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Abstract 

Lithology identification by using well log data is an initial and fundamental step within 

petroleum geosciences; same that provides essential information about the subsurface and 

plays a crucial role in reservoir characterization. In addition, well log interpretation is a 

process that involves a great amount of data, same that is currently handled by experts in 

order to attain an accurate portrayal of the subsurface. However, as humanity enters the era 

of big data in companion of the increasing technological and computational development, 

data science and machine learning are progressively taking over the forefront of the future of 

the oil and gas industry in order to improve and optimize processes. 

In consequence, the objective of current study is to explore and compare the potentiality of 

different supervised machine learning and deep learning algorithms to classify 12 different 

lithology facies by using the well log data of 118 wells located in the North Sea, same that 

are divided into three subsets for training, validation, and testing purposes. Additionally, we 

explore and discuss a machine-learning-based feature augmentation methodology as an 

attempt to improve the quality of the original dataset and consequently the final classification 

results. The analyzed models include standalone algorithms such as Logistic Regression, K-

Nearest Neighbor, Supervised Vector Machines, Decision Trees, ensemble gradient boosting 

tree-based algorithms such as Random Forest, Categorical Gradient Boosting, Light Gradient 

Booting, and eXtreme Gradient Boosting, and a two-hidden layer Neural Network. 

The results showed that by incorporating machine-learning-based feature augmentation 

every model experienced a performance enhancement, where trees-based gradient boosting 

algorithms along with random forest, and neural networks appeared to achieve the highest 

classification performances. Finally, we compare all the models performances and discuss 

possible reasons why although many algorithms offer high classification performances, they 

found problems to properly predict mixed-based lithologies, as well as how the interpreters’ 

subjectivity impact the models performances, and possible future approaches to enhance our 

best classification accuracy of 82.5% on previously unseen objects. 

 

Keyword: Lithofacies, Well Logs, Machine Learning, Deep Learning, Neural Networks.  
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Chapter 1 

1. INTRODUCTION, DATASET DESCRIPTION, AND METHODOLOGY 

1.1 Introduction 

Lithofacies is a term evolved from the term facies that was defined by Amnaz Gressly in the 

nineteen century as the total sum of lithological and faunal characteristics of sedimentary 

rocks. These characteristics include mineral composition, organic-matter content, 

geomechanical properties, texture, stratification, grain size distribution, and degree of 

rounding and sorting (Wang and Carr, 2012a). 

Lithofacies identification is important for many geological and engineering disciplines, goals 

of which might include palaeo-environmental context understanding (Wang and Carr, 

2012b), hydrodynamic conditions determination sediments transport typology modelling 

(Gong et al., 2012), and porosity and permeability interpretations improvements (Akatsuka, 

2000). Moreover, the accurate lithofacies identification has a special significance for 

reservoir characterization and stable hydrocarbon production and forecast. Standard 

methodologies to recognize and identify lithology include outcrops, core data collection and 

petrography, the first of which may not adequately reflect the reality of the subsurface while 

the second one offers limitations due to the costs it involves. Thus, great efforts are focused 

on building less costly qualitative and quantitative relationships between core data and 

conventional wireline logs, which normally includes gamma ray (GR), density (RHOB), 

neutron (NPHI), photoelectric index (PE), and resistivity logs (RES), in order to accurately 

identify lithofacies  (Wang and Carr, 2012a). In addition, even though wireline logs are able 

to provide important information that leads petrophysicists into an accurate subsurface 

interpretation, the massive size of the data makes of it an extremely time-consuming 

assignment while, at the same time, it incorporates the interpreter’s subjectivity into it.  

In the other side, as humanity enters the era of big data in companion of the increasing 

technological and computational development, data science have taken over the forefront in 

several industry domains. In consequence, as part of the digitalization era, machine learning 

and deep learning have currently attracted great attention in petroleum geosciences because 
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of its advantages in addressing big data issues in a relative small amount of time, introducing 

in this way exiting challenges and opportunities into the oil and gas industry (Huang et al., 

2017; Zuo, 2017; Arabameri et al., 2020). These techniques, as summarized by  Anifowose 

et al., (2017) and Mahmoud et al., (2021), are able to explore and learn from the hidden 

patterns and connections between large multivariate datasets in order to ultimately make 

informed decisions. Although, deep learning is considered a machine learning subfield, it is 

also considered as the evolution of machine learning as it performs based on an auto-

regulated learning process similar to the human brain.  

In addition, during the past decade, several researches have been performed to predict 

litholofacies based on wireline measurements by applying different artificial intelligence 

algorithms. These studies included the usage of naive bayes (NB) classifiers (Li and 

Anderson-Sprecher, 2006), artificial neural networks (ANN) (Zhang et al., 1999; Dubois et 

al., 2007), and support vector machines (SVM) (Al-Anazi and Gates, 2010; Sebtosheikh et 

al., 2015; Hall, 2016) to mention a few.  

Finally, among the methods previously investigated, the current study aims to give a 

description and a fair comparison between the performances that logistic regression (LR), 

Support Vector Machines (SVM), k-nearest neighbor (KNN), decision trees (DT), Random 

Forest (RF), gradient boosting decision trees algorithms (GBDT), and neural networks (NN) 

can provide to sort out the lithofacies classification problem, same that ultimately will help 

in the near future to design a robust and automated methodology to carry out this assignment 

in a human performing-comparable manner. 

1.2 Dataset description 

The datasets used for the current study was taken from the ‘Machine-Learning Lithology 

Prediction Contest’ organized in the second semester of 2020 by FORCE, which is a 

cooperating forum managed by oil and gas companies and authorities in Norway that was 

created to improve exploration, enhance oil and gas recovery, and increase production 

efficiency throughout cooperation between the oil and gas industry, academia and the 

Norwegian government authorities. 
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The dataset used during the competition is composed by 118 wells from offshore Norway, 

location of which covers the south and the north of the Viking Graben as shown in Figure 1; 

besides, the wells penetrate a highly variable geology from the Permian evaporites in the 

south and the deeply buried Brent delta facies in the northern area of the North Sea (NPD, 

2021).  

 

Figure 1 Wells geographical location. 

In addition, the provided data is conformed by three different data subsets serving to different 

purposes each. The training, open test, and hidden test subsets are composed by 98, 10, and 

10 wells, respectively. In addition, it is necessary to note that only the first two subsets were 

available for the contestants during the FORCE competition, while the hidden test subset was 

unavailable for them and was only used for assessing the final score that leaded to define the 

competition winner. In fact, instead of using standard performance metrics for assessing the 

models provided by the competitors, a new scoring function based on a penalty matrix was 

introduced, which in brief attempts to penalize misclassification similarly as a petrophysicist 

would do (See Appendix H). 

Table 1 summarizes the petrophysical wireline logs measurements, and additional metadata 

including lithostratigraphy, UTM location coordinates, measured depth, and the interpreted 

lithofacies that make up the datasets as well as their missing data summaries, which at first 

Training dataset 
Test dataset 
Hidden dataset 
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glance appear to represent highly sparse datasets, fact that may influence while implementing 

supervised learning for lithofacies classification.  

Table 1 Training, open test, and hidden test datasets description and missing data summary. 

MEASURED PROPERTIES 

DESCRIPTION LOG 
Missing Data Percentages (%) 

Training Open Hidden 

Caliper CALI 7.51 4.13 2.81 

Deep Resistivity RDEP 0.94 0.04 0.01 

Medium Resistivity RMED 3.33 0.43 8.02 

Shallow Resistivity RSHA 46.12 71.42 79.02 

Flushed Zone Resistivity RXO 72.03 78018 92.73 

Micro Resistivity RMIC 84.95 91.73 87.60 

Spontaneous Potential Log SP 26.16 51.29 61.83 

Sonic (Shear Slowness) DTS 85.08 68.40 40.46 

Sonic (Compressional Slowness) DTC 6.91 0.60 3.35 

Neutron Porosity NPHI 34.61 23.94 21.11 

Photoelectric Absorption Factor PEF 42.62 17.02 17.94 

Raw gamma data GR 0.00 0.00 0.00 

Bulk Density RHOB 13.78 12.40 7.78 

Density Correction DRHO 15.60 18.44 8.28 

Bit Size BS 41.68 51.04 39.14 

Differential Caliper DCAL 74.47 90.12 64.78 

Average Rate of Penetration ROPA 83.57 59.21 47.53 

Spectral Gamma Ray SGR 94.07 100.00 99.07 

Weight of Drilling Mud MUDWEIGHT 72.99 85.18 100.00 

Rate of Penetration ROP 54.29 50.06 25.53 

METADATA 

DESCRIPTION NAME 
Missing Data Percentages (%) 

Training Open Hidden 

Well Name WELL 0.00 0.00 0.00 

Measured Depth DEPTH_MD 0.00 0.00 0.00 

UTM coordinate X_LOC 0.92 0.04 0.01 

UTM coordinate Y_LOC 0.92 0.04 0.01 

True Vertical Depth Z_LOC 0.92 0.04 0.01 

Lithostratigraphic Group GROUP 

FORMATION 

0.11 0.00 0.00 

Lithostratigraphic Formation 11.70 5.17 6.66 

Interpretation Confidence Quality LITHO_CONF 0.00 0.00 0.00 

 

Moreover, in regard to the interpretation of the wells, the Norwegian company 

EXPLOCROWD, a consultancy and services company outsourced by the FORCE organizers 

committee, provided the interpretation for 104 wells, and 14 more wells were interpreted and 

provided by the data science and software development company IG2. 
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1.3 Methodology 

Whenever one think about implementing machine learning for solving a particular problem, 

the first question one should ask is if ML is the most suitable approach for solving it. 

Additionally, considering that machine learning will never perform perfectly in real-life 

problems there are a set of considerations must be fulfilled before commencing a ML project. 

These considerations include that a large amount of data to be available, that a very high 

accuracy not being desired, and that the problem is deeply understood so it would provide a 

basis to develop suitable algorithms (Awad and Khanna, 2015). Consequently, once the basic 

conditions are met, the process we will follow while developing the current machine-learning 

project can be describes in the following workflow diagram. 

 

Figure 2 Machine and deep leaning methodology workflow. 

 

 

 

 

 

 



2|SUPERVISED LEARNING THEORETICAL BACKGROUNG 

 
 

6 
 

Chapter 2 

2. SUPERVISED LEARNING THEORETICAL BACKGROUNG 

2.1 STANDARD MACHINE LEARNING ALGORITHMS 

Supervised learning is a learning mechanism that infers and learns from the underlying 

relationships between the input data and a target variable that might be a continuous 

numerical attribute or a multiclass categorical attribute for regression or classification 

problems, respectively. The learning task uses labeled data that comprises a set of observed 

vectors normally called predictors or features and a desired output called supervisory signal 

or class label. Broadly, the purpose of these mechanisms is to generalize the underlying 

relationship between the feature vectors and the supervisory signal in order to be able to 

predict the output while unlabeled input instances are used (Awad and Khanna, 2015).  

The training process is deeply dependent on the training data quality, which means that a 

well-trained supervised machine-learning algorithm could accurately predict the output for 

unfamiliar or unobserved data instances only if the input data used for training the algorithm 

has a high-level quality. In contrast, if a poor-quality input is used for training, this might 

derive in overfitting problems, which represents the difficulty for an algorithm to generalize 

the underlying predictors-target relationships that will derive in an unsuccessful regression 

or classification performance.  

2.1.1 Logistic Regression 

Logistic regression is a statistical model that follows almost the same theory as linear 

regression; however, it is considered as a probabilistic algorithm used for solving binary or 

multiclass problems by using a logistic function that can be mathematically expressed as 

follows 
𝑒𝑧

1+𝑒𝑧
, were 𝑧 ∈ [−𝛼, 𝛼]. In general, a logistic regression model predicts the 

probability of occurrence of a specific event by modeling the relationship between a 

dependent variable X and a categorical outcome Y (Awad and Khanna, 2015). 

Mathematically the previously stated logistic function can be expressed as   
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𝑃(𝑌|𝑋) =  
𝑒𝛽𝑜+𝛽1𝑋

1 + 𝑒𝛽𝑜+𝛽1𝑋
                                                      (1) 

were 𝛽𝑜 and 𝛽1 represent the estimated log-odds of a unit change for their respective input 

they are associated with, or in other words they can be seen as weights that translates any 

change in the input variables to the probability outcome. In addition, by extracting the inverse 

of the logistic function a new function called logit or log-odds is obtained which allows 

generating the logistic regression coefficients, 𝛽𝑜 and 𝛽1 for a one-predictor-based case. 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌|𝑋)) = ln (
𝑃(𝑌|𝑋)

1 − 𝑃(𝑌|𝑋)
) =  𝛽𝑜 + 𝛽1𝑋                               (2) 

Once the log-odds is calculated, a logistic function receive it as input, 𝛽0 +  𝛽1𝑋, and returns 

the likelihood probability 𝑃(𝑌|𝑋) of the occurrence of the event Y belonging to a positive 

class when the variable X is used as input as depicted by Figure 3. 

 

Figure 3 Logistic Function (allows transforming the log-odds parameters to the probability                                                                                      
of an instance belonging to a certain positive class). 

To conclude, as in the case of a linear regression, we are interested on the intercept 𝛽0  and 

gradient 𝛽1 coefficients, but by the aid of a logistic function, we transform these values into 

the probability of a value belonging a particular class known as positive class. 

2.1.2 K-Nearest Neighbor, KNN 

The K-nearest neighbor classification methodology, KNN for short, is a fairly simple 

clustering classification algorithm which identifies the group of k-objects in the training set 

that are closest to the test object and assigns a label based on the most dominant class in the 

neighborhood the instance belongs to (Awad and Khanna, 2015). KNN belongs to a particular 



2|SUPERVISED LEARNING THEORETICAL BACKGROUNG 

 
 

8 
 

family of algorithms called instance-based learning methods. The inference, learning, and 

predictions performed by a direct comparison of new samples with previously existing 

instances based on the distance between each other. This methodology could be applicable 

for classification, regression, and clustering purposes (Bonaccorso, 2020). The main idea of 

the algorithm can be explained if we consider a bunch of data samples 𝑥1, 𝑥2, … , 𝑥𝑛 , each of 

which has a dimensionality equal to N. Mathematically expressed as follow 

𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛}  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈  ℝ𝑁                                        (3) 

Then we can introduce a distance function 𝑑(𝑥1, 𝑥2) as a function of a new factor 𝑝 that might 

take different values. For instance, p=2 represents the Euclidean distance and p=1 represents 

the Manhattan distance to mention a few. 

𝑑𝑝(𝑥1, 𝑥2) =  (∑|𝑥1
(𝑗)

− 𝑥2
(𝑗)

|

𝑁

𝑖=1

𝑝

)

1
𝑝

                                        (4) 

The results obtained by the KNN algorithm when assigning an instance to a particular class 

might be diverse when different distances are implemented. To exemplify this Figure 4 helps 

visualize how the computed distance between the point A (0, 0) and B (15, 10) varies when 

different p values are used (Bonaccorso, 2020). 

 

Figure 4 Distance between (0, 0) and (15, 10) as a function of parameter (Bonaccorso, 2020). 

Finally, once every the distances is computed, the KNN algorithm determines the k closest 

samples for each training point; thus, when a new sample is presented the process is repeated 

with a predefined value of k samples (Bonaccorso, 2020). The philosophy of the KNN 

methodology is that similar samples should share their features or predictors, which normally 
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may provide high training and testing accuracies; however, since every distance has to be 

computed every time a new instance is introduced, it might become an extremely slow 

process for massive datasets.  

2.1.3 Support Vector Machines, SVM 

Support Vector Machines, SVM, is a machine-learning algorithm that from a geometrical 

perspective aim to find the equation of a multidimensional surface that best separated 

different classes in the feature space. SVM is a discriminant technique that solves the convex 

optimization problem analytically meaning that it will always return the same hyper-plane 

parameter every time the model is initialized with the same parameters. In contrast, other 

popular algorithms for classification problems like perceptron accomplishes its solutions 

depending on the parameters initialization and termination criteria making of it an heuristic 

approach (Awad and Khanna, 2015).  

Several of the characteristics that make of SVM a powerful machine-learning technique for 

a large range of problems are that it is uses maximum margin separator and a kernel 

technique. As a maximum margin separator, SVM not only aims to minimize or maximize a 

cost function but also imposes an additional constrain or condition to the location for the 

hyper-plane, which has to be situated in a way that the distances between classes are 

maximized as an attempt to generalize its solution.  

 

Figure 5 Hard (left)  and soft (right) separating margins implemented on SVM (Awad and Khanna, 2015). 

In this context, Figure 5 depicts two scenarios in which SVM constructs a separating hyper-

plane to properly classify most of the instances encounter in a training set when the data is 

completely separable when there is not such a case. These hyper-planes are named hard-
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margin and soft-margin SVM, respectively. The first attempts to maximize the distance 

between classes, while the second allows for some classification error in the neighborhood 

of the separating boundary or hyper-plane (Awad and Khanna, 2015). 

Besides, SMV includes kernel trick functionality that helps mapping the original data into a 

higher-dimensional space before solving a particular task considering that often the data 

involved is not linear separable in the original input space as exemplified on Figure 6. The 

principal objective for dimensionality transformation is to simplify the computational 

requirements for constructing a linear separator in a higher dimensional space where a linear 

separator would be able to discriminate between different classes.  

    

Figure 6 Support vector machines kernel trick functioning (Sharma, 2019). 

    In addition, kernel selection is highly dependent on data nature. For instance, a linear kernel 

is the simplest approach for solving medium complexity problems, a polynomial kernel is 

widely used for task related to image processing, ANOVA RB kernel is reserved for 

regression task mainly, and Gaussian and Laplace Radian Basis Function (RBF) kernels are 

mostly applied in the absence of prior knowledge. However, the great majority of them 

provide a better model performance once feature or data dimensionality reduction are 

performed. Moreover, SVM is a sparse technique that requires all the training data to be 

available in order to learn its optimal parameters. Once these parameters are identified, SVM 

will depend only on a significantly small subset of training instances called support vectors 

that would become the margins of the hyper-planes in the case of a multidimensional feature 

space. 
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Ultimately, the complexity of the classification task with SVM depends on the number of 

support vectors rather than the dimensionality of the feature space; thus, the number of 

support vectors that are ultimately retained by the model depends on the class separability. 

Therefore, SVM performance is highly dependent on the training and test data distributions 

and when trained with data that are not representative for the overall data population, hyper-

planes are prone to poor generalization (Bonaccorso, 2020). 

2.1.4 Decision or Classification Trees 

Decision or classification trees are used to classify a data instance into a predefined set of 

classes based on its attributes called features or predictor in machine learning. Decision trees 

could be seen as expert decision or clarification systems, which partially attempt to mimic 

and automate the underlying knowledge of an expert on the entrusted task. Some of the 

advantages of decision trees models are that they are simple to implement and its self-

explanatory characteristic help represent them graphically as hierarchical structures (Rokach 

and Maimod, 2014). 

 

Figure 7 Decision tree applied on IRIS dataset (Pedregosa et al., 2011). 

Further, a decision tree is as classifier expressed as a recursive partition on the instance space 

consisting of different types of nodes called root node, internal or test node, and terminal 

nodes also called leaves. The root node can be seen as the initial point with no incoming 

edges, while the internal node splits the instance space into two or more partitions according 

to a certain discrete attribute value to finally get to the terminal nodes, which represent the 
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most appropriated outcome reached through the previous internal nodes. To exemplify what 

was previously stated, Figure 7 shows the implementation of decision trees for the well-

known IRIS dataset where the root, internal, and terminal nodes can be identified. 

In addition, the driving concepts for decision trees, entropy and information gain, will be 

discussed based on the example shown on Figure 8. 

 

Figure 8 Information gain for discrete distributions. (a) Complete dataset before splitting.                                        
(b) Dataset after a horizontal split. (c) Dataset after a vertical split. (Criminisi et al., 2011). 

Figure 8a shows a number of data points distributed on a 2D space color-labeled by different 

data classes. If we split the data horizontally or vertically as shown by Figure 8b and Figure 

8c, respectively, two sets of data with lower entropy for the first splitting case and with higher 

entropy for the second one are produced. The information gain for each split type could be 

mathematically computed by equation (5), where 𝐻(𝑆) represents the entropy for a generic 

set of training points 𝑆.  

𝐼 = 𝐻(𝑆) −  ∑
|𝑆𝑖|

|𝑆|
𝐼𝜖[1,2]

𝐻(𝑆𝐼)                                                  (5) 

The lower entropy split gives an information gain of I=0.4, while higher entropy splitting 

gives I=0.6 meaning that a better class separation is achieved by the second way of splitting 

the data as visible on Figure 8 (Criminisi et al., 2011). 

To summarize, classification trees function by simply navigating every instance from the root 

of the tree down until they reach any specific leaf according to the outcome of the internal 

nodes and the information gain metric obtained afterwards. Note that the internal nodes are 

a 

b 

c 
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able to test both numerical and nominal attributes. Moreover, according to (Breiman et al., 

1984), the decision trees accuracy is mainly influenced by its complexity, which could be 

measured by either the total number of nodes, total number of leaves, tree depth, or number 

of predictors used, or any possible combination of them. 

2.2 ENSEMBLE MODELS 

Ensemble methods are techniques that aim to combine multiple models into one to improve 

their overall performance. These methods fall into two broad categories defined as sequential 

and parallel ensemble techniques. Sequential ensemble techniques generate base learners 

sequentially where data dependency resides, so every other subsequent learner depends on 

the previous learner performance in order to get an optimized performance. Parallel ensemble 

techniques, in the other hand, generate their base learners in parallel in order to encourage 

independence between every learner, which aims to reduce their final performance error. 

2.2.1 Random Forest, RF 

Random Forest is a parallel machine learning technique founded on the decision trees theory 

in which decision trees are not treated and used as individual entities anymore. In their stead, 

all decision trees, also known as weak learners, are combined together in a newish emerged 

and robust predictive technique known as ensemble learners that have been mostly confined 

to classification tasks. They use a random feature sample to build each independent tree as 

an attempt to reduce variance by decreasing the correlation between each decision tree 

output.  

Additionally, these kinds of machine learning algorithms are highly influenced by a number 

of important components but mostly by its randomness while constructing every individual 

decision tree differently from one another. Besides, forest randomness, which is introduced 

into the trees during the training phase, provides the model with high robustness with respect 

to noisy and imbalanced data. Moreover, randomness is normally achieved either by random 

training data sampling, also known as bagging, or by randomized node optimization 

(Criminisi et al., 2011). 
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In general terms, random forest training happens by optimizing the parameters of decision 

trees, known as weak learners, at each split node j via: 

𝜃∗
𝐽 = arg max 𝐼𝑗                                                               (6) 

For the specific case of classification problems, the objective function 𝐼, as stated in the 

previous section, is the information gain computed by equation 6. Subsequently, once every 

decision tree has been trained independently and efficiently, all these ‘weak’ predictions are 

combined into a single forest prediction by an averaging operation using the following 

expression in the case of classification tasks. 

𝑝(𝑐|𝑣) =  
1

𝑇
∑ 𝑝𝑡(𝑐|𝑣)

𝑇

𝑡=1

                                                     (7) 

Where 𝑇 represents the total number of decision trees, 𝑣 represents an attribute instance, and 

𝑝(𝑐|𝑣) is the ensemble posterior probability distribution of an attribute instance belonging to 

any discrete class (Criminisi et al., 2011). In other words, classification forest produce 

probabilistic outputs as they return an entire class distribution as illustrated in Figure 9. 

 

Figure 9 Three different decision trees part of a random forest reproducing                                                                                      
different probability distribution outputs (Criminisi et al., 2011). 

Figure 9 describes how the same input value 𝑣 is conducted differently from the root node 

until it reaches a leaf node; here every posterior 𝑝𝑡(𝑐|𝑣) is read off and averaged together to 

an ensemble posterior 𝑝(𝑐|𝑣). 

Finally, random forest algorithms generally yield to high accuracies and generalization; 

however, their performance is importantly affected by several parameters such as their size, 
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number of discrete classes to be classified, classes’ similitude, training data noise or quality, 

and individual performance of each decision tree included in the random forest. 

2.2.2 Gradient Boosting Decision Tree Ensembles, GBDT 

Gradient Boosting Machines, GBMs for short, are a family of powerful machine-learning 

techniques considered to be part of the sequential ensemble models category in which each 

independent learner acquires information, learns, and gets constructed based on previous 

learners’ mistakes by performing gradient descent in a functional space in order to optimize 

their overall performance in subsequent steps. 

Unlike common ensemble techniques like random forest, which rely on simple averaging 

techniques to get the final model, boosting ensemble methods base their functionality on 

consecutively training each base-learner with respect to the error obtained by the whole 

ensemble on previous stages. In addition, their robustness is partially attributed to their high 

flexibility while using pre-established or customized loss functions during the optimization 

stage, which has made of them very successful in practical applications and data challenges 

worldwide compared to single strong machine-learning models (Ghori et al., 2019). 

Gradient Boosting Machines rely on three main elements that are the loss function, the base 

weak learner involved in the process, and the additive model receiving all the weak learners 

while a gradient descent process is performed in order to minimize the final additive 

performance loss. 

Moreover, tree-based gradient boosting ensemble algorithms, which could be considered as 

a subgroup of Gradient Boosting Machines (GBM), were originally designed to be highly 

scalable to large datasets in different scenarios. These methods are able to run more than ten 

times faster than other existing popular algorithms. Mathematically a tree-based GB 

ensemble model can be expressed in the form 

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖),    𝑤ℎ𝑒𝑟𝑒 𝑓𝑘 ∈ ℱ                                               (8)

𝐾

𝑘=1

 

where, 𝐾 is the number of trees, 𝑓 is a function part of the functional space ℱ, and ℱ is the 

set of possible classification or regression trees known as CARTs. Additionally, considering 



2|SUPERVISED LEARNING THEORETICAL BACKGROUNG 

 
 

16 
 

that tree boosted and random forests are really the same model with the only difference in 

how they are trained. In consequence, as any other supervised machine-learning model the 

first step prior to enter the training stage is to define an objective function (Prokhorenkova et 

al., 2019). 

Moreover, similarly to any gradient boosting model, tree-based models build an additive 

expansion of the objective function by minimizing a loss function which introduces a 

regularization term Ω in order to control the complexity of the base tree learners as follows: 

𝑜𝑏𝑗(𝜃) =  ∑ 𝑙(𝑦𝑖 − 𝑦𝑖̂) +  ∑ Ω(𝑓𝑖)

𝐾

𝑘=1

                                            (9)

𝑛

𝑖

 

where, 𝑙 is a differentiable convex loss function that measures the difference between the 

prediction 𝑦𝑖̂ and the target 𝑦𝑖̂
(𝑡)

. Additionally, in order to define the regularization term or 

complexity of the tree Ω(𝑓), we need first to define a decision tree 𝑓(𝑥) as 

𝑓𝑖(𝑥) =  𝑤𝑞(𝑥),   𝑤𝜖ℝ𝑇 ,   𝑞: ℝ𝑑 → {1,2, … . , 𝑇}                                    (10) 

where, 𝑤 is a vector containing the scores on the tree leaves, q is a function that assigns each 

data to its corresponding leaf, and 𝑇 is the number of leaves. Thus, the regularization term 

can be mathematically expressed as 

 Ω(𝑓𝑖) =  𝛾𝑇 + 
1

2
ℷ ∑ 𝑤𝑗

2

𝑇

𝑗=1

                                                  (11) 

Where, 𝑇 represents the number of leaves of the tree, 𝑤 are the output scores of the leaves, 

and γ controls the minimum loss reduction gain needed to split an internal node (Chen and 

Guestrin, 2016). This regularization term Ω penalizes the complexity of the model and serves 

as a regularization technique that helps to smooth the final learn weights to avoid over-fitting.  

Additionally, to exemplify how boosting tress work let’s assume the mean squared error 

(MSE) as loss function, then the objective function could be redefined as  

𝑜𝑏𝑗(𝑡) =  ∑ [𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)  ] + Ω(𝑓𝑖)                               (12)

𝑛

𝑖=1
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where, 

𝑔𝑖 = 𝜕
𝑦𝑖̂

(𝑡−1)𝑙(𝑦𝑖, 𝑦𝑖̂
(𝑡−1)

)                                               (13) 

ℎ𝑖 = 𝜕2
𝑦𝑖̂

(𝑡−1)𝑙(𝑦𝑖, 𝑦𝑖̂
(𝑡−1)

)                                               (14) 

are the first and second derivatives of the objective function, normally called gradient 

statistics. Then, the objective function is reformulated as follows 

𝑜𝑏𝑗(𝑡) =  ∑ [𝐺𝑖𝑤𝑖 +
1

2
(𝐻𝑖 + ℷ)𝑤𝑖

2  ] + 𝛾𝑇                                (15)

𝑛

𝑖=1

 

where, 𝐺𝑖 = ∑ 𝑔𝑖𝑖𝜖𝐼𝑗
 and 𝐻𝑖 = ∑ ℎ𝑖𝑖𝜖𝐼𝑗

. Finally, after solving the equation for 𝑤, we get a 

final expression that measures how good a tree structure is. 

𝑤∗
𝑖 = −

𝐺𝑖

𝐻𝑖 + ℷ
                                                           (16) 

𝑜𝑏𝑗∗ =  −
1

2
∑

𝐺𝑖
2

𝐻𝑖 + ℷ
 + 𝛾𝑇                                              (17)

𝑇

𝑖=1

 

 

Figure 10 Boosting trees visual example training functionality (Chen and Guestrin, 2016). 

Sometimes, understanding the whole process seems complicated, so we can intuitively 

understand the boosting trees training functionality by the following particular example 

described on Figure 10. Here, initially the statistics 𝑔𝑖 and ℎ𝑖 are pushed until each instance 

reaches the leaves it belongs to, then these statistics are summed up together, and the 
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objective function is used to calculate how good the tree is, similarly to impurity in decision 

tress but taking into account the model complexity (Chen and Guestrin, 2016). 

Once, the utility of a tree has been calculated, the new step is to enumerate all possible trees 

and select the one that provides the best gain node by node. This can be computed by the 

following expression 

𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿 + ℷ
+

𝐺𝑅
2

𝐻𝑅 + ℷ
−

(𝐺𝐿 + 𝐺𝐿)2

𝐻𝐿 + 𝐻𝑅 + ℷ
] − 𝛾                          (18) 

which sums up the gain of the new leaves and subtracts the gain obtained by the original leaf 

and then compare the value to the minimum accepted gain γ to decide if performing a new 

split is beneficial or is not. 

2.3 NEURAL NETWORKS AND DEEP LEARNING  

Neural networks are an elegant programming paradigm in which computers learn how to 

solve a particular problem without explicitly being told how to solve it. Instead, computers 

learn by themselves how to overcome the problem at hand by solely using observed data; 

however, even though neural networks were promising in past years, it was only possible to 

properly train a neural network when deep neural networks were discovered in 2006. 

Initially, in order to understand the mainly used neurons called sigmoid neurons, perceptrons 

need to be defined beforehand. To visually understand perceptron functionality let’s assume 

some binary inputs 𝑥1, 𝑥2,  𝑥3, which are afterwards weighted internally to produce a binary 

output for an data instance belonging to a particular class, which is determined by comparing 

the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗  to a pre-established threshold as described on Figure 11. 
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Figure 11 Perceptron functionality diagram for a binary output. 

Perceptrons can, in brief, be seen as decision makers based on evidenced data which may 

lead to different decision making models by adjusting the weights 𝑤 and threshold. In this 

way, perceptrons are able to solve simple decision-making problems; however, by 

connecting different perceptrons parallels, a new and much more powerful structure called 

neural network becomes possible as described in Figure 12. Consequently, much more 

complex or abstract decision-making problems can be solved when preceding layer’s outputs 

are considered as the new inputs for the subsequent layer in the neural networks (Nielsen, 

2015). 

 

Figure 12 Neural Network Basic Structure.  

More formally, the minus threshold term −𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is known as bias 𝑏, which can be 

understood as an analogous to the constant term in a linear function and allows perceptrons 

to better fit the observed data. Thus, the previous definition of a perceptron can be readjusted 

as follows. 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0       𝑖𝑓        𝑤 ∙ 𝑥 + 𝑏 ≤ 0
1       𝑖𝑓        𝑤 ∙ 𝑥 + 𝑏 > 0

 

Furthermore, making a perceptron-based artificial neural network learn is a complicated task 

since this is normally achieved by continually changing the bias and weights so that mistaken 

predictions are correctly predicted. However, slight changes in these parameters lead to 



2|SUPERVISED LEARNING THEORETICAL BACKGROUNG 

 
 

20 
 

completely different results while using perceptron-based networks. In consequence, this 

problem is overcome by introducing a new type of artificial neuron called sigmoid neurons, 

which do not affect greatly the outputs when small changes in the weights and biases are 

performed, fact that is crucial to allow neural networks to learn. 

Sigmoid neuron can be understood in almost the same way as perceptron, with the difference 

that the output sigmoid neurons provide may take any possible value between 0 and 1 by the 

aid of a sigmoid function also known as activation function. This output can be 

mathematically expressed as 𝜎(𝑤𝑥 + 𝑏), where 𝜎 represents the sigmoid function (See 

Figure 3) defined by  

𝜎(𝑧) =
1

1 + 𝑒−𝑧
=

𝑒𝑧

1 + 𝑒𝑧
                                                 (19) 

Consequently, the output that sigmoid neurons provide can be redefined as: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + exp (− ∑ 𝑤𝑗𝑏𝑗 − 𝑏)𝑗
                                      (20) 

 

where the sigmoid or activation function smoothness help to maintain the output with no 

substantial changes when the weights 𝑤 and bias 𝑏 are slightly varied during the training 

process. 

Moreover, before entering the training stage a optimization cost function has to be defined, 

which in general terms is a measure of how well a neural network does with respect to the 

expected outputs. Depending on the problem to be solved the cost function may take different 

forms for regression, binary classification, and multi-class classification. Lastly, the cost 

function as a function of the weights and biases is optimized during the training process by 

implementing a gradient descent algorithm. In addition, optimizing a cost function could be 

achieved analytically by implementing calculus; however, this becomes almost impossible 

when the neural network involves hundreds, millions, or even billions of weights 𝑤 and 

biases 𝑤 to be optimized (Nielsen, 2015).   
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Furthermore, a reduced way to explain how gradient descent works in neural networks is to 

consider a particular cost function 𝐶 which is a function of m variables 𝑣1, 𝑣2, … ,  𝑣𝑚. Then 

any change ∆C in the cost function 𝐶 produced by small changes ∆𝑣 = (∆𝑣1, ∆𝑣2, … ., ∆𝑣𝑚)𝑇 

is expressed as  

∆𝐶 ≈  ∇𝐶 ∙ ∆𝑣                                                            (21) 

where the gradient ∇C is the transposed (T) vector made of the partial derivate of the cost 

function with respect to each variable weight 𝑤 and bias 𝑏 contained in the network, 𝑣𝑠 for 

simplification. 

∇𝐶 ≡  (
𝜕𝐶

𝜕𝑣1
, … ,

𝜕𝐶

𝜕𝑣𝑚
)

𝑇

                                                   (22) 

so if we choose a change ∆𝑣 = −𝜂Δ𝐶, where 𝜂 represents a parameter called learning rate,  

this guarantees that the cost function will always decrease ∆𝐶 ≤ 0 in order to find its global 

minimum (Nielsen, 2015).  

 

Figure 13 Neural Network training optimization process  by implementing back propagation (Nielsen, 2015). 

Finally, once the weights and biases have been calculated, the error is back propagated 

meaning that an error vector is calculated from the last layer in order to understand how the 

cost varies with earlier weights and biases. This final process is called back propagation and 

is profoundly explained in (Nielsen, 2015). The complete training process of neural networks 
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while implementing back propagation to optimize all the trainable variables is depicted in 

Figure 13. 

2.3.1 Evaluation Metrics for classification 

Evaluating the performance a machine-learning model is a fundamental aspect during 

training, validation, and testing stages of a machine-learning project in order to understand 

the quality of the output and the influence input data has on this. Normally in real-life 

applications, the datasets to be used during classification tasks are imbalanced, meaning that 

some classes have fewer samples than the other classes, which are referred as minority and 

majority classes, respectively. This imbalance represents a great challenge while solving 

classification problems by machine learning since it might cause a bias in the prediction 

towards the majority class when standard machine learning are implemented, resulting in a 

poor generalization. 

In consequence, while dealing with imbalanced datasets, a standard accuracy would be a 

biased metric for measuring the classification goodness; thus, weighted precision, weighted 

recall, and weighted f1 scores would be better indicators of the classifier performance. Also, 

a confusion matrix would provide a visual representation of the classification accuracy 

between the predicted versus the actual classes. 

A confusion matrix is the most basic form of accuracy assessment while solving classification 

tasks. It provides us how many predicted classes were accurately and/or inaccurately 

outputted when compared to the actual classes. A confusion matrix for a binary classification 

task could be expressed as shown on Table 2, from which several classification metrics such 

as precision, recall, accuracy, and f1 score can be computed. 

Table 2 Confusion matrix structure for a binary classification problem 

Predicted/Actual Class Positive Class Negative Class 

Positive Class True Positive False Positive 

Negative Class False Negative True Negative 

 

Precision represents the fraction of the correctly identified positive classes from all the 

predicted positive classes as follow: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
                              (23) 

Recall, in the other hand, represent a measure of the correctly identified positive cases from 

all the actual positive cases as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
                                (24) 

Accuracy is the measure of all the correctly identified cases and is used normally while 

working with balanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑎𝑔𝑡𝑖𝑣𝑒
+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

          (25) 

F1 score is represents the harmonic mean between precision and recall and gives a better 

measure of the incorrectly classified cases than the accuracy metric.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                         (26) 

Finally, to summarize we could say that different metrics could be used according to the 

purpose and the nature of the dataset. For instance, accuracy is a good choice when the true 

positive and true negative are highly important, while f1-score must be chosen when false 

negative and false positive are crucial. In addition, for imbalanced datasets, even though a 

standard accuracy might not be the best performance metric, it could be weighted by the 

number of instances belonging to each class to account for class imbalance; this would 

provide a more reliable performance metric if accuracy is used to asses a certain model 

performance. 
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Chapter 3 

3. DATA ANALYSISI AND PROCESSING 

3.1 EXPLORATORY DATA ANALYSIS 

Exploratory data analysis is the process throughout which we study and attempt to find useful 

information and existent patterns within the data. The major purpose is to understand the 

nature of the data itself and establish initial potential methodologies or approaches for solving 

the lithofacies classification problems. 

Furthermore, by the proper recognition of the relationship, and correlation between data 

readings, a new machine-learning based imputation technique will be subsequently proposed 

and discussed in Section 3 as a feature augmentation methodology in order to improve the 

final classification performance. 

3.1.1 Exploring Lithofacies Labels 

The datasets present 12 different lithofacies classes in their majority dominated by shale, 

shaly lithologies, and sandstone. Table 3 shows each lithofacie description and its presence 

percentage in the training, open test, and hidden test subsets. 

Table 3 Lithofacies presence percentages summary. 

 Lithology Presence Percentage (%) 

Lithofacie Label Code Training Open Test Hidden Test 

Sandstone SS 0 14.40 17.60 11.50 

Shaly sandstone S-S 1 12.90 12.80 10.00 

Shale SH 2 61.60 61.40 58.70 

Marl MR 3 2.80 2.40 3.60 

Dolomite DOL 4 0.10 0.30 0.20 

Limestone LIM 5 4.80 3.50 3.80 

Chalk CH 6 0.90 0.50 2.40 

Halite HAL 7 0.70 - 5.30 

Anhydrite AN 8 0.10 0.10 0.50 

Tuff TF 9 1.30 0.90 0.80 

Coal CO 10 0.30 0.50 0.20 

Basement BS 11 0.01 - - 
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Along with Table 3, the bar plot presented on Figure 14 also reflects more clearly the 

lithology distributions present on each data subset. As visible, there is a great class imbalance 

between different lithologies, fact that may have an important role during the classification. 

Besides, it is worth to mention that there is a great presence of lithology types that could be 

described as a mineral mixture, fact that might also have an important relevance while 

attempting to properly classify similar lithology classes as they are expected to have similar 

petrophysical property readings. 

 

Figure 14 Lithofacies presence percentage distributions 

Furthermore, based on Figure 14 and from a geological perspective, we can simply infer that 

the North Sea geology is widely dominated by shaly, sandy sediments, and carbonates mainly 

deposited during the Jurassic, Cretaceous, and Cenozoic ages.  

This is not surprising given the geological evolution of the North Sea; which was initially 

characterized by an extensive marine transgression extended along the complete North Sea 

during the transition from the Triassic into the Jurassic. Subsequently, extensive deltaic 

systems containing sand, shale, and coal were developed during the late Jurassic in the 

northern North Sea and the Horda Platform once the marine transgression ended (See Figure 
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15). Besides, similar deltaic systems were developed during the same age along the Danish 

Basin and the Stord Basin. This sediment depositions accompanied by the major Jurassic 

rifting phase leaded to faulting and the formation of the most important source rocks for the 

hydrocarbon reservoirs located in the North Sea (NPD, 2015). 

 

Figure 15 Wells geological location (NPD, 2021) 

Following, the rifting phase ceased in the Early Cretaceous and the deposition two 

contrasting lithologies took place, chalk at the southern North Sea and siliclastic, clay-

dominated sediment in the northern zone. Finally, chalk deposition took place and finished 

in the Early followed by a thermal subsidence that leaded into the creation of the intracratonic 

sedimentary basin of the North Sea as the continents moved to their current location; 

consequently, due to the basin margins uplift, submarine fans were transported from the 

Shetland Platform towards the east. Finally, several deltaic systems running from the 

Shetland Platform towards the east were formed and characterized the central North Sea, 

these correspond to the vast majority of the hydrocarbon reservoirs present in the North Sea 

(NPD, 2015). 
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3.1.2 Exploring Features 

As stated previously, exploratory data analysis is a highly important step in any data science 

workflow due to its implications while understanding the data contents, extents, connections, 

and variations. The current datasets contain a wide group of characteristics available to be 

used as input data, normally known as features or predictors. These potential features involve 

20 different types of log readings and 6 additional metadata characteristics describing well 

names, interpretation confidence, location, and lihtostratigraphical information (See Table 

1).  Unfortunately, as in many real world problems the dataset present incompleteness or 

sparsity in some predictor that might have been caused different reason such as cost 

considerations, borehole problems, logging tool failure, telemetry issues, or simply they were 

omitted by choice. 

The following figures were designed to better visualize the logs data and metadata presence 

per well on the datasets before undergoing into the supervised-learning implementation. 

Figure 16 shows that from the 98 wells held in the training set most of the missing data in 

the training set relies on the SGR, DCAL, ROPA, RMIC, MUDWEIGHT, and DTS logs, 

same which are present in only 13, 22, 25, 27, 28, and 32 wells, respectively. Further, the 

open and hidden test sets (Figure 16) behave similarly in regard of data presence, where most 

of the missing data once again relies on the same well logs previously mentioned with minor 

differences between each testing data subsets. 

Moreover, checking the statistics summary in order to have a feature values overview is 

essential to identify possible abnormal values that might be outside of the physical boundaries 

and may affect the classification performance. However, understanding the data based merely 

on numerical values lacks of meaning; thus, box plots of the most important features from a 

petrophysical point of view are displayed in Figure 17. 

The gamma ray log ( Figure 17a) shows that there are some values that exceed the physical 

boundaries, which normally go from zero to 300 or 350 API units in most of the offshore 

reservoirs. In addition, the lithology distributions for the mixed-based lithofacies such as 

sandstones, shaly-sandstones, and shales overlap between each other. This could probably 

indicate that some readings corresponding to these classes in the dataset may have been 
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misinterpreted or mislabeled, or it could also be an inherent property of the formations due 

to presence of some radioactive minerals such as k-feldspar, zircon or mica. These 

radioactive minerals could raise sandy lithology readings over 150 API units similarly to 

shale.  

 

Figure 16 Feature Presence per well – Training Set (upper center),                                                                              
Open Test Set (lower left) Hidden Test Set (lower right) 

Further, the spontaneous potential log SP (Figure 17b), normally used to identify gross 

lithology and differentiate between permeable and non-permeable formations, as expected 

shows a quite defined shale baseline reading and little deflections to higher and lower values 

based on the formation permeability and fluid content salinity. Thus, the values exceeding 

the whiskers of the SP log data mainly happen in sandstones, shaly-sands, and shale 

correspond to the fluid content, which might be formation water or hydrocarbons. 

Besides, the neutron porosity log (Figure 17c), which is normally combined with the bulk 

density log for practicality, shows a shale trend line around 20-35% NPHI, while for other 
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lithologies the NPHI rely around the expected values, almost cero for anhydrite, and between 

10 to 45% for sandstone, dolomite and limestone. 

In addition, the NPHI values that exceed the whisker values are presented mostly in 

sandstones, shale, and limestone and might linked to variations in the hydrogen index caused 

the formations fluid content. However, the current interpretation may still be considered 

subjective do to the facts that the NPHI log is based on limestone units, it has been studied 

isolately from the other wireline logs, and the gas effect on the readings has not been 

considered. 

 

Figure 17 Wireline logs boxplots color labeled by lithology, (a) Gamma Ray,                                                                                           
(b) Spontaneous Potential, (c) Neutron Porosity, (d) Compressional Slowness. 

Finally, the compressional acoustic logs (Figure 17d) behave apparently as expected for most 

of the lithologies. However, there are several DTC reading identified as shale that are lower 

to 100 us/m which is not a normal range of reading for shaly lithologies. 

On the other side, visually checking the relationship between wireline logs helps to 

understand the internal structure of the data and more importantly discard the predictors with 

high correlation in order to avoid or diminish overfitting during the training stage. For this 

purpose, the Spearman’s Correlations between every possible combination of variables 

a a 

c d 
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without considering the caliper and the bit size logs that normally do not have a direct 

connection with the lithology type is displayed on Figure 18. Besides, Figure 19 shows a 

scatter pair plot of the variables found to be highly correlated color-coded by lithofacie, 

which helps visualize and understand variation along the data.  

 

Figure 18 Spearman's correlation between wireline logs color-coded by correlation strength. 

First, a great positive Spearman’s correlation of around 0.83 was found between NPHI and 

DTC logs, numerically exhibited on Figure 19 were the NPHI log increases as the DTC log 

does. This relationship is expected due the fact that compressional slowness depends on the 

amount solid minerals encounter in the rock media and its saturation; in other words, the less 

mineral material, the more porosity a rock has and for instance the higher the compressional 

slowness becomes. In the other hand, a negative Spearman’s correlation of -0.84 expectedly 

occurs between RHOB and DTC that we could explain as common relation if we consider 
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rock compaction and fluid saturation, the higher the compaction, the higher the bulk density 

and the compressional wave velocity, and the lower the compressional slowness gets. Refer 

to Castagna’s and Gassmann’s researches to have extensive understanding of the effect and 

relationship between wave velocities and other rock-fluid properties. 

 

Figure 19 Bivariate correlation between most relevant logs for lithology identification, distributions color 
labeled by lithology shown on the diagonal. 

Second, most of the resistivity logs RMIC, RSHE, RMED, RDEP, RXO present high 

correlations; however, the most dramatic ones were encounter between RMED, RDEP, and 

RSHA and between RMIC, RSHA and RXO as numerically exhibited on Figure 18. These 

strong correlations between variables might bring problems into some machine-learning 

models’ performance or might reduce scalability and increase the running time a particular 
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model requires to accomplish its task due to the increase in dimensionality we get by keeping 

correlated variables. We will further investigate the informativeness of these variables in 

Section 4 in order to perform a wise-driven feature selection for every machine-learning 

model being analyzed so that their performances do not get affected in a high extent if the 

less informative and highly correlated predictors are removed prior to start the training 

process. 

Third, besides the existing linear correlation between the previously mentioned features, 

some other pair of variables did not show any apparent relationship at all. This occurs 

principally while plotting the photoelectric factor, gamma ray, and spontaneous potential logs 

against the other variables. Consequently, this apparently complex relationship between data 

and overlap in the readings for different lithologies make highly difficult to identify 

lithofacies based just on one or two wireline logs independently from the others. This is in 

general the reason while petrophysicists have always been in the need to use different log 

combinations in order to identify lithofacies in a proper manner, but also here is where 

machine learning plays an important role in order to understand and predict continuous or 

categorical values based on complex pre-existing patterns and relationships within the data. 

Lastly, Figure 19  also displays on the diagonal the distributions for each wireline log; at first 

glance some variables appear to be more normally distributed than others, some distributions 

are slightly skewed towards the majority classes logs reading, and some others even present 

bimodal distributions as in the case of DTC, NPHI, and RHOB. This might be a problem 

while trying to find an optimal classification solution, especially while implementing 

distance-based and gradient descent-based machine-learning algorithms, which in the best-

case scenario may still converge but in a quite slow manner considering that the distance 

between data instances and the learning rate are highly determined by the magnitude of the 

variables involved in the task. Consequently, in the incoming subsection we will attempt to 

prevent possible issues regarding data distributions and magnitudes through the 

implementation and evaluation of how different normalization techniques may impact the 

global lithofacies classification performance. 
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3.2 DATA PREPARATION 

Even though most data-related projects follow a common process with regard of data 

preparation and processing, both are the most crucial and time demanding stages while 

deploying a machine or deep learning algorithm. In fact, to a certain degree the results and 

success of their applications depends principally upon them, as it is well known, the quality 

of the algorithms output depends strictly on the quality of the data used as input. 

As consequence of the above mentioned, there is a huge need to accurately address this stages 

in order to help our data-driven project succeed. Moreover, reproducing consistent 

methodologies that can first handle and treat data accurately before developing appropriate 

and applicable machine-learning tools is the main inspiration for the current and related 

projects. 

In consequence, considering that missing data from well logs is a common problem in 

subsurface and may have a great impact while predicting lithofacies classes, this subsection 

will mainly explore and test a machine-learning-based missing data imputation technique as 

well as a feature generation process, which aim to improve the quality and reduce sparcity 

on the datasets before entering the classification task. 

3.2.1 Standard Data Imputation, Normalization, and Outlier Removal 

The initial approach was to complete the emptiness existing in the original datasets by a 

standard and simple technique called median imputation. Since most of the techniques we 

analyze along this study are distance-based and gradient descent-based algorithms, it 

becomes imperative to normalize the datasets inasmuch as the magnitude of the variables 

might affect the size of the gradient descent step and the distance between instances that will 

be used to find an optimal solution. Consequently, three of the most frequently used data 

normalization techniques were implemented and tested on the datasets imputed by the 

median beforehand. 

Moreover, prior to implement and test the different normalization techniques, the categorical 

variables present in the data such as the lithostratigraphic group and formation were label 

encoded by using a cat encoding functionality and the resistivity logs were log-scaled in order 
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to equalize their magnitude to the neighbor variables’ scales. Besides, in order avoid any kind 

of data leakage every scaling technique were implemented by fitting different type of scikit-

learn scalers on the training data and then transforming the open and hidden test sets into 

similar scales. Figure 20 displays some of the wireline logs before applying any sort of 

scaling, and after applying a min-max scaler, an standard-scaler, and a normalizer. 

 

 

 

Figure 20 Different normalization techniques applied on the training dataset: Before scaling (upper-left), 
Min-max scaled data (upper-right), Standardized data (lower-left), (d) Normalized data (lower-left) 

Accordingly, being not able to visually select the most suitable scaling method for our 

datasets, a logistic regression classifier was trained on a 10% stratified subsample of each 

differently scaled dataset by only using 23 out of the 28 original features and subsequently 

tested on the open test set. The ‘SRG’, ‘ROPA’, ‘RXO’, ‘MUDWEIGHT, and 

‘LITHO_CONF’ columns were removed for the three datasets before training basing our 

judgment principally on their missing data percentages.  

The results shown on Table 4 demonstrate that by standardizing our data we achieved a 

greater classification performance of almost 8% when compared to the other implemented 

techniques such as min-max scaling and a normalization. 

Moreover, even though standardization provided better results compared with normalization 

and max-min scaler methods, it also became more expensive in terms of running time and 
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number of epochs needed to make the logistic regression model converge as described on 

Table 4. In addition, as visible on Figure 20, the standardized training data seemed affected 

by possible outliers and unrealistic readings, especially in the case of the GR and SP log 

where the outliers are quite visible. 

Table 4 Different data normalization techniques tested on a logistic regression base model 

NORMALIZATION METHODS - Base model: Logistic Regression 

Normalization Method 
Test accuracy 

(%) 

Number of iterations 

to converge 

Time to 

converge [sec] 

Without Normalization 61.4 - No convergence 

Max-Min Scaler 61.0 18 11 

Standardization 69.7 1126 256 

Normalization 61.4 25 16 

 

Subsequently, in order perform outlier elimination, the same 10% stratified subsample  used 

for testing the normalization techniques composed by 117050 instances was used for testing 

four different automatic outlier elimination methodologies available on the open source 

scikit-learn python library. Besides, the current training set subsample-based outlier 

elimination approach was taken due to the massive size of the original training set, which 

made of testing each method on the complete set a computationally expensive task. 

First, the standard deviation outlier identification methodology needed seven standard 

deviations away from the mean to keep a reasonable number of instances for each lithofacie, 

specifically for the tuff, coal, and basement, which hold the most extreme GR and SP 

readings in the datasets. Second, the tree-based outlier detection known as isolation forest 

needed to establish a contamination parameter equal to 0.01 in order to keep a similar class 

distribution to the original training set similarly to the fist methodology. Third, a local outlier 

detection method was also tested by using different contamination fraction, where the highest 

test performance was achieved by using a contamination factor of 0.01. Fourth, a one class 

support vector machines outlier identification method was tested with different outlier 

fractions as well achieving the highest classification performance with a contamination 

fraction of 0.01. 

As visible on Table 5, the accuracies obtained after applying each outlier elimination 

technique do not affect widely the logistic LR classification performance. However, the local 

outlier factor method LOF seemed to remove more efficiently the most isolated values based 
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on their neighbor instances without worsening the classification performance; however, LOF 

offers a great disadvantage by becoming highly expensive while handling big datasets as in 

our case.  

Table 5 Outlier elimination methods tested on a logistic regression base model 

 

Figure 21 presents a histogram of the removed instances by LOF, where most of the removed 

values belong to the most frequent classes corresponding to sandstone, shaly-sand, shale, 

marl, and limestone. Figure 21 also presents the boxplots of the 10% training set subsample 

prior to outlier removal and after applying LOF, where the main difference lies on the GR, 

DTC, RSHA, and SP logs. 

 

 

Figure 21 10% training data subsample boxplot before outlier removal (upper-left), 10% training data 
subsample boxplot after LOF outlier removal (upper-right), Subsample removed outliers’ counts by lithofacie. 

OTLIER ELIMINATION METHODS - Base model: Logistic Regression 

Normalization 

Method 

Test accuracy 

(%) 

N° iterations to 

converge 

Time to 

converge [sec] 

N° outliers 

removed 

Standardized Data 

(no outliers removed) 
69.70 319 78 - 

Standard Deviation 69.29 17 4 3190 

Isolation Forest 69.63 310 78 1171 

Local Outlier Factor 69.72 94 29 1171 

One-Class SVM 69.46 46 12 1171 
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Finally, based on the previous analysis and regardless of the expensiveness LOF demands, it 

was applied to the complete training dataset removing a total number of instances equal to 

10856, which compared to the initial number of instances held by the original training 

dataset, represents barely 1%. 

3.2.2 Machine-learning-based data augmentation 

Integrating well log data into seismic data is a core process to characterize reservoirs, process 

that becomes challenging if the available well log data presents missing sections. This issue 

has been profoundly investigated in the past years by using different techniques that include 

linear interpolation, local-based mean imputation, numerical rock models, and empirical 

relationships. For instance, even though the Gardner’s and Castagna’s empirical correlations 

may provide reasonable sonic-density and compressional-shear sonic relationships 

respectively; in most cases they do not provide a detailed relationship between such 

properties. In fact, empirical correlations and numerical rock models might tend to be 

sensitive to beforehand assumptions taken without considering the structural complexities 

and stratigraphic variations along the subsurface. 

In this context, the FORCE datasets exposure offers an opportunity to approach this issue in 

a much more statistical-automated manner through the implementation of machine learning 

algorithms. Consequently, the present section presents a predictive, sequential, and multi-

stage imputation approach to overcome the missing data issue as an attempt to optimize the 

final lithofacies classification task. This methodology is summarized on  

Figure 22 and will be explained along the present section. 

Firstly, a quick feature importance ranking is developed in order to understand which features 

play the most relevant role or contribution in the classification accuracy. This leaded along 

with petrophysical experience leaded us to identify that the most relevant features while 

classifying lithofacies by either machine learning and manual interpretation are the GR, 

NPHI, RHOB, DTS, and DTC logs.  
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ML-BASED FEATURE IMPUTATION ALGORITHM 

Pre-requisites:  

1. feature_ranking: most relevant features ranked by missing data percentage from high 

to low. 

2. models: every possible machine-learning regressor to be evaluated against the others. 

 

Input: training_set, test_set 

 

for target_feature in feature_ranking: 

      **“Splitting training set on features and target”** 

      features_i  = all variables other than target_feature 

      target_i     = target _feature 

      training_set_i = all training instances where target_i is present 

      test_set_i = all test instances where target_i is present 

       

      for model_i in models do: 

            **“Training and evaluating each machine-learning model”** 

            fit the model to training_set_i 

            predict target on test_set_i 

      end 

      **“Imputing missing data before moving into the next target”** 

      compare models’ performances and best model section 

      predict and impute missing instances of the target_feature on training_set and test_set 

end 

 

Output: Machine-learning feature imputed training_set and test_set 

 
Figure 22 Machine-learning-based feature imputation algorithm 

Second, based on the previous analysis we developed a prediction priority ranking for the 

five selected logs based on their missing data percentages in order to minimize the prediction 

error by using as much data as possible for training purposes in each case. In other words, 

we seek to sequentially predict each wireline log according completeness the other features 

have for training and prediction purposes, so the learning machines could get much more 

information from the other less sparse predictors. 

Table 6 Feature prediction priority ranking to follow for ML imputation 

Prediction 

Priority Ranking 
Feature (Log) 

Missing Data 

Percentage 

1 DTS 85.1 % 

2 NPHI 34.6 % 

3 RHOB 13.8 % 

4 DTC 6.9 % 

5 GR 0.0 % 
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Third, based on the feature prediction priority ranking three ensemble regressors were used 

to train and test their performance on the open test set based on the root mean squared error 

(RMSE), mean absolute error (MAE), explained variance (EV), maximum error (ME) and 

R-squared factor (R2). It is important to note that, as described on  

Figure 22, the current methodology is a training-prediction multi-stage process where before 

entering each training-prediction substage for a particular target feature, the training dataset 

obtained during the previous training-prediction substage is splited into two smaller subsets 

for training and validation purposes. Afterwards, once each training process at each substage 

is completed, the regressors are tested on the open test set in order to select the best 

performing ML algorithm to finally update the datasets by imputing the missing values 

implementing the best performing ML regressor at each substage. This process aims to keep 

the actual reading for the treated features and only use machine learning to impute the missing 

values encountered along the mentioned variables. 

The first prediction substage aims to predict the shear acoustic log, where Table 7 presents 

prediction results obtained by the evaluated regressors. The extreme gradient boosting XGB 

regressor appeared to achieve the highest performance when compared to light LGBM and 

categorical CAT gradient boosting algorithms. Further, even though XGB performed better, 

it faced difficulties to predict DTS values beyond 400 us/m, while the final ML imputed DTS 

distribution shown on Figure 23 seemed to be highly influenced by the predicted DTS values. 

This effect could be attributed to the amount of missing data the actual DTS log has, which 

involves almost 85.1% of the data instances from which we could expect to have many more 

shale and sand related readings given the North Sea geology nature in which the majoritarian 

lithologies are essentially those. 

Table 7 Shear slowness DTS prediction results - Prediction substage 1 

PREDICTION SUBSTAGE 1 – DTS PREDICTION 

Log Model Data EV ME RMSE MAE R2 

DTS 

 

XGBoost 
Training 0.943 320.764 17.016 9.933 0.943 

Testing 0.915 154.864 16.155 10.545 0.935 

CatBoost 
Training 0.949 288.091 16.098 9.393 0.949 

Testing 0.896 164.39 20.341 12.138 0.896 

LightBoost 
Training 0.966 222.80 13.085 7.550 0.966 

Testing 0.917 170.59 18.142 11.347 0.917 
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Figure 23 (a) Actual DTS vs. predicted DTS, (b) Actual DTS probability distributions by lithology, (c) Predicted 
DTS probability distributions by lithology, (d) Final ML imputed DTS probability distributions by lithology. 

Once the DTS readings on the datasets are updated, the second prediction substage attempts 

to predict the neutron porosity NPHI missing values. Table 8 presents the metrics of the 

evaluated regressors used for predicting NPHI, where the LGBM performed slightly better 

than the other regressors on the training and test sets. 

Table 8  Neutron Porosity NPHI prediction results - Prediction substage 2 

PREDICTION SUBSTAGE 2 – NPHI PREDICTION 

Log Model Data EV ME RMSE MAE R2 

NPHI 

 

XGBoost 
Training 0.822 0.598 0.055 0.039 0.823 

Testing 0.795 0.458 0.054 0.041 0.795 

CatBoost 
Training 0.811 0.583 0.057 0.041 0.812 

Testing 0.789 0.473 0.055 0.041 0.789 

LightBoost 
Training 0.857 0.568 0.049 0.035 0.857 

Testing 0.803 0.486 0.053 0.039 0.802 

 

As visible on Figure 24, LGBM appeared to face difficulties to predict neutron porosity 

values above 0.6. Besides, even though the predicted NPHI distribution (Figure 24c) seemed 

to resemble the actual NPHI distribution (Figure 24a), the model seems to overestimate 

sandstones’ porosities to values higher to 0.40, same which became less noticeable after 

imputing the predicted values into the missing readings.  

Figure 24d depicts how the final distribution became more alike to the initial NPHI 

distribution after ML-imputation where slight overestimations may still be visible only for 

sandstones. 

a b c d 
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Figure 24 (a) Actual NPHI vs. predicted NPHI, (b) Actual NPHI probability distributions by lithology, (c) 
Predicted NPHI probability distributions by lithology, (d) Final ML imputed NPHI probability distributions by 

lithology. 

Then, the third prediction substage after DTS and NPHI imputation attempts to predict 

missing bulk density values. Table 9 Bulk Density RHOB prediction results - Prediction substage 

3presents the metrics for the RHOB prediction, where the categorical gradient boosting 

regressor seemed to predict NPHI with more confidence. In addition, Figure 25 demonstrate 

how similar the actual, the predicted, and the final ML-imputed NPHI distributions are, and 

hence how confident its prediction is. 

Table 9 Bulk Density RHOB prediction results - Prediction substage 3 

PREDICTION SUBSTAGE 3 – RHOB PREDICTION 

Log Model Data EV ME RMSE MAE R2 

RHOB 

 

XGBoost 
Training 0.898 1.277 0.081 0.054 0.897 

Testing 0.854 1.063 0.930 0.063 0.854 

CatBoost 
Training 0.938 1.26 0.629 0.042 0.938 

Testing 0.871 0.973 0.087 0.060 0.871 

LightBoost 
Training 0.927 1.370 0.068 0.046 0.927 

Testing 0.866 0.958 0.089 0.060 0.865 

 

 

Figure 25 (a) Actual RHOB vs. predicted RHOB, (b) Actual RHOB probability distributions by lithology, (c) 
Predicted RHOB probability distributions by lithology, (d) Final ML imputed RHOB probability distributions by 

lithology. 

a b c d 

a b c d 
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Lastly, the fourth prediction substage involved the prediction of the compressional sonic 

DTC missing instances. Table 10 displays the metrics obtained while predicting DTC, where 

XGBoost regressor outperformed the other two algorithms on the open test dataset. 

Table 10 Compressional Slowness DTC prediction results - Prediction substage 4 

PREDICTION SUBSTAGE 4 – DTC PREDICTION 

Log Model Data EV ME RMSE MAE R2 

DTC 

 

XGBoost 
Training 0.977 150.226 4.451 2.828 0.977 

Testing 0.974 47.8123 4.422 3.172 0.974 

CatBoost 
Training 0.988 138.046 3.168 2.007 0.988 

Testing 0.975 49.690 4.263 3.056 0.975 

LightBoost 
Training 0.986 98.843 3.493 2.249 0.986 

Testing 0.973 53.435 4.439 3.010 0.973 

 

Figure 26 displays the correlation between the actual and predicted DTC, which seemed to 

have the same ranges, meaning that XGBoost was able to predict this property with high 

confidence as described by the regression metrics on Table 10. In addition, the confidence 

while predicting DTC can be observed on the similitude between the actual, predicted, and 

final ML-imputed DTC distributions.  

 

Figure 26 (a) Actual DTC vs. predicted DTC, (b) Actual DTC probability distributions by lithology, (c) Predicted 
DTC probability distributions by lithology, (d) Final ML imputed DTC probability distributions by lithology. 

It is important to mention that the present ascendant-ranked feature imputation methodology 

based on target features presence percentages was selected against a descendent methodology 

inasmuch as the error for each predicted log increased importantly when the second method 

was tried out. 

Finally, Figure 27 shows the actual, predicted, and machine learning imputed logs for well 

35/9-8 corresponding to the test dataset. As visible, even though this well contains complete 

readings for the four treated logs, it serves to visualize and compare how similar the actual 

logs are in comparison to the predicted ones. In fact, based on the explained variance and 

a b c d 
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𝑅2 factors we could say that there is much more confidence while predicting the 

compressional slowness (DTC), shear slowness (DTS), and density (RHOB) logs than while 

predicting the neutron porosity (NPHI) log, meaning that much more of the variance held by 

target variable could be explained by the independent variables used during each training 

substage.  

Shear Slowness Neutron Porosity Bulk Density 
Compressional 

Slowness 

 
Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

Figure 27 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 35/9-8). 

In the other hand, well 34/5-1-S presented on  Figure 28 shows how the highlighted small to 

medium size missing data gaps were effectively filled up by the most accurate machine 

learning model’s predictions on each treated wireline log. 

To conclude, the presented missing data imputation methodology was designed and adopted 

with the purpose of improving progressively the datasets quality and consequently the final 

classification performance. It should be noted this methodology attempt also to minimize as 

much as possible the prediction uncertainty, which might be mainly introduced while 

predicting extensive missing data gaps, by predicting each well log sequentially based on the 

data available to train each regressor during every training-prediction substage. Moreover, it 

is worth mentioning that the present methodology could be applied to any extent in order to 
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predict any feature included into the datasets; however, due to timing and computational 

resources constrains, it was only applied to the four most relevant wireline logs. 

Shear Slowness Neutron Porosity Bulk Density Compressional Slowness 

 
Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed Actual Predicted Imputed 

 Figure 28 Actual and predicted DTS, NPHI, RHOB, and DTC logs (well 34/5-1S). 

3.2.3 Feature Engineering 

Furthermore, apart from the 23 initial pre-selected features during the data normalization 

analysis, four of which were imputed and improved during the augmentation section, seven 

more features were designed and included into the original datasets to be used as part of the 

training, validation, and prediction stages. These additional features are enlisted on Table 11.  

Table 11 Additional features incorporated into datasets 

N° Feature Name Key 

1 Cluster by location Cluster 

2 Bulk Modulus K 

3 Shear Modulus GM 

4 Measured-vertical depth ratio MD_TVD 

5 Slowness Ratio DT_R 

6 Shear Impedance AI 

7 Compressional impedance AI_P 
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Six out of the seven engineered features were computed straightforwardly based on the 

augmented wireline logs. However, deciding the optimal number of clusters to which to split 

up the dataset based on well location was a big question at first while implementing 

unsupervised learning, this leaded us to try to determine the number of clusters based on the 

elbow method, which in brief calculates the sum of the squared distances of each data point 

to the near cluster center, known as inertia, by using different number of clusters. The elbow 

plot on Figure 29 shows that three clusters was be optimal for our data and adding more 

clusters becomes marginal or useless. 

  

Figure 29 Optimal number of clusters based on elbow method (left), Clusters visualization (right) 

Finally, Table 12 records how the previously analyzed logistic regression classifier’s 

performance improved after machine-learning feature augmentation and features engineering 

were executed in comparison to the results obtained when median-imputed data was used for 

training. Along with this, based on the best standardization and outlier removal techniques 

that were found in previous analyses, the machine-learning imputed data was similarly 

treated in regards of this by implementing a standardization and a local outlier elimination 

techniques prior to enter the training and prediction stages. 

Table 12 Logistic regression model's performance by using median-imputed data, machine learning-imputed 
data, and after including additional features. 

LOGISTIC REGRESSION (Standardized data) 

Number of  

Features 

Test accuracy 

(%) 

N° iterations 

to converge 

Time to 

converge [sec] 

Features 

Comments 

23 69.7 1126 256 Median-imputed 

23 70.7 1127 255 + ML Augmentation 

30 71.3 1103 299 + Additional Features 
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To conclude, it is important to note that the most significant performance improvements were 

obtained after the machine-learning feature augmentation process rather than from feature 

engineering. Nonetheless, even though the improvements might not appear highly significant 

while using a linear classifier, these might become higher after eliminating the non-

informative features, carrying out hyper-parameter tuning, and by implementing more robust 

classifier types, factors that have not been addressed yet and will in the subsequent sections. 
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Chapter 4 

4. LITHOLOGY PREDICTION BY MACHINE AND DEEP LEARNING 

In this section, we initially explored the baseline construction philosophy and its importance 

to monitor model performance. Each baseline model was built and validated by implementing 

a cross validation technique on 10 stratified K-Folds of the training set. This technique splits 

the training dataset in 10 subsampled and tests every model on each of them, ensuring that 

each data subset keeps the same lithology class distributions that the original training set 

holds in order to generalize the performance and avoid a bias towards the most frequent 

classes. 

Subsequently, considering the massive nature of the training dataset, the hyper-parameter 

tuning process for the most expensive models was executed in a smaller stratified subsample 

of the original set in order to reduce running time and save computational power. Refer to 

Appendix E where all the experimental process is extensively documented. 

Furthermore, in the face of the efficient performance improvements previously seen on the 

logistic regression baseline model presented on Section 4 after data processing, the original 

readings on the training, open, and hidden datasets were replaced and complemented by the 

values obtained after ML feature augmentation, feature engineering, standardization, and 

outlier removal treatment, so that the other model could also experience a similar 

performance enhancement from this procedures. Refer Appendix B to see python code of all 

the functionalities needed to process the datasets prior to start the machine learning 

implementation and Appendix A to visualize the python code for every optimized model 

once the hyper-parameter and feature selection stages described in the current section, have 

been completed. 

4.1 BASELINE MODEL OVERVIEW 

Several baseline models were created and tested on 10 different stratified K-Folds of the 

training set as a cross validation technique. As shown on Figure 30, the top performing 

models while iteratively using 9 folds for training and 1 for testing seemed to be a random 
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forest classifier.  However, considering that every model was trained and tested by using only 

the training data with no regularizing their learning process, these results might be prone to 

overfitting. 

 

Figure 30 Base models average accuracies while iteratively training on 9 k-folds                                                        
and testing on the 10th k-fold. 

Therefore, each model has to be further analyzed, tuned, and then tested on the open and 

hidden datasets to have a consistent analysis and comparison between each other afterwards. 

The main objectives in order to optimize each model performance in the present section will 

involve an accurate hyper-parameters determination and a wise feature selection, considering 

that form the 30 available features for training, some may not be informative but they may 

incorporate noise and create confusion into the models. Table 13 presents all the processed 

features available for training the learning machines. 

Table 13 Available Features for training the learning machines. 

RDEP DEPTH_MD RHOB (augmented) 

RMED X_LOC NPHI (augmented) 

RSHA Y_LOC DTS (augmented) 

RMIC Z_LOC Cluster (additional) 

SP BS K (additional) 

DCAL CALI GM (additional) 

ROP GROUP ENCODED MD_TVD (additional) 

DRHO FORMATION ENCODED DT_R (additional) 

PEF WELL_ENCODED AI (additional) 

GR DTC (augmented) AI_P (additional) 
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4.2 CONVENTIONAL MACHINE-LEARNING METHODS 

4.2.1 Logistic Regression 

In the preceding section we constructed a Logistic Regression base model, which performed 

with accuracies of 72, 71.3, and 73% on the training, open, and hidden sets, respectively after 

feature augmentation, future engineering, data standardization, outlier removal treatment, 

and by using the default model’s hyper-parameters. Moreover, as stated previously, there is 

a genuine need to appropriately select the best model hyper-parameters and predictors to be 

used while training, validating, and testing in order to optimize the algorithm’s performance.  

Initially we attempted to reduce the number of the features through a recursive feature 

elimination process, which is normally intended to remove the least informative features that 

might slow down the training process, introduce noise, or create confusion into the model. 

This process did not provide much positive results for the current model since apparently 29 

of the 30 original features seemed to be necessary to accomplish the highest accuracy on the 

training set as shown on Figure 31. However, the recursive feature selection process provided 

a better understanding on the predictors that play the most important role for the classification 

as shown in Figure 32a, where accordingly the first 11 features account for most of the 

variance of the training dataset and together accomplish an accuracy above 73%. 

 

Figure 31 Logistic Regression Classifier: Recursive feature elimination by a logistic regression-based wrapper 
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In other words, this means that the 19 remaining features do not improve the training 

accuracy in more than 2% and hence could be removed without affecting largely the model 

performance. Besides, in order to double check our conjecture about the most influencing 

features, a forward sequential feature selection method was tested in order to validate these 

11 features. Figure 32b confirmed that 73% of training accuracy could be achieved by 

keeping solely the 11 most informative predictors as we presumed. 

 

Figure 32 Logistic Regression Classifier: Permutation feature importance 

Subsequently, by keeping the 11 previously selected features, a manually hyper-parameter 

tuning process was executed for the inverse regularization strength factor C, while the solver 

type and the maximum number of iteration where theoretically selected due to initial 

problems to make the model converge while using the default hyper-parameter values.  

In addition, since any tuning process become normally expensive in terms of running time 

while dealing with large datasets, we performed this by using only a 10% stratified subsample 

of the original training set, which held the same class proportions present on the original 

dataset in order to make the sample statistically representative for our problem. 

Afterwards, based on the scikit-learn documentation, SAGA and SAG solvers offer fast 

convergence when dealing with large and normalized datasets. In fact, as stated by (Defazio 

et al., 2014), SAGA is an improved version of SAG, which offers a better theoretical 

convergence rate and is adaptive to any inherent strong convexity of the problem. In 

consequence, a SAGA solver was selected for the current classification task while keeping 

a 

b 
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the number of iterations to a high value of 4000 in order to let the model converge while 

manually evaluating different Inverse Regularization Strength (C) values on the open test set 

as validations set as shown in Figure 33. 

 

Figure 33 Logistic Regression Classifier: Different inverse regularization strength tested                                                           

on the training and open test set (log C vs. accuracy) 

The figure above represents how the training and validation accuracies change while the 

linear logistic regression model uses different inverse regularization values ranging from 

10e-5 to 10e3. Note that the accuracies are plotted against the logarithm on the evaluated 

factor due to its investigation range; this leaded to find 0.1 as the optimal value for this 

parameter based on the validation accuracy. Thus, the selected optimal hyper-parameters that 

were implemented on the final model are summarized as follow on Table 14. 

Table 14 Logistic Regression Classifier: Optimal hyper-parameters 

Hyper-parameter Optimal value 

Inverse Regularization Parameter 0.1 

Maximum Iterations Number 4000 

Solver ‘saga’ 

 

To conclude, an end-model was created and trained on the 11 most informative features by 

using the optimal hyper-parameters previously selected. This provided accuracies of 74, 72, 

and 75% on the training, open test, hidden test sets, respectively. The results confirm our first 

guess about the non-linear relationship between features and the non-linear separation 

between most of the targeted lithology classes. 
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A class-detailed classification report for each dataset is presented on Table 15, where even 

though the open test set was used for fine tuning hyper-parameters, the hidden test set showed 

a better classification accuracy. This could be easily explained by the slight difference on the 

lithology distributions between the open and hidden test sets more notoriously on the 

limestone, marl, chalk, halite, and anhydrite lithology types. This apparently slight class 

distribution difference was enough to provide an extra improvement on the hidden set 

accuracy when compared to the open test set accuracy. 

Table 15 Logistic Regression Classifier: Classification reports for the training,                                                     
open test, and hidden test datasets. 

 

Finally, the confusion matrixes normalized to the number of predictions per class are 

presented on Figure 34. In general, the logistic regression classifier showed the highest 

accurately while classifying shale, halite, and anhydrite; medium accuracies for limestone, 

tuff and coal; and the poor accuracies while handling similar composition lithologies. 

Besides, most of the misclassifications denote a tendency to the majority classes such as 

sandstone, shaly-sandstone and shale. 

LOGISTIC REGRESSION CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.66 0.63 0.64 0.64 0.61 0.63 0.58 0.60 0.59 

Sandstone/Shale (1) 0.51 0.15 0.23 0.30 0.23 0.26 0.34 0.13 0.19 

Shale (2) 0.78 0.95 0.86 0.81 0.90 0.85 0.84 0.94 0.89 

Marl (3) 0.44 0.15 0.23 0.15 0.01 0.02 0.22 0.18 0.19 

Dolomite (4) 0.40 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.62 0.55 0.58 0.49 0.55 0.52 0.57 0.51 0.54 

Chalk (6) 0.72 0.59 0.65 0.00 0.00 0.00 0.53 0.93 0.68 

Halite (7) 0.98 0.99 0.98 0.00 0.00 0.00 0.99 0.96 0.97 

Anhydrite (8) 0.88 0.67 0.76 0.00 0.00 0.00 0.88 0.31 0.46 

Tuff (9) 0.54 0.16 0.24 0.66 0.15 0.25 0.10 0.03 0.04 

Coal (10) 0.73 0.42 0.53 0.67 0.42 0.52 0.81 0.57 0.67 

Basement (11) 0.96 0.22 0.36 - - - - - - 

Weighted Metric 0.71 0.74 0.70 0.68 0.72 0.69 0.71 0.75 0.72 

Accuracy Score 0.74 0.72 0.75 

Matrix Score -0.69 -0.75 -0.64 
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Figure 34 Logistic Regression Classifier: Classification confusion matrices for                                                         
the open test set (left) and hidden test set (right). 

The bias in the classification can be explained by the fact that linear separable algorithms as 

logistic regression are highly influenced by the target’s probability distributions, which 

means that the minor present lithologies tend to be misclassified as any of the most frequent 

ones. This issue could corrected by equalizing the class distributions by any oversampling, 

undersampling, and synthetic sampling techniques; however, due to the extent of the current 

study, they were not implemented nor evaluated. 

4.2.2 K-Nearest Neighbor 

As previously discussed on section 4.1 the base non-parametric K-nearest neighbor model 

provided accuracies an accuracy about 92% when trained and tested on the training set by 

cross validating on 10-stratified k-folds. However, even though it showed promising results 

on the training data, the same did not occur when testing the base model on the open and 

hidden test sets, which provided classification accuracies of 72 and 74%, respectively.  

In consequence, considering the high and medium-low accuracies obtained on the training 

and test sets respectively, a hyper-parameter optimization had to be executed to test for 

possible enhancements in performance. However, before undergoing into a hyper-parameter 

optimization, which is computationally expensive particularly when implementing KNN as 

previously we discussed on the theoretical background section, a feature dimensionality 
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reduction was performed in order to be able to run the hyper-parameter in a less expensive 

manner. 

Besides, there are plenty of model-based feature selection techniques, which may also 

become computational expensive when dealing with large massive datasets such as the case 

of recursive feature selection and permutation feature elimination. Therefore, a permutation 

feature selection was performed on a 10% stratified subsample of the training data in order 

to represent the label distribution existing on the original training dataset. 

 

Figure 35 K-Nearest Neighbor Classifier: Permutation feature importance. 

Figure 35 shows the features importance obtained by the permutation feature importance, 

where some predictors such as RMIC, RMED, DRHO, DCAL, RSHA, ROP, and K seem not 

to play a highly important role on the classification task; however, properly selecting the 

number of features that could provide the best results by only inspecting their importance 

becomes a bit difficult. In consequence, we used the open test set to measure the influence 

the number of features used during training has on the classification performance while 

keeping the same 10% stratified training subsample. Thus, based on the importance ranking 

provided by the permutation feature importance we trained and tested different KNN models 

by including sequentially one additional feature for training. Interestingly, as visible on 

Figure 36 the accuracy curves started to plateau while using just 6 to 10 features, and adding 

additional features only added slight improvement; however, the test accuracy showed a 

much more stable curve when more than 15 features were used. 
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Figure 36 K-Nearest Neighbor Classifier: Impact the number of training features has on the classification accuracy. 

In addition, based on the previous analysis a new default-parameter base model by only 

including the 15 most informative features was trained and tested on the open test and hidden 

test sets providing practically the same accuracies the initial KNN base model obtained while 

using the complete set of 30 features. In other words, by removing 15 of the less informative 

features the KNN classification accuracy did not get impacted while at the same time it 

reduced the running time KNN requires for training and predicting, and in consequence will 

help reducing the running time while optimizing hyper-parameters. 

Moreover, a manual neighbors tuning optimization was performed in order to understand 

how its impact on the training and open set classification performance in order to select most 

optimal values that would improve model generalization. This investigation is documented 

on Figure 37, where we can observe that by using a number of neighbors lower than 25 the 

model performance on the open test set worsens while the training accuracy remains high, 

meaning that the model is unable to generalize well when a small number of neighbors is 

used.  

In the other hand, by selecting a high number of neighbors, the test accuracy does not get any 

further improvement; thus, a number of neighbors bigger than 50 may be a good choice in 

order to generalized well on the unseen dataset since as shown the more number of neighbors 

used, the more computationally expensive the model becomes. 
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Figure 37 K-Nearest Neighbor Classifier: Number of neighbors vs. accuracy. 

In addition, once the optimal number of neighbors was set on 80, a further grid hyper-

parameter investigation on two additional relevant hyper-parameters such as the weights 

applied to each instance and the metric to compute the distance between data instances was 

performed. The optimal values found by the grid parameter search while implementing a 10 

stratified k-fold cross validation as well as the optimal number of neighbors are summarized 

on Table 16. 

Table 16 K-Nearest Neighbor Classifier: Optimal hyper-parameters. 

Hyper-parameter Optimal value 

Number of Neighbors 80 

Weights Manhattan 

Metric Distance 

 

Finally, a final model based on the optimal hyper-parameters was trained and tested, 

providing accuracies of 78% on the open test and hidden test sets, which compared to the 

initial test accuracies show an important enhancement. It is important to mention that the 

open test set was used as validation set while finding out the optimal number of neighbors to 

be used; however, KNN showed consistent results when tested on unseen objects. A detailed 

classification report is presented on Table 17, where we could observe how KNN was able 

to perform consistently on both test datasets.  
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Table 17 K-Nearest Neighbor Classifier: Classification reports for the training,                                                   
open test, and hidden test datasets. 

 

 In addition, the confusion matrices for the open test and hidden test sets are displayed on 

Figure 38, from which we could observe how KNN the most significant misclassifications 

occur between tuff and shale, chalk and marl, limestone an marl-shale, and shaly-sandstone 

and shale, while KNN was not even able to classify limestone on none of the test sets. 

  
Figure 38 K-Nearest Neighbor Classifier: Classification confusion matrices for                                                         

the open test set (left) and hidden test set (right). 

K-NEAREST NEIGHBOR CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.85 0.84 0.84 0.78 0.82 0.80 0.75 0.69 0.72 

Sandstone/Shale (1) 0.79 0.69 0.74 0.50 0.24 0.33 0.47 0.27 0.34 

Shale (2) 0.91 0.97 0.94 0.81 0.93 0.87 0.84 0.94 0.89 

Marl (3) 0.85 0.73 0.79 0.49 0.06 0.11 0.66 0.29 0.40 

Dolomite (4) 0.91 0.15 0.26 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.87 0.67 0.76 0.59 0.51 0.55 0.53 0.64 0.58 

Chalk (6) 0.93 0.84 0.88 0.00 0.00 0.00 0.68 0.47 0.55 

Halite (7) 0.97 1.00 0.98 - - - 0.97 1.00 0.99 

Anhydrite (8) 0.92 0.82 0.87 0.99 0.58 0.73 0.93 0.49 0.64 

Tuff (9) 0.84 0.86 0.85 0.66 0.50 0.57 0.51 0.46 0.49 

Coal (10) 0.96 0.29 0.44 0.98 0.18 0.30 0.93 0.37 0.53 

Basement (11) 1.00 0.41 0.58 - - - - - - 

Weighted Metric 0.88 0.89 0.88 0.74 0.78 0.74 0.76 0.78 0.76 

Accuracy Score 0.89 0.78 0.78 

Matrix Score -0.305 0.586 0.560 
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4.2.3 Support Vector Machines 

Support Vector Machines, SVM, implements separation hyper-planes to perform 

classification tasks. These hyper-planes achieve a good separation and the best generalization 

when the nearest training data point lies far from the decision plane. However, in several 

cases the data instances cannot be separated by a linear hyper-plane as we used while 

pretended while constructing our SVM base model, which provided relatively low initial 

classification performances of 74, 74, and 78% on the training, open test, and hidden test 

sets, respectively. Further, SVM requires storing the kernel matrix, which increases as the 

number of data instances increase, making SVM less feasible for massive datasets. 

In consequence, a dimensionality reduction by implementing any model-based wrapper and 

a any type of grid hyper-parameter search are not suitable for SVM considering the massive 

number of data points contained on the training set. This leaded us to attempt to optimize 

manually the most crucial hyper-parameter needed for regularization purposes while only 

using a 10% stratified subsample of the training set that kept the class distributions in order 

to make it representative to the original training data. This subsample allowed to investigate 

the effect the regularization term C has on the SVM classification; in addition, a more 

expensive RBF kernel was also introduced as an attempt to translate the data into a much 

more complex dimension in which a much easier and accurate instance separation could be 

possible. 

 

Figure 39 Support Vector Machines Classifier: Regularization vs. accuracy. 
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Figure 39 presents the effect C has on the training and open set accuracy, where the highest 

test accuracy reached a maximum value of 76% when C was equal to 0.1. It is important to 

note that the open test set was used to validate the hyper-parameter C in order to select the 

optimal value, which will be used later on the final model to predict on the hidden dataset. 

Moreover, due to the investigation range of the regularization term, which goes from 0.01 to 

100, Figure 39 presents C in a logarithmic scale in order to be able to visualize the accuracies 

variability in relation to any change in C. 

Based on the previous analysis, the optimal regularization term seemed to fall on between 

values of 0.1 and 1.0; thus, to allow a much wider variability and less penalized decision 

hyper-planes when testing SVM on unseen objected, an intermediate value of 0.5 was 

selected as optimal parameter. 

Table 18 Support Vector Machines Classifier: Classification reports for the training,                                             
open test, and hidden test datasets. 

 

To conclude, a final model based on the optimal regularization hyper-parameter and a radial 

basis function kernel RBF was constructed, trained, and tested providing accuracies of 84, 

76, and 79% on the training, open test, and hidden test sets, respectively. A class-detailed 

SUPPORT VECTOR MACHINES CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.78 0.80 0.79 0.80 0.78 0.79 0.71 0.73 0.72 

Sandstone/Shale (1) 0.54 0.72 0.62 0.27 0.41 0.33 0.29 0.52 0.37 

Shale (2) 0.96 0.87 0.91 0.91 0.82 0.86 0.95 0.84 0.89 

Marl (3) 0.44 0.77 0.56 0.07 0.62 0.12 0.22 0.48 0.30 

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.63 0.78 0.70 0.52 0.45 0.49 0.65 0.57 0.61 

Chalk (6) 0.70 0.89 0.78 0.00 0.00 0.00 0.46 0.71 0.56 

Halite (7) 0.98 0.98 0.98 - - - 0.96 0.99 0.98 

Anhydrite (8) 0.67 0.94 0.78 0.00 0.00 0.00 0.42 0.83 0.56 

Tuff (9) 0.66 0.77 0.71 0.59 0.72 0.65 0.61 0.60 0.60 

Coal (10) 0.40 0.87 0.54 0.36 0.92 0.52 0.56 0.88 0.68 

Basement (11) 0.00 0.00 0.00 - - - - - - 

Weighted Metric 0.87 0.84 0.85 0.81 0.76 0.78 0.84 0.79 0.81 

Accuracy Score 0.84 0.76 0.79 

Matrix Score -0.425 -0.621 -0.536 
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classification report is presented on Table 18 as well as the confusion matrices normalized 

by the total number of predictions per class. 

 

Figure 40 Support Vector Machines Classifier: Classification confusion matrices for                                                         
the open test set (left) and hidden test set (right). 

In general, SVM appeared not being able to distinguish between sandstones and shaly-

sandstones, shale and sandstones, limestone and marl, tuff and shale, while it seemed to have 

high performances when classifying halite and shale. This suggests that SVM classification 

presents a great tendency towards the majority classes; however, encouraging the model to 

classify better the minority classes by weighting them through the weight parameter did not 

provide better results but worse. Thus, various over, under, and synthetic sampling 

techniques might be possible solutions to overcome SVM limitations regarding class 

imbalance, same which due to computational power limitation and the extent of the present 

study were not analyzed. 

4.2.4 Decision Trees 

The base model we initially constructed provided accuracies of 93, 62, and 63% for the 

training, open test, and hidden test sets, respectively. However, it is important to note that 

this accuracy was obtained only by training and testing the model on 10 stratified k-folds of 

the training data without manipulating any regularization term into the model. In other words, 

this great difference between accuracies on the training and test sets is a clear show of 
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overfitting, which will be corrected by implementing a technique called decision tree 

pruning. 

Cost complexity pruning is a machine-learning technique that aims to reduce the size of a 

decision tree by removing redundant branches that might cause overfitting in the model, so 

in brief it would counteract a poor model generalization. A common and suggested approach 

is to first decrease the maximum depth for a decision tree before undergoing into a pruning 

process; in consequence, we established new maximum depth equal to 15 for the base model 

obtaining new accuracies of 93, 62, and 61% for the training, open, and hidden sets, 

respectively. 

Later on, the cost complexity parameter, ccp_alpha and the impurities at each level of the 

tree are calculated. In general, ccp_alpha influences the tree in the number of nodes a tree 

ends up growing. In other words, we will try to find the best ccp_alpha parameter that would 

restrict the tree growth up to an optimal number of nodes.  

 

Figure 41 Decision Tree Classifier: Cost complexity factor ccp_alpha vs. accuracy                                                      
on the training and open test datasets. 

Figure 41 shows how the training and open test set accuracy vary accordingly to the value 

the ccp_alpha factor takes. The plot provides an idea that the optimal ccp_alpha factor should 

be in order to get the highest performance when testing on the open test set used as a 

validation set for the current pruning procedure. The highest performance on the test set was 

obtained by using a ccp_alpha equal to 0.000587; however, using this value might still be too 
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specific in order to generalize the model performance on unseen objects. This analysis leaded 

us to define the optimal ccp_alpha could be any value between 0.000587 and 0.003. In 

consequence, with this in mind we opted for a safer ccp_alpha value of 0.002 for training and 

testing final model. 

Table 19 provides a detailed classification performance acquired by pruned decision tree, in 

which we could observe that although the pruned tree provided accuracies of 76, 75, and 75% 

on the training, open test, and hidden test sets, respectively, it was unable to predict the least 

frequent classes such as chalk, halite, anhydrite, tuff, coal, and the crystalline basement.  

Table 19 Decision Tree Classifier: Classification reports for the training, open test, and hidden test datasets. 

 

In addition, the confusion matrices normalized by the total number of predictions per class is 

presented on Figure 42. 

The classification report and the confusion matrices revealed that the decision trees model 

was unable to predict classes such as coal, tuff, chalk, and dolomite. The imbalance on the 

prediction might be explained by the cost complexity pruning process, which is a great 

technique to raise the overall model accuracy at the cost of not capturing in detail least 

DECISION TREE CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.68 0.67 0.67 0.79 0.72 0.75 0.60 0.61 0.60 

Sandstone/Shale (1) 0.75 0.21 0.33 0.50 0.02 0.03 0.78 0.11 0.19 

Shale (2) 0.77 0.96 0.86 0.74 0.99 0.85 0.77 0.98 0.86 

Marl (3) 0.64 0.18 0.28 0.74 0.02 0.04 0.48 0.03 0.06 

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.80 0.47 0.59 0.63 0.29 0.40 0.57 0.56 0.56 

Chalk (6) 0.79 0.63 0.70 0.00 0.00 0.00 0.00 0.00 0.00 

Halite (7) 0.77 1.00 0.87 0.00 0.00 0.00 0.87 1.00 0.93 

Anhydrite (8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Tuff (9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Coal (10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Basement (11) 0.00 0.00 0.00 - - - - - - 

Weighted Metric 0.74 0.76 0.72 0.70 0.75 0.67 0.70 0.75 0.69 

Accuracy Score 0.76 0.75 0.75 

Matrix Score -0.663 -0.690 0.665 
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represented classes into the datasets. In other words, the cost complexity pruning process 

improved the classifier’s performance from 62% to 75% on the test sets mainly by improving 

significantly the classification on the most frequent classes but without improving the 

classification for the minority classes. 

 

Figure 42 Decision Tree Classifier: Classification confusion matrices for                                                                       
the open test set (left) and hidden test set (right). 

4.3 ENSEMBLE MACHINE-LEARNING METHODS 

4.3.1 Random Forest 

Beforehand we constructed a Random Forest base model that performed with an accuracy of 

92% while training and validating the model on 10 stratified k-folds on the preprocessed 

training set. This provided accuracies of 78% and 79% on the open test and hidden test sets, 

respectively. In addition, considering the base model did not consider any regularization 

technique, the current section aimed to optimize the base model by performing an accurate 

features and hyper-parameters selection. 

4.3.1.1 Recursive Feature Elimination 

Initially in order to improve the model performance a feature dimension reduction was 

attempted to remove the least informative features that might slow down the training process, 

introduce noise, or create confusion into the model. To do so a recursive feature elimination 

wrapper was constructed and tested on a 10% stratified subsample of the training data in 
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order to train the model on a representative sample, handle the imbalance between lithology 

classes, and avoid overfitting. Besides, it is important to mention that this approach was 

adopted since random forest classifier available on the scikit-learn library only supports CPU 

but not GPUs.  

 

Figure 43 Random Forest Classifier: Recursive feature elimination wrapper results 

 

Figure 44 Random Forest Classifier: Feature importance given by the RFE wrapper. 

The recursive feature selection, documented on Figure 43, indicated 27 as the optimal number 

of features in order to attain the highest training accuracy; however, we can also appreciate 

how most of the accuracy is achieved by only the initial 10 features and the 17 subsequent 

only contribute a slight improvement in the accuracy. In addition, RFE wrapper also provided 
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the apparent features importance (Figure 44), in which GR, NPHI, DTS, RHOB, and some 

metadata features related to instances location seemed to influence the random forest output 

the most.  

4.3.1.2 Hyper-parameter Tuning 

Subsequently, after we decided to reduce the number of features up to 27 in order to look for 

the maximum possible accuracy, a hyper-parameter optimization process was performed 

based on a randomized parameter search technique. The parameters’ evaluation ranges are 

enlisted on¡Error! No se encuentra el origen de la referencia.. 

Table 20 Random Forest Classifier: Hyper-parameter ranges defined for tuning 

Hyper-parameter Value ranges 

n_estimators [from 100 to 500 in steps of 50] 

max_features [‘sqrt’, ‘auto’] 

max_depth [form 1 to 50 in steps of 2] 

bootstrap [True, False] 

 

The hyper-parameter grid search was executed for 25 iterations while cross validating the 

training with 10 stratified folds in order to avoid overfitting the training data, the better hyper-

parameters are enlisted on Table 21. 

Table 21 Random Forest Classifier: Optimal Hyper-parameter 

Hyper-parameter Optimal value 

n_estimators 350 

max_features ‘sqrt’ 

max_depth 45 

bootstrap False 

 

Lastly, a new model was trained by using the 27 most informative predictors (See Figure 44) 

and the optimal hyper-parameters. This final model provided accuracies of 98, 78, and 80% 

on the training, open test, and hidden test, respectively. The detailed classification reports by 

class can be visualized on Table 22. 

Additionally, in order to help visualize the classification results Random Forest obtained, the 

normalized confusion matrices are displayed on Figure 45. 
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Table 22 Random Forest Classifier: Classification reports for the training, open test, and hidden test datasets 

 

  

Figure 45 Random Forest Classifier: Classification confusion matrices for                                                                       
the open test set (left) and hidden test set (right). 

Finally, from both the classification reports and the confusion matrices we could observe 

how the random forest perform quite well while predicting classes that have no conflict with 

others; however, when it comes to similar lithologies it is prone to make many more mistakes 

as the case of dolomite and chalk. In addition, it is important to note that so far random forest 

RANDOM FOREST CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.97 0.97 0.97 0.79 0.85 0.82 0.72 0.80 0.76 

Sandstone/Shale (1) 0.96 0.95 0.95 0.50 0.27 0.35 0.57 0.26 0.36 

Shale (2) 0.98 0.99 0.99 0.83 0.92 0.87 0.85 0.96 0.90 

Marl (3) 0.97 0.96 0.97 0.48 0.01 0.03 0.43 0.25 0.31 

Dolomite (4) 0.95 0.77 0.85 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.97 0.91 0.94 0.42 0.57 0.48 0.60 0.61 0.60 

Chalk (6) 0.99 0.99 0.99 0.00 0.00 0.00 0.56 0.34 0.42 

Halite (7) 1.00 1.00 1.00 0.00 0.00 0.00 0.99 0.98 0.99 

Anhydrite (8) 0.97 0.98 0.98 0.81 0.41 0.55 0.72 0.76 0.74 

Tuff (9) 0.98 0.98 0.98 0.84 0.53 0.65 0.66 0.26 0.38 

Coal (10) 0.95 0.88 0.91 0.79 0.85 0.82 0.86 0.64 0.74 

Basement (11) 1.00 1.00 1.00 - - - - - - 

Weighted Metric 0.98 0.98 0.98 0.75 0.78 0.75 0.77 0.80 0.78 

Accuracy Score 0.96 0.78 0.80 

Matrix Score -0.061 -0.582 -0.497 
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is the only model capable of predicting limestone, something that did previous models were 

not able to do so.  

4.3.2 Categorical Gradient Boosting 

Categorical Gradient Boosting, CatBoost for short, is a recently developed machine-learning 

algorithm that gets its name derived from the terms Category and Boosting. ‘Cat’ references 

the fact that it handles categorical features or predictors by itself without necessity of 

encoding categorical data separately, which is widely required by other machine learning 

techniques as part of the pre-processing stage. ‘Boost’ refers to its functionality based on 

gradient boosting algorithm covered in the preceding sections (Ghori et al., 2019). 

In addition, CatBoost is compatible with scikit-learn tool kit, and supports training on either 

CPUs and GPUs. As a first attempt, a hyper-parameter random grid search technique was 

executed considering the most relevant parameters as shown on Table 23. 

Table 23 Categorical Boosting Classifier: Random search grid for CatBoost classifier 

Hyper-parameter Value ranges 

depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

iterations [100, 250, 500, 1000] 

learning_rate [0.001, 0.01, 0.03, 0.1, 0.2, 0.3] 

l2_leaf_reg [1, 3, 5, 10, 100] 

border_count [1, 3, 5, 10, 100] 

random_strenght [1, 10, 100, 1000] 

grow_policy ['SymmetricTree', 'Lossguide', 'Depthwise'] 

 

The random search was executed for 100 epochs or iterations by cross validating each set of 

parameters on 3 stratified k-folds of the training set. This leaded us to find the values 

summarized on Table 24 as the optimal ones according to the random search approach. 

However, once a new model was fitted and tested by using these hyper-parameters, it 

provided poor accuracies of 71% and 75%, on the open test and hidden test sets respectively. 

Besides, considering the high accuracy of 90% obtained on the training set and the 

considerably low accuracy on the test sets, which is an indicator of overfitting, we decided 

to implement a manual tuning process as a way to take advantage of the fast training that 

CatBoost compatibility with GPUs offers. Further, prior to manually attempt to tune the 
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CatBoost hyper-parameters, a recursive feature selection wrap was first run in order to reduce 

the possible less informative and nosy predictors held by the datasets. 

Table 24 Categorical Boosting Classifier: Optimal hyper-parameters obtained by                                            
random search grid approach 

Hyper-parameter Pseudo-optimal value 

depth 9 

iterations 500 

learning_rate 0.2 

l2_leaf_reg 3 

border_count 100 

random_strenght 1.0 

grow_policy ‘'Depthwise' 

 

4.3.2.1 Recursive Feature Elimination 

Recursive Feature Elimination is an effective feature selection methodology that allows 

machine-learning algorithms to run more efficiently and effectively. The training data set 

was treated for missing values, difference in feature scales, and outliers as previously 

explained with the difference that the categorical variables were not encoded since CatBoost 

handles them by itself as an attempt to avoid data leakage between the training and test sets 

while using feature encoders. Data leakage normally leads to conditioned predictions by 

proposing a new tree ordering principle which is profoundly described in (Prokhorenkova et 

al., 2019). 

 

Figure 46 Categorical Boosting Classifier: Recursive feature elimination wrapper results 
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Later, the preprocessed trainings data went into a recursive feature elimination wrap by cross 

validating the model with 10 stratified k-folds of the training dataset, this process specified 

16 as the optimal number of features for the present model as shown in Figure 46. This 

suggested that we could remove almost 50% of the training considered to be uninformative 

for the CatBoost classifier.  

In addition, the selected features by the RFE wrapper and their respective importance is 

depicted in Figure 47. Considering the RFE is a wrapper-type feature selection methodology, 

which might take any machine-learning model as core for evaluation, the importance scores 

shown below are fully dependent on the stochastic nature of the CatBoost algorithm. 

 

Figure 47 Categorical Boosting Classifier: Feature importance given by the RFE wrapper 

From a general perspective, we can observe how the previously machine-learning imputed 

logs DTS, NPHI, DTC, and RHOB are included as the 16 most informative features for a 

CatBoost model and how important and decisive the metadata features as FORMATION, 

GROUP, and LOCATION are as well.  

4.3.2.2 Hyper-parameter Tuning 

During this stage the training performance was compared with the open set performance 

which served as validation set for the current analysis. Initially, in order to prevent for under 

or overfitting the number of trees or iterations had to be set to a large value of 1000. Next, 
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the learning rate was investigated by incorporating cross validation, the open set as validation 

set, and a 25-round early stopping as callback to prevent for overfitting.  

Every change accomplish on the accuracy by changes on the learning rate was documented 

and compared on the open set (validation set) in order to select the best possible hyper-

parameter that generalizes well on unset objects. Figure 48 helps visualize how the train and 

test accuracies evolve by using different learning rates ranging from 0.001 to 0.5 where the 

optimal learning rate was found to be 0.1. From this figure, it is also visible how the model 

overfits after the learning rates exceed a value of 0.2. 

 

Figure 48 Categorical Boosting Classifier: Learning rate vs. accuracy 

Subsequently, considering the massive size of the training data and the limited RAM memory 

Google Colab provides, a constrained tree depth range from 2 up to 14 was tested and 

validated on the training and validation sets, respectively. As result of this procedure, a depth 

of 6 was selected as the most accurate based on the validation set performance. This process 

is depicted on Figure 49a where it is visible how the model starts overfitting as the tree depth 

exceeds values over 6 harming in this way the validation set accuracy. 

Besides, the coefficient at the L2 regularization term of the cost function was investigated 

within values equally spaced from 25 to 500 (Figure 49b). An L2 factor equal to 300 showed 

to give the best accuracy on the validation set and hence was selected for the final model. 
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Figure 49 Categorical Boosting Classifier: Tree depth vs. accuracy (left) and                                                                 

L2 regularization term vs. accuracy (right). 

Lastly, the tree growing policy and the number of splits for numerical features, also known 

as border count, parameters were also investigated; however, no other value than the default 

ones gave better results. These attempts are depicted on Figure 50. 

   

Figure 50 Categorical Boosting Classifier: Tree growing policy vs. accuracy (left) and                                           
Border count vs. accuracy (right). 

The border count parameter, which mainly depends on the processing unit and has a direct 

impact in the training speed on a GPU, was investigated in the range from 32 to 254 as 

recommended by the CatBoost webpage. The optimal parameter was kept on the default 

value of 128 as there was no other possible value able to beat its influence on the open set 

performance. Furthermore, even though the Lossguide and Depthwise tree growing policies 

performed reasonably on the open set, the default Symmetric tree growing policies still 
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provided a best performance. The optimal hyper-parameters found via the manual tuning 

process can be found enlisted on Table 25 below. 

Table 25 CatBoost classifier: Manually tuned hyper-parameters 

Hyper-parameter Optimal Value 

iterations 1000 

learning_rate 0.1 

depth 6 

l2_leaf_reg 300 

border_count 128 (default) 

grow_policy ‘Symmetric’ (default) 

 

Lastly, a new CatBoost classifier was fitted and tested based on the manually tuned hyper-

parameters, this provided prediction accuracies of 86, 80, and 81% on the training, open test, 

and hidden test sets, respectively. Table 26 represents the detailed classification reports for 

the training, open test, and hidden test data, where although the open test data was used as 

validation set while tuning hyper-parameters, the model was still able to generalize well and 

provide comparable results, and even slightly better results, on the hidden dataset. 

Table 26 Categorical Boosting Classifier: Classification reports for the training, open test, and hidden test 
datasets. 

 

CATEGORICAL GRADIENT BOOSTING CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.83 0.81 0.82 0.83 0.83 0.83 0.75 0.79 0.77 

Sandstone/Shale (1) 0.77 0.58 0.66 0.61 0.29 0.40 0.67 0.43 0.52 

Shale (2) 0.89 0.96 0.92 0.83 0.96 0.89 0.88 0.95 0.91 

Marl (3) 0.79 0.60 0.68 0.69 0.08 0.14 0.30 0.29 0.30 

Dolomite (4) 0.64 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.82 0.63 0.71 0.44 0.55 0.49 0.63 0.61 0.62 

Chalk (6) 0.88 0.85 0.87 0.91 0.02 0.03 0.70 0.44 0.54 

Halite (7) 0.98 0.99 0.98 - - - 0.99 1.00 0.99 

Anhydrite (8) 0.86 0.81 0.83 0.00 0.00 0.00 0.80 0.77 0.78 

Tuff (9) 0.78 0.79 0.79 0.75 0.71 0.73 0.59 0.56 0.57 

Coal (10) 0.86 0.45 0.59 0.87 0.45 0.60 0.83 0.61 0.71 

Basement (11) 0.00 0.00 0.00 - - - - - - 

Weighted Metric 0.85 0.86 0.85 0.78 0.80 0.77 0.80 0.81 0.80 

Accuracy Score 0.86 0.80 0.81 

Matrix Score -0.36 -0.52 -0.45 
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From the classification reports and confusions matrices we can observe that CatBoost was 

able to classify with medium and high accuracies most of the lithologies, buts it was unable 

to classify dolomite and anhydrite in particular. Besides, most of the misclassifications are 

predominant in tuff and dolomite which are misclassified as shaly-sandstone and shale.  

Finally, even though CatBoost handles much better but not perfectly data imbalance in an 

algorithm-level way, there is still a bias in the predictions towards the most frequent classes, 

yet CatBoost achieved better results than any stand-alone model previously analyzed. Hence, 

this less visible skew in the prediction distributions towards the most frequent classes while 

implementing ensemble models has been documented broadly in multiple classification 

problems, and seems to be worsened as the number of classes increases.  

 

Figure 51 Categorical Boosting Classifier: Classification confusion matrices for                                                                           
the open test set (left) and hidden test set (right). 

4.3.2.3 Categorical Gradient Boosting Interpretability 

Although ensemble machine-learning algorithms are some of the most robust methods used 

for classification tasks, their interpretation involves high complexity. This complexity gets 

higher as the number of classes to be predicted raise meaning that even the most popular 

feature importance techniques become inconsistent and unable to provide a clear significance 

for each predictor in relation to each class involved in the prediction task. In order to address 

this issue the open source SHAP python library was used to get an insight of the individual 
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contribution of each feature into the predictions in a consistent manner by taking into account 

feature missingness. 

Figure 52 briefly summarizes how important each feature is for every predicted lithology 

class in the form of a bar plot. Of course, this only helps to get a relative but accurate feature 

importance based on the training set but without representing each feature impact on the 

model’s output range and distribution. This SHAP values bar chat is not comparable to the 

recursive feature importance plot previously showed due to the difference in the way each is 

computed; however, they have a general agreement on the top most important features for 

the CatBoost machine-learning model. 

 

Figure 52 Categorical Boosting Classifier: SHAP values for each target lithology class 

In addition, we could analyze each feature influence on the model’s output for each lithology 

class, but for simplification for the current section, we only focus on some examples of the 

less accurately classified lithologies such as shaly-sandstone and dolomite, which were the 

ones the CatBoost model misclassified the most. Refer to Appendix I to find SHAP values 

impact for all lithology types. 
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Figure 53 Categorical Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values 
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting shale. 

Figure 53, describes how each feature influences the classification output for sandstones, 

shaly-sandstones, and shale, from here we can observe that for an instance to be classified as 

a shale or as a sandy-shale, the GR, NPHI, Y_LOC, X_LOC, GROUP, and FORMATION 

features play the most important role. Besides, we can appreciate that there is not a well-

defined boundary for most of the mentioned features to distinguish between sandstones from 

the shaly-sandstones, as there is to differentiate shale from the other two classes.  

For instance, a high GR is more likely to help the CatBoost to classify such instance as a 

shale as seen on Figure 53c, and a low-medium GR is needed to classify a data instance as 

sandstone as seen on Figure 53a. However, there is not such boundary properly defined to 

predict a data instance as a shaly-sandstone, since as we can observe on Figure 53b, either a 

high or medium value is needed to do so. Thus, a medium GR values easily create confusion 

while training the classifier to distinguish between sandstones and shaly-sandstones. In 

consequence, this lack of a well-defined feature boundary to distinguish these two classes are 

the reason why, the CatBoost classifier does better while distinguishing shale from other 

classes than when sorting out shaly-sandstones from sandstones (See Table 26). 

Moreover, following the same logic we could explain the CatBoost incapability to properly 

classify lithologies that share similar composition and properties such as the case of 

dolomites, limestone, and chalk . The poorest classification between these three classes was 

encountered on dolomites (See Table 26); fact that may be explained by the almost null 

presence of dolomites on the training set which could have made the CatBoost model unable 

to learn how to classify them in a considerable good manner (See Figure 14). 

a c b 
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4.3.3 Light Gradient Boosting 

Light Gradient Boosting algorithm, LightGBM for short, is a highly efficient gradient 

boosting decision tree that from a general perspective exclude a significant portion of the 

data instances with small gradients during the estimation of the information gain. This 

implies having an algorithm with almost the same efficiency but several times faster during 

the training process in comparison with conventional Gradient Boosting Decision Trees 

(GBDT) machine-learning models (Ke et al., 2017). 

The LightGBM base model performance we constructed initially by using the complete set 

of 30 features, did not consider any regularization term or technique, providing accuracies of 

84, 72, and 65% on the training, open test, and hidden test sets, respectively, which means 

that the model was unable to generalize its performance on unseen objects. Consequently, in 

the current section we attempted to optimize the LightGBM model’s performance by fist 

running a recursive feature elimination wrapper and then undergoing into a manual hyper-

parameter tuning process. In addition, it is worth to mention that LightBoost library offers 

compatibility with either CPUs or GPUs, which made possible optimizing the model’s hyper-

parameters manually. 

4.3.3.1 Recursive Feature Elimination 

A recursive feature elimination wrapper was executed in order to study the possibility of 

reducing the dataset magnitude without affecting the model performance. This process 

accompanied by a 10 stratified k-fold cross validation achieved to determine 24 as the 

optimal set of predictors that reached the highest training accuracy as shown on Figure 54. 

The features importance obtained by the RFE wrapper are depicted on Figure 55. As visible, 

the four features we improved by the ML imputation technique are still considered to be 

highly relevant for LightGBM as well as the additional features we created. However, 

surprisingly LightGBM provided a high importance to variables such as ROP and DRHO, 

same that have not been considered highly relevant in other machine-learning algorithms.    
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Figure 54 Light Boosting Classifier: Recursive feature elimination wrapper 

4.3.3.2 Hyper-parameter tuning 

While many other popular Gradient Boosting Decision Trees algorithms base their 

functionality on a depth-wise growing policy, LightGBM uses leaf-wise growing policy 

which normally help the algorithm to converge much faster; however, this might also help to 

overfit the model if wrong hyper-parameters are selected. Further, based on the extensive 

number of hyper-parameter handled by LightGBM, it became time demanding to tune the 

complete set of hyper-parameters by implementing either a random or a grid parameter search 

techniques. 

 

Figure 55 Light Boosting Classifier: Feature importance given by the RFE wrapper 
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Accordingly, a manual tuning process for the three most important regularization parameters 

was executed in order to establish the best set of values that outperform the default values. 

These highly influencing regularization hyper-parameters were evaluated individually and 

sequentially by inspecting the training and validation accuracies while the number of 

estimators was set to constant value of 1000 to prevent for overfitting or underfitting.  

 

Figure 56 Light Boosting Classifier: Learning rate vs. accuracy 

First, the learning rate was investigated in the range from 0.005 to 0.5 by the aid of the open 

test dataset as validation set, a 10 K-Fold cross validation technique on the training data, and 

25-round early stopping callback to stop the training process if no improvement on the 

multiclass probability objective function was obtained. This process is documented on Figure 

56 where the optimal learning rate was found to be 0.015; in addition, the figure also 

represents how the training and validation accuracies worsen dramatically as the learning rate 

exceeds a value of 0.1. In other words, training accuracy fall means that LightGBM was 

unable to converge and optimize the objective function at learning rates higher than 0.1.  

Second, maximum depth is a parameter that not only controls the distance or steps between 

the root node and the leaf node, but also has a high influence on the model training time. In 

this context, several maximum depths ranging from 2 to 30 were studied and validated on the 

training and validation data. Besides, the regularization factor L2 was also looked at in the 

range from 1 to 300 in order to prevent for overfitting. 
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Figure 57 Light Boosting Classifier: Maximum tree depth vs. accuracy (left) and Regularization lambda L2 vs. 
accuracy (right). 

As result, a maximum depth of 12 and regularization factor of 250 were selected as optimal 

values based on slight improvements on the validation accuracy which showed practically 

constant values along the studied parameter ranges as shown on Figure 57. In addition. It is 

important to note that although the last two studied parameters seemed not to have a high 

impact on the model accuracy, their definition would help LightGBM generalize better on 

unseen objects. 

Table 27 Light Boosting Classifier: Manually tuned hyper-parameters 

Hyper-parameter Optimal Value 

iterations 1000 

learning_rate 0.015 

max_depth 12 

Reg_lambda 250 

 

Finally, a new LigthGMB model was trained and test by using the optimal hyper-parameters 

found via the manual tuning process (See Table 27), obtaining classification accuracies of 

88, 79, and 80% on the training, open test, and hidden test sets, respectively.  

A detailed classification report for each predicted class and the confusion matrices 

normalized by the number of predictions per class are presented on Table 28and Figure 58, 

respectively. 
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Table 28 Light Boosting Classifier: Classification reports for the training, open test, and hidden test datasets. 

 
 

 
Figure 58 Light Boosting Classifier: Classification confusion matrices for                                                                           

the open test set (left) and hidden test set (right). 

LightGBM seems to achieve high-medium level accuracies when there is no conflict between 

similar lithologies. In other words, when predicting similar classes, LightGBM seems to have 

struggled and made many more classification mistakes, particularly for dolomite for which 

the model could not make any right prediction at all. In addition, all the predictions seemed 

LIGHT GRADIENT BOOSTING CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.85 0.84 0.85 0.82 0.82 0.82 0.72 0.83 0.77 

Sandstone/Shale (1) 0.80 0.64 0.71 0.55 0.31 0.40 0.65 0.38 0.48 

Shale (2) 0.91 0.97 0.94 0.83 0.95 0.89 0.87 0.95 0.91 

Marl (3) 0.84 0.76 0.80 0.63 0.15 0.24 0.22 0.21 0.21 

Dolomite (4) 0.66 0.16 0.26 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.86 0.68 0.76 0.49 0.54 0.51 0.61 0.52 0.56 

Chalk (6) 0.92 0.93 0.93 0.00 0.00 0.00 0.68 0.58 0.62 

Halite (7) 0.99 0.99 0.99 - - - 0.99 1.00 0.99 

Anhydrite (8) 0.93 0.91 0.92 1.00 0.06 0.12 0.90 0.10 0.18 

Tuff (9) 0.89 0.85 0.87 0.65 0.44 0.52 0.63 0.31 0.41 

Coal (10) 0.83 0.65 0.73 0.76 0.50 0.61 0.82 0.54 0.65 

Basement (11) 0.00 0.00 0.00 - - - - - - 

Weighted Metric 0.88 0.88 0.88 0.77 0.79 0.77 0.79 0.80 0.79 

Accuracy Score 0.88 0.79 0.80 

Matrix Score -0.304 -0.533 -0.477 
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to be consistent and comparable between the open and hidden test sets; however, there are 

still some minor differences on the accuracies attained on each dataset. This apparent 

difference in performance is more linked to the test sets’ labels distributions than to the model 

itself (See Figure 14). For instance, chalk is much better classified in the hidden test set than 

in the open test set, which is greatly due to the difference on the lithologies presence on each 

set from which the LightGBM model could have made either right or wrong prediction. 

4.3.3.3 Light Gradient Boosting Interpretability 

As discussed previously, understanding why a model makes certain predictions can be a 

crucial task in regression and classification problems, overall when accuracy and 

interpretability are discussed together considering that the best performing machine-learning 

algorithms are also the most complex ones such as the case of ensemble and deep learning 

models (Lundberg and Lee, 2017). To address this issue the open source python library 

SHAP, short for Shapley Additive exPlanations, was used to dig deeper into LightGBM 

interpretability. 

 

Figure 59 Light Boosting Classifier: SHAP values for each target lithology class 

Figure 59 depicts how important the metadata features such as GROUP, DEPTH, Y_LOC, 

Z_LOC, and Y_LOC are for classifying lithofacies while implementing LightGBM. In 
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addition, the SHAP impact values showed a great disagreement on some features considered 

as important when compared to the RFE wrapper feature importance previously obtained. 

However, the NPHI and RHOB machine-learning imputed features are still at the top of the 

most relevant features helping LightGBM perform well.  

   

Figure 60 Light Boosting Classifier: (a) SHAP values impact while predicting sandstone, (b) SHAP values impact while 

predicting shaly-sandstone, (c) SHAP values impact while predicting shale. 

Moreover, Figure 59 also reveals how sandstone, shaly-sandstone, and shale classifications 

are mainly impacted by the GR and NPHI logs, but when it comes to other similar lithologies 

such as limestone, dolomite, and chalk, LightGBM needed other additional features such as 

RHOB and the acoustic logs to take part of the classification task. 

In addition, by following the same logic we used to interpret CatBoost, the LightGBM 

classification performance for similar classes rely mainly on the GR, and NPHI readings 

along with some other metadata features, where medium-size features readings created great 

confusion while defining proper boundaries capable of separating these lithologies. For 

instance, GR and NPHI have quite well defined boundaries that help LightGBM distinguish 

between shale and sandstone, low GR and low NPHI for sandstones and high GR and high 

NPHI for shale. However, when these boundaries fade away as while classifying shaly-

sandstones, GR, and NPHI become less informative and less useful to accomplish the 

prediction task for this particular class as shown on Figure 60. Refer to Appendix J to find 

SHAP values impact for all lithology types. 

Therefore, the complexity that classifying similar lithologies involves along with the low 

amount of training samples available for some these classes such as dolomite leaded 

a c b 
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LightGBM to perform partially well in general, but poorly particularly while classifying 

shaly-sandstones and dolomites, where the lowest performances were found (See Table 28).  

4.3.4 Extreme Gradient Boosting 

Extreme Gradient Boosting, XGBoost in short, is a highly robust, powerful, efficient, 

scalable, and widely used Gradient Boosting Decision Trees machine-learning model 

consider to lead the forefront when it comes to classification tasks. XGBoost is an almost 

perfect blend of software and hardware capabilities designed to enhance the pre-existing 

boosting techniques in terms of training time and efficacy. It introduced two additional 

techniques that help the model prevent overfitting. The first technique known as columns or 

feature subsampling, originally part of random forest, which helps to train each independent 

learner more efficiently on a different subset of features. The second technique is known as 

shrinkage that, similarly to a learning rate in stochastic optimization, reduces the influence 

of each individual tree by scaling the output weights after each step of the tree boosting 

optimization (Chen and Guestrin, 2016). 

Even though during the initial part of section 5, we created a base XGBoost model that did 

not consider any regularization technique to prevent for under or overfitting, it was still able 

to achieve good and pseudo-balanced performance results when dealing with unseen objects, 

79 and 80% in the open test and hidden test sets, respectively. However, based on the great 

results XGBoost has obtained along several data science competitions for both classification 

and regression task, we believed that a proper hyper-parameter selection could improve its 

performance. 

Consequently, the current section presents a dimensionality reduction process through RFE 

accompanied by a manual hyper-parameter selection by taking advantage of the quick and 

parallelized learning process offered by the XGBoost’s compatibility with GPUs, same that 

allowed to process and exploit profoundly the complete datasets.  

4.3.4.1 Recursive Feature Elimination  

Initially, in order to be consistent with the previously analyzed boosting algorithms a costly 

Recursive Feature Elimination wrapper was executed to filter out the less informative 
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predictors that could lead to confusion during the training stage so that higher performances 

could be achieved in shorter training times. 

 

Figure 61 Extreme Boosting Classifier: Recursive feature elimination wrapper 

The top training accuracy seemed to go beyond 82% while only using 10 training features; 

however small improvements are achieved by including 18 more features (See Figure 61). 

For the context of the current model, which can be run on GPUs, we kept 28 as the optimal 

number of features in order to optimize as much a possible the classification accuracy.  

 

Figure 62 Extreme Boosting Classifier: Feature importance given by the RFE wrapper 

In addition, the apparent importance each feature has on XGBoost is described on Figure 62, 

which in comparison to LightBoost and CatBoost confers more weight to some of the 7 
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additional features created on Section 4, such as bulk modulus K, Shear modulus GM, 

Cluster, and Slowness ratio DT_R.  

4.3.4.2 Hyper-parameter Tuning  

A manual hyper-parameter tweaking was focus on the most relevant parameters consider to 

be the learning rate and the tree depth. Each parameter evaluated in the current section used 

a 10 stratified K-Fold cross validation, a 25-round early stopping callback, and the open set 

as validation set, while the number of trees was set to a value of 1000 in order to prevent 

underfitting the training data.  

 

Figure 63 Extreme Boosting Classifier: Learning rate vs. accuracy 

First, the learning rate was investigated in ranges from 0.001 to 0.65 by incorporating cross 

validation, the open test set as validation set, and a 25-round early stopping as callback to 

reduce overfitting. The results of the learning rate investigation are documented on Figure 

63 where the optimal learning rate according to model’s best performance on the open test 

data was found to be 0.35; however, as visible on the plot there are great fluctuations on the 

test accuracies while using learning rates from 0.20 to 0.35. This leaded us to think that any 

slight performance improvements on these sections may have been obtained by chance and 

not by the model’s capability to generalize accurately its performance. Thus, selecting a lees 

greedy and more stable learning rates between 0.01 and 0.25 might be safer and more 

accurate while dealing with unseen objects. 
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Based on the previous reasoning we opted to set the optimal learning rate to 0.075 before 

undergoing into the next hyper-parameter analysis. Next, an estimator depth range from 2 to 

15 was looked at and documented as shown in Figure 64 were XGBoost seemed to generalize 

better on the open test data when a tree depth equal to 4 is selected.  

 

Figure 64 Extreme Boosting Classifier: Tree depth vs. accuracy 

Finally, based on the optimal hyper-parameters found by the manual tuning process enlisted 

on Table 29, a new XGBoost model was fitted and tested obtaining training, open test, and 

hidden test accuracies of 88, 80, and 82%, respectively. 

Table 29 Extreme Boosting Classifier: Manually tuned hyper-parameters 

Hyper-parameter Optimal Value 

n_estimators 1000 

learning_rate 0.075 

max_depth 4 

reg_lambda 1500 

subsample 1 (default) 

colsample_bytree 1(default) 

 

A detailed prediction report separated by predicted classes and a confusion matric normalized 

by the number of prediction per class are evidenced on Table 30 and Figure 65 where the 

most remarkable observation is that XGBoost achieved better classification performance that 

the other Gradient Boosting tree based model especially for mixed mineral lithologies such 

as shaly-sandstones, limestone, and chalk. 
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Table 30 Extreme Boosting Classifier: Classification reports for the training, open test, and hidden test 
datasets 

 

Moreover, there is still a visible bias in the prediction obtained by XGBoost towards the 

majority classes although XGBoost has built-in functions to decrease the impact class 

imbalance has on classifications. Finally, even though XGBoost presented difficulties while 

properly differentiating between dolomite, chalk, and limestone, it was still able to classify 

with high accuracy sandy and shaly lithologies, which are normally the most relevant for oil 

and gas conventional reservoirs. These and more details will be discussed on the model 

comparison section of the current study. 

4.3.4.3 XGBoost Interpretability 

Decision trees-based machine-learning algorithms have been consider black-box models so 

far due to the complexity they involve; in consequence, endowing these kind of models with 

some interpretability is a major task before and after their execution. By doing this we might 

provide some insight into how a model could be improved while at the same time we could 

support a profound understanding on the process being modelled. SHAP values assign a 

unique additive feature importance for a particular prediction, which serves to understand 

how important and impactful a predictor is to a particular outcome obtained by the trained 

EXTREME GRADIENT BOOSTING CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.83 0.82 0.83 0.81 0.82 0.82 0.75 0.83 0.78 

Sandstone/Shale (1) 0.77 0.58 0.66 0.61 0.30 0.40 0.64 0.46 0.53 

Shale (2) 0.89 0.96 0.93 0.83 0.95 0.89 0.89 0.94 0.92 

Marl (3) 0.80 0.67 0.73 0.61 0.14 0.23 0.31 0.30 0.31 

Dolomite (4) 0.58 0.11 0.19 0.00 0.00 0.00 0.41 0.10 0.16 

Limestone (5) 0.83 0.65 0.73 0.45 0.51 0.47 0.73 0.59 0.66 

Chalk (6) 0.90 0.90 0.90 0.00 0.00 0.00 0.81 0.76 0.79 

Halite (7) 0.99 0.99 0.99 - - - 0.99 0.99 0.99 

Anhydrite (8) 0.91 0.88 0.90 1.00 0.04 0.08 0.73 0.65 0.69 

Tuff (9) 0.82 0.86 0.84 0.75 0.59 0.66 0.64 0.54 0.59 

Coal (10) 0.82 0.57 0.67 0.78 0.59 0.67 0.81 0.70 0.75 

Basement (11) 1.00 0.17 0.28 - - - - - - 

Weighted Metric 0.87 0.87 0.87 0.77 0.80 0.77 0.82 0.83 0.82 

Accuracy Score 0.87 0.80 0.83 

Matrix Score -0.352 -0.531 -0.433 
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model (Lundberg and Lee, 2017). The Shapley Additive exPlanations technique, SHAP, 

implemented on python provided the following color-bar chart in which we could explore 

the contribution of each feature to the model final prediction Figure 66. 

  

Figure 65 Extreme Boosting Classifier: Classification confusion matrices normalized by the number of 
predictions by class (a) Open test set, (b) Hidden test set. 

 

Figure 66 Extreme Boosting Classifier: SHAP values for each target lithology class 

Figure 66 briefly shows a relative but accurate manner of representing the feature impact on 

the XGBoost output, which in comparison to the recursive feature elimination process taken 

beforehand rested importance to the shear GM, bulk modulus GM, CALI, and Cluster 
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features, while providing even more importance to some of the machine-learning 

preprocessed features such as NPHI and RHOB.  

In addition, we could attempt to analyze the importance each feature had for the prediction 

for each particular lithology class, however, as a matter of simplicity, we will only take some 

representative examples of the classes that XGBoost misclassified the most such as the case 

of dolomite, shaly-sandstone, and marl. Refer to Appendix K to find SHAP values impact 

for all lithology types. 

 

Figure 67 Extreme Boosting Classifier: (a) SHAP values impact while predicting dolomite, (b) SHAP values 
impact while predicting shaly-sandstone, (c) SHAP values impact while predicting marl. 

As shown on Table 30, it seemed that dolomite is the hardest lithology to be predicted in 

almost any gradient boosting model including XGBoost, which we presume to be linked to 

the low amount of dolomite samples available for training, which accompanied by its 

inherent similarity to limestone and chalk could have made XGBoost unable to properly learn 

how to classify this lithology type. In addition, Figure 67a showed that the current XGBoost 

model only considers a low number of features like  MD_TVD ratio, slowness ratio DT_R, 

GROUP, and RHOB as the ones that positively contribute to classify a particular instance as 

dolomite. In other words, it means that the misclassification might have been caused by the 

lack of enough dolomite samples or by the poor relationship between the variables and the 

target in such specific case.  

Moreover, in the case of shaly-sandstone, which normally may be confused with either 

sandstones or shale, we can observe on Figure 67b how the instance Y_LOC impacts more 

that the GR reading which in generally speaking helped XGBoost to get better results while 

a c b 
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classifying such lithology class when compared to the results obtained by the other gradient 

boosting tree based algorithms. Hoverer, the unclear boundary on the GR to separate 

sandstone form shale and shaly-sandstones still plays an important role to properly 

distinguish between these lithologies. 

Finally, marl prediction relies mainly on metadata features such as GROUP, X_LOC, 

DEPTH_MD, and minorly on other reading such as RHOB, GR, NPHI, and SP to mention 

some (See Figure 67c). Apparently, the possible reasons why XGBoost struggled to classify 

marl, which is a mix of clay and calcium carbonate, was that it could easily be confused with 

shaly sediments or any type of limestone such as sandy-shale, shale, dolomite, limestone and 

chalk. In other words, marl encompasses a wide spectrum of analogous classes that hindered 

its proper classification. 

4.4 Deep Learning – Neural Network 

The methodology to analyze neural network performance on the lithofacies classification 

problems relies on three major steps including a one-hidden sequential fully connected base 

model, feature selection process, and finally a Bayesian hyper-parameter optimization by 

using scikit-optimize library skopt. 

4.4.1 One-hidden Layer Base Model 

A fully connected sequential model was constructed as a baseline to test how a neural 

network performs to classify lithofacies. The NN structure consisted of 1 input layer, 1 

hidden layer with 32 neurons, a RELU activation function, and 1 output layer using a softmax 

activation function. Besides, an Adam optimizer and a sparse categorical cross-entropy loss 

function to save memory and time were included into the base neural network. Finally, a 

standard learning rate of 0.01 was used to back propagate and minimize the loss function.  

Refer to Section 2 and Figure 13 to see how neural network weight optimization works, or 

to Nielsen, (2015) for detailed information about gradient descent and back propagation. The 

structure of the neural network is summarized on Figure 68. 
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Figure 68 Neural Network: Base model structure 

The neural network base model contains 1388 trainable parameters between weights and 

biases, 992 of which belong to the hidden layer and 396 to the output layer. It is important to 

note that the number of trainable parameter in any hidden or output later is equal to the sum 

of the number weights plus the number of biases. The number of weights is equal to the 

number of neurons times the number of predictors or features contained in the training data, 

and the number of biases corresponds to a one dimensional array equal to the number of 

neurons present in a particular layer (See Figure 69) 

 

Figure 69 Neural Network: Base model number of trainable parameters and output shape in each layer. 

In addition, prior to start the training stage a 40-epoch early stopping was created to monitor 

the training process while cross validating the training data to open test dataset, then the 

model was trained based on the original 30 features obtained after the data processing stage. 

The training evolution of the base neural network is shown in Figure 70. 

Consequently, the base model performed with accuracies of 76, 73, and 73% on the training, 

open test, and hidden test sets, respectively. Moreover, as visible on Figure 70 the base model 

showed a highly unstable learning process, and the loss function did not decrease either but 
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increase over each iteration. This seemed to be caused by a well-known problem know as 

exploding gradient problem, which could be defined as an error in the direction and the 

magnitude of the learning step while training a neural network, which consequently derives  

in an unstable gradient problem. 

 

Figure 70 Neural Network: 30-feature-based baseline model training history  

As consequence of the gradient descent problem, we decided to try out several approaches in 

order to stabilize the gradient descent. The main changes we included into the base model 

structure were, a random normal weight initialization, a zeros bias initialization, and a 

momentum based stochastic gradient descent optimizer SDG. Figure 71 documents a much 

more stable learning history and how the loss gets minimized after each iteration once these 

changes were effectuated. 

       

Figure 71 Neural Network:  Stochastic Gradient Descent-based neural network base model                                 
accuracy history (left) and loss function history (right). 

 The new stabilized base model based on a stochastic gradient descent SGD provided much 

better accuracies compared when an Adam optimizer was used of about 79, 75, and 74% on 
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the training, open test, and hidden test sets, respectively, and most relevantly it was able to 

make the loss function get minimized. It is important to note that the current base model was 

trained using the original 30 features we got after processing the data, so removing possible 

noisy predictors was a must before undergoing into hyper-parameters optimization. 

4.4.2 Feature Importance Investigation 

Our attempt to select the most relevant features for the neural network was based on a ranking 

of all the features according to the importance given by the extreme gradient boosting 

gradient model considering it provided the best performance up to this point. Then, we 

trained the SGD based model several times by adding a set of 5 new features at a time starting 

from the most important to the least ones. These models were trained for 25 epoch in order 

to select the set of features that outperforms the others while keeping constant all the 

parameters included into the neural network structure (See Figure 72). Refer to Figure 62 to 

see the order of the features included during the process. 

This simple, heuristic, time consuming, and probably not highly accurate methodology, 

leaded us opt for a group of 25 features considering that at the end of the 25th epoch the 

training and validation accuracies kept growing tendencies and the training and validation 

losses reached the lowest points and decreased similarly. 

4.4.3 Bayesian Optimization 

Normally, best parameters selection in any Machine and Deep Learning model is a time 

consuming and sometimes tedious and sometimes an impossible task. Even though there are 

some methodologies that might be useful such as Grid Parameter Search, it may be only be 

consider applicable while optimizing very few parameters, but in cases where the number of 

hyper-parameter is extended this procedures become costly in terms of computational power 

and running time.  

For instance, imagine we want to optimize 4 hyper-parameters with 10 possible values in 

each, this means we will have to run 10 to the power of 4 neural network model, which is a 

massive job and in consequence these type of approaches become less suitable when handling 

big datasets as in the current case. In the other hand, another common approach is a Random 

Parameter Search that is normally used to narrow down the possible ranges for the hyper-
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parameters being optimized; however, if the number of parameters becomes larger, the 

probability of getting the right combination of them gets very unlikely to get. 

  

  

  

Figure 72 Neural Network: Feature selection. 

Consequently, in the present study we propose a hyper-parameters optimization by using an 

open source library called Scikit-Optimize, which provides an implementation of a Bayesian 

optimization, where a surrogate model is used to model the search space in order to get an 

optimal set of hyper-parameters. 

The current section attempts to optimize the following hyper-parameters: 

1. Learning Rate 

2. Number of hidden layers 

3. Number of neuron per hidden layer 

4. Activation function 

Additionally, prior to commence the optimization function that will minimized the complex 

cost function based on weights and biases involve in the current lithology classification task, 

each parameter investigation range had to be defined. Table 31 summarizes each parameter’s 

range.  
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Table 31 Neural Network: Hyper-parameter search space used during the Bayesian optimization 

Hyper-parameter Low boundary High boundary 

Learning Rate 1e-4 1e-1 

Number of Hidden Layers 1 5 

Number of Neurons 64 512 

Activation Function ‘relu’ or ‘sigmoid’ 

 

In order to give a general understanding about what the Bayesian optimization attempts to 

do, Figure 73 represent the objective function and how skopt intends to find the optimal 

minimum. The red dotted line represents the true objective function that is surrounded by 

noise represented by the red shade; every red point represents a sample set of hyper-

parameters from the search space and then through a Gaussian process the space between 

samples is estimated, represented as the green line. In addition, the green shade represents 

the uncertainty on the approximation given by skopt that normally is caused to the lack of 

sufficient number of investigated point within that particular range.  

 

Figure 73 Neural Network: General optimization scheme. 

Then, in order to optimized the hyper-parameters through skopt we constructed hyper-

parameter optimization wrapper. It is important to note that the neural network in which the 

optimization will be based is the one based on the SGD optimizer, which previously seemed 

to be much more stable than the one obtained while implementing an Adam optimizer. In 

addition, we introduced a momentum into the optimizer in order to take advantage of the 

knowledge accumulated in previous steps to facilitate the neural network converge faster and 

much more easily. 

Lastly, the Bayesian optimization was executed which aimed to create a loop to evaluate each 

set of hyper-parameters until the 4th epoch while evaluating the training process with the open 
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test set to provide a much more generalized trained neural network. The Bayesian 

optimization loop was performed for 75 epochs or calls using different set of hyper-

parameters while updating continuously the best performing model accuracy in order 

compare it with subsequent trained neural networks on different set of hyper-parameters. 

Figure 74 documented the convergence process of the neural network after each iteration, 

which for the current stage was stated to be a negative accuracy in order to let skop handle 

the problem as a minimization exercise. Considering that the optimization process was 

executed for only 75 epoch due to the Google GPUs usage limitation, it is important to 

mention that the optimal value reached by the optimization is not necessarily the ultimate 

optimal value since there may be a better set of hyper-parameters capable to outperform the 

set selected by the optimizer as the number of epochs raises or the evaluated parameter ranges 

increase. 

.  

Figure 74 Neural Network: Bayesian optimization neural network convergence. 

Figure 74 describes the convergence process after each iteration, and as visible, the validation 

accuracy could reach values beyond 78%. In addition, as we mention before, the Bayesian 

optimization uses a surrogate model to model the expensive to evaluate the objective fiction. 

In other words, the surrogate model aims to provide interpretability to a complex model as 

the case of neural networks, and it is the surrogate model that is used to determine at which 

points the objective function will be evaluated at each iteration. 

Additionally, Figure 75 show in the diagonal a histogram for each of the evaluated hyper-

parameters, while the non-diagonal scatter plots show the spatial location of every evaluated 

point, where the darker points correspond to the initial evaluated points and the lighter ones 

reflect subsequent evaluations that tend to cluster around the optimal parameter marked as 
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red. Hence, the histograms’ major frequencies are allocated around the optimal hyper-

parameter, which implies the optimization performed correctly while looking for the minima. 

 

Figure 75 Neural Network: Hyper-parameter evaluation histograms. 

Furthermore, Figure 76 shows the partial dependences of the surrogate model for each 

evaluated hyper-parameter during the Bayesian optimization; in general, partial dependences 

describes the marginal impact of a particular couple hyper-parameter while holding the other 

parameters constant. Initially partial dependence plots is a method originally proposed to 

measure feature importance in gradient boosting based learning machines and were later 

introduced as a method to measure parameter importance while implementing neural 

networks.  

Moreover, form Figure 76, it is also noticeable that the optimal number of hidden layers 

oscillates between 1 to 3, smaller learning rates provide higher accuracies while using a relu 

activation function and larger number of hidden layers when using a sigmoid activation 

function, the model optimized better while a high number of hidden neurons was used. 

Further, it has to be noted that the partial dependence is merely based on the surrogate model 

which just provides an approximation of the objective function, and hence it might not be a 

good representation of the objective in places where less number of samples were evaluated 

an far from the location were the minima was found. 
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Figure 76 Neural Network: Hyper-parameter two-dimensional partial dependence. 

Finally, a new neural network was trained based on the hyper-parameters found by the 

optimizer after 75 iterations. Table 32 summarizes the optimal hyper-parameters. 

Table 32 Neural Network: Optimal hyper-parameters after running the optimization for 75 epochs. 

Hyper-parameter Best Value 

(After 75 epochs or calls) 

Learning Rate 0.1 

Number of Hidden Layers 2 

Number of Neurons 512 

Activation Function sigmoid 

 

Further, since the model was overfitting immediately after the 7th epoch, we introduced two 

dropout regularization layers before each hidden layer, this helped to train the network longer 

and reduce the loss function. The optimized model training accuracy and loss evolution is 

documented on Figure 77 where the training accuracy increases beyond 80% while the 

validation accuracy plateaus slightly above 77%.  

In the other hand, the loss function decreased smoothly for the training and validation until 

the 30th epoch, then the validation loss started to increase again. This implies that the 

optimized neural network is unable to provide test accuracies beyond 77% and from a 

certaing point it starts learning patterns only present and applicable to the training data. For 
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more details about the Bayesian, optimization refer to Appendix C where the complete 

optimization algorithm is described. 

 

Figure 77 Neural Network: Optimized model accuracy (left) and loss function (right) training history. 

A detailed classification report for each dataset is presented on Table 33 where the accuracy 

reached by the optimized neural network showed performances of 83, 77, and 77% on the 

training, open test, and hidden test datasets, respectively. 

Table 33 Neural Network: Classification reports for the training, open test, and hidden test datasets 

 

NEURAL NETWORK CLASSIFICATION REPORT 

Class 
Training Set Open Set Hidden Set 

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. 

Sandstone (0) 0.82 0.68 0.74 0.85 0.75 0.80 0.82 0.66 0.73 

Sandstone/Shale (1) 0.67 0.39 0.40 0.47 0.23 0.31 0.44 0.19 0.26 

Shale (2) 0.82 0.97 0.89 0.80 0.95 0.87 0.82 0.95 0.88 

Marl (3) 0.68 0.49 0.57 0.66 0.06 0.11 0.30 0.22 0.26 

Dolomite (4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Limestone (5) 0.76 0.60 0.67 0.44 0.48 0.46 0.55 0.60 0.57 

Chalk (6) 0.87 0.59 0.70 0.00 0.00 0.00 0.60 0.50 0.55 

Halite (7) 0.96 0.99 0.98 - - - 0.98 1.00 0.99 

Anhydrite (8) 0.86 0.80 0.83 1.00 0.07 0.13 0.97 0.38 0.54 

Tuff (9) 0.73 0.55 0.62 0.71 0.61 0.66 0.62 0.50 0.55 

Coal (10) 0.85 0.38 0.53 0.88 0.37 0.52 0.85 0.54 0.66 

Basement (11) 0.00 0.00 0.00 - - - - - - 

Weighted Metric 0.79 0.81 0.79 0.75 0.77 0.74 0.75 0.77 0.75 

Accuracy Score 0.81 0.77 0.77 

Matrix Score -0.511 -0.594 -0.563 
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Finally, for a better understanding of the neural network classification, the confusion matrices 

normalized by the total number of predictions per class are presented on Figure 78. The main 

observation from it is that the neural network achieved good accuracies on both test sets; 

however, its accuracy is dramatically affected while classifying carbonates, same that were 

greatly misclassified as the case of chalk, while dolomites were not even predicted at all. 

 

Figure 78 Neural Network classifier: Classification confusion matrices normalized by the number of 
predictions by class (a) Open test set, (b) Hidden test set. 
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Chapter 5 

5. PERFORMANCE COMPARISION 

Once the machine-learning models construction, hyper-parameter optimization, training, 

validation, and testing stages have been finished, we are ready to present and compare the 

machine-learning modes’ global performances while solving the lithofacies classification 

problem. Besides, it is important to consider that each model went into different feature 

selection and hyper-parameter optimization techniques; thus, not every model used the same 

number or set of features to provide their optimal results. 

First, Table 34 summarizes the classification scores all the optimized algorithms obtained on 

the hidden test set. From this table we can observe that the tree-based gradient boosting 

(GBDT) achieved greater results over neural networks, decision trees-based, and traditional 

stand-alone machine learning algorithms. In addition, GBDT do not only offer higher 

accuracy, precision, recall, f1-score classification scores, but also lower FORCE penalization 

scores. This infers that GBDT algorithms perform more consistently even from a 

petrophysicist perspective, which was the purpose the FORCE scoring matrix was built for. 

Table 34 Machine-learning models performance comparison: Hidden test set. 

Algorithm Acc Prec Rec F1 Score M. Score 

Extreme Boosting 82.52 81.54 82.52 81.74 -0.43 

Categorical Boosting 81.38 80.16 81.38 80.36 -0.45 

Light Boosting 80.39 79.01 80.39 79.00 -0.48 

Random Forest 79.82 77.29 79.82 77.56 -0.50 

Support Vector Machines 79.08 76.86 79.08 77.16 -0.54 

K-Nearest Neighbors 78.22 76.31 78.22 76.41 -0.56 

Neural Networks 77.41 74.61 77.41 74.99 -0.56 

Logistic Regression 75.06 71.44 75.06 72.42 -0.64 

Decision Tree 74.59 70.40 74.59 68.54 -0.67 

 

Moreover, whether we analyze in detail the total number of predictions each model produced 

per each lithology class, we can easily observe how for the most frequent classes in the 

training and hidden test sets such as shale, sandstone, shaly-sandstone, and limestone, every 

model achieved a quite balanced number of predictions with exemption of the decision tree 

DT, which was produced by the pruning process DT went through. However, if we see closer 
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into the number of wrong predictions every model provided, we could better see how tree-

based gradient boosting algorithms misclassify less instances as any of the most frequent 

lithologies.  

In addition, even though GBDT models perform better and present less bias towards the most 

frequent classes than the other models, there is still a visible tendency to misclassify other 

lithologies as shale, same that is particularly caused by the massive number of shale instances 

present in the training dataset, 61.6%. Besides, apart from sandstone, shale, and limestone, 

for which several models presented high classification accuracies, it is when it comes about 

shaly-sandstone classification where GBDT models distance themselves from the other 

models followed closely by K-Nearest Neighbors and Neural Networks (See Figure 79). 

 

Figure 79 Hidden test set prediction histograms: Total predictions count (left)                                                      
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone. 

Furthermore, while classifying the medium-frequency classes such as halite, marl, chalk, and 

tuff, which together represent only 5.7% of the complete training dataset, every model 

appeared to perform at high level while classifying halite although only very few halite 

instances are represent in the training dataset, 0.7%. Besides, chalk and tuff appeared to be 

under or over misclassified moderately by most of the models; however, GBDT models and 

Neural Network appeared to be able to capture and classify these lithologies in much more 

accurate manner although chalk and tuff may have been underrepresented on the training 

dataset, 0.9% and 1.3%, respectively. In the other hand, marl appeared to be highly 

misclassified as shale or limestone by all the models, which in not surprising considering that 

marl is a sedimentary rock composed mainly of clay and lime, which makes it hard to 

properly define a proper boundary between these three classes (See Figure 80). 
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Figure 80 Hidden test set prediction histograms: Total predictions count (left)                                                     
and wrong predictions counts (right) for halite, marl, chalk, and tuff. 

Likewise, the models provided great discrepancies while classifying the least frequent 

classes, which together represent only 0.5% of the training set. As visible, anhydrite is 

moderately well classified by RF, CAT, and XGB models, while the other models were not 

able to classify it correctly in more than 50% of the cases. Although coal represents only 

0.3% of the training set, this number of instances was enough to provide GBDT algorithms 

with the information needed to classify it correctly in about 80% of the cases. In contrast, 

dolomite was the lithology class every model struggle with the most, which from our 

perspective is directly linked and caused by the number of instances used for training and the 

similarity in wireline response that dolomite has when compared to other classes such as 

limestone, chalk and marl, which hinders its proper classification (See Figure 81). 

 

Figure 81 Hidden test set prediction histograms: Total predictions count (left)                                                       
and wrong predictions counts (right) for anhydrite, coal, and dolomite. 

Complementary, Table 35 summarizes the classification scores obtained by the optimized 

model on the open test set, same that clearly shows similar results to the ones achieved on 

the hidden test set (See Table 34). However, it is important to note that there are slight 

differences between the performances each model obtained on the open and hidden test sets 

caused mainly by the variability on the lithology distributions each test set holds. For 
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instance, the hidden set has many more halite data point than the open test set, and 

considering that most of the models perform similarly at high level while classifying this 

particular lithology, the prediction on the hidden set obtains much more improvement from 

this particular class on the global accuracy score. Something similar happens if we refer to 

the higher number of shaly-sandstone instances the open test set holds in comparison to the 

hidden test set, which considering the difficulties every model faces while predict this mixed-

based lithology, the global open test set accuracy gets much more affected by this distribution 

dissimilarity.  

Table 35 Machine-learning models performance comparison: Open test set. 

Algorithm Acc Prec Rec F1 Score M. Score 

Categorical Boosting 80.02 78.19 79.91 77.22 -0.52 

Extreme Boosting 80.00 77.31 79.61 77.06 -0.53 

Light Boosting 79.36 76.81 79.36 76.98 -0.53 

Random Forest 77.71 74.84 77.71 75.05 -0.58 

K-Nearest Neighbors 77.53 74.19 77.53 74.44 -0.59 

Neural Networks 77.34 74.58 77.34 74.32 -0.59 

Support Vector Machines 76.10 73.41 76.10 73.79 -0.62 

Decision Tree 74.55 69.67 74.55 67.14 -0.69 

Logistic Regression 71.54 67.77 71.54 69.11 -0.75 

 

Finally, following the same logic we used to analyze the results obtained on the hidden test 

set, the open test set results show similar nature in regard of the classification bias towards 

the majority classes in particularly to shale; besides, the classification becomes problematic 

when it comes to shaly-sandstone and marl, and deficient for dolomite. Refer to Appendix G 

to see the open test set classification histograms. 

Secondly, in regards of the implemented machine learning imputation procedure we included 

as an attempt to improve the classification performance, Table 36 summarized the impact the 

imputation had on the XGB model’s classification performance when compared to the results 

achieved without implementing such methodology. Additionally, it allows us to observe that 

the improvement we initially achieved on a logistic regression model (See Table 12) by 

implementing the proposed imputation technique remains similarly while implementing 

much more robust algorithms like GBDT models as in the case of XGB. However, it is 

necessary to mention that although the presented imputation technique provided clear 
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classification enhancements, it did not provide much larger improvements while using 

complex algorithms as we expected initially.  

Table 36 Feature augmentation and engineering impact on the best performing model - XGB. 

XGB MODEL Features 

Accuracy 

Training 

% 

Test 

% 

Hidden 

% 

Base Model Median Imputed (27) 83.0 78.0 76.0 

Tuned Model 2 
Median Imputed + 

Additional Features (30) 
89.7 79.4 80.1 

Tuned Model 4 
Augmented Features + 

Additional Features (28) 
87.0 80.0 82.5 

 

Moreover, different random imputation orders were initially tested to overcome the data 

sparsity effect on the lithology classification, all of which provided higher error 

measurements on the test sets when the four investigated wireline logs, DTC, DTS, NPHI, 

and RHOB were predicted and evaluated. In consequence, the ascending priority ranking 

approach we designed and proposed, based on our petrophysical experience about which 

specific wireline logs play the most important role for lithology interpretation purposes and 

the dataset completeness available for training, provided lower root mean squared errors and 

thus better results than any other random imputation order we tested. However, considering 

that, each model supports its performance on different sets of features, a much more 

consistent and robust approach could be to impute the wireline logs in a consistent order 

according to the treated model, data completeness, and prioritizing based on the feature 

importance provided by the model itself and petrophysical experience.  

Third, along with the promising and relative high results some machine-learning algorithms 

offer to solve the lithofacies classification problem, most of the models exhibited great 

difficulties to properly classify carbonates in particular marl, dolomite, and limestone as well 

as shaly-sandstone. However, the question that arises is until what extent these 

misclassifications could be consider acceptable from a geological perspective or if these 

misclassifications are actually mistaken. In consequence, now we present a closer view into 

some particular examples where this questioning provides interesting observations and 

answers. In consequence, in order to try to give an answer to that question it is necessary to 

put ourselves in perspective about which were the wells that the models struggle the most to 
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predict accurately. Table 37 presents a performance report per each well present on both the 

open and hidden test sets, from which we will initially concentrate most of our discussion on 

the particular wells that presented most of the difficulties to be accurately classified by the 

best performing model XGB. 

Table 37 Extreme gradient boosting model’s performance on each well present on                                            
the open test and hidden test sets – low performance wells highlighted. 

 

Based on the report presented above, we can easily observe that XGB struggled more to 

properly predict lithologies on the open set wells, reason why we achieved a slightly higher 

performance on the hidden set. Further, along with some mistakes most of the models have 

to classify carbonates and shaly-sandstones, there are also some ambiguities involved on the 

provided interpretation that must be noted in order to have a fair comparison between the 

performances achieved by machine learning and a human interpreter. For instance, the 

predictions that the top five best performing machine-learning models obtained on well 16/2-

7 that belongs to the open test set showed a general agreement on the main predicted lithology 

OPEN TEST SET 

Well Interpreter Cluster Acc Rec Prec F1 Score M. Score 

34/3-3 A EXP3 2 0.94 0.94 0.92 0.93 -0.16 

25/5-3 EXP1 0 0.88 0.88 0.86 0.86 -0.32 

29/3-1 EXP1 2 0.85 0.85 0.84 0.84 -0.40 

34/10-16 R EXP1 2 0.85 0.85 0.83 0.83 -0.38 

25/10-10 EXP1 0 0.83 0.83 0.82 0.81 -0.54 

35/6-2 S EXP2 1 0.74 0.74 0.69 0.70 -0.69 

34/6-1 S EXP3 2 0.72 0.72 0.74 0.72 -0.67 

25/11-24 EXP1 0 0.70 0.70 0.70 0.60 -0.99 

35/9-8 EXP2 1 0.66 0.66 0.63 0.63 -0.85 

15/9-14 EXP1 0 0.57 0.57 0.55 0.46 -1.02 

HIDDEN TEST SET 

Well Interpreter Cluster Acc Rec Prec F1 Score M. Score 

34/3-2 S IG2 2 0.90 0.90 0.85 0.87 -0.27 

31/2-10 EXP1 1 0.89 0.89 0.90 0.89 -0.31 

35/11-5 EXP2 1 0.86 0.86 0.84 0.84 -0.34 

31/2-21 S IG2 1 0.83 0.83 0.82 0.83 -0.41 

16/7-6 EXP3 0 0.83 0.83 0.76 0.79 -0.40 

35/9-7 EXP2 1 0.82 0.82 0.77 0.79 -0.48 

15/9-23 EXP3 0 0.82 0.82 0.81 0.77 -0.42 

16/2-7 EXP1 0 0.81 0.81 0.80 0.80 -0.50 

25/10-9 EXP1 0 0.79 0.79 0.75 0.76 -0.56 

17/4-1 EXP1 0 0.61 0.61 0.71 0.63 -0.90 
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trends (Figure 82); however, there are some particular intervals where there is a conflict 

between the predicted lithologies and the interpretation given by the data provider. One of 

these intervals goes from 1500 to 1950 meters (interval 1), where most of the models seem 

to have misclassified marl as limestone or shale. However, if we consider the inherent nature 

of marl, which is a mixed rock composed of clay and lime, we could say that making these 

misclassifications is totally permissible not only for a machine learning model but even for 

an experienced petrophysicist. 

  

Figure 82 Prediction analysis well 16/2-7 

Additionally, there is another conflictive, less extensive, but much more interesting interval 

in the same well, 16/2-7, which goes from 2285 to 2315 meters (interval 2), showed that even 

though the interpreter characterized it as a limestone interval, none of the top performing 

models was able to classify that interval as limestone but as sandstone. However, when core 

images were studied, they revealed that the section actually consists of conglomerate and 

breccia (See Figure 83), same that although are strongly correlated to sandstone, they are 

1 

2 



5|PERFORMANCE COMPARISION 

 
 

108 
 

technically different from each other due to the grains size they compromise (NPD, 2021). 

Thus, it implies that the machine learning models classified this interval more accurately, 

which is something that has to be considered as advantage that machine learning provides 

against an standard human interpretation. 

 

Figure 83 Well 16/2-7, core taken within interval from 2285 to 2315 meters. 

In addition, there is a second interesting observation that comes from well 15/9-14 belonging 

to the open test set, in which most of the models provided high quality prediction with regards 

of sandstone and limestone lithotypes; however, there is a visible bias to over classify shale 

as we discussed beforehand. Initially, it appeared that the shaly-sandstone lithology 

identification was highly affected by the lack of the shear sonic log, which we attempted to 

overcome by implementing machine learning for missing values imputation. However, once 

we studied the feature importance that the GBDT models provided for that specific lithotype, 

we observed that DTS just appeared as the 11th position of the features that contribute the 

most to its proper identification (Figure 67b). In consequence, the poor ability every model 

has to accurately map shaly-sandstone seemed to be linked to the way how the data was 

normalized before training the classifiers, specially the GR log.  

In other words, if we have a look to the way the gamma ray log responds according to the 

well location (See Figure 85), we can presume that when we standardize the data as a unique 

dataset, we are likely to lose sensitivity to distinguish between shaly-sandstones, and shale 

since during interpretation the base line for the last is normally defined according to the 

subjectivity of the interpreter, which in turns depends on the well’s geological location. 

Therefore, based on Table 37, where most of the problematic wells belong to location cluster 

zero which in turns are linked mostly to wrong shaly-sandstone predictions, we could say 

that there is a great effect on the models’ ability to map such lithology due to the interpreter’s 
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subjectivity, which is generally introduced while defining the shale baseline during well log 

interpretation. 

 
 

Figure 84 Prediction analysis well 15/9-14 

 

Figure 85 Gamma ray log response according to well location 

Moreover, some other observations are visible on Figure 89 from which we could note that 

most of the models tend to misclassify chalk as either limestone or marl, which as stated 

above could be considered permissible mistakes. However, although GBDT models tend to 

confuse limestone with marl and dolomite similarly as the other models, they offer a much 
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more robust ability to classify carbonates when they are surrounded by different types of 

lithologies. Refer to Appendix F to visualize the classification results on the open and hidden 

datasets. 

In fact, GBDT algorithms are able to provide a detail-oriented performance due to their 

capability to map sandstone, tuff, anhydrite, coal, and most importantly carbonate thin beds, 

last of which may be of particular importance in unconventional reservoirs considering that 

those laminations play a crucial role on hydro-fracturing acting as limitations for fracture 

propagation and consequently reservoir productivity.  

On the other hand, tempted by the idea that interpreters’ subjectivity could also affect in great 

degree the performance of learning machines, a sensitivity analysis was executed by 

implementing the best performing and fastest model XGB when different sets of data coming 

from different interpreters were used for training and testing purposes. 

 

Figure 86 Prediction analysis wells 34/10-16R (a), 35/6-2S (b), 35/9-8 (c), 17/4-1 (d), and 31/2-21S (e). 

The information regarding interpreters was provided by Peter Bormann, the FORCE 

competition organizer, and Table 38 records how XGB performs whether we vary the 

datasets we used. Additionally, it is necessary to bring into the discussion the fact that the 

FORCE datasets were provided by two different sources, 83 wells from Explocowd and 15 



5|PERFORMANCE COMPARISION 

 
 

111 
 

from IG2; besides, Explocrowd’s data was interpreted by three different groups of 

interpreters which for practical purposes we will call EXP1, EXP2, and EXP3 from now on.  

Table 38 Interpreter subjectivity analysis. An XGB classifier was trained several times by  keeping a particular 
set of wells from a specific interpreter and then tested on the wells provided by other interpreters on the 

open and hidden test datasets. 

Accuracy % obtained by XGB on wells provided by different interpreters 

Training 

dataset 

Open test set Hidden test set 

EXP1 
(6 wells) 

EXP2 
(2 wells) 

EXP3 
(2 wells) 

IG2 
(0 wells) 

EXP1 
(4 wells) 

EXP2 
(2 wells) 

EXP3 
(2 wells) 

IG2 
(2 wells) 

EXP1 
(49 wells) 

88.0 
78.0 29.0 89.0 - 78.0 68.0 75.0 88.0 

EXP2 
(23 wells) 

91.0 
60.0 70 85.0 - 51.0 77.0 69.0 78.0 

EXP3 
(11 wells) 

89.0 
54.0 37.0 73.0 - 49.0 58.0 74.0 69.0 

IG2 
(11 wells) 

97.0 
60.0 32.0 82.0 - 42.0 65.0 70.0 81.0 

 

High (accuracy >80) Medium (60<accuracy<80) Low (accuracy<60) 

   

 

The first group of interpreters from Explocrowd provided 49 wells, the second one 23 wells, 

and the third one 11 wells. The idea of the sensitivity analysis consisted on training XGB on 

a set of wells belonging to a particular interpreter and then testing the classifier’s performance 

on the other interpreter’s wells from the open and hidden test datasets, so we could quantify 

the interpreter’s subjectivity influence on the performance and the possible dissimilarities 

between interpretations. 

The extreme gradient boosting model was trained for 100 epochs without including any 

regularization technique, meaning that most likely it overfitted the training data in every case, 

however, by comparing how much the training and test accuracies differ from each other is 

in general the only way how we could understand any possible inconsistency between 

interpretations given massive size of the datasets. 

Table 38 summarizes the results we obtained, from which we can visualize that when the 

model is trained based on the wells interpreted by either EXP1 or EXP2, the model was able 

to provide medium-high accuracies on the wells provided by other interpreters, meaning that 



5|PERFORMANCE COMPARISION 

 
 

112 
 

there is a good consistency between the them and the others’ interpretations. However, 

XGB’s performance presents an important and visible drop on the accuracies when only the 

wells interpreted by EXP3 are used during training, providing only medium to high results 

when they are tested on the test wells provided by the same interpreter. This suggests that 

excluding the wells interpreted by EXP3 from the training set may improve the global 

classification performance. 

In addition, if we look Table 38 in the vertical direction we can also observe how the classifier 

in some cases was unable to perform at high level  when it was tested on the wells interpreted 

by EXP2 and EXP1 regardless of the data used for training the model. However, it does not 

mean that all the wells provided by EXP2 or EXP1 went into difficulties to be precisely 

classified, but it does mean that when the wells contain an important amount of mixed 

sediments, especially shaly-sandstone, the model finds great difficulties to do a proper work 

as in the case for wells 34/6-1 S, 25/11-24, and 15/9-14. Therefore, this analysis reinforces our 

first conjecture regarding the role the interpreters’ subjectivity plays into the classifier 

performance in special when it comes to properly classify shaly-sandstones. 
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Chapter 6 

6. CONCLUSIONS, AND FUTURE ENHACEMENTS 

6.1 Conclusions 

 In the current study, the performances of stand-alone standard classifiers, random 

forest (RF), generalized boosting machines (GBM), and neural networks (NN) were 

compared for the lithofacies classification problem by using the FORCE competition 

dataset. Generally, the highest performances were given by decision trees-based 

generalized boosting machines, which accomplished to outperform standalone 

classifiers, standard ensemble models, and even much more complex structures such 

as neural networks. GMB produced better performances mainly while classifying the 

minority and mineral-mixed lithofacies, meaning that they are able to provide a much 

more detail-driven lithology classification. 

 

 Generalized boosting machines (GBM) proved to be highly robust, powerful, 

efficient, and overall scalable machine learning algorithms perfectly suitable to deal 

with large, imbalance, and sparse datasets. In addition, their compatibility with either 

CPUs or GPUs as opposed to the other studied algorithms makes it possible 

optimizing the model hyper-parameters manually in a matter of minutes. Hence, 

GBM are almost a perfect blend of software and hardware capabilities designed to 

enhance the pre-existing boosting techniques in terms of training time and efficacy. 

 

 By comparing the performances achieved by the base line models and the optimized 

ones, we could categorically conclude that the efficiency of any leaning machine is 

able to provide depends importantly upon a proper and efficient feature and hyper-

parameter selection along with other important processing steps such outlier 

identification, data standardization, feature augmentation, and feature engineering. In 

addition, including an extensive cross validation technique while training the learning 
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machines provided the best results as the model avoids overfitting the training data 

and thus improves generalization.  

 

 The implemented machine learning-based feature augmentation on the DTS, NPHI, 

RHOB, and DTC logs along with the addition of new features proved to provide a 

small but still important enhancement on the classification, most remarkably on the 

hidden test dataset rather than in the open test dataset, difference that is originated 

mainly due to the dissimilarity on lithologies distributions each test dataset holds. In 

addition, in regards of the feature augmentation process, there is a genuine need to 

study the proposed approach in a much more detailed manner in order to measure the 

uncertainty that might be introduced into the datasets by implementing machine-

learning-based imputation techniques in highly sparse datasets, especially when 

dealing with big and continuous missing value gaps. 

 

 After testing several approaches to properly clean and process the datasets, improve 

the quality of the data by machine learning implementation, define, optimize, train, 

and test several an diverse machine leaning algorithms, and post-process the 

predictions by using the predicted class probabilities without having further 

improvements beyond the boundary of 82.5% of accuracy, we could conclude that 

the missed accuracy in about 17.5% derives from the uncertain nature of the datasets 

themselves. This uncertainty seems principally to come from the subjectivity that 

petrophysicists include when interpreting wireline logs, which in turns depends upon 

the geological location that is being studied and the expertise of the interpreter. 

Therefore, having a large but more importantly consistent dataset are the two most 

relevant factors that could guarantee to obtain the best possible outcome while 

implementing machine learning to classify lithofacies. 

 

 In general, all the models faced more difficulties to accurately classify shaly-

sandstone, marl, and dolomite. The first two seemed to be linked to the interpretation 

subjectivity as they are normally misclassifies as shale, which is not surprising given 

their mineralogical composition, while the third one seems to be linked to the low 
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number of data instances available for training. In fact, even though the top 

performing generalized boosting machine algorithm, XGB, provided the highest 

accuracy on unseen objects, individually speaking there were wells in which XGB 

performed at higher level of precision when compared to the global accuracy of 

82.5%, reaching values up to 94%. However, there were also wells that seemed to be 

complicated for XGB to be properly classified reaching individual accuracies up to 

57%, which in turns worsened the global accuracy that could have been achieved. 

Consequently, considering the poor accuracy in some particular wells seems to be 

linked mainly to shale and shaly-sandstone differentiation, further analysis is required 

in order to better understand and overcome such challenge. 

6.2 Future enhancements 

As extensively discussed in the current study, there is a great need to find a better way to 

separate shaly-sandstone and carbonates adjacent lithofacies. One initial way to overcome 

the current challenge could be by normalizing the datasets based on their geological location, 

especially the GR log, so that we preserve every interpreter’s subjectivity without being 

affected by the others’ interpretations during data normalization. Besides, the same logic 

could be followed once some other additional features are created such as volume of clay or 

shale index logs. Second, a stacking or voting machine learning model could be constructed 

base the other model’s predictions in order to have an agreement between each other and thus 

incorporate the predictions at which the other model may be better at. Third, incorporate 

inherent geological spatial continuity by developing either variograms, correlograms, or 

coefficient of variations of the most relevant wireline logs so that we can quantify 

heterogeneity and connect the prediction along the y-axis, aiming in this way to correct wrong 

isolated interpretations. Fourth, quality check the petrophysical interpretations hold by the 

datasets especially in wells with the lowest accuracies so we can base future analysis in a 

much more consistent set of data. Finally, trying novel techniques in machine-learning 

specially designed to identify anomalies within the data such as wavelet transformation, 

which normally intends to capture data variations at different scales by extracting both 

spectral and temporal information from wireline logs may help capture the major lithology 

trend in the subsurface but also the minor details within it.  
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8. APPENDIXES 

Every python appendix included or mentioned in the current section could also be found 

open sourced in digital format on the following GitHub repository: 

 https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-

Geosciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
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8.1 Appendix A – Additional utility functions Python Code 

8.1.1 Plotting Functionalities (plotting.py) 

 

 



8|APPENDIXES 

 
 

122 
 

 

 



8|APPENDIXES 

 
 

123 
 

 

 



8|APPENDIXES 

 
 

124 
 

 

 
 



8|APPENDIXES 

 
 

125 
 

8.1.2 Confusion Matrix and Penalty Matrix Score (additional_functions.py) 
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8.1.3 Data formatting (data_formating.py) 
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8.1.4 Data Pre-processing (preprocessing.py) 
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8.1.5 Data machine-learning augmentation (augmentation.py) 
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8.1.6 Data Normalization (input_norm.py) 
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8.2 Appendix B – Machine and Deep Learning Models Python Code 

8.2.1 Logistic Regression (LR_model.py) 
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8.2.2 K-Nearest Neighbors (KNN_model.py) 
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8.2.3 Support Vector Machines (SVM_model.py) 
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8.2.4 Decision Tree (DT_model.py) 

 

 



8|APPENDIXES 

 
 

149 
 

 

 

8.2.5 Random Forest (RF_model.py) 
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8.2.6 Categorical Gradient Boosting (CatBoost_model.py) 
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8.2.7 Extreme Gradient Boosting (XGB_model.py) 
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8.2.8 Neural Network (NN_model.py) 
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8.3 Appendix C – Neural network Bayesian parameter optimization (Bayes_opt.py) 
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8.4 Appendix D – Execution Python Code (Execution.py) 

The current appendix shows how to set the environment necessary to run the functionalities 

and models included in appendices A and B. In addition, the scrip includes the sequential 

steps that must be taken in order to call each functionality needed and visualize each model’s 

lithology prediction. Moreover, due to the extensiveness and repetitiveness involved in the 

process of calling each machine-learning model running function, only the best performing 

model, XGB, is included as an example for the present appendix.  

To see the complete Execution.py file, please refer to the GitHub repository direction stated 

at the beginning of section 8.  
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** Only one well displayed for visualization. 
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** Only one well displayed for feature augmentation visualization. 
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** Only well 15/9-23 belonging to the hidden test set is used for results visualization. Refer 

to Execution.ipynb to visualize the lithofacies prediction obtained by XGB for every well 

included in the open test and hidden test sets. 
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8.5 Appendix E – Experimentation Python code (Experimentation.ipynb) 

Considering the extensiveness of the experimentation code, it was not included in the current 

endorsement. However, if any detail regarding, statistical visualization, feature selection, and 

hyper-parameter tuning that leaded to the final machine-learning models included in the 

present study is needed, this file as well as the other python appendices included  in the 

current study can be found open sourced on GitHub. 

Experimentation.ipynb GitHub location: 

 https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-

Geosciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
https://github.com/JohnMasapantaPozo/Machine-and-Deep-Learning-Applied-to-Geosciences
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8.6 Appendix F – Lithology prediction results 

8.6.1 Hidden test dataset 

Well 15/9-23 Well 16/2-7 

 

Well 16/7-6 Well 17/4-1 
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Well 25/10-9 Well 31/2-10 

 

Well 31/2-21-S Well 34/3-2S 
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Well 35/11-5 Well 35/9-7 

 

8.6.2 Open test dataset 

Well 15/9-4 Well 25/10-10 
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Well 25/11-24 Well 25/5-3 

 

 

 
 
 
 

Well 29/3-1 Well 34/10-16R 
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Well 34/3-3A Well 34/6-1S 

Well 34/3-3A Well 34/6-1S 
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8.7 Appendix G – Open set classification histograms 

 

Figure 87 Open test set prediction histograms: Total predictions count (left)                                                         
and wrong predictions counts (right) for shale, sandstone, shaly-sandstone, and limestone. 

 

Figure 88 Open test set prediction histograms: Total predictions count (left)                                                                              
and wrong predictions counts (right) for marl, tuff, coal, and chalk. 

 

Figure 89 Open test set prediction histograms: Total predictions count (left)                                                                             
and wrong predictions counts (right) for dolomite, anhydrite, and halite. 
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8.8 Appendix H – FORCE penalty matrix 

 

Figure 90 Appendix H - FORCE penalty matrix  NPD, (2021) 
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8.9 Appendix I – Categorical gradient boosting explanation 

 

 

 

 

Figure 91 Appendix I - Categorical Boosting Classifier: SHAP values impact on each lithology prediction. 
Sandstone (0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), 

anhydrite (8), tuff (9), coal (10), basement (11). Figures ordered from top left to right down. 
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8.10 Appendix J – Light gradient boosting explanation  

   

   

   

   

Figure 92 Appendix J - Light Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone 
(0), shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff 

(9), coal (10), basement (11). Figures ordered from top left to right down. 
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8.11 Appendix K – Extreme gradient boosting explanation  

 

   

   

   

Figure 93 Appendix K - Extreme Boosting Classifier: SHAP values impact on each lithology prediction. Sandstone (0), 
shale-sandstone (1), shale (2), marl (3), dolomite (4), limestone (5), chalk (6), halite (7), anhydrite (8), tuff (9), coal (10), 

basement (11). Figures ordered from top left to right down. 


