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A B S T R A C T   

Numerical investigations of the flow around a wall-mounted square structure have been carried out by using 
three-dimensional Spalart-Allmaras Delayed Detached Eddy Simulations (SADDES). The Reynolds number based 
on the free-stream velocity and the height of the structure is 1.19× 105. The instantaneous hydrodynamic 
quantities are analyzed. The time-averaged results of the velocities, the Reynolds-averaged statistics and the 
vortical structures are presented and discussed. Dynamic Mode Decomposition (DMD) is applied to study the 
flow in the wake region behind the square structure. The dynamically important modes are extracted by further 
using a sparsity-promoted algorithm. The temporal information of the modes is compared with the results of the 
frequency analysis. The reduced order model of the flow field is constructed by the modes and shows good 
agreement with the numerical simulation results.   

1. Introduction 

Turbulent flows around wall-mounted structures commonly occur in 
many engineering problems. For instance, Glass-reinforced plastic 
(GRP) covers are used to protect the subsea installations, such as pipe
lines, from the potential damages caused by dropped objects and fishing 
gears. For the stable installation of the subsea covers, it is essential to 
obtain the hydrodynamic forces on them. The wall-mounted structures 
have also been used to enhance the heat transfer in gas turbines, com
bustion ducts and heat exchangers (Acharya et al., 1994; Hwang et al., 
1999). Other applications can be found in protrusive devices on various 
transportations such as racing cars, aircrafts and ships (Dai et al., 2017). 
The flows around the wall-mounted structures display complex separa
tion and reattachment features and induce complicate vortex arrange
ment in the separation region behind the structures. As a result, it is of 
great importance to study the flow characteristics around the structures. 
A common simplified model of these wall-mounted structures is a square 
cylinder lying on a flat wall, which is investigated in the present study. 

Numerous studies have been conducted to study the flow around 
wall-mounted structures. Early studies include Arie et al. (1975), where 
experiments have been conducted to study the pressure distribution 
around square structures subjected to a turbulent boundary layer at 
Reynolds numbers of 3.4 × 104 < Re < 1.19 × 105 (defined as Re =

U∞D/ν where U∞ is the free stream velocity and D is the height of the 

structure and ν is the kinematic viscosity of the fluid) and Tropea and 
Gackstatter (1985), where the experiments of the flow past a 
wall-mounted rectangular ribs were conducted in a channel at low 
Reynolds numbers of 150 < Reh < 4500 (defined based on the width of 
the channel). Experiments have also been performed by Martinuzzi et al. 
(1993) on the flows over square ribs with different spanwise lengths W/

D of the structures (W is the spanwise length and D is the height of the 
structures of the ribs). It was found that the flow in the middle region of 
the wake behind the structures with W/D > 6 and the flow in front of the 
rib with W/D > 10 are essentially two-dimensional. Bergeles and 
Athanassiadis (1983) studied the recirculation length around a 
two-dimensional (2D) rectangular ribs using a single hot-wire and 
showed that the length of the recirculation region in front of the struc
tures remains unchanged with the structure length while the length of 
the recirculation behind the structures varies linearly with the structure 
length. Liu et al. (2008) analyzed the spatio-temporal characteristics of 
the unsteady separation and reattachment of turbulent flows over a 2D 
square rib at Re = 1.32 × 104 using experiments. The frequency features 
of the shedding large-scale vortex and the flapping separation bubbles 
were determined by the wall-pressure spectra. Despite experiments, 
numerical simulations were also adopted to study the turbulent 
boundary flow over wall-mounted structures. Hwang et al. (1999) 
employed 2D RANS (Reynolds-Averaged Navier-Stokes) simulations of 
the turbulent flow past a 2D rib with different length to height ratios 
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using the standard k − ε model. Acharya et al. (1994) used steady RANS 
simulations to predict the mean streamwise velocity and the turbulence 
intensity of the flow behind a wall-mounted 2D rib. Ryu et al. (2007) 
used RANS simulations based on the k − ε model on the turbulent 
channel flow over 2D rib structures with different shapes to study the 
different drag forces and flow characteristics at Re = 2× 104. 

The previous numerical simulations on the flow around 2D wall- 
mounted structures are largely carried out using the steady RANS 
since the wall can suppress the large-scale vortex shedding behind the 
structures. However, unsteady flow behaviors have been observed in the 

wake region behind the structures such as rolling-up of vortices and a 
flapping separation bubbles reported by Liu et al. (2008) which cannot 
be studied based on the steady RANS because only the time-averaged 
flow characteristics can be captured in the steady RANS simulations. 
Large Eddy Simulation (LES) was used to investigate the temporal 
behavior of the wake flow behind bluff bodies in various studies re
ported by Tian et al. (2014), Prsic et al. (2018) and Li et al. (2018). 

Fig. 1. Computational domain.  

Fig. 2. The fitted logarithmic layer profile used in the present study (solid black 
line) compared with the experimental boundary layer profile reported by Arie 
et al. (1975) (circles). 

Table 1 
Results for different cases.  

Case Lz/

D  
Grids in XY 
plane 

Grids in z 
direction  

ΔtU∞/D  CD  CL  

1 4 55794 64 0.001 1.075 0.556 
2 4 72433 64 0.001 1.079 0.541 
3 4 93884 64 0.001 1.076 0.531 
4 8 72433 128 0.001 1.087 0.554 
5 4 55794 64 0.002 1.076 0.561 
6 4 93884 96 0.001 1.068 0.529  

Fig. 3. Time- and spanwise-averaged streamwise velocity profiles 〈u〉/U∞ (a) 
and pressure coefficient profiles 〈Cp〉 (b) along x direction at y = 0.5. 
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However, the computational cost of LES at high Reynolds numbers is 
high. Detached-eddy simulations (DES) proposed by Spalart et al. (1997) 
which is less computationally expensive, can be used for this purpose. 
The DES method is a combination of a RANS model in the attached 
boundary layer near the walls and a LES method in the separated regions 
away from the walls. An improvement to the standard DES (Spalart 
et al., 1997) was proposed by Spalart et al. (2006) known as delayed DES 
(DDES) to delay the switching from RANS to LES in the boundary layers. 
The method can prevent the artificial grid-induced separation (GIS). A 
detailed comparison was made by Boudreau et al. (2017) between the 
DDES simulation and URANS (unsteady RANS) simulation to show the 
ability of DDES in accurately capturing the wake behavior behind a 
square cylinder at RẽO(104). Furthermore, the DDES simulation was 
adopted by Ong et al. (2017) to study the flow structures around 
monopile and gravity-based wind turbine foundations at a high Rey
nolds number of Re = 4× 106. In the present study, 3D Spalart-Allmaras 
DDES (SADDES) method has been employed to investigate the unsteady 
flow in the wake region behind a wall-mounted square structures. To 
further understand the simulation results, the flow is analyzed using 
Dynamic Mode Decomposition (DMD) (Schmid 2010) to quantify the 
dynamical properties of the velocity fluctuations. The method was 
proposed based on the Koopman operator theory of dynamical systems 
(Rowley et al., 2009; Bagheri 2013). The dynamic information can be 
extracted from a time-resolved flow fields obtained by either numerical 
simulations (Schmid 2010; Tu et al., 2011; Zhang et al., 2017) or 
experimental data (Schmid 2011; Schmid et al., 2012; He et al., 2013; 
Seena and Sung, 2013; Tissot et al., 2013, 2014). The DMD method is 
regarded as an extension of the global stability analysis of a linear sys
tem. However, the explicit equations of the dynamical system are not 
required and it can be used as a data-driven method. For nonlinear 
systems such as the fully turbulence, a widely adopted method to extract 
important features is the proper orthogonal decomposition (POD) 

proposed by Lumely (1967). However, the POD modes are selected ac
cording to their energy and their temporal information is missing. The 
DMD method assumes that the temporal evolution of the dynamical 
system is governed by a linear operator, but it can still be applied to the 
nonlinear system and in fluid mechanics, it is used to extract the 
coherent structures from the flow fields. 

The organization of the present paper is outlined as follows. The 
mathematical formulation and numerical methods are given in Section 
2. The convergence studies and validation studies are presented in 
Section 3. The results and discussion in terms of hydrodynamics quan
tities, power spectra analysis of the fluctuations, instantaneous flow 
structures and DMD modes are given in Section 4. Finally, a conclusion 
is made for the present study. 

2. Mathematical formulation and numerical method 

2.1. Mathematical formulation 

In the framework of DDES, the governing equations for the incom
pressible flow are filtered Navier-Stokes equations given as 

∂ui

∂xi
= 0 (1)  

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p
∂xi

+ ν ∂2ui

∂xj∂xj
−

∂〈ui
′ uj

′ 〉
∂xj

(2)  

where i, j = 1,2, 3 (for x,y, z) is the streamwise, cross-stream and span
wise directions, respectively. u1, u2, u3 (for u, v, w) are their corre
sponding resolved velocity components. − 〈ui

′uj
′ 〉 are the unresolved 

stresses, which are modeled by 

Fig. 4. An example of the meshes in the XY-plane of Case 5 in Table 1: (a) the whole computational domain, (b) grids around the structure and in the spanwise 
direction of YZ-plane (c) grids around the structure. 
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− 〈ui
′ uj

′ 〉= νt

(
∂ui

∂xj
+

∂uj

∂xi

)

(3) 

An additional transport equation is used to calculate the modified 
viscosity ν̃ which can be found in Spalart et al. (2006) and is not 
described in detailed here. ν̃ is associated with the eddy viscosity νt as 

νt = ν̃fv1 fv1 =
X3

X3 + Cv1
3 X =

ν̃
νt

(4)  

where Cv1 = 7.1. In the present study, the fv3-implementation (Rumsey 
et al., 2001) for the Spalart-Allmaras version is used to determine the 

Fig. 5. Time- and spanwise-averaged streamwise velocity 〈u〉/U∞ (solid lines) at different streamwise locations compared with the experimental data reported by 
Acharya et al. (1994) (circles) and Crabb et al. (1977) (triangles). 
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terms in the transport equation of ν̃. 
In the original DES formulation, the distance between a point in the 

flow domain and the wall d in the destruction term of the viscosity 
transport equation is modified as 

d̃ =min(d,CDESΔ) (5)  

where CDES = 0.65 is a constant and Δ is the length scale associated with 
the local grid spacings in the three directions: 

Δ=max
(
Δx,Δy,Δz

)
(6) 

DDES is proposed to overcome the issue of “grid-induced separation” 
(GIS) by delaying the transition from RANS in the attached boundary 
layer region to LES in the separation region away from the wall. In this 
method, d̃ is modified as 

d̃ = d − fdmax(0, d − CDESΔ) (7)  

where fd is a filter function designed to be 0 in the RANS region and 1 in 
the LES region. 

Table 2 
Hit rates and fractional bias of the velocity profiles compared with the experi
mental data reported by Acharya et al. (1994) and Crabb et al. (1977).  

Locations Hit rate q  Fractional bias (FB) 

x/ D = −

0.9  
0.684 0.03526 

x/ D = 0.9  0.4 0.3084 
x/ D = 5.5  0.24 0.7179 
x/ D = −

0.5  
0.867 0.0829 

x/ D = 0  0.818 0.0612 
x/ D = 0.5  0.67 0.1342  

Fig. 6. Time- and spanwise-averaged urms/U∞ (solid lines) at different streamwise locations compared with the LES results obtained by Gu et al. (2017) (dash-dotted 
lines) and experimental data reported by Acharya et al. (1994) (squares) and Tariq et al. (2004) (triangles). 
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2.2. Numerical methods 

OpenFOAM, an open source Computational Fluid Dynamic (CFD) 
code, is used in the present study. The PISO (Pressure Implicit with 
Splitting of Operators) scheme is used. The spatial schemes for gradient, 
Laplacian and divergence are Gauss linear, bounded Gauss linear up
wind, and Gauss linear limited corrected, respectively. 

3. Computational overview 

3.1. Computational domain 

The computational domain is shown in Fig. 1. The origin of the co
ordinates is located at the center of the bottom edge of the wall-mounted 
square structures. The length and height of the computational domain 
are 50D and 20D, respectively. The spanwise length Lz will be deter
mined in the next section. The distance between the inlet boundary and 
the center of the bottom edge of the square structure is set to be Lu =

11.5D and the distance between the outlet boundary and the center of 
the bottom edge of the structure is set to be Ld = 40.5D. This inlet length 
is larger than that used in Ong et al. (2010) where numerical simulations 
were carried out for the flow around a cylinder close to a flat wall at 
Re = 3.6 × 106 with an inlet length of 10D. The outlet length is also 
larger than that used in the previous similar numerical studies such as 
Young et al. (2006) at with Ld = 20D, Ong et al. (2009, 2010) at Rẽ
O(106) with Ld = 20D, Tian et al. (2014) at Re = 1.5 × 105 with Ld =

20D and Tian et al. (2016) at Re = 1.5 × 105 with Ld = 15D. Based on 
these studies, the size of the domain in the XY plane is large enough to 
suppress any far field effects. The boundary conditions for the simula
tions are set as follows: 

(1) A seabed boundary layer flow with a logarithmic horizontal ve
locity profile is used at the inlet boundary in x direction. The 
logarithmic velocity profile with a boundary layer thickness of 
δ = 0.73D is adapted by curve fitting of the boundary layer pro
file obtained in the experiments done by Arie et al. (1975). The 
obtained velocity profile is shown in Fig. 2 compared with the 
experimental velocity profile reported by Arie et al. (1975). The 
velocity in y and z direction is set to be zero. 

The inlet turbulent quantities are prescribed by implementing the 
turbulent viscosity which is given by 

νt =Cμk2/ε (8)  

using the definition in the k − ε model with Cμ = 0.09. The turbulent 
kinetic energy k and the rate of dissipation of turbulent kinetic energy ε 
are given by 

k=

{
max

{
C− 1/2

μ (1 − z/δ)2u2
τ , 0.0001U2

∞

}
, if ​ z ≤ δ

0.0001U2
∞, if ​ z > δ

(9)  

ε=
(
C3/4

μ k3/2) / l (10)  

where the turbulent length scale l is given by l = min{κy(1 + 3.5y/δ)− 1
,

Cμδ} with κ = 0.41. The same method for prescribing the turbulent 
viscosity has also been used Ong et al. (2017) where Spalart-Allmaras 
DDES model was also adopted.  

(2) No-slip condition (u = v = w = 0) is applied on the bottom and 
the surface of the square structure. The pressure is set to be zero 
normal gradient. In the present study, the flow around the square 
surface is fully developed turbulent and a wall function based on 
the Spalding’s law of the wall (Spalding 1961) is applied for the 
near-wall region.  

(3) At the outlet and top boundaries, the velocities, pressure and νt 
are set as zero normal gradient.  

(4) The periodic boundary conditions are used for all the variables on 
the two XY planes in the spanwise directions. 

A parallel computing technique is used for the simulations on a 
distributed memory system in a Notur project and the computational 
domain is divided into 128 or 256 subdomains based on different cell 
numbers. 

3.2. Convergence studies 

Convergence studies are carried out to determine the spanwise 
length, the grid and time resolutions of the simulations. The parameters 

Fig. 7. Energy spectra of the resolved cross-stream velocity fluctuations at the mid-span point of (x /D, y /D, z /D) = (1,0.5, 2) compared with the − 5/3 law (red 
dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and the results are shown in Table 1. Δt is the time step and all the 
simulations are run for a non-dimensional time of 1000D/ U∞ (U∞ is the 
free stream velocity and a total computational time in a range of 
38400–128000 CPU hours is used for each case). The time-averaged 
drag coefficients and lift coefficients of different cases are considered, 
which are defined as follows: 

〈CD〉=
〈Fx 〉

1
2 ρU2

∞DLz
(11)  

〈CL〉=
〈Fy〉

1
2 ρU2

∞DLz
(12)  

where Fx is the total force obtained by integrating the pressure and the 
shear stress acting on the surfaces of the square structure in x direction 
and Fy is the force in y direction. 

First, results of Case 1~Case 3 with different grids numbers in XY 
plane and the same Lz, grids number in z direction and Δt show that 
there is no significant difference in 〈CD〉 and the relative difference 
among 〈CL〉 of the three cases are within 4.7%. Then, 〈CD〉 and 〈CL〉 of 
Case 2 and Case 4 with different Lz and the same grid resolution in z 
direction shows that when increasing Lz from 4 to 8, the relative dif
ference between 〈CD〉 is within 1% while the relative difference between 
〈CL〉 is 4.3%, indicating that Lz = 4 is enough to provide converged re
sults and this value is adopted for the other simulations. The relative 
difference between 〈CD〉 of Case 1 and Case 5 with different Δt is less 
than 1% and the relative difference between 〈CL〉 is within 2%. There
fore, Δt = 0.001 is used for all the rest simulations in the present study. It 
worth mentioning that the minimal Taylor time scale defined as τλ =

(15ν/ε)1/2 of the present study is calculated to be 0.04 and the time step 
of Δt = 0.001 is much smaller than the minimal Taylor time scale, and 
hence also smaller than the large eddy scales. With a finer grid resolu
tion in z direction for Case 6, both 〈CD〉 and 〈CL〉 decrease compared with 
Case 3. However, the relative differences for Case 6 from Case 3 is within 
1% and 2% for the two quantities. 

Furthermore, the time- and spanwise-averaged streamwise velocity 〈 
u〉/U∞ and the pressure coefficient 〈Cp〉 (defined as 2(〈p〉 − p∞)/(ρU2

∞)

where p∞ is chosen such that 〈Cp〉 at the front stagnation point on the 
front face of the structure is unity) along the streamwise direction at y =

0.5 are compared among different cases as shown in Fig. 3. It is shown 
that the results agree well with each other which indicate that the grid 
and time-step convergences have been achieved. Fig. 4 shows an 
example of the meshes of Case 5 in Table 1 in the XY-plane and the YZ- 
plane. 

3.3. Validation studies 

Validation studies are conducted by comparing the converged results 
of Case 6 in Table 1 with the published data. The 〈CD〉 value of Case 6 is 
in satisfactory agreement with the experimental data of 〈CD〉 = 0.96 
reported by Arie et al. (1975) with a relative difference of 10.8% and the 
numerical data of CD = 1.02 obtained by 2D RANS simulation reported 
by Tauqeer et al. (2017) with a relative difference of 5.2%. 

Further validation studies are done by comparing 〈u〉/U∞ at different 
streamwise locations of x/D = − 0.9, 0.9,5.5 and x/D = − 0.5, 0,0.5 on 
the top of the square with the experimental data in turbulent channel 
flows reported by Crabb et al. (1977) as well as Acharya et al. (1994) in 
Fig. 5. The comparison shows that the results of the present study are 
overall in good agreement with the experimental data except that there 
is a discrepancy at x/D = 0.9 and x/D = 5.5 in the wake region where 
adverse pressure gradient takes place. Furthermore, the hit rates and 
fractional bias of the present predicted time- and spanwise-averaged 
velocity profiles compared with the experimental data are at these lo
cations are presented in Table 2. According to Santiago et al. (2007), the 
hit rate value q and the fractional bias value (FB) for the velocity profile 
at each location are defined as 

q=
1
n
∑n

i=1
Ni with Ni =

{
1, if|Pi − Oi|/|Oi| ≤ RD ​ or ​ |Pi − Oi| ≤ AD
0, else

(13)  

FB=
(

O − P
)/

0.5
(

P+O
)

(14)  

where n is the total number of points at each locations in Fig. 3. The 
values of Pi and Oi denote the present predicted data and the experi
mental data, respectively; P and O denote their mean values. RD and AD 
denotes a relative and absolute deviations, respectively. As suggested by 
Santiago et al. (2007), the values of RD = 0.25 and AD = 0.05 are used. 
It can be seen that close to the square structure, the velocity profiles can 
fulfil the criterion of q ≥ 66% as proposed by Schlünzen et al. (2004). 
Far away downstream the square structure, the hit rates can be large. In 

Fig. 8. Time histories of (a) CD; (b) CL; (c) the phase-space plot of the 
two quantities. 
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addition, the present simulation tends to underestimate the streamwise 
time- and spanwise-averaged velocity based on the FB values. 

Fig. 6 shows profiles of the spanwise-averaged urms/ U∞ at different 
streamwise locations of the present study are compared with the pre
vious published experimental data reported by Acharya et al. (1994) and 
Tariq et al. (2004) and LES results reported by Gu et al. (2017). It can be 
seen that the values of urms/U∞ are in general comparable to the pub
lished data. However, the wall-normal locations of the peak value of 
urms/U∞ are overpredicted for the present study and the discrepancy can 
be attributed to the higher Re of the present study compared with those 
used in the previous studies. 

Finally, the energy spectra of the resolved cross-stream velocity 
fluctuations obtained at the location of (x /D, y /D, z /D) = (1, 0.5, 2) of 
Case 6 in the wake region behind the square is shown in Fig. 7. It can be 
seen that the inertial subrange of the energy spectra follows well with 
the Kolmogorov spectra with a − 5/3 slope, which confirms the validity 
of the present turbulence modeling. 

4. Results and discussion 

4.1. Hydrodynamic forces 

The hydrodynamics forces are analyzed in this section in terms of the 
instantaneous drag force and lift force acting on the square structure. 
The time histories of CD and CL are shown in Fig. 8 (a) and (b). It is 
obvious that the frequency of CL is lower than that of CD. There are 
clearly high and low drag regimes in CD which is closely related to the 
high and low CL. The approximate positive correlation between the 
instantaneous values of two force coefficients is also observed in the 
phase-space plot of CD and CL as shown in Fig. 8 (c), where the envelop 
of CL is amplified by CD. This behavior has also been reported in Najjar 
and Balachandar (1998), Tian et al. (2014) and Hemmati et al. (2019). 
However, due to the presence of the bottom flat wall, the linear increase 
of CL with CD is not as apparent as that of the flow around a flat plate 
reported by Tian et al. (2014). 

4.2. Reynolds-averaged statistics and instantaneous flow visualizations 

Reynolds-averaged statistical quantities are discussed in this section. 
Fig. 9 shows the streamlines of the time- and spanwise-averaged flows of 
Case 6. There are three main recirculation motions around the square, 
which are also reported by Tauqueer et al. (2017). A small one is formed 
around the front face of the structure and a large recirculation motion is 
generated due to the separation of the shear layer behind the square. The 
third smaller one is induced by the large recirculation vortex around the 
rear face of the square. On the top of the square, a secondary separation 
appears which causes an additional small vortex. This is also observed 

on the top of a flat plate reported by Tian et al. (2014). 
The contours of resolved Reynolds stresses 〈u′u′ 〉/U2

∞, 〈v′v′ 〉/U2
∞, 〈 

u′v′ 〉/U2
∞ are presented in Fig. 10. Due to the DDES used in the present 

study, the Reynolds stresses are low near the surface of the square where 
RANS equations are solved. High levels of the three Reynolds stresses are 
all located around the shear layer behind the square. The peak value of 
〈u′u′ 〉/U2

∞ is located downstream at x/D ≈ 3 while the peak value of 〈 
v′v′ 〉/U2

∞ is located closer to the square at x/D ≈ 0.5. The peak value of 
〈u′v′ 〉/U2

∞ is located between the peak locations of the other two 
quantities. 

Fig. 11 shows the instantaneous 3D vortical structures at t = 800D/
U∞ identified by the Q criterion defined by 

Q=
1
2
(
Ω2 − S2) (15)  

where S and Ω is the strain and the rotation tensor, respectively. The iso- 
surfaces of nondimensionalized QD/U∞ = 2.5 are colored by the time- 
averaged streamwise velocity. A shear layer is formed after the separa
tion point and are shed due to the shear-layer instability as marked as 
‘S’. The shear layer begins to rolling-up (denoted as ‘R’) into hairpin 
vortices (denoted as ‘H’) and they are becoming larger further down
stream. Due to the high Re, the vortical structures are highly three- 
dimensional and spatially irregular. The vortical structures gathering 
around the shear layer are mostly in the spanwise direction while those 
in the wake region tend to be in the streamwise direction. 

4.3. Dynamical mode decomposition analysis 

In this section, the DMD method is employed to analyze the 
dynamical properties of the flow. The algorithm of DMD can be briefly 
outlined as follows. The input datasets in the form of a sequence of 
snapshots are denoted as two matrices 

VN
1 = [v1, v2, v3, ...vN ] ∈ RNx×N (16)  

VN
2 = [v2, v3, v4, ...vN+1] ∈ RNx×N (17)  

and a column vector vi (i = 1,2, 3...N) denotes the input data at time 
step of t = ti, which is usually the velocities or the pressure stored at 
every nodes in the flow field. Nx denotes the total number of the 
measured signals at all observation nodes in the experiments or nu
merical simulations. The time step between two snapshots is Δt. In the 
DMD method, it is assumed that the there is a linear operator A between 
two consecutive snapshots vi+1 = Avi and the relationship between the 
two data sequence matrices can be written as 

AVN
1 =VN

2 (18) 

Fig. 9. The contours of the streamwise velocity 〈u〉/U∞ and streamlines of the time- and spanwise-averaged flow.  
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The DMD method aims to determine eigenvalues and eigenvectors of 
the unknown operator A. The eigenvalues of the operator can describe 
the dynamical properties inherited in the data sequence. For a fluid 
mechanic problem, the number of the components of each vector vi, Nx is 
usually larger than the total number of the snapshots N and the DMD 
method can provide a reduced-order representation of the linear oper
ator A. First, the singular value decomposition (SVD) is applied for the 
matrix VN

1 

VN
1 =UΣVT (19)  

where Σ is an diagonal matrix contain non-zero singular values on its 
diagonal. U and V contain orthogonal unit columns (U ∈ RNx×N and V ∈

RN×N and UTU = I VTV = I, where “T” denotes the transpose of the 
matrix) and the column vectors of U are usually denoted as the proper 
orthogonal decomposition (POD) modes of the data sequence VN

1 . Then, 
the linear mapping relationship of VN

1 and VN
2 can be expressed as 

VN
2 =AUΣVT (20)  

Fig. 10. Contours of resolved Reynolds stresses. (a) The streamwise normal stress 〈u′ u′ 〉/U2
∞; (b) The cross-stream normal stress 〈v′ v′ 〉/U2

∞; (c) The shear stress 〈u′ v′ 〉 
/U2

∞. 
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Fig. 11. Instantaneous iso-surface of QD/U∞ = 2.5 at tU∞/D = 800 colored by the time- and spanwise-averaged streamwise velocity 〈u〉/U∞.  

Fig. 12. (a). DMD eigenvalues; (b). DMD spectrum (black circles: obtained by Eq. (17), and red crosses: selected by the SPDMD algorithm). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. Locations of probes for PSD analysis.  
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and the reduced-order representation of A can be obtained by projecting 
A on U as 

Ã=UT AU = UT VN
2 VΣ− 1 (21) 

Because of the orthogonality of the column vector of U, the matrix Ã 
with a lower dimension of N × N contains the same eigenvalues as A 
with the dimension of Nx × Nx. By solving the eigenvalue problem 

ÃY =YΛ (22)  

the eigenvalue of A can be obtained as Λ = diag(μ1, μ2, ...μN)and their 
corresponding eigenmodes are obtained by Φ = UY = [φ1,φ2,φ3...,φN], 
which are also denoted as the DMD modes. According to Schmid (2010), 

Im(log(μi) /Δt) represents the frequency and Re(log(μi) /Δt) represents 
the amplification rate of the mode. 

An important question in the DMD method is to determine a small 
subset of DMD modes that can provide a reduced order approximation of 
the dynamic system represented by the data sequence (16). Different 
from the POD modes whose contributions to the data sequence are 
ranked according to their energy levels, the contribution of each DMD 
mode is difficult to measure because no information of their energy can 
be obtained through the algorithm. A sparsity-promoting (SP) DMD 
(SPDMD) method is proposed by Jovanović et al. (2014) to select a 
subset of dynamically important modes. This algorithm was further 
improved and adopted to analyze the flow past a circular cylinder at low 
Re in Ohmiche (2017). Given the DMD modes φi and their eigenvalues 

Fig. 14. The power spectral densities (PSDs) of the streamwise velocity at (a) x/D = 1; (c) x/D = 2; (e) x/D = 4 and the cross-stream velocity at (b) x/ D = 1; (d) x/
D = 2; (f) x/D = 4. (Blue solid: y/D = 0.4; Blue dashed: y/D = 0.8; Blue dash-dotted: y/D = 1.2; Black dashed: y/D = 1.4; Black solid: y/D = 1.6; Black dotted: y/
D = 1.8; Black dash-dot-dotted: y/D = 2.0). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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μi, the input dataset can be approximated as 

VN
1 ≈ΦDαVand = [φ1,φ2,φ3...,φN ]

⎡

⎣
α1

...

αN

⎤

⎦

⎡

⎢
⎢
⎣

μ0
1 ⋯ μN− 1

1

⋮ ⋱ ⋮
μ0

N ⋯ μN− 1
N

⎤

⎥
⎥
⎦ (23)  

where Dα = diag(α1, ...,αN) denote the amplitudes of their correspond
ing DMD modes within the time span. The amplitude of each DMD mode 
αi(i = 1, 2,3...N) is regarded as the measurement of its contribution to 
the dynamic system. Vand denotes the Vandermonde matrix contained 
the temporal variations of each mode during the time span. 

By introducing a penalty function γ, an optimization problem is 
solved to determine the unknown amplitudes matrix Dα 

min
α

⃦
⃦VN

1 − ΦDαVand
⃦
⃦2

F + γ
∑N

i=1
|αi| (24)  

‖...‖F is the Frobenius norm of a matrix. According to Jovanović et al. 
(2014), the positive parameter γ is choose to achieve a balance between 
the accuracy of the approximation (24) and the number of efficient DMD 
modes used in the approximation, i.e. the sparsity of the amplitude 
matrix Dα. For a large γ, most of the element in [α1, ...,αN] becomes 0. It 
means that the SPDMD method removes the modes which only influence 

Fig. 15. The DMD spectrum (red circles) obtained by the SPDMD algorithm and the power spectral densities (PSDs) of the streamwise velocity (a) and the cross- 
stream velocity (b) at x/D = 1 (solid); x/D = 2 (dashed); x/D = 4 (dash-dotted). (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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the early stages of the time evolution and are damped quickly as well as 
the modes with small amplitudes. Hence, the DMD modes with non-zero 
elements in [α1, ...,αN] which contribute the most to the dynamic system 
are kept. 

In the present study, the SPDMD algorithm is performed on the (u, v)
data obtained in the 2D XY-plane at the mid-span point z = 0 of the 
computational domain. The similar 2D (two-dimensional)-2C (two- 
components) DMD analysis was also performed by Tissot et al. (2013) on 
the flow around a cylinder. The number of the snapshots is N = 800 from 
the time span of 450 ≤ tD/U∞ ≤ 530 with a time step of ΔtD/ U∞ = 0.1. 
The DMD eigenvalues obtained by (22) are shown in Fig. 12 (a) together 
with a subset of eigenvalues corresponding to the Nsp = 57 modes 
selected by the SPDMD algorithm. and the others are located inside the 
unit circle. When the eigenvalue of a DMD mode is located on the unit 
circle, the growth/decay rate of the mode is zero and the mode is 
‘neutrally stable’ as described in Schmid et al. (2010), Schmid (2011) 
and Pan et al. (2015). It can be seen from Fig. 12 (a) that most of the 
eigenvalues lies on the unit circle due to the statistically stationary state 
of the turbulent flow. This behavior has also been widely reported in 
Seena and Sung (2011), Statnikov et al. (2015) and Wu et al. (2019). 
Other modes are located inside the unit circle and they have negative 
growth rates. These modes are strongly damped within the temporal 
evolution of the dynamical system as reported in Jovanović et al. (2014). 
The power spectrum of the DMD modes obtained by (22) as well as the 
modes selected by SPDMD are shown in Fig. 12 (b). It can be seen that 
after the SPDMD algorithm is applied, most of the modes are removed 
because even though they have large amplitudes, they are damped 
quickly during the time evolution. The modes with lower frequencies are 
left which make the most contribution to the dynamical system. Among 
the remaining modes after the SPDMD algorithm, the most dominant 
mode corresponds to the time-averaged flow with a frequency of 0. All 
the other frequencies correspond to the turbulent fluctuations which 
appear in pair. The DMD spectrum with the frequencies 
Im(log(μi) /Δt) > 0 of the remaining modes are shown in Fig. 15. All the 

spectrum is widely distributed since the flow is fully developed turbu
lence which displays multi-scale features. However, all the spectrum is 
observed to cluster around 4 peaks as indicated in Fig. 16. A comparison 
between the DMD spectrum and the power spectral densities (PSD) of 
the streamwise and the cross-stream velocities is performed (The DMD 
mode corresponding to the time-averaged flow is not included). The 
PSDs are obtained using the fast Fourier transformation combined with 
Welch’s method (Welch 1967). For the PSD analysis of the velocity 
signals, the time series of u and v at 17 streamwise locations shown in 
Fig. 13 are sampled with a sampling frequency of ΔtU∞/D = 0.01. The 
time span of the sampling is TU∞/D = 300. The spanwise-averaged 
PSDs of u and v are shown in Fig. 14. At x/D = 0.2 and y/D =

1.4̃2.0, a dominant frequency of is shown at fKHD/U∞ = 0.45̃0.5 and 
this dominant frequency is related to the Kelvin-Helmholtz (KH) insta
bility of the shear layer. The value of the frequency is slightly larger than 
the previous published data of fKHD/U∞ = 0.35 in Abdalla et al. (2007) 
at Re = 4500 and fKHD/U∞ = 0.42 in Gu et al. (2017) at Re = 3000, 
which may be due to the higher investigated Re for the present study. 
The predicted value of the KH instability frequency is also close to the 
value of fKHD/U∞ = 0.59 reported in Mercier et al. (2020) at Re = 2.5×

105. In addition, at these streamwise locations, the frequency peaks at 
2fKHD/U∞ related to secondary harmonic are also observed. It worth 
mentioning that there are frequency peaks at fsD/U∞ = 0.25 for u and v 
at the locations of (x /D, y /D) = (2, 1.2) and (x /D, y /D) = (4, 1.6), 
which is the subharmonic of the primary KH instability frequency. Ac
cording to Gu et al. (2017), this subharmonic is related to the vortex 
pairing. Furthermore, the widely reported low-frequency mode in 
Abdalla et al. (2007), Gu et al. (2017, 2018) and Wu et al. (2020) can be 
also seen at fmD/U∞ = 0.05̃0.09 for v at x/D = 4 and y/D = 0.4,0.8 
and 1.2. However, this low-frequency mode is not obvious which may be 
due to the wide range of low frequencies related to the characteristics of 
fully developed turbulence. A comparison between the DMD spectrum 
and the power spectral densities (PSD) of the streamwise and the 
cross-stream velocities at x/D = 1,2, 4 and y/D = 1.6 with different 

Fig. 16. DMD spectrum selected by SPDMD with 4 clusters.  
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heights is shown in Fig. 15 (The DMD mode corresponding to the 
time-averaged flow is not included). The frequencies obtained by 
Im(log(μi) /Δt) are divided by 2π to compare with the PSD. It can be seen 
that the four clusters (indicated by the grey vertical stripes) of the DMD 
modes can correspond well to the different frequency peaks in PSD. 
Therefore, it can be inferred that Modes 3 and 4 corresponds to sub
harmonic and primary KH modes, respectively. Modes 1 and 2 can 
correspond to the low-frequency motions. As mentioned in Taira et al. 
(2017), DMD can be viewed as a combination of POD and the Fourier 
transformation; hence, the DMD modes can capture both the spatial 
coherency and temporal evolution of the flow structures while Fourier 
transformation can only obtain the characteristic frequencies of the 
velocity signals at a single point in the flow field. 

The contours of the streamwise velocity corresponding to the DMD 
modes denoted as Modes 0–4 in Fig. 11 from the 4 clusters are shown in 
Fig. 17 (a)~(e). As has been mentioned, the mode with 0 frequency 
denotes the time-averaged flow which is similar to that shown in Fig. 9 
(The contour levels are different because all the DMD modes obtained by 
(22) are normalized). The contours of the streamwise velocity of the 
mode with the second peak (marked with Mode 1) show that a large- 
scale structure appears with a pair of high- and low-speed regions 
with the size relative to the cross-stream size of the wake region. The 
structures of the third mode (marked with Mode 2) shows smaller 
streamwise wavelength. With the increasing frequency and decreasing 

amplitude of the higher order modes, the structures are becoming 
smaller and the energetic regions are located closer to the shear layer of 
the recirculation region behind the square while more weak fluctuations 
are distributed near the bottom wall. 

Finally, a reduced-order model (ROM) of the flow field is built based 
on the DMD modes together with their corresponding amplitudes and 
frequencies obtained by the SPDMD algorithm. To achieve this, the 
velocity at a point (x, y) at t = tn is reconstructed by 

u(x, y, tn)=
∑Nsp

i=1
αiφi(x, y)μn− 1

i (25)  

where φi(x, y) denotes the value at (x, y) of the ith mode and αi is its 
amplitude calculated by the SPDMD method (Jovanović et al., 2014). 
Nsp is the total number of DMD modes used to build the ROM. 

The ROMs of a flow field at low Re are usually built by Nsp ∼ O(10)
modes. However due to multi-scale features of the fully developed turbulent 
flow in the present study, a relatively larger number of DMD modes are 
required. To examine the influence of the number of modes used to build the 
ROM, the time histories of the streamwise velocities at 6 locations of 
(x /D, y /D) = (0.5,0.5), (1, 0.5), (1.5,0.5), (2,0.5), (3, 0.5), (4,0.5)
behind the square obtained by (23) using Nsp = 57 and 103 modes are 
compared with the original numerical simulation data. For Nsp = 57, large 
discrepancy is observed near the square at (x /D, y /D) = (0.5,0.5)

Fig. 17. The contours of the nondimensionalized streamwise velocity u/U∞ corresponding to the DMD modes marked in Fig. 11: (a) Mode 0; (b) Mode 1; (c) Mode 2; 
(d) Mode 3; (e) Mode 4. 
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indicating that more small-scale structures are generated, and more modes 
are needed to capture the dynamical behaviors. At (x /D,y /D) = (3, 0.5),
(4,0.5), the time variations of the streamwise velocity can be better pre
dicted by the ROM despite that the amplitudes of the ROM are lower than 
the simulation results. When increasing the modes number to Nsp = 103, 
the ROM results become more accurate. It is worth mentioned that the ROM 
built by using these DMD modes only captures temporal evolution of large- 
scale turbulent structures. The production of small-scale turbulent struc
tures which lead to the spikes of the time histories of the streamwise velocity 
shown in Figs. 18 and 19 can be captured by including even more DMD 
modes, which are truncated in the present ROM. 

5. Conclusion 

Three-dimensional Spalart-Allmaras Delayed Detached Eddy Simu
lations of the flow around a wall-mounted square structure are carried 
out. The Reynolds number based on the free stream velocity and the 
structure height (D) is Re = 1.19× 105. The drag coefficients as well as 
the time- and spanwise-averaged streamwise velocity profiles are in a 
reasonable agreement with the published data. Systematical analysis is 
presented in terms of the hydrodynamic quantities, Reynolds-averaged 
statistics and the instantaneous vortical structures. Furthermore, Dy
namic Mode Decomposition has been applied to the (u, v) data in the 2D 
XY-plane at the mid-span point of the flow field, which can extract the 
dynamic information of the coherent structures in the wake region 

behind the square structures. The main conclusions can be outlined as 
follows:  

1. The frequency of the time history of the lift coefficient CL is lower 
than that of the drag coefficient CD. The instantaneous CL is 
approximately associated with CD.  

2. Three main time-averaged recirculation motions are observed 
around the square. A small one appears around the front face of the 
structure and a large recirculation motion formed behind the square. 
A small vortex is induced by the large recirculation motion around 
the rear face of the structure.  

3. The shear layer sheds from the square and rolls up into small-scale 
hairpin structures. Further downstream, the small-scale vortical 
structures around the shear layer are in the spanwise direction while 
in the wake region, they are tilted in the streamwise direction.  

4. The frequencies and amplitudes of the dominant DMD modes which 
contribute the most to the inherent dynamics are obtained through 
the sparsity-promoted DMD algorithm. Even though the flow under 
investigation is fully turbulence at a high Reynolds number, it can 
still be reconstructed by a finite number of DMD modes. 
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