

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)

Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Master of Science in Computer Science

Bao Khanh Pham
Sohrab Chalishhafshejani

Martin Gilje Jaatun

Jarle Nygård, Volue
Arkadiusz Doroszuk, Volue

Automated software security activities in a continuous delivery pipeline

30

DevSecOps
Software security
CI/CD pipeline

15 June 2021

2021

78

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Automated software security activities
in a continuous delivery pipeline

Master’s Thesis in Computer Science
by

Sohrab Chalishhafshejani
Bao Khanh Pham

Internal Supervisors

Martin Gilje Jaatun

External Supervisors

Jarle Nygård, Volue
Arkadiusz Doroszuk, Volue

June 15, 2021

“Please notice, security is not shown as a discrete part, it’s just built in throughout.
Ideally, security would be mostly automatic and somewhat invisible to the development
and operations staff. Quite different than the way most organizations integrate security
today, which is often very manual and invasive.”

Aaron Levey

Abstract

Due to the rise of cyberattacks in IT companies, software security has become a topic
for debate. Currently, to secure their products, companies often use manual methods,
which makes development stalled and inefficient. To speed up a software development
lifecycle, security work needs to be integrated and automated into the development
process. This thesis will provide an initial solution for automating the security phase
into a continuous software delivery process. This solution involves integrating security
tools into a Github repository by using Github Actions to create automated vulnerability
scanning workflows for a software project. The solution will then be tested and evaluated
with three open-source projects and one project from our sponsor, Volue.

Acknowledgements

First, we would like to thank our supervisor, Professor Martin Gilje Jaatun, for his
academic guidance as well as the continuous feedback that enabled us to complete this
thesis.

In addition, we also thank Jarle Nygård and Arkadiusz Doroszuk, two experts from
Volue, for giving us knowledge about software development as well as security in the
industry.

viii

Contents

Abstract vi

Acknowledgements viii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Definition . 3
1.3 Usecases/Examples . 4
1.4 Challenges . 4
1.5 Contributions . 5
1.6 Outline . 5

2 Background 7
2.1 Software Development Life Cycle . 7
2.2 Agile Software Development . 7
2.3 DevOps Methodology . 8

2.3.1 DevOps Focus Areas . 9
2.3.2 CI/CD Pipeline . 10

2.4 Security In Software Development . 11
2.4.1 DevSecOps . 12

3 Security in CI/CD pipelines 13
3.1 Security Requirements Of The Organization 13

3.1.1 Where To Start . 14
3.2 CI/CD Pipeline Definition . 14
3.3 Inserting Security In The Pipeline . 15

3.3.1 Integrated Development Environment (IDE) Plugins And Linters . 15
3.3.2 Static Code Analysis . 16
3.3.3 Dynamic Application Security Testing 16

4 Solution Approach 17
4.1 About Volue . 17

ix

x CONTENTS

4.1.1 The Existing Pipelines . 18
4.1.2 Company Requirements . 18
4.1.3 CI Tools . 18
4.1.4 Security Tools . 19
4.1.5 Code Scanning & Dependency Checking 21
4.1.6 Open-port Scanning . 24
4.1.7 Secure Socket Layer And Transport Layer Security (SSL/TLS)

Evaluation . 24
4.1.8 Integration And Automation . 25

5 Pipeline Evaluation 27
5.1 Experimental Systems Setup . 27

5.1.1 Test Repositories . 27
5.1.2 Volue Repository . 29

5.2 Implementation . 29
5.3 Experimental Results . 35

5.3.1 Python Repository . 36
5.3.2 Javascript Repository . 37
5.3.3 C# Repository . 40
5.3.4 Volue Repository . 40

6 Discussion 43
6.1 Expectation Vs Results . 43
6.2 The Solution For The Industry Challenges 44

6.2.1 Tool Selection Challenge . 44
6.2.2 Static Analysis Tools Limitations 44
6.2.3 Access Management In DevOps Domain 45

6.3 Satisfaction Of Volue’s Requirements . 45
6.4 Limitations . 46
6.5 Challenges . 46

7 Future Directions and Conclusion 47
7.1 Future Directions . 47

7.1.1 Tool Diversification . 47
7.1.2 Increase Compatibility . 47
7.1.3 DAST Further Implementation . 48
7.1.4 Enhance Automation . 48

7.2 Conclusion . 48

List of Figures 48

A Workflows code 51
A.1 security-scan.yml . 51
A.2 security-report.py . 52
A.3 monitor-scan.yml . 53
A.4 monitor-report.py . 54

CONTENTS xi

Bibliography 57

Abbreviations

Acronym What (it) Stands For

CI Continuous Integration

CD Continuous Delivery

GDPR General Data Protection Regulation

IaaS Infrastructure as a Service

SDLC Software Development Life-Cycle

QA Quality Assurance

OWASP Open Web Application Security Project

ASVS Application Security Verification Standard

SCA Static Code Analysis

CEDS Cyber-security for Energy Delivery Systems

RCE Remote Code Execution

XSS Cross Site Scripting

OSS Open-Source Software

TPC Third-Party Components

SSH Secure SHell

API Application Programming Interface

IDE Integrated Development Environment

DAST Dynamic Application Security Testing

SSL Secure Socket Layer

TLS Transport Layer Security

xiii

Chapter 1

Introduction

The rise of competition in software companies to deliver software with more features
faster started a new way of thinking to software development. Companies try to invest in
features and capabilities which are embraced and accepted by users and there is a great
risk involved with developing software without immediate feedback from end-users. This
has led to shortening applications’ time-to-market intervals in order to receive feedback
and evaluate the market faster before further development. As a result, Agile software
development has been introduced to bring the development team closer to business teams
and shorten the time which applications can be delivered to customers over time. This
model tries to add new features on each iteration of the software life cycle and build up
features optimized based on end-user needs [1].

The Agile development idea was not possible by traditional software delivery methods.
In recent years software development has been shifting from delivering a finished product
(software as a product) system to a software as a service principle. In this method, the
software has been mostly shifted from on-premises servers to cloud solutions. Several
companies have been shifting users from desktop apps to web apps. This enables providers
to deploy new features on their software in short intervals without being concerned about
backward compatibility issues or users being always on an updated version of the software
[2].

The path to Agile development requires better cooperation between the development
and operations teams in companies. Traditionally, the development team was responsible
for creating logic and core features of the program and the operation teams handled
deploying the app on the server/cloud. The two parties were normally only connected
via ticketing systems. As a result, software delivery was delayed since most of the tasks
in the operations team were manually done and problems along the way required sending
and receiving several tickets between the development and operations team. This was

1

Chapter 1. Introduction 2

not enough for an Agile development process that tries to deliver software iteratively as
fast as possible. DevOps was the solution. DevOps engineers are responsible to automate
operations handled by the operations team such as building and testing. Automating
operations processes would result in shorter operation team time to deploy changes and
reach the values in Agile development and reach continuous development and delivery.
Companies like Google and Microsoft first stepped into the game and introduced pre-made
DevOps utilities and software which enabled faster software delivery [3].

In contrast, there are several trade-offs to this approach of software delivery. DevOps
engineers try to push code batches in short intervals and it will force security teams to
review the newly generated code faster. Traditionally all security analysis procedures like
vulnerability scannings and code analysis were done manually by the security team. This
will result in either delayed releases or a lack of security considerations by companies.
Reducing security checks could result in misconfigurations, hardcoded passwords, or
other dangerous concerns that can be later exploited by bad actors to breach the whole
system. Furthermore, Agile teams look at security as a factor slowing their process,
and oftenly, it is ignored. Cloud environments and containerization tools also add up
to security holes, putting the whole process at serious risk. There is a need for faster
security checks and automated testing systems which can reduce the amount of work
needed by security teams manually. This will help the Agile development team to be able
to check their committed software against security tools and generate instant reports on
their code security issues. In addition, it helps the security team to focus more on severe
vulnerabilities and act retroactively by preventing security concerns before reaching
the release phase instead of waiting for vulnerability to be exposed by third parties or
attackers.

Therefore, the DevSecOps concept was born to combine DevOps and Security most
effectively. DevSecOps integrates an automated continuous security model with a regular
Continuous Integration and Continuous Delivery (CI/CD) pipeline through vulnerability
scanning tools. These tools are added to the many phases of the software continuous
delivery pipeline. This automates a lot of works that were supposed to be done manually
by the security team [1].

In this thesis, we are going to look for possible ways to automate software security checks
in the DevSecOps procedure by building up a workflow from security tools. This workflow
will then be tested with three open-source projects and one real-life project from Volue -
our sponsor of this thesis. This will help companies to scale up security in the whole
DevOps process with a one-time effort by changing the pipeline and integrating the
security part into it.

Chapter 1. Introduction 3

1.1 Motivation

Based on the National Vulnerability Database dataset1, it is clear that each year there
are more vulnerabilities found; the yearly amount has doubled from 2016 until now with
a peak of 18356 cases in 2020. These statistics are definitely showing an increasing trend
that needs urgent action from cyber security experts. Software security measures have
to be reconsidered and redefined. In October 2016, Uber faced one of the biggest data
compromises of history with over 50 million Uber riders’ data being breached [4]. Uber
lost millions of dollars in addition to bad publicity based on data breaches which could
be easily prevented by tightened security measures. The recent attacks on SolarWinds
demonstrated how even monitoring and infrastructure management software can be used
by bad actors to break into companies [5].

Traditionally, security has been given insufficient attention since the need for strong
software security measures is not high enough on management’s radar to convince them
to invest more in it. However, in the case of cyber attacks or data breaches, it is visible
how important this is for the reputation and survival of the whole organization. As a
result, it is necessary to re-evaluate security measures in software companies. Manual
security procedures are prone to human error which can be catastrophic, and manual
procedures are also slowing the whole speed-to-market requirements of modern application
development environments. Automating software security measures is the answer to the
problem. It will speed up the whole DevOps process and avoid human intervention as
much as possible.

In this thesis, we are focusing on the best solution to integrate security tests and
considerations in the DevOps process to achieve higher software reliability. It is also
advised by new General Data Protection Regulation (GDPR) rules that security must
be taken more seriously in the fields which work with user data and keeping up with
these rules is mandatory for companies servicing in the European market.

1.2 Problem Definition

The real question that arises here is what do we have to automate? There are several
phases in software development that each can be a target by malicious actors. It is
recommended that organizations look back at their whole infrastructure and try to
understand where they can apply security measures in their DevOps environment. In
addition, the infrastructure of applications is now more volatile since it is shifted more

1https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=
statistics&search_type=all

https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all

Chapter 1. Introduction 4

to Cloud Native apps and infrastructure as a service (IaaS) platform. These security
measures must contain ways to ensure security. Containerization and Microservice
development also create new concerns which must be considered. In this thesis, we
are working on how it is possible to secure web applications by applying different tools
already available or creating tools needed to integrate security in the software development
pipeline.

1.3 Usecases/Examples

Although it has been mentioned in recent years, the amount of academic research on
DevSecOps is still meager. However, there are quite a few practitioners who have
researched, experimented, and published their gray literature reports (white papers,
blogs, articles, etc.). Hence, we can see that DevSecOps is getting a lot of attention from
the industry [2, 6].

Besides, there is a growing choice of tools for companies to build their own pipeline. All
major service providers strive to build and deliver the best platforms and frameworks for
their customers. Security companies try to create tools that can be integrated with those
platforms. Major platforms include Github Actions, Amazon Web Services, Microsoft
Azure, Gitlab, etc. Also, some companies choose to combine different tools and platforms
or develop tools for internal use.

1.4 Challenges

Although promising to bring practical results, the application of automated security
testing in the CI/CD pipeline in practice also faces certain difficulties. Below are the
difficulties in applying DevSecOps mentioned by Myrbakken and Colomo-Palacios [2].

• The new DevSecOps process must match the DevOps process. That means auto-
mated security checks have to be integrated into the existing CI/CD pipeline and
have to be truly efficient at its speed.

• Companies face sizable volatility. That is changes about:

– Techniques Security engineers must understand the DevOps process and
developers must learn basic security skills and standards.

– Process speed Security scanning tools are time-consuming for each new build.

Chapter 1. Introduction 5

– Culture There will be a change in the culture of working at the company as
security teams and product development teams combine. In addition, the
understanding of security must also be disseminated to all other departments
to get a truly secure process.

– Standards New security standards will be applied and updated continuously
from reputable organizations.

• Choosing the right tool for each platform is also a job that requires attention. Good
tools are not necessarily suitable for the platform used by the company if they
are not effectively integrated. Besides, not all tools are available to be integrated.
Some tools have to be created or redeveloped from existing open-source code.

1.5 Contributions

This thesis is researched with the aim of finding an effective workflow to integrate security
into the DevOps model for software companies in general or for Volue in particular. This
project was proposed by Volue to be able to find a workflow that fits their workflow.

1.6 Outline

In the next chapter of the thesis, we will introduce and summarize the basic concepts in
theory. Then, chapters 3 and 4 provide information about the tools that are available
along with our selection. By chapter 5, our implementations, experiments and results
will be presented and evaluated. Chapter 6 contains discussions of the final result of the
workflow. Finally, in chapter 7, we will talk about future directions and summarize the
thesis.

Chapter 2

Background

In this chapter, we are providing answers about how DevSecOps and software security
automation is described and approached in literature.

2.1 Software Development Life Cycle

Software development life cycle (SDLC) is the process of a software project being developed
and operated. It usually involves major stages such as planning, implementation, testing,
operation, and maintenance. Some of the oldest and most popular SDLC models
include the waterfall model or the V-Model [7]. However, along with the development
of technology, those old models were outdated and no longer suited to the needs of the
software development industry. At that time, Agile was introduced as the preeminent
software development model, and later, other models were gradually developed by
researchers and engineers.

2.2 Agile Software Development

The Agile development story started when a group of software consultants signed the
Manifesto for Agile Software Development in 2001 [8]. Traditional methods of software
development like the waterfall method did not take into account the unpredictability
aspect of the development environment [9]. These methods were more focused on sequen-
tial work iterations and preparing requirements for each part of the design before moving
to the next part. Testing teams were only involved in the final phase of development and
problems were hidden until the testing phase. This method was not flexible to market
and business. Any changes had to be completely researched and put in the next release

7

Chapter 2. Background 8

of development [7]. On the other hand, the Agile method was introduced and it has been
the leader for many years. Agile puts user feedback in front and welcomes changes from
the market or users at any time during the development procedure.

Agile meant that software development cycles were reduced and finished products could
be shipped faster. This will help companies greatly since products are exposed to users
faster and feedback could be gathered to polish the current development process based
on user needs. There are other methodologies introduced in recent years like Kanban[10]
and Scrum1 which can be categorized as inheritors of the Agile method. Kanban focuses
more on maximizing efficiency and reducing work currently in progress by each team
based on their capabilities. The Scrum method tries to create short development runs
called Sprints to create software and evaluate it at each iteration [11]. All mentioned
methods have been used by industry for years. They are the foundation of software
delivery life cycles and will play a big role in software development companies.

2.3 DevOps Methodology

The first Agile real-world implementations[8] were mainly concerned about how it is
possible to improve the overall development experience. However, developers were only
focusing on code delivery at the time. The path for the codebase to reach clients were
taken care of by the operation team. These two teams were incomplete with different
pathways of delivery ideology. Development teams were based on swift actions and
changes while the operations team only focused on stability and predictability of software
changes. DevOps is a unique software delivery methodology that focuses on principles
and practices to bridge the gap between development and operation teams. It was
introduced to enable continuous feedback and response pipelines which will also result in
reduced software development cycle time [12].

The main difference between Agile and DevOps is that DevOps heavily focuses on
collaboration between Development and Operations teams. In addition, it has been
creating standards for pipelines and automated delivery methods which helps developers
to publish their code into production with less hassle. This will lift the workforce from
operation teams and make them available to monitor the product and work closely with
the development team to fix problems along the way in production [3]. Automation is
one of the key roles in DevOps practices and should be applied whenever and wherever
possible. There are several areas in which DevOps have been constantly focusing on
improvement which are mentioned below.

1https://www.scrum.org/resources/what-is-scrum

https://www.scrum.org/resources/what-is-scrum

Chapter 2. Background 9

2.3.1 DevOps Focus Areas

In the previous section, we have identified DevOps principles like increased deployment
frequencies and lower time to market. Achieving these goals requires fundamental
changes in several areas in the software development environment. Here are the main
focus domains which DevOps tries to improve continuously.

Teams Collaboration

In a software project, the collaboration between teams is a key to keep products stable
since changes are implemented fast and on the go. Reducing delays and communication
gaps is important and can only be applied by new tools and cultural change in the
whole software company. Collaboration software enables development and operation
teams to go beyond emails, physical meetings, and regular talks and bring on a new
level of connectivity [13]. Tools like Slack, Jira, Trello, and Codesourcer are examples
of collaboration technologies that are widely used in industry to connect teams that
are sometimes even geographically far away from each other. However, they should be
accompanied by a reform in the mindset of teams to include cooperation and teamwork
culture in the employees. Regular feeds from different phases of application development
like unit testing and code analysis enable all parties to detect and solve issues faster. As
a result, an overall team spirit for sharing useful data will be created.

Automation Wherever Possible

In practice, phases of an SDLC are often continuous. The lifecycle is repeated over
and over again, and steps like planning, developing, building, testing, or deploying the
software are continuous cycles [14]. When applying DevOps to those stages, one of the
most important things we need to pay attention to is optimizing the performance of
the work. To do that, the automation of repetitive steps without the intervention of
engineers is essential. Processes like building, testing, and deploying often repeat in large
numbers, even with very small changes to the code. To handle these phases manually,
the developers and operators will take a lot of time to complete. Therefore, DevOps
encourages automation wherever possible. Automation saves more time during repetitive
tasks, such as building and testing newly added code or modified old code [15]. By using
automation, engineers can have more time for other stages that cannot be automated,
such as planning, coding, or debugging.

Chapter 2. Background 10

Monitoring

Since automation is a critical DevOps goal, monitoring is indispensable for automation to
follow its exact trajectory. Monitoring the system to make sure the system, pipeline, and
tools are working as they should be. Once a problem occurs at any stage, it’s easier and
more efficient to resolve it with a carefully monitored system [16]. In fact, software logs
are often cumbersome and confusing, which makes it difficult for engineers to analyze and
process them. However, quite a few engineers today still use purely manual debugging
tools, which results in a significant reduction in productivity. With automated assistive
tools, monitoring and measurement can be better accomplished [15]. System monitoring
and automation are interrelated, where monitoring makes automation more accurate,
while automation makes monitoring faster.

2.3.2 CI/CD Pipeline

The CI/CD pipeline, which has the basic components Continuous integration (CI) and
Continuous Delivery (CD), is basically an Agile-based pipeline for SDLC optimization.
The CI/CD pipeline is intricately constructed to ensure phases of software development
can be continuous. In recent times, the CI/CD pipeline has gradually become an important
component in software development, making SDLC more flexible, more efficient, and
faster. Finally, with the rise of cloud solutions and big cloud providers releasing command-
line tools for deploying applications, continuous deployment has been added to the SDLC
as a final step on the pipeline. Here we focus on each of these phases in detail.

Continuous Integration

CI is the process that allows software developers to integrate new code into the original
repository as well as share them throughout the workflow. Along with that, CI automation
also allows detecting any error at an early stage to commit the problem to be solved
immediately when it occurs [14]. When the new code is merged with the existing
repository, a new version will be activated. After the build is completed, test runs are
automatically performed against the build to ensure nothing goes wrong. The integration
is continuous (making it to be the "C" in CI). The build automatically verifies the code
every time the developer pushes their changes to the repository. Therefore, development
teams may determine problems early and have time to come up with solutions.

Chapter 2. Background 11

Continuous Delivery

Inspired by distributors and deliveries, CD is a software engineering approach based on
software production in short cycles, which makes it easy for publishers to test, build, and
deploy regularly. At the same time, it also reduces costs and risks when changes occur.
CD is considered as an extension of the CI, and is the regular code upgrade to ensure
the quality assurance (QA) [17]. The CD phase occurs at the end of the CI cycle and is
responsible for the automatic distribution of the integrated code from the development
stage to the production stage [14]. CD is not only tasked with automatically sending
the integrated code, but also ensuring the code is sent with no errors or delays. This
phase helps developers to incorporate new code into the main branch with a high degree
of consistency. The CD part of the cycle is also responsible for checking code quality
and performing checks to ensure a functional build can be released into the production
environment.

Continuous Deployment

CI/CD process made massive changes in codebase manageable and possible during the
daytime. Continuous deployment is another "CD" with a purpose beyond continuous
delivery [18]. Continuous deployment tries to deliver these changes to end-users at a more
accelerated speed. This approach tries to automate the deployment process and deliver
up to hundreds of deploys in a day. Currently, tech giants like Facebook and Flickr
have adopted this method. Software as service solutions and API-Driven[19] software
facilitates projects to have daily updates hidden from the end-users [20]. In conclusion,
continuous delivery releases software to deployment as soon as the tests have passed in
development. It will make features time to market even lower than before.

2.4 Security In Software Development

Security has long been an indispensable part of any information technology system.
When a software product is born, the development team and the customer should always
consider its security. However, sometimes security is postponed in software development
for different reasons. In addition, software developers have to put more time and effort
to enforce all security measures in the development process. When it comes to software
security, there are many possible approaches, one of them is the security of the product
itself which may contain the issues that the code and builds carry full security features. To
ensure this, engineers can implement a variety of methods such as periodically scanning
for vulnerabilities in software, both static and dynamic code; constantly checking and

Chapter 2. Background 12

updating libraries or dependencies; make sure not to use sensitive hard-coded variables;
etc. Essentially, product security is to ensure that products that are deployed will
not create vulnerabilities that could compromise the system on which the product is
installed. On the other hand, security problems of the development process should
also be considered. They are the problems that engineers need to face to protect their
own brainpower. Since systems used to develop products may be subject to attacks
from cyber criminals or adversaries, engineers must ensure thorough construction of a
pipeline or SDLC. This system must be considered carefully in terms of security such as
confidentiality, availability, and integrity. In general, the two views above are similar to
the two sides of the coin, they must coexist and support each other so that the product
can be considered secure [21, 22].

2.4.1 DevSecOps

In a traditional software development process, securing a product is often done indepen-
dently by the security team, separate from the development team. However, a prerequisite
for DevOps is speed, the combination of the development team and the operation team
and leaving the security team to work separately does not meet the needs of the industry.
Hence, in recent times, the DevSecOps concept was posed as an upgrade for DevOps,
when it was aimed at integrating additional security into DevOps properties [2].

DevSecOps arise with the requirement of secure output from the DevOps process.
However, it is challenging in real-world implementations to introduce security to the
DevOps process. Firstly, there are several toolsets available for DevSecOps. This brings
inconsistency between each organization’s implementation. Operations teams may be
proficient in different programming languages and tools written based on them. There is
currently a lack of standard DevSecOps implementation standards. This leads to different
opinions between operation teams with other parts of the organization. In addition, new
DevOps security tools have to be tested themselves to ensure the overall security of the
organization [23].

Chapter 3

Security in CI/CD pipelines

In this chapter, we are going to discuss currently available solutions applicable to create
software security pipelines. The competition is intense in pipeline tools, and many tech
giants have been introducing tools trying to keep themselves in the game. While there are
many similarities in how these systems work in the core, several key features differentiate
these tools and give us more dependable results.

3.1 Security Requirements Of The Organization

Security baselines are a group of pre-defined configurations and checks which ensure that
the development environment complies with companies’ overall security policies. These
policies are established by well-known tech giants or even governmental organizations to
keep businesses and companies safe from cyber threats. For instance, "Microsoft Windows
security baselines"1 and the Canadian Government’s "Baseline Cyber Security Controls
for Small and Medium Organizations"2 are examples of two security baselines provided
by Microsoft corporation and Canadian government cyber taskforce team, respectively.
Companies can have different definitions of security baseline in their environment. For
instance, a company providing an online Application Programming Interface (API) for
travel ticket booking may have a lower security baseline compared to a financial company
handling sensitive transaction data. Security baselines can be broken into sections and
applied as release gates. Release gates are critical checkpoints in an SDLC. These
gates halt specific software release processes in case of reaching a security weakness
threshold [24]. Introducing several release gates at once will exhaust developers by lots of

1https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-
baselines

2https://cyber.gc.ca/en/guidance/baseline-cyber-security-controls-small-and-medium-
organizations

13

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-baselines
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-security-baselines
https://cyber.gc.ca/en/guidance/baseline-cyber-security-controls-small-and-medium-organizations
https://cyber.gc.ca/en/guidance/baseline-cyber-security-controls-small-and-medium-organizations

Chapter 3. Security in CI/CD pipelines 14

Figure 3.1: “OWASP Application Security Verification Standard 4.0 Levels” by OWASP
foundation. (Creative Commons Attribution ShareAlike 3.0 license)

failed builds and releases. They have to be introduced gradually while the development
team gets to know the new workflow of the pipeline. It is possible to integrate release
gates in several SDLC stages like design, coding, testing, and deploying. As a result,
these security checks can improve overall software quality and security in long-term
usage.

3.1.1 Where To Start

Defining a security testing baseline starts by establishing minimum expectations from
tests to be valid. Several industry-standard references have been already working on
application security baselines in the past. The Open Web Application Security Project
(OWASP) is the leading foundation supporting open source software security projects. The
OWASP Application Security Verification Standard (ASVS)3 project tries to document
several in-depth verification steps to ensure application security at different security
baselines. ASVS consists of 3 levels which makes it suitable for different companies
with different security requirements. In this project, we are trying to cover basic ASVS
recommendations which can be covered by automated tests. This includes code scanning,
static and dynamic security testing, and monitoring which will be covered later.

3.2 CI/CD Pipeline Definition

Continuous Integration is the introduction of an automated system helping a team
of developers in an organization. This solution tries to build, test, and validate code
frequently. Regular checkups help to increase code quality, find bugs easier, and create
overall better software. Continuous Delivery is the process of delivering new changes in the
software to the end-users in a sustainable manner. New software features, configurations,
and production versions can be released with an automated system that handles the

3https://owasp.org/www-project-application-security-verification-standard/

https://owasp.org/www-project-application-security-verification-standard/

Chapter 3. Security in CI/CD pipelines 15

process. This will minimize the amount of time needed for our new features to hit the
market. Adding the steps above will create a general pipeline. This pipeline helps the
development and operations team to focus more on the new features instead of taking
the heavy work of manual reviews, software deployment, and environmental setups [25].
To summarize, CI starts with a change detected in the codebase by developers. The
application will be built based on the new commit and tested against unit tests. Unit
tests can block unwanted or incompatible changes from processing in the pipeline. After
these tests are passed, the pipeline will create an experiment environment to deploy the
app. In addition, continuous delivery tests will be run in the next stage. Manual reviews
can be inserted along the pipeline in case of any review needed by repository maintainers.
In the end, the deployment phase begins and software will be delivered on the production
server to customers [26].

3.3 Inserting Security In The Pipeline

It is possible to insert security measures alongside the pipeline mentioned above. Au-
tomated security measurements improve and assess the security of software before
reaching users. The following sections present different parts of the pipeline which can
be strengthened by security measures.

3.3.1 Integrated Development Environment (IDE) Plugins And Linters

Text editor applications are being used every day by developers to produce and commit
code. In recent years, text editors have been empowered by plugins and third-party
applications. These applications can be installed by text editors’ own marketplace. This
allows developers to check for quality errors while writing the code receiving live feedback
from the editor. Tools created as a plugin for text editors are commonly called linters.
The visual studio code editor maintains several linters like ESLint4 and SonarLint5.
When using linters, several bugs and security issues are prevented even before reaching
the pipeline. In addition, it is possible to integrate linters in the pipeline process. Each
alternative has advantages and disadvantages. Plugin linters will reduce the amount of
pipeline running because it has already fixed parts of issues before reaching to pipeline
and it is less possible that the pipeline fails. In contrast, not all developers can keep
updated and synchronized with the linter that should be used in the entire team. This
brings a risk of undetected security concerns due to obsolete and out-of-date linter
versions.

4https://eslint.org/docs/about/
5https://www.sonarlint.org/features/

https://eslint.org/docs/about/
https://www.sonarlint.org/features/

Chapter 3. Security in CI/CD pipelines 16

3.3.2 Static Code Analysis

Static Code Analysis (SCA) tries to discover vulnerabilities while the code is not in
running mode. This type of analysis is often associated with white-box analysis due to
access to the source code of the application. SCA uses methods like Taint Analysis6

and Data-Flow Analysis[27]. Taint analysis tries to detect patterns related to injection
vulnerabilities. It tries to identify tainted variables and traces them to possible vulnerable
functions known as a ‘sink’ [28]. These variables need to be sanitized before handing
them over. In case of improper sanitization, SCA issues a warning and informs for the
possible vulnerability. These tools follow data flow and register possible output values
of functions and blocks. Later on, the information collected will be used to check for
predefined rules that indicate dangerous code patterns. However, methods using static
code do not cover runtime vulnerabilities and it is important to test the code in the
situation where it is meant to be working on. There is also a possibility of false negatives
in which vulnerabilities are residing in a codebase but the tools are unable to detect it
due to their limited rule-based system.

3.3.3 Dynamic Application Security Testing

Dynamic Application Security Testing (DAST) tools try to have a black box view over
the application. There is no prior knowledge about the codebase or database design for
these tools while running. The goal is to simulate and assess conditions in real life when
the software is exposed to the network. This type of tool is developed to be running on
already deployed apps in a simulated production environment. Organizations normally
deploy software in specific environments via containerization applications like Docker7

and Kubernetes8. Containerization tools will give a suitable environment for the app
to run over particular firewall and storage configurations. DAST tools try to access the
application deployed on containers over ordinary network connection means like HTTP
requests or database connection requests [29]. Requests to the application can be tweaked
to do a stress test on the whole application. Scenarios like exploiting, Denial of service
attacks, and other known attacks can be simulated. Zed Attack Proxy[30] and Burpsuite9

are examples of dynamic application security tools. DAST tools consist of mechanisms
to bypass some security measures to go deeper into the scanning process. For instance,
it is possible to bypass authentication by injecting authentication data in requests. As
a result, organizations can estimate their software resistance to known attacks in case
somebody acquires credentials and bypasses the authentication checkpoints.

6https://thecyberwire.com/glossary/taint-analysis
7https://www.docker.com/
8https://kubernetes.io/
9https://portswigger.net/burp/enterprise

https://thecyberwire.com/glossary/taint-analysis
https://www.docker.com/
https://kubernetes.io/
https://portswigger.net/burp/enterprise

Chapter 4

Solution Approach

This chapter will discuss the solution we have chosen for Volue. In the first part, we will
talk about the current situation of Volue pipelines as well as the company’s requirements
for pipeline security. After that, we will then present our choices for the solution.

4.1 About Volue

Volue is one of the leading companies currently providing software and insight systems
that help businesses shift to sustainable solutions. The area of focus is mainly in
the energy sector with software packages facilitating energy production, trading, and
distribution. In the meantime, Volue is trying to support more than 2000 customers with
cloud-based IT solutions in this area. Software security is one of the main concerns in the
energy sector and this has led to several efforts initializing the Cyber Security Strategy
of the EU for the Energy Sector. Software security is one of the main concerns in the
energy sector. The US government has established the Cybersecurity for Energy Delivery
Systems (CEDS) Division to assess threats in this sector and create a preventional and
response team to confront them. Furthermore, Europe has also created teams to evaluate
the Cyber Security Strategy of the EU for the Energy Sector [31]. An example of cyber
threats is ransomware which forced the United States to shut down the largest fuel
pipeline in the country [32]. The risk is present and advanced security measures have to
be in place to avoid any disruptions in this sector. Volue itself has been recently facing a
cyber security accident. On May 2021 a ransomware shut down applications providing
support to water plants in 200 Norwegian districts. The company acted swiftly and most
systems were up and running after a short period of time [33]. This is not the first time
cyber attacks happening in Norway. In 2019, Hydro, another Norwegian industry giant
has also been the victim of cyber attacks [34]. These accidents show the importance of

17

Chapter 4. Solution Approach 18

having a strong readiness and taking software security seriously from the development
phase to production and monitoring. Volue is actively evaluating its security. In this
project, we try to strengthen their software development and monitoring pipeline by
automating security checks whenever possible.

4.1.1 The Existing Pipelines

There are several software delivery routes currently happening in Volue extending from
desktop apps to API-First[35] approaches. API-First design methodology tries to solve
issues happening in the process of shifting an organization’s data and operations to
the cloud. This method tries to attract the attention of the development team first
on the design and implementation of the application API. Later on, other interfaces
are built on top and attached to the API itself. This approach reduces the amount of
entanglement between the services and even software modules and makes it easier to
move the apps to the cloud or containerize or scale them easier. Unification of the source
control systems and build environments is an essential goal to reach software security.
This will ensure security is forced and enabled in all different software development
sectors. Currently, the company uses TeamCity, Azure DevOps, and Github as their
main DevOps infrastructure.

4.1.2 Company Requirements

We have been appointed to improve the software security pipeline in 3 main sections,
development, pre-deployment, and post-deployment phase. Volue requires a solution
that has minimum configurations per repository and can easily reproduce outcomes on
different pipelines. This is important in the later adoption of the work since it can be
implemented with less extra weight on the development team.

4.1.3 CI Tools

The first step is choosing the right CI tool. There are several factors to consider when
picking the right candidate. Jenkins, TeamCity, Travis, CircleCi, Gitlab, and Github
Actions are the key competitors in the current CI tools. Each one of these products is
heavily maintained and supported by its respective owners. The first important feature
to be considered is the ability to host the product on-premises or on the cloud. Since all
code and builds are checked and confirmed by the CI tools, the source code and keys
could be in danger of being exposed. This scenario is still possible even if the product is
hosted by well-known cloud hosting providers. The mechanism we chose had to be able

Chapter 4. Solution Approach 19

to provide self-hosting features for the target environment to keep all the data flow inside
the company’s internal network. Besides, it would be great to have the feature of cloud
hosting for builds as an alternative to keep the setup and configuration complexity lower
at first. At the time of writing this document, we have encountered that only Travis,
Jenkins, Gitlab, and Github Actions support both on-premises and cloud hosting for
pipeline builds.

The second factor considering the pipeline tool is integration and support. Later on
in this chapter, we will see that some pieces like code scanning rely on third-party
companies to provide the feature. Pipeline tools can be integrated with third-party
software via plugins developed by the community or the company itself. These official
plugins reduce the risk of including third-party apps since there is no need for developing
own middlewares to connect them to the system [36].

Finally, containerization support is a must for the tool chosen for security testing.
Containers enable developers to develop, test and deploy software more reliably by keeping
the environment continuously the same. The CI tool must support containerization
tools to test software security features and simulate the production deployment area
characteristics. We have chosen Github Actions1 as our tool since it meets all requirements
mentioned above. In addition, Github Actions is based on Github repositories which
currently host most of the world’s open-source projects. It is possible to share each CI
workflow and make it useful for the whole open source community. Github Company
provides a huge amount of free build-time for open source projects. As a result, software
security and integrity could drastically improve by creating automated software security
pipelines over Github Actions.

4.1.4 Security Tools

Github Actions combines features of a pipeline with Github source control and repository
management capabilities. Individual software developers and companies active in cyber
security can release tools based on the Github Actions platform. It brings new capabilities
for security players in the market to integrate their tools with the platform. In addition,
all processes are made in YAML file format. YAML2 is a structured file format that
can be easily read and translated into meaningful steps. Using this file type creates an
extra layer of mobility to the CI/CD process. DevOps representatives can easily define
pipelines for each repository by adding a YAML workflow file to the repository. Github
Actions identify the pipeline specification file and try to build the pipeline based on
the exposed YAML file. Each file is considered a separate pipeline and will be initiated

1https://docs.github.com/en/actions
2https://yaml.org/

https://docs.github.com/en/actions
https://yaml.org/

Chapter 4. Solution Approach 20

on each repository change based upon the rules defined in the file. Next, a container
instance gets generated in the virtual machines hosted by either Github or On-Premises.
It is possible to generate a virtual environment on Linux, macOS, and Windows-based
runners.

There are several issues concerning this approach to running the environment. Firstly,
when a runner starts the process, there is no way to input extra data during the process
until the pipeline is done and the report is generated. It is only possible to deliver all
our extra fields of data as an argument when the pipeline is starting. While running, we
have encountered that some fields of data like deployment host keys, tools’ API keys, and
other secrets need to be injected into the application. Putting these data in the pipeline
file brings a security concern of all people accessing the repository being able to have
access to all our keys. An ideal scenario would be to only have the DevOps team and
repository maintainers have this access. This problem was solved along the way by using
an environment secrets tool. Github provides an environment secret passing tool that
manages secrets and other sensitive data of the repository in a secure enclave and only
passes them on demand to the runner when requested. This method will ensure that the
company’s sensitive information is only accessed when runners are initiated through a
secure enclave. There is always a possibility of a developer trying to catch the identity of
the secret providers or try to access unauthorized secrets. Currently, Github Actions is
using a libsodium3 sealed box implementation to store secrets. This library which has
adopted its core functionality from the NaCl4 library provides secure access to secrets
while keeping the secret provider identity out of reach. The premise of sealed boxes is
that the virtual environment has an anonymous dropbox. Github users can use a sealed
box to send a message to the environment. On the recipient side, the environment knows
nobody but the sender could have read or tampered with it. But it knows nothing about
who the sender was. This way, we can prove the validity of the secrets without exposing
where it comes from. In order to prevent unauthorized secret access, there are reviewer
steps for secrets.

Each secret can have a reviewer apply access controls every time it is used during the
pipeline. This may seem like an excessive controlling scenario. However, in big-scale
software corporations, it is important to protect secrets like deploy API keys or database
credentials out of reach of members of the organization while giving them access to
use them in a pipeline to run automatic tests. It is important for organizations to use
these reviewer steps to avoid the risk of an internal data breach [37]. By using all the
above-mentioned techniques we will ensure that the virtual environment and secrets will
be kept secure while running in the organization.

3https://libsodium.gitbook.io/doc/public-key_cryptography/sealed_boxes
4http://nacl.cr.yp.to/

https://libsodium.gitbook.io/doc/public-key_cryptography/sealed_boxes
http://nacl.cr.yp.to/

Chapter 4. Solution Approach 21

4.1.5 Code Scanning & Dependency Checking

Codebases are always prone to include vulnerabilities that are easily detectable by
machines. Although there could be possible logical vulnerabilities in applications, it is
possible to prevent others by automated pipelines. There have been several comparisons
between SCA tools before which we can see examples from Matti Mantere; Ilkka Uusitalo;
Juha Röning [38]. In addition, Arvinder Kaur and Ruchikaa Nayyar also compared these
tools in [39]. These comparisons try to reach these tools mostly based on vulnerabilities
found and how they try to fix them automatically. In previous years, several tools are
released in this area and some of the comparisons mentioned have been changed with
new updates to the tools. In addition, while these measures are important, another
key factor for our project was how much it is possible to integrate the solution to an
automated workflow of the Github Actions ecosystem. Furthermore, new characteristics
like duplicate code detection are only available in recently introduced versions of tools
like SonarQube. In this project, we have focused on tools with a focus on integration
and extension of their scanning capabilities. We have tried several tools like SonarQube,
Snyk, and Fortify; the results will be presented in the following chapters. There is not a
clear winner since each tool is presenting better features in different sectors. SonarQube
provides extensive capabilities in detecting code smells and providing code review while
Snyk is better at dependency scanning and security measures. We are looking to reach
two goals in this part of the pipeline. First providing a code quality scan for the repository
we are operating on. We have measured that are quantitative and qualitative to examine
our code submission and move forward along the pipeline.

Code Coverage

Code coverage tests try to calculate lines of code used while running test suites. It is
normally measured by a percentage which shows what percentage of the current codebase
is used by tests. This test is essential to ensure software security. Each line of the
code being tested by a Unit test provides a level of confidence that the following code
functionality has been examined in tests. This will prevent software developers from
creating intentional or unintentional loopholes in the system which has not been tested
during software development. Examples of this behavior could be developers creating
extra functions which log data created in the enterprise and save them in a remote
machine [40]. If this part of the system has not been visited by the tests, the Code
coverage number will decrease. It is possible to set a threshold in the pipeline to fail
decreasing coverage code commits. Finally, we can consider hardcoding minimum code
coverage percentage which is usually set around 80 percent when looking at discussions
in DevOps forums. It is not suitable for projects which start to adopt these new security

Chapter 4. Solution Approach 22

pipelines since it will break the whole pipeline by not letting any code commit pass the
tests if the previous codebase is weakly tested. As a result, we recommend setting rules
to improve code coverage percentage on each commit based on previous reports’ results.
SonarQube provides code coverage results which we can further process and threshold
our pipeline based on the results provided.

Code Smells

Code smells are not essentially bugs or vulnerabilities but they ring an alert about the
codebase overall code quality. An example of code smells is empty defined functions in
the program. Code smells to try to make an assessment of the future technical debt in the
system based on the templates defined for them. Having a code smell in the developers’
commit is not an immediate problem and it can be considered just as a warning during
the pipeline. We will try to consider SonarQube as our code smell provider tool. The
pipeline will only generate a report on the cod smells and not try to prevent developers
from finishing the pipeline if any code smell exists. Finally, the generated report is
presented to the repository maintainer to decide on suitable actions [41].

Code Quality Checker

Unlike code smells which do not convey a serious problem in our codebase, Code Quality
checkers look for dangerous patterns in our code that may expose applications to possible
vulnerabilities like remote code execution (RCE), SQL injection, and cross-site scripting
(XSS). Projects may vary in codebase size from thousands of lines to millions of lines.
The bigger size of the codebase brings up new complexity to the code and makes it
harder to review. Code quality checkers are tools that define sets of rules which get
checked against the whole codebase to find possible breaches in the rules. This will
ensure policies are enforced in the whole codebase. In addition, human manual reviews
are prevented at this stage since humans are more prone to mistakes when it comes to
inspection of big complex codebases. Quality warnings will be generated later based on
the level of severity of the problem and it is up to the maintainer of the codebase to let
the whole pipeline process on a different level of code quality breaches. In some modern
code quality services, each issue comes with a recommended solution to fix it manually
or by running commands to solve automatically [42].

Chapter 4. Solution Approach 23

Dependency Scanning

Software supply chain security is currently under study and development due to the
recent events in the cyber security world. After the Orion network monitoring hack
which affected big firms like US Homeland Security and Microsoft, there is a major focus
on regulating dependencies used in projects. Dependencies are data or functionality
imported into the software by external sources. Developers and maintainers have little
to no authority over the dependencies and monitoring their behavior need a meticulous
inspection of the dependency functionality and design. Open-source software (OSS)
development is becoming mainstream. We are relying more on third-party-developed
software every day. According to a survey by Black Duck Software, 78 percent of
responders reported that their whole company or parts of it is using OSS [43]. In
addition, 66 percent of participants indicated that their company produces software
based on OSS. Third-party components (TPC) and dependencies are used as building
blocks of the software. this enables companies with less human and financial resources to
build software faster while relying on the extensive library of TPCs over the internet [44].
Although many of the TPCs are being inspected and tested by volunteers, they are still
considered as black boxes which companies inheriting them have no idea of what happens
inside the TPC. Here we face a paradox. A tool that using it can advance the development
process and help us to build better and with a blazing speed. On the other hand, the same
TPC can act as an attack surface to our final product and bring on new opportunities
for malicious actors to penetrate our software. Eventually, TPCs are being imported to
our project using a centralized registry. Malicious actors can use these imported libraries
and software to infiltrate and exploit the internal systems of the organization. It is
possible to prevent this threat by using dependency scanners. These scanners try to keep
track of vulnerabilities or security holes in the TPC’s and inform the software maintainer
about it. Furthermore, deprecated and obsolete dependencies are spotted and removed
from the software lifecycle. It is possible to keep dependencies automatically updated
to get security patches as soon as TPC’s are updated. We have decided to use Snyk
as our dependency scanner. Snyk has integrations with Github Actions and provides
extensive dependency checking with an updated database of vulnerable packages. Package
managers like Pip, Npm, Go and Composer are crawled on a daily basis and security
vulnerabilities are added to Snyk Vulnerability Database. These vulnerabilities range
from simple buffer overflow possibilities to higher degrees of dangerous vulnerabilities
like arbitrary code execution or privilege escalation [45]. Snyk tries to score the found
vulnerabilities based on the severity of the problem. As a result, we have been able
to produce a roadmap of the software codebase and problems alongside how critical
and time-dependent is to fix that issue before causing bigger problems in the software
lifecycle.

Chapter 4. Solution Approach 24

4.1.6 Open-port Scanning

It is possible to send requests to a range of ports in the server to find active ports. Port
scanning is one of the oldest tactics used by hackers to gather information about which
services and applications are running on the target. Enterprise applications normally
use known ports to connect to external applications. Although some ports are vital
for the application to be running, a few ports are only used for maintenance objectives.
For instance, port 22 is used for Secure Shell (SSH) access to provide access for server
maintenance. These ports can be left open while they are not in use and pose a threat.
Attackers can try to exploit less secure applications using their special port. Besides,
organizations are expanding the connectivity of devices with IoT solutions in the business.
This will introduce even more network-connected machines which can have misconfigured
applications and additional open ports [46]. Volue has given us the assignment to have
an automated port scanning solution to provide 24/7 surveillance over the deployed
applications in the Volue ecosystem. This will enable Volue to get notified whenever a
new port has been opened on the applications without prior whitelisting. We have used
Github Actions to provide monitoring capabilities. A script will run NMap5 application
at different time intervals during the day. NMap is a free open source software that is
widely used by network administrators to perform network discovery and auditing. We
have used NMap software in our automated pipeline to watch over Volue deployed apps
and report which ports are currently open. Later on, Volue can use this data to detect
misconfigurations or internal mistakes which lead to open exposed ports in their network.

4.1.7 Secure Socket Layer And Transport Layer Security (SSL/TLS) Eval-
uation

Creating a connection between server and client over the internet needs security measures
to avoid eavesdropping and packet modification. Secure Socket Layer and Transport
Layer Security protocol try to achieve this goal by providing an authenticated and
encrypted channel between two parties with novel algorithms and cryptographic ciphers.
This method tries to use public/private key encryption. To keep the public keys accessible
to others certificate authorities provide essential data alongside public keys needed to
connect to that server. However, in recent years we have faced several security breaches
in SSL/TLS protocol. An example of the security leak in SSL is the Heartbleed bug6

which allowed malicious actors to steal critical documents, emails, messages, and other
valuable information from users who still use older versions of OpenSSL software. Besides,
currently, only a few TLS versions and cipher suites are approved by governments and

5https://nmap.org/book/man.html
6https://heartbleed.com/

https://nmap.org/book/man.html
https://heartbleed.com/

Chapter 4. Solution Approach 25

industry experts to be used [47, 48]. Volue has mentioned that it is important for them
to keep SSL/TLS updated and secure. We have been working on the pipeline to provide
security checks to check for SSL/TLS version and configuration. This test will be part of
the pipeline and can be run automatically in time intervals. Volue can include all server
endpoints of the company in the mentioned pipeline and we will do evaluations of the
server configurations, SSL/TLS versions, expiry date of certificates, and overall security
measures of the encrypted connection. SSLLabs7 scanner is command-line opensource
client software that creates tests for hosts’ SSL security. We will be integrating SSLLabs
software in our command line and generate reports from command line results of the
software so that it can be reviewed by repository owners. It is also possible to stop the
pipeline when a misconfiguration has been detected in SSL/TLS security. This will work
as an always-on watching system to protect volue SSL/TLS encryption from possible
attacks due to misconfigurations and outdated versions of software.

4.1.8 Integration And Automation

Github Actions use virtual machine runner instances to run pipelines. Each pipeline
occupies portions of the runner’s computational power and bandwidth usage. It is
important for our automated pipeline to be efficient and only run tests and builds
whenever needed. It is possible to run tests on special conditions and Github runners
will initiate the action whenever the trigger conditions are met. Software companies
consist of different teams working on the product at the same time. If all the pipeline
tests run on every push to the repositories, this will exhaust the runners, and jobs will be
in long queues before they could be completed. In addition, specific tests like SSL/TLS
scans are time-consuming and will keep the runners busy for longer periods. We tried to
develop smart pipelines that try to expand the runner’s idle time by assigning pipeline
triggers to persons committing the code. As an example, user experience and UI design
teams’ commits are ignored by runners. Developers’ commits will trigger static analysis,
code coverage, and code smell pipelines. SSL/TLS scans and port scans work parallelly
in time intervals without attachment to commits. Finally, commits to master will run
all possible runners to check for everything before the new code is added to the system
[49]. These are just examples of roles in a software organization and how they can be
assigned to pipeline triggers. We have the ability to tweak the system so that different
jobs happen in special circumstances. As a result, pipeline triggers will be controlled
and runner machines will not be under pressure.

7https://github.com/ssllabs/ssllabs-scan/

https://github.com/ssllabs/ssllabs-scan/

Chapter 5

Pipeline Evaluation

We will explain how we install and operate our pipeline in different environments in
this chapter. First, we used 3 open-source projects that we found on the internet to
test the different tools we chose. Finally, we integrate several suitable tools into Volue’s
repository for a complete security workflow that can integrate into the CI/CD pipeline.

5.1 Experimental Systems Setup

In this thesis, we prepare three projects that test each part of the pipeline, along with
a project repository provided by Volue in the middle of the research period to test the
performance of the complete pipeline. The three repositories we use are open source
projects that can be found on the internet in the three languages required by Volue,
namely Python, Javascript and C#. The practical project powered by Volue is written
in C# with the DotNet framework.

5.1.1 Test Repositories

We use three projects with three different languages, Python, Javascript and C# respec-
tively. The first two projects we used to test tools with scripting languages. We then use
a project written in the DotNet framework in C# - a compiled language, from which to
build a suitable pipeline for Volue’s project.

Python Repository

This is a simple project written in Python and Flask which is the first project we used
to test Github Actions as well as apply CodeQL to check vulnerabilities in the project.

27

Chapter 5. Pipeline Evaluation 28

Since CodeQL is provided by Github with a feature that only works in public open-source
projects, we make this repository public at the link https://github.com/sohrabch/

github-actions

Figure 5.1: Python repository

We mainly use this repository to get acquainted and use Github Actions to create a
workflow. Besides, we also test the vulnerability scanning tools here.

Javascript Repository

Figure 5.2: Javascript repository

https://github.com/sohrabch/github-actions
https://github.com/sohrabch/github-actions

Chapter 5. Pipeline Evaluation 29

This is a simple weather application written in Javascript that we cloned from https:

//github.com/bmorelli25/simple-nodejs-weather-app#readme. We use this reposi-
tory to develop our pipeline to work more coherently, trying to break it down clearly so
that we can understand how the tools work comprehensively.

Here, we build a series of steps using Github Actions to test Snyk, njsscan, as well as
other open port and SSL scanning tools. From there, combine them to become a sequence
of security scans in a CI/CD Pipeline.

C# Repository

This repository is taken by us from Bitwarden - an open-source project written in C#
with DotNet framework which used to store login and password information. This is an
actual project being operated and contributed by the community. This project includes
many smaller components such as server, web, desktop and phone applications, and so
on. We use the Bitwarden server codes to test our pipeline. The source code of the
repository can be found at the following link: https://github.com/bitwarden/server

This repository we install as private to be able to test as close as possible to Volue’s
project. Different from the previous two languages, this project uses C#, which is a
compiled language. Therefore, the vulnerability scanners for the project also requires the
code to be compiled before calling the tools. This makes each scan time on this project
longer than in scripting languages such as the two above.

5.1.2 Volue Repository

This is an actual project of Volue, this project is written with DotNet and C#. For
security reasons as well as Volue policy, the source code of this project cannot be published.
At this project, we run the final stages of testing for the pipeline we built. In addition,
we also perform upgrades and modifications to tools or pipelines by the demand from
Volue.

5.2 Implementation

Our pipeline, like all Github Actions workflows, is placed in a yml file located in the
.github/workflow directory. In this file, we use the tools by one or more steps in the
workflow.

https://github.com/bmorelli25/simple-nodejs-weather-app#readme
https://github.com/bmorelli25/simple-nodejs-weather-app#readme
https://github.com/bitwarden/server

Chapter 5. Pipeline Evaluation 30

Figure 5.3: yml file header

The figure 5.3 shows a header of a yml file. The name part is used to name the workflow,
this field is used to distinguish when the pipeline has several different threads. Next, the
on item is used to set the condition under which the workflow is triggered. Usually, there
will be two main types here, event-based or time-based. In our experiments, we mostly
set up the workflow to start up on push events. The goal is that with each push coming
from the development team, the code will be automatically scanned for vulnerabilities
once to detect dangerous errors early.

Workflow steps are located in the jobs section. Each job will have its own name at the
beginning and the name must not contain spaces. The next section is run-ons, where
the operating system on which this job will run is indicated. Finally, the steps in a job
will be declared in the steps section.

For each project, there will be different steps defined and organized based on user intent.
However, to be able to interact with the project’s code, the Checkout step must always
be called first. At this step, the Github Actions system will clone the entire repository
into the virtual system on which the job is running. This step is written as the figure 5.4.

Figure 5.4: Checkout step

Python Repository

We have used this repository to test a few different tools like CodeQL, Fortify or ZAP.
However, we will only talk about the tool that gives the most stable results that make us

Chapter 5. Pipeline Evaluation 31

most satisfied, which is CodeQL. This is a tool provided by Github security engineers
themselves. So we do not need to use too many implementation steps to use it.

Figure 5.5: Action steps with Python project

First, the init step must be defined along with the language used by the project. This
step helps the tool know the language being used to install the necessary libraries and
plugins. Then we simply invoke the analyze action and wait for the results to be
returned in the Security tab at the very repository where the workflow is running.

Javascript Repository

In this repository, we tested a few tools namely Snyk, njsscan, NMap and SSLLabs. In
addition, we also use the results obtained and uploaded with the actions themselves as
artifacts.

Chapter 5. Pipeline Evaluation 32

Figure 5.6: Snyk steps with NodeJS

With a project written in NodeJS, to scan for vulnerabilities with Snyk, we need to call
the actions developed by the Snyk team at snyk/actions/node. However, the thing to
add here is that to be able to call Snyk, we have to create a Snyk account at snyk.io

and get our own token. Then, put that token in the secrets section of the settings of the
repository to use it in the actions. The results of the scan will be shown in the results of
actions. Snyk tries to cross-reference the code with its local database of vulnerabilities
and dangerous patterns in order to create a risk map and vulnerability list.

Figure 5.7: njsscan steps

Using njsscan is quite similar to Snyk, we also call the action from the tool’s repository.
However, this tool does not require a tool user token. In addition, we install a tool that
outputs the results as sarif files - a file format for reporting results with Github’s Security
tab. Then we use the upload sarif action defined by the Github team in the CodeQL
repository.

The open port scanner we use here is NMap. This tool has no built-in support for Github
Actions, so we installed it using a bash script in the very environment created for the
workflow. Here, we run NMap to scan the Volue homepage, however, this is due to the

snyk.io

Chapter 5. Pipeline Evaluation 33

limited access we had to company infrastructure and deployed softwares behind firewalls.
In real world scenarios, volue DevOps team will use tokens to inject deployed software
endpoint to NMap software. NMap will later try to check on the endpoint ports and
report on the open ports found.

Figure 5.8: NMap and SSLLabs steps

Finally, we use SSLLabs to evaluate SSL quality. This tool also does not support Github
Actions, so we continue to install it manually through a combination of bash scripts
and actions. First, we install the tool’s environment which is Go programming language
through actions provided by Github team. Then we cloned the tool’s code to the working
environment. From there, we ran the tool with Go as if we were running it on a real
machine. SSL Labs checks for SSL certificate tree and certificate variables in different
operating systems and devices. This is done by SSLLabs virtual environments that
simulate Android, IOS and Desktop devices with different browsers.

The results of both NMap and SSLLabs tools are stored in a file named logs.txt and
uploaded as an artifact with the output of the workflow.

C# Repository

In this repository, we mainly focus on perfecting our pipeline, testing Snyk when running
against DotNet projects. First, to be able to run Snyk with projects that use DotNet,
the project’s code must be built before the Snyk action is invoked. To build it, the first
step, the DotNet framework has to be installed, we do this with the actions provided by

Chapter 5. Pipeline Evaluation 34

the Github team. Then the dependencies must also be installed using DotNet with the
appropriate config file. Next, we invoke the build command with DotNet to output the
complete builds.

Figure 5.9: Steps to run Snyk with DotNet project

The next steps, similar to the NodeJS project, are vulnerability scanning with Snyk,
open port scanning with NMap, and SSL evaluation with SSLLabs.

Volue Repository

In this repository, we repeat what we did in the C# repository. In addition, we perfect our
pipeline by generating the completed output and preventing malicious pushes according
to the results received.

Chapter 5. Pipeline Evaluation 35

Figure 5.10: Workflow files in the Volue repository

We split the pipeline into two different components: vulnerability scanning and monitor
scan which contains open port scanning and SSL certificate checking.

We scan for vulnerabilities in the code after every push coming from the developers. If
serious vulnerabilities are discovered in the code, the pipeline will automatically revert
the newly pushed commit.

Figure 5.11: Schedule the workflow to run once every hour

Monitor scan will be periodically scanned depending on the request from Volue, here we
set the scan to take place once every hour. The final result is summed up with a piece of
python we code ourselves. After that, it will be uploaded to our Slack channel.

The code of the workflows is attached in the appendix A.

5.3 Experimental Results

We document the results from each tool as well as the performance of our pipeline to
ensure the working of the automation we built.

Chapter 5. Pipeline Evaluation 36

5.3.1 Python Repository

Figure 5.12: CodeQL workflow finished fluently

After much tweaking and testing, the final result we got from the CodeQL tool was quite
satisfactory. The tool runs stably, does not appear error when running, and returns the
correct results if a vulnerability is detected. We can see a sample result of action as
shown in figure 5.12, which is the result of a vulnerability scan using CodeQL. Using
artifacts helped us to integrate vulnerability reports to Github further. We can notify
developers and maintainers of found issues as soon as the report is complete. It is possible
to use an internal Github notification system to make this process even more integrated.

Chapter 5. Pipeline Evaluation 37

Figure 5.13: Vunerability found by CodeQL

The figure 5.13 represents the vulnerability that the CodeQL tool found in the Security/-
Code analysis tag of the repository. From this extremely detailed result, the development
team can patch the discovered vulnerability more easily. In addition, codeQL provides
the vulnerability index in the Common Weakness Enumerations database 1 or National
Vulnerability Database 2. These are worldwide databases to submit and measure security
weaknesses in software and hardware. They are also used as a baseline for weakness
identification, mitigation, and prevention efforts. As a result, developers can check each
vulnerability and look at community made fixes for the issue.

5.3.2 Javascript Repository

At this repository, each tool returns results in a different way. More specifically, figure
5.14 shows the results of Snyk’s vulnerability scan, which is shown in the output of the
scan step in the workflow.

1https://cwe.mitre.org/index.html
2https://nvd.nist.gov/

Chapter 5. Pipeline Evaluation 38

Figure 5.14: Result of Snyk

The review by Snyk vulnerability scanning takes place smoothly. The vulnerabilities found
are shown in the output of the action itself. We can see the statistics of vulnerabilities
discovered by Snyk in figure 5.14.

The results of njsscan can be found in the Security tab of the repository as shown in
figure 5.15. We can see that the result of njsscan is different from the one obtained from
Snyk.

Figure 5.15: Result of njsscan

Chapter 5. Pipeline Evaluation 39

As we can see, similar to CodeQL, njsscan outputs a sarif file, which is supported by
Github. Hence, the results are shown in the Code scanning alert list in detail. However,
Github only offers this feature on public repositories or in organizations that have
purchased Github Enterprise program.

Figure 5.16: Open ports and SSL results was uploaded as artifact

The results of the open port scan and SSL check are compiled into a text file and uploaded
with the action as an artifact. Figure 5.16 shows where the artifact is located. When
downloaded and unzipped, we will get the result as shown in figure 5.17.

Figure 5.17: Results of open ports and SSL

Chapter 5. Pipeline Evaluation 40

5.3.3 C# Repository

Figure 5.18 below shows the results of the Snyk vulnerability scanning workflow on
the Dotnet project. Before getting the scan results, we must let the system install the
necessary dependencies for the project. The results are also shown in the output of the
jobs.

Figure 5.18: Results on C#

5.3.4 Volue Repository

Here, we get the results of two workflows at two different places, submitting to Slack and
using Github Actions artifact. This can be easily customized according to the purpose
and requirements of the user.

Chapter 5. Pipeline Evaluation 41

Figure 5.19: Results of security scanning on Volue repository

First, as we can see, figure 5.19 shows when Snyk discovered a vulnerability in the project.
At this point, the report will be generated and uploaded to our Slack channel. The
results in figure 5.20 clearly show which branches and commits have been vulnerable, as
well as which vulnerabilities have been discovered. Slack is a choice of the team working
on this project. We have made the report accessible over other workplace tools like Jira,
Slack, and social messenger tools. This enables developers to choose their preferred way
of receiving reports about their submissions.

Figure 5.20: The results are uploaded to the Slack channel if any vulnerability is found

Chapter 5. Pipeline Evaluation 42

The monitor scan, on the other hand, returns the result as an artifact of the action. From
the results obtained, the development team can assess whether the system is operating
properly. Here, we do not include a standard to assess whether the system is safe or
not because this is completely based on the policy of each company and organization.
Reporting whenever there are signs of a vulnerability can be done just as easily as the
vulnerability scan above.

Figure 5.21: Results of monitor scan

Figure 5.21 shows us the result of the monitor scan as an artifact of the action. Along
with that, figure 5.22 shows the result when decompressed. Here, we can see the SSL
and open port parameters of the system that have been deployed.

Figure 5.22: The artifact file of the result

Chapter 6

Discussion

In this chapter, we are going to deliberate about the results that we have from the final
pipeline for Volue. Then, we will consider the value of the pipeline with the requirements
from the company.

6.1 Expectation Vs Results

Our ultimate goal in this thesis is to integrate the security component into the existing
DevOps pipeline. Besides, we also wanted to automate it in the best and most suitable
way for the development team. This can save time and other resources that are used
for security testing. Furthermore, it also makes it easier to react to vulnerabilities,
accidentally created by a developer through bad code. Instead of waiting for the
penetration testing team to periodically test the project, this scan will be automatically
performed and notified to the developer as soon as the code is committed. It is also
expected that this pipeline can be integrated minimum amount of changes to the Volue
SDLC.

In chapter 5, we were able to see the test results of the pipeline we developed. Overall,
the results we have achieved are quite satisfying. The tools work stably as we expected.
They are run completely automatically with only a few steps of installation that are not
too complicated. When developers work, they don’t have to wait for the security team
to respond. Vulnerabilities will be automatically detected by the tools and reported to
the development team. This helps speed up the product development process. Instead of
waiting for hours or even days to detect an unintentional vulnerability, when applying
this pipeline, the discovery of these errors takes only a few minutes.

43

Chapter 6. Discussion 44

6.2 The Solution For The Industry Challenges

Roshan N. Rajapakse, Mansooreh Zahedi, M. Ali Babar, and Haifeng Shen have investi-
gated and collected challenges related to adopting DevSecOps in organizations [23]. We
try to face these challenges and measure how our security pipeline product has helped to
overcome them. Here we discuss a few challenges and how we managed to solve them in
our pipeline.

6.2.1 Tool Selection Challenge

DevOps consists of several stages which have fundamental differences in their workflow.
There are many tools developed by the industry to support each stage and include
security in the pipeline workflow. The above-mentioned research shows that developers
struggle in tool selection when it comes to DevSecOps implementation. This has been
an issue during our project development also. Each tool comes with a feature set and
implementation tactic that usually differs from the competition. In addition, tools use
different programming languages to implement their features. This means that even
developers inside a single organization may be in contradiction about the tool they are
keener to use [50]. Our proposed solution focus on choosing the platform which has wider
adoption by the community. Github is widely adopted by the developer’s community and
many open source projects are maintained in Github repositories. Using Github Actions
as a base tool gave us the possibility to reach a wider spectrum of possible users of the
pipeline. Furthermore, we tried to use official plugins from vulnerability scanners instead
of writing our own bash scripts. This would help us to keep the pipeline-specific code
smaller and avoid problems faced in the future to maintain the pipeline. However, there
is a lack of standardization in this area to help DevSecOps teams in the implementation
stages. We believe that in the coming years there would be an urge to create and
maintain standards for tools developed in this area that would lead to possible guidelines
for DevSecOps tools selection. There are other concerns like the security of the tools
itself which are beyond the scope of this project to be evaluated.

6.2.2 Static Analysis Tools Limitations

Software dependencies are increasing and a library can be used on thousands of different
dependencies. Current static analysis tools run into the problem of high false positives
and a high volume of vulnerability detections in tests due to nested dependencies [51, 52].
This will exhaust developers and make it hard to find and prioritize vulnerabilities to
fix. We have solved this issue by providing an option for the DevSecOps team to choose

Chapter 6. Discussion 45

the severity of their target vulnerability and get reports based on their selection. As
a result, developers can focus on critical vulnerabilities first and lower the amount of
severity whenever they have covered more critical problems.

6.2.3 Access Management In DevOps Domain

DevOps team has access to the production environment and software critical data like
secrets and API keys. This is due to the definition of the team to handle deployments
and overall software running infrastructure. There is always an existing threat concerning
insider misuse of the keys or data in an organization. Keys can be used to access sensitive
customer data or process unauthorized requests. Restricting access to production-sensitive
data while keeping the workflow running is one of the challenges in DevSecOps operations.
We have used Github secret management tools to overcome this challenge while giving
access to secret keys in the command line tools and the runner’s environment. Maintainers
can issue access to secrets on-demand and DevOps members will only acquire the key
usage access without accessing the original key content.

6.3 Satisfaction Of Volue’s Requirements

Our workflow has gained recognition from Volue. Jarle Nygård, our local supervisor from
Volue, has the following views:

"I have applied the workflow in one other project now and it was easy to set up and
put to work. It has already paid off, in the sense of finding 3 high severity issues in our
dependencies. The vulnerabilities were deep in the dependency graph and so it would
have been almost impossible for anyone to manually find the unpatched dependencies,
but with the report output from the workflow, it was easy to identify and fix the problems.
My recommendation to Volue R&D leadership is to enforce the usage of this workflow
for all Volue products going forward."

Jarle is a Senior Software Architect of Volue who worked with us during the time we
were working on this thesis. He also gave us lots of helpful advice and some practical
directions when we got stuck. As having been following since the beginning, he totally
understands the workflow that we have built.

Chapter 6. Discussion 46

6.4 Limitations

The current system still has quite a few limitations that can be overcome in the future.
First, the number of selected tools is not diverse. For now, we’ve only included a few
tools that stand out and match the requirements from Volue. Besides, we currently
only support three languages, C#, Javascript and Python. Also, current tools can
only be integrated with Github Actions and not with other CI tools yet. In addition,
monitoring tools must be optimized to bypass existing firewalls and regional blocks issued
by companies to be able to monitor the organizations running applications.

6.5 Challenges

Since the beginning of this thesis, we have also encountered a few problems that made
the research and experiment not go as expected. These problems have gradually been
overcome by us in the process of completing the thesis.

The first obstacle that can be mentioned is the social distancing during the epidemic,
which makes it impossible for us to go to the office and work directly with the Volue
development team. Therefore, sometimes we misunderstood their ideas. However, we
have overcome this by creating regular meetings as well as creating our own Slack channel
for communication.

Second, when working with Github and Github Actions, we ran into obstacles due
to Github’s policy not to support some tools when run in a private repository. That
contradicts Volue’s policy that the code used to test the tools is not allowed to be released
to the public. To deal with this, we have been constantly finding, testing, and replacing
different tools to find the ones that can support private repositories.

Because of some of the procedures based on the policy of Volue, we were not able to
experiment with actual company projects from the start. This led us to decide to find
and use a few open source projects from the internet as we mentioned in chapter 5.

One last small thing that can be mentioned here is the technical hurdle, as this is the first
time we approach a project written in C# or using Github Actions to create a workflow.
We have learned how to use and work with those technologies, and that will help us a lot
in the future.

Chapter 7

Future Directions and Conclusion

This is the final chapter of the thesis. We will sketch out some directions to further
develop the solution and conclude our work on the pipeline.

7.1 Future Directions

In chapter 6, we mentioned some limitations of the current workflow. Here, we will talk
about the solution and some positive directions in the future.

7.1.1 Tool Diversification

The increase in the variety of tools makes it possible for users to have more options
to suit the requirements and purposes of each project. Since different tools may give
different results, using multiple scanning engines simultaneously will help avoid missing
vulnerabilities.

7.1.2 Increase Compatibility

The current system needs to be modified and upgraded to support more programming
languages and frameworks. In addition, the development of workflow to be able to work
on platforms other than Github is also a desirable thing. Depending on the nature of
each different project, the deployment and running of the software will take place in
different environments. Therefore, the vulnerability scanning of each case should also be
carefully considered during the implementation phase.

47

Chapter 7. Future Directions and Conclusion 48

7.1.3 DAST Further Implementation

We have been limited by the resources we have access to for dynamic security testing.
Volue has several running projects which need defined testing forks and branches to
apply dynamic security testing. In the future, volue can contribute to this project by
developing further dynamic security features like ZAP scanner integration. We have
already researched the DAST tools and tried them on the test programs. However, for
DAST to work, there needs to more internal knowledge about the application workflow
and authentication process.

7.1.4 Enhance Automation

Now the automation of the workflow has been partially applied. However, when deploying
each project, the development team still has to install it manually. Developing a tool
to automate the generation and integration of workflows based on user requests is an
extremely promising direction.

7.2 Conclusion

To conclude, in this thesis, we studied how to automate security so that it can be
integrated into the CI/CD pipeline. We studied the existing theories to build a workflow
model from security tools for the software development process. We then used that
workflow to apply to a trio of test software projects and an actual one coming from
Volue. The results obtained from testing can indicate the workflow that we have shown
works well for software projects and gives certain effects on the performance of a software
development life cycle. The workflow we built was also appreciated by Volue - the
company that proposed this thesis. Although there are still imperfections and needs to
be improved, the project shows a lot of potentials to be developed into a tool to support
DevSecOps work.

List of Figures

3.1 “OWASP Application Security Verification Standard 4.0 Levels” by OWASP
foundation. (Creative Commons Attribution ShareAlike 3.0 license) . . . 14

5.1 Python repository . 28
5.2 Javascript repository . 28
5.3 yml file header . 30
5.4 Checkout step . 30
5.5 Action steps with Python project . 31
5.6 Snyk steps with NodeJS . 32
5.7 njsscan steps . 32
5.8 NMap and SSLLabs steps . 33
5.9 Steps to run Snyk with DotNet project . 34
5.10 Workflow files in the Volue repository . 35
5.11 Schedule the workflow to run once every hour 35
5.12 CodeQL workflow finished fluently . 36
5.13 Vunerability found by CodeQL . 37
5.14 Result of Snyk . 38
5.15 Result of njsscan . 38
5.16 Open ports and SSL results was uploaded as artifact 39
5.17 Results of open ports and SSL . 39
5.18 Results on C# . 40
5.19 Results of security scanning on Volue repository 41
5.20 The results are uploaded to the Slack channel if any vulnerability is found 41
5.21 Results of monitor scan . 42
5.22 The artifact file of the result . 42

49

Appendix A

Workflows code

A.1 security-scan.yml

name: Push security test

on: [push]

jobs:

Push -security -scan:

name: Security check

runs -on: ubuntu - latest

strategy :

matrix :

dotnet - version : [’3.1.x’]

steps :

- name: Checkout repository

uses: actions / checkout@v2

with:

fetch - depth : 0

- name: Setup .NET Core SDK ${{ matrix .dotnet - version }}

uses: actions /setup - dotnet@v1 .7.2

with:

dotnet - version : ${{ matrix .dotnet - version }}

- name: Install dependencies

run: dotnet restore --configfile nuget . config

- name: Build projects

run: dotnet build -- configuration Release --no - restore

- name: Run Snyk to check for vulnerabilities

uses: snyk/ actions / dotnet@master

continue -on - error : true

env:

SNYK_TOKEN : ${{ secrets . SNYK_TOKEN }}

Change solution file name here

Comment 2 lines below if not use solution file

51

Chapter A. Workflows code 52

with:

args: --file = Powel . Melding .sln --json -file - output =vuln.json

- name: Setup Python

uses: actions /setup - python@v2

- name: Shorten report

id: results

run: |

python ./. github / workflows /security - report .py

- name: Get github branch and commit hash

id: vars

shell : bash

run: |

echo "##[set - output name= branch ;]$(echo ${ GITHUB_REF #refs/ heads /})"

echo "::set - output name= sha_short ::$(git rev - parse --short HEAD)"

Runs these if the push is vulnerable

- name: Revert

if: contains (${{ steps . results . outputs . stdout }}, " Vulnerable ")

continue -on - error : true

run: |

cd "${ GITHUB_WORKSPACE }"

git config --global user.name "github - actions [bot]"

git config --global user. email "github - actions [bot] @users . noreply . github .com"

git revert --no -edit ${{ steps . vars . outputs . sha_short }}

git push

- name: Upload logs to slack app

if: contains (${{ steps . results . outputs . stdout }}, " Vulnerable ")

uses: adrey /slack -file -upload - action@master

with:

token : ${{ secrets . SLACK_TOKEN }}

path: ./ Security_report .txt

title : " Latest security check results on branch ${{ steps .vars. outputs . branch }} - commit ${{ steps .vars. outputs . sha_short }}"

channel : random

- name: Exit with failure marks if vuinerable

if: contains (${{ steps . results . outputs . stdout }}, " Vulnerable ")

run: |

exit 1

A.2 security-report.py

import json

vuln_file = open ("vuln.json")

vuln_data = json.load(vuln_file)

report = open (" Security_report .txt", "w+")

Chapter A. Workflows code 53

report . write (’’’

==============================

= Security Report =

==============================

’’’)

vuln_report = ""

vuln_count = 0

for project in vuln_data :

vulns = len(project [" vulnerabilities "])

vuln_count += vulns

if vulns > 0:

vuln_report += "\ tProject : \t" + project [" projectName "] + "\n"

vuln_report += "\ tFound " + str(vulns) + " vulnerabilities . \n"

for vuln in project [" vulnerabilities "]:

vuln_report += "\n"

vuln_report += "\t+\t" + vuln["name"] + " - " + vuln[" version "] + "\n"

vuln_report += "\t \ tFrom : " + str(vuln["from"]) + "\n"

vuln_report += "\t \t" + vuln[" title "] + "\n"

vuln_report += "\t \ tFixed in version (s): " + str(vuln[" fixedIn "]) + "\n"

vuln_report += "\n------------------------------\n"

report . write ("\ tCode vulnerabilities : " + str(vuln_count) + "\n")

report . write (’’’

- Vulnerabilities -

’’’)

report . write (vuln_report)

if vuln_count > 0:

print (" Vulnerable ")

A.3 monitor-scan.yml

name: Monitor security scan

on:

schedule :

Once every hour at xx :30

- cron: "30 */1 * * *"

jobs:

Monitor -security -scan:

name: Monitor security scan

runs -on: ubuntu - latest

steps :

- name: Checkout repository

uses: actions / checkout@v2

Chapter A. Workflows code 54

- name: setup Golang

uses: actions /setup - go@v2

with:

go - version : " ^1.13.1 "

- name: run port Scanner

run: |

sudo apt -get install nmap

nmap www. volue .com > nmap.txt

- name: SSL Quality Checker

run: |

git clone https :// github .com/ ssllabs /ssllabs -scan.git

go run ./ ssllabs -scan/ssllabs -scan -v3.go www. volue .com >> ssl.txt

- name: Setup Python

uses: actions /setup - python@v2

- name: Shorten report

id: results

run: |

python ./. github / workflows /monitor - report .py

- name: upload artifact

uses: actions /upload - artifact@v2

with:

name: Monitor security report

path: ./ Monitor_report .txt

A.4 monitor-report.py

import json

nmap_file = open ("nmap.txt", "r+")

nmap_line = nmap_file . readline ()

while not nmap_line . startswith ("PORT"):

nmap_line = nmap_file . readline ()

ssl_file = open ("ssl.txt")

ssl_data = json.load(ssl_file)

report = open (" Monitor_report .txt", "w+")

report . write (’’’

==============================

= Security Report =

==============================

’’’)

nmap_report = ""

nmap_count = 0

while not nmap_line . startswith ("\n"):

Chapter A. Workflows code 55

nmap_report += nmap_line

nmap_line = nmap_file . readline ()

nmap_count += 1

report . write ("\ tOpen ports : " + str(nmap_count -1) + "\n")

ssl_report = ""

ssl_count = 0

for ssl_cert in ssl_data [0][" certs "]:

ssl_count += 1

report . write ("\tSSL Grade : " + str(ssl_data [0][" endpoints "][0][" grade "]) + "\n")

report . write ("\tSSL Certificate (s): " + str(ssl_count) + "\n")

report . write (’’’

- Open ports -

’’’)

report . write (nmap_report)

report . write (’’’

- SSL Certificates -

’’’)

Bibliography

[1] Rakesh Kumar and Rinkaj Goyal. Modeling continuous security: A conceptual
model for automated DevSecOps using open-source software over cloud (adoc).
Computers & Security, 97:101967, 2020.

[2] Håvard Myrbakken and Ricardo Colomo-Palacios. DevSecOps: a multivocal liter-
ature review. In International Conference on Software Process Improvement and
Capability Determination, pages 17–29. Springer, 2017.

[3] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
A survey of DevOps concepts and challenges. ACM Computing Surveys, 52(6),
November 2019. ISSN 0360-0300. doi: 10.1145/3359981. URL https://doi.org/

10.1145/3359981.

[4] Eric Newcomer. Uber paid hackers to delete stolen data on 57 million peo-
ple, 2017. URL https://www.bloomberg.com/news/articles/2017-11-21/uber-

concealed-cyberattack-that-exposed-57-million-people-s-data.

[5] Sean Peisert, Bruce Schneier, Hamed Okhravi, Fabio Massacci, Terry Benzel, Carl
Landwehr, Mohammad Mannan, Jelena Mirkovic, Atul Prakash, and James Bret
Michael. Perspectives on the SolarWinds incident. IEEE Security Privacy, 19(2):
7–13, 2021. doi: 10.1109/MSEC.2021.3051235.

[6] Runfeng Mao, He Zhang, Qiming Dai, Huang Huang, Guoping Rong, Haifeng Shen,
Lianping Chen, and Kaixiang Lu. Preliminary findings about DevSecOps from Grey
Literature. In 2020 IEEE 20th International Conference on Software Quality, Relia-
bility and Security (QRS), pages 450–457, 2020. doi: 10.1109/QRS51102.2020.00064.

[7] S Balaji and M Sundararajan Murugaiyan. Waterfall vs. V-Model vs. Agile: A
comparative study on SDLC. International Journal of Information Technology and
Business Management, 2(1):26–30, 2012.

[8] Max Rehkopf. Manifesto for agile software development, 2001. URL https://

agilemanifesto.org/.

57

https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://agilemanifesto.org/
https://agilemanifesto.org/

Bibliography 58

[9] Kuda Nageswara Rao, G Kavita Naidu, and Praneeth Chakka. A study of the
Agile software development methods, applicability and implications in industry.
International Journal of Software Engineering and its applications, 5(2):35–45, 2011.

[10] Chun-Che Huang and Andrew Kusiak. Overview of Kanban systems. International
Journal of Computer Integrated Manufacturing, 9(3):169–189, 1996. doi: 10.1080/
095119296131643.

[11] Max Rehkopf. Kanban vs. Scrum: which Agile are you?, 2020. URL https:

//www.atlassian.com/agile/kanban/kanban-vs-scrum.

[12] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What is
DevOps? a systematic mapping study on definitions and practices. In Proceedings
of the Scientific Workshop Proceedings of XP2016, pages 1–11, 2016.

[13] Vijeth Hegde and Abhijeet Singh. Team collaboration in DevOps: Accenture, Jul
2020. URL https://www.accenture.com/us-en/blogs/software-engineering-

blog/hegde-singh-team-collaboration-in-devops.

[14] Manish Virmani. Understanding DevOps & bridging the gap from continuous
integration to continuous delivery. Fifth International Conference on the Innovative
Computing Technology (INTECH 2015), pages 78–82, 2015.

[15] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. DevOps.
IEEE Softw., 33(3):94–100, May 2016. ISSN 0740-7459. doi: 10.1109/MS.2016.68.
URL https://doi.org/10.1109/MS.2016.68.

[16] Theo Schlossnagle. Monitoring in a DevOps world. Commun. ACM, 61(3):58–61,
February 2018. ISSN 0001-0782. doi: 10.1145/3168505. URL https://doi.org/

10.1145/3168505.

[17] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32, 03 2015. doi: 10.1109/MS.2015.27.

[18] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration,
delivery and deployment: A systematic review on approaches, tools, challenges and
practices. IEEE Access, 5:3909–3943, 2017. doi: 10.1109/ACCESS.2017.2685629.

[19] Harish Goteti. API Driven development , bridging the gap between providers and
consumers. 2015.

[20] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. Continuous deployment at Facebook and OANDA. In 2016
IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pages 21–30, 2016.

https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.accenture.com/us-en/blogs/software-engineering-blog/hegde-singh-team-collaboration-in-devops
https://www.accenture.com/us-en/blogs/software-engineering-blog/hegde-singh-team-collaboration-in-devops
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1145/3168505
https://doi.org/10.1145/3168505

Bibliography 59

[21] Hala Assal and Sonia Chiasson. Security in the software development lifecycle. In
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), pages 281–
296, Baltimore, MD, August 2018. USENIX Association. ISBN 978-1-939133-10-6.
URL https://www.usenix.org/conference/soups2018/presentation/assal.

[22] Asoke Talukder, Vineet Maurya, Babu Santhosh, Ebenezer Jangam, Sekhar Muni,
Jevitha Kp, Saurabh Samanta, and Alwyn Pais. Security-aware software development
life cycle (SaSDLC) - processes and tools. pages 1 – 5, 05 2009. doi: 10.1109/
WOCN.2009.5010550.

[23] Roshan Rajapakse, Mansooreh Zahedi, Muhammad Ali Babar, and Haifeng Shen.
Challenges and solutions when adopting DevSecOps: A systematic review. 03 2021.

[24] Alfred Chung. How DevOps can use quality gates for security checks, 2018. URL
https://blog.rapid7.com/2018/05/30/how-devops-can-use-quality-gates-

for-security-checks-2/.

[25] Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen, and Fatih Turkmen.
Continuous security testing: A case study on integrating dynamic security test-
ing tools in CI/CD pipelines. In 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC), pages 145–154, 2020. doi:
10.1109/EDOC49727.2020.00026.

[26] S.A.I.B.S. Arachchi and Indika Perera. Continuous Integration and Continuous
Delivery pipeline automation for Agile software project management. In 2018
Moratuwa Engineering Research Conference (MERCon), pages 156–161, 2018. doi:
10.1109/MERCon.2018.8421965.

[27] Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. Discovering software
vulnerabilities using data-flow analysis and machine learning. In Proceedings of
the 13th International Conference on Availability, Reliability and Security, ARES
2018, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450364485. doi: 10.1145/3230833.3230856. URL https://doi.org/10.1145/

3230833.3230856.

[28] Aditya Kurniawan, Bahtiar Saleh Abbas, Agung Trisetyarso, and Sani Muhammad
Isa. Static taint analysis traversal with object oriented component for web file
injection vulnerability pattern detection. Procedia Computer Science, 135:596–
605, Jan 2018. ISSN 1877-0509. URL https://www.sciencedirect.com/science/

article/pii/S1877050918315230.

https://www.usenix.org/conference/soups2018/presentation/assal
https://blog.rapid7.com/2018/05/30/how-devops-can-use-quality-gates-for-security-checks-2/
https://blog.rapid7.com/2018/05/30/how-devops-can-use-quality-gates-for-security-checks-2/
https://doi.org/10.1145/3230833.3230856
https://doi.org/10.1145/3230833.3230856
https://www.sciencedirect.com/science/article/pii/S1877050918315230
https://www.sciencedirect.com/science/article/pii/S1877050918315230

Bibliography 60

[29] Ferda Özdemir Sönmez and Banu Günel Kiliç. Holistic web application security
visualization for multi-project and multi-phase dynamic application security test
results. IEEE Access, 9:25858–25884, 2021. doi: 10.1109/ACCESS.2021.3057044.

[30] Simon Bennetts. Owasp zed attack proxy. AppSec USA, 2013.

[31] Recommendations for the European Commission on a European Strategic Framework
and potential future legislative acts for the energy sector. Technical report, Energy
Expert Cyber Security Platform (EECSP), 2017.

[32] Collin Eaton, James Rundle, and David Uberti. U.S. pipeline shutdown exposes
cyber threat to energy sector, 2021. URL https://www.wsj.com/articles/u-s-

pipeline-shutdown-exposes-cyber-threat-to-energy-sector-11620574464.

[33] Vigleik Takle. Volue after the cyberattack: How we passed the stress test, 2021.
URL https://www.volue.com/news/volue-after-the-cyberattack.

[34] Bill Briggs. Hackers hit Norsk Hydro with ransomware. the company responded
with transparency, 2019. URL https://news.microsoft.com/transform/hackers-

hit-norsk-hydro-ransomware-company-responded-transparency/.

[35] Mario Dudjak and Goran Martinović. An API-first methodology for designing a
microservice-based backend as a service platform. Information Technology And
Control, 49(2):206–223, 2020. doi: 10.5755/j01.itc.49.2.23757.

[36] Vijeth Hegde and Abhijeet Singh. Comparison of most popular Continuous
Integration tools: Jenkins, TeamCity, Bamboo, Travis CI and more, 2019.
URL https://www.altexsoft.com/blog/engineering/comparison-of-most-

popular-continuous-integration-tools-jenkins-teamcity-bamboo-travis-

ci-and-more/.

[37] Deba Prasead Mozumder, Md.Julkar Nayeen Mahi, and Md Whaiduzzaman. Cloud
computing security breaches and threats analysis. International Journal of Scientific
and Engineering Research, 8:1287 – 1297, 07 2017.

[38] Matti Mantere, Ilkka Uusitalo, and Juha Roning. Comparison of Static Code Analysis
tools. In 2009 Third International Conference on Emerging Security Information,
Systems and Technologies, pages 15–22, 2009. doi: 10.1109/SECURWARE.2009.10.

[39] Arvinder Kaur and Ruchikaa Nayyar. A comparative study of static code anal-
ysis tools for vulnerability detection in C/C++ and JAVA source code. Pro-
cedia Computer Science, 171:2023–2029, 2020. ISSN 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2020.04.217. URL https://www.sciencedirect.com/

https://www.wsj.com/articles/u-s-pipeline-shutdown-exposes-cyber-threat-to-energy-sector-11620574464
https://www.wsj.com/articles/u-s-pipeline-shutdown-exposes-cyber-threat-to-energy-sector-11620574464
https://www.volue.com/news/volue-after-the-cyberattack
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://www.altexsoft.com/blog/engineering/comparison-of-most-popular-continuous-integration-tools-jenkins-teamcity-bamboo-travis-ci-and-more/
https://www.altexsoft.com/blog/engineering/comparison-of-most-popular-continuous-integration-tools-jenkins-teamcity-bamboo-travis-ci-and-more/
https://www.altexsoft.com/blog/engineering/comparison-of-most-popular-continuous-integration-tools-jenkins-teamcity-bamboo-travis-ci-and-more/
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.sciencedirect.com/science/article/pii/S1877050920312023

Bibliography 61

science/article/pii/S1877050920312023. Third International Conference on
Computing and Network Communications (CoCoNet’19).

[40] Chris Burns. What is code coverage and why it should not lead develop-
ment. URL https://capgemini.github.io/testing/What-Is-Code-Coverage-

and-Why-It-Should-Not-Lead-Development/.

[41] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna.
On the evaluation of code smells and detection tools. Journal of Software Engineering
Research and Development, 5(1):7, Oct 2017. ISSN 2195-1721. doi: 10.1186/s40411-
017-0041-1. URL https://doi.org/10.1186/s40411-017-0041-1.

[42] Jens Knodel and Matthias Naab. How to Perform the Code Quality Check (CQC)?,
pages 95–104. Springer International Publishing, Cham, 2016. ISBN 978-3-319-
34177-4. doi: 10.1007/978-3-319-34177-4_9. URL https://doi.org/10.1007/978-

3-319-34177-4_9.

[43] Black Duck Software. Survey on open source software usage. URL
https://www.blackducksoftware.com/about/news-events/releases/seventy-

eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-

policies-to-manage-legal-operational-and-security-risk.

[44] Managing security risks inherent in the use of third-party components. Technical
report, SafeCode, 2017. URL https://safecode.org/wp-content/uploads/2017/

05/SAFECode_TPC_Whitepaper.pdf.

[45] Snyk. Detailed information and remediation guidance for known vulnerabilities.,
2021. URL https://snyk.io/vuln/.

[46] Craig Badrick. Defending against port scan attacks, 2019. URL
https://www.turn-keytechnologies.com/blog/article/defending-against-

port-scan-attacks/.

[47] Cloudflare. Why use TLS 1.3? | SSL and TLS vulnerabilities, 2021. URL https:

//www.cloudflare.com/en-gb/learning/ssl/why-use-tls-1.3/.

[48] Aaron Russell. SSL/TLS best practices for 2021, 2021. URL https://www.ssl.com/

guide/ssl-best-practices/.

[49] Github. Events that trigger workflows, 2021. URL https://docs.github.com/en/

actions/reference/events-that-trigger-workflows.

[50] Hasan Yasar and Kiriakos Kontostathis. Where to integrate security practices on
DevOps platform. International Journal of Secure Software Engineering (IJSSE), 7
(4):39–50, 2016.

https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://capgemini.github.io/testing/What-Is-Code-Coverage-and-Why-It-Should-Not-Lead-Development/
https://capgemini.github.io/testing/What-Is-Code-Coverage-and-Why-It-Should-Not-Lead-Development/
https://doi.org/10.1186/s40411-017-0041-1
https://doi.org/10.1007/978-3-319-34177-4_9
https://doi.org/10.1007/978-3-319-34177-4_9
https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-policies-to-manage-legal-operational-and-security-risk
https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-policies-to-manage-legal-operational-and-security-risk
https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-policies-to-manage-legal-operational-and-security-risk
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://snyk.io/vuln/
https://www.turn-keytechnologies.com/blog/article/defending-against-port-scan-attacks/
https://www.turn-keytechnologies.com/blog/article/defending-against-port-scan-attacks/
https://www.cloudflare.com/en-gb/learning/ssl/why-use-tls-1.3/
https://www.cloudflare.com/en-gb/learning/ssl/why-use-tls-1.3/
https://www.ssl.com/guide/ssl-best-practices/
https://www.ssl.com/guide/ssl-best-practices/
https://docs.github.com/en/actions/reference/events-that-trigger-workflows
https://docs.github.com/en/actions/reference/events-that-trigger-workflows

Bibliography 62

[51] James Kupsch, Barton Miller, Vamshi Basupalli, and Josef Burger. From con-
tinuous integration to continuous assurance. pages 1–8, 09 2017. doi: 10.1109/
STC.2017.8234450.

[52] Nora Tomas, Jingyue Li, and Huang Huang. An empirical study on culture, automa-
tion, measurement, and sharing of DevSecOps. In 2019 International Conference on
Cyber Security and Protection of Digital Services (Cyber Security), pages 1–8. IEEE,
2019.

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Usecases/Examples
	1.4 Challenges
	1.5 Contributions
	1.6 Outline

	2 Background
	2.1 Software Development Life Cycle
	2.2 Agile Software Development
	2.3 DevOps Methodology
	2.3.1 DevOps Focus Areas
	2.3.2 CI/CD Pipeline

	2.4 Security In Software Development
	2.4.1 DevSecOps

	3 Security in CI/CD pipelines
	3.1 Security Requirements Of The Organization
	3.1.1 Where To Start

	3.2 CI/CD Pipeline Definition
	3.3 Inserting Security In The Pipeline
	3.3.1 Integrated Development Environment (IDE) Plugins And Linters
	3.3.2 Static Code Analysis
	3.3.3 Dynamic Application Security Testing

	4 Solution Approach
	4.1 About Volue
	4.1.1 The Existing Pipelines
	4.1.2 Company Requirements
	4.1.3 CI Tools
	4.1.4 Security Tools
	4.1.5 Code Scanning & Dependency Checking
	4.1.6 Open-port Scanning
	4.1.7 Secure Socket Layer And Transport Layer Security (SSL/TLS) Evaluation
	4.1.8 Integration And Automation

	5 Pipeline Evaluation
	5.1 Experimental Systems Setup
	5.1.1 Test Repositories
	5.1.2 Volue Repository

	5.2 Implementation
	5.3 Experimental Results
	5.3.1 Python Repository
	5.3.2 Javascript Repository
	5.3.3 C# Repository
	5.3.4 Volue Repository

	6 Discussion
	6.1 Expectation Vs Results
	6.2 The Solution For The Industry Challenges
	6.2.1 Tool Selection Challenge
	6.2.2 Static Analysis Tools Limitations
	6.2.3 Access Management In DevOps Domain

	6.3 Satisfaction Of Volue's Requirements
	6.4 Limitations
	6.5 Challenges

	7 Future Directions and Conclusion
	7.1 Future Directions
	7.1.1 Tool Diversification
	7.1.2 Increase Compatibility
	7.1.3 DAST Further Implementation
	7.1.4 Enhance Automation

	7.2 Conclusion

	List of Figures
	A Workflows code
	A.1 security-scan.yml
	A.2 security-report.py
	A.3 monitor-scan.yml
	A.4 monitor-report.py

	Bibliography

