set may improve the global

classification performance.

In addition, if we look Table 38 in the vertical direction we can also observe how the classifier

in some cases was unable to perform at high level when it was tested on the wells interpreted

by EXP2 and EXP1 regardless of the data used for training the model. However, it does not

mean that all the wells provided by EXP2 or EXP1 went into difficulties to be precisely

classified, but it does mean that when the wells contain an important amount of mixed

sediments, especially shaly-sandstone, the model finds great difficulties to do a proper work

as in the case for wells 34/6-1 S, 25/11-24, and 15/9-14. Therefore, this analysis reinforces our

first conjecture regarding the role the interpreters’ subjectivity plays into the classifier

performance in special when it comes to properly classify shaly-sandstones.

6|CONCLUSIONS, AND FUTURE ENHACEMENTS

113

Chapter 6

6. CONCLUSIONS, AND FUTURE ENHACEMENTS

6.1 Conclusions

 In the current study, the performances of stand-alone standard classifiers, random

forest (RF), generalized boosting machines (GBM), and neural networks (NN) were

compared for the lithofacies classification problem by using the FORCE competition

dataset. Generally, the highest performances were given by decision trees-based

generalized boosting machines, which accomplished to outperform standalone

classifiers, standard ensemble models, and even much more complex structures such

as neural networks. GMB produced better performances mainly while classifying the

minority and mineral-mixed lithofacies, meaning that they are able to provide a much

more detail-driven lithology classification.

 Generalized boosting machines (GBM) proved to be highly robust, powerful,

efficient, and overall scalable machine learning algorithms perfectly suitable to deal

with large, imbalance, and sparse datasets. In addition, their compatibility with either

CPUs or GPUs as opposed to the other studied algorithms makes it possible

optimizing the model hyper-parameters manually in a matter of minutes. Hence,

GBM are almost a perfect blend of software and hardware capabilities designed to

enhance the pre-existing boosting techniques in terms of training time and efficacy.

 By comparing the performances achieved by the base line models and the optimized

ones, we could categorically conclude that the efficiency of any leaning machine is

able to provide depends importantly upon a proper and efficient feature and hyper-

parameter selection along with other important processing steps such outlier

identification, data standardization, feature augmentation, and feature engineering. In

addition, including an extensive cross validation technique while training the learning

6|CONCLUSIONS, AND FUTURE ENHACEMENTS

114

machines provided the best results as the model avoids overfitting the training data

and thus improves generalization.

 The implemented machine learning-based feature augmentation on the DTS, NPHI,

RHOB, and DTC logs along with the addition of new features proved to provide a

small but still important enhancement on the classification, most remarkably on the

hidden test dataset rather than in the open test dataset, difference that is originated

mainly due to the dissimilarity on lithologies distributions each test dataset holds. In

addition, in regards of the feature augmentation process, there is a genuine need to

study the proposed approach in a much more detailed manner in order to measure the

uncertainty that might be introduced into the datasets by implementing machine-

learning-based imputation techniques in highly sparse datasets, especially when

dealing with big and continuous missing value gaps.

 After testing several approaches to properly clean and process the datasets, improve

the quality of the data by machine learning implementation, define, optimize, train,

and test several an diverse machine leaning algorithms, and post-process the

predictions by using the predicted class probabilities without having further

improvements beyond the boundary of 82.5% of accuracy, we could conclude that

the missed accuracy in about 17.5% derives from the uncertain nature of the datasets

themselves. This uncertainty seems principally to come from the subjectivity that

petrophysicists include when interpreting wireline logs, which in turns depends upon

the geological location that is being studied and the expertise of the interpreter.

Therefore, having a large but more importantly consistent dataset are the two most

relevant factors that could guarantee to obtain the best possible outcome while

implementing machine learning to classify lithofacies.

 In general, all the models faced more difficulties to accurately classify shaly-

sandstone, marl, and dolomite. The first two seemed to be linked to the interpretation

subjectivity as they are normally misclassifies as shale, which is not surprising given

their mineralogical composition, while the third one seems to be linked to the low

6|CONCLUSIONS, AND FUTURE ENHACEMENTS

115

number of data instances available for training. In fact, even though the top

performing generalized boosting machine algorithm, XGB, provided the highest

accuracy on unseen objects, individually speaking there were wells in which XGB

performed at higher level of precision when compared to the global accuracy of

82.5%, reaching values up to 94%. However, there were also wells that seemed to be

complicated for XGB to be properly classified reaching individual accuracies up to

57%, which in turns worsened the global accuracy that could have been achieved.

Consequently, considering the poor accuracy in some particular wells seems to be

linked mainly to shale and shaly-sandstone differentiation, further analysis is required

in order to better understand and overcome such challenge.

6.2 Future enhancements

As extensively discussed in the current study, there is a great need to find a better way to

separate shaly-sandstone and carbonates adjacent lithofacies. One initial way to overcome

the current challenge could be by normalizing the datasets based on their geological location,

especially the GR log, so that we preserve every interpreter’s subjectivity without being

affected by the others’ interpretations during data normalization. Besides, the same logic

could be followed once some other additional features are created such as volume of clay or

shale index logs. Second, a stacking or voting machine learning model could be constructed

base the other model’s predictions in order to have an agreement between each other and thus

incorporate the predictions at which the other model may be better at. Third, incorporate

inherent geological spatial continuity by developing either variograms, correlograms, or

coefficient of variations of the most relevant wireline logs so that we can quantify

heterogeneity and connect the prediction along the y-axis, aiming in this way to correct wrong

isolated interpretations. Fourth, quality check the petrophysical interpretations hold by the

datasets especially in wells with the lowest accuracies so we can base future analysis in a

much more consistent set of data. Finally, trying novel techniques in machine-learning

specially designed to identify anomalies within the data such as wavelet transformation,

which normally intends to capture data variations at different scales by extracting both

spectral and temporal information from wireline logs may help capture the major lithology

trend in the subsurface but also the minor details within it.

7|REFERENCES

116

7. REFERENCES

Akatsuka, K., 2000, 3D Geological Modeling of a Carbonate Reservoir, Utilizing Open-Hole Log

Response - Porosity & Permeability - Lithofacies Relationship: OnePetro,

doi:10.2118/87239-MS.

Al-Anazi, A., and I. D. Gates, 2010, A support vector machine algorithm to classify lithofacies and

model permeability in heterogeneous reservoirs: Engineering Geology, v. 114, no. 3, p. 267–

277, doi:10.1016/j.enggeo.2010.05.005.

Anifowose, F. A., J. Labadin, and A. Abdulraheem, 2017, Ensemble machine learning: An untapped

modeling paradigm for petroleum reservoir characterization: Journal of Petroleum Science

and Engineering, v. 151, p. 480–487, doi:10.1016/j.petrol.2017.01.024.

Arabameri, A., W. Chen, M. Loche, X. Zhao, Y. Li, L. Lombardo, A. Cerda, B. Pradhan, and D. T. Bui,

2020, Comparison of machine learning models for gully erosion susceptibility mapping:

Geoscience Frontiers, v. 11, no. 5, p. 1609–1620, doi:10.1016/j.gsf.2019.11.009.

Awad, M., and R. Khanna, 2015, Efficient Learning Machines: Theories, Concepts, and Applications

for Engineers and System Designers: Apress, Berkeley, CA, XIX, 268 p.

Bonaccorso, G., 2020, Mastering Machine Learning Algorithms: Expert Techniques for Implementing

Popular Machine Learning Algorithms, Fine-Tuning Your Models, and Understanding How

They Work.: Packt Publishing Ltd, 576 p.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen, 1984, Classification and Regression Trees:

Taylor & Francis, 372 p.

Chen, T., and C. Guestrin, 2016, XGBoost: A Scalable Tree Boosting System, in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: MIT

Press, p. 785–794, doi:10.1145/2939672.2939785.

Criminisi, A., J. Shotton, and E. Konukoglu, 2011, Decision forests for classification, regression,

density estimation, manifold learning and semi-supervised learning: Microsoft Research

Cambridge, Tech. Rep. MSRTR-2011-114, v. 5, no. 6, p. 12, doi:10.1561/0600000035.

7|REFERENCES

117

Defazio, A., F. Bach, and S. Lacoste-Julien, 2014, SAGA: A Fast Incremental Gradient Method with

Support for Non-Strongly Convex Composite Objectives: Proceedings of the 27th

International Conference on Neural Information Processing Systems, v. 1, p. 1646–1654.

Dubois, M. K., G. C. Bohling, and S. Chakrabarti, 2007, Comparison of four approaches to a rock

facies classification problem: Computers & Geosciences, v. 33, no. 5, p. 599–617,

doi:10.1016/j.cageo.2006.08.011.

Ghori, K. M., R. A. Abbasi, M. Awais, M. Imran, A. Ullah, and L. Szathmary, 2019, Performance

Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection:

IEEE Access, v. 8, p. 16033–16048, doi:10.1109/ACCESS.2019.2962510.

Gong, Z., Z. Wang, M. J. F. Stive, C. Zhang, and A. Chu, 2012, Process-Based Morphodynamic

Modeling of a Schematized Mudflat Dominated by a Long-Shore Tidal Current at the Central

Jiangsu Coast, China: Journal of Coastal Research, v. 28, no. 6, p. 1381–1392,

doi:10.2112/JCOASTRES-D-12-00001.1.

Hall, B., 2016, Facies classification using machine learning: The Leading Edge, v. 35, no. 10, p. 906–

909, doi:10.1190/tle35100906.1.

Huang, L., X. Dong, and T. E. Clee, 2017, A scalable deep learning platform for identifying geologic

features from seismic attributes: The Leading Edge, v. 36, no. 3, p. 249–256,

doi:10.1190/tle36030249.1.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, 2017, LightGBM: A Highly

Efficient Gradient Boosting Decision Tree: Proceedings of the 31st International Conference

on Neural Information Processing Systems, v. 30, p. 3146–3154.

Li, Y., and R. Anderson-Sprecher, 2006, Facies identification from well logs: A comparison of

discriminant analysis and naïve Bayes classifier: Journal of Petroleum Science and

Engineering, v. 53, no. 3, p. 149–157, doi:10.1016/j.petrol.2006.06.001.

Lundberg, S., and S.-I. Lee, 2017, A Unified Approach to Interpreting Model Predictions: Proceedings

of the 31st International Conference on Neural Information Processing Systems, p. 4768–

4777.

7|REFERENCES

118

Mahmoud, A. A., S. Elkatatny, and A. Al-AbdulJabbar, 2021, Application of machine learning models

for real-time prediction of the formation lithology and tops from the drilling parameters:

Journal of Petroleum Science and Engineering, v. 203, p. 108574,

doi:10.1016/j.petrol.2021.108574.

Nielsen, M. A., 2015, Neural networks and deep learning: Determination press San Francisco, CA.

NPD, 2015, CO2 atlas for the Norwegian Continental Shelf: </en/facts/publications/co2-atlases/co2-

atlas-for-the-norwegian-continental-shelf/> (accessed June 10, 2021).

NPD, 2021, FORCE 2020 Lithology Machine Learning Competition Results:

<https://www.npd.no/en/force/Previous-events/results-of-the-FORCE-2020-lithology-

competition/> (accessed June 27, 2021).

Pedregosa, F. et al., 2011, Scikit-learn: Machine Learning in Python: Journal of Machine Learning

Research, v. 12, no. 85, p. 2825–2830.

Prokhorenkova, L., G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, 2019, CatBoost: unbiased

boosting with categorical features: arXiv preprint arXiv:1706.09516.

Rokach, L., and O. Z. Maimod, 2014, Data Mining With Decision Trees: Theory and Applications:

World Scientific Publishing Co., 328 p.

Sebtosheikh, M. A., R. Motafakkerfard, M. A. Riahi, S. Moradi, and N. Sabety, 2015, Support vector

machine method, a new technique for lithology prediction in an Iranian heterogeneous

carbonate reservoir using petrophysical well logs: Carbonates and Evaporites, v. 30, no. 1,

p. 59–68, doi:10.1007/s13146-014-0199-0.

Sharma, S., 2019, How to Classify Non-linear Data to Linear Data? <https://medium.com/analytics-

vidhya/how-to-classify-non-linear-data-to-linear-data-bb2df1a6b781> (accessed June 27,

2021).

Wang, G., and T. R. Carr, 2012a, Marcellus Shale Lithofacies Prediction by Multiclass Neural Network

Classification in the Appalachian Basin: Mathematical geosciences, v. 44, no. 8, p. 975–1004,

doi:10.1007/s11004-012-9421-6.

7|REFERENCES

119

Wang, G., and T. R. Carr, 2012b, Methodology of Organic-Rich Shale Lithofacies Identification and

Prediction: A Case Study from Marcellus Shale in the Appalachian Basin: Computers &

Geosciences, v. 49, p. 151–163, doi:10.1016/j.cageo.2012.07.011.

Zhang, Y., H. A. Salisch, and J. G. McPherson, 1999, Application of neural networks to identify

lithofacies from well logs: Exploration Geophysics, v. 30, no. 2, p. 45–49,

doi:10.1071/eg999045.

Zuo, R., 2017, Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of

Potential Methods: Natural resources research (New York, N.Y.), v. 26, no. 4, p. 457–464,

doi:10.1007/s11053-017-9345-4.

8|APPENDIXES

120

8. APPENDIXES

Every python appendix included or mentioned in the current section could also be found

open sourced in digital format on the following GitHub repository:

 https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-

Geosciences

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences

8|APPENDIXES

121

8.1 Appendix A – Additional utility functions Python Code

8.1.1 Plotting Functionalities (plotting.py)

8|APPENDIXES

122

8|APPENDIXES

123

8|APPENDIXES

124

8|APPENDIXES

125

8.1.2 Confusion Matrix and Penalty Matrix Score (additional_functions.py)

8|APPENDIXES

126

8|APPENDIXES

127

8.1.3 Data formatting (data_formating.py)

8|APPENDIXES

128

8.1.4 Data Pre-processing (preprocessing.py)

8|APPENDIXES

129

8|APPENDIXES

130

8|APPENDIXES

131

8.1.5 Data machine-learning augmentation (augmentation.py)

8|APPENDIXES

132

8|APPENDIXES

133

8|APPENDIXES

134

8|APPENDIXES

135

8|APPENDIXES

136

8|APPENDIXES

137

8|APPENDIXES

138

8|APPENDIXES

139

8|APPENDIXES

140

8|APPENDIXES

141

8|APPENDIXES

142

8.1.6 Data Normalization (input_norm.py)

8|APPENDIXES

143

8|APPENDIXES

144

8.2 Appendix B – Machine and Deep Learning Models Python Code

8.2.1 Logistic Regression (LR_model.py)

8|APPENDIXES

145

8.2.2 K-Nearest Neighbors (KNN_model.py)

8|APPENDIXES

146

8.2.3 Support Vector Machines (SVM_model.py)

8|APPENDIXES

147

8|APPENDIXES

148

8.2.4 Decision Tree (DT_model.py)

8|APPENDIXES

149

8.2.5 Random Forest (RF_model.py)

8|APPENDIXES

150

8|APPENDIXES

151

8.2.6 Categorical Gradient Boosting (CatBoost_model.py)

8|APPENDIXES

152

8|APPENDIXES

153

8.2.7 Extreme Gradient Boosting (XGB_model.py)

8|APPENDIXES

154

8|APPENDIXES

155

8.2.8 Neural Network (NN_model.py)

8|APPENDIXES

156

8|APPENDIXES

157

8|APPENDIXES

158

8.3 Appendix C – Neural network Bayesian parameter optimization (Bayes_opt.py)

8|APPENDIXES

159

8|APPENDIXES

160

8|APPENDIXES

161

8.4 Appendix D – Execution Python Code (Execution.py)

The current appendix shows how to set the environment necessary to run the functionalities

and models included in appendices A and B. In addition, the scrip includes the sequential

steps that must be taken in order to call each functionality needed and visualize each model’s

lithology prediction. Moreover, due to the extensiveness and repetitiveness involved in the

process of calling each machine-learning model running function, only the best performing

model, XGB, is included as an example for the present appendix.

To see the complete Execution.py file, please refer to the GitHub repository direction stated

at the beginning of section 8.

8|APPENDIXES

162

** Only one well displayed for visualization.

8|APPENDIXES

163

8|APPENDIXES

164

** Only one well displayed for feature augmentation visualization.

8|APPENDIXES

165

8|APPENDIXES

166

8|APPENDIXES

167

** Only well 15/9-23 belonging to the hidden test set is used for results visualization. Refer

to Execution.ipynb to visualize the lithofacies prediction obtained by XGB for every well

included in the open test and hidden test sets.

8|APPENDIXES

168

8.5 Appendix E – Experimentation Python code (Experimentation.ipynb)

Considering the extensiveness of the experimentation code, it was not included in the current

endorsement. However, if any detail regarding, statistical visualization, feature selection, and

hyper-parameter tuning that leaded to the final machine-learning models included in the

present study is needed, this file as well as the other python appendices included in the

current study can be found open sourced on GitHub.

Experimentation.ipynb GitHub location:

 https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-

Geosciences

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences

8|APPENDIXES

169

8.6 Appendix F – Lithology prediction results

8.6.1 Hidden test dataset

Well 15/9-23 Well 16/2-7

Well 16/7-6 Well 17/4-1

8|APPENDIXES

170

Well 25/10-9 Well 31/2-10

Well 31/2-21-S Well 34/3-2S

8|APPENDIXES

171

Well 35/11-5 Well 35/9-7

8.6.2 Open test dataset

Well 15/9-4 Well 25/10-10

8|APPENDIXES

172

Well 25/11-24 Well 25/5-3

Well 29/3-1 Well 34/10-16R

8|APPENDIXES

173

Well 34/3-3A Well 34/6-1S

Well 34/3-3A Well 34/6-1S

8|APPENDIXES

174

8.7 Appendix G – Open set classification histograms

Figure 87 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone.

Figure 88 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for marl, tuff, coal, and chalk.

Figure 89 Open test set prediction histograms: Total predictions count (left)
and wrong predictions counts (right) for dolomite, anhydrite, and halite.

8|APPENDIXES

175

8.8 Appendix H – FORCE penalty matrix

Figure 90 Appendix H - FORCE penalty matrix NPD, (2021)

8|APPENDIXES

176

8.9 Appendix I – Categorical gradient boosting explanation

Figure 91 Appendix I - Categorical Boosting Classifier: SHAP values impact on each lithology prediction.
Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7),

anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered from top left to right down.

8|APPENDIXES

177

8.10 Appendix J – Light gradient boosting explanation

Figure 92 Appendix J - Light Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone
(0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff

(9), coal (10), basement (11). Figures ordered from top left to right down.

8|APPENDIXES

178

8.11 Appendix K – Extreme gradient boosting explanation

Figure 93 Appendix K - Extreme Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone (0),
shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10),

basement (11). Figures ordered from top left to right down.

