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Abstract

Application of lithium-ion batteries have increased in recent years due to their high

energy density, low weight and smaller form factor. Machine learning algorithms are

used in lithium-ion battery management systems due to the fact that they require less

computational power. However, machine learning algorithms are a ‘black box’ in nature

thus, for development and optimization of batteries a physical based model is required

which facilitates to understand physical-chemical behaviors that govern the operation

of battery. In this thesis, pseudo two dimensional (P2D) electrochemical model was

selected and numerical solutions were computed by using MATLAB. Principles of lithium

transport in anode, cathode, electrolyte and principles of chemical kinetics are used in this

model. The model presents good agreement between simulated results and experimental

data which are extracted from the literature. Simulations were conducted in order to

investigate initial operation, lithium distribution in electrodes, power delivery, voltage

response against current pulses and aging e↵ect. The mathematical model enables to

significantly minimize the development and optimization time for batteries because actual

testing of batteries demands long time periods.
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Chapter 1

Introduction

1.1 Introduction to Lithium-ion Batteries and Their

Applications

Lithium-ion batteries are becoming more popular with the development of renewable

energy and energy storage systems. Battery is a simple device that can convert chemical

energy to electrical energy.

Primary batteries such as alkaline, Daniel and dry cells, can not be charged after the

battery is fully discharged. Thus, they need to be discarded and replace frequently.

In contrast, secondary batteries, including lithium-ion batteries, can be discharged and

charged many times until the battery become significantly degraded. In secondary bat-

teries, during discharge, chemical energy is converted into electrical energy and during

charge, electrical energy is converted into chemical energy. The reusability of secondary

batteries make them attractive in commercial applications due to their low life cycle cost.

Recently, lithium-ion batteries have become small in size, with high energy density, light

weight and longer life time. These factors make lithium-ion batteries an ideal candidate

to be used in mobile applications such as in o↵shore platforms [3] and in automobiles

[4]. Minimum maintenance and favorable on health, safety and environment (HSE) over

conventional fuel types are additional advantages of lithium-ion batteries [3].

Decarbonization strategies are greatly dependent on renewable energy and energy man-

agement [5, 6]. Depending on demand and supply renewable energy may not be readily

available at all times in order to be utilized in energy demanding applications. This

creates a requirement for energy storage solution. Recently, hybrid oil & gas rigs and
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platforms are entering into service in order to minimize the carbon and energy foot-

print [3, 6, 7]. A hybrid rig/platform is capable up to 42% reduction in diesel generator

utilization using an energy storage system [6].

Lithium-ion batteries are being used in other applications such as autonomous underwa-

ter vehicles (AUV), remote operated vehicles (ROV) [8] and plug-in hybrid navel vessels

[9] etc. Utilization of lithium-ion batteries in extreme applications such as in well moni-

toring, christmas trees (XMT), blow-out preventers (BOP) and in bottom hole assemblies

(BHA) are gaining momentum with current developments. In order to improve the reli-

ability of batteries in these applications, developments and optimizations are needed to

be conducted. However, physical testing and optimization of batteries demands signifi-

cantly long time thus, computer models and simulations are used for development and

optimization.

Development of batteries for a specific application requires an understanding on chemical

and physical behavior of batteries. Batteries needed to be optimized based on applica-

tion that it is being used for, for example electronic applications demands lower power

compared to heavy applications such as electric vehicles and hybrid rigs.

The Pseudo Two Dimensional (P2D) model used in this thesis has similarity with 1D

reservoir model in petroleum reservoir engineering. The porous reservoir rock is equivalent

to porous electrode and interconnected pores as electrolyte. Transport of lithium and

lithium ion from electrode matrix through pores is similar to transport of petroleum fluid

through solid rock and transport through the porous structure.

1.2 Objectives

The following objectives are met in the thesis:

• Selection of a suitable mathematical model for lithium-ion battery

• Reproduction of the selected model

• Estimation of parameters

• Validation of the model based on data from the literature

• Testing and investigation of the model

In order to physically test the performance of batteries requires more time and expensive

equipment. However, utilization of a computer model help to simulate the behavior of

2



a battery within a short period of time. Thus, resulting fast and e�cient development

of batteries. Depending on the application (such as high power delivery, longer cycle

time, etc.) battery specifications might vary. Thus, it is necessary to determine optimal

parameters for batteries for a specific application. The main objective of the thesis is to

gain insight into the mechanisms involved in charging and discharging processes within

a lithium battery .

1.3 Organization of the Thesis

The model for lithium-ion battery contains three sub-models. The electrochemical model

is the core model which governs the process of battery. The capacity fading model is

a supporting model to the main electrochemical model which helps to determine the

percentage of lithium lost due to aging. A thermal model was also developed (also a

supporting model to the main electrochemical model). However, in this thesis analysis of

the thermal model is not investigated. The electrochemical model is capable to operate

independently without the capacity fading model and/or thermal model.

Selection and review of suitable electrochemical model, capacity fading model and pa-

rameters that are required for the model are discussed in chapter 2. Justification for

selection of the Pseudo Two Dimensional (P2D) model, model description, details about

anode, cathode, separator, and electrolyte are presented in same chapter.

The thermal model was developed based on a cylindrical geometry which is possible to

link into main electrochemical model. Theory for the thermal model is presented in ap-

pendix C, discretization of the thermal model is presented in appendix D and discretized

equations for boundaries are presented in appendix E.

Theory which is required for the construction of the electrochemical model is introduced

in chapter 3. Model variables, parameters, constants and all governing equations which

are used for construction of the model are presented in the chapter. Capacity fading is

based on a semi-empirical model which is also discussed in the same chapter.

Finite Di↵erence Method (FDM) was used to discretize equations which are presented

in chapter 3. The process of discretization is presented in chapter 4. Appendix B is an

extension to chapter 4 which contains the Newton-Raphson to derive numerical solution

for a non-linear system of equations. The discrete version of the model was solved by

using MATLAB. A flow diagram for the fundamental program of the electrochemical

model is also presented in the same chapter.

3



Results on estimation of parameters, validation, testing and investigation of the model are

discussed in chapter 5. The chapter presents investigation of initial operation of battery,

lithium distribution in electrodes, power delivery, voltage response against current pulses

and e↵ect of aging.
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Chapter 2

Literature Survey

Research on rechargeable lithium batteries were started to develop in 1960s and 1970s

[10], however, no major breakthrough was found until early 1990s [10, 11]. In 1991, Sony

commercialize first lithium-ion battery [11]. Characteristics such as high specific energy

and high power delivery made lithium-ion batteries more popular than other types of

secondary batteries [4, 10–12].

2.1 Model Selection

Models which are developed for lithium-ion batteries can be divided into two categories

namely, empirical models and electrochemical models [12]. Empirical models utilize ma-

chine learning algorithms and are widely used in Battery Management System (BMS)

because models are simple and require less computational power [12]. Even though em-

pirical models provide accurate predictions, it is unable to determine and understand

physical-chemical behavior inside the battery for development purposes.

Pseudo Two Dimensional (P2D) model is an electrochemical model which was introduced

by Doyle et al. [13] in 1993. This model was extensively tested and validated by many

authors [12, 14–21] and remains one of the most popular model to date [12]. Single

Particle Model (SPM) is also an electrochemical model, but in contrast with the P2D

model, SPM model does not consider the e↵ect from the electrolyte [12, 22]. However,

SPM model is utilized in P2D model including the electrical potential and mass transfer

in electrolyte.

A lithium-ion battery consists of the porous anode (negative electrode) and the porous

cathode (positive electrode) separated by an electrically non-conductive porous separator

5



[20]. Pores are filled with ion-conductive liquid called electrolyte. The separator ensures

that no electron is passed between electrodes internally. Thus, electrons pass only through

external path (external circuit) while lithium is transported between electrodes internally.

P2D model assumes that the electrolyte is a superimposed continuum with anode and

cathode [13]. The transport of Li in porous electrodes are considered to occur in a pseudo

two dimensional (P2D) space, while transport of Li+ in electrolyte occurs in general 3

dimensional space [13].

The P2D model is based on porous electrode theory [23] and concentrated solution the-

ory. In this report lithium atoms which exist within two electrodes are denoted by (Li)

and lithium-ions exist within the electrolyte is denoted by (Li+). At the interface be-

tween electrode and electrolyte transformation of lithium (Li) to lithium-ion (Li+), or

lithium-ion (Li+) to lithium (Li) occurs. Di↵usion of Li/Li+ in medium (electrode or

electrolyte) is governed by concentration gradient, while intercalation, de-intercalation

(lithium transformation) of lithium at electrode-electrolyte interface is governed by cur-

rent in/out from battery. Reaction rate is a constraint for maximum rate of lithium

intercalation and de-intercalation. Direction (sign) of current from battery (known as

total current density I) is used to initiate charge/discharge process in P2D model. Sub-

sequent authors have added extensions to P2D model such as capacity fading [24] and

moving boundary models for cathodes [21, 25].

Figure 2.1 demonstrates schematic illustration for P2D model. At the top of the image

(low opacity) shows the cross section of the battery cell. Anode (negative electrode) at

left and cathode (positive electrode) at right are separated by a separator at the middle.

Enlarged version of this section (low opacity) is also presented in figure 3.1. According to

P2D model [13], porous electrodes are considered to be solid matrices with homogenous

spheres where void space is filled with electrolyte. Figure 2.1 illustrates a magnified such

particle (sphere) each in anode and cathode.

A fully charged battery has higher lithium concentration in anode spheres compared to

cathode [13]. During discharge (fig. 2.1), Li is radially transported towards surface of

spheres in anode, loses an electron and enter (de-intercalate) to electrolyte as a Li+. Then

Li+s are transported though electrolyte towards cathode, receive an electron and enter

(intercalate) into cathode spheres as Li [13]. A fully discharged battery has higher Li

concentration in cathode compared to anode and reverse of the above mentioned process

occurs during the charge of battery [13] (fig. 2.1).
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2.1.1 Electrodes

A battery has two electrodes; anode and cathode [26, 27]. In lithium-ion batteries,

electrodes act as an inventory for lithium (Li) while providing electrically conductive

medium for the moving electrons [28]. Lithium is transported back and forth between

two electrodes via electrolyte during charge and discharge processes (fig. 2.1).

Open Circuit Voltage (OCV) is one important characteristic parameter for an elec-

trode. It determines the rate of mass and charge transfer at electrode-electrolyte in-

terface (eq.(3.12)) in P2D model. OCV is the voltage di↵erence between two terminals

when the circuit is not connected to a load. For an electrode material, OCV is mea-

sured against standard hydrogen electrode [26]. At standard conditions (250C, 1 atm,

1mol/m3) OCV of hydrogen electrode is considered to be zero [26]. OCV can be experi-

mentally determined and formulae are developed by authors to determine voltage against

other properties such as State of Charge (SOC) of the material (i.e eq.(3.16), eq.(3.15)).

If two materials are used as electrodes of a battery, OCV di↵erence between those two

materials determine the maximum voltage that can be yielded from battery [26].

State of Charge (SOC) is a parameter which describes the quantity of lithium currently

occupied within the electrode material [18, 20, 21, 29]. SOC is expressed as the ratio of

lithium currently occupied by electrode material to the maximum lithium that can be

occupied by the electrode material. Thus, interval of SOC is [0, 1]. The OCV and the

SOC are involved in the Butler-Volmer equation which will be discussed in chapter 3.

Anode (Negative Electrode)

Anode is also known as negative electrode because anode is the negative terminal of bat-

tery. Negative electrode has lower OCV compared to cathode. Graphite is commercially

used as an anode (negative electrode) material in lithium-ion batteries [15, 16, 18, 19, 21,

30–33]. The lithium-ion intercalation in graphite was found in 1979 [33], but until now

there is no commercially used anode material which has both stability and energy density

as graphite. Silicon is a promising candidate for anode material which has 10 times higher

theoretical capacity than graphite but swelling and unstable Solid Electrolyte Interface

(SEI) layer create challenges for commercial use [10, 11].

Studies were conducted to improve the performance of graphite anodes [15, 33]. Some

optimizations made to graphite electrodes are based on costs and benefits. For example,

increase in interfacial surface area of graphite would increase power output of the battery

because surface area for lithium intercalation/de-intercalation increases, however, larger
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surface area consumes high amount of Li to form the Solid Electrolyte Interface (SEI)

layer which reduces the capacity of battery [33].

Cathode (Positive Electrode)

Cathode is also known as positive electrode because cathode is the positive terminal

of battery. Positive electrode has higher OCV compared to anode. For cathode, re-

searchers have tested and modeled performance of many materials such as lithium cobalt

oxides (LiCoO2), lithium nickel oxides (LiNiO2), lithium manganese oxides (LiMnO2

and LiMn2O4), lithium iron phosphate (LiFePO4), etc [10, 16, 18, 21, 29, 30, 32]. Each

material has its own advantages and disadvantages, for example LiCoO2 and LiNiO2 are

classical cathode materials which have better cyclic behavior, high specific charge and

high Open Circuit Voltage (OCV), but at high temperatures these can have adverse reac-

tions that could be a threat to safety of operation and challenging ecological, economical

impacts during production and disposal [10].

Lithium iron phosphate (LiFePO4) is one of the best suitable material as anode material

due its high energy density (about 170 mAh/g), low toxicity, high thermal stability

and favorable economic factors [10, 29]. This material was extensively studied by many

authors [10, 16–18, 20, 21, 25, 32, 34] in lithium-ion battery context. Even though OCV

of LiFePO4 is lower than LiCoO2[10], LiMn2O4 and some other cathode materials [10,

30, 31], LiFePO4 has comparative high OCV about 3.0-3.5 V [10, 16, 18, 20, 21, 29, 31].

In contrast to other cathode materials, LiFePO4 maintains nearly constant OCV in wide

interval of State of Charge (SOC) [16, 18, 29, 31, 34].

2.1.2 Electrolyte

Electrolyte performs a vital role on Li+ transport across two electrodes [35, 36]. Typically,

Lithium salts such as LiPF6, LiAsF6, LiClO4, LiBF4 are dissolved in solvents/gels

to use as an electrolyte [36]. Lithium hexafluorophosphate (LiPF6) is widely used in

commercial lithium batteries due to high ion conductivity, electrochemical stability and

favorable SEI forming ability [36, 37]. Many other electrolyte salts and solvents/gels are

under development to minimize the e↵ect of adverse e↵ects while improving electrical

and di↵usive properties [36].

Valøen and Reimers [35] has conducted study on electrochemical properties of LiPF6

in mixture of propylene carbonate, ethylene carbonate and dimethyl carbonate (PC/

EC/ DMC). Empirical correlations for ionic conductivity (e) and di↵usivity (De) were
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developed which e andDe depend on Li+ concentration (ce) and temperature (T ) in elec-

trolyte [35]. Polynomial expansion coe�cient function (⌫) was also developed by Valøen

and Reimers [35] which includes e↵ect from transference number (t+) and electrolyte salt

activity (f±). ⌫ is used to substitute concentration potential in ohm’s law equation for

electrolyte [20]. The results obtained for LiPF6/PC/EC/DMC electrolyte [35] have been

used by several subsequent authors to model and simulate P2D models [17, 20, 25].

Electrolyte is filled within the porous space in anode, cathode and in separator [13]. Thus,

transport of Li+ takes place through a porous media. To compensate for additional path

length within porous space (tortuosity), e↵ective transport properties needed to be used

instead of bulk properties [14, 20, 21, 24]. Bruggeman correlation ("�) is used to calculate

tortuosity; where " is the volume fraction of medium. For electrochemical systems, value

of Bruggeman exponent (�) is 1.5 [13, 38, 39].

2.1.3 Electrode-Electrolyte Interface

At the interface between electrode material (solid phase) and electrolyte (solution phase)

an equilibrium of Li/Li+ intercalation and de-intercalation exists [26, 27, 40],

Li ⌦ Li+ + e�

This is a dynamic equilibrium which depend on Li concentration at surface of electrode,

Li+ concentration in electrolyte and reactivity (eq.(3.13)). The current that is being

exchanged through interface is known as exchange current density (i0 > 0). When two

electrodes (anode and cathode) are connected internally (i.e. electrolyte) and externally,

this equilibrium become imbalanced due to the Open Circuit Voltage (OCV) di↵erence

between two electrodes. This results in a net current flow through interface which is

known as the transfer current density (in) [26]. The direction of reaction and in are

dependent on electrode and charge/discharge process. Kinetics of this charge transfer

(current density in) is governed by the Butler-Volmer kinetics [13, 40, 41].

2.1.4 Separator

This is a porous thin membrane of plastic, glass fiber or ceramic material used to sep-

arate anode and cathode, electrically and physically [37, 42]. Materials that are used

for separator should be chemically compatible with electrolyte [37, 42]. Francis et al.

[37] have done a detail review on separators that used in commercial lithium ions bat-

teries. However, in P2D model only porosity and thickness of the separator are required

9



Electrolyte - Electrode Interface

Anode Material Cathode Material

Li+

Li

Li+Electrolyte
Discharge

Charge

r p

Figure 2.1: Lithium transport between electrode - electrolyte - electrode

Sphere at left indicates a particle at negative electrode. Sphere at right indicates a particle at
positive electrode. During discharging, Li radially di↵use outward from left sphere and enter to
electrolyte via interface, while at right sphere Li enter via interface and di↵use radially into
the core. During charging, reverse of above process occurs. Net Li transfer across interfaces

are governed by charge transfer reaction.

[13, 14, 16–18, 20, 21, 30].

2.2 Capacity Fading

Contributing factor for capacity fading in lithium-ion battery is formation and growth of

Solid Electrolyte Interface (SEI) layer at anode (negative electrode) [4, 20, 24, 28, 29, 33].

Similar layer also grows in cathode as well, but e↵ect on battery performance is negligible

[33]. SEI layer is electrically nonconductive, but has higher selectivity to Li+ and its

di↵usion [28, 33]. Since SEI layer is electrically non-conductive, this helps to prevent

short-circuit inside battery improving safety of operation. However, about 10% of cyclical

lithium is consumed for initial formation of SEI layer [33].
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Ning et al. [24] developed an electrochemical model for capacity fading as an extension

to P2D model and optimized based on experimental data. Authors have considered

electrochemical parasitic reaction which influence capacity fading and increase of anode

SEI film resistance [24]. LiCoO2 was the cathode material that was used by Ning et al.

[24], which shows considerable voltage reduction and capacity reduction with increase of

cycle time. However, Wang et al. [29] have experimented the capacity fading of lithium-

ion batteries (with LiFePO4 cathode) and developed a semi-empirical model. Findings

show that there are no significant voltage reductions as cycle time increases but battery

capacity reduces. Several other authors has validated the semi-empirical model that was

developed by Wang et al. [29] in their studies [4, 20].

The advantage of Wang et al. [29] model is that, it can simulate capacity fading, inde-

pendent of electrochemical model. For example, user can input a desired cycle number

and generate required results from electrochemical model. In contrast, principles that are

used in Ning et al. [24] model are embedded in electrochemical model itself, thus it makes

mandatory to run the complete electrochemical model from cycle 1 onwards to obtain a

desired cycle data which could take considerable computational power and time [24].

2.3 Summary

P2D model was developed based on concentrated solution theory and porous electrode

theory to evaluate transport of Li/Li+ within battery [13]. Model is utilized to determine

parameters such as battery voltage (Ecell), current output/input (I), battery capacity and

energy level (SOC) of battery [13, 14, 16, 18, 20, 25, 30]. Both charging and discharging

processes can be simulated using this model [29]. Determination of battery heath, varia-

tion of output voltage due to aging can be determined by introduction of supplementary

models such as capacity fading [24, 29].

The model has flexibility to change properties of anode and cathode materials, battery

dimensions and properties of electrolyte. In this thesis, properties of carbon graphite

as anode material [18], LiFePO4 as cathode material [18] and LiPF6 in mixture of

propylene carbonate, ethylene carbonate and dimethyl carbonate as electrolyte [35] are

used to simulate the model.

This model provide flexibility for optimization of battery parameters to improve e�ciency,

power output, determine battery service frequency and finally determine the useful life

time for the battery for specific applications [17, 20, 30]. The main advantage of using a

mathematical model is ability to minimize testing and optimization time required because
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actual battery testing demands longer time [24, 29].

In this thesis, a suitable electrochemical model (P2D model) was selected based on studies

done in literature. The P2D model was reproduced in MATLAB using Finite Di↵erence

Method (FDM) approach. The reproduced model was validated against data from lit-

erature [18, 20, 29]. Data from literature was used to estimate the parameters of the

model and minor tuning was conducted to make proper agreement between simulated

results and data from literature. The performance of the model was then investigated

for di↵erent scenarios such as initial operation of the battery, distribution of lithium in

electrodes, power delivery, voltage response & relaxation aginst current pulses and e↵ects

due to capacity fading.
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Chapter 3

Theory

3.1 Electrochemical Model

In general, negative electrode, separator and positive electrode sheets are sandwiched

between two current collectors and spirally wound into cylindrical format [20]. Figure

3.1 indicates a cross section of such sandwiched section of battery. The two electrodes

and separator are composed of porous materials. Pore spaces are filled with electrolyte

and are continuous in all three sections. Separator allows the pass of Li+ but prohibits

the pass of electrons, thus, electrons pass thorough external circuit while Li+ ions pass

though internally.

The electrochemical model used in this thesis is developed based on Pseudo Two Di-

mensional (P2D) model [13–21, 28, 30, 31, 35, 41, 43, 44]. Concentrated solution theory,

porous electrode theory and kinetic equations are foundation of P2D model [12, 13]. The

model assumes that two electrodes are as porous matrices and the behavior of model

is interpreted as spheres in electrolyte while lithium intercalation, de-intercalation are

occurred at surface area of spheres. [12, 13]. A 1-dimensional approach is used in the

formulation of the model (x-axis for electrolyte, r-axis for spheres) because Li/Li+ trans-

fer processes are predominantly unidirectional [12–14, 16, 18–21]. Governing equations

are presented at eq. (3.1), eq. (3.3), eq. (3.7), eq. (3.10), eq. (3.11), eq. (3.12) and eq.

(3.17) including valid domains next to the equations.

3.1.1 Description of Constants, Variables and Parameters

Constants that are used in electrochemical model are tabulated in table 3.1. Lengths
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Figure 3.1: Schematic diagram of anode, separator and cathode of battery

Battery consists of negative electrode (anode), separator and positive electrode (cathode).
Boundary 1 is negative current collector and boundary 4 is positive current collector. boundary

2 and 3 indicate interfaces between electrodes and separator. Thickness of each section is
marked in figure. Direction of x indicates length from left to right where boundary 1

corresponds to x = 0.

of three sections in the battery; negative electrode (Ln), separator (Ls) and positive

electrode (Lp) are also indicated in figure 3.1. Sum of these three lengths indicated by full

length of battery (L). rp and rn radii correspond to particle sizes in electrode material

at positive and negative electrodes. These radii are indicated at figure 2.1. E↵ective

electrode conductivity (�eff ), specific surface area of electrode material (as), volume

fraction of electrolyte ("e) and porosity of electrode (") are considered as constants.

Porosity of electrode (") reflects the active material within the electrode matrix, therefore

"+ "e < 1.

Three main spacial domains were used in this model (do not confuse with x,y,z axes) ;

Electrolyte domain, negative electrode domain and positive electrode domain. Electrolyte

domain (Defined by set LB) is defined in x dimension which has three subsets, negative

electrode (LN), separator (LS) and positive electrode (LP ) (refer fig 3.1). Negative and

positive electrode domains are defined based on radial axis (fig 2.1) where domain of

negative electrode is defined by LN ⇥ RN and domain of positive electrode is defined by

LP⇥RP . Sets LB, RN and RP are mutually exclusive sets with each other
�
n(LB\RN) =

n(LB \RP ) = n(RP \RN) = 0
�
. Sets are mathematically defined as follows,

• LN = {x | 0  x  Ln}
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Table 3.1: Constants - Electrochemical model

Symbol Description
Ln Thickness of negative electrode
Ls Thickness of separator
Lp Thickness of positive electrode
L Thickness of battery (Ln + Ls + Lp)
rp Radius of particles at positive electrode
rn Radius of particles at negative electrode
R Universal gas constant (8.314 J K�1 mol�1)
F Faraday constant (96487 C mol�1)
t0+ Transference number of Li+ ions dissolved in electrolyte
f± Activity coe�cient for Li salt
�eff E↵ective conductivity of electrode material
as Specific surface area of electrode material
↵a Activity coe�cient of anodic reaction
↵c Activity coe�cient of cathodic reaction
"e Volume fraction of electrolyte
" Porosity of electrode

cn,max Maximum Li concentration in negative electrode material
cp,max Maximum Li concentration in positive electrode material
� Bruggeman tortuosity exponent (by default � = 1.5)

• LS = {x |Ln  x  Ln + Ls}

• LP = {x |Ln + Ls  x  L}

• LB = LN [ LS [ LP

• RP = {r | 0  r  rp}

• RN = {r | 0  r  rn}

x-axis (x), radial axis (r) and time (t) act as independent variables to represent a property

at specific point in space-time. Total current density (I) and initial temperature (Tini)

are user input variables. If thermal model is not used, temperature
�
T (x, t)

�
is T (x, t) =

Tini. Main dependent variables are Li concentration in electrodes
�
cs(r, x, t)

�
and Li+

concentration in electrolyte
�
ce(x, t)

�
. Here Li concentration in electrodes

�
cs(r, x, t)

�
are

defined in a pseudo dimensional space (RN ⇥ LN and RP ⇥ LP ) which is explained with

the help of porous electrode theory introduced by Newman and Tiedemann [23] in 1975.

Electrode current density
�
is(x, t)

�
, electrode potential

�
�s(x, t)

�
, electrolyte current den-

sity
�
ie(x, t)

�
, electrolyte potential

�
�e(x, t)

�
are intermediate variables which are used

to determine cs(r, x, t) and ce(x, t). However, �s(x = 0, t) and �s(x = L, t) are important
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variables for the determination of voltage output from the battery (Ecell) and calculation

of energy input to/output from battery.

Transfer current density
�
in(x, t)

�
is an important kinetic parameter which is determined

using Butler-Volmer kinetics. This parameter describes the current flux between electrode

and electrolyte. in(x, t) is appeared as source term in both electrode and electrolyte mass

transport equations. According to porous electrode theory by Newman and Tiedemann

[23] this parameter is the link between pseudo dimensions (Li in electrodes) and real

dimension (Li+ in electrolyte).

Other parameters such as electrolyte di↵usivity
�
De(x, t)

�
, negative, positive electrodes

di↵usivity
�
Dn(x, t) , Dp(x, t)

�
, electrolyte conductivity

�
e(x, t)

�
, negative, positive re-

action coe�cients
�
kn(x, t) , kp(x, t)

�
and negative, positive OCV

�
Un(x, t) , Up(x, t)

�
de-

pend on Li concentration and/or temperature at respective point in space-time. Table

3.2 tabulates user input, dependent and independent variables which are used in electro-

chemical model.

It is important to note that in this model, the sign of total current density (I) determines

whether the battery is charging or discharging. Total current density (I) is introduced

into the model in Eq. (3.8) where, if I > 0 initiates discharging process and I < 0

initiates charging process.

3.2 Discharging and Charging Process

Figure 3.2 illustrates the schematic diagram of a discharge and charge processes. It is

important to note that figure is not presented in scale; electrode matrices (spheres) are

enlarged and spaced out in order to demonstrate the mass transfer within spheres and

electrolyte. Three dots (· · ·) in electrode regions indicate that electrode is shrunken down

to save space in figure. Polarity of battery indicated near current collectors in ‘+’ and

‘�’ marks. Continuous line headed arrows (!) indicate direction of lithium transport

within electrode material and dashed line arrows (99K) indicate direction of transport of

Li+ ions in electrolyte.

3.2.1 Discharging Process

When battery is connected to load (circuit is closed), electrons start to flow from negative

electrode to positive electrode via external circuit (fig. 3.2a). The electromotive force

(voltage di↵erence between electrodes) is the driving force of electrons. At electrolyte-
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Table 3.2: Variables and parameters - Electrochemical model

Symbol
Type of

Domain Description
Variable

I User input I 2 (�1,1) Total current density
Tini User input Tini 2 (0,1) Initial temperature of Battery cell
x Independent x 2 LB x dimension of battery cell
r Independent r 2 RN [RP Radial dimension of spherical particles
t Independent t 2 [0,1) Time

T (x, t) Dependent x 2 LB Cell temperature
ce(x, t) Dependent x 2 LB Electrolyte concentration of Li+ ions

cs(r, x, t) Dependent
x 2 LN [ LP Electrode Li concentration
r 2 RN [RP

�e(x, t) Dependent x 2 LB Electrolyte phase potential
�s(x, t) Dependent x 2 LN [ LP Electrode potential
is(x, t) Dependent x 2 LN [ LP Electrode local current density
ie(x, t) Dependent x 2 LB Electrolyte local current density
in(x, t) Dependent x 2 LN [ LP Transfer current density
De(x, t) Dependent x 2 LB Electrolyte di↵usivity
Dn(x, t) Dependent x 2 LN Negative electrode di↵usivity
Dp(x, t) Dependent x 2 LP Positive electrode di↵usivity
e(x, t) Dependent x 2 LB Electrolyte conductivity
kn(x, t) Dependent x 2 LN Negative electrode reaction coe�cient
kp(x, t) Dependent x 2 LP Positive electrode reaction coe�cient
Un(x, t) Dependent x 2 LN Negative electrode OCV
Up(x, t) Dependent x 2 LP Positive electrode OCV
k0(x, t) Dependent x 2 LN [ LP Reactivity (kn OR kp)
Ecell(t) Dependent t 2 [0,1) Battery voltage
Qcell(t) Dependent t 2 [0,1) Battery capacity
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Figure 3.2: Schematic diagram of charging and discharging processes
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electrode interface of negative electrode, electrons are generated due to following reaction,

Li(electrode) ! Li+(electrolyte) + e�(electrode)

where ‘e�’ denotes an electron. Electrons move through the positive electrode matrix

in the direction of the negative current collector and move to external circuit. The

reaction creates Li deficit at the surface of negative electrode material (surface of spheres)

compared to the core of material (center of spheres) thus, initiating Li di↵usive mass

transport at negative electrode.

At positive electrode, electrons enter through positive current collector to electrode ma-

terial. Electrons move through the positive electrode matrix and at electrode-electrolyte

interface the following reaction occurs,

Li+(electrolyte) + e�(electrode) ! Li(electrode)

The reaction consumes Li+ from electrolyte and added to surface of positive electrode

material. This creates Li surplus at surface (surface of spheres) as compared to the core

of material (center of spheres), initiating mass transport from surface to core.

The above two reaction creates Li+ surplus at electrolyte near negative region and Li+

deficit at electrolyte near positive region. Thus, concentration gradient is created to

initiate mass transport process in electrolyte.

3.2.2 Charging Process

When battery is connected to external power source, the charging process is initiated.

The di↵erential voltage is applied by external power source should be higher than volt-

age di↵erence across the battery to drive electrons from positive electrode to negative

electrode via external circuit (fig. 3.2b).

Electrons are removed from positive electrode and enters into external circuit though

positive current collector. At the surface of positive electrode material following reaction

is initiated to generate electrons,

Li(electrode) ! Li+(electrolye) + e�(electrode)

The reaction moves lithium from surface of the positive electrode to electrolyte. Li

deficiency at surface compared to core of material initiate mass transport within positive

electrode material from core to surface.
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Electrons are added to negative electrode through negative current collector. At the

surface of negative electrode material, following reaction consumes the electrons that

transported into the electrode,

Li+(electrolyte) + e�(electrode) ! Li(electrode)

The reaction moves lithium to surface of electrode material from electrolyte. Li surplus

is created at surface compared to core of material initiating mass transport from surface

to core of negative electrode material.

In the case of charging, Li+ at electrode near positive region is higher than the negative

region. Thus, Li+ concentration gradient is created which initiates mass transport process

in electrolyte.

3.3 Governing Equations

Seven governing equations are involved in the electrochemical model. The mechanisms

that are involved can be summed up as follows: mass transport in electrolyte ce(x, t),

Ohm’s law for electrolyte ie(x, t), Ohm’s law for electrodes is(x, t), divergence of current

density at electrolyte r · ie(x, t), divergence of current density at electrodes r · is(x, t),
transfer current density in(x, t) and mass transport in electrodes cs(r, x, t). These equa-

tions are boxed in this section for easy identification.

3.3.1 Conservation of Mass in Electrolyte

Mass transport equation for the electrolyte (ce) is represented in equation (3.1). Li+

concentration ce(x, t), is described within the electrolyte domain (x 2 LB). in(x, t) is

transfer current density, which present in the source term in the eq. (3.1). in(x, t) is

determined using Butler-Volmer kinetics (eq. (3.12)). Electrolyte is considered to be

superimposed continuum across negative, positive electrodes and separator regions [13,

20, 40]. In eq. (3.1) ce = ce(x, t) , Deff

e
= Deff

e
(x, t) , in = in(x, t). E↵ective di↵usivity

coe�cient (Deff

e
) is calculated using electrolyte volume fraction ("e) and Bruggeman

tortuosity exponent (�),

Deff

e
(x, t) = "�

e
De(x, t)
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At boundary 1 and 4, only current collectors exists and no electrolyte. Thus no change

in Li+ concentration. Therefore boundary conditions for the above equation are given

by equation (3.2).

@ce(·, t)
@x

����
x=0

= 0 and
@ce(·, t)

@x

����
x=L

= 0 (3.2)

3.3.2 Conservation of Current

The modified Ohm’s law for the electrolyte which includes variation of activity coe�cient

of Li salt [13, 21, 35], is given by equation (3.3). Electrolyte current density
�
ie(x, t)

�
is

dependent on electrolyte potential gradient
�
r�e(x, t)

�
and Li+ concentration gradient

within electrolyte
�
rce(x, t)

�
. In eq. (3.3) T = T (x, t) , eff

e
= eff

e
(x, t). eff

e
is e↵ective

ionic conductivity of electrolyte which is calculated using electrolyte volume fraction ("e)

and Bruggeman tortuosity exponent (�),

eff

e
= "�e

ie = �eff

e
r�e +

2RTeff

e

F
(1� t0+)

✓
1 +

@ln f±
@ln ce

◆
rln ce

| {z }
Kjunc

, x 2 LB (3.3)

At boundaries 1 and 4, there are only current collectors and no electrolyte. Thus,

(ie(x, t) = 0 , x 2 {0, L}) which results derivative of electric potential (r�e) to be

zero at two boundaries. Boundary conditions for above equation (eq. (3.3)) are indicated

at equation (3.4)

@�e(·, t)
@x

����
x=0

= 0 and
@�e(·, t)

@x

����
x=L

= 0 (3.4)
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Liquid junction potential term (Kjunc) [20] in eq. (3.3) is replaced by equation (3.5).

⌫(cel, T ) (eq (3.6)) is a thermodynamic factor which depends on electrolyte activity [20,

35]. Eq. (3.6) was determined by Valøen and Reimers [35] using experimental methods.

The units of ce in this equation is in mol m�3 and T is in Kelvin (K).

Kjunc(x, t) =
2RT (x, t)

F
(1� t0+)

✓
1 +

@ln f±
@ln ce(x, t)

◆
=

2RT (x, t)

F
⌫(x, t) (3.5)

⌫(x, t) = 0.601� 0.24
p

10�3ce(x, t) + 0.982
⇣
1� 0.0052(T (x, t)� 294)

p
10�9c3

e
(x, t)

⌘

(3.6)

Ohm’s law for solid electrodes are presented in equation (3.7) [13, 20, 21]. This equation

is applied for negative and positive electrodes separately. �eff is the e↵ective conductivity

of the electrode material which is calculated using electrode porosity (") and Bruggeman

tortuosity exponent (�),

�eff = "��

is(x, t) = ��effr�s(x, t) , x 2 LN [ LP (3.7)

Negative current collector (at x = 0) of the battery is considered to be grounded, thus po-

tential at boundary 1 is zero (�s(·, t)|x=0 = 0). This value does not a↵ect final results, but

act as a datum value for electric potentials. The total current density (I) which is drawn

out/in from battery goes through negative and positive current collectors (boundary 1

and 4). Therefore is(x, t) = I where x 2 {0, L}. Based on this, boundary conditions for

boundary 1 and 4 are defined as ��eff @�s

@x
= �I. Boundaries 2 and 3 (interface between

separator and electrodes) have zero current (is(x, t) = 0 where x 2 {Ln, Ln+Ls}), result-
ing electric potential gradients to be zero. These boundary conditions can be summarized

as in equation (3.8).

��effr�s(·, t)|x=0 = �I � �effr�s(·, t)|x=L = �I

��effr�s(·, t)|x=Ln = 0 � �effr�s(·, t)|x=Ln+Ls = 0
(3.8)

Conservation of current imposes that at any given point of the battery, sum of local

current density through electrolyte (ie) and local current density though solid phase (is)

should be same as total current density (I). However, at separator region (x 2 LS) since
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there is no existence of local current density of electrode (is), local current density of

electrolyte (ie) is same as total current density (I). This also means that at any point at

the battery, the current flowing through it is constant. Thus, equation (3.9) represents

the current conservation inside the battery cell.

I =

8
<

:
is(x, t) + ie(x, t) , if x 2 LN [ LP

ie(x, t) , if x 2 LS

(3.9)

Divergence of local current densities (r · ie , r · is) are proportional to transfer current

density (in). The magnitude of divergence also depends on specific surface area of elec-

trode material (as). r · ie and r · is have opposite signs because current leaves from

one phase and enter into another phase (e.g. when electrode losses Li, electrolyte gain

that Li+). Divergence for local current density at electrolyte (r · ie) is represented by

eq. (3.10) and divergence for electrodes’ local current densities (r · is) represented by eq.

(3.11) [13, 25, 40].

r · ie(x, t) =

8
<

:
asin(x, t) , if x 2 LN [ LP

0 , if x 2 LS

(3.10)

r · is(x, t) = �asin(x, t) , x 2 LN [ LP (3.11)

According to Doyle et al. [13], at the interface between electrode and electrolyte (refer

fig. 2.1), mass transfer
�
cs(r, x, t), ce(x, t) where r 2 {rn, rp}, x 2 LN [ LP

�
which is

also known as lithium intercalation/de-intercalation, is assumed to be governed by Butler

Volmer kinetics. The same approach was used by many authors who used this model to

determine charge transfer at interface [20, 21, 26, 40]. Calculation of transfer current by

Butler-Volmer equation is represented by equation (3.12). In eq. (3.12) in = in(x, t),

i0 = i0(x, t), T = T (x, t), �s = �s(x, t), �e = �e(x, t) and U = U(x, t). Here U represents

OCV which is replaced by U = Un at negative electrode and U = Up at positive electrode.

The shape of eq.(3.12) is presented in figure 3.3.

in = i0

✓
exp

✓
↵aF

RT
(�s � �e � U)

◆
� exp

✓
�↵cF

RT
(�s � �e � U)

◆◆
,

x 2 LN [ LP

(3.12)
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Figure 3.3: Butler-Volmer kinetic behaviour

Graph illustrates the behaviour of Butler-Volmer kinetics which is presented in equation (3.12).
Here the equation is presented in y = e

x � e
�x format. From the graph it is apparent that sign

of y depends on sign of x.

Exchange current density (i0) is dependent on reactivity of electrode material (k0), Li+

concentration in electrolyte (ce) and surface Li concentration in electrodes (cs(r, x, t), r 2
{rn, rp}). Exchange current density can be determined by equation (3.13) and it requires

to solve for negative and positive electrodes separately. F represents Faraday constant,

↵a and ↵c represent anodic and cathodic activity coe�cients respectively.

i0(x, t) = F k0 c
↵c
s
(r = ri, x, t)

✓
cs,max � cs(r = ri, x, t)

◆↵a

c↵a
e
(x, t) , (3.13)

x 2 LN [ LP ri 2 {rp, rn}

Open Circuit Voltage (OCV) (U) for anode and cathode are dependent on concentration

of Li at surface of electrodes (cs(r 2 {rn, rp}, x, t)) [16, 21, 30] and battery temperature

(T ) [17, 20]. The dependance of OCV (U) with temperature can be expressed as in

equation (3.14) [17, 20]. Uref is the reference OCV at reference temperature (25oC) and
dU

dt
is the entropy for anode/cathode material.

U(x, t) = Uref (x, t) + (T � Tref )
dU(x, t)

dT
, x 2 LN [ LP (3.14)

Reference OCV for natural graphite (Un,ref ) which is commonly used in negative electrode

is presented in equation (3.15) at 25oC [18, 20]. x̃ represents the ratio between surface
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concentration of Li in negative electrode (cs(r = rn, x, t)) to maximum Li concentration

that can hold up in the material (cn,max). Units of Un is in volts (V ).

Un,ref (x, t) = 0.6379 + 0.5416 exp(�305.5309x̃) + 0.044 tanh

✓
� x̃� 0.1958

0.1088

◆

� 0.1978 tanh

✓
x̃� 1.0571

0.0854

◆
� 0.6875 tanh

✓
x̃+ 0.0117

0.0529

◆

� 0.0175 tanh

✓
x̃� 0.5692

0.0875

◆
,

(3.15)

x̃(x, t) =
cs(r = rn, x, t)

cn,max

, x 2 LN

LiFePO4 is a popular cathode material which is used in positive electrodes in commercial

applications [10]. Equation (3.16) represents reference OCV for LiFePO4 (Up,ref ) at 25oC

[18, 20]. ỹ represents the ratio between surface concentration of Li in positive electrode

(cs(r = rp, x, t)) to maximum Li concentration that can hold up in the material (cp,max).

Units of Up is in volts (V ).

Up,ref (x, t) = 3.4323� 0.8428 exp
�
�80.2493(1� ỹ)1.3198

�

� 3.2474⇥ 10�6 exp
�
20.2645(1� ỹ)3.8003

�

+ 3.2482⇥ 10�6 exp
�
20.2646(1� ỹ)3.7995

�
,

(3.16)

ỹ(x, t) =
cs(r = rp, x, t)

cp,max

, x 2 LP

Eq. (3.15) [18] and Eq. (3.16) [18] were developed based on experimental data . Both

equations valid in the interval of [0, 1] for x̃ and ỹ; where 0 indicates no lithium and 1

indicates maximum lithium concentration in electrode material. Behavior of these two

equations are represented at fig. 3.4.

OCV entropy values for negative and positive electrodes (dUn
dT

and dUp

dT
) are also extracted

from experimental data which are published in literature [17, 45]. These equations are

presented in appendix A. Entropy for negative electrode (dUn
dT

) is represented in eq.(A.2),

and entropy for positive electrode (dUp

dT
) is represented in eq.(A.1).
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Figure 3.4: Open circuit voltages of electrodes

Graph represents OCV of negative and positive electrodes at 25oC, which are indicated in eq.
(3.15) and eq. (3.16). x axis is shared by both x̃ and ỹ variables.

3.3.3 Conservation of Mass in Electrodes

Porous electrodes are considered to be made by micro size homogeneous spherical particle

matrix [13, 20, 21]. Figure 2.1 illustrates interaction between micro-size electrode particle

and electrolyte. Mass transport within electrodes (cs) can be determined by Fick’s law

which is represented in equation (3.17) [20]. Equation determines distribution of Li in

spheres (cs) at each x position in electrodes. Therefore, distribution of Li in an electrode

is calculated within a Pseudo Two Dimensional (P2D) space (r-axis and x-axis) and

time.

@cs(r, x, t)

@t
=

1

r2
@

@r

✓
Dsr

2@cs(r, x, t)

@r

◆
,

�
x 2 LN AND r 2 RN

�
OR

�
x 2 LP AND r 2 RP

� (3.17)

At center of sphere (r = 0) there is no Li mass, thus, derivative of Li concentration (cs)

with respect to radius (r) is zero. At surface of sphere charge transfer reaction occurs.

Therefore, mass transfer at surface (r 2 {rn, rp}) is proportional to transfer current

density (in). Equation (3.18) represents boundary conditions which described above.
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�Ds

@cs(·, x, t)
@r

����
r=0

= 0 �Ds

@cs(·, x, t)
@r

����
r=ri

=
in
F

,

�
x 2 LN AND ri = rn

�
OR

�
x 2 LP AND ri = rp

� (3.18)

3.3.4 Calculation of Di↵usion Coe�cients for Electrodes

According to Ye et al. [20] di↵usion coe�cients for electrodes are considered to be fol-

lowing Arrhenius equation. Di↵usion coe�cient for negative (natural graphite) and pos-

itive (LiFePO4) electrodes are calculated using equations (3.19) and (3.20) respectively

[20, 25]. Dn and Dp values substitute Ds in equation (3.17) depending on which electrode,

the mass transport is calculated for. Units of Dn, Dp are in m2 s�1 and T is in Kelvin

(K).

Dn(x, t) = 3.9⇥ 10�14 exp

✓
35000

R

✓
1

298.15
� 1

T (x, t)

◆◆
, x 2 LN (3.19)

Dp(x, t) = 1.18⇥ 10�18 exp

✓
35000

R

✓
1

298.15
� 1

T (x, t)

◆◆
, x 2 LP (3.20)

3.3.5 Calculation of Electrolyte Di↵usivity and Ionic Conduc-

tivity

Electrolyte di↵usivity (De) and ionic conductivity (e) depend on concentration of Li+

ions in electrolyte and temperature [20, 25, 35]. Respective formulae are obtained from

experimental data which was investigated by Valøen and Reimers [35]. Di↵usion coe�-

cient (De) is used in electrolyte mass transport equation (eq.(3.1)) and ionic conductivity

(e) is used in electrolyte Ohm’s law (eq.3.3). Di↵usion coe�cient (De) and conductivity

of electrolyte (e) are represented as in Eq. (3.21) and (3.22) respectively. Unit of De is

m2 s�1, unit of ce is mol m�3, unit of e is S m�1 and T is in kelvin (K). In Eq. (3.22)

e = e(x, t), ce = ce(x, t) and T = T (x, t) where x 2 LB. Eq.(3.21) and eq.(3.22) are

plotted in figure 3.5.

De(x, t) = 1⇥ 10�4 ⇥ 10�4.43� 54
T (x,t)�229�0.005ce(x,t)

�2.2⇥10�4
ce(x,t) , x 2 LB (3.21)
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Figure 3.5: Di↵usivity and ionic conductivity of electrolyte

Graph illustrates the behaviour of di↵usivity (De) and ionic conductivity (e) of electrolyte. De

and e are presented against lithium-ion concentration in electrolyte (ce) at T = 298.15K.

e =1⇥ 10�4ce(�10.5 + 0.074T � 6.69⇥ 10�5T 2 + 6.68⇥ 10�4ce

� 1.78⇥ 10�5ceT + 2.8⇥ 10�8ceT
2 + 4.94⇥ 10�7c2

e
� 8.86⇥ 10�10c2

e
T )2

(3.22)

3.3.6 Calculation of Reaction Rates

Reactivity of lithium transformation (intercalation/de-intercalation) at electrode-electrolyte

interface follows Arrhenius formula [20]. Reactivity for negative (natural graphite) and

positive (LiFePO4) electrodes are shown in equation (3.23) and equation (3.24) respec-

tively. kn and kp values substitute k0 in equation (3.13) depending on which electrode

the equation is applied for.

kn(x, t) = 3⇥ 10�11 exp

✓
20000

R

✓
1

298.15
� 1

T (x, t)

◆◆
, x 2 LN (3.23)

kp(x, t) = 1.4⇥ 10�12 exp

✓
30000

R

✓
1

298.15
� 1

T (x, t)

◆◆
, x 2 LP (3.24)
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3.3.7 Calculation of Specific Surface Area of Electrodes

Specific surface area (as) is used in mass transport (eq.(3.1),(3.17)) and charge conserva-

tion equations (eq.(3.10),(3.11)). Specific surface area as represented in equation (3.25)

[40]. Normally radii of particles (r) and electrode porosity (") for negative and positive

electrodes are distinct values, thus, for negative and positive electrodes, as should be

determined separately.

as =
3"

r
(3.25)

3.3.8 Battery Capacity and Voltage Calculation

Battery capacity (Qcell) is defined as aggregate of current which is drawn out/in from

the battery. This quantity is calculated using total current density (I) and time (t).

Calculation of Battery capacity (Qcell) is presented by eq.(3.26). The total current density

(I) can vary over time (t). Units of Qcell is Ampere hours (Ah), total current density (I)

in Am2 and time (t) is in seconds.

Qcell(t) =

Z
t

0

I(t)

3600
dt (3.26)

Ecell is the voltage di↵erence between the negative and positive terminals of the battery

which is calculated using eq.(3.27).

Ecell(t) = �s(x = L, t)� �s(x = 0, t) (3.27)

Generally, Ecell depends on SOC and total current density (I). A high quality battery

provides constant Ecell regardless of SOC and the drop of Ecell with increasing discharge

current (I) is minor.

3.3.9 Summary

Principles of conservation of mass and conservation of current (charges) are used to

develop the electrochemical model. Mass and charge transport due to Li and charge

transport due to electrons are considered. The mass transport of electrons are excluded

because mass of electrons are negligible compared to Li. The model depends on three
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spacial domains namely, electrolyte, negative electrode and positive electrode domains.

Conservation of Li in electrodes (eq. (3.17)) are solved within P2D space and time (i.e.

(r, x, t)). Source term for electrodes are only applied at interface between electrode and

electrolyte (embedded in boundary condition, eq. (3.18)). Magnitude and direction of

source term is governed by charge transfer reaction (Eq. (3.12)).

Conservation of Li+ in electrolyte (eq. (3.1)) is solved within x-dimension and time. (i.e.

(x, t)). Source term for electrolyte applied within negative and positive electrode regions.

At the separator region there exists no source term. The magnitude and direction of

source term is depend on charge transfer reaction (Eq. (3.12)).

Conservation of current (eq. (3.3), (3.7), (3.10), (3.11) and (3.12)) is solved within x-

dimension and time (i.e. (x, t)). The kinetics are based on Ohm’s law and Butler-Volmer

kinetics. Solution for system of equations mainly depend on total current density (I) that

is drawn in/out from battery. Solution obtained from charge transfer system of equations

then used to determine Li mass transfer between electrode-electrolyte interfaces.

When battery is not connected to an external circuit (circuit is open), There is no flow of

current. When battery is connected to an external circuit electrons start to flow through

the external circuit due to electric potential di↵erence. Thus, charge transfer reaction

initiates. The potential di↵erence across battery (Ecell) is determined by eq.(3.27),

Ecell(t) = �s(x = L, t)� �s(x = 0, t)

If material or chemistry of negative electrode is changed, formulae for OCV (eq. (3.15)),

Di↵usivity (eq. (3.19)) and for reactivity (eq. (3.23)) need to be replaced with new

equations or values correspond to material. Similarly, if material in positive electrode is

changed, formulae for OCV (eq. (3.16)), Di↵usivity (eq. (3.20)) and for reactivity (eq.

(3.24)) need to be replaced. Ionic conductivity (eq. (3.22)), and ionic di↵usivity (eq.

(3.21)) need to be replaced if di↵erent electrolyte is used other than LiPF6 in propylene

carbonate, ethylene carbonate and dimethyl carbonate.

3.4 Capacity Fading

The construction of battery initially consumes about 10% of active lithium to form the

Solid Electrolyte Interface (SEI) layer [28, 33]. This e↵ect should be accounted when

defining initial Li concentration for negative electrode.
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The capacity fading due to aging is determined using semi empirical model developed by

Wang et al. [29]. This model has been used by several other authors, which indicate good

approximations with experimental data [4, 20]. The semi-empirical model was developed

for lithium battery with graphite anode and LiFePO4 cathode [29]. This model can be

used independent of output data by P2D model [20].

Equation (3.28) is used for the calculation of capacity reduction [29]. Closs is the percent-

age of active lithium lost compared to initial lithium at electrode. C Rate is a parameter

to indicate the discharge rate of battery; for example 1C means the current that is re-

quired to discharge/charge the full battery capacity in 1hour, 2C means the current that

is required to discharge/charge the full battery capacity in 0.5 hours, 0.5C means the

current that is required to discharge/charge the full battery capacity in 2 hours, etc.

Pre-exponent factor (B) is dependent on C Rate. These values were calculated by Wang

et al. [29] and are presented in table 3.3. FCC is the full cell capacity in Ampere hour

units. DOD is depth of discharge which represents the percentage of capacity that is

discharged from battery compared to initial capacity. DOD does not have significant

e↵ect on capacity reduction at low discharge rates (i.e. 0.5C) [29]. CN indicates the

cycle number which the battery has encountered. Discharge and subsequent charge of

battery is defined as one cycle.

Closs(%) = B ⇥ exp

✓
�31700 + 370.3⇥ C Rate

RT

◆
⇥ A0.55

h
(3.28)

Where,

Ah = FCC ⇥DOD ⇥ CN

Closs(%) - Percentage of average lost lithium to averaged initial lithium

B - Pre exponent factor

C Rate - Discharge rate

R - Universal gas constant (J K�1 mol�1)

T - Absolute temperature (K)

FCC - Full cell capacity (A h)

DOD - Depth of Discharge

CN - Cycle number

Table 3.3: Pre-exponent (B) values for capacity fade equation

C Rate 0.5C 2C 6C 10C
B 31630 21681 12934 15512
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Figure 3.6 demonstrates the e↵ect of capacity loss described by equation (3.28) for 2 Ah

battery with 100% depth of discharge at 298.15 K Temperature.
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Figure 3.6: Capacity fade of 2 Ah battery at 298.15 K
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Chapter 4

Methodology

The electrochemical model and thermal model are designed such that, if necessary, the

electrochemical model can operate without an input from the thermal model (isothermal

operation). The thermal model is documented in appendices C, D and E. Two di↵er-

ent independent environments were used to design electrochemical and thermal models.

When both models are operating together, the electrochemical model depends on tem-

perature (T ) input from the thermal model, and the thermal model depends on electric

potentials of electrodes (�s), electrolyte (�e), Open Circuit Voltage (U), transfer current

density (in), electrolyte concentration (ce) and time (t) from the electrochemical model.

MATLAB is used to solve numerically the system of PDEs that are involved in the math-

ematical model describing discharging/charging of a lithium battery. Finite Di↵erence

Method (FDM) is used to numerically solve governing equations [41]. The Matlab code

and the input data file are presented in appendix F.

4.1 Solution Strategy

4.1.1 Definition and Organization of Variables and Parameters

Input parameters for the battery and discretization parameters were tabulated in an

Excel sheet. This ensured that proper organization of variables, convenient data entry

and import data into Matlab easily. Input parameters which were used in this model

are tabulated in table 4.1 and discretization parameters are presented in table 4.2. The

electrochemical model presented in this section contains time, x� dimension and quasi

r � dimension as dimensions and the thermal model presented in appendices C, D and
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Table 4.1: Input parameters

Symbol Description
Ln Thickness of negative electrode
Ls Thickness of separator
Lp Thickness of positive electrode
" Porosity of electrodes
"e Electrolyte volume fractions
�s Electric conductivity of Electrodes
cmax Maximum Li concentration at electrode materials
c0 Initial concentration of Li at electrodes and separator
⇢ Densities
Cp Specific heat capacities
K Thermal conductivities
rp Radii of electrode particles
↵ Anodic and cathodic activity coe�cients for two electrodes
R Universal gas constant

Tinitial Initial temperature
F Faraday constant
t0+ Transference number of Li+

E contains time, rc and z as dimensions.

4.1.2 Defining Initial Conditions

After the import of data into Matlab, initial conditions were defined based on input and

discretization parameters. Variable vectors and matrices were defined with respect to

their number of spacial domains. Figure 4.1 illustrates three main spacial domains used

for the battery model; negative electrode, positive electrode domains and electrolyte

domain. For example, a variable which incorporates two spacial domains is Li concentra-

tion in negative electrode (cs,n). This is defined such that for each grid cell in electrolyte

domain (LN), mn number of grid cells are defined. Thus, negative electrode Li concen-

tration (cs,n) becomes (Mn ⇥mn) matrix. Similarly, other vectors and matrices are also

defined and tabulated in table 4.3. The table describes sizes of vectors/matrices and their

descriptions.

It is impossible to correctly determine the initial value for electric potentials in electrodes

and electrolyte (�s(x, t = 0), �e(x, t = 0)). However, four assumptions have been made

to determine an initial condition for electric potentials �s and �e:

1. Negative terminal of battery is grounded (Already mentioned in chapter 3)
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Table 4.2: Discretization parameters

Symbol Description
t Length of time that battery operate
tn Number of time steps
dt Time step size
Mn Number of spacial steps at negative electrode
Ms Number of spacial steps at separator
Mp Number of spacial steps at positive electrode
M Total number of spacial steps (Mn +Ms +Mp)
mn Number of special steps at spheres of negative electrode
drn Length of spacial step at spheres of negative electrode
mp Number of special steps at spheres of positive electrode
drp Length of spacial step at spheres of positive electrode

2. Initial total current density (I) is zero

3. Initial electrolyte potential (�e) is constant throughout the electrolyte domain (LB)

4. Initial Li distribution in electrodes are homogenous

Thus, I = 0 and at the boundary 1 �s(x = 0, t) = 0 (Eq. (3.8)). Based on these

assumptions, the initial electric potential (�s, �e) at each grid cell is defined such that

the transfer current density (in) is zero (in = 0, which implies that total current density

(I) is zero). Since no current flows through the electrode (eq. (3.11)), the electrode

potential (�s) becomes zero from boundary 1 to boundary 2 (Fig. 3.1),

�s(x, t = 0) = 0 , x 2 LN

Therefore, from equation (3.12), initial electrolyte potential becomes,

�e(x, t = 0) = Un , x 2 LB

and, electrode potential (�s) from boundary 3 to boundary 4 becomes,

�s(x, t = 0) = Up + Un , x 2 LP

It is important to note that, governing equations are based only on potential di↵erences,

thus determination of absolute electric potential inside battery is not strictly necessary.
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Figure 4.1: Spacial domains in battery model

Three main spacial domains; Negative electrode, Positive Electrode and Electrolyte domains
are marked in the image. Double headed arrows illustrate charge transfer interface between
electrode and electrolyte. Charge transfer occurs between electrolyte cell and last cells of

electrode domains which represent the surface of the spheres (particles) which constitute the
electrode. Continuous electrolyte domain divided into three parts, negative, positive electrode

sections and separator section.
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Table 4.3: Variable vectors and matrices

Symbol Vector/Matrix Size Description
cs,n (Mn ⇥mn) Li concentration at negative electrode
cs,p (Mp ⇥mp) Li concentration at positive electrode
Dn (1⇥Mn) Di↵usivity at negative electrode
Dp (1⇥Mp) Di↵usivity at positive electrode
�s (1⇥M) Electric potential at electrodes*
�e (1⇥M) Electric potential at electrolyte
ce (1⇥M) Li+ concentration at electrolyte
cs,s (1⇥M) Surface Li concentration at electrodes*
in (1⇥M) Transfer current density*
is (1⇥M) Local current density in electrodes*
ie (1⇥M) Local current density in electrolyte
U (1⇥M) OCV*
T (1⇥M) Absolute temperature
De (1⇥M) Di↵usivity at electrolyte
e (1⇥M) Ionic conductivity at electrolyte
k0 (1⇥M) Reactivity at electrodes*

*From cell (index) Mn + 1 to Mn +Ms values are replaced with zero because these values are
not defined/null at separator region.

4.1.3 Looping the Algorithm with Evolving Time

After defining the initial conditions, a loop is necessary to compute solutions with ad-

vancing time. The main condition of the loop is to complete the number of time steps

until a designated time is approached. Within the loop, calculations are divided into

six functions. The following six functions are run in order, to compute a solution as it

evolves over one time step:

1. Update parameters

2. Ohm’s law and Butler-Volmer equations

3. Electrolyte mass balance equation

4. Mass balance equations for two electrodes

5. Thermal model equations

6. Battery voltage and capacity calculation
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Update Parameters

The objective of ‘Update parameters’ is to calculate parameters for new time step based

on the values from previous time step. These parameters are Dn, Dp, U , De, e and k0.

Bruggeman tortuosity e↵ect is also included in the formulae during the calculation of De

and e in order to convert them into e↵ective values.

Ohm’s Law and Butler-Volmer Equations

The objective of solving ‘Ohm’s law and Butler-Volmer equation’ is to determine electrode

potential (�s), Electrolyte potential (�e) and transfer current density (in). Governing

equations (3.3), (3.7), (3.9), (3.10), (3.11), (3.12) and boundary conditions from equations

(3.4), (3.8) are utilized for the derivation of solution.

Since, only x� dimension is considered in this case, Ohm and Butler-Volmer equations

which are related to electrodes (eq.(3.7), eq.(3.11) and eq.(3.12)) can be simplified into

eq. (4.1) by substitutions.

@

@x

✓
�
@�s

@x

◆
= as i0

✓
exp

✓
↵aF

RT
(�s � �e � U)

◆
� exp

✓
�↵cF

RT
(�s � �e � U)

◆◆

| {z }
in

(4.1)

Similarly, Ohm and Butler-Volmer equations which are related to electrolyte (eq.(3.3),

eq.(3.5), eq.(3.10) and eq.(3.12)) can be simplified into eq. (4.2) by substitutions.

@

@x

✓
e

@�e

@x
� 2RT

F
⌫
@ ln ce
@x

◆
=

� as i0

✓
exp

✓
↵aF

RT
(�s � �e � U)

◆
� exp

✓
�↵cF

RT
(�s � �e � U)

◆◆

| {z }
in

(4.2)

In equations (4.1) and (4.2), the sections related to transfer current density (in) are

marked with in using under-braces. This is because in later stages in this chapter, in is

used to represent the large section of these equations to save space and make equations

more concise.

In order to compute a solution for this function, equations (4.1) and (4.2) are solved by
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using FDM and Newton-Raphson method which is discussed later in this chapter [17].

Electrolyte Mass Balance Equation

Since a value for transfer current density (in) was determined in previous step (Ohm’s

Law and Butler-Volmer Equations), Equation (3.1) with boundary conditions in equation

(3.2) are used to determine the transport of Li+ within the electrolyte.

Mass Balance Equations for Two Electrodes

In ‘Mass balance equations for two electrodes’, equation (3.17) and boundary conditions

in equation (3.18) are used to determine the transport of Li in electrodes. The equation

(3.17) should be solved for both negative and positive electrodes separately.

Thermal Model Equations

The objective of ‘Thermal model equations’ is to determine battery temperature based

on internal heat generation and heat loss from surfaces. The thermal model depends on

electric potentials of electrodes (�s), electrolyte (�e), Open Circuit Voltage (U), trans-

fer current density (in), electrolyte concentration (ce) from electrochemical model. The

thermal model outputs the volume average temperature of the battery into the electro-

chemical model. In addition, thermal model can produce a graph which demonstrates the

heat distribution in cylindrical geometry. The theory for the thermal model is presented

in appendix C and discretization is presented in appendices D and E. However, simu-

lations conducted in this thesis only considers iso-thermal condition of a battery. Thus,

thermal model is not utilized.

Battery Voltage and Capacity Calculation

This is a simple function which calculates battery voltage (Ecell) and battery capacity

(Qcell). These are two main output variables of the simulation.

4.1.4 Algorithm

The solution strategy which was discussed above can be summarized into following al-
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gorithm. Comments in blue italic text indicate the respective functions which were dis-

cussed above and additional comments are indicated in red italic text. The keywords are

mentioned in capital text.

1. START

2. IMPORT input data into the simulator

3. DEFINE t = 0  define time step

4. DEFINE initial conditions

for cs,n, cs,p, ce, �s, �e, Dn, Dp, in, U , T , De, e, k0  Defining Initial

Conditions

5. t = t+1  Update time step

6. CALCULATE parameters Dn, Dp, U , De, e, k0  Update Parameters

7. SOLVE for �s, �e, in  Ohm’s Law and Butler-Volmer Equations

8. SOLVE for ce  Electrolyte Mass Balance Equation

9. SOLVE for cs,n, cs,p  Mass Balance Equations for Two Electrodes

10. SOLVE for T  Thermal Model Equations

11. CALCULATE Ecell, Qcell  Battery Voltage and Capacity Calculation

12. IF t < tend == TRUE, go to step 5  Condition for loop

13. PRINT, PLOT, SAVE solutions

14. END

4.2 Discretization

4.2.1 Discretization and Notations Used

Variables and coe�cients that are used in discretization of equations are presented in

following notations,
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h
V ⌘
�

i⌧
z

V - Variable/Coe�cient.

⌘ - Superscript of variable.

� - Subscript of variable.

⌧ - Time step value.

z - Spacial step value.

To improve the conciseness of presented discretized equations, variable coe�cients which

depend on spacial variables are presented as,

⌦+ = [⌦]z+ 1
2
=

[⌦]z+1 + [⌦]z
2

⌦� = [⌦]z� 1
2
=

[⌦]z + [⌦]z�1
2

Note that ⌦ is a symbol which represents a discretizable variable.

Following finite discretization used for time derivatives (generalized version),

@V

@t
=

[V ]t+1
z
� [V ]t

z

�t

Forward di↵erence method is used for discretization of 1st order spacial derivative [41].

Generalized discretization as follows,

@V

@x
=

[V ]z+1 � [V ]z
�x

Central di↵erence method is used for discretization of 2nd order spacial derivative[41]

including a coe�cient. Generalized discretization as follows,

@

@x

✓
⌦
@V

@x

◆
=

1

�x


⌦+

✓
[V ]z+1 � [V ]z

�x

◆
� ⌦�

✓
[V ]z � [V ]z�1

�x

◆�

by re-arranging,

@

@x

✓
⌦
@V

@x

◆
=

1

�x2
(⌦+[V ]z+1 � (⌦+ + ⌦�)[V ]z + ⌦�[V ]z�1)
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4.2.2 Ohm’s Law and the Butler-Volmer Equation

This is the most complex and longest function in the electrochemical model. Thus, it

is important to note that several additional subsections and equations related to this

section are presented in appendix B.

In this function, solutions for electrode potential (�s), electrolyte potential (�e) and

transfer current (in) are derived for a single time step. The Ohm’s law equation and

Butler-Volmer equation do not contain time derivative (i.e. eq.(4.1) and eq.(4.2)). These

two equations are non-linear PDEs which needed to be solved for electrode potential (�s)

and electrolyte potential (�e) simultaneously. Therefore, discretized equations are solved

using Newton-Raphson method to approximate the solution [17].

Eq.(4.1) and eq.(4.2) are solved only in spacial domain (i.e. electrolyte domain), and no

time domain is involved. However, to derive at a solution using Newton-Raphson method,

iterations are used. In this section the number of iterations are denoted by symbol ‘n’.

Concise Equations Using [in]z

In order to ensure that equations are concise and short, transfer current density (in) was

used in Eq.(4.1) and eq.(4.2). It is important to derive the discretization of expression

denoted by in because discretized formulae presented in appendix B and discretized for-

mulae presented later in this section contains in. Thus, discretization of in is presented

by eq.(4.3).

[in]z = i0

 
exp

✓
↵aF

RT
([�s]z � [�e]z�[U ]z)

◆

� exp

✓
�↵cF

RT
([�s]z � [�e]z � [U ]z)

◆! (4.3)

Eq.(4.1) and eq.(4.2) are solved for electrode potential (�s), electrolyte potential (�e).

In order to derive a solution, the Newton-Raphson method demands derivatives of dis-

cretized eq.(4.1) and eq.(4.2) with respect to discretized electrode potential ([�s]z) and

discretized electrolyte potential ([�e]z). Therefore, it is important to determine derivative

of [in]z with respect to [�s]z and [�e]z. Thus, derivative of [in]z with respect to [�s]z is

presented by eq.(4.4).
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@[in]z
@[�s]z

= i0

 
↵aF

RT
exp

✓
↵aF

RT
([�s]z � [�e]z � [U ]z)

◆

+
↵cF

RT
exp

✓
�↵cF

RT
([�s]z � [�e]z � [U ]z)

◆! (4.4)

Similarly, the derivative of [in]z with respect to [�e]z is presented by eq.(4.5).

@[in]z
@[�e]z

= � i0

 
↵aF

RT
exp

✓
↵aF

RT
([�s]z � [�e]z � [U ]z)

◆

+
↵cF

RT
exp

✓
�↵cF

RT
([�s]z � [�e]z � [U ]z)

◆! (4.5)

Subjects of eq.(4.3), eq.(4.4) and eq.(4.5) (term in L.H.S) are used in latter formulae and

formulae in appendix B in order to concise the equations. Whenever a latter equation uses

[in]z, it refers to eq.(4.3). Similarly, @[in]z
@[�s]z

refers to eq.(4.4) and @[in]z
@[�e]z

refers to eq.(4.5).

Newton-Raphson Formula

Discretization of eq.(4.1) and eq.(4.2) result M + (Mn +Mp) number of variables to be

solved: M number of variables due to electrolyte potential (�e) and (Mn+Mp) number of

variables due to electrode potential (�s). Thus, these two equations need to be solved in

matrix format. Equation (4.6) shows the matrix format of Newton-Raphson formula. The

Newton-Raphson formula (eq.(4.6)) needs to be solved for each iteration. It is important

to note that the iterations executed in Newton-Raphson method do not evolve in time.

[J ][��] = [�f ] (4.6)

[J ] is known as the Jacobian matrix which houses all derivatives of eq.(4.1) and eq.(4.2).

Jacobian matrix ([J ]) is a (M + (Mn + Mp)) ⇥ (M + (Mn + Mp)) square matrix. The

format of this matrix is presented in appendix B.2.2 and will be discussed later in this

section.

The Eq. (4.6) is solved for [��]. [��] houses di↵erential values that are added to the

previous step � values as iteration advances. This is a (M + (Mn + Mp)) ⇥ 1 column
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matrix and the format is presented in appendix B.2.1. As the iteration advances, new �

values are calculated by using following equation,

�n+1 = �n +��n

Here, � represents either the electrode potential (�s) or the electrolyte potential (�e). n

is the iteration number.

[�f ] matrix in eq.(4.6) is a (M + (Mn + Mp)) ⇥ 1 column matrix. The format of this

matrix is presented in appendix B.2.1. In order to solve eq.(4.1) and eq.(4.2) they need

to be converted into functions. Let functions derived from eq.(4.1) (electrode) as f1 and

functions derived from eq.(4.2) (Electrolyte) as f2 such that f = f1 [ f2. Therefore, [�f ]
matrix houses all the f functions which needs to be solved for f = 0 or f ⇡ 0.

Define and Discretization of f1 Function (Electrodes)

The function f1 presented in eq. (4.7) is derived from eq.(4.1). This equation is valid

only for negative and positive electrodes in electrolyte domain (LN [ LP ).

f1 =
@

@x

✓
�
@�s

@x

◆
� as in (4.7)

Due to the similar characteristics in negative and positive electrodes, the discretized f1

function for center grid cells is common for both electrodes. However, the boundary

conditions are di↵erent to each other. Thus, individual discretization should be made for

the four di↵erent boundaries.

For center grid cells, discretization of eq.(4.7) results in eq.(4.8). The expression for [in]z

can be found in eq. (4.3). The function represented in Eq. (4.8) is denoted as f1(z)

where z expresses the index of grid cell (1 < z < Mn or Mn +Ms + 1 < z < M).

f1(z) =
1

�x2

✓
�+[�s]z+1 � (�+ + ��)[�s]z + ��[�s]z�1

◆
� as[in]z (4.8)

Discretized functions for the two boundaries in negative electrode are presented in eq.(4.9)

and eq.(4.10). These equations are derived by substitution of boundary conditions from

eq.(3.8) to eq.(4.7) during discretization. The eq.(4.9) is used for the boundary 1 and the

eq. (4.10) is used for the boundary 2 (fig. 3.1).
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Boundary 1 - Negative Electrode

f1(1) =
1

�x

✓
�+

[�s]2 � [�s]1
�x

+ I

◆
� as[in]1 (4.9)

Boundary 2 - Negative Electrode

f1(Mn) = ���
[�s]Mn � [�s]Mn�1

�x2
� as[in]Mn (4.10)

Discretized functions for the two boundaries in positive electrode are presented in eq.(4.11)

and eq.(4.12). These equations are derived by substitution of boundary conditions from

eq.(3.8)) to eq.(4.7) during discretization. The eq.(4.11) is used for the boundary 3 and

the eq.(4.12) is used for the boundary 4 (fig. 3.1).

Boundary 3 - Positive Electrode

f1(Mn +Ms + 1) = �+
[�s](Mn+Ms+2) � [�s](Mn+Ms+1)

�x2
� as[in](Mn+Ms+1) (4.11)

Boundary 4 - Positive Electrode

f1(M) =
1

�x

✓
�I � ��

[�s]M � [�s]M�1

�x

◆
� as[in]M (4.12)

The sign of total current density (I) is important in substitution to eq.(4.7) during dis-

cretization. The total current density (I) has been substituted to eq.(4.9) and eq.(4.12)

such that, a negative I value represents the discharge process and a positive I value

represents the charge process.

Define and Discretization of f2 Function (Electrolyte)

The function f2 presented in eq.(4.13) is derived from eq.(4.2). This function is valid in

the electrolyte domain (LB).

f2 =
@

@x

✓
e

@�e

@x

◆
� @

@x

✓
2RTe

F
⌫
@ ln ce
@x

◆
+ as in (4.13)

The eq.(4.13) is discretized for center grid cells. The resulting function is presented in

eq.(4.14). The expression for [in]z can be found in eq.(4.3). f2(z) is used to denote the
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function in eq.(4.13) where, z expresses the index of grid cell (1 < z < M).

f2(z) =
1

�x2

 ✓
e,+[�e]z+1 � (e,+ + e,�)[�e]z + e,�[�e]z�1

◆

� 2R

F

✓
T+e,+⌫+(ln [ce]z+1 � ln [ce]z)� T�e,�⌫�(ln [ce]z � ln [ce]z�1)

◆!

+ as[in]z

(4.14)

Unlike the function f1, boundary conditions for the function f2 only applies at boundary

1 and boundary 4. This is because electrolyte is continuous through the boundary 2 and

boundary 3. Eq.(4.15) and eq.(4.16) show the boundary equations. These functions are

derived by using substitution of the boundary conditions from eq.(3.4) to eq.(4.13) during

discretization. The eq.(4.15) represents the function for the boundary 1 and the eq.(4.16)

represents the function for the boundary 4 (fig. 3.1).

Boundary 1 - Electrolyte

f2(1) =
e,+

�x2

 ✓
[�e]2 � [�e]1

◆
� 2R

F

✓
T+⌫+(ln [ce]2 � ln [ce]1)

◆!
+ as[in]1 (4.15)

Boundary 4 - Electrolyte

f2(M) = � �

�x2

 ✓
[�e]M � [�e]M�1

◆
� 2R

F

✓
� T�⌫�(ln [ce]M � ln [ce]M�1)

◆!
+ as[in]M

(4.16)

Jacobian Matrix [J ] and Derivatives

The approximation of solution using Newton-Raphson method requires to determine

derivatives of functions f1 and f2 with respect to electrode potential (�s) and electrolyte

potential (�e). The values for these derivates are organized in the Jacobian matrix ([J ])

(see appendix B.2.2). Table 4.4 shows the functions that need to be evaluated for its

derivatives. Third column of the table shows the discretized variables that are used for

di↵erentiation of respective function. The discretization of these functions are presented

in appendix B.

Since discretized functions f1 and f2 depend on neighboring electrode ([�s]) and elec-

trolyte ([�e]) potentials in the grid, it is necessary to consider only the derivatives which

are mentioned in appendix B (also in table 4.4). The other derivatives become zero.
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Table 4.4: Derivates for Jacobian matrix

Eq. Function Derivatives with respect to
(4.8) f1(z) [�s]z�1, [�s]z, [�s]z+1, [�e]z
(4.9) f1(1) [�s]1, [�s]2, [�e]1
(4.10) f1(Mn) [�s]Mn�1, [�s]Mn , [�e]Mn

(4.11) f1(Mn +Ms + 1) [�s]Mn+Ms+1, [�s]Mn+Ms+2, [�e]Mn+Ms+1

(4.12) f1(M) [�s]M�1, [�s]M , [�e]M
(4.14) f2(z) [�e]z�1, [�e]z, [�e]z+1, [�s]z
(4.15) f2(1) [�e]1, [�e]2, [�s]1
(4.16) f2(M) [�e]M�1, [�e]M , [�s]M

Other derivates - for example:

@f1(z)

@[�s]z±i

= 0 ,
@f2(z)

@[�e]z±i

= 0 , where i 6= 0, i 6= 1, i 2 Z

@f1(z)

@[�e]z±j

= 0 ,
@f2(z)

@[�s]z±j

= 0 , where j 6= 0, j 2 Z

Deriving at a Solution

After organization of [J ] and [�f ] matrices as stated in appendix B, iterations are used

to arrive at a solution (eq.(4.6)). For each iteration, values in [J ] and [�f ] matrices

are needed to be updated for new potentials (�s and �e). The iterations are carried

out until errors becomes reasonably small. In this thesis, error tolerance for [�] matrix

was selected as max
⇣

[��]n
[�]n

⌘
< 0.001. Since Newton-Raphson method converges into a

solution quadratically, comparatively less number of iterations are required.

After deriving the solution for the electrode (�s) and electrolyte (�e) potentials, transfer

current density (in) is calculated for each grid cell using eq.(4.3). The transfer current

density (in) is a critical variable for determination of mass transport in electrolyte and

in electrodes.

4.2.3 Electrolyte Mass Balance Equation

The mass transport in electrolyte is presented by eq.(3.1). The discretized version of this

equation is presented by eq.(4.17). The discretization was done based on x, t dimensions

and using implicit scheme. [in]tz has been already determined by eq.(4.3) from the previous

function.
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��tDe,+

�x2 "e
[ce]

t+1
z+1 +

✓
1 +

�t (De,+ +De,�)

�x2 "e

◆
[ce]

t+1
z
� �tDe,�

�x2 "e
[ce]

t+1
z�1 =

[ce]
t

z
+

�t

"e

✓
1� t0+
F

◆
as [in]

t

z

(4.17)

Substitution of boundary conditions from eq.(3.2) to eq.(3.1) during discretization results

in eq.(4.18) for left boundary and eq.(4.19) for right boundary of electrolyte.

Boundary 1

��tDe,+

�x2 "e
[ce]

t+1
z+1 +

✓
1 +

�tDe,+

�x2 "e

◆
[ce]

t+1
z

= [ce]
t

z
+

�t

"e

✓
1� t0+
F

◆
as [in]

t

z
(4.18)

Boundary 4

✓
1 +

�tDe,�

�x2 "e

◆
[ce]

t+1
z
� �tDe,�

�x2 "e
[ce]

t+1
z�1+ = [ce]

t

z
+

�t

"e

✓
1� t0+
F

◆
as [in]

t

z
(4.19)

Since implicit method is used to derive at a solution, L.H.S of eq.(4.17), eq.(4.18) and

eq.(4.19) are organized into a matrix A and a matrix x. x is a column matrix which

contains all Li+ concentrations at subsequent time step ([ce]t+1
z

, [ce]
t+1
z+1, [ce]

t+1
z�1). A

is a square matrix which houses coe�cients of ([ce]t+1
z

, [ce]
t+1
z+1 and [ce]

t+1
z�1). R.H.S of

these equations are organized in to a column matrix b. Therefore, the solution for Li+

concentration in electrolyte (ce) at a certain time step is obtained by solving the x matrix

using x = A�1b.

4.2.4 Mass Balance Equation for the Two Electrodes

Mass balance for the two electrodes (eq.(3.17)) are applied within negative (RN ⇥ LN)

and positive (RP ⇥ LP ) electrode domains. Discretization of the eq.(3.17) in r and t

dimensions result in eq.(4.20) for center grid cells. It is important to note that ‘z’ in

eq.(4.20), eq.(4.21) and eq.(4.22) represent the index of grid cell in r� dimension. Some

parameters in eq(4.20) are represented with new parameter called � in order to maintain

the equation concise and short. Parameter �, is also used in defining discretized boundary

conditions in eq.(4.21) and eq.(4.22).

��
⇣
2 +

r

�r

⌘
[cs]

t+1
z+1 +

✓
1 + 2�+

2�r

�r

◆
[cs]

t+1
z
� �r

�r
[cs]

t+1
z�1 = [cs]

t

z
(4.20)
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� =
Ds �t

r�r

The core and surface are two boundaries of a sphere. Substitution of boundary conditions

from eq.(3.18) in eq.(3.17) during discretization gives eq.(4.21) for core and eq. (4.22) for

surface of sphere. D is the di↵usion coe�cient.

Core of sphere

�
✓
2�+

�r

�r

◆
[cs]

t+1
z+1 +

✓
1 + 2�+

�r

�r

◆
[cs]

t+1
z

= [cs]
t

z
(4.21)

Surface of sphere (interface between electrode and electrolyte)

✓
1 +

�r

�r

◆
[cs]

t+1
z
� �r

�r
[cs]

t+1
z�1 = [cs]

t

z
� �[in]tz(2�r + r)

DF
(4.22)

The implicit method is used to derive the solution for this system of equations. Typ-

ically, L.H.S of eq.(4.20), eq.(4.21) and eq.(4.22)) are organized into a materix A and

x. x is a column matrix which contains all Li concentrations at subsequent time step

([cs]t+1
z

, [cs]
t+1
z+1, [cs]

t+1
z�1). A is a square matrix which houses coe�cients of ([cs]t+1

z
, [cs]

t+1
z+1

and [cs]
t+1
z�1). R.H.S of these equations are organized in to a column matrix b. Then,

Li concentration values (cs) in the electrode for subsequent time step are obtained from

x = A�1b. The two domains which this system of equations are solved for, can be

mentioned as follows,

Negative Electrode: - The eq.(4.20), eq.(4.21) and eq.(4.22) system needs to be solved

in RN domain for each index from 1 to Mn in electrolyte domain LN .

Positive Electrode: - The eq.(4.20), eq.(4.21) and eq.(4.22) system needs to be solved

in RP domain for each index from Mn +Ms + 1 to M in electrolyte domain LP .

Figure 4.1 can be used as an aid to construct the matrices for Li concentrations in negative

and positive electrodes.

4.2.5 Battery Voltage and Battery Capacity

Battery capacity (Qcell) is determined in time domain. Equation(3.26) is discretized

which results in eq.(4.23). Here, n represents the number of time step and t represents

time step at the required time.
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[Qcell]
t =

1

3600

tX

n=0

I �t n (4.23)

[Ecell]
t = [�s]

t

z=M
� [�s]

t

z=1 (4.24)

Battery voltage (Ecell) is also determined in time domain. Discretization of equation(3.27)

is presented by eq.(4.24).

4.3 Matlab Program Structure

The electrochemical model was developed in Matlab (Version: R2020b) software. Figure

4.2 illustrates the flow diagram for fundamental Matlab program structure which is de-

veloped for electrochemical model. Matlab functions are defined for each main operations

and each main functions/operations are numbered in fig. 4.2 and described below.

1 ) This function import battery parameters, initial conditions and discretization

parameters, constants and current density (I) from a spreadsheet (i.e INPUT.xlsx) file.

If capacity fading model is used, the output result from capacity fading model should be

written to spreadsheet (i.e INPUT.xlsx) file before executing the electrochemical model.

2 ) This function creates vectors and matrices that are required to execute the sim-

ulation. Initial values (at t = 0) are then input into the vectors/matrices. Individual

vectors/matrices are defined for each variables which are presented in table 4.3 for their

respective spacial domains (grid cells).

3 ) This is a logical condition to terminate the program when desired time limit is

achieved.

4 ) This function updates parameters that are required to execute the next time

step operations. These parameters include cell temperature (T ), di↵usivity in electrodes

(Dn), OCVs (U), di↵usivity in electrolyte (De), ionic conductivity in electrolyte (e),

conductivity in electrodes (�) and reaction coe�cients (k0). Some parameters depend on

variables such as temperature (T ) and lithium concentration (cs, ce). These values are

taken from the previous time step. Function for thermal model can be introduced in this

section to determine cell temperature (T ) if user decides to include a thermal model into

the simulation.
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5 ) This function solves the Ohm’s equations and Butler-Volmer equation using

Newtons-Raphson method. Output from this function includes electrode and electrolyte

potential distribution (�s and �e) for grid cells in electrolyte domain. The function utilizes

equations presented in section 4.2.2 and appendix B.

6 ) This function calculates transfer current density (in) for grid cells in electrolyte

domain. Input to this function includes electrode and electrolyte potentials (�s and �e)

which were determined in 5 function. The function utilizes eq.(4.3).

7 ) Based on the transfer current density (in) which was calculated in 6 , mass trans-

port of Li+ in electrolyte (ce) is determined. The function utilizes equations presented

in section 4.2.3.

8 ) Based on the transfer current density (in) which was calculated in 6 , mass trans-

port of Li in electrodes (cs) are determined. The function utilizes equations presented in

section 4.2.4.

9 ) This function calculate battery voltage (Ecell) and battery capacity (Qcell). The

function utilizes equations presented in section 4.2.5.

10 ) This is a logical condition to ensure that simulation is run between desired battery

voltage interval (Vhigh- upper boundary, Vlow- lower boundary). Decision box terminates

the program if calculated battery voltage (Ecell) is out of the interval. This function also

ensures that no complex number solution is generated at function 5 due to inversion

(change of sign) of voltage.

11 ) Required data is saved as a Matlab (.mat) file and plots are generated to visualize

the results. Generated plots are Ecell vs. Qcell and Ecell vs. and time (t).

Functions 4 , 5 , 6 , 7 , 8 and 9 are the core of simulation. Equations that are

used in these functions are tabulated in table 4.5. It is strictly necessary to run functions

4 , 5 and 6 sequentially. However, if the computer is capable of parallel processing,

since functions 7 , 8 and 9 are independent from each other, these three functions

can be run in parallel in order to reduce the simulation time.
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Create vectors and matrices for 
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t =< tend

Vlow < Ecell < Vhigh
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Figure 4.2: Matlab program structure - flow diagram
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Table 4.5: Respective equations for functions

Function number Equations

4
Eq.(3.13), Eq.(3.14), Eq.(3.15), Eq.(3.16), Eq.(3.19), Eq.(3.20),
Eq.(3.21), Eq.(3.22), Eq.(3.23), Eq.(3.24).

5
Eq.(4.3), Eq.(4.4), Eq.(4.5), Eq.(4.6),
All equations listed in appendix B.

6 Eq.(4.3)

7 Eq.(4.17), Eq.(4.18), Eq.(4.19)

8 Eq.(4.20), Eq.(4.21), Eq.(4.22)

9 Eq.(4.23), Eq.(4.24)
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Chapter 5

Simulation Results and Discussion

The first section in this chapter presents validation of the electrochemical model with

experimental data which are extracted from literature. The validation includes di↵erent

discharge, charge and temperature cases. Factors which a↵ects for the performance of the

battery are discussed in the second section of this chapter with the help of simulations.

All simulations were conducted for C26650 battery type which has LiFePO4 cathode

and natural graphite anode.

The total current density (I), temperature (T ) and initial Li concentration in electrodes

(cs), are main input variables of the electrochemical model. The process of discharge

implies that I < 0 and the process of charge implies that I > 0.

Ideally, a fully discharge battery means cs(r, x, t) = 0, r 2 RN , x 2 LN and a fully

charge battery means cs(r, x, t) = 0, r 2 RP , x 2 LP . However, in practical situations

these conditions are impossible to satisfy. Therefore, It is assumed that a fully discharge

battery has a battery voltage (Ecell) less than 2.5V and a fully charged battery has a

battery voltage (Ecell) higher than 3.5V . However, these values are only applicable for

C26650 battery type which has LiFePO4 cathode and natural graphite anode. Other

lithium battery types might have di↵erent values.

Generally, battery management systems (BMS) utilize battery voltage (Ecell), total cur-

rent density (I) and temperature (T ) to determine state of charge (SOC) [40]. Since in

these simulations, the total current density (I) and temperature (T ) are held constant,

above assumption is justified.

The keywords which were introduced above are tabulated in Table 5.1. The table de-

scribes keywords and their respective mathematical expressions.
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Table 5.1: Keywords and mathematical expressions

Keyword Mathematical expression
Charging I > 0
Discharging I < 0
Fully charged Ecell � 3.5V
Fully discharged Ecell  2.5V

5.1 Model Validation

In section 5.1.1, validation of the electrochemical model (from eq.(3.1) to eq.(3.27)) is

presented. Input parameters, initial conditions and boundary conditions for di↵erent

cases were extracted from literature sources [18, 20, 29]. Discretization parameters which

were used in the electrochemical model are tabulated in Table 5.4.

The Input parameters, initial conditions, boundary conditions and discretization parame-

ters are fed into the algorithm which was presented in chapter 4. The algorithm computes

solutions for the variables as the time evolves. Since many literature sources presents their

experimental results in battery voltage (Ecell) vs battery capacity (Qcell) format, battery

voltage (Ecell) and battery capacity (Qcell) were selected as main output variables. Thus,

simulated results can be compared with the experimental data.

The battery operation time depends on the discharge (I < 0) and charge (I > 0) rates.

C-rate is a parameter which is used to describe the discharge (I < 0) or charge (I > 0)

rate based on the rated battery capacity. 1C is the value of current rate which can fully

discharge (or charge) a battery within 1 hour. This is an important unit because many

authors have used C-rate to express the battery charge and discharge rates in their studies

[17, 18, 20, 21, 29, 46, 47]. The relationship between total current density (I) and C-rate

for 2.3Ah C26650 battery (which is used in simulations) are presented in Table 5.2.

In section 5.1.2, validation of the electrochemical model including eq.(3.28) is presented.

Here, capacity fading (eq.(3.28)) was introduced into the algorithm (which is presented

in chapter 4) such that eq.(3.28) was only used for determination of initial lithium con-

centration in anode (cs(r, x, t = 0), r 2 RN , x 2 LN).

5.1.1 Electrochemical Model Validation

The electrochemical model (from eq.(3.1) to eq.(3.27)) is validated against experimental

data. The experimental data were extracted from Safari and Delacourt [18] and Wang
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Table 5.2: Relationship between total current density (I) and C rate for 2.3Ah C26650
battery

Discharge / Charge C-rate I (A/m2) Time⇤ (hrs)

Discharge

3C I = �39 0.33
1C I = �13 1
0.5C I = �6.5 2
0.1C I = �1.3 10

Charge

3C I = 39 0.33
1C I = 13 1
0.5C I = 6.5 2
0.1C I = 1.3 10

⇤Time - Approximate time taken to fully discharge a fully charged battery or fully charge a fully
discharged battery with constant total current density (I).

et al. [29]. Figures 5.1, 5.2, 5.3, 5.4 and figure 5.5 represent charge (I > 0) and discharge

(I < 0) scenarios for C26650 lithium-ion battery type [18]. y � axes in figures indicate

the voltage output of the battery (Ecell); the voltage is the potential di↵erence between

positive and negative electrodes (eq.(3.27)). x � axes in figures indicate the battery

capacity (Qcell; eq.(3.26)) which is delivered (I < 0) or absorbed (I > 0) by battery in

Ampere hours (Ah). The area of the battery (Acell)1 is considered to be 0.1694m2 [20].

Discharge (I < 0) and charge (I > 0) rates are presented in ‘C-rate’ unit (refer Table

5.2).

Common note about fig.5.1 - fig.5.7

Simulation results and experimental data represent a 2.3Ah C26650 lithium-ion battery.

Y � axes of these graphs represent the battery voltage (Ecell) in Volts (V ) and X � axes

represent actual battery capacity (Qcell ⇥ Acell) in Ampere hours (Ah). Lines represent

simulated results and markers represent experimental data from literature. The discharge

(or charge) rates are presented in C-rate instead of total current density (I) (refer Table

5.2).

Figure 5.1 illustrates discharge (I < 0) scenarios at 25oC. Markers represent experimental

data which are extracted from Safari and Delacourt [18]. Lines represent simulation

results from the model. 0.1C (I = �1.3 A/m2), 0.5C (I = �6.5 A/m2), 1C (I =

�13 A/m2) and 3C (I = �39 A/m2) discharge rates are validated against experimental

data. The figure verifies that the model is able to predict actual voltage (Ecell) variation

against battery capacity (Qcell) for 0.1C, 0.5C and 1C discharge rates. However, at

1
Acell - This is the electrode area of the battery. Do not confuse with specific surface area of the

electrode (as). The battery capacity (Qcell; eq.(3.26)) was defined as the capacity of battery per 1m
2

electrode area. However, x� axes in fig.5.1 - fig.5.7 are presented in actual battery capacity. Thus, the

actual battery capacity can be calculated using Qcell ⇥Acell.
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Figure 5.1: Electrochemical model validation for discharge process at 25oC

Figure represents validation of the electrochemical model for discharging at 25oC.
Experimental data (markers) are extracted from Safari and Delacourt [18]. Refer “Common

note about fig.5.1 - fig.5.7” on page 56.

higher discharge rate (3C; I = �39A/m2 ), the model slightly under-estimates Ecell at

the beginning of discharge and end of discharge.

Figure 5.2 illustrates charge (I > 0) scenarios at 25oC. Markers represent experimental

data with charge rates 0.1C (I = 1.3A/m2), 0.5C (I = 6.5A/m2) and 1C (I = 13A/m2),

which are extracted from Safari and Delacourt [18]. Lines represent simulation results

from the model. The figure indicates a good agreement between experimental data and

simulated results for Ecell vs Qcell.

Similarly, figure 5.3 and figure 5.4 were constructed to compare the simulation results and

experimental data for discharge (I > 0) and charge (I > 0) at 45oC. The experimental

data for both graphs were extracted from Safari and Delacourt [18]. The figure 5.3

represents 0.1C (I = �1.3A/m2), 0.5C (I = �6.5A/m2) and 1C (I = �13A/m2)

discharge rates and the figure 5.4 represents 0.1C (I = 1.3A/m2), 0.5C (I = 6.5A/m2)

and 1C (I = 13A/m2) charge rates. Both figures indicate a good agreement between

experimental data and simulated results for Ecell vs Qcell.

Figure 5.5 demonstrates discharge (I < 0) scenarios at 0oC and 60oC temperatures.

Markers represent data which are extracted from Wang et al. [29]. The discharge rate is

0.5C (I = �6.5A/m2) for both cases. Discharge scenario simulated at 60oC temperature
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Figure 5.2: Electrochemical model validation for charge process at 25oC

Figure represents validation of the electrochemical model for charging at 25oC. Experimental
data (markers) are extracted from Safari and Delacourt [18]. Refer “Common note about

fig.5.1 - fig.5.7” on page 56.

Figure 5.3: Electrochemical model validation for discharge process at 45oC

Figure represents validation of the electrochemical model for discharging at 45oC.
Experimental data (markers) are extracted from Safari and Delacourt [18]. Refer “Common

note about fig.5.1 - fig.5.7” on page 56.
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Figure 5.4: Electrochemical model validation for charge process at 45oC

Figure represents validation of the electrochemical model for charging at 45oC. Experimental
data (markers) are extracted from Safari and Delacourt [18]. Refer “Common note about

fig.5.1 - fig.5.7” on page 56.

indicates a good approximation. However, minor deviations can be observed between

simulated and experimental data at 0oC temperature, but simulation results are within

an acceptable range.

From figure 5.1 to figure 5.5, it is possible to observe that, battery voltage (Ecell) is highly

varied in low battery capacity (< 0.3Ah) and high battery capacity (> 2Ah). This is

because, the battery voltage (Ecell) is mainly dependent on the Open Circuit Voltage

(OCV) of electrode materials. A fully charged battery has high lithium concentration

(cs) in anode and low lithium concentration in cathode. Since LiFePO4 (cathode) has

high OCV in low lithium concentration (fig. 3.4), the battery voltage (Ecell) is steeply

increased when the battery is fully charged. Similarly, a fully discharged battery has low

lithium concentration (cs) in anode. The OCV of graphite (anode) material is increased

rapidly in low lithium concentration (fig. 3.4). This creates a steep decrease in battery

voltage (Ecell) when the battery is in low capacity.

Generally, the curves presented in fig.5.1 - fig.5.5 have a similar shape. However, the

values are di↵erent. This occurs mainly due to the internal resistance of the battery

[2]. The internal resistance of the battery depends on temperature (T ) and materials

that are used to construct it. Typically, Di↵usion coe�cients (Dn, Dp, De), conductivity

(e), reactivity (k0) and OCV depend on temperature (T ). As discharge rate (or charge
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Figure 5.5: Electrochemical model validation for discharge process at 0oC and 60oC

Figure represents validation of the electrochemical model for discharging at 0oC and 60
o
C.

The rate of discharge is 0.5C (I = �6.5 A/m
2). Experimental data (markers) are extracted

from Wang et al. [29]. Refer “Common note about fig.5.1 - fig.5.7” on page 56.

rate) increases, additional energy is required to overcome the internal resistance. This

additional energy loss is reflected as a decrease in battery voltage (Ecell) during discharge

(I < 0), and increase in battery voltage (Ecell) during charge (I > 0).

During the validation of the electrochemical model minor o↵set was observed between

simulation results and experimental data for battery voltage (Ecell) vs battery capacity

(Qcell). This is partly due to the existence of two paths of OCV curve for graphite be-

tween charge and discharge processes [48]. Allart et al. [48] have presented significance

of this phenomena using experimental data which indicates existence of two OCV curves

for de-lithiation (discharge) and lithiation (charge) process for graphite. Thus, a cor-

rection factor (CFn,OCV ) was introduced into the electrochemical model which resulted

multiplication of equation (3.15) with eq.(5.1).

CFn,OCV =

8
>>><

>>>:

1.1, I < 0 (Discharging)

1, I = 0

0.9, I > 0 (Charging)

(5.1)

Similarly, instead of single entropy path for graphite (dUn
dT

; eq.(A.2)), two paths exist for

graphite de-lithiation (discharge) and lithiation (charge) [48]. However, existence of two
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entropy paths were not introduced into the electrochemical model because the simulated

results indicated a good agreement with experimental data even without this adjustment

(i.e. fig.5.3, fig.5.4, fig.5.5).

5.1.2 Capacity Fading Validation

Capacity fading (aging) is determined using equation (3.28). The eq.(3.28) calculates the

percentage loss of lithium concentration (Closs(%)) in a battery based on the number of

cycles (CN); Discharge and subsequent charge of a battery is defined as one cycle. The

concentration of lithium in anode2 (cs,n,initial) when battery is in fully charged state at

0th cycle (new battery) is used as the initial lithium concentration for capacity fading

calculation. Loss of lithium3 (closs) is then calculated for a specific cycle (CN) and

value of the remaining lithium concentration in anode (cs,n,initial � closs) is input into the

electrochemical model as the initial lithium concentration in anode (cs(r, x, t = 0), r 2
RN , x 2 LN).

Generally, aging of batteries are experimented with constant total current densities (I)

and temperatures (T ) [4, 24, 29]. Therefore, Li concentration in an anode can be easily

calculated for a specific cycle (CN) using a semi-empirical equation (i.e. eq.(3.28)).

However, It is also possible to program the algorithm (which is presented in chapter

4) in order to calculate lithium loss (closs) based on complex and varying total current

densities (I(t)) and temperatures (T (t)). This requires simulation to be run from 0th

cycle (CN = 0) because the lithium loss (closs) is a function of total current density

(I(t)) and temperature (T (t)) [4, 24, 29]. However, this method is not investigated in

this thesis because there was no su�cient data for validation.

Figure 5.6 and figure 5.7 represent discharge (I < 0) scenarios for di↵erent cycles (CN)

of the battery. Y � axes and x � axes of figures represent battery voltage (Ecell) and

battery capacity (Qcell) respectively. Experimental data are presented in markers, which

are extracted from Wang et al. [29]. The simulations were conducted such that for

each cycle (CN), the initial lithium concentration (cs) in anode was calculated with the

help of the eq.(3.28). The calculated initial lithium concentration (cs) in anode was then

introduced into the electrochemical model as an initial condition of lithium concentration

in anode (cs(r, x, t = 0), r 2 RN , x 2 LN). Therefore, for each cycle (CN) presented in

the figures, the simulation was conducted individually.

2
cs,n,initial = cs(r, x, t = 0), r 2 RN , x 2 LN when CN = 0

3
closs = cs,n,initial ⇥ Closs(%)
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Figure 5.6: Model validation - Aging at 45oC

Figure represents validation of capacity fading with the electrochemical model. The battery
aging temperature is 45

o
C which is operated at 0.5C (I = �6.5 A/m

2). Each curve represents
a cycle (CN) of the battery. Experimental data (markers) are extracted from Wang et al. [29].

Refer “Common note about fig.5.1 - fig.5.7” on page 56.

Figure 5.6 illustrates aging of battery at 45oC with a 0.5C discharge rate. 0th, 272nd,

633rd and 1322nd cycles (CN) are simulated and compared against experimental data. It

shows that the simulation results obtained from the electrochemical model with capacity

fading, indicate a good agreement against experimental values.

Figure 5.7 illustrates aging of battery at 60oC for 0.5C discharge rate. 0th, 185th and

754th cycles (CN) are simulated and compared against experimental data. Simulated

data sightly over-estimates aging of battery. However, the variations are in an acceptable

range.

5.2 Investigation of Battery Characteristics Using Sim-

ulations

Simulations were conducted for C26650 lithium-ion battery with LiFePO4 cathode and

natural graphite anode. Same configuration of model was maintained which was used for

validation, however Li+ in electrolyte was changed from 1000 mol/m3 to 1200 mol/m3.

This is because, approximately at 1200 mol/m3 electrolyte has the highest ionic conduc-
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Figure 5.7: Model validation - Aging at 60oC

Figure represents validation of capacity fading with the electrochemical model. The battery
aging temperature is 60

o
C which is operated at 0.5C (I = �6.5 A/m

2). Each curve represents
a cycle (CN) of the battery. Experimental data (markers) are extracted from Wang et al. [29].

Refer “Common note about fig.5.1 - fig.5.7” on page 56.

tivity (fig. 3.5) which is favorable to maintain low internal resistance during operation.

Battery parameters that were used in simulations are tabulated in Table 5.3.

Parameters that are used for Finite Di↵erence Method (FDM) are tabulated in Table

5.4. The length of spacial step is equal for anode, separator and cathode sections ( Ln
Mn

=
Ls
Ms

= Lp

Mp
). The number of grid cells for x � dimension (Mn, Ms, Mp) are selected by

program itself such that interface between an electrode and separator lie exactly on the

boundary between two grid cells. Values that are presented in Table 5.4 is applicable

for all simulations unless otherwise explicitly mentioned. Specially size of the time step

(dt) was varied in some simulations such as pulse response analysis and depending on the

resolution required.

Simulations were mainly conducted for 0.5C (6.5A/m2) and 1C (13A/m2) charge and

discharge rates. Operating voltage window of the battery was kept at Vlow = 2.5V and

Vhigh = 3.6V . Operating temperature of the battery was kept between 0oC and 600C in

simulations.
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Table 5.3: Battery parameters

Description Parameter Anode Separator Cathode Unit
Thickness Ln, Ls, Lp 34a 30a 70a µm
Particle radii rn, rp 3.5a - 0.0365b µm
Electrode porosity " 0.55a - 0.43a

Electrolyte volume frac.1 "e 0.33a 0.54a 0.332a

Max.2 Li con.3 - electrode cs,max 31370a - 22806a mol/m3

Init.4 Li con.3 - electrode cs,0 26194c - 685b mol/m3

Anodic transfer coe↵.5 ↵a 0.5b - 0.5b

Cathodic transfer coe↵.5 ↵c 0.5b - 0.5b

Bruggeman exponent � 1.5b 1.5b 1.5b

Electrode conductivity � 100a - 0.5a S/m
OCV U Eq.(3.15) - Eq.(3.16) V
Electrode di↵usivity Ds Eq.(3.19) - Eq.(3.20) m2/s
Reactivity k0 Eq.(3.23) - Eq.(3.24) m

4.5

mol0.5 s

Description Parameter Values Unit
Init.4 Li+ con.3 - electrolyte ce,0 1200b mol/m3

Electrolyte di↵usivity De Eq.(3.21) m2/s
Electrolyte conductivity e Eq.(3.22) S/m
Transference number of Li t0+ 0.363a

Reference temperature Tref 298.15 K
Active surface area Acell 0.1694b m2

1Fraction, 2Maximum, 3Concentration, 4Initial, 5Coe�cient.
aKhandelwal et al. [25], bYe et al. [20], cSafari and Delacourt [18].

Table 5.4: Finite Di↵erence Method (FDM) parameters

Description Symbol Value
Time step size dt 0.25 s
Number of spacial grid - Negative electrode Mn 25
Number of spacial grid - Separator Ms 22
Number of spacial grid - Positive electrode Mp 52
Number of spacial grid - Total M 99
Number of spacial grid in spheres - Positive electrode mp 50
Number of spacial grid in spheres - Negative electrode mn 50
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5.2.1 Initial Operation of Battery

Initial conditions for the model assumes that battery had su�cient relaxation time (rest

time) before its operation. This is because Li concentration in electrodes and Li con-

centration in electrolyte are assumed to be homogeneous throughout space domain when

initial conditions are input into the simulation. However, if su�cient relaxation time is

not available between cycles (This is the case in real world operations), non-homogeneous

distribution of Li in electrodes and Li+ electrolyte a↵ect the voltage response (Ecell) from

the battery.

In this section, the e↵ect on battery voltage (Ecell) is investigated for di↵erent discharge

(I < 0) and charge (I > 0) rates and temperatures (T ) due to non-homogeneous distribu-

tion of lithium. Ecell is analyzed against discharge time of the battery since this reflects

the e↵ect on battery operation time as well.

Figure 5.8 demonstrates initial 11
2 cycle

4 operation of battery for di↵erent scenarios. In all

graphs, x� axes demonstrate battery operation time in hours and y� axes demonstrate

battery voltage (Ecell) in Volts. Time for each charge (I > 0) and discharge (I < 0) are

counted from t = 0 such that each charge/discharge scenario can be compared with each

other.

Discharge ! charge ! discharge

Fig. 5.8a, fig. 5.8b, fig. 5.8c and fig. 5.8d demonstrate initial (1st) discharge (�), then
immediate (1st) charge (��) and then immediate (2nd) discharge (�·) of the battery.

The 1st discharge represents the discharge of the battery after long relaxation (rest) time.

Between 1st discharge and 1st charge there is no relaxation time. Similarly, between 1st

charge and 2nd discharge there is no relaxation time.

Fig. 5.8a illustrates discharge and charge rate with 1C (I = ±13A/m2) at 25oC. A

clear di↵erence can be observed between 1st discharge and 2nd discharge in terms of both

battery voltage (Ecell) and battery operation time. The initial reduction of Ecell is more

shaper in 2nd discharge than 1st discharge. At end of the battery capacity, Ecell of 2nd

discharge has lower value than the 1st discharge. It is also possible to identify that battery

operation time in 2nd discharge has been reduced by 68.8 s compared to 1st discharge.

4
1
1
2 cycle - This represents the process of a fully charged battery is being fully discharged (I < 0)!

subsequent fully charge (I > 0) ! subsequent fully discharge (I < 0) or the process of a fully discharge

battery is being fully charged (I > 0) ! subsequent fully discharge (I < 0) ! subsequent fully charge

(I > 0), which depend on the case. There is no time gap between a charge-discharge or discharge-charge

process.
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However, the adverse e↵ects on battery voltage (Ecell) and battery operation time (1st

and 2nd discharges) are possible to minimize by increasing temperature (T ) for the same

C-rate (fig.5.8b). It is also possible to operate the battery with lower C-rates (fig.5.8c)

at the same temperature in order to minimize these adverse e↵ects.

Operation of battery at high C-rates such as 3C (fig. 5.8d) causes inability to yield full

energy stored in the battery. These e↵ect arise due to the limitation of lithium di↵usion

and lithium distribution in electrodes. The distribution of lithium in electrodes will be

discussed in subsequent section “Distribution of lithium in electrodes”.

Charge ! discharge ! charge

Fig. 5.8e and fig. 5.8f demonstrate initial (1st) charge (�), then immediate (1st) discharge

(��) and then immediate (2nd) charge (�·) of the battery. The 1st charge represents

the charge of the battery after long relaxation (rest) time. Between 1st charge and 1st

discharge there is no relaxation time. Similarly, between 1st discharge and 2nd charge

there is no relaxation time.

Similar behavior was observed in this section as in discharge! charge! discharge case.

Low charge and discharge rate allow battery to charge to maximum level. Increase of

battery temperature improves the utilization of maximum possible energy capacity of the

battery. Figure 5.8e shows operation at 25oC and figure 5.8f shows operation at 45oC.

Two figures are used to compare the e↵ect on battery voltage (Ecell) and charging time.

Even though in figure 5.8e shows a shorter charging time, the battery is not charged to

its maximum possible capacity.

A main cause for above phenomena is the lithium distribution in electrodes. Farkhondeh

et al. [1] have discussed the dynamics of lithium distribution in LiFePO4 cathode using

pulse analysis method. Therefore, a better understanding can be obtained by investiga-

tion of lithium distribution at an end of a charge or a discharge.

Distribution of lithium in electrodes

The purpose of this section is to further explain the results which were seen in the figure

5.8. The explanation is based on the distribution of lithium in anode and cathode.

Internal resistance of the battery has mainly two parts; Ohmic resistance and resistance

due to SOC [2]. The resistance due to SOC is significantly dependent on di↵usion and

distribution of lithium in electrode. In general, OCV is governed by the amount of lithium
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(a) Dicharge-charge-discharge, 1C, 25
o
C (b) Dicharge-charge-discharge, 1C, 45

o
C

(c) Dicharge-charge-discharge, 0.5C, 25
o
C (d) Dicharge-charge-discharge, 3C, 25

o
C

(e) Charge-discharge-charge, 1C, 25
o
C (f) Charge-discharge-charge, 1C, 45

o
C

Figure 5.8: Initial operation of battery

Figures illustrate initial 11
2 cycle of battery. All figures represent Ecell (V) vs time (hours).

For each charge/discharge operation, time is counted from 0 hrs so that curves can be
compared with each other.
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Figure 5.9: Distribution of Li in electrodes - discharged at 0.5C, 25oC

Please refer to “Common note about fig.5.9 - fig.5.12” on page 71.

occupied at the interface between electrode and electrolyte (eq.(3.15) and eq.(3.16)).

Figure 5.9 and figure 5.10 represent distribution of lithium concentration in anode and

cathode just after the 11
2 cycles. Lithium concentrations are presented in mol/m3 units

and indicated by contour lines. Figures represent a fully discharged battery where figure

5.9 corresponds to the case presented in figure 5.8c and figure 5.10 corresponds to the

case presented in figure 5.8d.

Operating the battery at low discharge rate (e.g. I = �6.5A/m2) indicates that lithium

intercalation and de-intercalation occurs in more organized order. Figure 5.9 illustrates

intercalation of lithium into cathode gradually fill from left to right. Spheres in cathode

which are near to the separator are saturated initially. However, discharge of the battery

at high C � rates result intercalation of lithium into the cathode irregular (fig. 5.10).

Spheres in the cathode which are near the separator are not fully saturated according to

figure 5.10. It is important that movement of lithium should be kept close to separator

area because this provides shortest length between anode and cathode. Increase in lithium

transport length increases the internal resistance of the battery.

In contrast to cathode, lithium distribution in anode (graphite) has little e↵ect from

discharge rate. However, lithium concentration retained in anode for high discharge rate

case is significantly higher than low discharge case.
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Figure 5.10: Distribution of Li in electrodes - discharged at 3C, 25oC

Please refer to “Common note about fig.5.9 - fig.5.12” on page 71.

Figure 5.11 and figure 5.12 represents lithium distribution in anode and cathode just after

the 11
2 cycles. Lithium concentrations are presented in mol/m3 units and indicated by

contour lines. Figures represent a fully charge battery at a rate of 1C where Figure 5.11

corresponds to the case presented in figure 5.8e and figure 5.12 corresponds to the case

presented in figure 5.8f.

High temperature (fig. 5.12) provides suitable conditions to de-intercalate lithium from

cathode and intercalate into anode more orderly. However, with same battery operation

c � rate but low temperature (fig. 5.11) does not provide suitable conditions to de-

intercalate lithium from cathode. As shown in figure 5.11, retained lithium in cathode is

higher compared to the high temperature case and more lithium is concentrated towards

the core of the spheres in mid region.

In contrast, anode has no significant e↵ect due to change in temperature or change in

c � rate. This implies that majority of limiting factors for lithium-ion batteries arise

due to the cathode material. Specially, low conductivity (�) and di↵usivity (Dp) are

key parameters that limit the performance of the battery. New cathode materials and

composite cathode materials are tested and developed by many authors [4, 10, 30, 34] to

overcome the limitations of cathode materials.
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Figure 5.11: Distribution of Li in electrodes - charged at 1C, 25oC

Please refer to “Common note about fig.5.9 - fig.5.12” on page 71.

Figure 5.12: Distribution of Li in electrodes - charged at 1C, 45oC

Please refer to “Common note about fig.5.9 - fig.5.12” on page 71.
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Common note about fig.5.9 - fig.5.12

The pair of graphs illustrate Li distribution in electrodes just after 11
2 cycles. Left

graph indicates the anode and right graph indicates the cathode. Note that y�axes of
graphs increase from top to bottom. Li concentrations are marked on the contour

lines in mol/m3
. In both anode and cathode,

r

rn
= r

rp
= 1 represents surface of

spheres and
r

rn
= r

rp
= 0 represents core of the spheres. ( x

Ln
= 1, r

rn
= 1) in anode

graph and ( x

Lp
= 0, r

rp
= 1) in cathode graph represent the interface with separator.

5.2.2 Constant-Current Power Delivery

Power delivery is an important parameter for a battery. Delivery of power depends on

many factors, such as SOC, internal resistance, temperature and battery discharge rate.

In this section the e↵ect of temperature and SOC are investigated. Power (P ) delivery

is the product of voltage of the battery (Ecell) and current (I) which can be denoted by

following equation,

P = Ecell ⇥ I

Figure 5.13 illustrates power delivery at constant current 1C (13 A/m2) discharge rate.

Y � axis of the figure indicates power delivery in Watts (W ) and x � axis represents

State of Charge (SOC) of the battery. Note that power presented in figure is specific to

C26650 battery type which has an electrode surface area of 0.1694m2 (Acell in Table 5.3).

Figure represents power delivery for three distinct temperatures; 25oC, 45oC and 60oC.

From the graph it is apparent that with increasing temperature the rate of increase in

power delivery reduces.

Operation of battery at elevated temperatures provide additional power. In this case (1C

- discharge) the average increase in value is about 0.5W . This e↵ect is more significant

at high discharge rates. At elevated temperatures the internal resistance of the battery is

reduced due to increase in di↵usivities and conductivity [20, 35]. This results reduction

in Joule heating5 inside the battery [49]. Thus, this wasted power can be yielded as

productive power.

After the initial reduction in power between 100% - 95% (fig. 5.13), power delivery is

nearly constant with SOC. However, SOC between 30% - 10% power starts to gradually

decrease and when SOC becomes lower than 10%, power sharply reduces. This is an

important aspect to be considered for high power applications. This is because at if the

power demand remains constant, but due to reduction of voltage battery it is unable

5Joule heating - Heat generated due to the internal resistance of a battery.
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Figure 5.13: Constant-current (I = �13 A/m2) power delivery

Figure illustrates power delivery from the battery with I = �13A/m2 constant current for 3
distinct temperatures (T ). x� axis represents state of discharge of the battery where 100%

represent fully charged battery and 0% represent fully discharged battery.

to supply the required power, this requires high current to be drawn out of the battery

resulting increase in power wasted as Joule heat inside the battery. Thus, battery which

are used for high power applications should be used in high SOC range (preferably over

30% according to this case) and operate at elevated temperatures over room temperature.

5.2.3 Battery Response to Current Pulses

In real world scenarios current that is drawn out/in from battery is not constant with

time. The change in current results voltage fluctuation in battery. Thus, application of

current pulses to battery facilitates to understand and interpret battery behavior such as

relaxation time and change in internal resistance against State of Charge (SOC) [49].

Investigation of voltage response against current pulses

Figure 5.14 demonstrates variation of battery voltage (Ecell) against current pulses. Inset

illustrates the total current density (I) which was drawn out of the battery in square-

wave form; 6 minutes 1C (I = �13 A/m2) discharge and 6 minutes relaxation period

(I = 0). Pulses were continued to apply until the battery reaches lower voltage limit

(Vlow = 2.5V ). Since this case investigates the reaction of the battery on impulses, the

time step was lowered to dt = 0.1s.
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Figure 5.14: Battery response to current pulses (dt = 100ms)

Figure illustrates Battery voltage (Ecell) response profile against time due to applied current
pulses from fully charge to discharge state. Inset: Applied current pulses to the battery against

time.

In figure 5.14 voltage values are annotated to indicate the Ecell just before current is

removed and just before current is reapplied. Di↵erence between neighboring low voltage

point and high voltage point indicate voltage that was used to overcome internal resis-

tance of battery. Clearly, as battery get discharge the voltage gap is increased which

implies that internal resistance of the battery get increased at lower SOC. According to

simulation results, internal resistance of the discharge battery is 371% higher compared

to full charged battery.

In figure 5.14, it is also possible to observe that, after removal of current (I = 0), voltage

(Ecell) recovery is more sharp and quick. However, in latter pulses Ecell recovery is more

smooth and slow. As the battery get discharged, di↵usion inside electrode becomes slow

due to low concentration gradient, thus making voltage recovery slow and smooth.

Farkhondeh et al. [1] also conducted a similar experiment and simulation for lithium-

ion battery which has a LiFePO4 cathode and graphite anode. The experiment was
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Figure 5.15: Pulse analysis conducted by Farkhondeh et al. [1].

conducted for 6 minute-current-pulses (I < 0) with 2 hours relaxation time [1]. Their

experiment and simulation results are indicated in figure 5.15 [1]. The comparison of

figure 5.14 and figure 5.15 indicate a similar result; the results obtained from the electro-

chemical model for the increase in internal resistance with time and the characteristics

on battery voltage recovery (Ecell) are consistent with Farkhondeh et al. [1] results.

Investigation of voltage response due to current pulse in high resolution

Figure 5.16 illustrates the battery voltage behavior (Ecell) vs time in seconds. A fully

charged battery was discharged at constant current (I = �13A/m2) for 100 seconds and

the current was completely removed (I = 0) for 100 seconds. Then again constant current

of I = �13A/m2 was applied for 100s. The reaction of Ecell due to removal of current

occurs in fraction of seconds thus, time resolution of simulation was further reduced until

dt = 0.001s to generate figure 5.16.

It is possible to observe that sudden removal of current at 100 seconds (fig. 5.16) results

in sharp increase in Ecell followed by a gradual increase. This sharp increase in Ecell at

t = 100 s represents the Ohmic resistance of battery and subsequent gradual increase

in Ecell is mainly due to the transport of Li from core towards the surface of spheres

(electrode) [2]. According to simulation the ratio between ohmic resistance to di↵usion

resistance is about 2.14 : 1. However, this ratio varies with SOC and discharge/charge

rate [2, 49].
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Figure 5.16: Battery response to current pulses (dt = 1ms)
Figure illustrate battery voltage (Ecell) profile against time. Simulation was run with

dt = 0.001 s. Graph is divided into 3 sections (at T ime = 100 s and T ime = 200 s) which
represent regions of applied currents on battery. Current is constant with time for each region

and indicated by I.

Figure 5.17: Pulse analysis conducted by Bernardi and Go [2].
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A pulse analysis conducted by Bernardi and Go [2] is presented in figure 5.17. This

study was conducted for a lithium-ion battery which has had a graphite anode and

NCA6 cathode [2]. The figure 5.17 illustrates 40 second-current-pulse with a 100 seconds

relaxation period. It is important to note that Vcell in figure 5.17 is equivalent to Ecell in

the electrochemical model. The comparison of figure 5.16 and figure 5.17 indicate that

the simulation results obtained from the electrochemical model is consistent with the

study conducted by Bernardi and Go [2].

5.2.4 E↵ect of Capacity Fading

Lithium-ion batteries are prone to have adverse e↵ect on voltage, power delivery and

battery operation time due to aging. The e↵ect between battery voltage (Ecell) and ca-

pacity already demonstrated in section 5.1.2. In this section e↵ects on internal resistance,

battery operation time and e↵ect on power delivery are investigated.

Constant current pulse method is an e↵ective strategy to determine internal resistance

[49] and to determine e↵ect due to aging. In order to conduct this simulation 16% de-

graded battery was considered where the initial lithium concentration in anode changed

from 26194 mol/m3 (a new battery) to 21959 mol/m3 (aged battery). Figure 5.18 demon-

strates the constant current pulse simulation conducted on aged battery where y � axis

represents battery voltage (Ecell) and x� axis represents time in hours. Inset illustrates

the square wave current pulses applied on battery; 6 minute discharge at I = �13A/m2

and 6 minutes relaxation time (I = 0). The battery temperature was set at 25oC.

The last current pulse (inset of figure 5.18; T ime > 1.6hrs) was shortened because the

battery reached its lower current limit (Vlow = 2.5V ).

Comparison of figure 5.18 (aged battery) and figure 5.14 (new battery) indicate that e↵ect

on Ecell is negligible in the initial discharge period. However, Ecell becomes significantly

a↵ected at second half of discharge period. It is possible to observe that discharge time

of the battery has been reduced by approximately 12 minutes for aged battery.

Based on the voltage values presented in the two figures, voltage drop (�Ecell) due to

internal resistance was determined for both aged and new battery. Voltage gap for each

pulse was calculated using the di↵erence between voltage just before the current was

removed (trough voltage) and voltage just before the current is reapplied (peak voltage).

These values are presented in figure 5.19. x � axis of this figure represents the battery

operated time.

6
NCA - This is a lithiated transition-metal oxide compound; also known as Liy(NiCoAl)O2 [2].
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Figure 5.18: Current pulse response on 16% degraded battery

Figure illustrates Battery voltage (Ecell) response profile against time due to applied current
pulses from fully charge to discharge state for 16% degraded battery. Inset: Applied current

pulses to the battery against time.
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Figure 5.19: E↵ect of internal resistance due to aging

Figure illustrates increase in �Ecell against battery discharge time. �Ecell due to increase in
internal resistance of battery. Continuous line represents new battery and dashed line

represents 16% degraded battery.

Figure 5.19 demonstrates that with the discharge time internal resistance of the battery

increases. At the end of the discharge, the internal resistance increases significantly which

the final value becomes 371% higher than fully charged battery. Internal resistance of

aged battery is always high. The gap between aged and new battery is small until 1500 s

and the gap gradually increases until 2500 s. After 2500 s the gap significantly increases.

Simulation results imply that when battery get aged, operation of battery at low SOC

is not a good practice because the performance of the battery becomes inferior. How-

ever, Battery Management System (BMS) can be programmed to avoid the utilization of

battery at low SOC, as the battery getting aged.
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5.3 Simulation Summary

Initially, the electrochemical and capacity fading are validated against experimental data

from literature. The simulated results from the electrochemical model indicated a good

agreement with experimental data. Simulations were conducted to investigate initial

operation of battery, lithium distribution in electrodes, power delivery, voltage response

against current pulses and e↵ect of aging.

Investigation of initial operation of battery indicated the rest time given to the battery

has an impact on battery performance. Long rest time enables to yield full extent of the

energy stored in the battery. However, short rest times can be compensated by operating

battery at low discharge/charge rates or operation of battery at elevated temperature

than room temperature. The maximum operating temperature of battery is dependent

on thermal characteristics and thermal stability of materials that are used to construct

the battery.

Investigation of lithium distribution in electrodes indicated that the battery performance

is bottlenecked by the properties of cathode (LiFePO4) material. If LiFePO4 is used as

a cathode material in a battery, operating the battery at an elevated temperature or oper-

ating the battery at a low discharge/charge rate minimize the adverse lithium distribution

in electrodes. Graphite as an anode has a constant behavior with lithium distribution

according to the model. However, with increasing discharge rate high concentration of

lithium is retained in the anode even though the battery is fully discharged.

For high power demanding applications simulation results indicated that it is preferred

to use the battery when SOC is above 30%, and it is highly unsuitable to use the battery

for high power applications when the battery has less than 10% SOC due to increase in

internal resistance which results in increase in power loss due to Joule heating inside the

battery.

Constant current pulse analysis facilitates to derive useful information about the battery.

This analysis indicate the impact of internal resistance with discharge time. Impact of

Ohmic resistance and resistance due to di↵usion were apparent in current pulse analysis.

A fully charged battery which is discharging at I = 13A/m2 at 25oC has a Ohmic to

di↵usion resistance of 2.14 : 1. However, this value depends on discharge rate, SOC and

temperature.

Investigation of e↵ects on aging indicated that 16% degraded battery had about 20%

lower operating time compared to new battery with same discharge rate (I = �13A/m2)

and temperature (25oC). Operation of aged battery at low SOC is unsuitable because
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the performance of the battery becomes inferior. The internal resistance of the battery

at the end of discharge becomes 371% higher compared to resistance when the battery is

fully charged.

Electrochemical model and capacity fading model simulate the behavior of lithium-ion cell

which is useful for many applications. Results that are generated in these simulations

indicate applications of this model have broad spectrum. This model can be used for

applications such as selection of lithium-ion battery for specific applications, optimization

of battery parameters in battery development, determination of battery service time,

determination of battery replace time and optimization of battery management systems

BMS etc.
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Chapter 6

Conclusion

Mathematical and numerical modelling of lithium-ion battery provides a convenient plat-

form for development and optimization of batteries. Physical testing of batteries demand

long time and expensive equipment. However, a mathematical model can simulate be-

havior of a battery in a fraction of time compared to time taken for physical testing of

batteries. Machine learning and deep learning provide good approximations and require

less computational power. However, their ‘back box’ nature does not provide useful in-

formation to understand physical and chemical behavior of batteries. Thus, these models

are more useful in battery management systems BMS.

6.1 About the Electrochemical Model

Pseudo Two Dimensional (P2D) model was selected to develop the electrochemical model

for lithium-ion battery in this thesis. The model is based on concentrated solution theory

and porous electrode theory [13]. Lithium transport in anode and cathode, lithium ions

transport in electrolyte, Ohm’s law and Butler-Volmer kinetics are utilized in order to

simulate the behavior of battery.

Model assumes that electrodes (anode and cathode) are a matrix which consist of ho-

mogenous solid spheres. Lithium can intercalate and de-intercalate in and out through

the surface of the spheres. The void space between spheres are filled with electrolyte.

Separator is an inert solid matrix which void spaces are filled with electrolyte. Separator

separates anode and cathode physically and electrically but allow lithium ions to pass

through.

The P2D model provide flexibility to change model parameters such as geometrical, trans-

81



port, kinetic and concentration parameters. This is highly useful for optimization of

battery parameters during a development processes, test suitability of new materials for

anode, cathode and electrolyte and determine which type of battery is most suitable for

a specific application.

The P2D model was numerically constructed using MATLAB. This is an electrochemical

model, however, it has flexibility to operate simultaneous with other models such as

capacity fading and thermal model. In this thesis both electrochemical and capacity

fading are analyzed. Thermal model was developed based on cylindrical geometry and

lump heat model, however, the analysis of thermal model is not presented in this thesis.

For simulations, natural graphite was selected as the anode, LiFePO4 was selected as

the cathode and LiPF6 in mixture of propylene carbonate, ethylene carbonate, dimethyl

carbonate was selected as the electrolyte. Parameters were estimated from the data

available in the literature.

The electrochemical model and capacity fading were validated against experimental data

from literature. The simulation results and experimental data indicated a good agree-

ment.

6.2 Results

Simulations were conducted to investigate the initial operation of battery, lithium distri-

bution in electrodes, power delivery, constant current pulse analysis and e↵ect of capacity

fading. The results indicated that rest time for the battery has an impact on battery

performance. However this issue can be overcome by reducing current through battery or

increase in temperature. Lithium distribution in electrodes indicated that many limiting

parameters exists in the cathode material.

Power delivery of the battery can be improve by increasing the operating temperature of

the battery. However, maximum operating temperature of the battery depends on the

thermal characteristics and thermal stability of battery material. One of the drawback

in electrochemical model is that it is unable to determine thermal stability of material.

However, there exists a possibility to develop a supporting model to electrochemical model

that determines the thermal stability of battery materials.

Analysis of power delivery indicated that for high power applications, it is suitable to

operate the battery above 30% SOC and it is unsuitable to use the battery when SOC is

lower than 10%.
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Constant current pulse analysis is a key method to determine many battery performance

parameters such as Ohmic resistance, electric resistance emerged due to di↵usion of

lithium in electrodes, relaxation time of the battery at di↵erent SOC and temperature

etc. This analysis indicated that internal resistance of battery is increased approximately

by 371% at lowest SOC compared to fully charged battery (1C discharge at 25oC).

Analysis of 16% degraded battery indicated that battery operation time is reduced by

approximately 20% compared to a new battery. Premature increase in internal resistance

due to aging indicated that an aged battery is more suitable to use its upper SOC region.

6.3 Further Improvements

It is possible to further improve and optimize the performance of the electrochemical

model which is written in Matlab. At start and end of simulations, the time step (dt)

needs to be small because the battery operation process is transient in these regions.

This is also applicable for regions with sharp change in total current density (I(t)).

However, when the simulation reaches a steady state, time step (dt) can be relaxed such

that it represents a larger time step. The Matlab code can be improved to optimize the

size of time step (dt) by itself with user requirements. Such improvement can reduce

the simulation time and computational power needed. Also, readability, simplicity and

performance of the Matlab code can be improved by adopting object oriented programing

(OOP).

6.4 Applications

The electrochemical model and capacity fading facilitate to simulate many testing cases

for lithium-ion batteries. Simulations can be run within few minutes or hours depending

on computer performance and resolution required. However, actual battery testing de-

mands days and months. Thus, Mathematical model provide advantage over time and

financial resources. The mathematical model is possible to use in applications such as,

• Selection of suitable lithium battery type for a specific application.

• Optimization of battery parameters during the development of a battery.

• Analyze the behavior of new materials that can be used as anode, cathode or

electrolyte.
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• Determination of battery service frequency.

• Determination of battery replacement frequency.

• Training and optimization of battery management systems (BMS).

In addition to above applications, data generated form the model can be use to train

machine learning and deep learning algorithms for lithium-ion batteries which use less

computational power than the Pseudo Two Dimensional (P2D) model.
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Appendix A

Entropy Values for Open Circuit

Voltage (OCV)

This appendix is an extension for section 3.3.2. This appendix presents entropy equations

for cathode and anode materials that are used in the battery model (dUn
dT

and dUp

dT
). OCV

entropy values for negative and positive electrodes (dUn
dT

and dUp

dT
) are extracted from

experimental data which is published in literature.

A.1 Entropy of Cathode Material

OCV entropy equation for LiFePO4 (
dUp

dT
) is extracted from Gerver and Meyers [17] and

presented in equation (A.1). The equation was developed by Gerver and Meyers [17]

based on experimental data. The units of dUp

dT
is V/K.

dUp

dT
=� 0.35376ỹ8 + 1.3902ỹ7 � 2.2585ỹ6 + 1.9635ỹ5 � 0.98716ỹ4

+ 0.28857ỹ3 � 0.046272ỹ2 + 0.0032158ỹ � 1.9186⇥ 10�5 ,
(A.1)

ỹ(x, t) =
cs(r = rp, x, t)

cp,max

, x 2 LP

Figure A.1 illustrates the behavior defined by equation A.1, that represents change of

entropy in LiFePO4 with changing Li concentration ratio (ỹ).
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Figure A.1: Change of LiFePO4 entropy against ỹ

Figure illustrate the behavior of entropy in LiFePO4 for ỹ 2 [0, 1]. This is the graphical
representation of equation (A.1) [17].

A.2 Entropy of Anode Material

Entropy data for for natural graphite (dUn
dT

) is taken from Reynier et al. [45], curve fitted

and presented in equation (A.2). Coe�cients for eq.(A.2) are presented in table A.1. The

units of dUn
dT

is V/K.

Comparison of values that are calculated using equation (A.2) and experimental data

are presented in figure A.2. Figure illustrates the behavior of entropy with changing Li

concentration ratio (x̃) in natural graphite.

dUn

dT
= A(x̃� �)7 +B(x̃� �)6 + C(x̃� �)5 +D(x̃� �)4 + E(x̃� �)3

+ F (x̃� �)2 +G(x̃� �) +H ,
(A.2)

x̃(x, t) =
cs(r = rn, x, t)

cn,max

, x 2 LN
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Table A.1: Coe�cients for eq.(A.2)

Coe�cients
Valid range

0  x̃ < 0.4365 0.4365  x̃ < 0.4912 0.4912  x̃  1
A 10.9 0 �2.351
B �16.92 0 3.8
C 9.863 0 �2.712
D �2.474 121 1.064
E 0.135 �8.612 �0.235
F 5.469⇥ 10�2 0.1529 2.725⇥ 10�2

G �1.096⇥ 10�2 2.072⇥ 10�4 �1.503⇥ 10�3

H 6.192⇥ 10�4 �1.562⇥ 10�4 �9.529⇥ 10�6

� 0 0.4364 0.4913

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

10-4

Curve fitted

Experimental

Figure A.2: Change of natural graphite entropy against x̃

The figure illustrates the behavior of entropy in natural graphite for x̃ 2 [0, 1]. The figure also
compares the agreement between experimental data (circles) [45] and values generated with

eq.(A.2) (line).
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Appendix B

Newton-Raphson Method -

Derivatives and Matrices

This appendix is an extension to Discretization of Ohms and Butler-Volmer equations at

section 4.2.2. Derivatives and organization of [J ], [��], [�f ] matrices essential to conduct

multi-variable Newton-Raphson method are documented in this appendix. Parameters

that are used here carries same definitions as section 4.2.2.

Value for [in]z is found using Eq. 4.3, Value for @[in]z
@[�s]z

is found using Eq. 4.4 and value for
@[in]z
@[�e]z

is found using Eq. 4.5. Functions for electrodes and electrolyte, their derivatives

are documented below,

B.1 Functions and Derivatives

B.1.1 Functions and Derivatives for Negative and Positive Elec-

trodes

Center Grid Cells - Both Negative and Positive Electrodes (Eq. 4.8)

f1(z) =
1

�x2
(�+[�s]z+1 � (�+ + ��)[�s]z + ��[�s]z�1)� as[in]z
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Derivatives
@f1(z)

@[�s]z+1
=

�+

�x2

@f1(z)

@[�s]z
= ��+ + ��

�x2
� as

@[in]z
@[�s]z

@f1(z)

@[�s]z�1
=

��

�x2

@f1(z)

@[�e]z
= �as

@[in]z
@[�e]z

Boundary 1 - Negative Electrode (Eq. 4.9)

f1(1) =
1

�x

✓
�+

[�s]z+1 � [�s]z
�x

� I

◆
� as[in]z

Derivatives
@f1(1)

@[�s]z+1
=

�+

�x2

@f1(1)

@[�s]z
= � �+

�x2
� as

@[in]z
@[�s]z

@f1(1)

@[�e]z
= �as

@[in]z
@[�e]z

Boundary 2 - Negative Electrode (Eq. 4.10)

f1(Mn) = ���

✓
[�s]z � [�s]z�1

�x2

◆
� as[in]z

Derivatives
@f1(Mn)

@[�s]z
= � ��

�x2
� as

@[in]z
@[�s]z

@f1(Mn)

@[�s]z�1
=

��

�x2

@f1(Mn)

@[�e]z
= �as

@[in]z
@[�e]z

Boundary 3 - Positive Electrode (Eq. 4.11)

f1(Mn +Ms + 1) = �+

✓
[�s]z+1 � [�s]z

�x2

◆
� as[in]z
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Derivatives
@f1(Mn +Ms + 1)

@[�s]z+1
=

�+

�x2

@f1(Mn +Ms + 1)

@[�s]z
= � �+

�x2
� as

@[in]z
@[�s]z

@f1(Mn +Ms + 1)

@[�e]z
= �as

@[in]z
@[�e]z

Boundary 4 - Positive Electrode (Eq. 4.12)

f1(M) =
1

�x

✓
I � ��

[�s]z � [�s]z�1

�x
� I

◆
� as[in]z

Derivatives
@f1(M)

@[�s]z
= � �+

�x2
� as

@[in]z
@[�s]z

@f1(M)

@[�s]z�1
=

�s�

�x2

@f1(M)

@[�e]z
= �as

@[in]z
@[�e]z

B.1.2 Functions and Derivatives for Electrolyte

B1 term is introduced to f2 function to shortened the equations presented. B1 does not

depend on �s or �e. Expression for B1 expressed as follows,

B1 =
2R

F�x

✓
T++⌫+

✓
ln[ce]z+1 � ln[ce]z

�x

◆
� T��⌫�

✓
ln[ce]z � ln[ce]z�1

�x

◆◆

Center Grid Cells - Electrolyte (Eq. 4.14)

f2(z) =
1

�x2
(+[�e]z+1 � (+ + �)[�e]z + �[�e]z�1)� B1 + as[in]z
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Derivatives
@f2(z)

@[�e]z+1
=

+

�x2

@f2(z)

@[�e]z
= �+ + �

�x2
� as

@[in]z
@[�e]z

@f2(z)

@[�e]z�1
=

�

�x2

@f2(z)

@[�s]z
= as

@[in]z
@[�s]z

Boundary 1 - Electrolyte (Eq. 4.15)

f2(1) = +

✓
[�e]z+1 � [�e]z

�x2

◆
� B1 + as[in]z

Derivatives
@f2(1)

@[�e]z+1
=

+

�x2

@f2(1)

@[�e]z
= � +

�x2
� as

@[in]z
@[�e]z

@f2(1)

@[�s]z
= as

@[in]z
@[�s]z

Boundary 1 - Electrolyte (Eq. 4.16)

f2(M) = ��

✓
[�e]z � [�e]z�1

�x2

◆
� B1 + as[in]z

Derivatives
@f2(M)

@[�e]z
= � �

�x2
� as

@[in]z
@[�e]z

@f2(M)

@[�e]z�1
=

�

�x2

@f2(M)

@[�s]z
= as

@[in]z
@[�s]z
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B.2 Organization of Matrices

B.2.1 Organization of [��] and [�f ] matrices

Discretized variables of �s and �e values are organized into [��] is shown below (left).

Functions of f1 and F2 are organized into [�f ] as below (right).

[��] =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

��s(1)

��e(1)

��s(2)

��e(2)
...

��s(Mn)

��e(Mn)

��e(Mn + 1)

��e(Mn + 2)
...

��e(Mn +Ms)

��s(Mn +Ms + 1)

��e(Mn +Ms + 1)
...

��s(M)

��e(M)

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

[�f ] = �

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

f1(1)

f2(1)

f1(2)

f2(2)
...

f1(Mn)

f2(Mn)

f2(Mn + 1)

f2(Mn + 2)
...

f2(Mn +Ms)

f1(Mn +Ms + 1)

f2(Mn +Ms + 1)
...

f1(M)

f2(M)

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

B.2.2 Organization of Jacobian [J ] matrix

Jacobian matrix is a (M +Mn +Ms)⇥ (M +Mn +Ms) square matrix. Derivatives are

organized in this matrix in accordance with [��] and [�f ] matrices. Shown below is the

generalized version of organizing the [J ] matrix.

J =

0

BB@

@f1(1)
@[�s]1

@f2(1)
@[�e]1

@f1(1)
@[�s]2

· · · @f2(1)
@[�e]M�1

@f1(1)
@[�s]M

@f2(1)
@[�e]M

...
...

...
. . .

...
...

...
@f1(M)
@[�s]1

@f2(M)
@[�e]1

@f1(M)
@[�s]2

· · · @f2(M)
@[�e]M�1

@f1(M)
@[�s]M

@f2(M)
@[�e]M

1

CCA
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Appendix C

Thermal Model

C.1 Thermal Model

It is considered that compact battery material is organized in a cylindrical geometry shape

(Figure C.1). The cylindrical geometry contains only one material (domain) where specific

heat capacities, densities and thermal conductivities are volume averaged. The heat

generated during the operation of battery add heat (Qavg) to geometry homogeneously

at every spacial point. Qavg is volume average heat which includes active heat (Qact),

reactive heat (Qreact) and ohmic heat (Qohm) [20]. The ohmic heat generated at current

collectors are neglected as conductivity of those materials are considerably high [20].

Cylindrical coordinate system is used since geometry of interest is a cylinder. Figure C.1

demonstrates coordinate system where rc is radial dimension, ✓ is angular dimension and

z is z dimension. The gradient of divergence for cylindrical coordinate system can be

shown as follows,

r (KrT ) = 1

rc

@

@rc

✓
rcK

@T

@rc

◆
+

1

r2
c

@

@✓

✓
K

@T

@✓

◆
+

@

@z

✓
K

@T

@z

◆

C.1.1 Description of Variables, Parameters and Constants

Table C.1 demonstrates variables and parameters used in thermal model. Ambient Tem-

perature, initial temperature, time and coordinate system variables are independent vari-

ables in this model. Initial temperature is same as the initial temperature of electro-

chemical model. Local temperature (T ), heat generation terms (Qact, Qreact, Qohm, Qavg)

depend on both thermal model and electrochemical model. Transfer current density (in),
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Figure C.1: Schematic diagram of cylindrical battery and coordinate system

electric potentials (�s,�e), OCV (U), entropy (@U
@T

) and electrolyte concentration (ce)

depend and extract from electrochemical model.

Table C.2 demonstrates constants used in thermal model. Density (⇢), specific heat ca-

pacity (Cp) and thermal conductivity (K) are volume averaged values. specific surface

area of electrodes (in) and electric conductivity at electrodes (�) are same values as in

electrochemical model. Even-though ionic conductivity of electrolyte () considered to

be constant inside the thermal model, it is important to note that this is a varying pa-

rameter in electrochemical model. Thus, for each time step this values changes. Newton’s

cooling coe�cient (h), emissivity ("B) and Stefan-Boltzmann constant (�SB) are taken

from literature sources. � is considered to be equal to thermal conductivity of material

(K) unless otherwise specified.

C.1.2 Governing Equations

Governing equations can be divided into three categories. Heat generation (source) equa-

tions, heat transfer equation and boundary conditions. These equations are boxed for

ease of identification.

Primary source of heat arises due to charge transfer reaction [25]. This component has

reversible and irreversible heat components which occurs at electrode regions [25, 50].

Secondary source arises due to ohmic heat generation [25]. Heat generation due to charge
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Table C.1: Variables and parameters - Thermal model

Symbol Type of Variable Description
Tamb Independent Ambient temperature around battery
Tinitial Independent Initial temperature of battery
rc Independent Radial axis of battery
z Independent z axis of battery
✓ Independent Angular axis of battery
t Independent Time
T Dependent Local temperature of battery
in Dependent Transfer current density
�s Dependent Electric potential at electrodes
�e Dependent Electric potential at electrolyte
U Dependent OCV
@U

@T
Dependent Entropy of cell reaction

ce Dependent Li+ concentration at electrolyte
Qact Dependent Active heat generation
Qreact Dependent Reactive heat generation
Qohm Dependent Ohmic heat generation
Qavg Dependent Average heat generation

Table C.2: Constants - Thermal model

Symbol Description
as Specific surface area of Electrode material
� Electric conductivity of electrode material
 Electric conductivity of electrolyte
⇢ Average density of battery material
Cp Average specific heat capacity of battery material
K Average thermal conductivity of battery material
h Newton’s cooling coe�cient (Convection heat transfer)
"B Emissivity of surface of battery (Blackness)
�SB Stefan-Boltzmann constant
� Conductivity of heat at surface of battery material

102



flow in electrolyte has significant heat generation over charge flow through electrodes [50].

Equation C.1 demonstrate active heat generation, also known as irreversible heat com-

ponent [20, 25]. Magnitude of heat depends on overpotential (�s � �e � U) and transfer

current density (in). This is an exothermic term regardless of charging or discharging

since overpotential and transfer current density change signs between the two operations

[25].

Qact = as in (�s � �e � U) (C.1)

Equations C.2 expresses reaction heat generation, otherwise known as reversible heat

component [20, 25]. Magnitude of this quantity depends on transfer current density (in),

temperature (T ) and entropy (@U
@T

). This reaction is endothermic or exothermic which

depends on charging or discharging.

Gerver and Meyers [17] mention that, experimental data with curve fitting was used

develop equation for entropy change for both negative and positive electrodes. Entropy

change for negative and positive electrodes shown in equation C.3 and equation C.4

respectively [17, 20]. At equation C.4, cs is the Li concentration at surface of electrode

material
�
cs = cs(r = rp, x, t)

�
.

Qreact = as in T
@U

@T
(C.2)

@Un

@T
= 344.1347148

exp(�32.9633287x̃+ 8.316711484)

1 + 749.0756003 exp(�34.7909964x̃+ 8.887143624)

� 0.8520278805x̃+ 0.36229929x̃2 + 0.2698001697

(C.3)

@Up

@T
=� 0.35376

✓
cs

cs,max

◆8

+ 1.3902

✓
cs

cs,max

◆7

+ 1.9635

✓
cs

cs,max

◆5

� 0.98716

✓
cs

cs,max

◆4

+ 0.28857

✓
cs

cs,max

◆3

� 0.046272

✓
cs

cs,max

◆2

+ 0.0032158

✓
cs

cs,max

◆
� 1.9186⇥ 10�5

(C.4)

Ohmic heat generation expresses by equation C.5 [20]. The ohmic heat includes heat
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generated at electrodes (�r�sr�s) and at electrolyte (r�er�e + rce
ce
r�e). From

electrolyte heat generation term, It is apparent that higher Li+ concentration at elec-

trolyte contribute lower heat generation and vise versa. Ohmic heat is always exothermic

regardless of charging or discharging.

Qohm = �r�sr�s + r�sr�s + 
rce
ce
r�e (C.5)

Average heat generation is the summation of active, reactive and ohmic heats (Equation

C.6) [20]. The thermal model assumes that heat is generated homogeneously and equally

at each point of geometry, thus, Qavg represents volume average heat generated due to

operation of battery.

Qavg = Qact +Qreact +Qohm (C.6)

Energy balance for cylindrical geometry is expressed in equation C.7 [20]. ⇢, Cp and K

are volume average properties of battery material.

⇢Cp

@T

@t
+r (�KrT ) = Qavg (C.7)

The thermal model is designed such that, outer boundary of cylindrical geometer; circular

area, top and bottom circular areas have similar boundary conditions. This boundary

condition is expressed by equation C.8 [20].

��rT = �h (Tamb � T )� "B�SB

�
T 4
amb
� T 4

�
(C.8)

For better understand boundary condition, let r̄c, ✓̄, z̄ are dimensionless spacial variables

for cylindrical geometry where,

0  r̄c, ✓̄, z̄  1

The boundary condition (equation C.8) applies when,

z̄ = 0, 0  ✓̄ < 1, 0  r̄c  1

z̄ = 1, 0  ✓̄ < 1, 0  r̄c  1

r̄c = 1, 0  ✓̄ < 1, 0  z̄  1
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At center of geometry, where,

r̄c = 0, 0  ✓̄  1, 0 < z̄ < 1

the boundary condition is,

�KrT = 0
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Appendix D

Thermal Model Discretization

D.1 Thermal Model Discretization

D.1.1 Discretization of Source Term

Heat transfer calculations contains mainly three equations; Calculation of source term,

Heat transfer at center grid cells and heat transfer at boundaries. Discretization of heat

source equation (Eq. C.6) in electrolyte domain is expressed at Eq. D.1.

[Qavg]z = [Qact]z + [Qreact]z + [Qohm]z (D.1)

The spacial average heat generation then calculated using Eq. D.2

[Qavg]
t =

1

M

 
MX

z=1

[Qavg]z

!
(D.2)

Note that z at Eq. D.1 and Eq. D.2 represents index of grid cell at electrolyte domain.

D.1.2 Discretization of Heat Transfer Equation

Cylindrical coordinate system is used for evaluation of heat transfer equation (Eq. C.7).

Axes used in thermal model are independent of electrochemical model. Three axes are,

• rc - Radial axis
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• ✓ - Angular axis

• z - Vertical axis

Eq. C.7 based cylindrical coedinates on above three axes are expressed in Eq D.3. The

heat transfer coe�cient (K), density (⇢) and specific heat capacity (Cp) of battery ma-

terial are assumed to be constant with respect to rc, ✓, z and t.

⇢Cp

@T

@t
�K

✓
1

rc

@T

@rc
+

@2T

@r2
c

+
1

r2
c

@2T

@✓2
+

@2T

@z2

◆
= Qavg (D.3)

However, temperature symmetry long ✓ axis can be observed as the geometry is a full

cylinder and homogeneous heat generation. Thus, @T

@✓
= 0. This results only rc and z

axes to be considered during evaluation. The discretization of Eq. D.3 is expressed at

Eq. D.4. Implicit method is used for discretization of equation, but current time step is

used to define heat source term ([Qavg]t). Graphical representation of 2 Dimensional grid

used for Eq D.4 is presented at Figure D.1.

⇢Cp

 
[T ]t+1

(rc,z)
� [T ]t(rc,z)
�t

!
�K

 
1

rc

✓
[T ]t+1

(rc+1,z) � [T ]t+1
(rc,z)

�rc

◆

+
[T ]t+1

(rc+1,z) � 2[T ]t+1
(rc,z)

+ [T ]t+1
(rc�1,z)

�r2
+

[T ]t+1
(rc,z+1) � 2[T ]t+1

(rc,z)
+ [T ]t+1

(rc,z�1)

�z2

!
= [Qavg]

t

(D.4)

Discretized equation D.4 can be ordered in matrix format for better presentation (Eq.

D.5). �1, �2, �3 and Q̃ terms are introduced to present a concise matrix equation. These

terms are defined below Eq. D.5

⇣
�2 �3 (1� �1 � 2�2 � 2�3) �3 (�1 + �2)

⌘

0

BBBBBBBBBB@

[T ]t+1
(rc�1,z)

[T ]t+1
(rc,z�1)

[T ]t+1
(rc,z)

[T ]t+1
(rc,z+1)

[T ]t+1
(rc+1,z)

1

CCCCCCCCCCA

=
⇣
Q̃+ [T ]t(rc,z)

⌘
(D.5)
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Figure D.1: Grid cells for thermal model

Dashed line indicates axis of cylindrical geometry. Cells are numbered in (rc, z) coordinate
format. Mc, Nc are number of grid cells in rc and z dimensions respectively. Double headed
arrows demonstrate direction of heat loss to/absorb from environment, with each cell at

boundary.

108



where,

�1 = �
K�t

⇢Cprc�rc
�2 = �

K�t

⇢Cp�r2
c

�3 = �
K�t

⇢Cp�z2
Q̃ =

[Qavg]t�t

⇢Cp

Three surfaces can be identified for heat transfer between boundary and environment.

Another boundaries lie at core of the cylinder. These surfaces can be listed and referred

with Figure D.1 as follows,

• Top surface of cylinder (1  rc Mc, z = Nc)

• Bottom surface of cylinder (1  rc Mc, z = 1)

• Cylindrical surface of cylinder (rc = Mc, 1  z  Nc)

• Cylindrical core (rc = 1, 1 < z < Nc)

Based on above mentioned boundaries, 8 distinct boundary equations can be identified

and listed at appendix E. Heat transfer between boundary and environment (Eq. C.8)

depends on boundary temperatures. Even though, implicit method is used to solve heat

transfer model, quantity of heat transfer to/from environment defined based on boundary

temperature at current time step.

The solution is derived using implicit scheme. All subsequent time step temperature

values ([T ](t+1)
(rc,z)

) at grid, organized into a column matrix “x”. Based on matrix “x”,

a square matrix “A” is created which houses all coe�cient respect to [T ](t+1)
(rc,z)

values.

Column matrix “b” is created which contains values at R.H.S of Eq, D.5 and boundary

equations presented at appendix E. “x” is then determined using,

x = A�1b

Values at “x” are volume averaged before new temperature is exported to electrochemical

model.
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Appendix E

Thermal Model - Equations for

Boundaries

Boundary condition equations for thermal model is documented in this appendix. Eight

boundary equations exists and they are indexed based on specific region (Fig E.1). Pa-

rameters that are used here carries same definitions as in section D.

�1 = �
K�t

⇢Cprc�rc
�2 = �

K�t

⇢Cp�r2
c

�3 = �
K�t

⇢Cp�z2
Q̃ =

[Qavg]t�t

⇢Cp

L is introduced to represent discretized boundary equation to maintain conciseness of

presented equations. The discretization of boundary condition presented in Eq. C.8 as

follows,

L =
h

�

�
Tamb � [T ]t(rc,z)

�
+

"B�SB

�

⇣
(Tamb)

4 �
�
[T ]t(rc,z)

�4⌘

*� - Heat transfer coe�cient at boundary, By default � = K

Boundary equations are presented as matrix equations. Thus, temperature values respect

110



1

2

3 5 8

7

64

Center Axis rc
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Figure E.1: Boundaries of interest in cylindrical geometry

to subsequent time step are organized as a column matrix, which can be shown as follows,

T =

0

BBBBBBBBBB@

[T ]t+1
(rc�1,z)

[T ]t+1
(rc,z�1)

[T ]t+1
(rc,z)

[T ]t+1
(rc,z+1)

[T ]t+1
(rc+1,z)

1

CCCCCCCCCCA

In figure E.1, vertical dashed line represents axis of cylindrical geometry. Boundary

regions are indexed from 1 - 8 . Regions 1 , 4 , 6 are top surface of battery

(represents top circular surface of cylinder). Regions 3 , 5 , 8 are bottom surface

of battery (represents bottom circular surface). Regions 6 , 7 , 8 are the cylindrical

surface of battery. The core of battery represented by regions 1 , 2 , 3 . Center grid

cells are represented by darkened area of figure E.1. Respective boundary equations are

presented below based on the positions (indices) at figure E.1.
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1 )
h
0 0 (1� �1 � �2 � �3) �3 (�1 + �2)

i
T =

h
Q̃+ [T ]t(r,z) � �3L�z

i

2 )
h
0 �3 (1� �1 � �2 � 2�3) �3 (�1 + �2)

i
T =

h
Q̃+ [T ]t(r,z)

i

3 )
h
0 �3 (1� �1 � �2 � �3) 0 (�1 + �2)

i
T =

h
Q̃+ [T ]t(r,z) � �3L�z

i

4 )
h
�2 0 (1� �1 � 2�2 � �3) �3 (�1 + �2)

i
T =

h
Q̃+ [T ]t(r,z) � �3L�z

i

5 )
h
�2 �3 (1� �1 � 2�2 � �3) 0 (�1 + �2)

i
T =

h
Q̃+ [T ]t(r,z) � �3L�z

i

6 )
h
�2 0 (1� �2 � �3) �3 0

i
T =

h
Q̃+ [T ]t(r,z) � �1L�rc � �2L�rc � �3L�z

i

7 )
h
�2 �3 (1� �2 � 2�3) �3 0

i
T =

h
Q̃+ [T ]t(r,z) � �1L�rc � �2L�rc

i

8 )
h
�2 �3 (1� �2 � �3) 0 0

i
T =

h
Q̃+ [T ]t(r,z) � �1L�rc � �2L�rc � �3L�z

i
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Appendix F

MATLAB code

This appendix lists the Matlab scrips, functions and input excel file that were used in the

electrochemical model. Note that some parts of the code are hidden.

F.1 Input Data

Figure F.1, figure F.2 and figure F.3 demonstrate the sheets of input excel file. Figure

F.1 demonstrates the sheet that was used to define battery parameters. Figure F.2

demonstrates constant values and also the input total current density (I). Figure F.3

describes the discretization parameters that were used in the electrochemical model. The

parameters presented in these figures (the excel file) can be edited based on the simulation

case.

F.2 Matlab Script and Functions

The Matlab script and functions are presented as listings for ease of reference. The list

of listings are presented in page 116.

Listing F.1 is the main Matlab script that drives the simulation. This script can be edited

based on simulation cases. For example this script can be edited such that the battery

can operate many discharge, charge cycles rather than single charge or discharge scenario.

Matlab function presented in listing F.2 organizes the input data into vectors and matri-

ces. This function also defines the initial conditions for the simulation. Matlab function
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Figure F.1: Input excel file - Sheet ‘Parameters’

Figure F.2: Input excel file - Sheet ‘Constants’

Figure F.3: Input excel file - Sheet ‘Discretization values’
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presented in listing F.3 is the main function that runs the simulation. This function

houses all necessary sub-functions that are required to run the simulation.

Matlab functions presented in listings F.4, F.6, F.7 and F.8 include the Matlab codes

that were derived from the functions in chapter 4. In addition, a new Matlab function

was introduced which is listed in listing F.5, in order to calculate the transfer current

density (in), electrode current density (is) and electrolyte current density (ie).

Matlab function presented in listing F.9 represents the code that is shared by several

Matlab functions to calculate the solution using implicit scheme.

Matlab functions for reaction rate coe�cients, Li di↵usivity in the electrodes, Li+ dif-

fusion and conductivity in the electrolyte, and Open Circuit Voltage (OCV) are listed

in listings F.10, F.11, F.12 and F.13 respectively. These functions can be edited by user

based on the battery materials and kinetics.

Since this thesis considers only iso-thermal operation of the battery, Matlab code listed

in listing F.14 is used to fill the gap of thermal model. However, Matlab function for

the thermal model (cylindrical geometry) is listed in listing F.15 which was discussed in

appendices C, D and E.
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Listings

F.1 Main.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

F.2 import data.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.3 main function.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

F.4 OHM BV NEWTON.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

F.5 BV.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

F.6 ELECTROLYTE MASS.m . . . . . . . . . . . . . . . . . . . . . . . . . . 132

F.7 SOLID MASS.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

F.8 V Ah.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

F.9 implicit.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

F.10 k 0.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

F.11 Dn Dp.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

F.12 De ke.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

F.13 U eq.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F.14 THERMAL.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

F.15 THERMAL MODEL.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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Listing F.1: Main.m

% BATTERY MODEL FOR LITHIUM ION CELLS (P2D MODEL)

% AUTHOR - YASAS BANDARA

% THESIS - MATHEMATICAL AND NUMERICAL MODELLING OF LITHIUM

BATTERIES

% SPRING 2021

% DEPARTMENT OF ENERGY AND PETROLEUM ENGINEERING

% UNIVERSITY OF STAVANGER , NORWAY

% SUPERVISORS - STEINAR EVJE , YANGYANG QIAO

% <<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>

% <<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>

% <<<<<<<<<< START OF PROGRAM >>>>>>>>>

clear

clc

% Import valued from the Excel file --->

% Name of the import file

file = 'INPUT ';

% Import data to matlab

Sheet1 = readtable(file ,'Sheet ','Parameters ');
Sheet2 = readtable(file ,'Sheet ','Constants ');
Sheet3 = readtable(file ,'Sheet ','Discretization_values ');

% Simulation --->

% Structure the data

[VECTOR , DISCRET , INITIAL , table1 , table2 , table3]...

= import_data(Sheet1 , Sheet2 , Sheet3);

% Start the simulation

[VECTOR , V, Ah , sim , t_val] = main_function(VECTOR , DISCRET ,

INITIAL , table1 , table2 , table3);

% save data --->

savedata = logical(true); % save data - YES , NO

if savedata
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if not(isfolder('Results ')) % if Resutls folder does not

exits

mkdir('Results ') % Create a new folder

end

% Get the path and results folder

out_path = [pwd '/Results '];
% save name -> C-rate , temperature. 'results '.mat
filename = strcat(strrep(num2str(table2 (8,1)),'.','_')...

,'Amp',strrep(num2str(table2 (7,1)),'.','_'),'Temp -
results.mat');

% Save path and file name

filename = fullfile(out_path , filename);

% save the file

save(filename ,'V','Ah','sim','t_val ') % Parameters that

are saved

end

% <<<<<<<<<< END OF PROGRAM >>>>>>>>>
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Listing F.2: import data.m

function [VECTOR , DISCRET , INITIAL , table1 , table2 , table3] =

import_data(sheet1 , sheet2 , sheet3)

% Import and structure the input data

% Three cell arrays are created <<INITIAL >>,<<DISCRET >>,<<

VECTOR >>

% Convert Table to arrays

% Parameters

table1 = table2array(sheet1 (:,[3,4,5]));

table1 = [table1 (:,1), table1 (:,3), table1 (:,2)]; %

reordering table: Anode , Cathode , Separator

% Constants

table2 = table2array(sheet2 (:,3));

% Discretization values

table3 = table2array(sheet3 (:,3));

% -------------------------

% import Initial values -->

% Define values and order

% 1 delta % Electrode thickness (micro m)

% 2 epsilon; % Electrode Porosity

% 3 epsilon_e; % Electrolyte Volume Fraction

% 4 rp; % Average Particle Radius (micro m)

% 5 sigma_s; % Matrix Phase conductivity (S m^(-1))

% 6 c_max; % Maximum concentration (mol m^(-3))

% 7 c_0; % Initial concentration (mol m^(-3))

% 8 density; % density (kg m^(-3))

% 9 C_heat; % Heat Capacity (J kg^(-1) K^(-1))

% 10 T_cond; % thermal conductivity (W m^(-1) K^(-1))

% 11 eps_b; % Bruggeman constant for diffusion and

conductivity

% 12 alpha_a_neg; % activity coefficient - anodic -

negative elec

% 13 alpha_c_neg; % activity coefficient - cathodic -

negative elec

% 14 alpha_a_pos; % activity coefficient - anodic -

positive elec

% 15 alpha_c_pos; % activity coefficient - cathodic -
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positive elec

% 16 R; % Universal gas constant

% 17 T_ref; % reference temperature

% 18 T % initial Temperature

% 19 F % faraday constant

% 20 trans % transference number for Lithium

% Assign the input variables

delta = table1 (1,:); % Electrode thickness (micro m

)

epsilon = table1 (2 ,1:2); % Electrode Porosity

epsilon_e = table1 (3,:); % Electrolyte Volume Fraction

rp = table1 (4 ,1:2); % Average Particle Radius (

micro m)

sigma_s = table1 (5 ,1:2); % Matrix Phase conductivity (S

m^(-1))

c_max = table1 (8 ,1:2); % Maximum concentration (mol m

^(-3))

c_0 = table1 (9,:); % Initial concentration (mol m

^(-3))

% Dummy variables ->

density = [ 0 0 0]; % density (kg m^(-3))

C_heat = [ 0 0 0]; % Heat Capacity (J kg^(-1) K

^(-1))

T_cond = [ 0 0 0]; % thermal conductivity (W m

^(-1) K^(-1))

rp = rp*10^( -6); % Particle radius is in (micro m) --> (m)

delta = delta *10^( -6);

eps_b_s = table2 (4,1); % Bruggeman exponent for

electrode

eps_b_e = table2 (5,1); % Bruggeman exponent for

electrolyte

eps_b = eps_b_e; %Bruggeman exponent

alpha_a_neg = table1 (6,1); %activity coefficient - anodic -

negative elec

alpha_c_neg = table1 (7,1); %activity coefficient - cathodic

- negative elec

alpha_a_pos = table1 (6,2); %activity coefficient - anodic -
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positive elec

alpha_c_pos = table1 (7,2); %activity coefficient - cathodic

- positive elec

R = table2 (1,1); % Universal gas constant

T_ref = table2 (6,1); % reference temperature

T = table2 (7,1); %initial Temperature

F = table2 (2,1); %faraday constant

trans = table2 (3,1); % transference number for Li

% Create a cell array <<INITIAL >>

INITIAL = {delta , epsilon , epsilon_e , rp , sigma_s , c_max , c_0

, density , ...

C_heat , T_cond , eps_b , alpha_a_neg , alpha_c_neg ,

alpha_a_pos , ...

alpha_c_pos , R, T_ref , T, F, trans };

% --------------------------------

% --------------------------------

% Discretizaion Values -->

% Define values and variable order

% 1 - t % Time length of simulation

% 2 - t_n % Number of Time steps

% 3 - dt

% 4 - L_n %negative thickness

% 5 - L_s %seperator thickness

% 6 - L_p %positive tickness

% 7 - L %Length of Battery

% 8 - M_n % Number of Grid cells - negative

% 9 - M_s % Number of Grid cells - seperator

% 10 - M_p % Number of Grid cells - positive

% 11 - M %total grid cells updated

% 12 - r_n % particle radius Negative

% 13 - m_n % Number of Grid cells Negative

% 14 - dr_n % dr of negative electrode

% 15 - r_p % particle radius Positive

% 16 - m_p % Number of Grid cells Positive

% 17 - dr_p % dr of postive electrode

% Assign values ->
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% Time length of simulation

t = table3 (1,1);

% Number of Time steps

t_n = table3 (2,1);

%Time Grid Size

dt = t/t_n; %

% Grid cells

M = table3 (3,1);

L_n = delta (1); %negative thickness

L_s = delta (3); %separator thickness

L_p = delta (2); %positive thickness

L = L_n+L_s+L_p; %Length of Battery

% Calculation for number of grid cells (neg , sep , pos)

% Number of Grid cells - negative

M_n = round(M*delta (1)/( delta (1)+delta (2)+delta (3)));

% Number of Grid cells - separator

M_s = round(M*delta (3)/( delta (1)+delta (2)+delta (3)));

% Number of Grid cells - positive

M_p = round(M*delta (2)/( delta (1)+delta (2)+delta (3)));

%total grid cells updated

M = M_n+M_s+M_p;

%Number of Grid cells - negative electrode

m_n = table3 (4,1);

r_n = rp(1); % particle radius

dr_n = r_n/m_n; % dr of negative electrode

% Number of Grid cells - Positive

m_p = table3 (5,1); % <---- Variable

r_p = rp(2); %particle radius

dr_p = r_p/m_p; % dr of postive electrode

% create a cell array <<DISCRET >>

DISCRET = [t, t_n , dt , L_n , L_s , L_p , L, M_n , M_s , M_p , M,

...

r_n , m_n , dr_n , r_p , m_p , dr_p];

% -----------------------------------

% -----------------------------------

% Create a vector with initial conditions
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% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% Create a cell array <<VECTOR >>

VECTOR = {c_s_n , c_s_p , D_n , D_p , phi_s , phi_e , c_e , c_s_s ,

i_n , i_s , ...

i_e , U, T, D_e , k_e , sigma_s , epsilon_e0 , a_s , k_0_val };

end
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Listing F.3: main function.m

function [VECTOR , V, Ah , sim , t_val] = main_function(VECTOR ,

DISCRET , INITIAL , table1 , table2 , table3)

% This function is the main iteration in the program which

call for required sub -functions for calculations and

output the final result

% Current Density

I = table2 (8,1);

% Upper and lower voltage limits to break at end of charge or

discharge

if I <= 0

up_lim = 5.0; % Upper limit

low_lim = 2.5; % Lower limit

elseif I > 0

up_lim = 3.6; % Upper limit

low_lim = 2.0; % Lower limit

end

t_n = table3 (2,1); % Number of iterations

U = VECTOR {1 ,12}; % Temporary variable to extract

data

V = zeros(1,t_n); % Define a voltage vector

V(1,1) = U(DISCRET (11))-U(1); % Voltage change with time step

clear U; % intermediate variable U clear

out

Ah = zeros(1,t_n); % Energy change with time step

Time_elapsed = zeros(1,t_n); % Actual discharge time

sim = VECTOR; % working cell variable (vector)

for t = 1:t_n

% Update input parameters

sim = UPDATE_VALUES (1,INITIAL , DISCRET , sim , table1);

% Calculate potential distribution

sim = OHM_BV_NEWTON (1, I, INITIAL , DISCRET , sim);

% Calculate transfer current distribution

sim = BV(1, INITIAL , DISCRET , sim);

% Calculate electrolyte li concentration distribution

sim = ELECTROLYTE_MASS (1, INITIAL , DISCRET , sim);

% calculate electrode li concentration distribution
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sim = SOLID_MASS (1, INITIAL , DISCRET , sim);

% Call for thermal model

sim = THERMAL(1, I, INITIAL , DISCRET , sim);

% Voltage and energy capacity calculation

[V,Ah ,Time_elapsed] = V_Ah(t, I, DISCRET , sim , V, Ah ,

Time_elapsed); %

% save data

VECTOR(t+1,:) = sim(2,:);

% update 'sim ' working vector

sim(1,:) = sim(2,:);

sim(2,:) = [];

% break the loop if voltage fall below or above limits

if V(1,t) < low_lim || V(1,t) > up_lim

break

end

end

% Plot graph

figure (1)

subplot (1,2,1) % Voltage vs capacity

plot(Ah(1,1:t)*table2 (9,1),V(1,1:t))

xlabel('Battery capacity (Ah)')
ylabel('Battery Voltage (V)')
subplot (1,2,2) % Voltage vs time

plot(Time_elapsed (1,1:t),V(1,1:t))

xlabel('Battery operation time (hrs)')
ylabel('Battery Voltage (V)')

% Export values

Ah = Ah(1,1:t)*table2 (9,1); % Battery capacity

V = V(1,1:t); % Battery Voltage

t_val = Time_elapsed (1,1:t); % Battery running time

end
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Listing F.4: OHM BV NEWTON.m

function VECTOR = OHM_BV_NEWTON(t, I, INITIAL , DISCRET ,

VECTOR)

% This function calculates the solution for the Ohm 's law and

Butler -Volmer equations (Calculate \phi_e and \phi_s)

% Variable Definitions

% i_n - Local Current Density

% i_0 - Exchange Current Density

% c_s_neg --> solid surface concentration negative electrode

% c_s_pos --> solid surface concentration positive electrode

% time - Since Matlab indexing is from 1

t = t + 1;

% Unpacking variables

alpha_a_neg = INITIAL {12}; % Activity coefficients

alpha_c_neg = INITIAL {13};

alpha_a_pos = INITIAL {14};

alpha_c_pos = INITIAL {15};

T = VECTOR{t-1 ,13};% Temperature of the cell

F = INITIAL {19}; % Faraday constant

c_max = INITIAL {6}; % maximum lithium concentration

@ electrodes

c_max_neg = c_max (1);

c_max_pos = c_max (2);

c_e = VECTOR{t-1 ,7}; % lithium concentration at

electrolyte

M_n = DISCRET (8); % Discretization values

M_s = DISCRET (9);

M_p = DISCRET (10);

M = DISCRET (11);

L_n = DISCRET (4); % negative thickness

L_s = DISCRET (5); % separator thickness

L_p = DISCRET (6); % positive thickness

R = INITIAL {16}; % Universal gas constant

c_s_s = VECTOR{t-1 ,8}; % surface lithium concentration

c_s_neg = c_s_s (1: M_n);

c_s_pos = c_s_s(M_n+M_s +1:M);

phi_s = VECTOR{t-1 ,5}; % Electrode potentials
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phi_e = VECTOR{t-1 ,6}; % Electrolyte potentials

U = VECTOR{t ,12}; % Open circuit voltages

sigma_s = VECTOR{t ,16}; % Electrode conductivities

k_e = VECTOR{t ,15}; % Electrolyte conductivity

a_s = VECTOR{t ,18}; % Electrode specific surface

area

k_0 = VECTOR{t ,19}; % Reaction coefficients

i_n = VECTOR{t-1 ,9};

%reaction rate constant anode (carbon)

k_0_neg = k_0 (1: M_n);

%reaction rate constant anode (LFP)

k_0_pos = k_0(M_n+M_s +1:M);

%Exchange current -->

%negative

dcn = c_max_neg -c_s_neg;

i_0_1 = F*k_0_neg .* c_s_neg .^ alpha_c_neg .*...

(dcn).^( alpha_a_neg).*c_e (1: M_n).^( alpha_a_neg);

%Seperator

i_0_2 = zeros(1,M_s);

%Positive

dcp = c_max_pos -c_s_pos;

i_0_3 = F*k_0_pos .* c_s_pos .^ alpha_c_pos .*...

(dcp).^( alpha_a_pos).*c_e(M_n+M_s +1:M).^( alpha_a_pos);

i_0 = [i_0_1 , i_0_2 , i_0_3 ]; %creates one vector

% Averaging electrode conductivities for discretization

sigma_plus = movmean(sigma_s ,[0 1]);

sigma_minus= movmean(sigma_s ,[1 0]);

k_e_plus = movmean(k_e ,[0 1]);

k_e_minus= movmean(k_e ,[1 0]);

% Determining Junction coefficient

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------
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% <<<<<<<<<<< NEWTON METHOD >>>>>>>>>>>>

% DEFINE NEW VECTORS

dx = [L_n/M_n*ones(1,M_n), L_s/M_s*ones(1,M_s), L_p/M_p*ones

(1,M_p)];

% \alpha_a

a_a = [alpha_a_neg*ones(1,M_n), zeros(1,M_s), alpha_a_pos*

ones(1,M_p)];

% \alpha_c

a_c = [alpha_c_neg*ones(1,M_n), zeros(1,M_s), alpha_c_pos*

ones(1,M_p)];

% DEFINE INITIAL VALUES FOR s (ELECTRODE POTENTIAL) e (

ELECTROLYTE POTENTIAL)

s = phi_s;

e = phi_e;

% VARIABLE VECTORS

F1 = zeros(1,M);

F2 = zeros(1,M);

% VARIABLE DIFFERENTIAL VECTORS DEFINITIONS

% DS1 = zeors(1,M);

% DS2 = zeors(1,M);

% DS3 = zeors(1,M);

% DSE2 = zeors(1,M);

% DE1 = zeors(1,M);

% DE2 = zeors(1,M);

% DE3 = zeors(1,M);

% DES2 = zeors(1,M);

R_SEI = [0.00* ones(1,M_n), zeros(1,M_s), zeros(1,M_p)]; % SEI

layer resistance if available

V_SEI = R_SEI .*i_n;

% ITERATIONS STARTS

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% <<<<<<<< END OF NEWTON METHOD >>>>>>>>>>>
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% Assign values to output vector

VECTOR{t,5} = s-s(1); % s(1) is deducted because negative

terminal is grounded

VECTOR{t,6} = e-s(1);

end
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Listing F.5: BV.m

function VECTOR = BV(t_step , INITIAL , DISCRET , VECTOR)

% Function calculates the exchange current density and local

current density

% Variables

% i_n - Local Current Density

% i_0 - Exchange Current Density

t_step = t_step +1;

% c_s_neg --> solid surface concentration negative electrode

% c_s_pos --> solid surface concentration positive electrode

% Unpacking packages

alpha_a_neg = INITIAL {12}; % Activity coefficients

alpha_c_neg = INITIAL {13};

alpha_a_pos = INITIAL {14};

alpha_c_pos = INITIAL {15};

T = VECTOR{t_step ,13}; % Temperature

T_ref = INITIAL {17}; % Reference temperature

F = INITIAL {19}; % Faraday constant

c_max = INITIAL {6}; % Maximum lithium concentrations

c_max_neg = c_max (1);

c_max_pos = c_max (2);

if t_step ==1 % Initial time step

c_e = VECTOR{t_step ,7};

else

c_e = VECTOR{t_step -1 ,7};

end

M_n = DISCRET (8); % Discretization values

M_s = DISCRET (9);

M_p = DISCRET (10);

M = DISCRET (11);

R = INITIAL {16};

if t_step == 1 % For initial time step

c_s_s = VECTOR{t_step ,8};

else

c_s_s = VECTOR{t_step -1 ,8};

end

c_s_neg = c_s_s (1: M_n); % Surface concentrations

c_s_pos = c_s_s(M_n+M_s +1:M);
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phi_s = VECTOR{t_step ,5}; % Electric potentials

phi_e = VECTOR{t_step ,6};

U = VECTOR{t_step ,12}; % OCV

k_0 = VECTOR{t_step ,19}; % Reactivity coefficients

% reaction rate constant anode (carbon)

k_0_neg = k_0 (1: M_n);

% reaction rate constant anode (LFP)

k_0_pos = k_0(M_n+M_s +1:M);

% Exchange current -->

% negative

dcn = c_max_neg -c_s_neg;

dcn_condition = dcn >=0;

dcn = dcn.* dcn_condition;

% c_n_condition = c_s_neg >0;

% c_s_neg = c_s_neg .* c_n_condition;

i_0_1 = F*k_0_neg .* c_s_neg .^ alpha_c_neg .*( dcn).^( alpha_a_neg)

.*( c_e (1: M_n)).^( alpha_a_neg);

% Seperator

i_0_2 = zeros(1,M_s);

% Positive

dcp = c_max_pos -c_s_pos;

dcp_condition = dcp >=0;

dcp = dcp.* dcp_condition;

i_0_3 = F*k_0_pos .* c_s_pos .^ alpha_c_pos .*( dcp).^( alpha_a_pos)

.*( c_e(M_n+M_s +1:M)).^( alpha_a_pos);

i_0 = [i_0_1 , i_0_2 , i_0_3 ]; %creates one vector

i_0 = abs(i_0);

% Butler Volmer Section -->

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

VECTOR{t_step ,10} = i_s;

end
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Listing F.6: ELECTROLYTE MASS.m

function VECTOR = ELECTROLYTE_MASS(t, INITIAL , DISCRET ,

VECTOR)

% Function calculates the Li+ concentration in electrolyte

for the new time step

% Variables Unpacking

t = t + 1; % MATLAB indexing starts from 1

trans = INITIAL {20}; % transference number of li+

F = INITIAL {19}; % Faraday constant

c_old = VECTOR{t-1 ,7}; % define previous step concentrations

i_n = VECTOR{t,9}; % define previous step local current

density

D_e = VECTOR{t ,14};% Electrolyte diffusivity

eps = VECTOR{t ,17};% Electrolyte Volume Fraction

a_s = VECTOR{t ,18};% Specific volume of particles

M_n = DISCRET (8); % number of negative electrode steps

M_s = DISCRET (9); % number of separator steps

M_p = DISCRET (10); % Number of positive electrode steps

M = DISCRET (11); % total grid cells

dt = DISCRET (3); % time step size

L_n = DISCRET (4); % negative thickness

L_s = DISCRET (5); % seperator thickness

L_p = DISCRET (6); % positive thickness

A1 = movmean(D_e ,[0 1]); % [D_e^{eff}]_{z+0.5}

A2 = movmean(D_e ,[1 0]); % [D_e^{eff}]_{z -0.5}

dx_n = L_n/M_n; % dx at negative electrode

dx_s = L_s/M_s; % dx at separator region

dx_p = L_p/M_p; % dx at positive electrode

% lam -> lambda

lam = [dt./( eps (1: M_n)*dx_n ^2), dt./( eps(M_n +1: M_n+M_s)*

dx_s ^2), ...

dt./( eps(M_n+M_s +1:M)*dx_p ^2)];

gamma = (dt./eps)*((1- trans)/F).*a_s;

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------
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% Add new values to VECTOR

VECTOR{t,7} = c_new;

end
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Listing F.7: SOLID MASS.m

function VECTOR = SOLID_MASS(t, INITIAL , DISCRET , VECTOR)

% This function calculates the mass balance for negative and

positive electrodes

% variabels

t = t + 1 ; % MATLAB indexing start from 1

M_n = DISCRET (8); % number of negative electrode steps

M_s = DISCRET (9); % number of separator steps

M_p = DISCRET (10); % Number of positive electrode steps

dt = DISCRET (3); % time step size

i_n = VECTOR{t,9}; % local current density

F = INITIAL {19}; % Faraday constant

% NEGATIVE ELECTRODE -->

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% Surface concentrations

c_s_s = [c_s_n_new (:,m_n)', zeros(1,M_s), c_s_p_new (:,

m_p) '];
% Save new values to VECTOR

VECTOR{t,2} = c_s_p_new;

VECTOR{t,8} = c_s_s;

end
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Listing F.8: V Ah.m

function [V, Ah , Time_elapsed] = V_Ah(t, I, DISCRET , VECTOR ,

V, Ah ,Time_elapsed)

% This function calculates battery voltage , battery capacity

and battery operation time

% Variables

t = t+1;

phi_s = VECTOR {2 ,5}; % Electrode potentials

M = DISCRET (11); % Grid size

dt = DISCRET (3); % time step size

% CALCULATIONS -->

v = phi_s(M)-phi_s (1); % voltage for time step

ah = -I*dt /3600; % instant energy output (+) in Ah

V(1,t) = v; % save voltage value

Ah(1,t) = Ah(1,t-1) + abs(ah); % save Ah value

Time_elapsed (1,t) = dt*t/3600; % time elapse of battery

charge /discharge

end
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Listing F.9: implicit.m

function y = implicit(a,b,c,f)

% This function solves y=A^(-1)f matrix equation

% A y f

% [a(1) c(1) ][ y(1) ] [ f(1) ]

% [b(2) a(2) c(2) ][ y(2) ] [ f(2) ]

% [ b(3) a(3) c(3) ][ ] [ ]

% [ ... ... ... ][ ... ]=[ ... ]

% [ ... ... ... ][ ] [ ]

% [ b(n-1) a(n-1) c(n-1)][y(n-1)] [f(n-1)]

% [ b(n) a(n) ][ y(n) ] [ f(n) ]

m = length(f);

A = zeros(m,m);

for i = 1:m;

A(i,i) = a(i);

end

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

y = A\f;

end
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Listing F.10: k 0.m

function [k] = k_0(t_step , INITIAL , DISCRET , VECTOR , table1)

% Calculation of Reaction rate constant for negative and

positive

t_step = t_step + 1;

R = INITIAL {16};

T = VECTOR{t_step ,13};

M_n = DISCRET (8); % number of negative electrode steps

M_s = DISCRET (9); % number of seprature steps

%M_p = DISCRET (10); % Number of positive electrode steps

M = DISCRET (11); %total grid cells

% Import paramters

k0_n = table1 (12 ,1); % Pre exponent coefficient of negative

electrode

k0_p = table1 (12 ,2); % Pre exponent coefficient of positive

electride

Ea_n = table1 (13 ,1); % Activation energy of negative

electrode

Ea_p = table1 (13 ,2); % Activation energy of positive

electrode

t_ref = INITIAL {1 ,17}; % reference temperature

% Negative Electrode Reaction constant

% Eqn from ref: Ye , 2012

k_n = k0_n * exp((Ea_n/R)*(1/ t_ref -1./T(1: M_n)));

% Positive Electrode Reaction constant

% Eqn from ref: Ye , 2012

k_p = k0_p .* exp((Ea_p/R)*(1/ t_ref -1./T(M_n+M_s +1:M)));

% Create final vector

k = [k_n , zeros(1,M_s), k_p];

end
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Listing F.11: Dn Dp.m

function [D_n ,D_p] = Dn_Dp(R, T, M_n , M_s , M, table1 , INITIAL

)

% Calculation of diffusivity of negative and positive

electrodes

% Variables

% D_n - Solid negative electrode diffusivity

% D_p - Solid positive electrode diffusivity

% R - Universal Gas Constant

% T - Absolute temperature (vector)

% M_n = DISCRET (8); % number of negative electrode steps

% M_s = DISCRET (9); % number of seprature steps

% M_p = DISCRET (10); % Number of positive electrode steps

% M = DISCRET (11); %total grid cells

% import parameters

B_n = table1 (10 ,1); % Pre -exponent coefficient of negative

electrode

B_p = table1 (10 ,2); % Pre -exponent coefficient of positive

electrode

Ea_n = table1 (11 ,1); % Activation enegy for negative

electrode

Ea_p = table1 (11 ,2); % Activation enegy for positive

electrode

t_ref = INITIAL {1 ,17};

% Negative Electrode - eqn from ref:Ye , 2012

D_n = B_n * exp((Ea_n/R)*(1/ t_ref -1./T(1: M_n)));

% Positive Electrode - eqn from ref: Ye , 2012

D_p = B_p * exp((Ea_p/R)*(1/ t_ref -1./T(M_n+M_s +1:M)));

end
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Listing F.12: De ke.m

function [D_e , k_e] = De_ke(t_step , INITIAL , DISCRET , VECTOR)

% Calculation of electrolyte diffusivity and conductivity

%Variables

% D_e - Diffusivity

% k_e - Conductivity

% c - concentration Li+

% T - Absolute temperature

t_step = t_step +1;

c = VECTOR{t_step ,7};

T = VECTOR{t_step ,13};

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% Calculation of Effective values -->

eps = VECTOR{t_step ,17}; % Electrolyte vol frac , (vector)

b = INITIAL {11}; %Bruggeman constant

eps_b = eps.^b;

D_e = D_e.* eps_b;%eps_b;

k_e = k_e.* eps_b;

% End of calculating effective values

end
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Listing F.13: U eq.m

function [U] = U_eq(t_step , INITIAL , DISCRET , VECTOR)

% This function calculates teh OCV of electrodes and their

entropies

t_step = t_step +1;

T = VECTOR{t_step ,13}; % temperature

T_ref = INITIAL {1 ,17}; % Reference temperature

c_s_s = VECTOR{t_step ,8}; %solid surface concentration

c_max = INITIAL {6}; %Maximum concentration

M_n = DISCRET (8); % number of negative electrode steps

M_s = DISCRET (9); % number of seprature steps

M_p = DISCRET (10); % Number of positive electrode steps

M = DISCRET (11); %total grid cells

% Surface SOC in negative electrode

x = c_s_s (1: M_n)./ c_max (1);

% Sureface SOC in positve electrode

c =c_s_s(M_n+M_s +1:M);

c_max =c_max (2);

y = c/c_max;

% OCV model used in Ye 2012 Data used from Safari 2011 and

Gerver

% Calculation of entropy - For negative electrode

dundt = zeros(1,length(x));

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% Calculate the U_n value

U_n = U_n_ref + (T(1: M_n)-T_ref).* du_n_dt;

% LiFePO4 electrode

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------
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% Calculate the U_p values

U_p = U_p_ref + (T(M_n+M_s +1:M)-T_ref).* du_p_dt;

% Pack the values

U = [U_n , zeros(1,M_s), U_p];

end
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Listing F.14: THERMAL.m

function VECTOR = THERMAL(t, I, INITIAL , DISCRET , VECTOR)

% This function helps to run the electrochemical model

without a thermal model (Iso -thermally). If thermal model

is needed to be included in the simulation , function for

the thermal model can be included in main_function.m

t = t+1; % Matlab index starts from 1

T = VECTOR{t-1 ,13};

VECTOR{t,13} = T;

end

Listing F.15: THERMAL MODEL.m

function [T_new , T_avg , t_core , t_surf] =

THERMAL_MODEL_CYLINDER(T_old , VECTOR_SIM , DISCRET ,

INITIAL , t)

% Thermal model - Calculate temperature distribution in

cylindrical geometry

% This model was not used in this thesis

% Battery schematic diagram

%

% ___

% ^ ___| |___

% | | 1 4 6|

% | | |

% | | |

% | | |

% z | |

% | | 2 7|

% | | |

% | | |

% | | |

% | | |

% v |_____3_5__8|

% ------>r

%

% Temperature grid indices

%
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% [1,1] [1,2] [1,3] [1,4] ... [1,M-1] [1,M]

% [2,1] [2,2] [2,3] [2,4] ... [2,M-1] [2,M]

% [3,1] [3,2] [3,3] [3,4] ... [3,M-1] [3,M]

% : : : : ... : :

% [N-1,1] [N-1,2] [N-1,3] [N-1,4] ... [N-1,M-1] [N-1,M]

% [N,1] [N,2] [N,3] [N,4] ... [N,M-1] [N,M]

% Assumption

% * No temperature change w.r.t to \theeta

% Parameters define here

% Ambient Temperature

T_amb = 298.15;

% Newtons cooling coefficient

h = 45; % Ye12

% stefan coefficient

e = 0.5;

% Radius of Battery

r = 0.013;

% hight of Battery

z = 0.065;

% Stefan Boltzmann constant

SB = 5.67037 * 10^( -8);

% Thermal conductivity

%K = INITIAL {1 ,10} * INITIAL {1,1}';
K = 1.04;

% Density of battery

%rho = INITIAL {1,8} * INITIAL {1,1}';
rho = 1130;

% Specific Heat Capacity of Battery

%C_p = INITIAL {1,9} * INITIAL {1,1}';
C_p = 800;

% Tuning parameter heat dissipation

lam = K;

% Parameters from electrochemical model

% time increment

dt = DISCRET (1,3);

% Specific surface area of electrodes
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a_s = VECTOR_SIM{t ,18};

% Transfer Current Density

i_n = VECTOR_SIM{t,9};

i_s = VECTOR_SIM{t ,10};

i_e = VECTOR_SIM{t ,11};

% Solid phase voltage

phi_s = VECTOR_SIM{t,5};

% Electrolyte voltage

phi_e = VECTOR_SIM{t,6};

% OCV

U = VECTOR_SIM{t ,12};

% solid phase conductivity

sigma = VECTOR_SIM{t ,16};

% electrolyte conductivity

kappa = VECTOR_SIM{t ,15};

% Li+ concentration in electrolyte

c_e = VECTOR_SIM{t,7};

% surface concentration of solid matrix

c_s_s = VECTOR_SIM{t,8};

% Maximum concentration of solid phase

c_max = INITIAL {1 ,6};

% negative electrode spacial steps

M_n = DISCRET (1,8);

% separator spacial steps

M_s = DISCRET (1,9);

% positive electrode spacial steps

M_p = DISCRET (1 ,10);

% Battery lengths

L = DISCRET (1,7);

L_n = DISCRET (1,4);

L_s = DISCRET (1,5);

L_p = DISCRET (1,6);

% Temperature

T = VECTOR_SIM{t ,13};

% Calculation of average heat generation

% --------------------------------------

CODE IS HIDDEN
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% --------------------------------------

% total heat generation

Q_avg = abs(Q_act) + Q_rec + abs(Q_ohm);

% average heat generation

dx = [repmat(L_n/M_n ,1,M_n),repmat(L_s/M_s ,1,M_s), repmat(L_p

/M_p ,1,M_p)];

Q_avg = (Q_avg*dx ')/L;

% number of grid cells in r dimension

M = 20;

% number of grid cells in z dimension

N = 10;

% Spacial Step increments

dr = r/M;

dz = z/N;

% Solved using Ax=b

% define A matrix and b matrix

A = zeros(M*N,M*N);

b = zeros(M*N,1);

% Define Temperature matrix (Substitute values)

if length(T_old) == 1

T_old = INITIAL {1 ,18}* ones(N,M);

end

% --------------------------------------

CODE IS HIDDEN

% --------------------------------------

% Solve

y = A\b;

T_new = reshape(y,[N, M]);

%T_old = T_new;

T_avg = mean(T_new ,'all')*ones(1,DISCRET (1 ,11)); % M - number

of grid cells

figure (3)
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contour(T_new ,'ShowText ','on')

t_core = T_new(N/2,1);

t_surf = T_new(N/2,M);

end
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