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Abstract

The detection of a lesion in the prostate can be a challenging task and is crucial for
the early diagnosis of Prostate Cancer (PCa). Magnetic Resonance Imaging (MRI)
examination provides a comfortable and precise solution to detect prostate lesions. The
ability of humans to detect lesions from the prostate MRI by learning from the appearance
of healthy prostate structures might help deep learning (DL) architectures achieve the
human level’s detection ability.

To this end, this thesis proposes an effective method to detect lesions in the patients by
learning the distribution of healthy prostate images using auto-encoder-based methods in
an unsupervised framework. The thesis methodology involves two main steps: training
of DL models, and binary classification of the images as well as detection of lesions in
unhealthy images. This work makes use of two DL architectures for the task: Variational
Autoencoder (VAE) and Autoencoders (AE), which are then compared in terms of
lesion detection and classification ability. The binary classification is based on pixel-wise
reconstruction error. The thesis uses the T2w and Apparent Diffusion Coefficient (ADC)
MRIs of the prostate, from PROSTATEx Challenge data. The thesis explores the effect
of data imbalance in the final results by using two different configurations of test data,
balanced and imbalanced data, for both modalities.

The final results indicate that VAE performs significantly better than AE in terms of
ROC-AUC, and both models perform notably better for ADC images than T2w images.
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Chapter 1

Introduction

1.1 Motivation

Globally, Prostate Cancer (PCa) is the second most commonly occurring cancer. It is
the fifth-leading cause of men’s deaths as a result of complications caused by cancer.
Approximately 1.2 million people were diagnosed, and 359000 died because of prostate
cancer in 2018 [1]. The number is estimated to increase to approx. 2.3 million new
cases by 2040, due to population growth and other factors like obesity, among others [2].
The diagnosis of PCa relies on several tests and initial clinical examination by a doctor,
which sometimes may be expensive and time-consuming due to the heavy patient load
[3]. There is no single definitive test for prostate cancer; however, the general first test is
clinical and performed by an assigned General Practitioner (GP). These examinations
from GP might be misleading and un-decisive due to a lack of expertise and proper tools
in the GP’s office. Mostly Prostate-Specific Antigen (PSA) test is used to discriminate
between high and low-risk patients. However, PSA testing could lead to unnecessary
screening tests and over-treatment [3].
Early detection of prostate lesions can play a critical role in the patient’s recovery
chances. There are many complications present in the current examination method.
Several patients complain of getting an infection after a guided biopsy procedure at the
hospital. Magnetic Resonance Imaging (MRI) has proven to be a successful tool to detect
and diagnose prostate cancer. Increased use of MRI has made the examination process
more comfortable and somehow more efficient, leading to the better examination of the
prostate gland and detecting malignant lesions in the prostate glands [4]. The analysis
of MRI is a time-consuming task and reader-dependent and leads to variability in the
outcome of the task at hand depending on the person in charge of it.
Deep learning (DL) architectures have proven helpful while carrying out the tasks on

1



Habib Ullah Chapter 1 Introduction

various recognition tasks such as image classification and object detection [5]. The
training of these models requires a large number of medical data [6]. The human’s ability
to detect abnormalities in the images after seeing a handful of healthy images raises a
thought that what if it is possible to formulate a DL model that can detect lesions in
unhealthy images by training only on samples of healthy images. The inherent ability of
Variational Autoencoders (VAE) to classify outliers from average data by learning the
distribution of healthy data provides a solution to the problem and thus motivates us to
achieve this human level of classification and detection ability. The application of deep
learning models could undoubtedly improve the existing MRI examination by sparing
time for experts while maintaining the quality of diagnosis and thus, allowing GP to
consider more patients in the risk group, ultimately referring for further examination
and possible treatment.

1.2 Problem Definition

The thesis’s primary goal is to use the DL and CNN for prostate cancer MRI lesions
detection in an unsupervised framework on the T2-weighted (T2w) and ADC MRIs of
the prostate. To the best of my knowledge, this thesis introduces a new approach to
classify and detect lesions in prostate MR images, using Variational Autoencoders (VAE)
and Autoencoders (AE) in an unsupervised manner.

1.2.1 Objectives

• To explore the use of DL and, in particular, CNN in prostate cancer MRI lesion
detection in an unsupervised framework.

• To explore the dataset of T2w & ADC MRIs and concepts of different types of
autoencoder structures.

• To compare the results obtained by VAE and AE on two modalities, T2w and
ADC.

• To propose and analyze the method of classification for MRI images into two classes,
healthy images and unhealthy images.

• To detect the lesions in MRIs of the prostate and analyze the performance of
proposed models.
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1.2.2 Proposed Method Overview

Firstly, medical imaging data consisting of MRIs of the prostate are loaded. The data
is pre-processed and split into healthy and unhealthy data. Then, the model is trained
on the unhealthy data, and predictions are made on the test data, which contains both
healthy and unhealthy MRIs that are unseen by the model before, using trained models.
The classification is based on pixel-wise reconstruction error using mean-squared error
(MSE) or Structural Similarity Index Measurement (SSIM) between reconstructed and
original images. The basic idea of classification and detection is that the trained model,
which have only seen the healthy images, will not be able to reconstruct lesions present
in unhealthy images, thus, increasing the pixel-wise reconstruction error between the
original and reconstructed images. The results are evaluated and interpreted for better
understanding. Figure 1.1 shows an overview of the proposed method.

Load Image Data Image 
Pre-processing

Train Proposed
 Model (VAE)

Testing and
Classification

Method 
Evaluate Results

Figure 1.1: A simple overview of the proposed methodology.

1.3 Related Work

The problem of classification and detection of lesions in the tissues is getting considerable
attention from the research community. Earlier works such as [7],[8], [9] have suggested
successful methods for anomaly detection and prostate image segmentation on brain and
prostate MRI images using different methods.
This thesis uses DL models to detect a lesion in T2w and ADC MRI images of the
prostate. The primary DL model used in this thesis is Variational Autoencoder (VAE),
firstly introduced by Diederik P. Kingma and Max Welling in the paper [10]. The
framework has a wide array of applications, from generative modeling, semi-supervised
learning to representation learning.
The proposed method used in this thesis is inspired by the work of Xiaoran Chan et al.
in the paper [11]. They proposed a simple approach of classifying and detecting lesions in
brain MRIs by learning the distribution of healthy images in an unsupervised framework
using VAE and AEE with proposed constraints models. The paper addressed the problem
of lack of consistency in latent space representation and proposed the addition of a certain
constraint during the training process to encourage latent space consistency. The training
was performed on the HCP dataset, and the BRATs dataset is used to test the model.
Their proposed method was able to give the ROC-AUC of 0.92 during the classification of
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two classes, and the model was successfully able to detect the lesion using the proposed
method.
Wolter Bulten et al. in their paper [12] proposed an unsupervised method for the classifi-
cation of prostate tissues by using self-clustering convolutional adversarial autoencoders.
The clustering methods are incorporated during the training of the model and being
trained on rains on hematoxylin and eosin (HE) input patches. Another scientific paper
[13], presented by Rong Yao et al. somewhat proposed a similar concept to be used in this
thesis; however, their approach was a comparative one, and comparison of experiments are
conducted on KDD CUP 99 dataset and MNIST dataset while using VAE, autoencoders
(AE) and Kernel Principle Component Analysis (KPCA) as comparison models. Though
the quality of the dataset used in this paper doesn’t provide a very good basis for a
future study on other complication datasets like PROSTATEx Challenge data comprising
prostate MRI images, yet, the consistency of the proposed models may be employed for
further experimentation.
Lu Wang et al. in their paper [14] proposed a very sophisticated method of detecting
anomalies in the image data by estimating the latent space of autoencoders using a
discrete probability model. The improper dimensionality often leads to the reconstruction
of unwanted and unhealthy parts. The method first adopts VQ-VAE as a reconstruction
model for a discrete latent space of normal samples, followed by using the auto-regressive
model Pixel Sail used to outputs the probability model of discrete latent space. The
model proposed that the ROC-AUC can be enhanced by over 15% for autoencoders,
offering competition to state-of-the-art methods.

1.4 Outline

This thesis begins with a brief introduction and explanation of the motivation behind
the concept. The remaining part of the thesis is divided into the following chapters.

• The second chapter, named Medical Background, illustrates the essential medical
theory used in the thesis.

• The third chapter, named Technical Background, gives us an insight into the
theoretical knowledge of the concepts and techniques used in the thesis.

• The fourth chapter, named Dataset and Image Pre-Processing, describes the dataset
and methods for pre-processing of data.

• The fifth chapter is Solution Approach, and it describes the proposed method to
detect a lesion in MRI of the prostate.
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• Chapter six, named Experimental Evaluation and Results, describes the experimen-
tal setup used in the thesis. The chapter also emphasis on the model performance
after training on a non-healthy dataset and predictions made by it.

• Chapter seven presents the discussion of achieved results and limitations of the
thesis.

• Chapter eight is the last one and presents the conclusions of the work presented in
this thesis and recommendations for future work that can be done in this field.





Chapter 2

Medical Background

2.1 Prostate cancer

Globally, Prostate cancer is the second most commonly occurring cancer. It is the fifth-
leading cause of men’s deaths as a result of complications caused by cancer. Approximately
1.2 million people were diagnosed, and 359000 died because of prostate cancer in 2018
[1]. The number is estimated to increase to approx. 2.3 million new cases by 2040, due
to population growth and other factors like obesity, etc.[2].

Figure 2.1: Figure shows a stage T4 prostate cancer.
The figure is reprinted in unaltered form from Wikimedia commons, File: Diagram
showing stage T4 prostate cancer CRUK 454.svg, licensed under CC BY-SA 4 [15]. 0

Regeneration in tissues in the human body happens because of cell division. New cells take
the place of old cells as they die. The growth rates, however, can change in some cases and

7
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cause overproduction, thus leading to cell accumulation, which ends up in the formation
of a lesion. These lesions may be benign or malignant. This uncontrolled division of cells
often leads to the creation of cancer. Cancer cells can grow into neighboring tissue and
expands their roots to different parts of the human body [16]. The prostate is located

underneath the bladder in a normal male human. The primary function of the prostate
is to produce fluid, which, combining with sperm cells from testicles and fluids from
other glands, makes up semen. The prostate gland grows with the age of a human being,
often leading to larger prostate problems in men. The exceptional growth of the prostate
is not always cancerous; however, it can cause many complications. The most common
symptoms of prostate cancer involve frequent urination, forced urination, dripping after
urination, and blood in the urine [16].

2.2 Prostate Cancer Examination Methods

Globally, numerous methods are being used to examine the patient and diagnose prostate
cancer. The detailed description of typical routines that are being used during the
diagnosis process of prostate cancer is explained as follows.

2.2.1 Prostate-Specific Antigen Test

The level of Prostate-Specific Antigen (PSA) is measured in the patient’s blood by taking
a blood sample of a patient. The amount of PSA usually increases in the blood when
a patient has prostate cancer; however, this test has some limitations as PSA can also
increase during the benign growth of the lesion. The test can be useful if GP is able to
compare the results of tests from the blood sample taken before and after the patient
got cancer [16].

2.2.2 Digital Rectum Exam

During Digital Rectum Exam (DRE), GP physically feels the rear part of the prostate by
inserting a sanitized and lubricated gloved finger in the patient’s rectum. GP determines
the size and shape of the prostate based on his medical knowledge. DRE is usually
performed by GP before referring the patient to an expert. The demonstration of DRE
is explained through figure 2.2 [17].
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Figure 2.2: Digital rectal examination.
The figure is reprinted in unaltered form from Wikimedia commons, File: 482pxDigi-

tal_rectal_exam.jpg [15] [18].

2.2.3 Biopsy

If GP suspects cancer, biopsies are performed as the next examination step. Transrectal
ultrasound scan (TRUS) is the most applied method for performing the biopsy. However,
biopsy often leads to an infection, and the rate of infection varies between 5% and 7%,
despite intensive medical care. A needle is inserted into the prostate eight to ten times
to collect tissue samples from several parts of the prostate. The process of TRUS is
illustrated in Figure 2.3 . Using the Gleason score grading system, the patient’s prognosis
is obtained from a biopsy. These scores are evaluated by a pathologist, thus, declaring
the stage of prostate cancer. A higher Gleason score indicates higher stage cancer with a
poor to a worse prognosis [19].

Figure 2.3: Transrectal ultrasound scan examination.
The figure is reprinted in unaltered form from Cancer Research UK’s webpage [20] [18].
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2.2.4 Magnetic Resonance Imaging

MRI scans are used to find the location of the lesion, and they are usually performed
before a biopsy. MRI can also help in determining the nature of the lesion as to whether
the lesion is benign or malignant, suggested by some articles [21]. The examination and
diagnosis of prostate cancer can be enhanced by a better understanding between medical
experts and MRI specialists.

Radiologists interpret MRIs on the basis of Prostate Imaging Reporting and Data Systems
(PI-RADS) scoring [22]. PI-RADS was developed to promote the global standardization
of prostate multi-parametric magnetic resonance imaging (mp-MRI) examination. This
standardization was adopted to improve the detection of clinically significant cancer and
distinguish benign lesions to avoid unnecessary biopsies [22].



Chapter 3

Technical Background

This chapter will give general insight into the technical terminologies and concepts used
in this thesis while providing the mathematical interpretation behind these concepts.

3.1 Magnetic Resonance Imaging

This chapter starts by elucidating the concepts and terminologies related to Magnetic
Resonance (MR) technology and process related to MRI.

3.1.1 Basic Terminologies

In MR-examination, digital images of internal organs are generated by exposing a patient
to a strong magnetic field. MRIs are obtained using a pulse sequence that involves
adjustable timing values, termed Repetition Time (TR) and Echo Time (TE). TR
describes the time between similar events on a recurrent series of pulses and echoes while
time separating the center location of RF pulse and the corresponding echo is summarized
by TR [23] MRI uses the natural properties of water lipids to capture images. The most

fundamental parameters in MRI are characteristics times that are named spin-lattice
relaxation time (T1) and spin-spin relaxation time (T2). Longer TR and TE generate
T2-weighted images (T2w), while shorter TR and TE spans produce T1-weighted images
(T1w). Tissue images with longer T2 specific times are usually brighter and take more
time to produce than T1 due to strong signal intensity in T2. The brightest region of T2w
images represents fluids, and the grey regions correspond to water- and fat-based tissues.
The pathological process can change the natural balance to water content and tissue
vascularity. Therefore, the presence of lesion can cause changes in tissues, thus altering

11
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its T1 or T2 natural relaxation rates, and can be interpreted as observable changes in
conventional T1w or T2w images. Abnormal brightness on a T2 image indicates a disease
process such as trauma, infection, or cancer [23]. Image contrast can also be created

using apparent diffusivity. Diffusion-weighted magnetic resonance imaging (DW-MRI)
uses measurement diffusion properties of water to construct patterns in MRI images.
A combination of images having different amounts of diffusion weighting provides an
apparent diffusion coefficient (ADC) map or ADC image. In ADC imaging, protons
exhibit free mobility in the lesion region than the surrounding and are often interpreted
as signal loss. Therefore, the corresponding area of higher diffusivity is represented as a
brighter region, indicating a high ADC value in the obtained ADC map, while infarcted
areas appear dark on the ADC map with low ADC values [24]. Figure 3.1 shows the
difference between randomly taken T2w and ADC MRI of prostate.

Figure 3.1: Figure shows the random MRI slices of prostate for two modalities, T2w
image (left) and ADC image(right)

3.2 Neural Network

The Neural Network (NN) is named after the neural setup of the human brain because NN
operates as the system of neurons. A NN is a structure of the different processing elements
(often referred to as nodes or neurons) connected with unidirectional signal channels,
termed connections. The value is calculated by each neuron, shared via connection to
the next layer of neurons. The processing of neurons only depends on the current input
values and values that are being stored in the local memory of a neuron [25]

Figure 3.2 shows the concept of a simple feed-forward network with two inputs x = [x1,
x2], one hidden layer with four neurons, and two outputs (y). The input value x feeds the



Habib Ullah 13

initial information that moves forward to each neuron in the hidden layers, and output
(y) is predicted. The mentioned figure 3.2 also shows a neuron with the corresponding
mathematical functions. The result from the activation function (g(z)) is equal to the
neuron output, where y is equal to the final hidden layer output, as shown in equation
3.1.

ŷ = g (z) = g

(∑
i

wixi + b

)
(3.1)

Equation 3.1 is the calculation of the last hidden layer, where g is the activation function
and z represent neuron input and local parameters.The input variable x in equation 3.1
resembles the previous layer’s output value or the network input values if the calculation
applies to the first hidden layer.

Figure 3.2: Illustration of a neural network on the left side with two input values (x),one
hidden layer including 4 neurons, and two output values. Neurons, input, and output
values are combined with connections. The right side of the figure illustrates a neuron

and the including mathematical functions [25] [18].

3.3 Convolutional Neural Networks (CNN)

Convolution is the mere application of a filter to an input that gives out the activation.
Feature map can be obtained by repeated application of the same filter to the document
results in the map of activations, suggesting the locations and strength of a detected
feature in input, for instance, an image. The convolutions are applied to extract
the features that could be missed in simply flattening an image into its pixel values.
Convolutional neural networks are like neural networks expect they have at least one
convolutional layer in them. In CNN, only the last layer is fully connected, whereas, in
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ANN, all the neurons are interconnected with each other. Thus, CNN not only reduces
the number of dependent units in the network, but also reduces the chance of over-fitting
by learning only fewer parameters. They also offer context information to the small
neighbourhood, enabling the network to achieve better predictions in image data. Deep
CNN have shown promising value in the task of pattern and visual recognition in recent
years [26][27].

"Convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers."
-—Page 326, Deep learning, 2016 [15]

CNN architecture may contain one or more than one model that takes an input image
and outputs the prediction by passing information through one or more convolutional or
other image processing layers. This section will briefly explain some of the terms related
to CNN.

3.3.1 Convolutional Layer

A standard convolutional layer accepts an input image of size n*m, where n is the number
of pixels in width and m is the height. The operation of the convolutional layer depends
upon two important parameters, the number of paddings (p) and strides (s). The padding
adds a boundary around the image where the default value of padding is zero. Padding
is usually added when kernel size and input size don’t add up. The number of n or m
to shift the kernel to move across the image is decided by the number of strides. A
kernel extract features, like edges and corners, from the receptive field and outputs a
feature map. The spatial dimensions of the output image from the convolutional layer
are usually less than the input but can be equal if the stride is equal to 1 [15].

Figure 3.3: Illustration of the process behind a convolution layer [15] [18].
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Figure 3.3 illustrates the standard process of the convolutional layer, where the input is
an image of n and m equal to 6 pixels.

3.3.2 Transposed Convolutional Layer

The transposed convolutional layer is used during the up sampling of an image. Figure 3.4
demonstrates the process of transposed convolution layer. The output of the transposed
convolutional layer is also controlled by strides and padding. The output from transposed
convolutional layer has greater spatial dimensions, unlike the convolutional layer. The
transposed convolution is not opposed to the convolution in terms of values, but it only
reverses the spatial dimensions of standard convolution [28].

Figure 3.4: Illustration of the process behind a transposed convolution layer [28] [18].

3.3.3 Dense Layer

A Dense Layer consists of neurons from a NN and is mostly added for classification
problems. A dense layer is part of the Keras library [29] and consists of two or more
nodes. A decision boundary classifies samples from a vector space into two classes. This
layer is quite beneficial for the fact that it can only draw one decision boundary. The
number of neurons (N) in a dense layer depends upon the number of classes in the output
[30].

Figure 3.5 illustrates three examples where two are possible to separate with one decision
boundary, and one is not. The illustration visualizes an AND gate, OR gate, and an
XOR gate. Since one node draws one decision boundary, two nodes are required to draw
the decision boundaries for an XOR gate. The number of neurons (N) in a dense layer is
equal to the number of classes in the output. For classification on values reaching from 0
to 9, N is equal to ten [18].
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Figure 3.5: Shows classification problems where two is possible to separate with one
decision boundary and one needs a dense layer as it is impossible to classify using one

decision boundary [15] [18].

3.4 Augmentation

Most of the DL methods are data-dependent and require a huge amount of data to make
them work efficiently. The availability of enough medical data is a huge problem due to
certain factors like patient privacy or sensitive information when it comes to the usage of
deep learning models in the medical field. Therefore, to solve this problem, a technique
called augmentation is mostly used to extend the dataset artificially by performing
certain actions on the dataset. The image augmentation doesn’t make new images in the
dataset but provides the new version of the same dataset. Different implementations are
accessible for use; some of the important image augmentation types are briefly explained
as follows [31].

• Image shift: Moves all the image pixels in one direction; mostly horizontal or
vertical shits are considered. The image dimensions remain the same after and
before shifting.

• Image Rotation: Rotates the image clockwise in the range of 0 and 1. In rotation,
pixels will most likely be rotated out of the image frame, leaving blank spaces in a
frame that must be filled in.

• Horizontal or Vertical Flip: Reverses all rows or columns pixels, respectively.

• Blur: Randomly blurring the whole image or a certain part of the image.
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3.5 Autoencoder

Autoencoders (AE) are basic learning circuits that try to convert inputs into outputs
with as little distortion as possible. They serve a vital role in machine learning, despite
their simple architecture. Autoencoders were first introduced by Hinton and the PDP
group in the 1980s [32]. Their aim was to solve the back-propagation problem without a
teacher by only relying on the input data as a teacher. Autoencoders provides one of
the fundamental principles for unsupervised learning by working together with Hebbian
learning rules [32]. In autoencoders, we efficiently compress the provided input and
encode the data so that it can be decoded back from the compressed representation or
code of data, often called as the bottleneck, to get the representation that is close to the
original input. Autoencoders have the in-built ability to compress the data efficiently by
extracting the important features and ignoring the noise in the data. Autoencoders can
only output the data that they have been trained on, making them data-specific and the
outputs of the autoencoders are mostly degraded in comparison to original inputs.

Figure 3.6: Illustration of basic principle of Autoencoder with encoder and decoder
[33].

Figure 3.6 shows the typical demonstration of Autoencoder, where the encoder is the
feedforward NN which compress the data into latent space representation, code or
bottleneck represent the reduced representation of input data and decoder is also a
feedforward NN like the encoder; however, it up samples and reconstructs the input back
to original dimensions from the compressed data representation in code.
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3.5.1 Convolutional Autoencoders

Convolutional Autoencoders (CAE) works as the simple AE; however, the encoding and
decoding layers are called convolution and deconvolution layers, respectively. The decon-
volution layers are sometimes also interpreted as up sampling or transpose convolution.
CAE learns by encoding the input into a group of simple signals and reconstructing the
input from those signals. Moreover, image geometry or generation of reflectance of the
image can also be modified in CAE [34].

3.6 Variational Autoencoders

Variational Autoencoders (VAEs) were introduced by Diederik P. Kingma and Max
Welling in the paper [10]. The framework of variational autoencoders (VAEs) in paper [10]
provides a principled method for learning deep latent-variable models and corresponding
inference models using stochastic gradient descent. VAEs can produce new images like
AE; however, instead of producing a single value for each latent variable independently,
the encoders in VAEs generate the probability distribution for each latent variable [33].
The probability distribution of the latent variable in VAEs are much closer to the training
data as compared to the simple AE. In VAEs, the mean and variance of variables in
latent space are calculated for each sample, and standard normal distribution is followed.
Thus, the points that are closed to each other are representing a similar data sample
(same classes). Due to the variational approach in latent representation learning, an
additional loss component, Kullbeck - Leibler (KL) divergence, and a specific estimator
called the Stochastic Gradient Variational Bayes (SGVB) is incorporated in VAEs.

Figure 3.7: Illustration of basic principle of Variational Autoencoder with encoder,
latent space representation and decoder [33].
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Figure 3.8: Shows the difference between Autoencoder (deterministic) and Variational
Autoencoder (probabilistic) [33].

Figure 3.7 and 3.8 shows the simple implementation of VAE and the difference between
AE and VAE approach respectively. In VAE, the encoder is the feedforward NN which
compress the data into latent space representation, code or bottleneck represent the
reduced representation of input data and decoder is also a feedforward NN like the
encoder; however, unlike AE, VAE learns from the probability distribution of latent
vectors in latent dimensions by using mean and standard deviation of data distributions.
The decoder reconstructs the input back to original dimensions from the compressed
data representation in code.

3.7 Loss Function

Loss function, often termed as error or cost function, is used to reduce a loss value for the
optimization of the model. Loss functions play a vital role in any statistical model. The
loss function is responsible for defining an objective against which the model is evaluated,
and the parameters learned by the model are selected by minimizing the loss function.

The AE only relies on the difference of reconstructions and original images and thus,
only considers individual loss like MSE or MAE loss for the loss function. On the other
hand, the variational interference in VAE forces it to include another loss component, KL
divergence loss to consider the probability distribution of variables in latent representation.
The reconstruction term corresponds to squared error, like in an ordinary AE. The KL
term regularizes the representation by encouraging z to be more stochastic. Both DL
models AE and VAE are evaluated by taking into consideration the reconstruction loss
during the training of DL models.
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3.7.1 Kullback–Leibler divergence loss

Kullback–Leibler (KL) divergence loss provides the measure of the difference between
two probability distributions. The KL-divergence loss is mathematically represented
by equation -. The inclusion of KL divergence in the loss function ensures the learned
distribution is very close to the original distribution of latent vectors, which is already
considered as a normal distribution [35]. The final objective loss is, therefore, considered
as a combination of reconstruction loss and KL-divergence loss.

[Q(z|X)||P (z|X)] = E[logQ(z|X)− logP (z|X)] (3.2)

In equation 3.2, Q(z|X) is the estimated distribution of data, P(z|X) is the actual
distribution of data into latent space, z represents latent variable, and X is the data to
be used.

3.7.2 Mean Squared Error

The Mean Squared Error (MSE or L2) calculates the squared difference between the
actual and expected values. It is based on the square of Euclidean distance; therefore,
it is always positive as error tends to approach zero eventually. The lower the value
of MSE, the higher the accuracy of a regression model [36]. Mathematically, MSE is
calculated in equation 3.3, where Yi are the observed values of a variable and Ŷ i are the
predicted values of a variable.

MSE = 1
n

n∑
i=1

(
Yi − Ŷi

)2
(3.3)

3.7.3 Structural Similarity Index Measure

Structural similarity index measure (SSIM) is a loss used to measure the similarity
between two images. It is usually interpreted as a quality measure of reconstructed image
compared to the original image; however, the original image is considered to have perfect
quality. In comparison to L2 loss, the SSIM index is a better image quality measure
as it is better suited to the human visual system. The SSIM varies with the different
distortion in an image; however, L2 or MSE always remains the same for the image, thus
making SSIM a superior candidate over other L2 [37].
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3.8 Software

The programming language used in this thesis is Python. Python is high level, multi-
purpose programming language. The object-oriented programming approach in Python
makes it easier to code clearly and logically within the range of small to large-scale
projects with easy code readability [38].

Python has a comprehensive library setup that ranges from scientific applications to
web-development services. Python also uses many external libraries in addition to built-in
libraries. This chapter will explain some of the main libraries used in this thesis.

3.8.1 Tensorflow

Tensorflow is an open-source library used for the implementation of machine learning.
This library has a wide range of applications; however, mostly used for the implementation
of deep NN algorithms, like training algorithms [39].

3.8.2 Keras

This thesis uses Keras, which is a DL learning application programming interface (API)
for humans, providing a Python interface for ANN. Keras provides an interface for the
Tensorflow to enhance the fast processing of DL models [29].

3.8.3 Numerical Python

The Numerical Python (NumPy) library is introduced into the Python programming
language to analyze and implement high-level scientific computing and data analysis of
numerical data and multi-dimensional arrays. This library is being used for many tasks
ranging from generating random integers or arrays to advanced mathematical functions.
NumPy is also employed to use by other libraries like Tensorflow to generate Tensor
objects and more [40].

3.8.4 OpenCV

OpenCV is an open-source library primarily used for computer vision, image processing,
and machine learning. The usage of this library in this thesis allows the performing
of several actions on the medical images, ranging from image pre-processing to image
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augmentation. When this library is coupled with other various libraries, such as NumPy,
Python can process OpenCV array structures [41].



Chapter 4

Dataset and Image Pre-Processing

4.1 Dataset

The dataset of prostate MRI used in this thesis is a part of PROSTATEx Challenge
data and was collected by performing a clinical examination, and MRI scans at the
Radboud University Medical Centre (Radboudumc), Netherlands, in the Prostate MR
Reference Center under the supervision of prof. Dr Barentsz. The dataset was collected
and curated for research in computer-aided prostate MR diagnosis under Dr Huisman,
Radboudumc [42].The two different Siemens 3T MR scanners, the MAGNETOM Trio
and Skyra, were used to collect the images. No endorectal coil was used in the acquiring
of the images. Figure 4.1 shows a randomly taken T2w MRI slice with a corresponding
mask from the PROSTATEx dataset.

Figure 4.1: A random T2-weighted MRI and the corresponding segmentation mask
from the PROSTATEx Challenge dataset.
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The PROSTATEx challenge aimed to focus on the quantitative methods for the medical
images analysis to classify the clinically significant prostate cancer, and it was held in
conjunction with the 2017 SPIE Medical Imaging Symposium. The relevant dataset used
in this thesis contains 201 subjects, split into training, testing, and validation data. The
details of the subjects and the corresponding slices are mentioned in table 4.1, and the
details of the stratification of data are explained in section 4.2.4 of this chapter. Every
case has a T2w and ADC MRI of one anonymous patient’s prostate and a corresponding
label. The images have all kinds of stored information in the metadata, like name, age,
slice thickness, etc. The mask of each MRI case provides information on the location,
size, and shape of the prostate lesion present in that case.

MRIs relate to a bundle of 2D images that adds up to show three-dimensional (3D)
images. (see chapter 3.1) Due to varying data protocols, changing parameters in data
makes it acceptable in medical clinics worldwide. Different datasets are available in The
Cancer Imaging Archive (TCIA), containing various medical prostate MRIs. These MRIs
are stored in DICOM files and many other formats like (MHD/RAW). However, the data
in this thesis is using the DICOM format of medical images [43].

4.2 Image Pre-Processing

This section provides a discussion about the pre-processing techniques used in this thesis.
The pre-processing of a dataset is inspired by the work presented on image data in Data
Science Bowl held in 2017 by Booz Allen Hamilton and Kaggle [44]. The operations
performed for pre-processing of MR images data are explained as follows.

4.2.1 Data Loading

Initially, the required images are downloaded from TCIA. The dataset is opened using
NBIA Data Retriever to retrieve the required DICOM images. Moreover, these images
are then loaded and analyzed for further processing in Jupyter Notebook by using the
Pydicom library to work with Dicom files in Python. Figure 4.2 shows the random slices
for two modalities, T2w and ADC.
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Figure 4.2: Shows the random MRI slices of prostate for two modalities, T2w (first
row) and ADC (second row)

Table 4.1 shows the details of the loaded images with the number of slices with respect
to the dimensions of slices for both modalities.

Data Specifications T2w T2w T2w T2w ADC ADC ADC
Width (pixels) 280 320 384 620 75 84 128
Height (pixels) 280 320 384 620 128 128 128
Number of slices 19 220 5708 13 162 5640 100

Table 4.1: Table showing the number of MRI slices and the correlated image sizes for
two modalities, T2w and ADC.

The masks for each case are present in the nii or NIfTI format, primarily used for imaging
informatics for neuroimaging. These masks are extracted and loaded using the nibabel
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library in Python. The information of the masks for each case is present in the csv file,
based on whether the mask is clinically significant or not.

4.2.2 Data Filtering

The image-list.csv file contains the information about the clinically significant images or
slices of all the images or slices present for every case. The relevant significant information
for each case is present in this CSV file for T2w and ADC images. The regex library
filters the dataset to extract the relevant images for each case based on the extracted
information from the CSV file. The process is performed for both T2w and ADC images
datasets. The filtered data is then stored and copied separately with the original names
given in the dataset; that is, every case is named as ProstateX-[num] where num is in
the range of [0000 , 0204] and the vital information for case numbers 52, 82, and 138 are
missing in the dataset.

4.2.3 Data Reshaping

A CNN must train on the images with similar dimensions. Images of different dimensions
can be used to train the same network, but not simultaneously. The CNN should be
designed to fit the dimensions of images in a dataset to get better results. The dataset
comprising of T2w images has height, and weight ranging from 280× 280 to 620× 620
and is reshaped to 384× 384 using OpenCV built-in resize function. The same procedure
was followed for ADC images data; however, their dimensions range from 75 × 75 to
128× 128. All the ADC images are reshaped to the image size of 128× 128. The channel
corresponds to the depth of the image and is set to one for all the slices in the dataset as
all the images in the dataset are grayscale. Table 4.2 gives the details of total slices for
each modality and their respective dimensions after reshaping.

Reshaped Data Specifications ADC T2w
Total cases 201 201

Total number of slices 5822 5962
Final reshaped width (Pixels) 128 384
Final reshaped height (Pixels) 128 384

Table 4.2: Table showing number of slices present in two modalities, T2w and ADC
and their respective reshaped sizes.
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4.2.4 Image Stratification and Data Organization

In this thesis, the total subjects used are 201, and 5962 slices are present in the T2w
image dataset for all the subjects. This dataset contains both the unhealthy and healthy
slices of the subjects. Unhealthy subjects are those slices that contain lesions in them.
The slices are sorted and stored in two different arrays based on the presence of lesions
in them. Then, the array containing healthy slices is divided into three different arrays
for the formation of training, testing and validation datasets. Around 70% healthy are
present in the training dataset, 20% in testing, and only 10% of these slices are stored
for validation purposes. The unhealthy slices for all subjects are also split into two
arrays with a percentage ratio of 80:20, primarily to add them to testing and validation
datasets. These arrays made from unhealthy slices are then concatenated to the testing
and validation datasets, initially obtained from the division of healthy slices. Finally,
three different arrays are obtained; the first one contains a training dataset comprised of
only healthy slices of all the subjects, the other two are testing and validation dataset
which contains both unhealthy and healthy slices of the subjects. During the stratification,
it is strictly considered to put all the slices of one patient in one dataset to avoid leaking
lesions between different datasets. Therefore, the training is only performed on the
healthy slices of subjects, and predictions are made on the dataset containing unseen
healthy and unhealthy slices.

The same procedure is followed for the ADC images, and datasets are obtained similarly
to T2w images; the only difference is the total number of slices in the ADC dataset, that
is, 5822. Table 4.3 shows the details of slice stratification and shapes of those slices for
both modalities T2w and ADC.

T2w ADC
Details of Dataset

Total slices Shape of slices Total slices Shape of slices
Train Dataset 3637 384×384 3630 128×128
Test Dataset 2066 384×384 1935 128×128

Validation Dataset 259 384×384 257 128×128

Table 4.3: Table showing the details of image stratification and the respective shapes
of slices for both modalities, T2w and ADC.

4.2.5 Data Normalizaton

Neural Networks (NN) usually calculate small weights to proceed with input images. The
pixel values in most of the images are integers, ranging from 0 to 255. The larger pixel
values can make the learning process slow and can cost computing efficiency. Therefore, it
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is often considered to normalize the pixel values in the range of [0,1]. The normalization
can also help standardize the distribution of pixels to Normal or Gaussian distribution
if normalization is done by the standard deviation [45]. In this thesis, normalization is
achieved using the equation.

Normalization = X −Xmin

Xmax −Xmin
(4.1)

In equation 4.1, X is the original image pixels, Xmin is the minimum pixel value, and
Xmax is the maximum pixel value of the image. The images are normalized to have a
range of [0,1]. The data is also standardized to have unit variance, and zero mean.

4.2.6 Saving Organized Data

In this thesis, the NumPy library saves the organized data as a four-dimensional NumPy
array in a file with an extension. npy. The first index of the array represents the number
of slices present for all the subjects. The following two indexes represent the height and
width of the images. The last and fourth index represents the depth of the image, that is
the number of channels. In this thesis, the number of the channel is equal to one as all
the images present are grayscale. Therefore, the input shape of the stored NumPy array
in the DL architecture is (number of slices, height, width, channels).



Chapter 5

Solution Approach

5.1 Introduction

   Data Loading

Load T2W and ADC image data
Get the overview of T2W and ADC
specifications

 Image Pre-processing

Resize Data
Sort Slices
Data Normalization
Data Storing as NumPy array

Training of  proposed Model

Model setup for T2W and ADC dataset
The used DL models are, VAEs and AE
Reconstructed images are analyzed to get
the best configuration of the model using
different parameters

    Predications using Trained Model

Predications are made on test data for both
T2W and ADC using the already trained
model.
The original image and reconstructed
images are analyzed 

   
   Classification and Threshold Range

The pixel-wise reconstruction error and
SSIM score are measured between the
originals and reconstructed images.
The threshold range is decided based on the
reconstruction errors using the IQR
method. 
The performance of the model is analyzed
using performance parameters mainly the
AUC of the ROC curve. 

  Lesion Detection

Lesions are detected in the reconstructed
images using SSIM as an indicator and
mask of areas which are not reconstructed
from original image are shown to prove
that model being trained on healthy images
is not able to reconstruct unhealthy part of
the unhealthy image.

Figure 5.1: A detailed overview of the proposed methodology

5.2 Proposed Method

The existing approaches [11], [12], [13] and [14] for unsupervised classification and
detection of the lesions or anomalies in medical images using deep generative models
are summarized in section 1.3 of this thesis. This thesis proposes a similar method for
unsupervised anomaly detection like the one proposed in the paper [11]. However, in
this thesis, the primary DL model used for anomaly detection is VAE compared to AEE
as the primary model in the paper [11], and no constraints were applied to the latent
space representation in this thesis. The thesis also uses another DL model, AE, for the
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comparative study of results. Moreover, the thesis uses the testing dataset that comprises
both the healthy images and the unhealthy images of the subjects, all of which are unseen
by the model, in contrast to the paper [11], where only unhealthy or abnormal images
are used for testing.

The thesis uses a two-stage methodology to carry out the unsupervised lesion detection
task. The main idea of the thesis is to classify the images into healthy and unhealthy
images by learning the probability distribution of healthy images in the latent space.
In the first stage, the data is pre-processed and input into DL models, VAE and AE,
for training. The training is performed on the training dataset containing only healthy
images of the subjects and cross-validated against the validation dataset. The trained
model is then used to make predictions on test data, which contains the combination of
the healthy and unhealthy images (see section 4.2.4), to get the reconstructions of test
images. In the next stage, pixel-wise reconstruction error is measured by calculating the
MSE loss or SSIM score between the original and reconstructed images. Based on these
reconstruction errors, the optimal threshold is selected to classify the unhealthy slices
from the healthy slices in terms of the reconstruction error. ROC-AUC and PR curves,
the overall classification accuracy of the model, and other parameters are calculated to
measure the performance of the proposed model. Lastly, the lesions are detected by
comparing the SSIM score of the unhealthy or lesion region and the whole image, as the
lesion region will output a lower SSIM score than the image. The proposed method is
applied to both T2w and ADC datasets for a comparative study.

5.2.1 Experimental Setup

VAE is the primary DL method used in this thesis to classify and detect a lesion in the
prostate. VAE, being able to generate high-quality images and having the probability
of distribution of latent variables much closer to the original data, is selected as the
primary DL model in this thesis. VAE is trained for 1500 epochs, where each epoch
uses 31 seconds on average, and the training process is performed on the University of
Stavanger GPU gorina6 servers using Nvidia Tesla V1000 with 32 GB memory. Though
the network is trained for 1500 epochs, it shares the visuals examples and model weights
when the MSE metric for the model improves. The batch size of 32, 64, and 128 samples
are used. These batch sizes are used due to the high resolution of T2w images, which
makes the training process noticeably slow, and the fact that model performance is not
affected by increased batch sizes beyond 128 samples. All models use Adam optimizer
with two different learning rates of 0.001 and 0.0001.
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Moreover, another DL model, AE, is also used in this thesis to compare results with VAE
and evaluate the performance of the primary VAE model used in this thesis. The AE
were trained for 200 epochs with batch sizes of 64 and 128 samples. The MSE or L2 is
used as a reconstruction loss in AE. The model is using Adam as an optimizer with two
different learning rates of 0.001 and 0.0001. This model is also trained on the University
of Stavanger gorina6 GPU servers using Nvidia Tesla V100 with 32 GB memory.

The primary language used in this thesis is Python programming language. The DL
models are built using Tensorflow [39] and Keras [29]. The classification program is
written in Python, and Jupyter Notebook is used as IDE for the programming. The
GPU servers are Linux-based servers, and a virtual machine named No Machine is used
to access the servers from home. All the models with different configurations are trained,
and the whole model with weight is stored in a single file with an extension .h5 using
the save command from NumPy library; these trained models are loaded using NumPy
load and used for the classification. The classification is done on the personal laptop HP
Envy x360 with specifications of Ryzen 7 3700U and 16GB of memory.

5.3 AE Model Design

In this thesis, a simple and basic implementation of the AE model is used. Figures 5.2
and 5.3 show the overview of proposed encoder and decoder structures for AE with the
information of all involved layers.

The first layer of the encoder is input with the images of the shape, similar to the VAE
model. The encoder of AE consists of four dense layers and four activation layers. ReLU
is used as an activation function in all activation layers. The latent dimension or space
has a size of 125 units. The decoder network consists of four dense layers and three
activation layers, with the last dense layer is the decoder network’s output layer. The
MSE or L2 is considered as the loss function in this model. The model is simply compiled
with L2 loss as reconstruction loss, and Adam is used as an optimizer for the proposed
model.The detailed structure of AE with all involved layers and their respective shapes
for both modalities are documented in Appendix A.
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Figure 5.2: Proposed
Encoder Network for

AE

Figure 5.3: Proposed
Decoder Network for

AE

5.4 VAE Model Design

The VAE implementation is inspired by the work of Rong Yao et al. by using VAE on the
MNIST dataset [13] and the original VAE model [10]. Rong Yao et al. work on the VAE
generates images of 28×28 pixels, while the paper [11] generates the images of pixel size
of 32×32. This thesis is based on these previous implementations, but the architecture is
improved and modified to generate images of 384×384 pixels for T2w images and 128*128
pixels for ADC images. The VAE model used in the thesis consists of three parts: the
encoder, the latent dimension or space, and the decoder (see section 3.6). Figures 5.4
and 5.5 show the overview of proposed encoder and decoder structures for VAE with the
information of all involved layers for both networks, whereas the detailed structures of
proposed encoder and decoder for VAE with the respective shapes of each layer for both
modalities are documented in Appendix A.

The encoder is input with the data having a shape of 384×384 for T2w and 128×128
for ADC images. Overall, three convolutional layers, one flatten layer, and one dense
layer is used in the encoder’s architecture. The convolutional layers use the kernel size
of (3,3) and strides of size (2,2). The strided convolutional layers are used to allow
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learning of weights while down-sampling instead of pooling processes. The input images
are down-sampled to the pixel size of 96×96 for T2w and 32×32 for ADC. All the
convolutional layers are using ReLU activation. The distribution mean and variance are
calculated to randomly sample variables from the distribution in random batch sizes.
These sampled batches are then used to extract features from the images, and depending
upon the size of latent dimension; these features are stored into the latent dimensions,
which is the latent representation of the original images. The dimensions of latent space
depend upon the input of the model and desired compressibility in the task. In the case
of T2w images, the size of a latent dimension is considered as 128 units and 64 units for
ADC images (see section 6.2.6).

Figure 5.4: Proposed
Encoder Network for

VAE

Figure 5.5: Proposed Decoder Net-
work for VAE

The decoder network is used to up-sample and reconstructs the images from the latent
space of VAE (see section 3.6). The decoder network used in this thesis consists of
one dense layer, one reshaping layer, and three transposed convolutional layers. The
transposed convolutional layers are used to up-sample the latent representation of images
from the latent space. The kernel size of (3,3) is used in the layers of the decoder. The
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strides equal to (2,2) are used to up-sample the input images to original dimensions. The
final shape of the output from the decoder must be equal to the original input images,
that is, 384×384. All the transposed convolutional layer uses the ReLU as activation
function except the last or output layer of decoder uses Sigmoid as an activation function.

The custom loss is defined as the mean of KL divergence and reconstruction loss in
terms of MSE or L2 loss and is represented by equation 5.1. The model is complied with
custom loss, and Adam is used as an optimizer in the model.

V AE Loss Function = Reconstruction Loss + KL Divergence Loss (5.1)

5.5 Threshold Selection and Classification Approach

Several methods are used to classify the outliers and unhealthy data from the healthy
data in unsupervised learning based on the optimal threshold. In Machine Learning
(ML), the threshold is the probability or some value in data that is used to classify
the data and outliers or anomalies in the binary classification. It gives the trade-off
between the false positives and false negatives in the data. The threshold is selected
in several ways; most of them are based on how data is distributed and scaled in that
distribution. Pete. R. Jones, in the paper [46], stated several methods to detect the
outliers in psychological data; however, in this thesis, the method used to select an
optimal threshold for classifying unhealthy images from healthy images is based on the
Inter-Quartile Range (IQR) method. The IQR is the measure of the data variability
about the median; that is, it represents the range in which half of the data is distributed.
The Q2 or median is the second quartile of the data in the distribution. It is essential
to understand that the IQR method does not assume the normality of the distribution
instead of other methods, which are based on the mean and standard deviation of the
data and assumes the normal distribution of data. The equation 5.2 represents the
mathematical calculation of IQR.

IQR = Q3 −Q1 (5.2)

In equation 5.2, Q3 is the third quartile of the data, representing 75% of the data lies
between minimum and Q3, whereas Q1 being the first quartile represents the 25% of
data lying between minimum and Q1. A decision boundary is calculated for the binary
classification so that any point in data that lies beyond that boundary is considered an
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unhealthy data point or outlier. The equation 5.3 shows how the threshold range or
decision boundary is selected in this thesis using the IQR method.

Optimal Threshold = Q2 + (F × IQR) (5.3)

In the above equation 5.3, Q2 is the median of the data points and F is the factor that
controls the sensitivity of the threshold. F is based on how the data is distributed and
maybe different for different DL models and error calculations. Therefore, the model
classifies the data point as an outlier if it lies more than F times the IQR range from the
median. One of the drawbacks of the IQR method is its insensitivity to the data that is
not assumed to have a Gaussian or Normal distribution. This method also helps in the
cases of detecting only the extreme outliers [46].

The threshold or decision boundary is based on the distribution of reconstruction loss
in this thesis rather than probabilities of distribution as the binary classification will
be performed based on either pixel-wise reconstruction error between the original and
reconstructed images or SSIM score between the original and reconstructed images. The
MSE score will be higher for the images with lesions as the model does not reconstruct the
unhealthy portion of the image because of its training on only healthy images. Similarly,
the SSIM score will also be lower for the images with a lesion than the healthy images.
Based on the threshold, the data is classified using several ranges of thresholds. The
unhealthy images are considered as positive values, and healthy images are negatives in
this thesis. Therefore, keeping in mind the binary classification technique, the images
are classified into total positives and total negatives. The classified values are validated
against the already existing labels to calculate the true positives and negatives of the
total positives and negatives. The false-positive rate, true positive rate, false-negative
rate, and true negative rates are calculated to analyze the model performance and to
construct the ROC curve from these rates. The AUC is also calculated to measure the
model’s performance and how efficiently the model can classify two different classes
from the data. The overall accuracy, specificity, sensitivity, precision, and recall are also
calculated on all the thresholds. The optimal threshold is selected to obtain the best
possible classification from the models used in this thesis.

5.6 Lesion Detection

It is assumed that the trained model only reconstruct the healthy region of unhealthy
images because the model is only trained on the healthy images (see section 5.2). This
concept is used to detect the lesions in the unhealthy images by calculating the SSIM
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score between the original and reconstructed images. The SSIM score will naturally
decrease for the unhealthy image as the model does not reconstruct the unhealthy part
of the image. Furthermore, the lesion or unhealthy region will show an even lower SSIM
score than the whole unhealthy image, which will confirm the presence of a lesion in the
image. The SSIM score of the unhealthy part of the reconstructed images is compared
with the SSIM of the whole image, and the difference is displayed to get the visual
inspection of whether the model can detect lesions or not.



Chapter 6

Experimental Evaluation and Results

In this chapter, the experiments, classification evaluation, and results using the proposed
methodology are documented. The different configurations of test data-sets use to test
proposed models are also explained in this chapter. This chapter does also include visual
examples of the results produced.

6.1 Consistency of Variational Autoencoders

The thesis uses VAE and AE for the proposed methodology. The primary focus of the
thesis lies on VAE due to the dynamic range and variability provided by VAE; however,
AE is acting as a baseline model in this thesis, providing the basis of comparison to check
whether the proposed method gives improved results when employed with VAE. Due
to the randomization of initialized weights, it is imperative to assume that model will
produce different results if run multiple times. To overcome this problem, the model is
run with random seeds of 22, which means that randomization is optimized to produce
the same set of numbers that corresponds to the random number sequence of 22 in the
NumPy library.

6.2 Finding the best VAE Model

While training a VAE or AE, several parameters are to be tested to get the best possible
configuration of the VAE. Some of these parameters were restricted to certain values due
to the huge size of T2w data, which impose computational limitations for the system
to carry a task. For this reason, latent dimension size could not be increased beyond
512 units, and batch size could not be increased beyond 128. The VAE is tested which

37
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several configurations of parameters to try and find the best possible configuration. The
size of latent dimension, batch size, learning rate, and the number of filters are varied to
try and find the best parameters.

6.2.1 Learning Rate

The number of models is trained with a learning rate of 0.001 and 0.0001. The results of
all the learning rates were recorded, and model reconstruction loss plots were generated
to get a better understanding of the results. All the results obtained using different
learning rates are documented in Appendix B. The learning rate of 0.0001 gives the best
result in terms of reconstructed images and classification tasks and was chosen for model
configuration. The model training and validation loss using a learning rate of 0.0001 for
chosen VAE model while training for 1500 epochs is shown in figure 6.1.

6.2.2 Batch Size

The three batches size were used during the training of models, 32, 64, and 128. All
the plots regarding different configurations of models with different batch sizes are
documented in Appendix B. The difference in the results is not as distinct for 64 and 128
as for the learning rate case; however, there are still some minor differences. The batch
size of 32 deemed the worse results. Even though the difference between the results of 64
and 128 is not huge, the batch size of 128 starts with a higher computational cost than
for the batch size of 64. Also, the computational time of the model with batch size 64
is somewhat better than 128. Therefore, due to these minor differences, a batch size of
64 is selected. The model training and validation loss using a batch size of 64 units for
chosen VAE model while training for 1500 epochs is shown in 6.1.

6.2.3 Number of filters

The higher number of filters gives out the higher number of abstractions that a network
can extract from image data, resulting in large latent vectors. The larger the latent
vector, the more information will be stored and available for the decoder to produce
more precise and clear reconstructed images. However, it is not always true that the
VAE, which produces the best-reconstructed images, will produce the best classification
results. In this experiment, the following number of filters were used, 16,32, and 64.
These, in combination with other VAE models, produced different sizes of latent vectors.
The results from the different models using the different number of filters are present in
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Appendix B. The interpretation of results encouraged using a combination of different
filter sizes, that is, to use different filter sizes in different layers of the model.

6.2.4 Size of Latent Dimension

The size of the latent dimension is an essential feature in VAE. Even though it does
not contribute directly to the model performance, it enhances the encoder’s complexity
and allows us to save more latent variables in the latent space. The three sizes of latent
dimensions 128, 256, and 512 units are used for T2w data while 32 and 64 units for
ADC due to lower dimensions. The plots generated using different models with different
latent dimensions size are shown in Appendix B. The results show that there is not
much difference in the reconstructed images obtained using different latent space sizes.
However, latent space of 512 units increases 7 seconds of computational time per epoch
size of 256 units increase the computational time to 3 secs per epoch. The classification
results were better when the model with a latent space of 128 units was used as compared
to the rest of the sizes for T2w and 64 units for ADC data. The model training and
validation loss using latent space of 128 units for the chosen model while training for
1500 epochs is shown in figure 6.1.

6.2.5 Number of Epochs

The number of epochs contributes significantly to the performance of the model and
reconstructions output by model. The proposed model was trained with different epochs
ranging from 150 epochs to 1500 epochs. The model loss for 1500 epochs VAE model
is shown in figure 6.1 and the remaining figures for model loss for different number of
epochs are documented in Appendix B. The number of epochs required also depends
upon the hyper parameters of the model. For instance, the model with small batch size
and small latent dimension size sometimes needs a more significant epoch number to
optimize the reconstruction loss. The proposed model with selected parameters of 64
batch size, a learning rate of 0.0001, and latent space of 128 units is also trained on
T2w with different epochs; however, training this model for 1500 epochs gives the best
results in terms of both predictions made on test data and model reconstruction loss.
The model with a latent space of 64 units gives the best results for ADC data.

6.2.6 Selected Configuration for VAE

Different VAE models with different configurations and hyper parameters are trained in
this thesis. In this thesis, the model is not only selected based on better reconstruction
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quality of images but the prediction made by every model is also checked for lower
reconstruction errors to get a better understanding of how trained models are contributing
in the classification of images. The question was arising that whether the model with the
lowest reconstruction loss and best-reconstructed image quality is producing good enough
results when tested on the unseen test images. Therefore, all the trained models were
tested on a test datasets and histograms were generated to get an overview of healthy
and unhealthy datasets. These histograms visualize the reconstructed error (MSE or
SSIM) of the images stratified by the unhealthy and healthy class. These histograms from
different models and modalities are given in section 6.7 of this chapter and Appendix C,
along with their respective threshold boundaries. Based on these reconstruction quality
and reconstruction errors, the optimized model is selected with the following parameters
shown in table 6.1 .

Parameters for VAE Value
Batch Size 64
Optimizer Adam (Learning Rate = 0.0001)

Latent Dimension
128 units for T2w
64 units for ADC

Number of Epochs 1500

Table 6.1: Selected Hyper-parameters for VAE.

Furthermore, the training and validation loss for the chosen model with the selected
hyper parameters are shown in figure 6.1.

Figure 6.1: Training and validation loss for the selected VAE Model.
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6.3 Finding the best AE

The same procedure is followed for finding the best AE as that of VAE. The number
of configurations is experimented on by changing the batch size, learning rate, and
the number of epochs. The different batch sizes and learning rates have not largely
affected the AE, and reconstruction loss and image reconstructions remained somewhat
mediocre. However, the number of epochs has some effect on the performance of AE
and reconstruction ability. Therefore, AE is trained with batch sizes of 32, 64, and
128, learning rates of 0.001, and 0.0001 for 250, 350, and 500 epochs. Therefore, after
analyzing the results from different models, the selected AE is trained with a batch size
of 64, a learning rate of 0.0001, and training for 250 epochs gives the best results for the
proposed model as a training model for more than 250 epochs tend to over fit the model
and thus contributes poorly to predictions made on test images. Table 6.2 highlights the
selected hyper parameters for the chosen AE model.

Parameters for VAE Value
Batch Size 64
Optimizer Adam (Learning Rate = 0.0001)

Number of Epochs 250

Table 6.2: Selected Hyper-parameters for AE.

6.4 Reconstructed Images from VAE versus AE

The trained models with selected hyper-parameters described in the section 6.2.6 and 6.3
of this chapter outputs the best-reconstructed images, and the quality of reconstructions
is acceptable. The reconstructed images from VAE are better in quality than AE. Figure
6.2 shows the comparison of the reconstructed images for ADC images from VAE and
AE. The VAE offers relatively realistic reconstructions of the images, and reconstructions
from the VAE are somewhat closer to the original images. The image details are also
prominent in the reconstructions made by VAE.
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Figure 6.2: Illustration of reconstructions for ADC images from VAE (left) and AE
(right).

Similarly, figure 6.3 shows the difference between the reconstructed images for T2w
images from VAE and AE. It can be seen from figure 6.3 that VAE has better quality as
compared to AE. The reconstruction from AE is blurrier for both T2w and ADC data as
compared to VAE. The VAE model outputs reconstructions that look more consistent
with the input in the healthy region.

Figure 6.3: Illustration of reconstructions for T2w images from VAE (left) and AE
(right).

The mean and standard deviation of reconstruction error for the healthy images is also
higher for AE than VAE, as indicated by table 6.3 and confirms the better performance
of VAE in image reconstruction.
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MSE for T2w MSE for ADC
DL Models

Mean SD Mean SD
VAE 0.00259 0.00124 0.0046 0.00259
AE 0.00388 0.00151 0.00504 0.00527

Table 6.3: Comparison of MSE reconstruction errors of healthy images for VAE and
AE.

6.5 Reconstructed Images for T2w versus ADC Images

The reconstructed images for ADC data have a better quality of reconstruction than
the T2w data using VAE. Due to smaller dimensions and darker images, the model
performed slightly better on ADC images. Figure 6.4 represents the comparison of
reconstruction from T2w and ADC image data. It is evident from figure 6.4 that the
reconstruction for ADC images is more precise and has better quality, in contrast to
T2w, where reconstructions are somewhat blurrier and offer low-quality images.

Figure 6.4: Illustration of ADC (first row) and T2w images (second row) with their
respective reconstructions (original image is on the left and respective reconstructions

are on the right of the figure.)
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Table 6.4 shows the mean reconstruction error in terms of MSE and SSIM score in
both modalities and provides evidence for the better performance of the model for ADC
images. The MSE reconstruction error for healthy images in ADC is higher than that of
T2w, thus contributing significantly better in the classification of two classes for ADC in
contrast to T2w images where the difference between them is meager, offering a very
narrow threshold range for T2w and decreasing the overall performance of the model.
Similarly, the SSIM shows a similar trend for ADC and T2w, proving the superiority of
ADC data over T2w.

T2w ADC
Healthy Unhealthy Healthy Unhealthy

Errors
Mean SD Mean SD Mean SD Mean SD

MSE 0.00259 0.00124 0.00362 0.00219 0.0036 0.00258 0.00772 0.00258
SSIM 0.7523 0.0519 0.6557 0.0682 0.767 0.0861 0.5187 0.1646

Table 6.4: Comparison of reconstruction errors of healthy and unhealthy images for
ADC and T2w data.

6.6 Reconstructions for Unhealthy versus Healthy Images

In general, the model behaves as expected in this thesis, and the reconstructions are
acceptable for both classes of unhealthy and healthy images. However, comparing
reconstructions for these two classes shows the noticeable difference for both modalities,
as the difference can be evident in the table 6.4. The reconstructions of unhealthy images
show higher MSE reconstruction loss or lower SSIM score as compared to reconstructions
of healthy images, which provides the basis for the binary classification of two classes as
the failure of the model to produce the lesion part of the unhealthy images provides the
basis for higher MSE reconstruction error or lower SSIM score between the reconstructed
and original image. The reconstructed images for the healthy images appear to be more
precise, closer to the original images, and less blurry than unhealthy images. This trend
is prominent for both modalities while using VAE for predictions.
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Figure 6.5: Illustration of Healthy (first row) and Unhealthy images (second row)
with their respective reconstructions for T2w images (original image is on the left and

respective reconstructions are on the right of the figure.

Figures 6.5 and 6.6 show the difference between the reconstructions for random unhealthy
and healthy images from T2w and ADC images, respectively. It is evident from the
figures 6.5 and 6.6 that the reconstructions for the healthy images have better quality
and precise details than the unhealthy images, which tend to become blurrier. The
interpretation of this difference between the reconstruction of two classes (unhealthy
and healthy) indicates that the presence of lesions in the images negatively affect the
reconstructions made by the model, which is only trained on the healthy images, thus
helping in the classification of two classes and detection of lesions in healthy class.
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Figure 6.6: Illustration of Healthy (first row) and Unhealthy images (second row)
with their respective reconstructions for ADC images (original image is on the left and

respective reconstructions are on the right of the figure).

6.7 Threshold Selection

As explained in section 5.5 of the thesis, the threshold is selected using the distribution
of pixel-wise reconstruction error or SSIM score between reconstructed and original
images and the threshold is found by using the IQR method. The reconstructed image
is classified as an outlier or unhealthy if it lies F times IQR range from the median of
errors distribution. The optimal F values are selected to be in the range of [0,1.2] for
MSE as reconstruction error, and [-0.8,0.4] for SSIM is used as a reconstruction error.
These values of F give the best optimal range of threshold for the binary classification of
two classes. Figure 6.7 shows the distribution of recorded MSE reconstruction errors for
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balanced and imbalanced dataset of T2w images along with their optimal classification
boundary in an histogram while using VAEmse.

(a) Balanced T2w data (b) Imbalanced T2w data

Figure 6.7: Histogram shows the distribution of MSE reconstruction errors for T2w
images with optimal classification boundary.

Similarly, the figure 6.8 shows the distribution of recorded MSE reconstruction errors for
balanced and imbalanced dataset of ADC images along with their optimal classification
boundary in an histogram while using VAEmse .

(a) Balanced ADC data (b) Imbalanced ADC data

Figure 6.8: Histogram shows the distribution of MSE reconstruction errors for ADC
images with optimal classification boundary.

The remaining distribution histograms for other models and both modalities are docu-
mented in Appendix C.

6.8 Model Performance and Classification Results

In this chapter, the classifier’s performance is tested against different configurations of
the test dataset from both modalities, T2w and ADC. The section will also explain the
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comparative results using different proposed DL models. The range of optimal threshold
for classification is calculated using either pixel-wise reconstruction MSE/L2 or SSIM
loss. (see section 5.5).

The classification is performed on the T2w and ADC test images. As mentioned in
chapter 4, the test dataset contains both unhealthy and healthy images from the original
dataset; however, none of these images are seen by the trained model, and all the slices of
one subject lie in one dataset and are not repeated in another dataset (see section 4.2.4).

6.8.1 General Classification results

The classification results obtained by using VAE for predictions are far better than AE
in terms of both classification accuracy and ROC- AUC. The ROC-AUC is calculated
using the Sklearn library of Python and is considered a macro ROC-AUC score as a
default setting. Table 6.5 shows the ROC-AUC and average classification accuracy for an
optimal threshold for both modalities using VAE and AE with different reconstruction
losses. Both MSE and SSIM are used for calculating reconstruction error between the
reconstructions and original images. It is also important to understand here that the
table 6.5 only gives the results for a balanced test dataset of two modalities.

ROC-AUC Classification Accuracy (%)
Modalities Used

VAEmse VAEssim AEmse AEssim VAEmse VAEssim AEmse AEssim

T2w 0.72 0.72 0.64 0.53 78.7 80.3 70.5 53.6
ADC 0.81 0.76 0.74 0.51 81.9 81.7 81.7 59.7

Table 6.5: Comparison of ROC-AUC and Classification Accuracy of all models for
balanced T2w and ADC data.

From table 6.5, it is evident that the VAE model performed significantly better than AE.
Moreover, the classification was slightly better when reconstructions are made for ADC
using VAE than AE. The same results can also be seen from the figures 6.9 and 6.10,
showing the ROC curve for both modalities using VAE and AE. Note that the results
in the figures 6.9 and 6.10 are also only documented for the balanced test data of both
modalities.
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Figure 6.9: Illustrates ROC-AUC curves of all the models for balanced T2w data.

Figure 6.10: Illustrates ROC-AUC curves of all the models for balanced ADC data.
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Moreover, even though the VAEssim shows a higher average sensitivity of approx. 0.79
for T2w as compared to VAEmse, AEmse, and AEssim, which shows the average sensitivity
of 0.71, 0.60 and 0.49 for T2w respectively on the range of selected threshold, yet the
consistency of VAEmse is higher and does not change abruptly compared to other models.
The precision of VAEmse is also better as compared to other models. SSIM is believed to
have a better distinction property for different distortions in an image and can help to
detect the lesion in MR images by measuring the similarity between two images. The
AEmse performed marginally better for both modalities as compared to the AEssim which
produce poorly unacceptable results. AEssimis not consistent with the results and shows
a considerable bias towards the healthy images. All the models significantly performed
better in classifying the ADC data set than the T2w images, which can be deduced
from the table 6.6, that the respective recall and precision values of two modalities for
all proposed models. Therefore, the presented results suggested somewhat comparable
results for both VAEmse and VAEssim, and the model’s performance is recorded to be
equally acceptable for both configurations of VAE compared to both AE models, which
gives poor results of image classification.

Recall Precision
Modalities Used

VAEmse VAEssim AEmse AEssim VAEmse VAEssim AEmse AEssim

T2w 0.71 0.82 0.66 0.62 0.86 0.78 0.76 0.55
ADC 0.72 0.71 0.71 0.61 0.92 0.93 0.91 0.50

Table 6.6: Comparison of Recall and Precision of all models for balanced T2w and
ADC data.

The other relevant figures related to classification accuracy, Precision-Recall curves, and
other related statistical model performance parameters are documented in Appendix D.

6.8.2 Classification Results for Different Test Data Configurations

The VAE is tested on the two configurations of test data, the balanced and imbalanced
test data using both modalities, and the results are analyzed to obtain the model’s
performance, whereas AE is only tested on the balanced test dataset. The balanced test
data for T2w contain an equal amount of healthy and unhealthy images, that is, 50%
distribution for both classes that sums up to give 1033 images for each class. However,
imbalanced data contain 1033 healthy and 500 unhealthy images for T2w MRIs. Similarly,
the ADC MRI balanced test data also contains approximately equal images of healthy
(907) and unhealthy data (1028). The imbalanced test data for ADC contains 907 healthy
images and 514 images of unhealthy images. The experiments were performed on both
the data configurations, and the results are documented with explanation.



Habib Ullah 51

ROC-AUC Classification Accuracy (%)
Modalities Configuration

VAEmse VAEssim VAEmse VAEssim

Balanced Test Data 0.72 0.72 78.7 80.3
T2w

Imbalanced Test Data 0.76 0.78 85.8 87.2
Balanced Test Data 0.81 0.76 81.9 81.7

ADC
Imbalanced Test Data 0.9 0.83 90.3 90.1

Table 6.7: Comparison of ROC-AUC and Classification Accuracy of all VAE models
for different configurations of T2w and ADC data (balanced and imbalanced data).

The table 6.7, the figures 6.11 and 6.12 show the results of experiments performed on
balanced and imbalanced test data for both modalities of T2w and ADC. It is evident
from the table that imbalanced test data tend to provide better classification results
with higher ROC-AUC and higher classification accuracy in contrast to the balanced
dataset. For VAEmse with T2w imbalanced test data, an average ROC-AUC of 0.76
is recorded as compared to the balanced test data, which shows the ROC-AUC of 0.72.
However, the difference is more prominent for VAEmse with ADC test datasets where
imbalanced and balanced test sets show the ROC-AUC of 0.90 and 0.81, respectively.
Similar behavior is shown by the VAEssim for balanced and imbalanced datasets. The
model’s sensitivity is also recorded to show an increase when the model is tested on
imbalanced test data compared to the balanced test dataset.
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Figure 6.11: Illustrates ROC-AUC curves for the two configurations of T2w data,
balanced and imbalanced.

Figure 6.12: Illustrates ROC-AUC curves for the two configurations of ADC data,
balanced and imbalanced.
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The confusion matrix for the ADC and T2w images using VAEmse are presented in the
figures 6.13 and 6.14 for balanced and imbalanced test data to get the general overview
of the classification of two classes in the dataset. The corresponding confusion matrix of
AEmse, AEssim for balanced T2w and ADC data and confusion matrix of VAEssim for
both configuration of test data of ADC and T2w images are presented in Appendix D.

Figure 6.13: Shows the confusion matrix for the two configurations of ADC data,
balanced (left) and imbalanced (imbalanced) while using VAEmse. The unhealthy

images are considered as positives and healthy images are considered negatives.

Figure 6.14: Shows the confusion matrix for the two configurations of T2w data,
balanced (left) and imbalanced (imbalanced) while using VAEmse. The unhealthy

images are considered as positives and healthy images are considered negatives.

The analysis of figures 6.13 and 6.14 indicates the increased number of true positives
(actual healthy images) and true negatives (actual unhealthy images) for imbalanced
dataset compared to balanced one. Thus, the class imbalance surely increases the
performance of the model, and the model classification ability to distinguish healthy and
unhealthy images improved by imposing the class imbalance in the test dataset.
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6.9 Validation of Lesion detection in Reconstructions

As explained earlier in chapter 5, the basic concept of the thesis is to reconstruct only
the healthy region of the unhealthy images by using the model that is only trained on
the healthy images, leaving behind the lesions, not to be reconstructed from the original
images. The results explained in section 6.6 of this chapter suggested that the model
does not reconstruct the lesions as the reconstructions from the unhealthy images have
lower SSIM scores than healthy images.

The figures 6.15 and 6.16 show two random T2w unhealthy images with their respec-
tive lesion masks, their reconstructions, and the difference between the original and
reconstructed images with the masks of unreconstructed regions in the original image.
Line-wise, the first image is original unhealthy image (left), second image is its respective
reconstructions (center) and third image is the difference image with mask of unrecon-
structed region on original unhealthy image (right) in the figures 6.15 and 6.16. The
white box highlights the lesion region in the images. The highlighted red region in the
image represents the regions of the reconstructed image where the model does not fully
reconstruct the features present in the original image, or the reconstructed region shows
the structural difference compared to the original image. The un-highlighted parts of the
difference image show the regions, which gives the structural difference of none to almost
zero in reconstructions compared to the original image, and reconstruction of the image
was perfect at those regions. The images are documented for VAEmse on T2w unhealthy
images.

Figure 6.15: Image 1 - Illustration of random unhealthy T2w image with lesion mask
(left), its respective reconstructions (center) and the mask (red region) of unreconstructed
region on original image (right). The lesion region in all the images is highlighted by

white box.
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Figure 6.16: Image 2 - Illustration of the unhealthy T2w image with lesion mask (left),
its respective reconstructions (center) and the mask (red region) of unreconstructed
region on original image (right). The lesion region in all the images is highlighted by

white box.

Even though the reconstructions made by the model are a bit blurry, the model can
successfully detect the anomalies in the images, and only the healthy features of the
images are reconstructed. It is evident from the images in figures 6.15 and 6.16 that the
model does not reconstruct the lesion region of the unhealthy image and comply with
the original proposed concept of lesion detection (see chapter 5).

Another validation technique is to measure SSIM for the lesion region of the reconstruction
images and compared it with the overall SSIM of the whole image. As the lesion is not
reconstructed in the reconstructed images, the lesion region will offer an even lower SSIM
score compared to the overall image. The table 6.8 shows the SSIM score of the lesion
region of two reconstructed images in comparison to the respective overall SSIM of whole
reconstructed images (center images in figures 6.15 and 6.16).

Images Lesion Region Whole Image
Reconstructed Image 1 0.423 0.658
Reconstructed Image 2 0.3722 0.605

Table 6.8: Comparison of SSIM score for lesion region and whole image for random
T2w unhealthy images.

It is evident from the table 6.8 that the lesion region of the reconstructed image shows a
lower SSIM score as compared to the overall reconstructed image, which confirms the
presence of a lesion in that region and supports the concept presented in chapter 5 of
this thesis. The SSIM score changes abruptly when the size of the lesion increases in
the MRIs, as shown in table 6.8 , in which image 2 has a bigger lesion size compared to
image 1, lowering the SSIM score even more for image 2.





Chapter 7

Discussion

This chapter presents the discussion of the achieved results, factors that affect the
performance of proposed models and binary classification of images, limitations of the
thesis, and comparison of the results presented in this thesis to the related scientific
works.

7.1 Effectiveness of Proposed Methodology

The analysis of achieved results presented in chapter 6 of this thesis indicates that
the proposed method successfully classifies the prostate MR images into two classes of
unhealthy and healthy images and can detect the lesion in the images. It provides a
significantly simple yet effective unsupervised approach for lesion detection and estimation
of outliers by learning the probability distribution of healthy images. The average ROC-
AUC of 0.80 and classification accuracy of 83% for the proposed models provides solid
evidence that the models can achieve a human-level lesion detection without using any
labeled data. The flexibility of the proposed method allows it to work with any complex
image dataset, confirmed by the fact that the model is tested on datasets from two
modalities (T2w and ADC). Even though the direct comparison between the studies can
be difficult, since different data sets are used, the results produced in the thesis for the
proposed methodology are justifiably admissible for comparative studies.

7.2 Evaluation of DL Models

Each of the presented models shows an ability to detect the lesions; however, their
performance differs. The achieved results presented in the chapter 6 of this thesis
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indicates the superiority of variational autoencoders (VAE) over simple autoencoders
(AE) in the task of lesion detection in prostate MRI. Though the reconstructions are
a bit blurry, VAE is more consistent and retains the realistic structure of MRIs in
reconstruction. The better performance of the VAE is related to the fact that their
output is conditioned to the probability distribution of the latent vectors in compressed
dimensionality, which helps VAE to distinguish the outliers in the probability distribution.
However, it should not be assumed that AE cannot be used for the anomaly detection
task but depends upon the complexity of the dataset and proposed methodology. The
binary of classification of prostate MRIs by learning probability distribution of healthy
images, does demand stochastic, which makes VAE a better DL model for this thesis as
compared to the AE.

7.3 Impact of Data on Model Performance

The proposed model behaved differently for different modalities of prostate MR images
used in this thesis, and the performance of the model noticeably varies for T2w and ADC
images. Apparently, the model produces remarkably better results for ADC images with
higher ROC-AUC, higher classification accuracy, and improved precision values for ADC
images. The significantly improved model performance might be reasoned by the fact
that the prostate lesions are mainly present in the peripheral zone (PZ) of the prostate,
and only 20-30% of the lesions are present in the transition zone (TZ). The effective MRI
sequence to detect the lesion that is present in PZ is DWI or ADC [47]. Therefore, ADC
images offer better details about the presence of lesions in prostate MRIs and the model
learns relatively better about the distribution of lesions in unhealthy images when ADC
images are used. The small dimensional size of ADC images might be another noticeable
factor that can improve the model’s performance as the model can learn efficiently fast
on smaller images.

7.4 Impact of Class Imbalance on Model Performance

The class imbalance also projects a significant impact on the performance of the model
as the imbalanced test data noticeably improve the performance of the proposed models
for both modalities as compared to balanced test data. It is believed that the class
imbalance causes the machine learning model to develop a certain bias towards the
majority class, thus subjecting the proposed model to frequency bias, in which the
model is more likely to place emphasis on learning from the probability distribution of
healthy images and pay close attention to the distribution of reconstruction errors for
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healthy images. As explained in the Chapter 5, the proposed model is only expected to
reconstruct the healthy region of an unhealthy image, thus increasing the reconstruction
error for unhealthy images, which provides the basis for classification. Therefore, this
biased behavior of the model might be eventually helpful in this thesis, enforcing the
model to classifies every image as unhealthy whose reconstruction error even slightly
differs from the normal distribution of reconstruction errors for healthy images.

It is imperative to understand here that the thesis uses the macro aspect of ROC-AUC for
both configurations, which is mainly considered for the imbalanced datasets. The results
for balanced datasets might differ if a micro aspect of ROC-AUC is used. However, in
real-world problems, like a hospital, the number of healthier patients are way more than
unhealthy patient, and imbalanced datasets can provide better insight to the classification
of classes (healthy and unhealthy) as it gives a more realistic and practical approach to
tackle class imbalance in these situations.

7.5 Limitations

This section will discuss some limitations of this project.

7.5.1 Dataset

Though the model was able to produce acceptable reconstructions, the larger size of
T2w might have influenced the model’s performance. The larger size of T2w images also
made it very difficult to find the correct hyper-parameters and configurations for the
model to train on T2w images. The training of the model and the classification of two
classes for T2w images might have improved if the reconstructions were slightly better.
It might have enhanced model performance if T2w images were down-sampled to the
size of 256×256 pixels instead of up-sampling to 384×384 pixels.

7.5.2 Pre-Processing

There was no manual inspection conducted for all the images after the normalization
of the images. Only a few random images are inspected from a dataset. This problem
might have led to some unexpected issues for some subjects that might have influenced
the results.
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7.5.3 Computational Limitations

The training of these deep learning models like VAEs and GANs is time-consuming and
computationally expensive. The training of the model required a computationally rich
GPUs system. Though UiS GPU servers provided an excellent platform for working with
these models, however, limited availability of these GPU servers and large queues to
access the severs imposed certain constraints for training purposes. The larger size of
T2w images also raises questions of having enough computational power to train model
and classification experiments. Even with the powerful setups, the processing of these
larger T2w images is time-consuming. During the training and classification of T2w
images, the system seemed hesitant to perform certain operations due to memory issues,
causing the server to crash many times. The batch sizes and size of latent dimensions
could not be increased after a limited value for T2w images because of computational
limitations as the server was sometimes unable to process computationally expensive
T2w data.

7.6 Comparison to Related Work

To the best of my knowledge, there is no published work related to the unsupervised
lesion detection in prostate images using VAE or AE on PROSTATEx challenge data.

The comparison of results with the methodology formulated in [11], [12], [13], and [14]
suggested that the proposed model in the thesis can classify and detect the lesions in the
MR images with acceptable model performance. The complexity of the dataset in this
thesis offers specific challenges to the model and makes it difficult to achieve the same
quality of reconstructions and model performance presented in [12] and [13]. However,
their model results might be slightly misleading as they are based on the simple dataset,
MNIST, KDD CUP 99, requiring minimal effort to get good model performance for these
datasets.

The paper [11] does inspire the methodology of this thesis in the essence that both
propose unsupervised reconstruction-based lesion detection in images; however, their
focus was to address the lack of consistency in latent space representations and improve
the model performance by adding constraints to the latent space representation. The
VAE in their paper also produces somewhat blurry reconstructions; however, it does not
hinder the ability of the model to detect lesions, as presented by this thesis. The main
models used in their work include AEE and VAE with added constraints, in contrast
to this thesis, where VAE and AE are employed for the task. The constraints on the
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model do improve their model performance, and they manage to produce good results
compared to the ones presented in this thesis.

The paper [14] addresses the problem of proper latent dimensionality for the data and
introduces VQ-VAE as the reconstruction model to obtain a discrete latent representation
of normal data and then employs PixelSail, an autoregressive model, to determine the
parts that deviate from the normal distribution in the input latent space. This behavior
helps them to get rid of the unwanted reconstructions of unhealthy parts. The model
works with MVTec AD inspection images, consisting of 15 categories. Their results
show the improvement of the model by 15% in terms of ROC-AUC. Even though their
model proposed discrete latent representation, yet the results produced by them was
somewhat comparable with the result presented in this thesis, especially for ADC images,
where the average ROC-AUC (0.80) for the VAE model of this thesis is very close to
the average ROC-AUC (0.86) of VQ-VAE model presented in their work. As mentioned
earlier, the main reason for comparing other’s work with the current thesis is not to
prove the dominance of one’s method over others, but to get the general idea of the
results presented in this thesis compared to others.





Chapter 8

Conclusion and Recommendations

In this chapter, a conclusion of this thesis and the recommendations for future work is
given.

8.1 Conclusion

This thesis proposed a new method of detecting lesions in prostate MR images in an
unsupervised framework by learning the distribution of only healthy images while training
and detect lesions in unhealthy images according to the healthy data distribution. The
thesis employs two DL models, namely VAE and AE, to work with the two modalities
of prostate MR images, T2w and ADC. The prostate MR images are taken from the
PROSTATEx challenge data.

The thesis uses a two-step methodology where the first step involves the pre-processing
of data and the training of proposed models and the second step classification of re-
constructions made by trained model on test data, the optimal threshold selection and
detection of lesions are performed in the second step. The thesis selects the optimal
threshold based on the reconstruction error using the IQR method, and classification is
done based on the pixel-wise reconstruction error between the reconstructions and the
original images. The thesis directly compares the SSIM score of the lesion region to that
of the whole reconstructed image.

A set of experiments are conducted to find the optimal set of parameters and structure
for the proposed model. The results produced by the thesis suggest that the model
successfully classifies healthy and unhealthy images. Generally, VAE performed better
than AE for both modalities, and the model performance was better for ADC images
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compared to T2w. The proposed model can detect lesions from the unhealthy images as
the lesion region shows higher SSIM scores than the rest of the image.

To conclude, the obtained results support the primary aim of this thesis; that is, the
proposed model can be employed to attain the human-level lesion detection ability by
learning the distribution of healthy samples.

8.2 Future Recommendations

VAE has significantly become a popular method with DL, especially in the areas of
anomaly detection and outlier estimation from the normal data. The training of VAE using
the T2w images from PROSTATEx Challenge data has proved to be quite challenging
as the dataset contained the larger images due to the up-sampling technique used in
this thesis. Therefore, future work could involve the down-sampling of T2w images to
provide experimental flexibility to work with the T2w images. The model performance
could be enhanced after the down-sampling of T2w images as the model might produce
better reconstructions of down-sampled T2w images.

It is always better to have more data for the model to work with as it could efficiently
learn the distribution of data during training, and classification tasks might improve. The
augmentation of a dataset can be considered for future work as it could be an effective
technique to improve the overall model performance.

The regularization technique, addition of extra constraints to the latent space representa-
tion, as mentioned in the paper [11], can also enhance the model performance and can be
considered as a potential future work. The use of VQ-VAE for discrete latent representa-
tion of normal data might improve the model performance in detecting the lesion from
the unhealthy images. In contrast to VAE’s indeterministic latent representation, the
VQ-VAE has the ability to encode inputs into latent space with deterministic mapping
and reconstructs data from quantized vectors. Therefore, VQ-VAE might be able to
detect lesions from unhealthy images more efficiently. VQ-VAE could be employed as
a comparative model for lesion detection using the proposed methodology as a future
recommendation.
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Appendix A

VAE and AE Model Design

(a) For ADC data. (b) For T2w data.

Figure A.1: AE Model Design for both modalities (T2w and ADC).
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(a) VAE Encoder. (b) VAE Decoder.

Figure A.2: VAE Model Design for ADC data.
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(a) VAE Encoder. (b) VAE Decoder.

Figure A.3: VAE Model Design for T2w data.



Appendix B

Training and Validation Loss for VAE

Figure B.1: 150 Epochs - VAE
with LR = 0.0001, BS = 32, and

LD = 128 units

Figure B.2: 150 Epochs - VAE
with LR = 0.0001, BS = 64, and

LD = 256 units

Figure B.3: 150 Epochs - VAE
with LR = 0.001, BS = 64, and

LD = 256 units

Figure B.4: 300 Epochs - VAE
with LR = 0.0001, BS = 32, and

LD = 128 units
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Figure B.5: 300 Epochs - VAE
with LR = 0.0001, BS = 128, and

LD = 512 units

Figure B.6: 300 Epochs - VAE
with LR = 0.001, BS = 64, and

LD = 256 units

Figure B.7: 300 Epochs - VAE
with LR = 0.0001, BS = 64, and

LD = 256 units

Figure B.8: 500 Epochs - VAE
with LR = 0.0001, BS = 64, and

LD = 256 units

Figure B.9: 1000 Epochs - VAE
with LR = 0.0001, BS = 64, and

LD = 256 units

Figure B.10: 1500 Epochs - VAE
with LR = 0.0001, BS = 128, and

LD = 512 units



Appendix C

Reconstruction Error Histograms

C.1 For VAEssim

(a) Balanced ADC data (b) Imbalanced ADC data

Figure C.1: Reconstruction Error Histograms for ADC data with VAEssim

(a) Balanced T2w data (b) Imbalanced T2w data

Figure C.2: Reconstruction Error Histograms for T2w data with VAEssim
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C.2 For AEmse

(a) Balanced ADC data (b) Balanced T2w data

Figure C.3: Reconstruction Error Histograms for ADC and T2w data with AEmse

C.3 For AEssim

(a) Balanced ADC data (b) Balanced T2w data

Figure C.4: Reconstruction Error Histograms for ADC and T2w data with AEssim



Appendix D

Model Performance Metrics

D.1 For VAEmse

(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.1: Classification Accuracy for both configurations of ADC data with VAEmse

(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.2: Classification Accuracy for both configurations of T2w data with VAEmse
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(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.3: Recall and Precision for both configurations of ADC data with VAEmse

(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.4: Recall and Precision for both configurations of T2w data with VAEmse

(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.5: Precision-Recall curve for both configurations of ADC data with VAEmse
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(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.6: Precision-Recall curve for both configurations of T2w data with VAEmse

D.2 For VAEssim

(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.7: Classification Accuracy for both configurations of ADC data with VAEssim

(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.8: Classification Accuracy for both configurations of T2w data with VAEssim
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(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.9: Recall and Precision for both configurations of ADC data with VAEssim

Figure D.10: Balanced ADC data Figure D.11: Imbalanced ADC
data

(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.12: Recall and Precision for both configurations of T2w data with VAEssim
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(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.13: Precision-Recall curves for both configurations of ADC data with VAEssim

(a) Balanced ADC data (b) Imbalanced ADC data

Figure D.14: Confusion matrix for both configurations of ADC data with VAEssim

(a) Balanced T2w data (b) Imbalanced T2w data

Figure D.15: Confusion matrix for both configurations of T2w data with VAEssim
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D.3 For AEmse

(a) Balanced ADC data (b) Balanced T2w data

Figure D.16: Classification Accuracy for balanced ADC and T2w data with AEmse

(a) Balanced ADC data (b) Balanced T2w data

Figure D.17: Recall and Precision for balanced ADC and T2w data with AEmse

(a) Balanced ADC data (b) Balanced T2w data

Figure D.18: Confusion matrix for balanced ADC and T2w data with AEmse
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D.4 For AEssim

(a) Balanced ADC data (b) Balanced T2w data

Figure D.19: Confusion Matrix for balanced ADC and T2w data with AEssim





Appendix E

Python Code

The relevant Python code for all task performed in the thesis is present on GitHub reposi-
tory named "Master_thesis"and can be accessed using this link https://github.com/

haullah/Master_thesis.git to the repository. The explanation of used libraries and
python code is present in the README.md file in the repository.
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