U

University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:
Spring semester, 2021
Master of Science in Computational

Engineering Open/Confidential: Open

Author: Omer Parvez

Programme coordinator: Aksel Hiorth

Supervisor(s): Ketil Oppedal and Alvaro Fernandez Quilez

Title of master’s thesis:

Conditional data generation for an improved diagnosis in prostate cancer

ECTs: 30

Keywords:
Number of pages: 51

Generative Adversarial Networks, DCGAN,)
cGAN, Binary classification, VGG186, + supplemental material/other: 29
Prostate,

Stavanger, July 15, 2021

Abstract

Prostate Cancer is the second most common cancer in men worldwide, the fourth
most commonly occurring cancer overall and the sixth leading cause of cancer death
among men worldwide. Early detection of prostate cancer is crucial for survival.
MRI examination is an essential and a comfortable tool towards a precise diagnosis
at an early stage. But this diagnosis is dependent on the experience and expertise
of the reader. Deep learning methods can be used for the classification of tumors,
as various DL methods have proven to be helpful for the classification and detection
tasks.

To work towards this goal, this thesis will explore how generative adversarial net-
works can be used to improve prostate MRI classification. Different deep learning
architecture have been proven accurate in the classification of the biomedical images.
However, large volume of training data is required, which is difficult to obtain due
to the patient privacy policy. To this end, this thesis proposes a two step approach
to improve the classification, the first step is to generate anonymized training data
using using two GAN architectures and the second step is to use the anonymized
training data to train classification network. This thesis proposes two GAN ar-
chitectures, DCGAN and c¢GAN to generate training data to improve the image
classification. The synthetic data is used together with original data for the training
of VGG16 classification network and compare the performance of the classification
network with generated data and without it.

The final results indicate significantly better image classification using cGAN when
compared with the original data and classic augmentation methods. The network
performs better for the generated data when compared with the original and aug-
mented data.

Acknowledgments

This thesis marks the end of my Master of Science degree in Computational En-
gineering at University of Stavanger, Department of Energy Resources (IER). The
thesis was conducted during the spring semester of 2021, and the journey was edu-
cational and exciting due to support of my supervisors.

First of all, I am grateful to the University of Stavanger for giving me the opportunity
to work with the state-of-the-art hardware. I would like to thank my head supervisor
Ketil Oppedal and co-supervisor Alvaro Ferndndez Quilez for supporting me and
guiding me during the thesis work. I would also take this opportunity to thank
the University staff, Theodor Ivesdal and Rune Wetteland for providing the support
when I most needed it.

Lastly, I would like to thank my wonderful friend Habib-Ullah for always supporting
and encouraging me for the past two years without whom this wonderful journey
would not have been possible.

i

Contents

[Abstract]

[Acknowledgements|

M2.1

Objectives|

[1.2.2 Proposed Method Overview|

[2° Medical Background|

I2.l l lngi!i!lg: g:i!ll‘;s:ll

P21

Digital Rectum Examination|.

R.2.2

Prostate-Antigen Specific Test{

P23

Biopsyl

P24

Magnetic Resonance Imaging|

[3 Technical Background|

[3.1 Magnetic Resonance Imaging (MRI)|

Bil

Basic Terminology]

[3.1.2 Analog To Digital Converter{

B21

Connections and Weights|.

B22

Backpropagation|

[3.2.3 Supervised, Semi-supervised and Unsupervised Learning]

8.3 Convolutional Neural Networks

B.3.1

Convolution layer|

1l

ii

ii

[3.3.2 'Transposed Convolutional Layer|. 13

[3.3.3 Dense Layer| 14
[3.3.4 Augmentation|.o 15

[3.4 Generative Adversarial Network (GAN)|. 15
3.4.1 Deep Convolutional Generative Adversarial Networks (DCGAN)| 15

3.4.2 Conditional Generative Adversarial Network (cGAN)[. 16

BAE _VGGIAl. 17
[3.5.1 The Architecturel 18
3.5.2 Drawbacks. 19

3.6 Softwares 19
B.6.1 Tensorflowl 19
B62 Keraso o 19
[3.6.3 Numerical Python| 20
[3.6.4 OpenCV|. 20
[3.6.5 Pydicom|. oo 20
3.6.6 Scikit-learn| 20

[4 Data-set and Image Pre-processing | 21
4.1 Image Pre-Processingl 22
[4.1.1 Loading of Datal. 22
[4.1.2 Data Filtering| o oo 23
[4.1.3 Data Reshaping/ 23
[4.1.4 Slice Operation and Data Organization| 24
[4.1.5 Data Normalizationl. 25

[4.2 Save Organized Datal 25
[Solution Approach | 26
b.1 Existing Approaches 26
[5.2 Proposed Method using GAN to Expand the Data-set|. 26
b.2.1 DCGAN Methodology| 27
[5.2.2 ¢cGAN Methodologyl. 30
B23 VGGIO o oo 33

(6 Experimental Evaluation and Results| 36
6.1 Experimental Setup|. 36
[6.2 Selected configuration for DCGAN| 37
[6.3 Selected configuration for cCGAN| 38
[6.4 Comparison of generated images from DCGAN versus cGAN| 38
6.5 Augmented Images| 40
[6.5.1 Translated Images| 40
[6.5.2 Flipped Images| 0. 41

v

6.6 Model Performancel 42
[6.6.1 Model Pertormance for Different Percentage ot cGAN Gener- |

| ated Images| oo 42
[6.6.2 Model performance for Augmented versus Generated Images| . 44
(7__Discussion| 46
[7.1 Effectiveness of Proposed Methodology| 46
(7.2 Evaluation of Generative Models 46
(7.3 Evaluation of the Augmented Methods 47
4 Macro ROC-AUC e 47
7.5 Evaluation of Performancel 48
(.6 [imitations 48
(6.1 Fvaluation of the GAN metricsf 49

(62 Dafal 49

[7.6.3 Computational Limitations|. 49

8 Conclusion and Recommendations| 50
8.1 Conclusion|. 50
8.2 Future Recommendationsl 51
[A_ROC-AUC curves| i
IB__Architectures of the model used| iv
[C GAN Training Images| vii
D _Code of the models| xiii

List of Figures

(1.1 The figure illustrates overview of this thesis methodology | 3
2.1 Prostate Gland with cancer cells[22][. 6
2.2 Digital Rectum Examination|34].| 7
2.3 Trans-rectal ultrasound scan examination[9]| 8
3.1 [lustration of the process behind capturing a MRI23||. 10
3.2 A simple neural network|3] oo oo 11
3.3 Illustration of the process behind Convolutional layer|23[.|. 13
3.4 [lustration of the process behind a transposed convolution layer|23]| . 14
[3.5 Illustration of Dense layer| 14
[3.6 A simple GAN Model|. 15
3.7 lustration of basic principle of DCGAN Model [42[f 16
3.8 Illustration of basic principle of cGAN model|39]|. 17
3.9 Layers of VGGI16 network|38[| 18
3.10 Architecture of VGGI6 [38]] 18
4.1 A random ADC image (Left) with its corresponding segmentation |
L masks from PROSTATEX data-setl 21
4.2 MRI slices of Prostate for ADC modality |cite:https://neurohive.io/en/popuylar-
| networks/veggl6/].|.o 22
[>.1 Proposed Discriminator and Generator model for DCGAN| 29
(5.2 Proposed Discriminator and Generator model for cGAN| 32
.3 c¢cGAN Proposed Model| 33
[>.4 Proposed VGG16 Model |. 35
[6.1 Comparison of Images| 39
[6.2 Comparison of Real and 'Iranslated image| 40
[6.3 Comparison of Real and Flipped image| 41
[6.4 Comparison of Real and Rotated image/. 42
[6.5 Illustrated AUC-ROC curves for all generated data-sets| 44

vi

(6.6 Illustrated AUC-ROC curves for all augmented and two generative

data-setsl 45
[7.1 ROC-AUC for balanced (left) and Original (right) data-sets| 48
[A.l Real Datal i
[A.2 50% augmented data in the original data| i
[A.3 100% augmented data in the original data| ii
[A.4 150% augmented data in the original data|. il
[A.5 Balanced data in the original data | ii
[A.6 Rotated augmented data in the original data | ii
[A.7 'Translated augmented data in the original data| iii
[A.8 Horizontal flipped augmented data in the original data|. iii
[B.1 Cgan Models| iv
(B.2 c¢GAN with shapes| v
B.3 DCGAN Modeld.o o o vi
(C.1 DC GAN 1000 epochs| vii
[C.2 DC GAN 2000 epochs|, viii
[C.3 DC GAN 3000 epochs| ix
[C.4 cGAN 1000 epochs| X
(C.5 cGAN 2000 epochs| xi
[C.6 ¢cGAN 3000 epochs| xii

vil

List of Tables

[4.1 Table showing the number of MRI slices and the correlated 1mage |

sizes for ADC modality.| L. 23
[4.2 Table showing the number of MRI slices and the correlated image |

sizes tor ADC modality.| 24
[4.3 Details of Image stratification| 24
[6.1 Selected Hyperparameters for DCGAN| 37
[6.2 Selected Hyperparameters tor cGAN| 38
(6.3 Comparison of ROC-AUC of generated and original data-sets|. 43
[6.4 Comparison of ROC-AUC of generated and augmented data-sets| . . 45

viil

Abbreviations:

2D
3D
MRI
T2W
ADC
DWI
DL
NN
CNN
GAN
DCGAN
cGAN
DRE
TRUS
NumPy
LR

BS

LD
MSE
SSIM
KL
ANN
API
DICOM
ROC
AUC
UiS
ML
RelLU
GPU
IDE

Two - Dimensional

Three - Dimensional

Magnetic Resonance Imaging

T2 - Weighted Image

Apparent Diffusion Coefficient

Diffusion Weighted Imaging

Deep Learning

Neural Networks

Convolutional Neural Networks
Generative Adversarial Network

Deep convolutional Generative adversarial Network
Conditional Generative adversarial Network
Digital Rectum Examination

Transrectal Ultrasound Scan

Numerical Python Python

Learning Rate

Batch Size

Latent Dimension

Mean Squared Error

Structural Similarity Index Measurement
Kullback - Leibler

Artificial Neural Networks

Application Programming Interface
Digital Imaging and Communication in Medicine
Receiver Operating Characteristics Curve
Area under the Curve

University of Stavanger

Machine Learning

Rectified Linear Activation Function
Graphics Processing Unit

Integrated Development Enviorment

Chapter 1

Introduction

1.1 Motivation

Prostate Cancer is the second most common cancer in men worldwide, the fourth
most commonly occurring cancer overall and the sixth leading cause of cancer death
among men. There were 1,414,259 new estimated cases and 375,304 estimated deaths
in 2020[10]. This number is estimated to increase to approximately 2.3 million new
cases by 2040 due to population growth and increased expected life.|14]. Most
medical organizations encourage men in their 50s to discuss the pros and cons of
prostate cancer screening with their doctors. There are various screening tests for
the prostate performed by the General Physician in a clinic, like Digital rectal exam
(DRE) and Prostate-specific antigen (PSA) test [41]. If prostate cancer screening de-
tects an abnormality, the doctor may recommend further tests to determine whether
the cancer is present such as ultrasound, magnetic resonance imaging (MRI) and
prostate biopsy. However, several patients complain of getting an infection after a
guided biopsy at the hospital. MRI has proven to be successful for the detection and
diagnosis of prostate cancer[41]. Increased MRI has made the examination more
comfortable and more efficient, resulting in an improved prostate gland examina-
tion and detection of malignant tumours in the gland. However, MRI results are
reader-dependent, leading to variability in the outcome depending on the person’s
expertise in the examination. The field of medicine has relied on experts who gain
knowledge through experience and self-learning, which is necessary for a dynamic
healthcare environment. The increase in knowledge and understanding of diseases is
closely linked with an increase inl data and information due to advanced tools that
generate quantitative and qualitative measurements of different parameters. Such
a big data field is ready for the application of machine learning tools. There is a
growing development in the application of ML in the medical industry, which can

collect information from numerous sources and aid the decision-making process of
highly skilled workers. Machine learning is being used in the areas in the healthcare
industry, from diagnosis and prognosis to drug development and epidemiology, with
significant potential to transform the medical landscape[4].In recent years, various
types of medical image processing and recognition have adapted machine learning
methods, including MRI images, ultrasound images, pathological images, and much
more. At present, deep learning methods are used in classification and segmentation
in medical images.[4] A reliable tool could improve the existing examination time
by freeing up the time of the medical experts while maintaining the quality of the
diagnosis and allow more time for other patients. Training a Neural network or ma-
chine learning(ML) algorithm requires extensive data to give precise and accurate
results. Gaining access to a large amount of medical image data is often difficult to
obtain due to patient privacy. There are existing approaches to extend the data-set
called data augmentation, which helps train the ML sometimes, but the correlation
between the augmented data and original data is very high. Other methods to gen-
erate data like Generative adversarial networks can be used to increase the network
efficiency by generating data that is not correlated and labelled, saving expert hours
for more productive work.

1.2 Problem Definition

This thesis’s primary goal is to improve the convolutional neural network classi-
fication (CNN) in binary classification performed on apparent diffusion coefficient
(ADC) MRI images. The main challenge of using medical data is the privacy policy,
limiting access to a large amount of labelled data, thus training the neural network
more challenging. To extend the data-set, GAN will be used to generate MRI images
containing prostate cancer tumours which will be used to train the CNN for image
classification performed on the MRIs of the prostate.

1.2.1 Objectives

e To generate new anonymized labelled training data using two Generative Ad-
versarial Network (GAN) architectures, named Deep Convolutional Genera-
tive Adversarial Networks (DCGAN) and Conditional Generative Adversarial
Network (cGAN).

e Use the real and generated MRI images to train a CNN and compare the results
obtained from the standard image and the images generated using GAN.

1.2.2 Proposed Method Overview

The data containing ADC MRI images are loaded. Then this data is pre-processed
and split into two categories based on the tumour type in patients. Afterwards, this
data is used to train DCGAN and ¢GAN to generate more data in a supervised
manner. After training the GAN, data is generated from trained models and is then
further used to train the binary classifier to compare training results with generated
and original data. Figure shows overview for the thesis.

Train Generate
Load Image Image Pre- Proposed Data and Evaluate
Data ’ processing . Model ‘ train Binary ’ Results
(GAN) Classifier

Figure 1.1: The figure illustrates overview of this thesis methodology

1.3 Related Work

This thesis uses three different neural networks to generate images and test the
results. The neural networks used to generate images are Deep Convolutional Gen-
erative Adversarial Networks (DCGAN) and Conditional Generative Adversarial
Networks. DCGAN was first introduced by Alec Radford et al. in the paper “Unsu-
pervised representation learning with deep convolutional generative adversarial net-
works”[33]. The goal of the author was to combine the existing Convolutional Neural
Network and ”Generative Adversarial Networks” with unsupervised learning with
unsupervised learning.

The second architecture utilized to generate images is called Conditional Generative
Adversarial Networks (cGAN) was first proposed by Mehdi Mirza and Simon Osin-
dero in their 2014 paper titled “Conditional Generative Adversarial Nets.”|27]. In
this paper the authors tried to direct the image generation process of the generator
model by providing the model additional information. This network takes labels as
an additional information and generates directed images.

The paper “Synthetic data augmentation using GAN for improved liver lesion clas-
sification”[[19]] apply GAN to increase the liver lesion data and then use the aug-
mented data to improve the classification results.

The VGG16 network is used as a classifier in this thesis and it was first proposed by
K. Simonyan and A. Zisserman from the University of Oxford in the paper “Very
Deep Convolutional Networks for Large-Scale Image Recognition” [37]. The model
was proposed to increase the depth of using very small convolution filters to show
the improvement on the prior networks.

1.4 Outline

This chapter gives introduction and explains the motivation for the subject. The
remaining part of this thesis is structures in to seven different chapters.

The second chapter is Medical Background and it describes the essential med-
ical theory used in this thesis.

The third chapter is Technical Background and contains the background theory
related to the technology used in this thesis.

The fourth chapter is Data-set and Image Pre-Processing which describes the
data-set used in this thesis and pre-processing steps used to organize and store
the data.

The fifth chapter is Solution approach and describes the proposed method to
generate new data using GAN.

Chapter six is Experimental Evaluation and Results, in which the results are
discussed and compares various augmentation methods used.

Chapter seven presents a decision of the results and limitations of this thesis.

Chapter eight presents the conclusion for this thesis and future recommenda-
tions.

Chapter 2

Medical Background

This chapter will provide an overview of the prostate gland, various examination
techniques for diagnosis and detection of prostate cancer and treatment.

2.1 Prostate Cancer

Prostate Cancer is the second most occurring cancer in men worldwide, the fourth
most commonly occurring cancer overall and the sixth leading cause of cancer death
among men. There were 1,414,259 new estimated cases and 375,304 estimated deaths
in 2020.[10]. This number is estimated to increase to approximately 2.3 million new
cases by 2040 due to population growth and increased expected life.[15]

Cells are the basic units that make up the human body. Cells grow and divide to
make new cells as the body needs them. Cells die when they get old or damaged.
Then, new cells take their place. Cancer starts when cells in the body begin to grow
out of control. Cells in nearly any part of the body can become cancer cells and
then spread to other areas of the body. This rapid activity of the cells may cause
a mass of cells called a tumour. These tumours can be benign and malignant. A
cancerous tumour is malignant, which means it can grow and spread to other parts
of the body. A benign tumour means that it can grow but will not spread[40].

The prostate is a gland found only in males. It makes some of the fluid that is part
of semen. The prostate is below the bladder and in front of the rectum. Prostate
cancer begins when cells in the prostate gland start growing uncontrollably. Behind
the prostate are glands called seminal vesicles that make most of the fluid for semen.
The urethra, a tube that carries urine and semen out of the body through the penis,
goes through the centre of the prostate[22].

Urethra.)! B> A / L B 4 Seminal

A /8 ™
il il | Cancerous
SN tumor
\ E
'

\Scmlum

Figure 2.1: Prostate Gland with cancer cells

The size of the prostate changes with a man’s age, it is the size of a walnut at a
young age, but it can grow bigger in older men.

2.2 Prostate Cancer Examination Methods

There is no definitive test for prostate cancer. All the tests used to help diagnose
the condition have some pros and cons; hence they are used in combination. The
following screening tests are usually involved in the complete diagnosis process if
the patient experiences one or more symptoms.

2.2.1 Digital Rectum Examination

Digital Rectum Exam (DRE) involves inserting a gloved, lubricated finger into the
rectum which allows a GP to physically feel the prostate’s back. The physical
examination help the GP to determine the size and shape of the prostate. DRE is
usually carried out by a GP before referring the patient to a specialist. Figure
shows the demonstration of DRE.

Figure 2.2: Digital Rectum Examination.

2.2.2 Prostate-Antigen Specific Test

Prostate-Antigen Specific (PSA) test involves taking a blood sample to determine
the amount of Prostate-Specific Antigen in the patient’s blood. When a patient has
prostate cancer, the quantity of PSA in his blood rises, however it can also rise when
the patient has a benign prostate enlargement or an infection in the prostate. This
test is most beneficial when a GP can compare the results of test, before and after
the patient got cancer or infection.

2.2.3 Biopsy

Biopsies will be performed if the doctor suspects cancer. A transrectal ultrasound
scan (TRUS) is the most frequent method of prostate biopsy. Even with preventative
measures, however, the risk of infection is estimated to be between 5% and 7%. This
test is done in a hospital by professionals, and it involves inserting a needle into
the prostate eight to ten times to collect tissue from various areas. The TRUS
procedure is depicted in the figure 2.3 The Gleason score grading method is used
to determine the patient’s prognosis. The Gleason score is used by pathologists to
determine the stage of prostate cancer. A high Gleason score suggests a malignancy
that is aggressive and has a poor prognosis.

Biopsy
needle

Needle
guide

Ultrasound
probe

Figure 2.3: Trans-rectal ultrasound scan examination[@]

2.2.4 Magnetic Resonance Imaging

MRI scans are utilized to determine the exact position of a lesion and are generally
done prior to a biopsy. According to some studies, MRI can also assist determine the
type of the lesion, such as whether it is benign or cancerous. A greater understanding
between medical professionals and radiologists can help with the examination and
diagnosis of prostate cancer.

A radiologist uses the Prostate Imaging Reporting and Data System (PI-RADS)
grading system to analyze MRIs. PI-RADS was created to improve worldwide stan-
dardization of multi-parametric magnetic resonance imaging (mpMRI) examinations
of the prostate. Standardization seeks to reduce needless biopsies by improving the
identification of clinically significant malignancy and locating benign illnesses.

Chapter 3

Technical Background

This chapter will present the technical background for the terminologies and con-
cepts used in this thesis.

3.1 Magnetic Resonance Imaging (MRI)

This section will explain some terminologies in the topic of MRI technology and the
process involved in it.

3.1.1 Basic Terminology

MRI is a non-invasive imaging technology that produces detailed three-dimensional
images. It is used for disease detection, diagnosis, and treatment monitoring. It
is based on technology that excites and detects the change in the direction of the
rotational axis of protons found in the water that makes up living tissues|25].

MRI uses the properties of hydrogen in water or lipids to capture images. Two of
the most fundamental parameters are repetition time (TE) and time to echo (TR).
TR is the amount of time between successive pulse sequences applied to the same
slice. TE is the time between the delivery of the RF pulse and the receipt of the
echo signal[29).

Tissues can be characterized by two different relaxation times that are T1 and
T2. T1, which represents longitudinal relaxation time, is the time constant that
determines the rate at which excited protons return to the equilibrium. It is a
measure of the time taken for spinning protons to realign with the external magnetic
field. T2, which represents transverse relaxation time, is the time constant that
determines at which excited protons reach equilibrium or go out of phase with each

other. It is a measure of the time taken for spinning protons to lose phase coherence
among the nuclei spinning perpendicular to the main ﬁeld.

The most common MRI sequences are T1-weighted and T2-weighted scans. T1-
weighted images are produced by shorter TE and TR times, while longer TE and
TR times produce T2-weighted images.

Diffusion-weighted imaging (DWI) is designed to detect the random movements
of water protons to construct patterns in MRI images. A combination of images
with different diffusion weighting amounts provides an apparent diffusion coefficient
(ADC) map or ADC image. In ADC imaging, protons exhibit free mobility in the
tumor region than the surrounding, and therefore, the corresponding area of higher
diffusivity is represented as a brighter region, indicating a high ADC value in the
obtained ADC map[11].

3.1.2 Analog To Digital Converter

The analog MRI signal is transformed into a digital matrix and visualized as an
image. Every pixel in the image corresponds to a value in the matrix. The original
signal from MRI is continuous, where each value in the time corresponds to a value.
This continuous signal is transformed into discrete signal using the analog-to-digital
converter.

* —»

Mee
WS

A J

Scan time

Figure 3.1: Illustration of the process behind capturing a MRI

The pixels in the digital image are sorted into rows and columns in an image array.
MRIs also has a third dimension that is called slice thickness. Each MRI contains
several slices that correspond to multiple 2D images in depth. An empty array is
created before the scanner starts to fill in the information. The scanner files on row
per sequence until the entire array corresponds to the MRI, as illustrated in the

7723,

10

3.2 Neural Networks

Artificial neural networks, simply called neural networks, are computing systems
vaguely inspired by the biological neural networks that constitute animal brains.

A neural network is based on a collection of nodes called neurons, which loosely
model the neurons in a biological brain. Each neuron calculates and distributes
a value via connections to the next layer of neurons. The signal at a connection
is a real number, and the output of each neuron is calculated by some non-linear
function of the sum of its inputs. The connections are called edges. The edges and
neurons have weights that get adjusted as the learning process proceeds. The weight
controls the strength of the signal output|3].

Hidden

Input

Output

Figure 3.2: A simple neural network|3]

Figure illustrates a simple feed-forward network with three input values (z =
[1,x2]), one hidden layer with four neurons, and two output values (¥).

A neural network contains following components:

11

3.2.1 Connections and Weights

The network consists of connections, each connection providing the output of one
neuron as an input to another neuron. Each connection is assigned a weight that
represents its relative importance. A given neuron can have multiple input and
output connections.

3.2.2 Backpropagation

Backpropagation, short for “backward propagation of errors,” is an algorithm for
supervised learning of artificial neural networks using gradient descent. The method
calculates the gradient of the error function with respect to the neural network
weights.

The “backward” part of the name stems from calculating the gradient proceeds
backward through the network, with the gradient of the final layer of weights being
calculated first and the gradient of the first layer of weights being calculated last.
Partial computations of the gradient from one layer are reused to compute the
gradient for the previous layer. This backward flow of the error information allows
for efficient computation of the gradient at each layer versus the naive approach of
calculating the gradient of each layer separately[5].

3.2.3 Supervised, Semi-supervised and Unsupervised Learn-
ing

A machine learning problem needs input information to learn. The term supervised
learning corresponds to the process where the input x has an expected output v,
termed label, and tries to produce a predicted output. y equal to y.

An unsupervised problem uses unlabeled data to train. It seeks and learns patterns
and regularities automatically in the input data to produce the predicted output. .

A semi-supervised problem is a combination of supervised and unsupervised learning
that learns from labeled and unlabeled data|23]

3.3 Convolutional Neural Networks

A deep convolutional neural network is a deep learning algorithm that can take in
an input image, assign importance (learnable weights and biases) to various aspect-
s/objects in the image, and differentiate one from the other. The technology has
existed for a long time, but small data sets and limited access to computer power
narrowed the potential of the technology.

12

“Convolutional networks are simply neural networks that use convolution
in place of general matrix multiplication in at least one of their layers.”
[cite: page 326,Deep Learning,2016,[20] |

CNN consists of one or more models that take an input image, pass it through
convolutional and other image processing layers, and get an output. This chapter
explains some of the main topics within the technology of CNN.

3.3.1 Convolution layer

The first layer of a CNN is always a convolution layer. Convolutional layers ap-
ply a convolution operation to the input, passing the result to the next layer. A
convolution converts all the pixels in its receptive field into a single value. When
a convolution is applied to an image, it will decrease the image size and bring all
the information in the field together into a single pixel. The final output of the
convolution layer is a vector.

P

=)

Qutput

Input Kernel

Add p numbers of
zero padding

IMove kernel 5 pixels
across the image

Figure 3.3: Hlustration of the process behind Convolutional layer.

3.3.2 Transposed Convolutional Layer

The transposed convolutional layer is used during the upsampling of an image.
Figure [3.4) demonstrates the process of transposed convolution layer. The output of
the transposed convolutional layer. The output of the transposed convolutional layer
is also controlled by strides and padding. The output from transposed convolutional
is not opposite in terms of values, but it only reverses the spatial dimensions of
standard convolution[2].

13

Input

(o)

kernel

Insert zeros
between mxn

Output
Add padding (p) and the kernel shifis
with ane pixel due to strides (s)

Figure 3.4: Illustration of the process behind a transposed convolution layer

3.3.3 Dense Layer

A dense layer is a neural network layer connected deeply, which means each neuron
in the dense layer receives input from all neurons of its previous layer. The dense
layer is the most commonly used in the models.

The dense layer performs a matrix-vector multiplication. The values used in the
matrix are parameters that can be trained and updated with the help of backprop-
agation.

The output generated by the dense layer is an ‘m’ dimensional vector. Thus, a dense
layer is basically used for changing the dimensions of the vector. Dense layers also
operations like rotation, scaling, translation of the vector.

This layer is quite beneficial for the fact that it can draw one decision boundary.
Also, the number of a neuron depends upon the number of classes in the output.

Inputs Dense Outputs
x0 y0
x1 yl
1

Figure 3.5: lustration of Dense layer

14

3.3.4 Augmentation

A significant problem in medical data processing is the lack of data. In order to
solve this problem, a technique called augmentation is mainly used to extend the
data-set artificially by performing shifting, rotating, horizontal or vertical flip, and
blur. The augmentation does not make new images but provides a new version of
the same data set. This thesis makes use of OpenCV and Sklearn built-in function
for image augmentation.

3.4 Generative Adversarial Network (GAN)

The GAN architecture was first introduced in 2014 by Ian Goodfelloe et al. in the
paper titled ¢ Generative Adversarial Networks”[[21]]. The baseline for GAN is a
game-theoretic scenario with an architecture of two competing models, a generator
that generates images similar to the training data and a discriminator that classifies
the input images from the data-set as true and the generator is false. Generative
modeling, in general, is an unsupervised learning process without a label to correct
the prediction. GAN solves the generative process by framing the task as supervised,
where the discriminator acts as a label. The two following subsections explain two
GAN architectures that generate images in this thesis[6] Generative Models for
Image Synthesis and Image Translation. Machine Learning Mastery, 2019.]

00
0@

generate data

noise

Figure 3.6: A simple GAN Model

3.4.1 Deep Convolutional Generative Adversarial Networks

(DCGAN)

The deep convolutional generative adversarial networks, or DCGAN for short, is an
extension of the GAN architecture for using deep convolutional neural networks for
both the generator and discriminator models and configurations for the models and
training the result in the stable training of the generator model.

15

DCGAN is similar to the original GAN architecture and consists of two CNNs,
one generator, and one discriminator. The main difference is that convolutional
stride replaces max pooling, transposed convolution is used instead of upsampling,
and fully connected layers are removed. Figure [3.7] illustrates the structure of the
generator and discriminator in a DCGAN model.

Batch normalization is used while building both the discriminator and the generator.
This mainly tackles two problems in DCGAN and deep neural networks in general.

1. It normalizes the input to each unit of a layer.

2. It also helps to deal with poor initialization that may cause problems in gra-
dient flow.

[cite:researchgate publication]
s srliioes, B,

\ﬂ_/ il
@Lﬂw—"—v—’%ﬁ)

4 x4 1024 dx8x512 16 x 16 %X 256 32x32x 128 64x64x3
64 x 64x3 32x32x 128 16 x 16 x 256 BxBx512 4 x 4 x 1024

Generator Network

Diseriminator Network

Figure 3.7: Illustration of basic principle of DCGAN Model [42]

3.4.2 Conditional Generative Adversarial Network (cGAN)

The conditional generative adversarial network, or cGAN for short, is an extension to
the GAN architecture used as a machine learning framework for training generative
models. The idea was first published in a 2014 paper titled Conditional Generative
Adversarial Nets by Mehdi Mirza and Simon Osindero|27].

c¢GAN is a deep learning method where a conditional setting is applied, meaning that
both the generator and discriminator are conditioned on some auxiliary information
such as class labels or data from other modalities. As a result, the ideal model can
learn the multi-modal mapping from inputs to outputs by feeding it with different
contextual information.

16

Real
images
Discriminator Predicted labels
(Real / Generated)

Labels

Generator Generated

Rae images

Figure 3.8: Illustration of basic principle of cGAN model[39)

The figure |3.8 illustrates cGAN architecture where class labels are provided to gen-
erator and discriminator. Usually, in GAN, we cannot control what specific images
generator will produce. In other words, there is no way a requested particular image
can be produced.

This is where the cGANs come in, as we can add an extra layer of one-hot-encoded
image labels. This additional layer guides the generator in terms of which image to
produce.

The input to the additional layer can be a feature vector derived from either an
image that encodes the class or a set of specific characteristics we expect from the
image. [39)

3.5 VGG16

VGG16 is a convolution neural network for classification and detection proposed
by K. Simoyan and A. Zisserman from the University of Oxford in the paper Very
Deep Convolutional Networks for Large-Scale Image Recognition[37]. The model
achieves 92.7 % top-5 test accuracy in ImageNet, which is a data-set of over 14
million images belonging to 1000 classes. It improves AlexINet by replacing large
kernel-sized filters (11 and 5 in the first and second convolutional layer, respectively)
with multiple 3 x 3 kernel-sized filters one after another. The most unique thing
about VGG16 is that instead of having a large number of hyper-parameter, they
focused on having convolution layers of 3 x 3 with a stride 1 and always used the
same padding and max pool layer of 2 x 2 of stride 2. It follows this arrangement
of convolution and max pool layers consistently throughout the whole architecture.
In the end, it has 2 FC (fully connected) layers followed by a softmax for output.
The 16 in VGG16 refers to it has 16 layers that have weights as shown in figure |3.9]
It is a pretty extensive network, and it has about 138 million (approx) parameters.
VGG16 was trained for weeks and was using Nvidia titan black GPUs[3§].

17

VGG-16

TV [TV o [TV (TIVD o [T T s
S0 |4 g (Al 2 hhn g s+t g (bnn g 888 03
a.‘>>'6 > =8| | =220 [2|22|0 |2[22]|0 ===‘4.-
£7715/5¢2 |5 5& |55 52 (8568|565 5& alalal "3
O|o oo Q|o|o O|O|o Q0|0 o
Figure 3.9: Layers of VGG16 network.
3.5.1 The Architecture
The architecture depicted below is VGG16:
224 x224 x 3 224 x224 x 64
112 x 112 x 128
56|x 56 x 256
A 7x7x512
' 28 x 28 x 512

114 X 14 x 512 1x1x4096 1x 1 x 1000

=) convolution+RelU
) max pooling
fully nected+RelLU
softmax

Figure 3.10: Architecture of VGG16 .

The input to convl layer is of fixed size 224 x 224 RGB image. The image is passed
through a stack of convolutional (conv.) layers, where the filters were used with
a very small receptive field: 3 x 3. In one of the configurations, it also utilizes
1 x 1 convolution filters, which can be seen as a linear transformation of the input
channels followed by non-linearity. The convolution stride is fixed to 1 pixel; the
spatial padding of conv. Layer input is such that the spatial resolution is preserved
after convolution, i.e., the padding is 1-pixel for 3 x 3 conv. layers. Spatial pooling

18

is carried out by five max-pooling, which some of the Conv. layers (not all the conv.
layers are followed by max-pooling). Max pooling is performed over 2 x 2 pixel
window, with stride 2.

Three fully connected (FC) layers follow a stack of convolutional layers. The first
two have 4096 channels each. The third contains 1000 channels (one for each class).
The final layer is the softmax layer. The configuration of the FC layers is the same
in all networks. All the hidden layers are equipped with rectification (ReL.U) non-
linearity.

3.5.2 Drawbacks
There are two major drawbacks|38] with VGGNet:
1. Its is extremely slow to train

2. The network architecture weights themselves are quite large thus making its
deploying a tiresome task.

3.6 Softwares

The technical part of this thesis is implemented with the programming language
named Python. Python is a high-level, multi-purpose programming language. A
high-level programming language makes the development process simpler by the use
of natural language. A general-purpose programming language is used to develop a
wide range of software applications.

Python has a wide range of external libraries with additional functions. This section
describes some of the main libraries used for implementing models in this thesis.

3.6.1 Tensorflow

Tensorflow is an interface and implementation to express and execute machine learn-
ing algorithms. The library can implement a wide variety of algorithms for deep
neural networks, like training and inference algorithms|1].

3.6.2 Keras

The DL application programming interface (API) used in this thesis is Keras. Keras
library uses Tensorflow to enable rapid experimentation and implementation of DL
ideas[13].

19

3.6.3 Numerical Python

The Numerical Python (NumPy) library is introduced into the Python program-
ming language to analyze and implement high-level scientific computing and data
analysis of numeric data and multi-dimensional arrays. This library is used for many
tasks ranging from generating random integers or arrays to advanced mathemati-
cal functions. NumPy is also employed to use by other libraries like Tensorflow to
generate Tensor objects and more(harris2020array].

3.6.4 OpenCV

OpenCV is an open-source library primarily used for computer vision, image process-
ing, and machine learning. The usage of this library in this thesis allows performing
several actions on the medical images, ranging from image pre-processing to image
augmentation. When this library is coupled with other various libraries, such as
NumPy, Python can process OpenCV array Structuresjopencv’library].

3.6.5 Pydicom

DICOM (Digital Imaging In Medicine) is the bread and butter of medical image
datasets, storage, and transfer. Pydicom is a pure python package working with
DICOM files such as medical images, reports, and radiotherapy objects. pydicom
makes it easy to read these complex files into natural pythonic strictures for easy
manipulation. The most common use of pydicom is to read an existing DICOM file,
alter some items, and write it back out again|26].

pydicom is not a DICOM server (see pynetdicom instead) and is not primarily about
viewing images. It is designed to let you manipulate data elements in DICOM files
with Python code.

3.6.6 Scikit-learn

Scikit-learn is an open-source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data pre-
processing, model selection and evaluation, and many other utilities. It provides
dozens of built-in machine learning algorithms and models, called estimators. Each
estimator can be fitted to some data using its fit method[30].

20

Chapter 4

Data-set and Image Pre-processing

The data-set of prostate MRI used in this thesis is a part of PROSTATEx Challenge
data and was collected by performing a clinical examination. MRI scans at the
Radboud University Medical Centre (Radboudumc), Netherlands, in the Prostate
MR Reference center under the supervision of prof. Dr. Barentsz. The data-set was
collected and curated for research in computer-aided diagnosis of prostate MR under
the supervision of Dr. Huisman, Radboudumec. The two different Siemens 3T MR
scanners, the MAGNETOM Trio and Skyra, were used to collect the images. No
endorectal coil was used in the acquiring of the images. Figure 7?7 shows a randomly
taken ADC MRI slice with a corresponding mask from the PROSTATEx data-set.

100
150
200
250

0 100 200 300 0 100 200 300

Figure 4.1: A random ADC image (Left) with its corresponding segmentation masks
from PROSTATEx data-set

21

The PROSTATEx challenge aimed to focus on the quantitative methods for the
medical images analysis to classify the clinically significant prostate cancer, and
it was held in conjunction with the 2017 SPIE Medical Imaging Symposium[24].
The relevant data-set used in this thesis contains 201 subjects split into training,
testing, and validation data. The images have all kinds of stored information in the
metadata, like name, age, slice thickness, etc. The mask of each MRI case provides
information on the location, size, and shape of the prostate lesion present in that
case.

MRIs relate to a bundle of 2D images that adds up to show three-dimensional
(3D) images. Due to varying data protocols, changing parameters in data makes
it acceptable in medical clinics worldwide. Different data sets are available in the
cancer imaging archive, containing a variety of medical prostate MRIs. However,
the data in this thesis is using the DICOM format of medical images[1§].

4.1 Image Pre-Processing

This section provides a discussion about the pre-processing techniques used in this
thesis. The pre-processing of the data-set is inspired by the work presented on image
data in Data Science Bowl held in 2017 by Booz Allen Hamilton and Kaggle[16].

The operations performed for pre-processing are explained as follows.

4.1.1 Loading of Data

The images are downloaded from The Cancer Imaging Archive (TCIA) using an
NBIA data retriever to download the required DICOM images. Afterward, these
images are then loaded and analyzed for further processing in Jupyter Notebook
using the pydicom library to work with Dicom files in Python. The figure shows
the random slices from ADC modality.

Figure 4.2: MRI slices of Prostate for ADC modality
[cite:https:/ /neurohive.io/en/popular-networks/vggl6/].

22

The table shows the details of the loaded images with number of slices with
respect to the dimensions of slices for ADC modality.

Data Specifications | ADC | ADC | ADC
Width (pixels) 75 84 128
Height (pixels) 128 128 128
Number of slices 162 5640 | 100

Table 4.1: Table showing the number of MRI slices and the correlated image sizes
for ADC modality.

The masks for each case are present in nii or NIfTI format, primarily used for
imaging informatics for neuroimaging. These masks are extracted and loading using
the nibabel library in Python. The information of the masks for each case is present
in PROSTATEx Classes.csv file, based on whether the mask is clinically significant
or not.

4.1.2 Data Filtering

The image_list.csv file contains the information about the clinically significant
images or slices out of all the images or slices for every case. The relevant significant
information for each case is present in this CSV file for ADC images. The regex
library filters the data-set to extract the relevant images based on the information
from the said CSV file. The filtered data is then stored and copies separately from
the original data with the original names along with the patient data for the copied
slices that is every case is named as ProstateX-|patient num] where patient number
ranges from 0 to 201. The information for cases number 52, 82, and 138 is missing
in the data set.

4.1.3 Data Reshaping

CNN trains on images that have similar dimensions. A group of images with different
dimensions can be used to train the same neural network but separately. The CNN
is designed to fit the dimensions of images in the data set to get better results.
The data-set comprising ADC images has height, and weight ranging 96 x 96 to
208 x 208 were reshaped to the resolution of 128 x 128 using OpenCV built-in resize
function. The channel represents the depth of the image, RGB images have three
channels, and grayscale images have one channel. MRI images are grayscale and
have one channel. For VGG16, the pictures are made three-channel using the merge

23

command and copy the same picture three times. Table gives the details of total
slices for each modality and their respective dimensions after reshaping.

Reshaped Data Specifications | ADC
Total Cases 201
Total Number of slices 1285
Final Reshaped width (Pixels) 128
Final Reshaped height (Pixels) 128

Table 4.2: Table showing the number of MRI slices and the correlated image sizes
for ADC modality.

4.1.4 Slice Operation and Data Organization

In this thesis, the total subjects used are 201, and 1285 slices are present in the
ADC image data-set for all the subjects. This data set contains both the significant
and non-significant tumor slices of the subjects. Non-significant slices are those in
which tumors are benign and not harmful to the body. Significant slices are those
in which the tumor is malignant and is harmful to the body. The slices are sorted
and stored in two different arrays based on the presence of lesions and labels. Then,
the sorted and stored data is divided into three different arrays for the formation
of training, testing, and validation data. Around 80% of both significant and non-
significant slices are stored in training data-set, 10% is for testing and validation
each. During the stratification, it is strictly considered to put all the slices of one
patient in one data set to avoid leaking lesions between different data sets. DCGAN
is trained on significant and non-significant separately; however, for training CGAN,
both data-sets are used simultaneously using labels as a second input for it.

Details of ADC Data-set | ADC
Total data-set 1285
Training data-set 894
Test data-set 203
Validation data-set 188

Table 4.3: Details of Image stratification

24

4.1.5 Data Normalization

Neural Networks (NN) usually calculate small weights to proceed with input im-
ages. The pixel values in most of the images are integers, ranging from 0 to 255.
The larger pixel values can make the learning process slow and cost computing effi-
ciency; also, weight decay and Bayesian estimation can be done more conveniently
with standardized inputs. Therefore, normalizing the pixel values to Normal or
Gaussian distribution is often considered if normalization is done by the standard
deviation|12|. In this thesis, normalization is achieved using the equation ?7?.

X — Xmin

Normalization = ————
Xmax - Xmm

(4.1)
In equation (4.1, X is the original image pixels, X, is the minimum pixel value
and X4, is the maximum pixel value of the image. The images are normalized to
have a range of [0, 1]. The data is also standardized to have unit variance, and zero
mean.

4.2 Save Organized Data

In this thesis, the Numpy library saves the organized data as a four-dimensional
NumPy array in a file with an extension .npy. The first index of the array represents
slices for all the subjects; the next two indexes represent the height and width
of the images. The last index represents the depth of the image, that is, several
channels. In this thesis, the number of channels is equal to one when training the
GAN architecture, and several channels are three when running the VGG16. All
the images used in this thesis are gray-scale. The input shape of the stored NumPy
array in DL architecture is (number of slices, height, width, channels).

25

Chapter 5

Solution Approach

5.1 Existing Approaches

The paper Medical Image Synthesis for Data Augmentation and Anonymization
using Generative Adversarial Networks written by Hoo-Chang Shin et al.[[36]], uses
Pix2Pix to generate MRIs of the brain. This paper uses real segmentation masks
and is not generating new ones. Masks used in this paper have multiple classes and
black backgrounds surrounding the brain.

A master thesis with the title Data augmentation in deep learning using generative
adversarial networks[28] written by Thomas Neff for the Graz University of Technol-
ogy uses Wasserstein GAN (WGAN) to generate both X-radiation (x-rays) images
of the lung and their corresponding masks.

Another paper with the title Improving Prostate Whole Gland Segmentation In T2-
Weighted MRI With Synthetically Generated Data written by Alvaro Fernandez-
Quilez et al.[17], uses DCGAN and Pix2Pix GAN to improve the quality of segmen-
tation of whole gland (WG) in T2W images. This paper generates new images and
their corresponding masks to improve the segmentation of the whole gland compared
to standard augmentation methods.

5.2 Proposed Method using GAN to Expand the
Data-set

The testing network named VGG16 requires images and labels as input to learn the
features and classify the tumors into significant and non-significant. In this thesis,
two GAN architectures are being used to extend the data set. However, both of

26

these architectures are independent of each other. The first architecture is DCGAN
that generates images without any labels, and the second architecture is conditional
GAN (cGAN) that generates images along with labels and can generate images of
specific classes based on these labels. Both GAN networks contain a generator and
a discriminator, designed as two models that update weights separately. DCGAN
and ¢cGAN only train on data that contain tumors, both malign and benign, thus
narrowing the data-set to 1285 samples.

This thesis has a two-step approach; in the first step, data is generated using GAN
networks, and in the second step, this generated data is used to augment the orig-
inal data and used as an input to the classifier, which in our case is VGG16 in
order to compare the results of the augmentation using conventional methods and
augmentation using GAN.

5.2.1 DCGAN Methodology

DCGAN is used to generate images, as the training process has proven to be more
stable than the original GAN.

DCGAN trains for 5,000 epochs, where each epoch takes around 5 seconds. The
training process is performed on the University of Stavanger gorina6 server, which
uses Nvidia Tesla V1000 GPU with 32 GB memory. The GAN discriminator is
used to measure the performance. The GAN is appropriately trained when the
discriminator can no longer distinguish between real and generated images. Other
than this, there are no evaluation metrics to know when the generated images are
realistic, and the training process should stop. The network train for 5000 epochs
and share visual of generated images after every 100 epochs. The batch size contains
128 samples recommended by the original paper[21], and each epoch is completed
in seven steps. The data-set used in the original paper|[21] contained 3 million
samples, while our data-set has only 367 samples with significant tumors and 918
non-significant tumors.

DCGAN is trained separately for both significant and non-significant tumors be-
cause it cannot generate specific images when provided a label, so in order to avoid
mismatch of the generated samples, this method is being adopted. All models train
using adam optimizer with a learning rate of 0.0002 and momentum (f;) equal to
0.5, as recommended by the original paper[21].

Model Design

The DCGAN implementation is inspired by Jason Brownlee's work on DCGAN for
gray-scale mnist handwritten digit data-set[6] and the original DCGAN architecture.

27

Jason Brownlee's work on DCGAN generates images of size 28 x 28 pixels, and
original paper|21]| generates images of 64 x 64. In this thesis, the model used in the
original paper|21] and Jason has been modified to generate images with 128 x 128.

Developing a DCGAN requires both a discriminator neural network for classify-
ing whether the image is real or generated and a neural generator network that
transforms the input into a two-dimensional image. The discriminator learns the
difference between real and generated images. A visual illustration of the model
is shown in figure 5.1 The implementation of the discriminator model is inspired
by the original paper|21] and has been extended by adding two convolutional lay-
ers to change the input to 128 x 128. The output is a single neuron with a sigmoid
activation function, and the loss function is a binary cross-entropy, as recommended.

e Discriminator input: A half batch of real images and a half batch of gen-
erated images with 128 x 128 pixel size and one channel.

e Discriminator output: A single output, which determines whether the input
is real or generated.

The DCGAN generator is responsible for creating new, fake, but plausible images.
The model input corresponds to a 100 elements vector of Gaussian distributed ran-
dom numbers. A visual illustration of the model is shown in figure [5.1]

e Generator Input: A vector containing 100 elements of Gaussian distributed
random numbers.

e Generator Output: Two-dimensional square gray-scale image of 128 x 128
with pixel values in [0,1].

The first two layers of the generator are dense and reshape, which convert the input
array into a 2D array with a shape of 8 x 8 x 128. The dense layer has an activation
size of 8192. The generator uses the transpose convolution layer to learn weights
while up-sampling the input. The transpose convolution layer uses the kernel with
a width and height of 5 and 2 number of strides. All the transpose convolutional
layers use the same kernel and strides while the number of filters decreases by half
with each successive layer. The first layer has a 1024 number of the filter size,
and the last transpose convolutional layer has 128 filters, thus making 4 transpose
convolutional layers.

28

conv2d_transpose_1: Conv2DTranspose |

leaky_re_lu_2: LeakyReLU

Discriminator model Generator model

leaky_re_lu_6: LeakyReL.U

conv2d_transpose_2: Conv2DTranspose |

leaky_re_lu_7: LeakyReLU

conv2d_transpose_3: Conv2DTranspose |

leaky_re_lu_8: LeakyReLU

conv2d_transpose_4: Conv2DTranspose |

Figure 5.1: Proposed Discriminator and Generator model for DCGAN

All the transpose convolutional layers use LeakyReLU with a « value of 0.2. The
last layer in the generator is a convolutional layer with 1 filter and kernel size of
(7 x 7) to get the output for the required size, which in our case is 128 x 128 with
a channel of 1 and uses a TanH activation function to ensure output values in the
range of [—1,1].

The generator is updated based on the feedback from the discriminator. This model
uses the latent size of 100 for the generator's input and feeds the generated images
to the discriminator. The discriminator classifies each input and returns a value to
update the generator weights. The generator is not compiled individually, while the
discriminator and the combined model are compiled. After the training, the gener-
ator can be used to produce output. More detailed model designs are in Appendix

Bl

29

5.2.2 cGAN Methodology

GAN models can generate new random images for a given data set, but there is no
way to control the types of images generated other than trying to figure out the
complex relationship between the latent space and the generated images|8].

The conditional generative adversarial network, or cGAN for short, is a type of GAN
that involves the conditional generation of images by a generator model. Image gen-
eration can be made conditional on a class label, allowing the targeted generalization
of images of a given type. The cGAN was first described by Mehdi Mirza and Simon
Osindero in their 2014 paper titled “Conditional Generative Adversarial Nets.” [27]
In the paper, the authors motivate the approach based on the desire to direct the
image generation process of the generator model.

The architecture consists of a generator and a discriminator model. The generator
model generates new images that are indistinguishable from actual images in the
data set. The discriminator model is responsible for classifying a given image as
either real or generated.

DCGAN is effective at image synthesis and can generate new examples of images for
a target data-set. Some data sets have additional information in the form of class
labels, and it is desirable to use this information. There are two reasons for making
use of the class label information in a GAN model.

e Improve the GAN
e Targeted image generation

Additional information related to the input data-set, such as class labels, can im-
prove the GAN. The improvement may be in the form of more stable training, faster
converging , and generated images that have better quality. Class labels can also
be used for the targeted generation of images of a given type. This type of model is
called Conditional Generative Adversarial Networks, or cGAN for short.

The network trains on both labels and MRIs obtained from the PROSTATEx data-
set, but only those with significant and non-significant slices. The network is trained
for 6000 epochs where each epoch takes around 12 seconds on the University of
Stavanger gorinab server, which uses Nvidia Tesla V1000 GPU with 32 GB memory.
The batch size is equal to 128, and visual examples are printed after every 100
epochs. All models use Adam optimizer with a learning rate equal to 0.0002 and
momentum (31) equal to 0.5, as recommended in the original paper|27]. The cGAN
can be trained on both significant and non-significant tumor data-set provided when
labels are available for both of them.

30

Model Design

Starting with the discriminator model, a second input is defined that takes a value
for the class label of the image. This makes the input image depended on the class
label that was provided to the model. The class label is then passed through an
embedding layer with a size of 50, which means that each of the two classes in the
PROSTATEx cancer data will map to a different 50-element vector representation
that the discriminator model will learn.

The output of the embedded layer is then passed to a fully connected layer with a
linear activation. The fully connected layer has enough activations to be reshaped
into one channel of a 128 x 128 image. The activations are reshaped into a single
128 x 128 activation map and concatenated with the input image. This has the
effect of looking like a two-channel input image to the next convolutional layer. The
parameterized shape of the input image is also used after the embedding layer to
define the number of activations for the fully connected layer to reshape its output.
The number of classes in the problem is also parameterized in the function and set.

In order to make architecture clear, figure is a plot of the discriminator model.
The plot shows the two inputs: first, the class label that passes through the embed-
ding layer(left) and the image (right), and their concatenation into a two-channel
128 x 128. The rest of the model is identical to the discriminator explained in section

L2l

e Discriminator Input:Half batch of real images and half batch of generated
images with 128 x 128 pixel size and labels for the images.

e Discriminator Output: A single output, which determines whether the
input is real or generated.

Next, the generator model must be updated to take the class label. This has the
effect of making the point in the latent space conditional on the provided class label.

Similar to discriminator, the class label is passed through an embedding layer to
map it to a unique 50-element vector and is then passed through a fully connected
layer with a linear activation before being resized[8]. In this case, the activations
of the fully connected layer are resized into a single 8 x 8 feature map. This is to
match the 8 x 8 feature map activations of the unconditional generator model. The
new 8 x 8 feature map is added as one more channel to the existing 128, resulting
in 129 feature maps that are then up-sampled as in the prior model[§].

In order to make architecture clear, figure [5.2provides a plot of the conditional
generator model.

e Generator Input: A vector containing 100 elements of Gaussian distributed

31

random numbers along with a label.

e Generator Output: Two-dimensional square gray-scale image of 128 x 128
with pixel values in [0, 1].

leaky_re_lu_§: LeakyReLU

conv2d_transpose_4: Conv2DTranspose

leaky_re_lu_9: LeakyReLU

Discriminator model Generator model

Figure 5.2: Proposed Discriminator and Generator model for cGAN

In this case, the 100 —element point in latent space as input and subsequent resizing
(left), then the concatenation of the two sets of feature maps (center). The remainder
of the model is the same as the generator model explained in section [5.2.1]

Finally, the new GAN model will take a point in latent space as input and a class
label to generate a prediction of whether the input was real or fake. It is crucial to
connect the image-generated output from the generator and the class label input,
both as input to the discriminator model. This allows the same class label input to
flow down into the generator and down into the discriminator|8].

The figure [5.3| summarizes the composite GAN model. It shows the generator model
in full with the point in latent space and class label as input, and the connection of
the output of the generator and the same class label as input to the discriminator
model and the output of a single class label classification of real or fake.

32

‘ input_d: TnputLayer ‘ ‘ input_3: TnputLayer ‘

‘ dense_d: Dense ‘ ‘ embedding 2: Embedding ‘

|

l leaky_re_lu_S: LeakyReLU ‘ ‘ dense_3: Dense ‘

leaky_re_lu_7: LeakyReLU

conv2d_transpose_3: Conv2D Transpose

leaky_re_lu_8: LeakyReLU

conv2d_transpose_4: Conv2D Transpose

leaky_re_lu_9: LeakyReLU

Figure 5.3: cGAN Proposed Model

More detailed model designs are in Appendix [B]

5.2.3 VGG16

VGG16 is a convolutional neural network model proposed by K. Simonyan and A.
Zisserman from the University of Oxford in the paper “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. The model achieves 92.7% top-5 test
accuracy in ImageNet, which is a data-set of over 14 million images belonging to
1000 classes. [3§]

Model Design

In this thesis, pre-trained weights of the VGG16 network are used along with an
output layer whose output will be equal to the required number of classes. In
order to add pre-trained weights, the weights will be downloaded from the keras
api. The weights of the VGG16 are big in size and covers 512 MB. The data-set
contains 3 directories: Training, Validation and Testing. Each directory contains
sub-directories with images of classes which in this thesis is significant tumors and

33

non-significant tumors. The weights of the VGG16 are loaded without the top layer
to change the input shape to 128 x 128 from 224 x 224 RGB image the image has 3
channels. In order to convert, 1 channel into 3 channel image, single channel image
is merged together 3 times using NumPy python library. The layers of the VGG
are excluded from training phase because they are already trained because of the
imagenet weights. The activation function used in the output layer in this case is
softmax because VGG16 is a multi-label classification problem. Loss function used
is categorical crossentropy with adam optimizer, The metrics used are accuracy and
AUC to monitor the network with an EarlyStopping as a checkpoint. More detailed
model designs are in Appendix [B] The batch size used is 32 and number of epochs
used is 300. The input and output of the model is listed below:

e VGG16 Input: Image with a 128 x 128 pixel size with 3 channels.
e VGG16 Output: Output array with a size of 2 because input has two classes.
The figure [5.4] shows proposed model of VGG16

34

input_l: InputLayer

blockl_convl: Conv2D

blockl_conv2: Conv2D

block2_conv1: Conv2D

block3_conv2: Conv2D

block3_conv3: Conv2D

block3_pool: MaxPooling2D

block4_conv1: Conv2D

block4_conv2: Conv2D

block4_conv3: Conv2D

blockd_pool: MaxPooling2D

block5_convl: Conv2D

block5_conv2: Conv2D

block5_conv3: Conv2D

blockS_pool: MaxPooling2D

Figure 5.4: Proposed VGG16 Model

35

Chapter 6

Experimental Evaluation and
Results

[l] In this chapter, the experiments, classification evaluations, and results are pro-
posed. Various configurations for the models are also presented, and evaluation of
the results produced by VGG16 using DCGAN and cGAN.

6.1 Experimental Setup

The experiment is performed by augmentation of the organized data-set using vari-
ous methods and then evaluating the augmented data-set using the VGG16 classi-
fication network. The loss function under observation is the area under the curve
(AUC), and ROC curves evaluate the model performance during training. This the-
sis compares the conventional augmentation techniques like translation, rotation,
and horizontal flipping of the data with the data generated by the GAN architec-
tures. VGG16 network is trained for 1000 epochs with early stopping callback Keras
function that monitors the validation AUC with the patience of 20 epochs, meaning
that it will stop the training process if the validation AUC does not change for 20
consecutive epochs.

In this thesis, VGG16 is used with pre-trained weights and then adds a new output
layer with two classes. To use the pre-trained weights, a new data set is added
that contains the weights. The data set is divided into three groups for training,
validation, and testing purposes. The weights of the VGG are loaded without the
top layer. These weights are trained on Imagenet data-set. The network uses the
Adam optimizer with a learning rate of 0.001. The network monitors the validation
AUC and accuracy, only saving the best model using the checkpoint.

36

6.2 Selected configuration for DCGAN

Generative Adversarial networks are not easy to train and require precise config-
urations because if the discriminator is too good at detecting real and generated
images, it will stall the generator’s performance, resulting in a failure mode where
the generator cannot generate any good images. If the discriminator is too weak
then generator, it will take any input and classify it as real thus will not improve
the generator which results in another failure mode.

For a reason mentioned above, DCGAN has to be configured differently for different
image sizes. The model used in this thesis is inspired by Jason Brownee[7] model.
The model has been modified to fit for 128 x 128 input image size by adding extra
layers and increasing the filter size to accommodate the large pixel size along with
other changes. Hype parameters have been modified to fit the desired results. High
learning rates (LR) like 0.01 and 0.1 were used, which lead to quick failure mode
where the discriminator loss is zero while generator loss is high. Alongside this,
small learning rates 0.00001 and below were also tested which lead to very slow
development of images at the start and then generator blows out quickly which
results in GAN training failure.So, after testing various settings, the learning rate
of 0.0002 was used with the oy value of 0.5 DCGAN is very sensitive to the hyper-
parameters, for example, number of filters, number of epochs, kernel size, number
of layers. The convolutional and transpose convolutional layers in discriminators
and generators are four, with an equal number of filters ranging from [512,64] and
strides size of 2 for both models. Selected kernel size for discriminator is (3, 3) while
for the generators is (4,4). The number of epochs used for the training is 10,000
with a batch size of 128, taking one week for training. DCGAN generator output
was stored and visualized after every 1000 epochs which will be discussed in the next
chapter. After testing various settings, the configurations that are used for DCGAN
are as follows:

Parameters for DCGAN | Value

Batch Size 128

Optimizer Adam (Lr = 0.0002 5, = 0.5)
Latent Dimension 100

Kernel size (Discriminator) | (3,3)

Kernel size (Generator) (4,4)

Number of epochs 10,000

Table 6.1: Selected Hyperparameters for DCGAN

he images for training of the GAN are available in Appendix [C]

37

6.3 Selected configuration for cCGAN

c¢GAN training parameters differ from the DCGAN because it takes more inputs in
the form of labels to generate targeted images. The model in this thesis is inspired
by Jason brownee [§]with modifications to use the input images with a pixel size
of 128 x 128. The input labels are filtered in corresponding with their images.
The images and labels are concatenated in both generators and discriminators to
overcome the limitation of DCGAN where it cannot generate targeted images.

In cGAN, the number of convolutional and transpose convolutional layers are similar
that is four with a filter size ranging from 1024 for the first layer and 128 for the last
convolutional and transpose convolutional layer of both generators and discrimina-
tors. ¢cGAN becomes very unstable by changing small values. The computational
time required to train cGAN is higher than DCGAN; hence the number of epochs
to train is limited to 5000, which took around one week to complete with a batch
size of 128. The generator’s output and visualization were saved after every 1000
epochs. The learning rate used is 0.0002 with « value of 0.5 for Adam optimizer.
Kernel size for discriminator is (4,4) and for generator is (5,5) with a stride size of
2. The latent size used in ¢cGAN is 100; when latent size increases, it increases the
computational time per epoch and requires more layers to fill the latent space with
the required parameters. The recommended number of latent dimensions is 100 and
is being used for the cGAN architecture. The configurations used for cGAN are as
follows:

Parameters for DCGAN | Value

Batch Size 128

Optimizer Adam (Lr = 0.0002 5, = 0.5)
Latent Dimension 100

Kernel size (Discriminator) | (4,4)

Kernel size (Generator) (5,5)

Number of epochs 5,000

Table 6.2: Selected Hyperparameters for cGAN
The images for training of the GAN are available in Appendix [C]

6.4 Comparison of generated images from DC-
GAN versus cGAN

After training both DCGAN and cGAN, images are generated from the saved gen-
erator file of each GAN architecture. For further use, the GAN image quality is

38

compared with the original images by visual inspection.

The cGAN generator can generate the images by providing two inputs arguments to
it, an input label and latent points with dimension 100. ¢cGAN takes the input from
the user and generates specified images with their specified labels. In this thesis,
the labels used for non-significant is 0 and for significant images is 1. Images are
also generated from the DCGAN generator by providing one input argument, latent
points with dimension 100. DCGAN can generate multiple types of images, but it
can not be targeted; hence for multi-class image generation, cGAN is preferred.

The images from both the architectures are presented in the figure 7?7, with cGAN
image in the center and DCGAN image at the right side of the figure, along with
an MRI image from the original data-set at the left side of it. It can be observed
from the images that the image generated by the cGAN (center) is well structured,
while the image generated by the DCGAN is blurry and has not acquired prostate
structure as that of the cGAN. When the images are compared with the real images,
one can notice that the cGAN image is close to the real image. It captured the overall
structure of the prostate from the data-set and is close to the real image in the sense
that it can generate images with the prostate visible. The image generated by the
DCGAN has acquired the overall structure of the MRI image, but it does not come
close to the cGAN and real image.

Real image Image generated by cGAN Image generated by DC-
GAN

Figure 6.1: Comparison of Images

In this thesis, the images generated from cGAN are used to augmentation of the
original data set. The decision is based on comparing results from two different
architectures used in this thesis. The images generated by the cGAN have more
control over the variety and type of the images (significant or non-significant tumors)

39

compared to the DCGAN, which helps generate more versatile images compared

with DCGAN.

6.5 Augmented Images

Various conventional augmentation methods exist to increase the data-set. In this
thesis, the augmentation methods used to evaluate the binary classification result
are translation, rotation, and flipping of the original data. The data augmentation
techniques used will increase the size of the data-set by the same amount as the
original data. In our thesis, 918 images containing non-significant tumors and 367
images containing significant tumors will be increased by 100% and will augment the
same number of images as the original data set. After augmentation, the data-set
size will be equal to 1836 images containing non-significant tumors and 734 images
containing significant tumors.

6.5.1 Translated Images

In this section, image translation is discussed. Translation means that the image
is shifted by adding or subtracting the X/Y coordinates, and the image is moved
within the frame of reference. It is accomplished by adding a transformation matrix
that shits the image in the required direction. Figure shows a translated image
with a real image.

Real Image Translated Image

Figure 6.2: Comparison of Real and Translated image

40

6.5.2 Flipped Images

This section explains the flipping of images. NumPy inbuilt function np.fliplr is used
to flip the image. Flipping means that a mirrored version of the picture is produced.
This data augmentation type is used widely for increasing the data set. The image
on the right side of figure [6.3] shows a horizontally flipped image along with an
original image. The reason not to do a vertical flip was to avoid an unrealistic
situation in which the network will never come across, or there will be an MRI with
an upside prostate in it.

Real Image Flipped Image
Figure 6.3: Comparison of Real and Flipped image

6.5.3 Rotated Images

Rotation of the image is one of the image transportation operations applied to
augment the data set. The image is rotated around the center of the axis by a
specified degree, which is 25 degrees. In the figure [6.4] shows a 25°rotated image
along with the real image. If the image is rotated more than this, then it becomes
distorted and loses its original form.

41

Real Image Rotated Image

Figure 6.4: Comparison of Real and Rotated image

6.6 Model Performance

In this section, the performance of classifiers is tested against different configurations
of the test data-set for both generated and augmented methods. The section will
also explain the comparative results for both generated images from ¢GAN and
augmented images using conventional methods. The metric that is used to compare
the results for the various configurations is macro AUC-ROC curves. The ROC
curve is an evaluation metric for binary classification problems. It is a curve that
plots the TPR against FPR at different threshold values and separates the noise
from the signal. The Area Under the Curve (AUC) measures how well a classifier
distinguishes between classes and is used as a summary of the ROC curve. The
higher the AUC, the better the performance for the model at distinguishing between
the positive and negative classes.

The data-set contains significant and non-significant images from the original data-
set that have not been trained on classifier before, and all the slices of a particular
patient are present in a single data-set and are not repeated in another data-set.

6.6.1 Model Performance for Different Percentage of cGAN
Generated Images

In this section, model performance is compared between different percentages of
generated data added in the original data set. The original data-set is increased by
different percentages of 50%\100% \150% along with another case dubbed as balance
data-set. In the balance data-set, the class imbalance is removed by increasing
the data in both significant and non-significant tumor data sets until the number

42

of images in both classes is equal. Increasing the data-set by 50% means that
the original data-set containing 1285 images will be augmented by 643 additional
images. The same logic is carried out for 100% and 150% increases in data to
study the impact of increasing the data. The data sets are increased by percentage
according to the number of images in a specific class. After the data sets are prepared
according to the configurations mentioned above, they train the VGG16 network.
The network is trained on the data-sets with EarlyStopping with validation AUC
under observation with the patience of 20 epochs. If the val _AUC' does not change
for 20 epochs, the network stops training and then calculates the AUC-ROC curves
using the best model saved during the training using checkpoint callback function.
The same data set is run three times, and then the average is calculated to present
results.

Data-set macro ROC-AUC
Original Data-set | 0.55
Balanced Data-set | 0.71
150% Data-set 0.58
100% Data-set 0.61
50% Data-set 0.59

Table 6.3: Comparison of ROC-AUC of generated and original data-sets

From the table [6.3] it can be seen that the best AUC-ROC is provided by the
balance data-set. It has the highest AUC compared to the original data-set and
shows an overall improvement of 18% from the original one. It can also be observed
by analyzing the figure that the difference between the macro ROC-AUC for
both 100% and 50% is close to each other, implying that adding less data can help
increase the model performance significantly without increasing the computational
time. It can also be observed that AUC improvement for 150% is less than compared
to all other augmented data sets, which implies that increasing the data-set beyond
a specific value can have negative impacts while also increasing the computation
time.

43

macro ROC curve for generated data

10 - .
= Pl
P e
Pl —— o
- e
0.8 - e -
A

0.6 -

.-""- ...n'.- .-"J';
0.4 4 .III _.r"_.-"_ _—-".nni-"li

—— macro-average ROC curve for 50% data (area = 0.59)
macro-average ROC curve for L00% data (area = 0.61)

Tue Positive Rate
O\
h:a
I'H.
k
xﬁl
W

0.7 4 —— macre-average ROC curve for 150% data (area = 0.58)
—— macro-average ROC curve for balanced datalarea = 0.71)
— macre-average ROC curve for original datalarea = 0.55)
0.0 -ﬁ’
0.0 02 04 06 0.8 10

False Positive Rate

Figure 6.5: Hlustrated AUC-ROC curves for all generated data-sets

6.6.2 Model performance for Augmented versus Generated
Images

In this section, model performance is compared between generated and conventional
augmentation methods. The data sets that will be compared are prepared by using
the methods mentioned in the section All of the data-set is increased by 100%.
Conventional augmentation methods results are mentioned in the table It can
be observed that all three augmentation methods have less AUC when compared
with the generative methods. Image translation has the worse AUC and does not
contribute any improvement in the classification. All the generative methods have
better AUC than any of the augmentation methods. In augmentation methods,
image flipping performs better than translation and rotation. The AUC for image
flipping is approximately the same as was obtained using 150% data generation
using GAN. Balanced data-set has performed better than any other generative or
conventional augmentation method with an AUC of 0.71, which shows an improve-
ment of 18 percent from the original data-set, which has an AUC of 0.55. The AUC

44

mentioned in table are presented after running the model 3 times and taking

their average.

Data-set macro ROC-AUC

Original Data-set 0.55

Balanced Data-set 0.71

100% Data-set 0.61

Rotated Data-set 0.55

Translated Data-set | 0.53

Table 6.4:

Flipped 0.56

Comparison of ROC-AUC of generated and augmented data-sets

macro ROC curve for generated data

10 -

08 4

0.4

Tue Positive Rate

027

macro-average ROC curve for flipped data {area = 0.56)
macre-average ROC curve for translated data (area = 0.53)
macro-average ROC curve for rotated data (area = 0.55)
macre-average ROC curve for L00% data (area = 0.61)
macra-average ROC curve for balanced datalarea = 0.71)
macra-average ROC curve for original datalarea = 0.55)

0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 6.6: Illustrated AUC-ROC curves for all augmented and two generative data-

sets

45

Chapter 7

Discussion

This chapter presents the discussion of the achieved results, different factors that
affect the model’s performance, evaluation of the proposed methods, and limitations
of the presented methods.

7.1 Effectiveness of Proposed Methodology

The analysis of achieved results explained in chapter [6] shows that the proposed
method successfully proves that data augmentation using the generative method
is more effective than the standard augmentation methods. The average macro
ROC-AUC of 0.71 for the proposed model provides evidence that the model can
provide better augmentation for the training of classification models for improving
the binary or categorical classification. The results produced in this thesis presents
comparative studies between generative and augmentation methods.

7.2 Evaluation of Generative Models

In this thesis, two generative models were discussed and tested, cGAN and DCGAN.
In order to generate images, cGAN was selected due to multiple reasons. cGAN
has particular advantages over DCGAN, given that we can provide the additional
information required for the cGAN. The images generated by DCGAN are random,
and it is challenging to obtain the required images; it takes more time for the
DCGAN to converge than the cGAN to train on different data sets to obtain the
required images. These problems are solved using cGAN, where we can provide the
labels to the cGAN and get the required images from it. ¢cGAN can be trained on
more than two classes and generates images when provided a specific label—this

46

helps to train at the whole data without struggling to get the required images from
the model. cGAN saves time for the training and gives more control over the images
generated from the data. Since cGAN trains on more data than DCGAN, the image
quality is better for it.

The results of training a binary classification model on the combination of original
and synthetic data are promising because the performance is higher when the com-
bined data is used than only original data. The generated data is not similar to
augmentation data as all the augmentation performance is lower than flip.

7.3 Evaluation of the Augmented Methods

Data augmentation for deep neural networks is a method to extend the data-set
artificially. Data augmentation methods re-arrange the pixels enough for the model
to not recognize it as the original and deems it separate from the original MRI.
Augmentation is counter-productive when it is too different from the original data,
making it necessary to analyze the training data to find the best augmentation
techniques to preserve the critical parameters of the MRI images. These three data
augmentation types were used, that are rotation, horizontal flip, and translation.

When the augmented data sets are used for the VGG16 network, it produces slightly
better results than the original data set, and the reason is that these images do not
have the same structure as the original data-set MRI images, hence the network
does not recognize the same images.

7.4 Macro ROC-AUC

In this thesis, Macro ROC-AUC is considered and discussed because the data is
highly imbalanced. Number of non-significant patients is lot higher than significant
patients which creates a class imbalance in the data-set. VGG16 is a categorical
classifier that means it can classify more than 2 classes, due to which categorical
ROC-AUC is used. The categorical ROC-AUC generates individual class ROC-AUC
curves and then has two curves macro and micro. Macro ROC-AUC is the average of
class AUC and in our case represents the actual ROC-AUC case. Micro ROC-AUC
is weighted average of class ROC-AUC which means that if the classifier identifies
one class better than the other one then micro ROC-AUC will show high value since
most of the majority class is correctly predicted and will show higher results which
do not represent the actual case. The data used in this thesis, is highly imbalanced
and micro ROC-AUC is always higher because the majority class (non-significant
tumors) which in this case is approx. 80% of total original data-set will be predicted

47

correctly due to this reason micro ROC-AUC does not constitute a good metric.
More individual ROC-AUC curves are available in the appendix [A] to confirm this.

Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class

1.0 5 1.0 e
P X P, &
=

L if .
- =
0.8 e e 0.8+ et

1 2
5
o« « .
< 0.6 o i
H [} [va
B - 2 Ve
3
& &
v
2
E E

0.4

o == mi e cun
024 . ma ROC cu : 024

00 0.0 ¥

Balanced Data Real Data
Figure 7.1: ROC-AUC for balanced (left) and Original (right) data-sets

From the figure it can be observed that the micro ROC-AUC of the real data is
lot higher than the macro ROC-AUC because the insignificant slices far exceed the
significant slices in the original data thus causing this imbalance. When the data
is augmented using GAN and both the classes are balanced, then both the micro
ROC-AUC and macro ROC-AUC becomes significantly close to each other. So, the
model was evaluated on macro to avoid the biases on which micro ROC-AUC is
calculated.

7.5 FEvaluation of Performance

The thesis’s primary focus has been to develop a method to extend the data-set
with synthetic data using GAN architecture. In this thesis, only cGAN generated
images are used to generate the data, which proved to be more beneficial for im-
proving the binary classification. Since various percentages were used to analyze
the impact to check what percentage of data can be used to save the computation
time for the training of classification network and provide higher results compared
to conventional augmentations, the binary classification network VGG16 has the
same settings as the original data, augmented data, and synthetic data combined
with the original data and should be suitable for comparing the results.

7.6 Limitations

There are various limitations of this project that will be discussed be in this section.

48

7.6.1 Evaluation of the GAN metrics

There is a problem in GAN metrics that there is no definite way to evaluate the
GAN architectures. Various metrics were observed to evaluate the results. The met-
rics that were considered were Structure similarity index measure (SSIM), Frechet
Inception Distance (FID), mean squared error (MSE), and other image quality mea-
sures, but the problem with this specific data-set is that each patient MRI images
differ from each other. So, when these measures are applied to the images from
this data set. Two images from the same data-set differ from each other to such an
extent that they look different from each other, even on a visual basis. For example,
when MSE is used on two images, it might show that these images are similar to
each other, but when seen by an expert, they might be horrible images because MSE
does not account if the image is blurry or distorted.

7.6.2 Data

The model was able to produce acceptable results for the data generation part. The
data points used in the original paper|21] were around 3 million images, but since we
are dealing with medical image data which is hard to obtain due to patient secrecy.
However, the data available from PROSTATEx is minimal, and when the data is
organized to use for training the model, the data-set becomes even more scarce and
has less than 1300 images, including both significant and non-significant tumors.
Due to this, the results obtained from ¢GAN are considered very good that even
with limited data, it produced acceptable results.

7.6.3 Computational Limitations

The training of deep learning models like DCGAN and ¢cGAN is a time-consuming
and computationally expensive task. The training of the neural networks requires
high-powered GPU servers to perform the demanding computations. The University
of Stavanger has servers that used to have excellent GPU servers, but it has long
queues to access the servers, which can cause some delays in the training process.

It took one week to train cGAN and DCGAN using the UiS servers so, if the server
is refreshed or some other user runs, any process on the server will overload, and
the training process will stop. Even if the server is powerful, it can still not perform
specific actions, which causes the memory to overload, thus limiting the parameters
that can be used to enhance the results.

49

Chapter 8

Conclusion and Recommendations

8.1 Conclusion

The thesis explores the potential of extending the data-set with synthetic MRIs
using two different GAN architectures, namely cGAN and DCGAN, to obtain good
quality data to train a reliable binary classification network. This method uses
c¢GAN architecture to generate two classes of data, and then the data is used with
a combination of original data to train the VGG16 classification network to check
the ROC-AUC of the network on various configurations.

This thesis uses a two-step methodology; the first step is pre-processing the data
and using that data to train the GAN to generate more synthetic data and data
augmentation techniques. The second step involves using the original data and
augmented data to train the classification network and evaluate the results of the
different data augmentation techniques. The thesis directly compares the ROC-AUC
score that is generated from the proposed classification model.

A set of experiments was performed to find optimal hyper-parameters, augmentation
techniques, and neural network structure to generate the best possible data and
classify the data correctly. The results produced by this thesis suggest that generated
data is better than the augmented data to improve the classification of the binary
classifiers.

The main challenge in this thesis was the training of the GAN architectures because
it is sensitive to hyper-parameters and limited data available to train and adjust five
different models.

The conclusion is that the obtained results support the primary aim of this thesis:
that the proposed methods can be employed to generate new images and improve

20

the classifier’s performance by using Generative Adversarial Networks.

8.2 Future Recommendations

This section is dedicated to personal recommendations from the writer to future
members of the project.

e Evaluation of GAN: There is an ongoing problem with the GAN archi-
tectures that there is no one metric that everyone agrees to check the image
quality or determine the metric that can evaluate the GAN. Work can be done
to identify which metrics can be used to evaluate the GAN architecture.

e Different GAN architectures: In this thesis, two GAN architectures were
tested for image generation. More GAN architectures can be used to generate
better quality images to augment the data site.

e Classifiers: VGG16 was the preferred classifier to be used in this thesis, other
classifiers such as resnet, vggl9, or exceptions can be explored to apply the
same methodology on them.

e Data: Available data was limited in this work, so, to further improve the
image quality, more data can be gathered to improve the GAN image quality
further.

51

References

[10]

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. 2016. arXiv: 1603.04467 [cs.DC].

Aqeel Anwar. What is Transposed Convolutional Layer? en. Apr. 2021. URL:
https://towardsdatascience.com/what-is-transposed-convolutional-
layer-40ebe6e31c11 (visited on 07/15/2021).

Artificial neural network. en. Page Version ID: 1032050958. July 2021. URL:
https://en.wikipedia.org/w/index.php?title=Artificial _neural_
network&oldid=1032050958 (visited on 07/05/2021).

“Ascent of machine learning in medicine”. en. In: Nature Materials 18.5 (May
2019). Bandiera_abtest: a Cg_type: Nature Research Journals Number: 5 Pri-
mary_atype: Editorial Publisher: Nature Publishing Group Subject_term: Biomed-
ical engineering;Computational biology and bioinformatics;Machine learning
Subject_term_id: biomedical-engineering;computational-biology-and-bioinformatics;machine-
learning, pp. 407-407. 1SSN: 1476-4660. DOI: 10.1038/s41563-019-0360-1.
URL: https://www.nature.com/articles/s41563-019-0360-1 (visited on
06/26/2021).

Backpropagation — Brilliant Math & Science Wiki. en-us. URL: https://
brilliant.org/wiki/backpropagation/| (visited on 07/05/2021).

Jason Brownlee. “Generative Adversarial Networks with Python”. en. In: (),
p. 654.

Jason Brownlee. “Generative Adversarial Networks with Python”. en. In: (),
p. 654.

Jason Brownlee. How to FExplore the GAN Latent Space When Generating
Faces. en-US. July 2019. URL: https://machinelearningmastery.com/how-
to-interpolate—and-perform-vector-arithmetic-with-faces-using-
a-generative-adversarial-network/ (visited on 06/08/2021).

Can a biopsy spread prostate cancer? — PCFA. URL: https://www.prostate.
org.au/news-media/news-archive/news-archive-2018/can-a-biopsy-
spread-prostate-cancer/ (visited on 07/14/2021).

Cancer today. en. URL: http://gco . iarc . fr /today /home (visited on
06/26,/2021).

https://arxiv.org/abs/1603.04467
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=1032050958
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=1032050958
https://doi.org/10.1038/s41563-019-0360-1
https://www.nature.com/articles/s41563-019-0360-1
https://brilliant.org/wiki/backpropagation/
https://brilliant.org/wiki/backpropagation/
https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/
https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/
https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/
https://www.prostate.org.au/news-media/news-archive/news-archive-2018/can-a-biopsy-spread-prostate-cancer/
https://www.prostate.org.au/news-media/news-archive/news-archive-2018/can-a-biopsy-spread-prostate-cancer/
https://www.prostate.org.au/news-media/news-archive/news-archive-2018/can-a-biopsy-spread-prostate-cancer/
http://gco.iarc.fr/today/home

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

[23]

Elizabeth M Charles-Edwards and Nandita M deSouza. “Diffusion-weighted
magnetic resonance imaging and its application to cancer”. In: Cancer Imag-
ing 6.1 (Sept. 2006), pp. 135-143. 1SSN: 1740-5025. DOIL: 10 . 1102/ 1470 -
7330.2006.0021. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1693785/| (visited on 07/15/2021).

Francois Chollet et al. How to manually scale image pizel data for deep learn-
ing,2019. 2015. URL: https : //machinelearningmastery . com/how-to -
manually-scaleimage-pixel-data-for-deep-learning/..

Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/
keras.

MaryBeth B. Culp et al. “Recent Global Patterns in Prostate Cancer Incidence
and Mortality Rates”. eng. In: European Urology 77.1 (Jan. 2020), pp. 38-52.
ISSN: 1873-7560. DOI: 110.1016/j.eururo.2019.08.005.

MaryBeth B. Culp et al. “Recent Global Patterns in Prostate Cancer Incidence
and Mortality Rates”. eng. In: European Urology 77.1 (Jan. 2020), pp. 38-52.
ISSN: 1873-7560. DOI: |10.1016/j . eururo.2019.08.005.

Data Science Bowl 2017. en. URL: https://kaggle.com/c/data-science-
bowl-2017 (visited on 07/15/2021).

Alvaro Fernandez-Quilez et al. “Improving Prostate Whole Gland Segmenta-
tion In T2-Weighted MRI With Synthetically Generated Data”. In: 2021 IEFEE
18th International Symposium on Biomedical Imaging (ISBI). 2021, pp. 1915—
1919. DOI1: 10.1109/1SB148211.2021.9433793.

Smith K Freymann et al. “SThe cancer imaging archive (tcia): Maintaining
and operating a public information repository”. In: Journal of Digital Imaging
26 (2013).

Maayan Frid-Adar et al. “Synthetic data augmentation using GAN for im-
proved liver lesion classification”. In: 2018 IEEE 15th International Sym-
posium on Biomedical Imaging (ISBI 2018). ISSN: 1945-8452. Apr. 2018,
pp- 289-293. por1: 10.1109/ISBI.2018.8363576.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[an Goodfellow et al. “Generative adversarial networks”. In: Communications
of the ACM 63.11 (Oct. 2020), pp. 139-144. 1SsN: 0001-0782. DO1: 10.1145/
3422622, URL: https://doi.org/10.1145/3422622 (visited on 07/15/2021).
Key Statistics for Prostate Cancer — Prostate Cancer Facts. en. URL: https:
//www . cancer . org/cancer/prostate-cancer/about/key-statistics.
html (visited on 06/26,/2021).

Steinar Valle Larsen. Exploring Generative Adversarial Networks to Improve
Prostate Segmentation on MRI. University of Stavanger, 2020.

i

https://doi.org/10.1102/1470-7330.2006.0021
https://doi.org/10.1102/1470-7330.2006.0021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693785/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693785/
https://machinelearningmastery.com/how-to-manually-scaleimage-pixel-data-for-deep-learning/.
https://machinelearningmastery.com/how-to-manually-scaleimage-pixel-data-for-deep-learning/.
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1016/j.eururo.2019.08.005
https://doi.org/10.1016/j.eururo.2019.08.005
https://kaggle.com/c/data-science-bowl-2017
https://kaggle.com/c/data-science-bowl-2017
https://doi.org/10.1109/ISBI48211.2021.9433793
https://doi.org/10.1109/ISBI.2018.8363576
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html

[25]

[26]

[27]

[36]

[37]

Geert Litjens et al. ProstateX Challenge data. 2017. URL: https://wiki .
cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+
Challenges.

Magnetic Resonance Imaging (MRI). URL: https://www.nibib.nih.gov/
science-education/science-topics/magnetic-resonance-imaging-mri
(visited on 06/28/2021).

Darcy Mason. “SU-E-T-33: pydicom: an open source DICOM library”. In:
Medical Physics 38.6Part10 (2011), pp. 3493-3493.

Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”.
en. In: arXiv:1411.1784 [cs, stat] (Nov. 2014). arXiv: 1411.1784. URL: http:
//arxiv.org/abs/1411.1784 (visited on 07/03/2021).

Saman Motamed, Patrik Rogalla, and Farzad Khalvati. Data Augmentation
using Generative Adversarial Networks (GANs) for GAN-based Detection of
Pneumonia and COVID-19 in Chest X-ray Images. 2021. arXiv: 2006 .03622
[cs.CV]l

MRI DBasics. URL: https://case.edu/med/neurology/NR/MRI%20Basics.
htm (visited on 07/15/2021).

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825-2830.

Prostate biopsy. en. URL: https : // prostatecanceruk . org/ prostate -
information/prostate-tests/prostate-biopsy/ (visited on 07/15/2021).
PSA test - Mayo Clinic. URL: https : //www . mayoclinic . org/ tests -
procedures/psa-test/about/pac-20384731 (visited on 07/15/2021).

Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks”.
en. In: arXiw:1511.06434 [cs] (Jan. 2016). arXiv: 1511.06434. URL: http :
//arxiv.org/abs/1511.06434 (visited on 04/26,/2021).

Rectal examination. en. Page Version ID: 1030217201. June 2021. URL: https:
//en.wikipedia.org/w/index.php?7title=Rectal _examination&oldid=
1030217201/ (visited on 07/14/2021).

Palash Sharma. Keras Dense Layer Explained for Beginners — MLK - Ma-
chine Learning Knowledge. en-US. URL: https://machinelearningknowledge.
ai/keras-dense-layer-explained-for-beginners/ (visited on 07/15/2021).
Hoo-Chang Shin et al. Medical Image Synthesis for Data Augmentation and
Anonymization using Generative Adversarial Networks. 2018. arXiv: 1807 .
10225 [cs.CV].

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: arXiw:1409.1556 [cs] (Apr. 2015).
arXiv: 1409.1556. URL: http://arxiv . org/abs/ 1409 . 1556 (visited on
07/14/2021).

111

https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI+PROSTATEx+Challenges
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://arxiv.org/abs/2006.03622
https://arxiv.org/abs/2006.03622
https://case.edu/med/neurology/NR/MRI%20Basics.htm
https://case.edu/med/neurology/NR/MRI%20Basics.htm
https://prostatecanceruk.org/prostate-information/prostate-tests/prostate-biopsy/
https://prostatecanceruk.org/prostate-information/prostate-tests/prostate-biopsy/
https://www.mayoclinic.org/tests-procedures/psa-test/about/pac-20384731
https://www.mayoclinic.org/tests-procedures/psa-test/about/pac-20384731
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://en.wikipedia.org/w/index.php?title=Rectal_examination&oldid=1030217201
https://en.wikipedia.org/w/index.php?title=Rectal_examination&oldid=1030217201
https://en.wikipedia.org/w/index.php?title=Rectal_examination&oldid=1030217201
https://machinelearningknowledge.ai/keras-dense-layer-explained-for-beginners/
https://machinelearningknowledge.ai/keras-dense-layer-explained-for-beginners/
https://arxiv.org/abs/1807.10225
https://arxiv.org/abs/1807.10225
http://arxiv.org/abs/1409.1556

[38]

[39]
[40]

[41]

[42]

VGG16 - Convolutional Network for Classification and Detection. en-US. Nov.
2018. URL: https://neurohive.io/en/popular-networks/vggl6/ (visited
on 07/03/2021).

What is a Conditional GAN (¢GAN)? en. URL: https://www.educative.
io/edpresso/what-is-a-conditional-gan-cgan (visited on 07/15/2021).
What is Cancer? en. Aug. 2012. URL: https://www.cancer.net/navigating-
cancer-care/cancer-basics/what-cancer (visited on 07/15/2021).

David A. Woodrum et al. “Targeted prostate biopsy and MR-guided therapy
for prostate cancer”. en. In: Abdominal Radiology 41.5 (May 2016), pp. 877—
888. 1SSN: 2366-004X, 2366-0058. DOI: 10.1007/s00261-016-0681-3. URL:
http://link. springer.com/10.1007/s00261-016-0681- 3| (visited on
06/26,/2021).

Guangyuan Zhang et al. “A Method for the Estimation of Finely-Grained
Temporal Spatial Human Population Density Distributions Based on Cell
Phone Call Detail Records”. In: Remote Sensing 12 (Aug. 2020), p. 2572.
DOI: [10.3390/rs12162572.

v

https://neurohive.io/en/popular-networks/vgg16/
https://www.educative.io/edpresso/what-is-a-conditional-gan-cgan
https://www.educative.io/edpresso/what-is-a-conditional-gan-cgan
https://www.cancer.net/navigating-cancer-care/cancer-basics/what-cancer
https://www.cancer.net/navigating-cancer-care/cancer-basics/what-cancer
https://doi.org/10.1007/s00261-016-0681-3
http://link.springer.com/10.1007/s00261-016-0681-3
https://doi.org/10.3390/rs12162572

Appendix A

ROC-AUC curves

Following ROC-AUC curves are calculated for after the model trained and tested 3

times.

Some extension of Receiver operating characteristic to multi-class

Some extension of Receiver operating characteristic to multi-class

Some extension of Receiver operating characteristic to multi-class

10 10 10
o8 08 o8
-1 & 2
G 06 G 06 S 06
= = :
z 8 .’ H .
S 04 S 04 o! S 04 R
H £ — auc &
¥ #'— val_auc 7 — ValLAuC
* = micro-average ROC curve (area = 0.61) micro-average ROC curve (area = 0.70) = micro-average ROC curve (area
02 = = macro-average ROC curve (area = 0.53) 02 macro-average ROC curve (area = 0.57) = macro-average ROC curve (area
ROC curve of class 0 (area = 0.53) ROC curve of class 0 (area = 0.56) ROC curve of class 0 (area = 0.55)
ROC curve of class 1 (area = 0.53) ROC curve of class 1 (area = 0.56) ROC curve of class 1 (area = 0.55)
00 00
00 02 04 06 08 10 00 02 04 06 o8 10 04 06 o8 10
False Positive Rate False Positive Rate False Positive Rate
Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class
10 10 > 10 !
- 5
s
REEET 2
E ¢
o8 08 o8
;-1 z 2
G 06 G 06 . S 06
= s :
H H e H
$ 04 $ 04 - $o0a
5 E — AuC F
o' — valauc — val Auc #— VvalAuC
= = micro-average ROC curve (area = 0.65) micro-average ROC curve (area = 0.65) = = micro-average ROC curve (area = 0.65)
02 = = macro-average ROC curve (area = 0.59) 02 macro-average ROC curve (area = 0.60) 02 macro-average ROC curve (area = 0.57)
ROC curve of class 0 (area = 0.59) ROC curve of class 0 (area = 0.60) ROC curve of class 0 (area = 0.57)
ROC curve of class 1 (area = 0.59) ROC curve of class 1 (area = 0.60) ROC curve of class 1 (area = 0.57)
00 00 00
00 02 08 10 00 02 04 06 o8 10 00 02 o8 10

o.
False Positive Rate

False Positive Rate

04 o.
False Positive Rate

Figure A.2: 50% augmented data in the original data

True Positive Rate

Some extension of Receiver operating characteristic to multi-class

Some extension of Receiver operating characteristic to multi-class

Some extension of Receiver operating characteristic to multi-class

10 10 10 5
08 08 08
06 G 08 $ 06
P H H
04 04 04
auc = H
Val_Auc Val_AUC - val_Auc
micro-average ROC curve (area = 0.71) micro-average ROC curve (area = 0.68) micro-average ROC curve (area = 0.71)
02z macro-average ROC curve (area = 0.62) 02 macro-average ROC curve (area = 0.61) 02 macro-average ROC curve (area = 0.63)
ROC curve of class 0 (area = 0.61) ROC curve of class 0 (area = 0.61) ROC curve of class 0 (area = 0.63)
ROC curve of class 1 (area = 0.61) ROC curve of class 1 (area = 0.61) —— ROC curve of class 1 (area = 0.63)
00 00 00
00 02 08 10 00 02) 10 00 02 o8 10

04 06
False Positive Rate

04 06
False Positive Rate

04 06
False Positive Rate

Figure A.3: 100% augmented data in the original data

Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class

True Positive Rate

10 10 10
%
08 08 08
3 2 d
06 - L S 06 S 06
¥ 2 £ 2
o . 5 %
- B H
04 e 904 % o0s
— auc £ &
s Yal_AuC Val_AUC Val_Auc
Z{+57" '+ micro-average ROC curve (area = 0.65) micro-average ROC curve (area = 0.72) micro-average ROC curve (area = 0.72)
02 e = = macro-average ROC curve (area 02 macro-average ROC curve (area = 0.57) 02 macro-average ROC curve (area = 0.59)
i ROC curve of class 0 (area = 0.5 ROC curve of class 0 (area = 0.57) ROC curve of class 0 (area = 0.59)
—— ROC curve of class 1 (area = ROC curve of class 1 (area = 0.57) —— ROC curve of class 1 (area = 0.59)
00 00 00
00 02 08 10 00 02) 10 00 02 o8 10

04 06
False Positive Rate

04 06
False Positive Rate

04 06
False Positive Rate

True Positive Rate

True Positive Rate

Figure A.4: 150% augmented data in the original data

Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class

10 10 10
o o 9
- -
2
o8 o 08 o8
K -
p 7 2 £]
06 e T 06 S 06 &
4 - s / :
-~ 3 y g 2
e & - & >
04 e S 04 pre % 04 .
— auc £ — auc £
! — valauc J #"— val_auc val_AuC
y == micro-average ROC curve (area = 0.69) o micro-average ROC curve (area = 0.69) micro-average ROC curve (area
02 == macro-average ROC curve (area = 0.70) 02 macro-average ROC curve (area = 0.70) 02 " macro-average ROC curve (area
. ROC curve of class 0 (area = 0.69)) ROC curve of class 0 (area = 0.70) g - ROC curve of class 0 (area = 0.72)
e ~—— ROC curve of class 1 (area = 0.69) 7 ~—— ROC curve of class 1 (area = 0.70) —— ROC curve of class 1 (area = 0.72)
00 00 00
00 02 08 10 00 02 o8 10 02 o8 10

04 06 04 06 04 06
False Positive Rate False Positive Rate False Positive Rate

Figure A.5: Balanced data in the original data

Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class Some extension of Receiver operating characteristic to multi-class

10 10 10
08 08 08
0s %06 S 0s
: :
04 S04 %04
£ — Auc £
Val_AuC 22— valAuc val_AUC
= = micro-average ROC curve (area = 0.63) = = micro-average ROC curve (area = 0.67) =+ micro-average ROC curve (area
0z = = macro-average ROC curve (area = 0.5 02 macro-average ROC curve (area = 0.53) 02 macro-average ROC curve (area
ROC curve of class 0 (area = ROC curve of class 0 (area = 0.53) ROC curve of class 0 (area = 0.56)
—— ROC curve of class 1 (area = —— ROC curve of class 1 (area = 0.53) —— ROC curve of class 1 (area = 0.56)
00 00 00
00 02 08 10 00 02 08 10 00 02 o8 10

04 06 04 06 04 06
False Positive Rate False Positive Rate False Positive Rate

Figure A.6: Rotated augmented data in the original data

11

True Positive Rate

True Positive Rate

Some extension of Receiver operating characteristic to multi-class

10

08

06

04

02

Some extension of Receiver operating characteristic to multi-class

10

08

06

04

Val_AUC

=« micro-average ROC curve (area = 0.65)

=« macro-average ROC curve (area = 0.53)
ROC curve of class 0 (area = 0.52)

—— ROC curve of class 1 (area = 0.52)

04 06 08 10
False Positive Rate

True positive Rate

Some extension of Receiver operating characteristic to multi-class

10

AuC
Val AUC

micro-average ROC curve (area = 0.63)
macro-average ROC curve (area = 0.51)
ROC curve of class 0 (area = 0.51)

ROC curve of class 1 (area = 0.51)

04 06 08 10
False Positive Rate

True Positive Rate

Some extension of Receiver operating characteristic to multi-class

10

°

7
3

Val AUC
micro-average ROC curve (area = 0.69)
macro-average ROC curve (area = 0.54)
ROC curve of class 0 (area = 0.53)
ROC curve of class 1 (area = 0.53)

00 02 08

04 06
False Positive Rate

Figure A.7: Translated augmented data in the original data

A
s
o
9
R Al — auc
o2 — val Auc
o b ¥

= * micro-average ROC curve (area
= » macro-average ROC curve (area

ROC curve of class 0 (area = 0.56)
~—— ROC curve of class 1 (area = 0.56)

0.70)
.56)

04 06 08 10
False Positive Rate

Figure A.8: Horizontal flipped augmented data in the

True Positive Rate

Some extension of Receiver operating characteristic to multi-class

10

2

— val Auc
micro-average ROC curve (area = 0.63)
macro-average ROC curve (area = 0.55)
ROC curve of class 0 (area = 0.55)
—— ROC curve of class 1 (area = 0.55)

04 06 08 10
False Positive Rate

111

True Positive Rate

Some extension of Receiver operating characteristic to multi-class

10

°

04 06
False Positive Rate

original data

-
= = micro-average ROC curve (area = 0.69)
* macro-average ROC curve (area = 0.56)
ROC curve of class 0 (area = 0.56)
~— ROC curve of class 1 (area = 0.56)
02 08 10

Appendix B

Architectures of the model use

In this appendix, model architecture along with their shapes are shared.

o1 ayer |22 e D

input: | (None, 100) input: | (None, 1)
input_3: InputLayer
embedding_1: Embedding output: | (None, 100) output: | (None, 1)

output: | (None. 1. 50)

ut: [(None, 100) put: | (None, 1)

(None, I, 50) dense_4: Dense

embedding 2: Embedding
output: | (None, 8192) e ¢

output: | (None, I, 50)

|

input: [(None, 1. 50)
output: | (None. 1. 64)

l

inpur: | (None, 1. 64)

(None, 1, 16384)

input: | (None, 1, 16384) input:_| Qione, 8192)

input: | (None, 128, 128, 1) leaky_re_lu_S: LeakyReLU

dense_3: Dens

output: | (None, 128, 128, 1) output: | (None, 8192)

% (None, 8192;
concante 1 Conmene | P KNone, 128 128, 1) Nowe 128, 125, 11| e Resape 23D | e 2 Rt

[ourar | o, 128,135,3)

(None, 8, 8, 128)

ouput: | (None. 8,8. 1)

input:_| (None, 128, 128,2)
conv2d_1: Conv2D
output: | (None, 64, 64, 125)

(None, 61, 64, 128)
(None, 64, 64, 128)

Ieaky_re_lu_I: LeakyReLU

input: | (None, 64, 64, 128)

conv2d_2: Conv2D.

(None, 32, 32, 256)
(None, 32, 32, 256)

inpu
leaky_re_lu_2: LeakyReLU [

inpur: | (None, 32, 32, 256)
conv2d_3: Conv2D
outpur: | (None, 16,16, 512)

(None, 16,16, 512)
(Nonc, 16. 16, 512)

iopu
leaky_re_lu_3: LeakyReLU [0

output

(None, 16, 16, 512)
(None, 8. 8, 1024)

input
conv2d_4: Conv2D.

leaky_re_lu_4: LeakyReLU

input: | (None, 8, 8, 1024)
output: | (None, 8, 8, 1024)

(Nonc, 65536)

(None, 63536)

-

Discriminator

input: | [(None, 8. 8, 128), (None. 8, 8. D]

concatenate_2: Concatenate

(None, 8, 8, 129)

input: [(None. 8. 8. 129)

(None. 16, 16, 1024)

conv2d_transpose_l: Conv2DTranspose.

input:_| (None, 16. 16, 1024)

leaky_re_lu_6: LeakyReLU
output: | (None, 16, 16, 1024)

input: | (None, 16, 16, 1024)

(None, 32, 32,512)

conv2d_transpose_2: Conv2DTranspose

leaky_r

input: | (None, 64, 64, 256)

leaky_te_lu_8: LeakyReLU
output: | (None, 64, 64, 256)

(None, 64, 64, 256)
(None, 125, 128, 125)

conv2d_t

nspose_4: Conv2DTranspose.

(None, 128, 128, 128)

leaky_re_lu_9: LeakyReLU
(None, 128, 128, 125)

input: | (None, 125, 128, 128
conv2d_5: Conv2D) [)

ouput: | (None, 128,128, 1)

Generator

Figure B.1: Cgan Models

input: | (None, 100) input: [(None, 1)
input_4: InputLayer input_3: InputLayer
output: | (None, 100) output: | (None, 1)
4 /
input: (None, 100) input: (None, 1)
dense_4: Dense embedding_2: Embedding
output: | (None, 8192) output: | (None, 1, 50)
input: | (None, 8192) input: | (None, 1, 50)
leaky_re_lu_5: LeakyReLU dense_3: Dense
output: | (None, 8192) output: | (None, 1, 64)
input: (None, 8192) input: (None, 1, 64)
reshape_3: Reshape reshape_2: Reshape
output: | (None, 8, 8, 128) output: | (None, 8, 8, 1)
input: [(None, 8, 8, 128), (None, 8, 8, 1)]
concatenate_2: Concatenate
output: (None, 8, 8, 129)
A
input: (None. 3, 3. 129)
conv2d_transpose_l: Conv2ZDTranspose
output: | (None, 16, 16, 1024)
input: | (None, 16, 16, 1024)
leaky_re_lu_6: LeakyReLU
output: | (None, 16, 16, 1024)
Y
input: (None, 16, 16, 1024)
conv2d_transpose_2: Conv2DTranspose
output: (None, 32, 32,512)
input: (None, 32, 32, 512)
leaky_re_lu_7: LeakyReLU
output: | (None, 32, 32, 512)
input: (None, 32, 32, 512)
conv2d_transpose_3: Conv2DTranspose
output: | (None, 64, 64, 256)
Y
input: | (None, 64, 64, 256)
leaky_re_lu_8: LeakyReLU
output: | (None, 64, 64, 256)
input: (None, 64, 64, 256)
conv2d_transpose_4: Conv2DTranspose
output: | (None, 128, 128, 128)
input: (None, 128, 128, 128)
leaky_re_lu_9: LeakyReLU
output: | (None, 128, 128, 128)
input: (None, 128, 128, 128)
conv2d_5: Conv2D
output: (None, 128, 128, 1)
input: [(None, 128, 128, 1), (None, 1)]
model_1: Model P ¢ » ¢)
output: (None, 1)

Figure B.2: ¢GAN with shapes

A%

input: | (None, 128, 128, 1)
conv2d_I_input: InputLayer
output: | (None, 128, 128, 1)
input: (None, 128, 128, 1)

conv2d_l: Conv2D

output (None, 64, 64, 64)

I

input: | (None, 64, 64, 64)
leaky_re_lu_1: LeakyReLU
output: | (None, 64, 64, 64)
input: [(None, 64, 64, 64)

conv2d_2: Conv2D

output:

l

(Nonc, 32, 32, 128)

input (None, 32, 32, 128)

leaky_re_lu_2: LeakyReLU

output: | (None, 32, 32, 128)
input: | (None, 32, 32, 128)

conv2d_3: Conv2D

input: | (Nonc, 100)
output: | (None, 100)

)

input: | (Nonc, 100)
(Nonc, §192)

dense_2_input: InputLayer

dense_2: Den:

output

}

leaky_re_lu_5: LeakyReLU

input: | (None, 8192)
output: | (None, 8192)

)

input: | (None, 8192)

reshape_l: Reshay
P P | output: | (None, 5. 8, 128)

)

input: | (Nonc, 8, 8, 128)

conv2d_iranspose_l: Conv2DTranspose
(None, 16, 16, 512)

output:

]

input: | (None, 16, 16, 512)
output: | (None, 16, 16, 512)

}

leaky_re_lu_6: LeakyReLU

output: | (None, 16, 16, 256)
(Nonc, 16, 16, 512)
conv2d_transpose_2: Conv2DTranspose Mo 32.32.56)
one, 32, 32,
input: | (None, 16, 16, 256)
leaky_re_lu_3: LeakyReLU —
output: | (None, 16, 16, 256) input: | (None, 32, 32, 256)

input (None, 16, 16, 256)
(None, 8, 8, 512)

conv2d_4: Conv2D

output:

input: | (None, 8. 8, 512)

leaky_re_lu_4: LeakyReLU

output: | (None, 8. 8, 512)

input: (None, 8, 8,512)

(None, 32768)

flatten_1: Flatten

output:

l

input: | (None, 32768)

dropout_1: Dropout

output: | (None, 32768)
dense_L: Dense input: | (None, 32768)
output: (None, 1)
Discriminator

leaky_re_lu_7: LeakyReLU

output

}

(None, 32, 32, 256)

input: | (None, 32, 32, 256)

conv2d_iranspose_3: Conv2DTranspose
o P (None, 64, 64, 128)

output:

]

input: | (None, 64, 64, 128)
(None, 64, 64, 128)

leaky_re_lu_8: LeakyReLU
output

input: | (None, 64, 64, 128)

conv2d_iranspose_4: Conv2D Transpose
(None, 128, 128, 64)

output:

}

input: | (None, 128, 128, 64)
(None, 128, 128, 64)

leaky_re_lu_9: LeakyReLU
output;

input: | (None, 128, 128, 64)

conv2d_5: Conv2D
(Nonc, 128, 128, 1)

output:

Generator

Figure B.3: DCGAN Models

Appendix C

GAN Training Images

C.1: DC GAN 1000 epochs

igure

F

vil

C.2: DC GAN 2000 epochs

Figure

viil

C.3: DC GAN 3000 epochs

Figure

1X

C.4: ¢GAN 1000 epochs

igure

F

C.5: ¢GAN 2000 epochs

igure

F

x1

C.6: ¢GAN 3000 epochs

igure

F

xii

Appendix D

Code of the models

The relevant code for the models used in this thesis is uploaded on // https://
github.com/omer-parvez/master_thesis and will be available after 15, Septem-
ber, 2021. Due to copyright issues and the research work of this thesis will be
presented to a conference. Explanation about the used libraries will be available in
README.txt

xiil

https://github.com/omer-parvez/master_thesis
https://github.com/omer-parvez/master_thesis

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Definition
	Objectives
	Proposed Method Overview

	Related Work
	Outline

	Medical Background
	Prostate Cancer
	Prostate Cancer Examination Methods
	Digital Rectum Examination
	Prostate-Antigen Specific Test
	Biopsy
	Magnetic Resonance Imaging

	Technical Background
	Magnetic Resonance Imaging (MRI)
	Basic Terminology
	Analog To Digital Converter

	Neural Networks
	Connections and Weights
	Backpropagation
	Supervised, Semi-supervised and Unsupervised Learning

	Convolutional Neural Networks
	Convolution layer
	Transposed Convolutional Layer
	Dense Layer
	Augmentation

	Generative Adversarial Network (GAN)
	Deep Convolutional Generative Adversarial Networks (DCGAN)
	Conditional Generative Adversarial Network (cGAN)

	VGG16
	The Architecture
	Drawbacks

	Softwares
	Tensorflow
	Keras
	Numerical Python
	OpenCV
	Pydicom
	Scikit-learn

	Data-set and Image Pre-processing
	Image Pre-Processing
	Loading of Data
	Data Filtering
	Data Reshaping
	Slice Operation and Data Organization
	Data Normalization

	Save Organized Data

	Solution Approach
	Existing Approaches
	Proposed Method using GAN to Expand the Data-set
	DCGAN Methodology
	cGAN Methodology
	VGG16

	Experimental Evaluation and Results
	Experimental Setup
	Selected configuration for DCGAN
	Selected configuration for cCGAN
	Comparison of generated images from DCGAN versus cGAN
	Augmented Images
	Translated Images
	Flipped Images
	Rotated Images

	Model Performance
	Model Performance for Different Percentage of cGAN Generated Images
	Model performance for Augmented versus Generated Images

	Discussion
	Effectiveness of Proposed Methodology
	Evaluation of Generative Models
	Evaluation of the Augmented Methods
	Macro ROC-AUC
	Evaluation of Performance
	Limitations
	Evaluation of the GAN metrics
	Data
	Computational Limitations

	Conclusion and Recommendations
	Conclusion
	Future Recommendations

	ROC-AUC curves
	Architectures of the model used
	GAN Training Images
	Code of the models

