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Covariate Order Tests for Covariate Effect

JAN TERJE KVALØY

Abstract. A new approach for constructing tests for association between a random right censored life time

variable and a covariate is proposed. The basic idea is to first arrange the observations in increasing order of the

covariate and then base the test on a certain point process defined by the observation times. Tests constructed by

this approach are robust against outliers in the covariate values or misspecification of the covariate scale since

they only use the ordering of the covariate. Of particular interest is a test based on the Anderson-Darling statistic.

This test has good power properties both against monotonic and nonmonotonic dependencies between the

covariate and the life time variable.

Keywords: Tests for association, rank-based tests, permutation tests, nonmonotonic effects, censored data, point

processes

1. Introduction

The basic problem studied in this paper is that of testing if there is an association between

the nonnegative random variable Z and the random variable X, where the first variable may

be subject to right censoring by the random variable C. For convenience we will use the

life time data terminology and call Z the life time, C the censoring time, T = min(Z, C) the

observation time and X the covariate. Based on n independent observations (T1, �1,
X1), . . . , (Tn, �n, Xn) of (T, �, X), where � = I(Z � C), we want to test the null hypothesis of

no covariate effect, or in other words, the null hypothesis that Z is independent of X.

For i = 1, . . . , n, the censoring time Ci is generally assumed to be conditionally

independent of the life time Zi given the covariate Xi, and to have a cumulative distribution

function FCi
(cjXi) given Xi. This will be called independent censoring (see for instance

Kalbfleisch and Prentice, 1980). In some discussions the more restrictive assumption that

the censoring time Ci is independent of both the life time Zi and the covariate Xi and has

the same cumulative distribution function FC(c) for all i, is made. This will be called

random censoring. The life time Zi is assumed to come from a distribution with finite first

order moment, support on the positive real line and cumulative distribution function

FZ (zjXi) given Xi. In general Xi can be a vector of possibly time dependent covariates, but

for simplicity we shall only consider the case of a single covariate which is constant in

time. For a discussion of generalizations to the case of several covariates, see Kvaløy

(1999).

Tests for covariate effect have been discussed by a number of authors. Jones (1991)

studied tests for covariate effect in a general class of tests for survival data problems

proposed by Jones and Crowley (1989). This class of tests include for instance the Cox

score test (Cox, 1972), the logit rank test of O’Brien (1978) further studied by O’Quigley

and Prentice (1991), the Brown, Hollander and Korwar (1974) modification of the Kendall

rank test for survival data and the generalized log-rank test (Jones and Crowley, 1989).

Jones (1991) also suggested some new tests for covariate effect generated from the Jones

and Crowley class of test statistics, in particular a modified generalized log-rank test. The

tests for covariate effect in the Jones and Crowley class of tests are generally constructed

for the alternative of a relative risk model. Other tests for covariate effect are for instance

constructed for Aalen’s linear model (Aalen, 1980, 1989; Grønnesby, 1997). All the above

cited tests have the limitation of being constructed for the alternative of a monotonic

covariate effect. Tests constructed for nonmonotonic alternatives have been suggested by

Le and Grambsch (1994) and McKeague et al. (1995). These approaches do, however,

have some limitations. The former approach has the limitation of leading to tests with very

low power against monotonic alternatives, while the latter has the limitation of requiring

very large samples and generally having low power.



In the present paper a new approach for constructing tests for covariate effect called the

covariate order approach is proposed. The idea of this approach is arising from the

derivation of a method for exponential regression presented by Kvaløy and Lindqvist

(1998a). First consider the case with no censoring. The idea is to first arrange the

observations (Z1, X1), . . . , (Zn, Xn) such that X1 � X2 � : : : � Xn. Observations with equal

covariate values are arranged in random order. Then construct a point process on the line

in which the life times Z1, . . . , Zn are subsequent inter-arrival times. It is easily realized that

this point process will be a renewal process (RP) under the null hypothesis of no covariate

effect since all the inter-arrival times then will be independent and identically distributed.

If, on the other hand, there is a covariate effect the constructed process will not be an RP. If

for example the life time Z tend to become shorter as the covariate X increases, the inter-

arrival times Z1, . . . , Zn will tend to become shorter and shorter. Thus tests of the null

hypothesis RP versus the alternative not RP applied to the constructed process will in fact

be tests of covariate effect. Tests of RP versus not RP are for instance much studied in the

reliability literature, see for example Ascher and Feingold (1984) or Elvebakk (1999) and

references therein. Such tests can now, by the suggested construction, be applied as tests

for covariate effect.

For the case with censored data, again arrange the observations (T1, �1, X1), . . . , (Tn, �n,
Xn) such that X1 � X2 � : : : � Xn and construct a point process where the observation

times T1, . . . , Tn are subsequent intervals. In this process, let only points which are

endpoints of intervals corresponding to uncensored observations be considered as events,

occurring at times denoted S1, . . . , Sm, where m = �n
j=1�j. This is visualized in Figure 1

for an example where the ordered observations are (T1, �1 = 1), (T2, �2 = 0),(T3, �3 = 1), . . . ,
(Tn�1, �n�1 = 0), (Tn, �n = 1).

Generally Si = �k(i)
j=1 Tj where k(i) = min{rj�r

j=1�j = i}.

In the special case of random censoring, the increments Si � Si�1, i = 1, . . . , m, of the
process S1,. . ., Sm will still be independent and identically distributed under the null

hypothesis of no covariate effect. This follows since in this case all the life times Z1, . . . , Zn
will be independent and identically distributed and the same is true for all the censoring

times C1, . . . , Cn. Thus tests of RP versus not RP applied to the process S1, . . . , Sm can still

be used as tests for covariate effect in the case of random censoring.

Figure 1. Construction of the process S1, . . . , Sm.

In the case of independent censoring, however, C may depend on X and this will
generally imply that S1, . . . , Sm is not an RP even if Z is independent of X. There is,
however, one important exception, and this is in the case of exponentially distributed life
times. Under the assumption of independent censoring and exponentially distributed life
times the process S1, . . . , Sm will in fact be a homogeneous Poisson process (HPP) under
the null hypothesis of no covariate effect (see Section 2.1). Thus in the case of
exponentially distributed life times we can use tests constructed for testing HPP versus
not HPP as tests for covariate effect. Tests of HPP versus not HPP are for instance widely
studied in the reliability literature, see for example Ascher and Feingold (1984) or Kvaløy
and Lindqvist (1998b) and references therein.



An obvious way of extending the covariate order test approach to the assumption of 
independent censoring is thus to transform the observation times such that the transformed 
life times becomes exponentially distributed. This is theoretically achieved by 
transforming the observation times by the integrated hazard rate of the life time 
distribution. In practice the integrated hazard rate is not known but can be consistently 
estimated. Thus in the general case, testing for covariate effect is done by constructing the 
process S1,. . . , Sm using the transformed observation times and applying tests of the null 
hypothesis HPP to this process. In addition some refinements using resampling methods 
are useful.
Tests derived by the covariate order approach are robust against outliers in the covariate

space since they are only using the ordering of the recorded covariate values. Of particular

interest is a test based on the Anderson-Darling statistic (Kvaløy and Lindqvist, 1998b).

This test has favorable properties as a test for covariate effect since it unlike most other

tests for covariate effect has good power properties both against monotonic and non-

monotonic alternatives.

Notice that no assumption of continuous X is needed for constructing covariate order

tests. Covariate order tests are obviously generally not well suited for taking into account

the effect of time dependent covariates. Basing a test on the ordering of the covariates at

time 0 may however work reasonably well in certain cases.

The covariate order test approach is presented in Section 2 and a resampling method

which can be used to improve the level properties of the test approach is presented in

Section 3. A simulation study exploring the small sample properties of a number of tests

for covariate effect is presented in Section 4. Some real data examples are presented

Section 5 and, finally, some concluding comments are given in Section 6.

2. The Covariate Order Test Approach

In this section the covariate order test approach is presented. First in Section 2.1 the special

case of exponentially distributed life times is discussed, and two concrete examples of

covariate order tests are presented. The generalization to any life time distribution is

discussed in Section 2.2, and some comments are given in Section 2.3.

2.1. Exponentially Distributed Life Times

We now consider the case when Z, conditionally given X, is exponentially distributed with

hazard rate �(X). For this case we want to test the null hypothesis of no covariate effect, or

in other words the null hypothesis that �(X) � �.

Based on the observations (T1, �1, X1), . . . , (Tn, �n, Xn) the process S1, . . . , Sm is

constructed as explained in Section 1. Under the null hypothesis of no covariate

effect and the assumption of independent censoring this process will be an HPP. A

formal proof of this claim is given in the Appendix. An easy informal argumentation

is the following: Intuitively the conditional intensity of the process S1, . . . , Sm at any

point s, given the history of the process until that point, will equal �. This implies

that the process S1, . . . , Sm will be an HPP. If, on the other hand there is a covariate

effect, which means that �(x) is not constant in x, then the process S1, . . . , Sm will

not be an HPP.



Kvaløy and Lindqvist (1998a) argued that the process S1, . . . , Sm can be viewed as being

approximately a nonhomogeneous Poisson process (NHPP) if �(x) is varying reasonably

smoothly as a function of x. This motivates adopting tests constructed for testing HPP

versus NHPP as tests for covariate effect. There exist a number of such tests in the

literature, see for instance Ascher and Feingold (1984) or Kvaløy and Lindqvist (1998b)

and references therein. Two such tests are presented below.

One of the most popular and frequently used tests in the HPP versus NHPP setting is the

Laplace test. Let S = �n
i=1Ti and for convenience define

m̂̂ ¼
m if Sm < S

m� 1 if Sm ¼ S

8<
:

Then the test statistic of the Laplace test is

LAP ¼
Pm̂̂

i¼1 Si=S � m̂̂=2ffiffiffiffiffiffiffiffiffiffiffi
m̂̂=12

p : ð1Þ

This statistic is approximately normally distributed under the null hypothesis that S1, . . . ,
Sm is an HPP, and the approximation is very good even for very small samples. The

Laplace test has optimal properties against certain monotonic alternatives, see for instance

Bain et al. (1985).

A problem, however, with the Laplace test and many other tests for HPP versus NHPP

is lack of power against nonmonotonic alternatives. If �(x) is a monotonic function of x,

the conditional intensity of the process S1, . . . , Sm will be monotonic, and using a test

like the Laplace test will be appropriate. In practice, however, �(x) may well be

nonmonotonic implying that the intensity of the process S1, . . . , Sm is nonmonotonic.

Kvaløy and Lindqvist (1998b) studied a test of HPP versus NHPP based on the

Anderson-Darling statistic. This test, called the Anderson-Darling test for trend, has the

favorable property of having power both against monotonic and nonmonotonic alter-

natives. See Kvaløy and Lindqvist (1998b) for details. The test statistic for the Anderson-

Darling test for trend is

AD ¼ � 1

m̂̂

^̂mX
i¼1

ð2i� 1Þ ln
Si

S
þ ln 1� S^̂mþ1�i

S

#		��"
� m̂̂ ð2Þ

The asymptotic null distribution of this statistic was derived by Anderson and Darling

(1952) and an explicit expression for the limiting cumulative distribution was given by

Anderson and Darling (1954). The asymptotic distribution is a good approximation to the

exact distribution even for sample sizes smaller than 10. On a 5% level the null hypothesis

is rejected if AD 	 AD0.05 = 2.492.



2.2. General Life Time Distributions

In the general case, when Z given X can have any life time distribution, the basic idea is to

transform the observation times to a sample of censored approximately exponentially

distributed life times and then apply the tests presented in Section 2.1 to the transformed

sample. This approach is outlined below.

Assume that the null hypothesis of no covariate effect holds. Let �(t) be the hazard rate

of the distribution of Z and define the integrated hazard rate �(t) =
R
0
t �(u)du. Then the

transformed variable �(Z) will be standard exponentially distributed. Thus for known �(t),
transforming the observation times to �(T1), . . . , �(Tn) would yield a censored sample

from the standard exponential distribution, and any test for covariate effect constructed for

exponentially distributed data could be applied to this sample. In practice �(t) is unknown
but can under the null hypothesis be consistently estimated by the Nelson-Aalen estimator,

�̂̂(t) = �n
i=1�i[�

n
j=1I(Tj 	 Ti)]

�1 I(Ti � t). See for instance Andersen et al. (1993) for

details.

Thus a reasonable test procedure will be to apply tests for covariate effect constructed for

exponentially distributed data to the transformed observations (�̂̂(T1), �1, X1), . . . , (�̂̂(Tn),
�n, Xn). A drawback with this approach is the loss of information introduced by replacing

the continuous observation times T1, . . . , Tn by the discrete transformation �̂̂(T1), . . . ,
�̂̂(Tn). On the other hand, this discretization also implies robustness against outliers in the

recorded observation times. Another drawback is that the transformation implies certain

dependencies in the transformed observations. These effects diminishes with increasing

sample size.

Despite the certain loss of information, dependencies, and the fact that the transformed

life times are only approximately exponentially distributed, this test approach works fairly

well in practice (see Section 4). However, in particular for small sample sizes, the

resampling method presented in Section 3 could and should be used to improve the level

properties of the tests. This method does in particular resolve the dependency problem.

2.3. Comments

�̂̂ �̂̂

�̂̂ �̂̂

Replacing the observation times by the discrete transformation (T1), . . . , (Tn) may be

viewed as a natural extension of the exponential ordered scores proposed by Cox (1964).

Cox (1964) proposed to replace observations which are assumed to be exponentially

distributed by their exponential scores to obtain robustness against deviations from the

assumption of exponentiality. The exponential ordered scores are calculated by ranking the

observations and replacing each observation by the expected value of the corresponding

order statistics of the standard exponential distribution. If there are no censored observa-

tions the transformation (T1), . . . , (Tn) corresponds exactly to the exponential ordered

scores of T1, . . . , Tn, while the case with censored observations corresponds to a natural

extension of the exponential ordered scores (see for instance Nelson, 1972).

3. Resampling

For small or moderate sample sizes it is recommended to use a resampling version of the

test approach presented in Section 2.2. This yields tests with improved level properties.

Both bootstrap and permutation methods can be used, below a permutation method is

discussed.

The idea is the following. First assume that �(t) is known and consider the transformed

sample (�(T1), �1, X1), . . . , (�(Tn), �n, Xn). By the arguments of Section 2.1 this

transformed sample will yield a process S1, . . . , Sm which under the null hypothesis is

an HPP. Further, under the null hypothesis any permutation of the transformed sample,
$ $

(�(T1), �1, X�(1)), . . . , (�(Tn), �n, X�(n)), will also yield a process S1 , . . . , Sm which is an

HPP and any such permutation is equally likely. Here �(1), . . . ,�(n) denotes a permutation

of the numbers 1, . . . , n. With �(t) replaced by �̂̂(t), any permutation of the transformed

observations will yield a process which under the null hypothesis is approximately an HPP.



Let the test statistic of a test for covariate effect constructed for exponentially distributed

life times be denoted TE. For simplicity we assume that the the null hypothesis is rejected

for large values of TE (if for example the Laplace test is used let TE = jLAPj). Let TEobs be

the observed value of TE calculated from the transformed observations (�̂̂(T1), �1, X1), . . . ,
(�̂̂(Tn), �n, Xn) and let TE

$

be the value of TE calculated from a permutation of the

transformed observations, (�̂̂(T1), �1, X�(1)),. . ., (�̂̂(Tn), �n, X�(n)). The exact permutation

null distribution of TE is found by calculating TE
$

for all n! possible permutations of the

original observations. In practice it is sufficient to calculate TE
$(1),. . ., TE

$(P) for a large

number, P, of randomly selected permutations, and calculate the approximate p-value

p̂̂ = �P
i=1I(TE

$(i) > TEobs) /P. For simulations choosing P equal to 1000 (or less) is in most

cases sufficient (see Davison and Hinkley, 1997, Chapter 4.2.5). For calculating

p-values for real data somewhat larger values are recommended if the p-value is small.

Notice that the order of permutation and transformation is indifferent. We might think of

the permutation test as first permuting the original observations and then transforming the

observation times before calculating the test statistic. The order is indifferent since

the estimated integrated hazard rate of course will be the same for any permutation of

the observations.

In the special case of no or random censoring, the permutation test approach can be

applied directly to the original observations (T1, �1, X1), . . . , (Tn, �n, Xn) without doing any

transformation since there in this case is no potential covariate effect in the censoring

variable which needs to be taken care of. Any permutation (T1, �1, X�(1)), . . . , (Tn, �n, X�(n))

is equally likely under the null hypothesis, and the permutation test is in this case an exact

conditional combinatorial test for covariate effect. See for instance Romano (1989) or

Davison and Hinkley (1997) for detailed discussions on permutation tests.

In the general case the observation times T1, . . . , Tn needs to be replaced by the

transformed observation times to cope with the possible covariate effect in the censoring

variable. This possible covariate effect is then masked by the process S1, . . . , Sm
constructed from the transformed observation times being approximately an HPP even

if there is an covariate effect in the censoring variable. The permutation test based on the

transformed observations is an exact conditional combinatorial test, but generally strictly

speaking not purely a test of covariate effect in the life time variable. Since the

transformation �̂̂(t) yields transformed life times which are only approximately exponen-

tially distributed the effect of a potential covariate effect in the censoring time is not

necessarily completely masked, and the test might have a certain remaining sensitivity to

covariate effects in the censoring variable. In practice, however, it turns out that there is no

such sensitivity, the transformation �̂̂(t) successfully masks even very strong covariate

effects in the censoring distribution. Finally notice that since the permutation test is

conditional on the observations and the transformed observation times are the same for any

permutation of the original observations, the dependencies introduces in these transformed

observation times cause no concern in the permutation test.

Resampling methods similar to the method discussed above do of course also apply to 
other tests for covariate effect than covariate order tests, and may for instance be used for 
improving the level properties of tests with critical values based on the asymptotic 
distribution. In the case of no or random censoring the permutation method apply to any 
test of covariate effect. The method also often apply under the assumption of independent 
censoring by similar arguments as used for the covariate order tests.



4. Simulation Study

In this section the two covariate order tests suggested in Section 2 are compared to some of

the tests mentioned in Section 1 in a simulation study. The other tests considered are the two

tests recommended for general use by Jones (1991), the Cox score test (Cox, 1972) and the

modified generalized log-rank test (Jones, 1991), and a standard test constructed to have

power both against monotonic and nonmonotonic covariate effects. This test is based on

dividing the covariate axis into q intervals and introducing the q indicator variables I1, . . . ,
Iq where Ii(x) = 1 if x is in the ith interval, and 0 otherwise. Then fitting the Cox-model

�ðtjxÞ ¼ �0ðtÞexpð�1I1ðxÞ þ : : : þ �q�1Iq�1ðxÞÞ

and using the Cox score test to test the null hypothesis that �1 = . . . = �q�1 = 0, leads to an

test which should have power both against monotonic and nonmonotonic alternatives.

Open questions are how to choose the intervals and how many intervals to use.

Preliminary simulations indicated that the best approach for the cases studied in this

simulation study is to divide the covariate axis into three intervals such that 1/3 of the

observations fall in each interval.

�̂̂ �̂̂

The abbreviations COX for the Cox score test, MGL for the modified generalized log-

rank test and COX3 for the test based on dividing the covariate axis into three intervals are

introduced. Critical values for these tests are based on the asymptotic distributions. For the

covariate order tests presented in Section 2, the abbreviations AD for the Anderson-

Darling test for trend (2) and LAP for the Laplace test (1) applied to transformed

observations ( (T1), �1, X1), . . . , ( (Tn), �1, Xn) are introduced.

All tests are evaluated at a 5% nominal significance level. Rejection probabilities are

estimated by generating 5000 samples. Letting p denote the true rejection probability,

pthisffiffiffiffiffiffiffiffiimpliesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffithaffiffiffit thepstanffiffiffiffiffiffiffiffidarffiffiffiffiffid deviation of the estimated rejection probability is

pð1� pÞ=5000 � 1= 20000 � 0:007. For permutation tests 1000 permutations are

generated. The simulations are done in C and S-PLUS.

4.1. Level

First some simulations which illustrate the level properties of the tests on small samples

are reported. In these simulations permutation versions of all tests are also considered. In

Table 1 the simulated level of the various tests are reported for samples of size 10, 30 and

50 generated from a model with hazard rate �(tjx) = 1 and a uniform(0,2) censoring

distribution corresponding to 43% censoring. Notice that the standard deviation of the

estimated rejection probability in this case is approximately 0.003.

We see that not all of the ordinary tests achieve the correct level for small samples. The

AD and LAP tests are in fact too conservative, while the COX3 test and to some extent the

COX test, are nonconservative. For increasing sample sizes the level properties of the tests

improve. For n = 50 the deviations from the correct level are not large, but the AD test and

the LAP tests are still slightly conservative while the COX3 test is slightly non-

conservative. For all tests, the permutation version of the test achieves the correct level

in all cases. Subsequently only the permutation versions of the covariate order tests will be

studied, and these will be denoted respectively AD-perm and LAP-perm.

Another illustration of level properties is presented in Figure 2. In this example samples

of size 50 are generated using a life time distribution with hazard rate �(tjx) = 2at and a

censoring distribution with hazard rate �(tjx) = 2exp(bx)t. In other words a situation with

no covariate effect in the life time distribution, but dependence between the censoring

variable and the covariate. The covariates are drawn from a uniform[0,1] distribution and a

is adjusted according to b to give approximately 50% censoring in all cases.



Figure 2 illustrates that the AD-perm and LAP-perm tests remain on the 5% level for all

values of b, in other words even in cases with very strong covariate effects in the censoring

distribution. The COX and MGL tests also achieve the correct level in all cases, while the

COX3 test is slightly non-conservative.

Table 1. Simulated rejection probabilities based on 5000 simulations of samples of size

10, 30 and 50 using the hazard rate �(tjx) = 1 and a uniform(0,2) censoring distribution

corresponding to 43% censoring. Both ordinary tests and permutation tests are

reported.

n = 10 n = 30 n = 50

Test Ord. Perm. Ord. Perm. Ord. Perm.

AD 0.012 0.054 0.036 0.053 0.040 0.049

LAP 0.022 0.053 0.042 0.053 0.041 0.047

COX 0.062 0.051 0.055 0.051 0.056 0.051

MGL 0.049 0.051 0.052 0.050 0.051 0.047

COX3 0.082 0.053 0.067 0.048 0.063 0.054

Level

b

R
ej

ec
tio

n 
pr

ob
ab

ili
ty

-3 -2 -1 0 1 2 3

0.
0

0.
05

0.
10

0.
15

AD-perm
LAP-perm
COX
MGL
COX3

Figure 2. Simulated rejection probabilities as a function of b for samples of 50 observations from a model with

hazard rate 2at for the life time variable and hazard rate 2exp(bx)t for the censoring variable, and with a adjusted

to give 50% censoring. Lines are drawn between the estimates of the rejection probability for different values of b.



respectively from a uniform[0,1] and a uniform[�1,1] distribution. The corresponding

censoring variables are drawn from densities with hazard rates respectively �(tjx) =

2exp(a � bx)t and �(tjx) = 2exp(a � bx2)t where a is chosen for each value of b to give

approximately 50% censoring. Samples of size 50 are generated.

The left plot in Figure 3 illustrates that all the tests, except the COX3 test, have

approximately the same power properties against the monotonic covariate effect consid-

ered. The COX3 test is somewhat less powerful than the other tests even though it is

slightly nonconservative.

The right plot in Figure 3 illustrates the power properties of the tests in the case with

nonmonotonic covariate effect. These plots illustrates that the tests constructed for

monotonic alternatives have a total lack of power against this nonmonotonic alternative,

while the the AD-perm and the COX3 test have good power properties against this

nonmonotonic alternative as well.

The two plots in Figure 3 illustrate that the tests are able to detect the covariate effect in

the life time distribution even if the covariate effect in the censoring distribution is in the

‘‘opposite direction.’’

Another example of comparing the power of the tests against both monotonic and

nonmonotonic covariate effects is considered by simulating data from a model with hazard

rate �(tjx) = 1.5t0.5exp(cos(2�x)). Samples of size 50 with no censoring are generated, and

the covariate values are drawn uniformly over different intervals.

These intervals and the corresponding simulated rejection probabilities are presented in

Table 2. In the monotonic cases in the two first columns, all tests, except the COX3 which

is less powerful, have fairly equal rejection probabilities. In the nonmonotonic cases in the

two last columns, and in particular in the highly nonmonotonic case in the last column, the

AD-perm test and the COX3 test are far more powerful than the other tests.
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2exp(bxx)t,    X~U[-1,1]
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Figure 3. Estimated rejection probabilities as a function of b for samples of 50 observations from models with

hazard rates 2exp(bx)t and 2exp(bx2)t, covariates drawn respectively from a uniform[0,1] and a uniform[�1,1]

distribution. The hazard rates of the censoring variables are respectively 2exp(a � bx)t and 2exp(a � bx2)t, and

for each value of b, a is chosen to give approximately 50% censoring. Lines are drawn between estimates of the

rejection probability for different values of b.

4.2. Power

Figure 3 illustrates power properties of the various tests for models with hazard rate

respectively �(tjx) = 2exp(bx)t and �(tjx) = 2exp(bx2)t. The covariates are drawn



Finally an example with a discrete covariate is given. In this example the covariate

values are drawn uniformly among the three values 0, 1, 2. Samples of size 50 with

no censoring are generated for different hazard rates �(tjx). This is a situation for

which the COX3 test is particularly well suited. The test is slightly modified by instead

of dividing the observations into three groups such that each group contains 1/3 of

the observations, the observations are divided into three groups according to the three

covariate values.

The estimated rejection probabilities are reported in Table 3.

The first column of this table shows that the covariate order tests still achieve the

correct level, while the MGL test is slightly too conservative and the COX and, in

particular, the COX3 tests are slightly non-conservative. Otherwise the table shows that

rank-based tests (all tests except the COX test are rank-based), including the covariate

order tests, works well even in cases with discrete covariates. In the cases with

nonmonotonic covariate effects, the AD-perm test and the COX3 test are far more

powerful than the other tests.

4.3. Robustness

So far we have assumed that the observed recorded covariate value X is equal to the true

covariate value which can be denoted XL. For various reasons, for instance measurement

errors, errors in records, misspecification of scale or other sources of covariate contam-

ination, this need not always be the truth. For instance may outliers in the observed

covariate values be due to such covariate contamination. Jones (1991) studied the

Table 2. Simulated rejection probabilities based on 5000 simulations of

samples of size 50 using the hazard rate �(tjx) = 1.5t0.5exp(cos(2�x)) no

censoring and covariate values drawn from the uniform distributions

indicated.

Test U[0,0.25] U[0,0.5] U[0,0.75] U[0,1]

AD-perm 0.492 0.990 0.917 0.688

LAP-perm 0.509 0.989 0.705 0.021

COX 0.521 0.995 0.850 0.039

MGL 0.495 0.991 0.795 0.040

COX3 0.395 0.974 0.904 0.829

Table 3. Simulated rejection probabilities based on 5000 simulations of samples of size 50 using the hazard rates

indicated, no censoring and covariate values drawn uniformly from {0,1,2}.

Test 1 1 + x 1 + 0.8 cos(�x) ex/2 e2cos(�x) 0.1 + t(x + 1) 0.1+tjx � 1j

AD-perm 0.049 0.788 0.788 0.670 0.971 0.673 0.798

LAP-perm 0.048 0.790 0.020 0.664 0.021 0.679 0.018

COX 0.058 0.853 0.024 0.761 0.035 0.768 0.025

MGL 0.038 0.793 0.026 0.691 0.036 0.691 0.027

COX3 0.073 0.775 0.999 0.688 1.000 0.673 0.999



robustness of tests for covariate effect under different models for covariate contamination.

The simulation study presented by Jones (1991) has been repeated here. In all simulations

the hazard rate model considered is �(tjx) = 1 + 3x, the censoring distribution is

uniform[0,2] and samples of size 50 are generated. Three covariate distributions are

considered, exponential(2), N(2,1) and uniform[0,2], and three types of covariate con-

tamination are considered:

1. No contamination, X = X �.

2. 10% contamination, X = X � + �J where � = 3 and P( J = 1) = 1 � P( J = 0) = 0.1 and J

is independent of X �.

3. For the exponential covariate there is 10% contamination from an exponential(0.5)

distribution, for the normal covariate there is 10% contamination from a N(5,1)

distribution and for the uniform covariate there is 10% contamination from an

uniform[2,5] distribution.

4. Misspecification of scale, X = exp(X �).

The results are presented in Table 4.

As expected, we see from Table 4 that the COX test, which uses the actual reported

values of the covariates, generally is less robust against covariate contamination than the

other rank-based tests. The covariate order tests and the MGL test have fairly equal and

generally good power properties. The COX3 test is in all cases considered in Table 4 less

powerful than the other rank-based tests.

4.4. Comments

A number of new tests for covariate effect can be established by using the covariate order

approach for constructing tests for covariate effect. Two examples of such tests, the

Table 4. Simulated rejection probabilities based on 5000 simulations of samples of size 50

using the hazard rate �(tjx) = 1 + 3x and a uniform[0,2] censoring distribution. The covariate

distributions are indicated and the types of covariate contamination are defined in the text.

Covar.

dist.

Type of

contam. AD-perm LAP-perm COX MGL COX3

exp(2) 1 0.757 0.748 0.852 0.782 0.651

2 0.582 0.580 0.311 0.594 0.485

3 0.639 0.644 0.434 0.648 0.528

4 0.775 0.769 0.797 0.793 0.664

N(2,1) 1 0.761 0.759 0.772 0.759 0.664

2 0.614 0.599 0.531 0.606 0.512

3 0.617 0.594 0.363 0.591 0.510

4 0.752 0.749 0.638 0.708 0.663

U[0,2] 1 0.843 0.849 0.864 0.841 0.704

2 0.669 0.649 0.401 0.652 0.547

3 0.664 0.647 0.355 0.640 0.546

4 0.837 0.853 0.824 0.835 0.710



Anderson-Darling test and the Laplace test have been considered in this simulation study.

Depending on which assumptions can be made, different variants of these tests can be

used. We have focused on the most general case with independent censoring and general

life time distributions in which case the tests should be based on transformed observation

times. We have further mainly considered the permutation version of the tests to ensure

that we have tests with good level properties for any sample size. Notice, however, that for

reasonable sample sizes applying the ordinary AD and LAP tests yield tests which may be

slightly too conservative but which for practical purposes are equivalent to the permutation

tests. Also recall that in cases with no or random censoring there is no need to transform

the data. In such cases the permutation versions of the covariate order tests can be applied

directly to the original data, or tests of the null hypothesis RP can be used.

The conclusion of the comparison of the AD-perm and LAP-perm tests to other tests is

that the two tests, both with regard to power properties and robustness, are useful

alternatives to existing tests. In particular is this the case for the AD-perm test. In terms of

power against general alternatives, correct level and robustness, this test seems to be the

best test for general use among the tests studied. If we only want or need power against

monotonic alternatives, the AD-perm test is still a safe choice, but the LAP-perm test or

the MGL test can be equally good choices for robust tests in such cases. If there is no

need for robustness against outliers or misspecification of scale, the COX test generally

has at least as good power properties against monotonic covariate effects as the other

tests.

The COX3 test is in many cases the most powerful test against nonmonotonic

alternatives, but is generally the least powerful test against monotonic alternatives. It is

also a nonconservative test unless the sample size is large. Thus the power properties of the

COX3 test cannot really be directly compared to the other tests. For practical use on small

samples a resample version of the COX3 test should be used instead of the original test to

be sure that the test has correct level. For this kind of test there is also the problem of how

to divide the covariate axis into intervals.

It is demonstrated in the simulation study that covariate order tests and other rank-based

tests can be successfully used in situations with discrete covariates. Notice, however, that

if a covariate order test is used to test the significance of a discrete covariate, the outcome

of the test will depend on the (random) order in which the observations with equal

covariate values are arranged when calculating the test statistic. Rather than basing the test

Table 5. Test statistics and p-values for the glioma data. 10000 repetitions

are used for estimating the p-values of the permutation tests.

Unmodified data Modified data

Test Statistic p-value Statistic p-value

AD-perm 3.87 0.0054 4.21 0.0036

LAP-perm 2.72 0.0013 2.74 0.0012

COX 3.15 0.0016 1.40 0.1615

MGL 3.16 0.0016 2.72 0.0065

COX3-perm 8.54 0.0201 8.54 0.0203



on a test statistic calculated from a random ordering of the observations, the test could be

based on the mean or median of the test statistic calculated for all or a large number of the

possible orderings of the data. The null distribution of this mean or median can then be

approximated by resampling by taking the same mean or median for all resamplings of the

original data.

5. Examples

5.1. Glioma Data

Jones and Crowley (1989) gave an illustrative example by considering a data set of post-

treatment survival times and ages at time of treatment for 28 male patients with low-grade

gliomas (brain tumors). For illustrating the effect of extreme covariate values on the

various test statistics, Jones and Crowley (1989) considered both the original data set and a

modified data set where the age of one of the patients was changed from 57.8 to 97.8. The

test statistics and p-values of the various tests, both for the unmodified and the modified

data, are reported in Table 5. Since we only have 28 observations, the permutation version

of the COX3 test is used to assure that the test will have correct level.

For the unmodified data all tests finds the covariate effect of age to be significant on a 5%

level. For the modified data, however, the COX test does not yield a significant result. Also

notice that the COX3 test yields clearly larger p-values than the other rank-based tests.

The constructed process S1, . . . , Sm based on transformed observation times for the

unmodified data is displayed in Figure 4. This figure clearly indicates that the survival

times decrease with increasing age at treatment.

Figure 4. The constructed process S1, . . . , Sm for the glioma data.

Table 6. Test statistics and p-values for the covariate effect of wbc and

log(wbc) in the leukemia data. 10000 repetitions are used for estimating the

p-values of the permutation tests.

wbc log(wbc)

Test Statistic p-value Statistic p-value

AD-perm 4.18 0.0029 4.18 0.0036

LAP-perm 2.75 0.0011 2.75 0.0012

COX 2.10 0.0357 3.10 0.0019

MGL 2.76 0.0058 2.86 0.0042

COX3-perm 8.58 0.0278 8.58 0.0247



This example illustrates the considerable influence of a single extreme covariate value on a

test like the COX which uses the actual recorded covariate values, whereas the rank-based

tests remain robust.

5.2. Leukemia Data

Feigl and Zelen (1965) presented uncensored data on survival times for patients with

leukemia. We here only consider the effect of the covariate white blood cell count (wbc)

for all 33 patients. We consider this covariate measured on two different scales, the

original measurements of wbc as reported by Feigl and Zelen (1965) and the logarithm of

wbc. The results of using the various tests to test the significance of the covariate taken on

these two scales are reported in Table 6.

We see that the COX test yields a clearly lower p-value for log(wbc) than for wbc, while

the other tests yield the same result for wbc and log(wbc) (the p-values of the permutation

tests are estimated separately in each case and thus differ slightly). Notice that the test

statistic of the MGL test is slightly different in the two cases. The reason is that this test is

not purely rank-based. As in the previous example, the COX3 test does also in this case

yield clearly larger p-values than the other tests. The constructed process S1, . . . , Sm based

on transformed observation times for the leukemia data is plotted in Figure 5. This plot

indicates that the survival times decrease with increasing value of wbc.

This example illustrates that rank-based tests are not sensitive to the choice of scale for

measuring the covariate, a choice which is not always obvious.

6. Conclusion

The covariate order approach generates new and interesting tests for covariate effect.

Covariate order tests are purely rank-based tests and will thus be robust against covariate

outliers and misspecifications of the covariate scale as demonstrated in the simulation

study and the examples. The AD-perm test is in particular recommended. In addition to

good robustness properties, this test has good power properties both against monotonic

and nonmonotonic alternatives.
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Appendix

Let Z, conditionally given X, be exponentially distributed with hazard rate �(X), and let the
process S1, . . . , Sm be constructed as described in Section 1. We shall prove that this

process under the null hypothesis of no covariate effect, �(X) � �, is an HPP.

Let Fs be the history of the process S1, . . . , Sm in the interval [0,s). This history is formally

defined as the sub-	-algebra Fs = 	{S1, . . . , Sj : Sj� s} for s	 0. Let N(s) =�n
i=1I(Si� s) be

the counting process counting events in the process S1, . . . , Sm, and let 
(sjFs) be the

conditional intensity of the process at the point s (see for example Andersen, Borgan, Gill

and Keiding, 1993, Page 75). Further consider the process S1*, . . . , Sn*, where Sj* = � j
i=1Ti.

Let N*(s) = �n
i=1I(Si* � s) be the counting process counting events in this process and

define the history Fs* = 	{X1, . . . , Xn; (Tj, �j) : � j
i=1Ti� s}. Note that X1, . . . , Xn is

contained in all the Fs*. Clearly Fs
Fs*. The intensity of the process S1, . . . , Sm
conditional on the history Fs* is


ðsjFs*Þ

¼ lim
Ds!0

PðNðsþDsÞ�NðsÞ	1jF �
s Þ

Ds

¼ lim
Ds!0

Pðs� S�
N�ðsÞ � Z�

N�ðsÞþ1 < sþ Ds� S�
N�ðsÞ \

CN�ðsÞþ1 > sþ Ds� S�N�ðsÞ jF
�
s ÞDs

¼ lim
Ds!0

Pðs�S�
N�ðsÞ�Z�

N�ðsÞþ1
<sþDs�S�

N�ðsÞ Þ
DsPðZN�ðsÞþ1>s�S�

N�ðsÞ Þ
PðCN�ðsÞþ1>sþDs�S�

N�ðsÞÞ
PðCN�ðsÞþ1>s�S�

N�ðsÞÞ

¼ �ðXN�ðsÞþ1Þ

¼ �

which is intuitive. Since Fs
F s* it follows from the innovation theorem (e.g., Andersen

et al., 1993, Page 80), that


ðs j F sÞ ¼ E½
ðs j F �
s Þ j F s� ¼ �

which means that the process S1,. . ., Sm is an HPP under the null hypothesis of no

covariate effect. We also realize that if there is a covariate effect, implying that �(x) is not
constant in x, then the process S1,. . .,Sm is not an HPP.
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