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Abstract 

The oil and gas sector in the North Sea is mature and consists primarily of brownfields that have 

passed their peak production or are close to the end of their lives. Many of these fields will have 

to be abandoned in the upcoming decade. The decision to abandon an oil and gas field carries a 

considerable cost, in addition to ending the future revenue stream of the field. If a field is 

abandoned before the optimal time, value will be lost as a result of revenue and profit losses. 

Conversely, if it is abandoned too late, value will be destroyed as a result of carrying higher costs 

than revenues, i.e., as a result of negative profits. Therefore, the timing of the abandonment 

decision is critical as it can either destroy or create significant value. Adding to the overall 

challenge of identifying the optimal abandonment time is the uncertainty associated with many of 

the value-determining parameters, such as price, cost, and production. The best method to 

identify the optimal time is to apply a consistent decision analytic approach, which includes 

uncertainties and the operator’s flexibility in choosing when to initiate the abandonment.   

In this thesis we develop a case study representative of an oil field with declining production. We 

then implement three different approaches to estimate value and determine the optimal 

abandonment time. The three methods are: (i) a negative cashflow approach that abandons the 

field at the first negative cashflow, (ii) a greedy optimization approach that abandons the field 

after an already determined set waiting time criterion is fulfilled, and (iii) a real option valuation 

method that abandons the field when the economic outlook becomes unfavorable. The results 

were compared and evaluated, after which the greedy and real option valuation approaches were 

further assessed using sensitivity analysis.  

We conclude that value is almost always gained by not abandoning the field at the first negative 

cashflow. Using a waiting criterion for the abandonment decision significantly improved the 

timing, resulting in a higher net present value. The best method for our case is real option 

valuation, which creates value through the combined effects of uncertainty and flexibility. 
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1 Introduction 

The oil and gas sectors of Norway and the UK currently face the same challenge, as numerous 

mature fields will need to be abandoned in the coming decade. This will cause the stakeholders of 

the fields to incur large costs, as wells need to be plugged and sites restored to their original 

condition. The timing of the decision has large effects on the fields net present value (NPV) as 

abandoning to early will result in lost revenues and too late by accumulating costs that exceeds 

the revenues. Hence, it is important to create models that can capture the value-creating potential 

from dynamical abandonment decision combined with uncertainty. 

This thesis first builds a case study of an oil and gas field with similar characteristics to those of 

Veslefrikk, located on the Norwegian Continental Shelf (NCS). This late-life field is facing 

declining production. The uncertain variables in the case study are the variable operative 

expenses and oil price, which were calibrated with historical data to determine prospective ranges 

and volatility. We then used three methods to determine the best time for abandonment. The first 

method is the first negative cashflow approach (FNC), whereby the field is abandoned after the 

first month of negative cashflow. The second is a greedy optimization approach (GO), in which 

abandonment follows the fulfillment of a predetermined continuous negative cashflow criterion. 

The last method is a real option valuation (ROV) implemented using the least-squares Monte 

Carlo (LSM) algorithm that abandons the field when the economic outlook turns unfavorable. 

The results of the methods were compared, and a sensitivity analysis was conducted between the 

GO and LSM to assess the robustness of these results. 

We conclude that FNC is the worst strategy to find the optimal time of abandonment and 

maximize the net present value (NPV) of the field, because it does not capture possible values 

created by postponing the abandonment cost after the first negative cashflow has occur (time-

value-money) or the possibility that the field could become cash-flow positive in the future. 

While the GO approach significantly improves the timing and the expected NPV, it does not 

reflect realistic decision-making, as it fails to consider the change in economic outlook of the 

field with time. The optimal method is the ROV, which mimics how decisions are really made. 

Implemented using the LSM method, this last approach quantifies uncertainties in future values 

from current information (taken at any time) to determine if a given time point is a favorable time 

to execute the abandonment. The sensitivity analysis of the LSM method indicates that this 
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approach yields a $1.02-2.55 Million (MM) higher NPV than that from the GO approach and a 

$38.67 MM improvement over the FNC method in the base case. 

1.1 Veslefrikk 

The model is based on historical and estimated data representing Veslefrikk. Located in the 

northern part of the North Sea, Veslefrikk was discovered in 1981 (The NPD, 2021). Production 

started in late 1989 using a hybrid solution consisting of a fixed platform connected to a 

semisubmersible facility. The platform supports the wellheads and drilling system, while the 

semisubmersible accommodates a processing plant and living quarters. The field is connected to 

pipelines for oil and gas transportation and uses water-alternating-gas injection as pressure 

support for the reservoir. The production rate has been in decline for several years, and the field 

is currently producing without pressure support and will continue to do so until it is abandoned. 

The field decommissioning plan was submitted to the relevant authorities in autumn 2020. One of 

the field’s stakeholders reported that a plug and abandonment campaign was launched for its 24 

wells in January 2021 (Equinor, 2021). The report further states that the plan is to tow away the 

semisubmersible in autumn 2021 and remove the fixed platform in 2025/26. 
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2 Literature review 

Fields that have been brought to production can produce for decades, and the life of mature fields 

is continually extended through enhanced oil recovery. Moreover, abandonment decisions do not 

yield immediate returns, unlike areas such as oil recovery enhancement, drilling, and exploration. 

Consequently, there has been limited research on the topic, resulting in a scarcity of published 

papers. 

In 2004, Begg, Bratvold, and Campbell (2004) conducted a case study on abandonment timing. 

Having stated that one common method is to abandon fields at first negative cashflow, they later 

confirmed that there is value in not automatically doing so. They supported their claim by 

introducing a criterion that the field requires continuous negative cashflow for a predetermined 

amount of time before it is abandoned. In most scenarios, this results in an increase in NPV, as 

the discounting factor of the abandonment cost offsets small negative cashflows, and the field has 

the potential to start generating positive cashflows. 

The use of ROV approaches has since refined the methods for determining the time of 

abandonment. Jafarizadeh and Bratvold (2012) applied the LSM to solve an ROV formulation of 

the abandonment problem; they concluded that applying ROV to determine the optimal 

abandonment time yields a greater increase in value compared to Begg et al.’s (2004) approach.  
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3 Theory 

This chapter discusses the theory behind the models, methods, and programs used in this thesis 

3.1 Python 

The models used in this work were implemented with Python, an open-source programming 

language. As one of the most popular languages (Jetbrains, 2020), Python offers a wide variety of 

modules, which can be explained as tools that help facilitate coding, graphical interfacing, 

connecting to databases, and other functions. 

3.2 Net present value 

The time-value-of-money concept reflects the fact that money has a higher value today than 

compared to the same amount in the future. This is because money today can be invested and 

start to yield returns immediately. In consideration of this difference, future cashflow is 

discounted back to today’s value through the NPV function as follows:  

 
𝑁𝑃𝑉 = ∑

𝐶𝑓𝑡
(1 + 𝑖)𝑡

𝑛

𝑡=1

 
 

(1) 

𝐶𝑓𝑡 = Cashflow from period 𝑡 

𝑖 = Discount rate  
𝑡 = Number of time periods 

The discount rate is set by the company and reflects its expected return on capital. This rate 

varies depending on company and sector. NPD used a rate between 4 to 7% when estimating oil 

and gas exploration profitability on NCS (NPD, 2020). As our field is located on the NCS was a 

rate of 7% used. 

3.3 Oil price model 

In a study of 127 years of oil price data, Pindyck (1999) concludes that the price follows a mean-

reverting stochastic process. The first mean-reverting model – and one of the most 

straightforward to implement – was introduced by Ornstein and Uhlenbeck (1930) and is 

commonly called the Ornstein-Uhlenbeck (OU) process. The OU model has a lognormal 

distribution that increases with time while moving closer to its long-term mean (Figure 1). After a 

specific time, the size and movement of the distribution plateau and become constant. 
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Figure 1. Example of a stochastic mean-reverting process with lognormal probability distribution over time 
(Dias, 2004). The red line represents the mean oil price and the blue line the long-term mean. 

The OU model can be expressed as a differential equation: 

 𝑑𝑋(𝑡) = 𝜃[𝜇 − 𝑋(𝑡)]𝑑𝑡 + 𝜎𝑑𝑊(𝑡) (2) 

𝑑𝑋(𝑡) = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝜃 = 𝑆𝑝𝑒𝑒𝑑 of 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛 

𝜇 = 𝑀𝑒𝑎𝑛 

𝑋(𝑡) = 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝑑𝑡 = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡𝑖𝑚𝑒 

𝜎 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 

𝑑𝑊(𝑡) = 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑟𝑜𝑤𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 

To prevent the OU model from giving negative values, the logarithmic value of all oil prices can 

be used (Vega, 2018). The final equation using discrete time steps adopted in our model: 

 

𝑙𝑛(𝑋𝑡) = 𝑙𝑛(𝑋𝑡−1)𝑒
−𝜃∆𝑡 + (𝜇 −

𝜎2

2𝜃 
) (1 − 𝑒−𝜃∆𝑡) + 𝜎√

1

2𝜃
(1 − 𝑒−2𝜃∆𝑡) 𝜀   

 

(3) 

 

𝑋 = 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝑡 = 𝑇𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

∆𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝,𝑚𝑜𝑛𝑡ℎ 

𝜇 = 𝑀𝑒𝑎𝑛 

𝜎 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 

𝜃 = 𝑆𝑝𝑒𝑒𝑑 of 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛 

𝜀 = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, N[0,1] 
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3.4 Monte Carlo simulation 

The Monte Carlo simulation is a method for obtaining numerical results by creating a model over 

the problem and then sampling input values from the appropriate distributions (Figure 2). This 

process is repeated n times until a stable distribution of the output is achieved. This output 

distribution is then analyzed to determine the range of possible outcomes and their respective 

likelihood of occurrence. 

 

Figure 2. Schematic of Monte Carlo simulation (Bratvold & Begg, 2010) 
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3.5 Real option valuations 

The ROV methods applies option valuation techniques to a business decision. Real option refers 

to the possession of the right but not the obligation to make decisions regarding real (or non-

financial) assets (Gilbert, 2004). This means that the ROV accounts for the stakeholder’s 

flexibility in terms of responding to changes during the project. In this thesis, ROV was applied 

to implement the stakeholder’s option to abandon the field immediately if the economic outlook 

becomes unfavorable. For example, a field which permanently loses production and starts to 

generate significant losses due to technical challenges could be abandoned immediately under 

this approach. Real option valuation can be implemented using various stochastic dynamic 

programming frameworks, such as binomial lattice and the finite difference method. The 

drawback of these methods is that they cannot readily accommodate multiple sources of 

uncertainty as the number of nodes grows exponentially with each time-step. A more appropriate 

technique in such a case is the LSM, which was therefore adopted to find the optimal time of 

abandonment in this case study.  

3.5.1 Least-squares Monte Carlo 

The LSM method was first introduced by Jacques Carrier (1996) to value Bermuda or American 

options. Multiple papers have since been published using the LSM. One of the best-known papers 

was written by Longstaff and Schwartz (2001), who improved the method and provided examples 

for its practical implementation. The technique has also been modified for the oil and gas 

industry in publications by Smith (2005), Willigers and Bratvold (2008), Jafarizadeh and 

Bratvold (2012), and Thomas and Bratvold (2015).  
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4 Methodology and procedure 

This chapter first states the assumptions and limitations of the abandonment model in question, 

followed by an explanation of how the data for the model was obtained. 

4.1 Assumptions and limitations 

To refine the scope of the thesis and obtain the critical data needed for the simulation, certain 

limitations and assumptions were introduced into the model. Table 1 summarizes and comments 

on the main points. 

Table 1. Assumptions and limitations with comments 

Assumptions and limitations Comments 

The only uncertainties included in the model 

are oil price and variable operative 

expenditures. 

There are numerous uncertainties such as 

production profiles, fixed operative 

expenditures, and abandonment costs.  

The model excludes tax and royalties. These variables need to be considered in real 

cases.  

Inputs to simulate the field were estimated or 

calculated using empirical evidence. 

These variables should be based on actual 

data that the company has obtained. 

Oil and gas production was combined into oil 

equivalents (OE) and sold for the price of oil. 

These should be treated individually, with the 

respective production profiles and price 

forecasts. 

Inputs and comparisons were taken from both 

UK and Norwegian oil and gas industries. 

Different taxes and rules affect the data, 

depending on where it was obtained. 

However, as both nations operate in the North 

Sea, these amounts were assumed to be 

equivalent. 
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4.2 Collecting the data for the model 

The model is based on the Veslefrikk field on the NCS, and the data collection process was 

divided into four parts: calibrating the oil price model, abandonment cost, production profile, and 

operational cost. Publicly available sources from both UK and Norwegian oil and gas sectors 

were used to gather or estimate the needed data. Abandonment in the UK sector has been more 

common than on the NCS, as the former consists of more mature fields. Consequently, a large 

amount of cost data has been shared that can be applied to the NCS. The Norwegian Petroleum 

Directorate (NPD) has also generated considerable public information on the NCS, which was 

used to determine the production profiles and operational costs. The production cost was 

compared to other fields in the UK sector due to its similarity to the NCS. 

4.2.1 Calibrating the Ornstein-Uhlenbeck process 

The least-squares method was used to find the parameters for the OU model. The natural 

logarithm of historical oil prices was regressed against its lag using linear regression. The output 

of this regression was then entered into equations 5, 6, and 7 to obtain the parameters for the OU 

model (Berg, 2011).  

 

𝜎 = 𝑆𝑡𝑑(𝜂𝑡)√−
2𝑙𝑛(𝑎)

∆𝑡(1 − 𝑎2)
 

 

(5) 

𝜎 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 

𝜂𝑡 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
𝑎 = 𝑆𝑙𝑜𝑝𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

∆𝑡 = 𝑇𝑖𝑚𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 

 

 
𝜃 = −

𝑙𝑛(𝑎)

∆𝑡
 (6) 

𝜃 = 𝑆𝑝𝑒𝑒𝑑 of 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛 

𝑎 = 𝑆𝑙𝑜𝑝𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

∆𝑡 = 𝑇𝑖𝑚𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 

 

 
𝜇 =

𝑏

(1 − 𝑎)
 (7) 

𝜇 = 𝑀𝑒𝑎𝑛 

𝑏 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 

𝑎 = 𝑆𝑙𝑜𝑝𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
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The oil calibration time window used for the base case in the thesis extends from January 1, 2015 

to February 1, 2020. The average price for every 30 days was used for the calibration and several 

different time windows were taken to a sensitivity analysis. Table 2 presents the length and 

parameters of the calibration.  

Table 2. Oil calibration window and its parameters for the UB model 

Calibrated to Feb 1, 2020 

Mean (μ) Speed (θ) Volatility (σ) Calibrated from 

53.99 1.69 0.34 Jan 1, 2015 

54.75 1.38 0.32 Jun 28, 2015 

57.42 2.37 0.30 Dec 23, 2015 

58.34 2.73 0.30 Jun 18, 2016 

58.51 2.73 0.32 Dec 13, 2016 

60.41 3.85 0.33 Jun 9, 2017 

 

Figure 3 illustrates an example of the base-case calibration window and the range of future 

fluctuation using the UB model, as well as a single realization. 

 

Figure 3. Historical and forecasted oil price 
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4.2.2 Estimating the abandonment cost 

The UK oil and gas authority decommissioning survey reports and tracks the decommissioning 

costs to the country. It reports a median well decommissioning cost of £3.7 MM in the Northern 

and Central North Sea from a fixed platform (Oil & Gas Authority, 2020), which is equivalent to 

$4.76 MM using the 2020 average exchange rate of the Bank of England (Bank of England, 

2020).  

Veslefrikk has to plug 24 wells for the abandonment process (Equinor, 2021), resulting in a cost 

of $114.30 MM using the cost per well noted in the previous paragraph. A breakdown of the 

forecasted decommissioning expenditures in the Northern North Sea and West of Shetland 

reveals that 46% of the total costs derive from well decommissioning (Figure 4).

 

Figure 4.Breakdown of the abandonment costs in the Northern North Sea and West of Shetland (Oil & 
Gas UK, 2018)  
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This implies a total decommissioning cost of $233.27 MM for Veslefrikk. Table 3 presents all the 

values used to calculate the abandonment cost. 

Table 3. Values used to calculate the abandonment cost 

Wells 24 (pc) 

Exchange rate 1.2837 ($/£) 

Well decommissioning cost 
3.71 (£MM) 

4.76 ($MM) 

Well decommissioning fraction 

of the total cost 
0.46 

Total well decommissioning cost 114.30 ($MM) 

Total field abandonment cost 233.27 ($MM) 

 

4.2.3 Modeling the production decline 

The production decline is modeled on data from Veslefrikk (The NPD, 2021); gas and oil are 

combined into OEs. A second-degree polynomial is fitted on the decline curve to estimate a 

function representing future production. Figure 5 presents the historical production and forecast 

data, along with the function for the curve.  

 

Figure 5. Historical and forecasted production of OEs, function for the forecast, and the R-squared fit 

The method used to determine the function for production was also applied to the produced water 

(Figure 6).  
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Figure 6. Historical and forecasted production of water, function for the forecast, and the R-squared fit 

Ideally, more data points for the declining water and oil levels should have been obtained to 

estimate a suitable decline for this field. However, since the focus of this study is on comparing 

different abandonment approaches, the above is an adequate estimation for this purpose. 

4.2.4 Operating expenses 

The operating expenses (Opex) were divided into two categories: variable Opex, which is applied 

for each barrel (bbl) produced, and fixed Opex, which is a monthly cost. To obtain the variable 

Opex, the yearly operating expenses from 2008 to 2020 (Norskpetroleum, 2020) were divided by 

yearly OEs produced (Norskpetroleum, 2021) on the NCS. This yields the average cost of 

producing one OE on the NCS, which is treated as the past variable Opex from the field. The data 

and conversion are presented in Appendix 1, from where the exchange rate is taken (Norges 

Bank, 2021). To replicate future fluctuations in variable Opex, the OU model was calibrated to 

the past variable Opex. The calibration was performed in the same manner as the oil price in 

Section 4.2.1, and the final parameters are presented in Table 4. 

Table 4. Final parameters used to simulate variable Opex with the OU model 

Mean 

(μ) 

Speed 

(θ) 

Volatility 

(σ) 

2.01 0.1 0.189 
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According to Bradley and Wood (1993), oil price is one factor that affects the long-term Opex of 

an oilfield. To determine any correlations on the NCS, the historical Brent price (EIA, 2021) and 

variable Opex were plotted against each other, as illustrated in Figure 7. Appendix 1 contains the 

data used for this plot.  

 

Figure 7. Average annual oil prices against average annual unit costs with a trend line 

The plot indicates a linear relationship between the oil price and the variable Opex. The 

Pearson’s correlation coefficient for this linear correlation was then used to determine the 

correlation factor:   

  

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 ∗ 𝜎𝑌
 

 

 

(8) 

𝜌𝑋,𝑌 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

𝜎𝑋 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝜎𝑌 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 𝑎𝑛𝑑 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 

The correlation was determined to be 0.896, which suggests that the oil price and Opex are highly 

correlated. To replicate this finding, the Python module Scipy.stat.multivariate_normal was used 

to create a pair of correlated random numbers with a factor of 0.896 sampled from a s𝑡𝑎𝑛𝑑𝑎𝑟𝑑 

𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑁[0,1] (ε). The pair was divided for the two OU models that simulate oil 
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price and variable Opex, respectively. The OU models used the individual parameters obtained 

earlier, along with the correlated ε. In this manner, the amplitude of change would differ for the 

two models, but the direction of change would be almost identical. To prevent the variable Opex 

from changing instantly with the oil price, a lag time of 12 months was included. Figure 8 

provides an example of the simulated price and correlated variable Opex. 

 

Figure 8. Example of a simulated oil price with correlated variable Opex 

Two expenditures not affected by the oil price was added, water treatment cost of $ 0.5/bbl and a 

fixed yearly operative cost of $42 MM. A comparison was made to determine if the expenses 

were in proportion to other fields in the UK sector in 2017. With the estimated costs from 2017, 

the historical production data from Veslefrikk was used to calculate the total cost and unit 

operating cost (UOC) (Table 5). The exchange rate used to convert dollars ($) into pounds (£) 

was taken from (Bank of England, 2020).   

Table 5. Parameters used to calculate total cost and unit operating cost for 2017 

OE production 

(bbl) 

Variable Opex 

($/bbl) 

Oil production 

cost ($MM) 

Fixed Opex 

($MM) Exchange rate ($/£) 

3 957 599 9.89 39.15 42.00 1.29 

Water production 

(bbl) 

Water cost 

($/bbl) 

Water production 

cost ($MM) 

Total cost 

(£MM) Total UOC (£/bbl) 

30 191 088 0.50 15.10 74.68 18.87 
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A comparison of Veslefrikk with fields in the same age group indicates that it is among the more 

expensive of such fields (see Figure 9), although not exceptionally so.  

 

Figure 9. Age of field versus its total cost on the UK continental shelf for 2017. The red star indicates 
Vesslefrikk’s position with our estimated costs and 2017 production (Oil & Gas Authority, 2017)  

A comparison of the fields total production and cost indicate that it has higher UOC compared to 

the average field producing over 2 MM bbl annually (Figure 10). 
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Figure 10. Unit operating cost for each field on the UK continental shelf. Each circle represents a field, and 
the red star denotes Veslefrikk (Oil & Gas Authority, 2017) 

5 Approaches to determining the optimal time of abandonment  

This chapter explains each approach used to determine the time of abandonment and how they 

were implemented into the abandonment model. 

5.1 First negative cashflow approach  

The FNC abandons the fields one month after the occurrence of the first negative cashflow. This 

is the simplest approach to implement and understand. 

5.2 Greedy optimization approach  

The GO introduces a predetermined waiting criterion for which the field needs to generate 

continuous negative cashflow. If the field starts to generate positive cashflow, the continuity is 

broken, and the period starts over again. 
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5.2.1 Finding the optimal waiting criterion 

The GO waiting criterion is required to determine the optimal time of abandonment. It is obtained 

by running the GO approach with different waiting times until the highest NPV is achieved, as 

illustrated in Figure 11, where the average NPV peaks at a waiting period of 22 months. The 22-

month criterion was therefore used in the model. Since the curve is quite flat between 16 and 30 

months, using any value within this range would result in very similar end results. 

 

Figure 11. Average NPV under GO using different critical waiting criteria 

5.3 Least-squares Monte Carlo approach 

The LSM approach uses backward induction to identify the optimal abandonment time, which 

means that it starts from the last decision point in time, then walks backwards for every decision 

made until it reaches the start of the simulation. There are two alternatives for every decision 

point: continue to produce or abandon. The LSM approach makes the decision by approximating 

the NPV using continued production (conditional continuation value) and comparing this value to 

the abandonment cost (exercise value) for each point in time. When the continuation value is less 

than the exercise value will the field be abandoned. Repeating this procedure for all the decision 

points, the LSM will make a near-optimal decision for each path. Figure 12 is a visualization of 

the LSM decisions at each decision step for five paths, while Figure 13 illustrates the final 

decision for the same five paths. The continuation value is only used for the decision. Subsections 
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5.3.1 (“Continuation value”) and 5.3.2 (“Obtaining the continuation value”) provide a more 

detailed explanation of the continuation value and how it was obtained. 

 

Figure 12. Five NPV paths for a field with LSM continuation or exercise decision for each time step 

 

Figure 13. Five NPV paths for a field with LSM final decision to abandon 

5.3.1 Continuation value 

The continuation value is the approximate NPV that the field would obtain by continuing 

production from the decision point to abandonment. It is only used to decide when to abandon 

and not to calculate the resulting value of abandoning at that time. The recursive process starts 

with the calculation of the abandonment value at the last time step and gradually moves towards 

the first time period so as to identify the time at which abandonment first became favorable. In 
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this manner, future price and cost paths – and hence the NPV – are conditioned on the current (at 

any time) price and cost. 

5.3.2 Obtaining the continuation value 

The continuation value was regressed on the NPV to fit our purpose. This was accomplished 

using multiple linear regression, whereby the oil price and variable Opex are the independent 

variables (Eq. 9) and NPV the dependent variables (Eq. 10).  

 

𝑋 =
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(9) 

𝑖 = 𝑃𝑎𝑡ℎ 

𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

𝑂𝑃= 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝑉𝑂= 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝𝑒𝑥 

𝑋 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
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(10) 

𝑖 = 𝑃𝑎𝑡ℎ 

𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

𝐸𝑁𝑃𝑉= 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑁𝑃𝑉 

𝑌 = 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

The oil price and variable Opex were chosen as the independent variable as they are uncertain. If 

there are any additional uncertain variables can they easily be added to Eq. 9. Longstaff and 

Schwartz (2001) suggest using linear regression to find the continuation value, which is the 

preferred method in this thesis. More advanced regression models combined with cross terms can 

be used to find the continuation value but were deemed unnecessary for this task. This was 

determined by visually inspecting plots like figure 13 containing more paths where the 

continuation value was based on linear regression. The figure indicated that the preferred method 

made the LSM abandon the fields close enough to their individual NPV peak. The multiple linear 
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regression function was solved using the Scikit-learn module in Python, which integrates a range 

of state-of-the-art machine learning algorithms for mathematical problems (Pedregosa et al., 

2011). The coefficients for the function were obtained through Eq. 11 and the constant through 

Eq. 12 as follows:  

𝛽1, 𝛽2 = 𝑆𝑘𝑙𝑒𝑎𝑟. 𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙. 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 𝑓𝑖𝑡(𝑋, 𝑌). 𝑐𝑜𝑒𝑓_ (11) 

𝛽1 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑜𝑖𝑙𝑝𝑟𝑖𝑐𝑒 

𝛽2 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝𝑒𝑥 

Y= 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑋 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

 

𝛽0 = 𝑆𝑘𝑙𝑒𝑎𝑟. 𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙. 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 𝑓𝑖𝑡(𝑋, 𝑌). 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡_ (12) 

𝛽0 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Y= 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑋 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

The final function to determine the continuation value is shown below. 
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(13) 

𝑖 = 𝑃𝑎𝑡ℎ 

𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

𝛽0 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛽1 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑜𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝛽2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑂𝑝𝑒𝑥 

𝑂𝑃= 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 

𝑉𝑂= 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝𝑒𝑥 

𝐴𝑁𝑃𝑉 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 

Figure 14 provides an example of the approximation with five paths. 
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Figure 14. The regressed NPV is represented by red dots, the continuation function by the gray surface, 

and the continuation value by the green dots 
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6 Case simulation, results, and analysis 

For the abandonment model, we decided to use 180 000 paths, as the output was fairly stable 

between runs and it did not take too long to process. The model started to create random oil price 

scenarios with correlated variable Opex, which are the uncertain inputs in the Monte Carlo 

model. Along with the estimated and assumed parameters from Chapter 4, it generated paths with 

different cashflows, which represent the cashflows that the field would generate if it was never 

abandoned. Three approaches were then used to determine the optimal time to abandon the field 

for each path. All three modified the paths in an identical manner when they found the optimal 

abandonment time, namely by adding the abandonment cost and removing future cashflow. The 

NPV was then calculated by discounting back all values to the beginning of the simulation. The 

resulting NPVs from each approach were then compared and evaluated. The results of this 

method are presented in the order from the lowest- to the highest-yielding NPV. Appendix 2 

presents the Python code for this simulation. 

6.1 Results of the first negative cashflow approach 

Using the FNC approach, the distribution over the abandonment time ranges from 3 to 80 

months, with a mean of 38 months, as illustrated in Figure 15.  

 

Figure 15. Distribution of abandonment time using the first negative cash flow approach 
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This strategy would result in an average NPV of -$78.90 MM (Table 6), with the NPV 

distribution presented in Figure 16.  

Table 6. Results obtained using the negative cashflow approach 

 

Figure 16. Net present value distribution from using the first negative cashflow approach 

Figure 17 presents a scatter plot of the time of abandonment versus the corresponding NPV. The 

shape of the plot demonstrates that the longer the field can produce before a negative cashflow 

occurs, the higher its NPV becomes.  

  NCA (NPV) 

Min ($MM) -228.37 

P10 NPV ($MM) -133.82 

Mean NPV ($MM) -78.90 

P90 NPV ($MM) -30.07 

Max ($MM) 74.90 

P(NPV<0) 0.986 
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Figure 17. Time of abandonment versus net present value. This plot presents a random 1% selection of 
the 180,000 simulated paths obtained using the first negative cash flow approach 

6.2 Results of the greedy optimization approach 

As stated in Section 5.2.1, “Finding the optimal waiting criterion,” a criterion value of 22 months 

was used for the GO approach. On average, this method abandoning the field at 87 months with a 

range between 36 to 129 months (see Figure 18), significantly later than the FNC average of 38 

months.  

 

Figure 18. Abandonment time distribution obtained using greedy optimization 
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As Table 7 illustrates, this method results in a mean NPV of -$42.21 MM. The total NPV 

distribution is presented in Figure 19.  

Table 7. Results of the greedy optimization 

  

GO 

(NPV) 

Min ($MM) -162.51 

P10 NPV ($MM) -75.35 

Mean NPV ($MM) -42.21 

P90 NPV ($MM) -8.30 

Max ($MM) 102.99 

P(NPV<0) 0.942 

 

 

Figure 19. Net present value distribution from the greedy optimization 

The GO scatter plot in Figure 20 reveals that the abandonment occurs much later and yields a 

higher NPV than the NCA approach.  
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Figure 20. Abandonment time versus net present value. This diagram presents a random 1% selection of 
the 180,000 simulated paths for the greedy optimization 

The GO approach resulted in an average increase in NPV of $36.69 MM compared with the FNC 

approach. This can be explained by its waiting criterion, which increases the NPV in two ways. 

First, it offers a chance for the field to start generating positive cashflow after the first negative 

cash flow. As Figure 21 illustrates, less than 8% of the paths that become cashflow-negative 

never turn positive again, i.e., 92% of the paths yield positive cash flows after the first negative 

cash flow. Second, the NPV would increase as long as the discounting factor for the 

abandonment cost exceeds the negative cash flow.  
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Figure 21. Time (in months) between first negative cashflow and abandonment according to the greedy 
optimization 

6.3 Results of least-squares Monte Carlo approach 

Finally, the ROV method using LSM, on average, abandons the field after 84 months with a 

range between 42 to 111 months (see Figure 22). Compared to the Go approach is it slightly 

earlier and the distribution of when the abandonment occurs gets more concentrated. 

 

Figure 22. Abandonment time distribution using the least-squares Monte Carlo method 
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As Table 8 indicates, the LSM results in a mean NPV of -$40.21 MM, which is $ 2.0 MM more 

than the GO and $38.69 MM better than the FNC approach. This is because the ROV method 

makes flexible abandonment decisions that respond to uncertainty and learnings gained over 

time. Figure 23 presents the total NPV distribution obtained using the LSM approach. 

Table 8. Results of the least-squares Monte Carlo method 

  LSM (NPV) 

Min ($MM) -148.74 

P10 NPV ($MM) -73.23 

Mean NPV ($MM) -40.21 

P90 NPV ($MM) -6.39 

Max ($MM) 103.15 

P(NPV<0) 0.935 

 

 

Figure 23. Net present value distribution obtained using the least-squares Monte Carlo approach 

Figure 24 presents the LSM scatter plot for NPV against time of abandonment.  
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Figure 24. Time of abandonment versus net present value. This diagram presents a random 1% selection 
of the 180,000 simulated paths for the least-squares Monte Carlo approach 

6.4 Sensitivity 

A sensitivity study was conducted for the two best approaches, LSM and GO, to compare their 

performance in different scenarios. 

6.4.1 Sensitivity of the greedy optimization approach to different oil price 

calibration windows 

The GO was run with different calibration windows for the oil price, using the final parameters 

provided in Table 6. Figure 25 suggests that the best waiting criterion for all calibrations is 

between 22 and 24 months making the criterion quite insensitive for this change. The later the 

start of the calibration window, the higher the average NPV, most probably due to an increase in 

mean oil price. 
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Figure 25. Waiting criterion versus net present value for different oil calibration windows that ends on 
February 1, 2020. The black dot represents the best criterion for each oil calibration window and the 
legend show the start of the calibration 

6.4.2 Sensitivity of the least-squares Monte Carlo approach to different oil price 

calibration windows 

The LSM was performed with the same oil calibration windows as the GO shown in Figure 26. 

As mentioned earlier, the mean oil price increases with a later start date for the oil calibration. 

This is most probably increasing the expected NPV and lowers the probability of obtaining a 

negative value.  
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Figure 26. Net present value and probability of obtaining a negative NPV using different oil calibration 
windows that ends February 1, 2020  

6.4.3 Least-squares Monte Carlo versus greedy optimization 

This chapter analyses whether the LSM always exhibits better performance than the GO by 

comparing the two sensitivity studies. To this end, we use the studies with different oil calibration 

windows obtained earlier. One more sensitivity analysis was performed on each approach using 

different fixt Opex. The result of comparing those two is also presented in this chapter. 

6.4.3.1 Different oil calibration windows 

As Figure 27 depicts, the LSM approach results in an increase NPV between $1.02 MM and 

$2.00 MM depending on the oil calibration window. It can be noted that the NPV difference 

decreases between the two the later our windows start. 

 

Figure 27. Sensitivity analysis displaying the net present value increase obtained using the LSM over the 
GO approach for different oil price calibration windows. All the calibration windows end on February 1, 
2021 

6.4.3.2 Different fixed Opex 

The LSM and GO were compared across different fixed Opex values. Figure 28 indicates that the 

former approach yields a better NPV by $1.44 MM to $2.55 MM. It is also worth noting that 

increasing the fixed Opex increases the NPV difference. 
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Figure 28. Sensitivity analysis displaying the net present value obtained using the LSM over using the GO 
approach for different fixed Opex values 
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7 Discussion 

Earlier studies have shown that value can be created by not immediately abandoning the field at 

the first negative cashflow (Begg, Bratvold, & Campbell, 2004). This thesis supports these 

findings and arrives at the same conclusion. As both the GO and LSM approaches resulted in 

significant value creation over the FNC method, we focused the sensitivity analysis on the former 

two.  

A comparison of the sensitivity results revealed that the LSM performed better across all the 

scenarios tested. One explanation for these results is that the LSM is a ROV method that can 

adapt its decisions dynamically based on learnings over time, compared to the GO, which bases 

its decision on a static rule. This make in terms of how decisions are made, the former process 

more realistic compared to the latter. These findings cannot be compared to those from other 

publications due to a lack of research comparing abandonment methods.  

A disadvantage of the LSM and GO approaches may be that they are computationally heavy 

compared to the NCF. Reducing the number of paths and time steps can speed up the processing 

time, but this will also result in less accurate outputs from the model. One way to reduce 

processing time without sacrificing accuracy is to implement efficient code. A powerful method 

is to use array programming. This enable the model to process whole arrays of data in one step 

compared to use loops that processes one scalar at the time.  

Although we chose the OU as our price model, this research can be easily extended to richer and 

more realistic price models such as Schwartz and Smith’s (2000) short-term–long-term model.   
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8 Conclusion and further research 

Thousands of wells on the NCS must be plugged and abandoned in the next several decades. 

Although it is common procedure for many operators, this work demonstrates that value can be 

created by not abandoning a field at the first negative cash flow. Doing so ignores the uncertainty 

in the material variables, and the possibility that the cash flow may turn positive again at a later 

stage and, as a result, increase the field’s profitability. We further demonstrate that the ROV 

model is optimal in assessing and extracting the value potential associated with the abandonment 

decision, It results in the highest NPV and thus illustrate the value created by not automatically 

abandoning a field at the first negative cashflow. Generally, the inherent combination of 

uncertainty and flexibility built into the ROV approach makes it superior in terms of creating 

value by identifying the optimal abandonment time. These two conclusions are addressed in the 

subsections below, the last of which contains recommendations for further research. 

8.1 Value of using real option valuation 

The ROV method, implemented through the LSM approach, is the best method to optimize the 

timing for abandonment and maximize the NPV of a field. It carries the ability to dynamically 

adapt its abandonment decision based on past learning as well as future expectations and 

decisions. This is also more realistic in terms of how decisions are made compared to the GO 

approach that statically make its decision based on a predetermined criterion. The sensitivity 

analysis indicates that the LSM results in a $1.02 MM – $2.55 MM higher NPV than the GO and 

a $38.69 MM improvement over the FNC method in the base case.  

8.2 Value in not abandoning at the first negative cashflow 

Abandoning a field at the first negative cashflow overlooks the possibility that the cashflow 

might become positive in the future. As Figure 20 illustrates, approximately 92% of all paths turn 

cashflow positive after a negative phase. This implies missed opportunities for creating value 

through an optimal timing of abandonment decision. The field may shift from cashflow negative 

to positive many times due to fluctuations in oil price and variable Opex. Another contributing 

factor to value creation is the fact that the field’s NPV continue to increase as long as the 

discounting factor of the abandonment cost are larger than the negative cash flow.  
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8.3 Further research 

We recommend a case study using a richer and more realistic oil price model, such as a two-

factor mean-reverting model (Schwartz & Smith, 2000), calibrated with spot prices, oil futures 

and options, to evaluate the performance of the ROV model with more realistic oil price changes. 

Moreover, uncertainties into abandonment cost and production profiles could also be introduced 

to make the case more realistic. 
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Appendices  

Appendix 1: Annular oil prices and data to estimate Variable Opex 

 

Year

Total Opex on 

the NCS               

(bil NOK 2021)

Annual 

exchange rate 

(NOK/USD)

Total Opex 

on the NCS               

(mil USD)

Total  production 

on NCS             

(mil Sm3 o.e)

Total production 

on NCS              

(mil bbl o.e)

 Variable Opex 

/Unit cost 

(USD/bbl)

Annual Oil 

price 

(USD/bbl)

2008 64 5.6361 11 423     143.52 902.71 12.65 99.94

2009 68 6.2817 10 764     136.34 857.55 12.55 61.74

2010 68 6.0453 11 185     124.11 780.63 14.33 79.61

2011 67 5.6074 12 006     118.35 744.40 16.13 111.26

2012 74 5.821 12 747     111.58 701.82 18.16 111.63

2013 76 5.8768 12 872     106.65 670.81 19.19 108.56

2014 77 6.3019 12 153     109.56 689.11 17.64 98.97

2015 69 8.0739 8 554       112.92 710.25 12.04 52.32

2016 61 8.3987 7 218       116.01 729.68 9.89 43.64

2017 59 8.263 7 116       114.38 719.43 9.89 54.13

2018 61 8.1338 7 530       107.44 675.78 11.14 71.34

2019 62 8.8037 7 083       100.78 633.89 11.17 64.3

2020 57 9.4004 6 069       116.45 732.45 8.29 41.96
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Appendix 2: Python code 
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