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A B S T R A C T   

The aim of this work is to present semi-analytical solutions for shale gas production from a 1D porous medium, 
where constant pressure is assumed at one side and a no-flow boundary at the other. Adsorbed gas is modeled by 
a Langmuir isotherm, the gas and rock are compressible, porosity reduction reduces intrinsic permeability and 
apparent permeability further depends on the Knudsen number. 

The partial differential equation describing this system can be formulated as a nonlinear diffusion equation in 
terms bulk gas density M. This system is comparable to a form described for spontaneous imbibition with semi- 
analytical solutions regardless of the shape of the diffusion coefficient as function of the conserved property, in 
that case fluid saturation. Semi-analytical solutions are thus obtained that can give spatial profiles, at given 
times, of pressure, adsorption, porosity and apparent permeability, in addition to time profiles of gas recovery. 
These solutions are valid until the no-flow boundary is encountered (the critical time). Late time behavior is 
investigated using numerical solutions. The roles of system length, adsorption isotherm, rock compressibility, 
porosity-permeability relations and non-Darcy effects are examined. 

It is shown that gas recovery follows a square root of time profile before the critical time. Scaling yields full 
overlap of recovery curves until their critical time. The square root of time solution is valid for recoveries around 
12–22%, but is a good approximation until obtainable recoveries of 35–50% for typical shale cases. Cases where 
the diffusion coefficient increases more steeply with M leave the square root profile at lower recovery values and 
obtain slower recovery with time systematically according to the steepness of the coefficient.   

1. Introduction 

Technical advances in drilling, well completion and well stimulation 
have allowed economic development of tight shale gas and accelerated 
its production the last two decades (Mullen, 2010). Shale gas resources 
are found worldwide including China, Argentina, US, Russia, Australia 
and more, with 7299 tcf estimated technically recoverable in 2013 
(Kuuskraa et al., 2013). Gas shales are organic-rich fine-grained source 
rocks with nano-to microdarcy permeability (Javadpour et al., 2007; 
Mullen, 2010) and poor connectivity such that the generated gas was 
stored there geologically. The typical pore size distribution of shales is in 
the order of nanometer, where the majority of pores are in organic 
kerogen or inorganic clay-rich matrix. To produce the shale gas, multi
lateral horizontal wells are drilled and completed with multistage hy
draulic fractures. The fracturing is usually performed with large volumes 
of water with proppant material (sand or ceramic solid particles) to keep 
the fractures open and able to produce over time. Production takes place 

by pressure depletion. The fractures can close if they are poorly propped, 
the fracture closure stress/drawdown is high or the shale is geo
mechanically weak. Fracture conductivity and its alterations are of great 
influence to production (Cipolla et al., 2010; Yu and Sepehrnoori, 2014; 
Berawala et al., 2019). 

Shale gas is stored in the matrix pores and microfractures as free gas, 
but also in significant amounts adsorbed to the kerogen and clays or 
absorbed (dissolved) in the organic material (Darishchev et al., 2013; 
Swami et al., 2013; Pan and Connell, 2015; Klewiah et al., 2020). This 
gas can be mobilized to free gas upon pressure depletion. Unlike for 
conventional gas reservoirs, sorbed gas can be a very important storage 
mechanism in shales (and coals), and has been reported to account for 
between 20 and 85% of the gas in place (Kuuskraa et al., 1985; Curtis, 
2002; Mengal and Wattenbarger, 2011). The large adsorption is related 
to strong interaction between gas molecules and the surface in confined 
spaces which increases the storage capacity compared to the free gas 
that could occupy the same pore space as adsorbed gas is packed more 
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densely. Although much gas in place can be in sorbed form, it may 
contribute more significantly to production at late times since more 
desorption takes place the lower the pressure is. The role of desorption 
was described in simulation studies of US shales Barnett and Marcellus 
(Cipolla et al., 2010; Yu and Sepehrnoori, 2014; Pan and Connell, 2015). 
Enhanced shale gas desorption and recovery can take place by CO2 
huff-and-puff operations since CO2, under many conditions, is measured 
to have greater adsorption affinity and capacity (up to five times higher) 
than methane (Nuttal et al., 2005; Heller and Zoback, 2014; Klewiah 
et al., 2020). 

Apart from permeability being ultra-low, the permeability can be 
pressure dependent: When the mean free path of gas molecules becomes 
comparable to the characteristic pore dimension (this ratio is called the 
Knudsen number (Knudsen, 1909; Florence et al., 2007; Javadpour 
et al., 2007)) gas molecules collide more with the wall than with each 
other. The gas molecules can bounce, slip or diffuse on the surface in 
addition to the free flow in the central pores. This results in a larger 
‘apparent’ permeability than the intrinsic permeability expected only 
from free flow (Darcy flow) (Florence et al., 2007; Javadpour et al., 
2007; Civan et al., 2011; Darabi et al., 2012; Shi et al., 2013; Heller 
et al., 2014). This is also known as the Klinkenberg effect (Klinkenberg, 
1941). Slip flow/Knudsen diffusion was pointed out as important in 
shale reservoir simulation by Sun et al. (2015) where including this 
mechanism yielded higher recovery vs time. Others have pointed out 
that slippage could be less significant at high pressure conditions 
(Darishchev et al., 2013; Rubin et al., 2019). Yet others suggest that the 
high apparent permeability of shale is not related to slip, but an 
improper integration of the Navier-Stokes equations (Patzek, 2017; 
Chen and Shen, 2018; Jin and Chen, 2019). 

More conventional mechanisms are also important to account for: 
Pressure depletion leads to increased effective stresses. Shale can lose 
porosity and intrinsic permeability upon increased effective stress (Dong 
et al., 2010). Gas flow at reservoir conditions should account for gas 
density being pressure dependent, where an equation of state is required 
to capture deviation from ideal gas behavior. Significant pressure 
changes may also affect viscosity (Lee et al., 1966). 

In this work a 1D model is presented for pressure depletion of gas 
shale matrix considering mechanisms such as free gas flow, adsorption, 
compressible real gas, pressure dependent viscosity and apparent 
permeability, compressible rock with accompanied porosity and 
permeability alteration. This is representative of production into a hy
draulic fracture from matrix in a stimulated reservoir volume. It is 
shown that the model can be formulated into a nonlinear diffusion 
equation and solved semi-analytically for early times (before a no-flow 
boundary is met). We follow the approach of McWhorter and Sunada 
(1990) who considered oil production by capillary water uptake 
(spontaneous imbibition). It is shown that gas recovery follows a square 
root of time profile during the early time period. A scaling time is pre
sented that allows all recovery curves resulting from any input param
eter combinations to overlap for early time. Similar scaling in 
spontaneous imbibition context was presented by Schmid and Geiger, 
(2012) and Andersen et al. (2020). The model does not account for 
multiphase flow which can result from the hydraulic fracturing with 
associated gas relative permeability reduction and capillary blockage 
(Cheng, 2012), or matrix heterogeneity following such an operation: 
clay swelling and permeability damage (Holditch, 1979). 

The paper is structured as follows: Mass balance and flux relations 
are derived to give a general description of the shale gas system. This 
results in a form that can be solved semi-analytically at early times, and 
a full derivation is provided. Specific relations for the rock and fluid 
behavior are stated, all of which are expected to cover realistic and 
important flow mechanisms for single phase flow of shale gas and within 
the applicability of the analytical solution. The semi-analytical solution 
is illustrated for several numerical examples and compared to numerical 
solutions. Scaling is demonstrated and shown to capture all involved 
mechanisms at early time. 

2. Mathematical model 

2.1. Geometry and assumptions 

A 1D linear system is considered for flow in shale matrix, see Fig. 1. 
On one side x = 0 the system is open with a fixed pressure pb, while at 
the opposite side x = L the system is closed. The initial pressure p0 is 
greater than pb so that gas is produced at times t > 0. This represents 
shale gas production by pressure depletion, from a core sample or matrix 
surrounding a hydraulic fracture. In the latter case the closed boundary 
would appear by symmetry between hydraulic fractures and the con
stant pressure pb in the fracture is based on good fracture conductivity 
where the matrix limits the production. 

2.2. Mass balance equations 

A general mass balance partial differential equation for shale gas 
accounting for free gas flow, compressibility and adsorption is given by: 

∂t(φρ+ ρba)= − ∂x(ρu). (1)  

where φ is porosity, ρ gas density, a the mass adsorbed gas per mass solid 
and ρb is the (constant) mineral bulk density. φ, ρ and a will be assumed 
to depend on gas pressure p. The gas flux u is given by Darcy’s law with 
apparent permeability ka :

u= −

(
ka

μ

)

∂xp (2) 

Gas density can be expressed in terms of pressure by applying the real 
gas law: 

ρ=Mw

RT
p
z
, (3)  

Mw is gas molar weight, R the gas constant, T absolute temperature and z 
gas compressibility factor. It follows that: 

∂t(φρ+ ρba)= ∂x

(

ρ ka

μ ∂xp
)

, (4) 

We define a variable M as the conserved property in the system. M 
represents the mass stored due to free and adsorbed gas and pore volume 
expansion per bulk volume, i.e. a bulk gas density. 

M(p)=φ(p)ρ(p) + ρba(p) (5)  

M(p) increases monotonously with pressure through the combination of 
functions porosity, density and adsorption. Typically, they all increase 
with pressure (or are constant). For methane, a main component of shale 
gas, adsorption increases with pressure towards a plateau (some gases 
including CO2 have similar trend below the critical point, but display 
reduction of adsorbed mass at higher pressure) (Heller and Zoback, 
2014; Klewiah et al., 2020). 

From the monotonicity between M and p, any function of pressure 
can be written as a function of M. We can therefore write the system as a 
nonlinear diffusion equation: 

∂tM = ∂x(D(M)∂xM),D(M)= ρ ka

μ
dp
dM

(6) 

Fig. 1. The system is 1D linear with constant pressure pb at x = 0 and closed 
boundary at x = L. 
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D(M) is a diffusion coefficient function of M, with nonnegative values 
(especially dM

dp > 0). 
It is assumed the system has uniform initial pressure p0 and is pro

duced at constant pressure pb at x = 0, while the system is closed at x =

L. These conditions can be expressed using M: 

M(x, t= 0)=M(p0)=M0, (7)  

M(x= 0, t)=M(pb)=Mb, (8)  

∂xM|x=L = 0. (9)  

where M0 > Mb since there is higher pressure and more gas accumulated 
at the initial state. 

2.3. Gas recovery 

Gas recovery Rg relative to the amount gas that can be produced from 
pressure p0 to pb is given by: 

Rg =
1

(M0 − Mb)L

∫L

x=0

[M0 − M(x)]dx (10)  

and accounts for compressible free gas in a compressible pore volume 
and adsorption. This way to represent recovery is useful for scaling 
purposes and allows comparing different pressure conditions as Rg goes 
to 1 at pb. Recovery relative to mass initially in place RgIN is: 

RgIN =
1

M0L

∫L

x=0

[M0 − M(x)]dx (11) 

Theoretically, if the system depletes to uniform pressures, recovery 
factors vs pressure are given by: 

Rg =
M0 − M(p)
M0 − Mb

,RgIN =
M0 − M(p)

M0
(12)  

2.4. Semi-analytical solution 

The system (6) to (9) can be solved semi-analytically for early times, 
that is, times before the closed boundary affects the system or if this 
condition is replaced by a semi-infinite boundary: 

M(x → ∞, t)=M0. (13) 

A solution was presented for a system of this form in the context of 
counter-current spontaneous imbibition (COUSI) by McWhorter and 
Sunada (1990). COUSI is a process where capillary forces cause wetting 
fluid (e.g. water) to be drawn into a porous medium saturated by 
non-wetting fluid (e.g. oil or gas) and symmetry of the system causes the 
two phases to flow in opposite directions (Mason and Morrow, 2013; 
Abd et al., 2019). Asymmetrical systems, e.g. where gravity forces are 
significant or different phases cover different surfaces, can experience 
co-current imbibition (Qiao et al., 2018; Andersen et al., 2019a,b). By 
assuming that the inlet boundary condition could be expressed as a flux 
proportional to 

̅̅
t

√
, McWhorter and Sunada (1990) derived a self-similar 

solution for water saturation profiles at different times and oil recovery 
vs time. Schmid et al. (2011) showed that the inlet boundary condition 
assumption was not a special case, but in line with the system. Andersen 
et al. (2020) showed that a COUSI system with coupled multiphase flow 
equations could be solved semi-analytically, extending the solution of 
McWhorter and Sunada. 

The system we now consider has comparable form with the COUSI 
system studied by McWhorter and Sunada (1990), and the solution 
adapted to our system will be derived in the following subsections. In 
terms of their system, our case would correspond to look at the pro
ducing non-wetting phase, rather than the invading wetting phase. 

Mainly, we will show that the solution can be expressed using a function 
F(M) such that the position x of a given M at time t is proportional to the 
square root of time and F′

(M) as follows: 

x(M)= − 2AF
′

(M)t
1
2. (14) 

Pressure distribution follows directly since p = p(M). The constant A 
and the function F(M) are calculated from the system input parameters. 
A is, by definition, related to the inlet flux q0 as: 

q0 = − (D(M)∂xM)|x=0 = − At− 1
2, (15) 

Gas recovery follows the square root of time and can be scaled to a 
unique curve with time scale τ: 

Rg =
̅̅̅̅
tD

√
, tD =

t
τ, τ=

(
(M0 − Mb)L

2A

)2

. (16) 

The solution is valid until the critical time tc when the no-flow 
boundary is encountered. 

tc =

(
L

− 2AF′
(Mb)

)2

(17) 

Those results and their definitions will be derived in more detail in 
the following. 

2.5. Spatial profiles and cumulative production 

We wish to solve the semi-infinite system below: 

∂tM = ∂x[D(M)∂xM], (18)  

M(x, t = 0) = M0,M(x = 0, t) = Mb,M(x→∞, t) = M0 (19)  

where M0 > Mb. We recognize a mass flux q in (18) as: 

q(x, t) = − D(M)∂xM, (20)  

and express the system as: 

∂tM = − ∂xq, (21) 

Further, we introduce the boundary condition: 

q(x= 0, t) = q0 = − At− 1
2, (22)  

for some constant A > 0. It is later demonstrated that this condition does 
not constrain, but is consistent with, the system. The flux q, both at the 
inlet and in the system, is negative since mass flows in the negative 
x-direction. Define a fractional flow function F as the ratio of flux q at a 
given point x relative to the flux at the inlet q0: 

F(x, t) =
q
q0

> 0, (23) 

It is assumed that F = F(M). We substitute this into the flow equation 
(18): 

∂tM =At−
1
2∂xF, (24) 

Now assume that the solution M(x, t) can be expressed only using the 
variable λ defined by: 

λ= xt− 1/2 (25) 

The mass balance equation (24) can then be expressed as: 

λ(M)= − 2A
dF
dM

(26)  

with boundary conditions: 

F(Mb)= 1,F(M0) = 0 (27) 

The first condition simply states that the value M = Mb, found at the 
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inlet, results in the inlet flux, while the second condition states that there 
is zero flux in the initial state when M = M0. Using (25) we note that 
(26) is equivalent to: 

x(M)= − 2AF
′

(M)t
1
2 (28)  

which states that the position of the solution for any specific value M is 
proportional to F′

(M) and the square root of time. Further, the cumu
lative production Q is given by integrating the negative flux at the inlet 
over time: 

Q= −

∫t

t=0

q0dt = 2At1
2 (29)  

showing that production (or recovery) follows the square root of time. 
Next, we determine A and F(M) which uniquely determine the solution. 

2.6. Calculation of F and A 

By the definition of F from (23), F can be written as: 

F =
q
q0

=
D∂xM
At− 1

2
(30)  

which can be reformulated in the following steps: 

D
AF

=
t− 1

2
(

∂M
∂x

)=

∂

⎛

⎝xt− 1
2

⎞

⎠

∂M
= λ

′

(M) (31)  

or simply λ′

= D
AF. Simultaneously, the mass balance equation (26) can be 

differentiated to give: 

λ
′

= − 2AF′′ (32) 

Equating the expressions for λ
′ gives the second order differential 

equation: 

F′′ = −
1

2A2
D
F

(33) 

This is integrated directly to give F′ and F: 

F
′

(β) =
∫β

β′ =M0

F′′(β
′

)dβ
′

+ C1 =
1

2A2

∫M0

β′ =β

D(β
′

)

F(β′

)
dβ

′

+ C1 (34)  

F(M)=

∫M

β=M0

F′

(β)dβ = −
1

2A2

∫M0

β=M

∫M0

β′ =β

D
F

dβ
′

dβ + C1M + C2 (35)  

C1 and C2 are integration constants. The second order integral in (35), 
termed G(M) is simplified by reversing the order of integration (with 
corresponding update of integration limits) and then solving the inner 
integration. 

G(M)=
1

2A2

∫M0

β=M

∫M0

β′ =β

D(β
′

)

F(β′

)
dβ

′

dβ =
1

2A2

∫M0

β′ =M

×

∫β
′

β=M

D(β
′

)

F(β′

)
dβdβ

′

=
1

2A2

∫M0

β′ =M

(β
′

− M)
D(β

′

)

F(β′

)
dβ

′ (36) 

The integration constants C1 and C2 are determined, based on the 
inner and initial boundary condition from (27): 

F(M0)= 0 + C1M0 + C2 = 0,F(Mb) = − G(Mb) + C1Mb + C2 = 1 (37)  

resulting in: 

C1 =
1 + G(Mb)

(Mb − M0)
,C2 = −

1 + G(Mb)

(Mb − M0)
M0 (38) 

The updated expressions for F and F′ are then: 

F(M)=
(M − M0)

(Mb − M0)
+

(M − M0)

(Mb − M0)

1
2A2

∫M0

β′ =Mb

(β
′

− Mb)D(β
′

)

F(β′

)
dβ

′

−
1

2A2

∫M0

β′ =M

(β
′

− M)
D(β

′

)

F(β′

)
dβ

′ (39)  

F′

(M)=
1

2A2

∫M0

β′ =M

D(β
′

)

F(β′

)
dβ

′

+
1

(Mb − M0)

+
1

(Mb − M0)

1
2A2

∫M0

β′ =Mb

(β
′

− Mb)
D(β

′

)

F(β′

)
dβ

′ (40) 

We next require that F′

(Mb) = 0 to ensure that the nonzero inlet flux 
(22) is consistent with a nonzero gradient ∂xM as in (20).   

This allows to define A: 

A2 =
1
2

∫M0

β′ =Mb

(M0 − β
′

)
D(β

′

)

F(β′

)
dβ

′ (42) 

Next, to evaluate F, we note that the expression (39) for F can be 
simplified by first using that: 

β
′

− Mb = − (M0 − β
′

) + (M0 − Mb) (43)  

to express the first integral in a form comparable to A, thus canceling the 
nonintegral terms. 

F(M)=
1

2A2

∫M0

β′ =Mb

(M0 − M)
D(β

′

)

F(β′

)
dβ

′

−
1

2A2

∫M0

β′ =M

(β
′

− M)
D(β

′

)

F(β′

)
dβ

′ (44) 

We express the second integral as a sum of two integrals, where one 
has limits between Mb and M0 and collect it with the first integral. 

F′

(Mb)=
1

2A2

∫M0

β′ =Mb

D(β
′

)

F(β′

)
dβ

′

+
1

(Mb − M0)
+

1
(Mb − M0)

1
2A2

∫M0

β′ =Mb

(β
′

− Mb)
D(β

′

)

F(β′

)
dβ

′

= 0 (41)   
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F(M)=
1

2A2

⎡

⎢
⎣

∫M0

β′ =Mb

(M0 − β
′

)
D(β

′

)

F(β′

)
dβ

′

+

∫M

β′ =Mb

(β
′

− M)
D(β

′

)

F(β′

)
dβ

′

⎤

⎥
⎦ (45) 

Using the definition of A from (42), the final expression for F is 
obtained: 

F(M)= 1 −

⎡

⎢
⎣

∫M

β′ =Mb

(M − β
′

)
D(β

′

)

F(β′

)
dβ

′

⎤

⎥
⎦⋅

⎡

⎢
⎣

∫M0

β′ =Mb

(M0 − β
′

)D(β
′

)

F(β′

)
dβ

′

⎤

⎥
⎦

− 1

(46) 

Once F(M) had been obtained (from numerical integration), the de
rivative F′

(M) used in calculating spatial profiles (28) was evaluated 
numerically by a second order approximation. 

2.7. Critical time 

The solution (28) is valid until the front meets the closed boundary. 

x(Mb)= − 2AF
′

(Mb)t
1
2
c = L (47)  

resulting in the critical time tc denoting this event: 

tc =

(
L

− 2AF′
(Mb)

)2

(48)  

2.8. Scaling and recovery 

We can scale cumulative production against the gas that can be 
produced by pressure depletion to the boundary pressure to obtain a 
recovery factor that reaches 1 after sufficient time: 

Rg =
Q

(M0 − Mb)L
=

2A
(M0 − Mb)L

t1
2 (49) 

Introducing a characteristic time τ, the same recovery is obtained 
when plotting against scaled time, regardless of initial and boundary 
pressure: 

tD =
t
τ, τ =

(
(M0 − Mb)L

2A

)2

(50)  

Rg =
̅̅̅̅
tD

√
(51)  

2.9. Consistency in boundary condition 

Similar to what was pointed out by Schmid et al. (2011), the flux q 
can be written as: 

q(x, t) = − D(M)M′ ∂xλ= − D(M)M′ t− 1
2, (52)  

such that the flux at x = 0 can be written as a constant multiplied by t− 1
2: 

q0 = −
[
D(Mb)M

′

|λ=0

]
t− 1

2, (53) 

This demonstrates that the boundary condition (22) is not a limita
tion of the general solution. 

2.10. Selected pressure functions 

So far, few constraints have been put on the parameters φ, ρ, a, ka, μ 
except that they are functions of pressure and can be expressed as 
functions of M. In this section we select some typical relations used to 
model gas flow in shales. These choices are established formulations 
based on correlating large experimental datasets, but can be replaced 
with more case specific relations. With the following approach any gas 
composition can be assumed if it can be represented by its molar weight 
and critical properties and it can be assumed the free and desorbed gas 
behave similarly. 

2.11. Porosity 

Porosity is set as a function of pressure according to a standard 
compressibility formulation: 

φ=φ0 exp( − cr(p0 − p)) (54) 

At the initial pressure p0, the porosity φ0 is obtained. At reduced pore 
pressure, porosity is reduced. 

2.12. Adsorption 

The mass adsorbed gas per mass solid, ag, is modeled by a Langmuir 
isotherm (Langmuir, 1918; Darishchev et al., 2013; Yu and Sepehrnoori, 
2014; Jiang and Yang, 2018; Berawala et al., 2019; Rubin et al., 2019): 

a= amax
p

pL + p
(55)  

amax is the adsorption capacity (at infinite pressure) and pL is the gas 
pressure at which half this capacity is obtained. Other isotherms (such as 
BET) are also applicable. 

2.13. Apparent and intrinsic permeability 

Apparent permeability ka is related to intrinsic permeability k∞ and 
Knudsen number Kn according to (Loeb, 1934; Florence et al., 2007; 
Jiang and Yang, 2018): 

ka = k∞(1+αKKn)

(

1+
4Kn

1 + Kn

)

(56)  

αK =
128
15π2tan− 1( 4K0.4

n

)
(57)  

Kn =
λ
r
=

μZ
pr

̅̅̅̅̅̅̅̅̅
πRT
2Mw

√

(58)  

where r is matrix pore radius. In the above, viscosity and gas 
compressibility factor are functions of pressure: μg(p),z(p). Temperature 
is assumed constant. The intrinsic permeability k∞ is given by (Florence 
et al., 2007; Jiang and Yang, 2018): 

k∞ =
r2

8
φ
τf

(59) 

We assume rock compressibility (reduced porosity) reduces pore 
radius and increases formation tortuosity τf . The radius-porosity relation 
is based on a bundle-of-tube approach, while tortuosity is let vary with 
porosity from a reference value: 

φ
φ0

=

(
r
r0

)2

, τf = τf 0

(φ0

φ

)nτ
(60)  

2.14. Real gas density 

To calculate the z-factor and density an equation-of-state (EOS) can 
be used. The Peng and Robinson (1976) EOS was applied with input of 
gas critical pressure pc and temperature Tc and acentric factor ω. 

z3 − (1 − B)z2 +
(
A − 3B2 − 2B

)
z −

(
AB − B2 − B3)= 0 (61)  

A= 0.45724α(Tr,ω)
pr

T2
r
,B= 0.07780

pr

Tr
, Tr =

T
Tc
, pr =

p
pc

(62)  

α=
(
1 + κ

(
1 − T0.5

r

))2
, κ = 0.37464+ 1.54226ω − 0.26992ω2 (63)  

Tr, pr are reduced temperature and pressure. 
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2.15. Gas viscosity 

Gas viscosity was modeled based on Lee et al. (1966): 

μ= 10− 7K exp
[
X
( ρ

1000

)Y]
,K =

[9.379 + 0.01607(1000Mw)](1.8T)1.5

209.2 + 19.26(1000Mw) + (1.8T)
,

(64)  

X = 3.448+
986.4
(1.8T)

+ 0.01009(1000Mw), Y = 2.447 − 0.2224X (65) 

Conversion factors are included so that μ, ρ,T,Mw are in SI units. 

2.16. Normalized system of equations 

We note that by introducing a scaled a normalized bulk gas density 
Mn with values between 1 (initial high p0 and M0) and 0 (final low 
boundary pb and Mb) as: 

Mn =
M − Mb

M0 − Mb
(66) 

equations (6)–(9) can be turned into: 

∂tMn = ∂x(D(Mn)∂xMn), (67)  

Mn(x, t= 0)= 1,Mn(x= 0, t)= 0, ∂xMn|x=L = 0. (68) 

This notation is useful since it shows that the main parameter that 
affects the solution behavior is the nonlinear diffusion coefficient D(Mn)

evaluated over the interval 0 < Mn < 1. System specific solutions can be 
obtained by reversing the scaling. 

3. Results 

3.1. Numerical implementation 

The semi-analytical solution was implemented by first determining A 
and F(M) numerically from (42) and (46), respectively. Iteration was 
required since F is expressed implicitly in (46) as an integral of itself. 
Then the expressions (28), (48), (50) and (51) were applied directly. 
Nm = 100 equally spaced points of M were used to evaluate F and po
sitions x(M). The system was also solved numerically by a fully implicit 

Fig. 2. (a) 250 randomly generated functions representing D(Mn) normalized to an area of 1 (e.g. by dividing by the total area) based on different exponents and end 
point ratios. The curves are sorted with color according to how much of their area is located between 0 < Mn < 0.5, denoted |D|0.5. (b) The resulting fractional flow 
functions F. (c) Spatial profiles Mn at the critical time tc and (d) at 3tc. 
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approach, in the case of a closed boundary at x = L. The discretization 
approach is outlined in the Appendix. Nx = 150 equally spaced grid 

cells were used and 50 time steps per unit of 
̅̅̅
t
tc

√
. 

3.2. The impact of diffusion coefficient shape on system behavior 

Before exploring a specific shale system we will consider that in 
equations (67) and (68) it is only the nonlinear diffusion coefficient 
D(Mn) evaluated over the interval 0 < Mn < 1 which determines the 
solution. Combinations of parameters and mechanisms specific to a 
porous medium may result in different such functions and we will 
explore those relations in the subsequent sections. Here we will first 
consider varying the shape of the D(Mn) function using simple functions 
and study the impact on the solution. For symmetry, we let D(Mn) take 
either of the two following forms: 

D(Mn)=D1(Mn)
n
+ D2, (0<Mn < 1) (69)  

D(Mn)=D1(1 − Mn)
n
+ D2, (0<Mn < 1) (70) 

The parameters D1,D2 are set such that the integral of the function 
equals 1 and we define the ratio rEP as the ratio of the end points. We thus 
require: 

∫1

Mn=0

D(Mn)dMn = 1, rEP =
D(1)
D(0)

(71) 

The area of 1 can be justified by studying the solution relative to if 
the coefficient was constant. With the constraints (71), equations (69) 
and (70) turn into (72) and (73) respectively below: 

D(Mn)=
n + 1

n + rEP
[(rEP − 1)(Mn)

n
+ 1], (0<Mn < 1) (72)  

D(Mn)=
1 + n

1 + rEPn
[(1 − rEP)(1 − Mn)

n
+ rEP] (73) 

For nonnegative values of parameters rEP, n these functions are 

nonnegative. A useful parameter characterizing each function, is the 
area between Mn = 0 and 0.5, which is denoted |D|0.5 and defined by: 

|D|0.5 =

∫0.5

Mn=0

D(Mn)dMn (74) 

For the two functions (72) and (73), the areas between 0 and 0.5 can 
be calculated as (75) and (76), respectively: 

|D|0.5 =
0.5

n + rEP
[(rEP − 1)0.5n +(n+ 1)] (75)  

|D|0.5 =
1 − rEP

1 + rEPn
[
1 − 0.5n+1]+ rEP

1 + n
1 + rEPn

0.5 (76) 

In the following examples, 250 functions D(Mn) were randomly 
generated with the exponent n uniformly selected between 0.5 and 4, 
and the end point ratio rEP loguniformly selected between 0.01 and 100. 
The two functions (72) and (73) were selected evenly. 

The functions D(Mn) are shown in Fig. 2a, colored according to the 
value of |D|0.5. The functions with high |D|0.5 values are shifted to the left 
and those with low values are shifted to the right. Due to the nonline
arity of the functions, there is some overlap. The calculated fractional 
flow functions F(Mn) are shown in Fig. 2b where we see a clear trend 
according to the values of |D|0.5: the functions D(Mn) with low |D|0.5 have 
values of F shifted closer to 1 (before going to 0 at high Mn) compared to 
the functions D(Mn) with high |D|0.5 where the functions F seem to 
approach a straight line from 1 to 0. 

The profiles Mn

(
x
L

)
are shown at tc (when the profile meets the no- 

flow boundary) in Fig. 2c and 3tc in Fig. 2d. It is seen that the cases 
with low |D|0.5 have profiles with high Mn at the critical time tc when 
Mn = 1 reaches the no-flow boundary. This can be related to the F 
function which has low derivatives F′

(Mn) for low Mn and these de
rivatives determine the spatial profile, see (28). The cases with higher 
|D|0.5 have generally lower Mn profiles at the critical time, which can be 
related to the more similar derivatives F′ . The same trends follow at later 

Fig. 3. Recovery plotted against time scaled with the time scale τconD of a case with constant diffusion coefficient (a). The curves are based on the 250 randomly 
generated functions D(Mn) and are sorted with color according to |D|0.5. In (b), the flux coefficient for each case divided by the flux coefficient of a case with constant 
D is plotted against |D|0.5. 
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times. 
Recovery Rg for the mentioned cases is plotted against scaled time in 

Fig. 3a where the time is divided by the time scale τconD calculated for a 
case where the diffusion coefficient is constant equal to 1. The constant 
D case is in the green group where 0.4 < |D|0.5 < 0.6, since |D|0.5 = 0.5 
for that case. Cases with low |D|0.5 (where the coefficient is skewed to
wards high Mn) yield slower recovery compared to the uniform case, 
while the cases with high |D|0.5 (where the coefficient is skewed towards 
low Mn) yield faster recovery than the uniform case. The trend in slower 
recovery with lower |D|0.5 seems to be valid for both early and late time, 
i.e. both when the curves are linear with the square root of time and 
after. 

In Fig. 3b the flux coefficient A is calculated for each case and divided 
by the value of A for the case where D is constant equal to 1. Based on the 
250 points, a very clear trend is seen: higher |D|0.5 leads to higher A and 
opposite, meaning that if the diffusion coefficient D is shifted to the low 
Mn interval, the recovery will be faster than if D was constant with same 
total area. Note that the data pass through A/AconD at |D|0.5 = 0.5 as 
expected. Looking at the scale of the results, the change in flux coeffi
cient by modifying the diffusion coefficient shape seems to be within a 
factor of 0.65–1.15 time that of a constant coefficient. A trend line was 
regressed through the points using a second order polynomial: 

A
AconD

= − 0.404|D|
2
0.5 + 0.975|D|0.5 + 0.612,

(
R2 = 0.9985, RMSE = 0.0045

)

(77) 

The high coefficient of determination R2 = 0.9985 and low root 
mean square error (RMSE = 0.0045) indicate strong correlation. This 
correlation can be used to quickly predict the flux coefficient A for any 
diffusion coefficient. 

Scaled recovery is also shown in Fig. 4a where the time is scaled 
against τ calculated for each individual case. In accordance with theory, 
all recovery curves fall on the same straight line by this scaling at early 
time. This is an exact result, while the correlation (77) only is based on 
one effective parameter from the nonlinear diffusion coefficient. The 
critical time and corresponding critical time recovery are marked for 
each curve with a circle to illustrate where the semi-analytical solution 
ceases to be valid. We see that the critical time recovery follows the 
pattern of |D|0.5, where higher |D|0.5 corresponds to higher critical time 
recovery. The red cases with 0 < |D|0.5 < 0.25 have critical time re
covery as low as 0.1 to 0.20, while the black cases with 0.75 < |D|0.5 < 1 
have critical time recovery around 0.45 to 0.65. Although the semi- 
analytical solution ceases to be valid at these times, it appears that re
covery can be much higher before the solutions deviate significantly. For 

Fig. 4. Recovery plotted against scaled time using the time scale τ calculated for each individual case (a). The recovery curves are based on the 250 randomly 
generated functions D(Mn) and are sorted with color according to |D|0.5. The black solid line indicates the extrapolated straight line of the semi-analytical solution 

Rg =
(

t
τ

)0.5
. In (b), the recovery of the semi-analytical solution at the critical time (black points), and when the numerical solution is 0.98 times (green points) the 

semi-analytical solution, 0.95 times (red points) and 0.90 times (blue points). 
(
RgAn

)
An

Num=1.0 = 0.570|D|
2
0.5 + 0.0695|D|0.5 + 0.118,

(
R2 = 0.9557, RMSE= 0.0288

)
(78)  

(
RgAn

)
An

Num=0.98 = − 0.310|D|
2
0.5 + 1.05|D|0.5 + 0.244,

(
R2 = 0.9979, RMSE = 0.0070

)
(79)  

(
RgAn

)
An

Num=0.95 = − 0.585|D|
2
0.5 + 1.30|D|0.5 + 0.309,

(
R2 = 0.9947, RMSE = 0.0106

)
(80)  

(
RgAn

)
An

Num=0.90 = − 0.830|D|
2
0.5 + 1.49|D|0.5 + 0.410,

(
R2 = 0.9860, RMSE = 0.0164

)
(81)    
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example, the red cases appear to deviate from the straight line at re
coveries between 0.4 and 0.5, which is an interval of 0.2 units higher 
than where the critical time recoveries were located. For the black cases, 
the deviation is noticeable at recovery points 0.7 to 0.9 which is an in
terval of 0.25 recovery units higher than the critical points. This means 
that the semi-analytical solution is a good approximation also after the 
critical time. 

Some more investigation was made regarding the difference between 
the semi-analytical and numerical solutions. In Fig. 4b we plot the re
covery of the semi-analytical solution, i.e. 

̅̅̅̅̅̅̅
t/τ

√
, at the critical time (the 

last time when the two solutions are exactly identical), and when the 
numerical solution is 0.98 times, 0.95 times or 0.90 times the recovery of 
the numerical solution. These results are plotted as function |D|0.5. We 
see that the recovery for each of these conditions is largely controlled by 

Table 1 
Reference input parameters for simulation. 1Data from Yu and Sepehrnoori 
(2014) matched to or representative of Marcellus shale.  

1φ0  0.0651  ρb  2.46⋅103 kg
m3  

Tc  190.56 ​ K  

1p0  33⋅106 ​ Pa  1amax  0.00370
kg
kg  

pc  4.599 ​ MPa  

1pb  3.7⋅106 ​ Pa  1pL  3.5⋅106 ​ Pa  ω  0.011  
1L  15 ​ m  r0  12 ​ nm  R  8.314 ​ J/K/mol  
1T  352 ​ K  τf0  2  Mw  16.04⋅10− 3kg/mol  
1cr  1.5⋅10− 10 ​ Pa− 1  nτ  3    
1k∞(p0) 585 ​ nD  μg(p0) 0.024 ​ cP     

Fig. 5. Input functions plotted over the considered pressure range including gas viscosity (a), gas density (b), adsorption relative to max capacity (at infinite 
pressure) (c), porosity relative to initial porosity (d) and in the last two figures intrinsic permeability (dashed lines) and apparent permeability (full lines) are shown 
for 12 nm (e) and 60 nm (f) initial pore radius. Porosity reduction and permeabilities depend on compressibility (3 values are used; 1, 10 or 30 times the reference 
compressibility). The adsorption isotherm is shown for the reference Langmuir pressure and a 5 times higher value. 
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|D|0.5 in monotonous ways with little scatter. Regression lines are sum
marized in (78) to (81). For cases with larger |D|0.5 the semi-analytical 
solution is valid to higher recovery; ranging from recovery as low as 
0.1 when |D|0.5 ≈ 0.1 to as high as 0.6 when |D|0.5 ≈ 0.9. Considering the 
curves representing where the numerical solution is slightly less than the 
semi-analytical solution (the semi-analytical solution overestimates re
covery), higher recovery can be obtained with low error for cases with 
higher |D|0.5. We also see that for the curve where the numerical re
covery is 0.98 times the semi-analytical solution, recovery is ~0.2 units 
higher than the recovery at the critical time (where the solutions are 
identical) for low |D|0.5, up to 0.4 units higher for intermediate |D|0.5 and 
0.3 units higher at high |D|0.5. The curve for recovery values of the 
analytical solution when the numerical solution are 0.95 times lower is 
roughly 0.1 unit higher than the curve with factor 0.98. Summarized, we 
see that the semi-analytical solution is a good approximation of the 
numerical solution at late times in cases of high |D|0.5, which also cor
responds to the cases where the semi-analytical solution is identical to 
the numerical for a relatively high recovery during the early time. 

3.3. Input parameters for a shale system 

Reference input parameters for pressure, porosity, permeability, 
adsorption, temperature and more are shown in Table 1 and are based 
on Marcellus shale as listed by Yu and Sepehrnoori (2014). Methane 
composition was assumed to model gas density and viscosity as this is 
the main constituent in shale gas (Darishchev et al., 2013; Cao et al., 
2016). 

In Fig. 5 several properties are plotted against the considered pres
sure range 3.7–33 MPa (well pressure to initial pressure). Viscosity in
creases with pressure from 0.014 to 0.024 cP. Density increases with 
increasing pressure from ~20 to ~180 kg/m3, a significant factor of 9. 
The adsorption, relative to the capacity at infinite pressure is also 
plotted. At initial pressure ~0.9 of this capacity is used, while at well 
pressure ~0.5 of the capacity is used. After pressure depletion, 0.5/0.9 
= 0.56 of the adsorbed gas therefore remains. For a 5 times higher 
Langmuir pressure pL than the reference, less gas is adsorbed in the given 
pressure range, but more of the initial adsorbed gas can be desorbed: 
only a fraction 0.18/0.65 = 0.28 of the initial adsorbed gas is left after 
depletion. 

Functions depending on more parameters than pressure are also 
shown in Fig. 5. Porosity reduces more on pressure depletion at high 

Fig. 6. The bulk gas density M = φρ + ρba (a), the mass fraction adsorbed gas ρba
M (b) and gas recovery (c) RgIN relative to gas initially in place, all plotted against 

pressure. The adsorption capacity and rock compressibility are varied as indicated from the reference values. The curves do not depend on initial radius when same 
initial porosity is assumed. 
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compressibility. The reference compressibility does not affect porosity 
much, while a 30 times higher compressibility reduces porosity from 
0.065 to ~0.057 (12% reduction). The same initial porosity is used 
regardless of initial pore radius. 

The reduced porosity affects intrinsic permeability and apparent 
permeability. Higher compressibility reduces porosity and pore radius 

with pressure and thus also intrinsic permeability. Low pore radius and 
low pore pressure increases the difference between intrinsic (dashed 
lines) and apparent (full lines) permeability. The permeabilities also 
depend strongly on the initial pore radius and are greatly increased by 
higher initial radius (60 instead of 12 nm). At large (initial) radii the 
difference between apparent and intrinsic permeability is less than at 
low radii. 

In Fig. 6a, b and c, bulk gas density M, mass fraction adsorbed gas ρba
M 

and gas recovery RgIN relative to gas initially in place, respectively, are 
plotted against pressure. Adsorption capacity amax and rock compress
ibility cr are varied. As seen in Fig. 6a, M, which equals φρ+ ρba, in
creases monotonously with pressure, as is required to express functions 
of pressure to functions of M. When adsorption capacity amax increases, 
M increases significantly since more adsorbed gas is in the system. 
Higher pore compressibility does not affect adsorbed mass or initial free 
mass (by assumption), but reduces the space for free gas upon pressure 
depletion through the porosity. The effect of pore compressibility on M 

Table 2 
List of cases and how their parameters have been varied: All the values are 
factors compared to the reference value. In each example, only one parameter is 
varied relative to the reference case.  

Compressibility Adsorption 
capacity 

Boundary 
pressure 

Initial 
pore 
radius 

Length Langmuir 
pressure 

cr  amax  pb  r0  L  pL  

1, 10, 30 0.35, 1, 5 1, 2, 3 1, 2, 5 0.5, 1, 
2 

1, 2, 5  

Fig. 7. The role of compressibility cr (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs square root 
of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the point where it 
ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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is small (the curves with high and low cr are very similar) and most of the 
reduction in M with pressure depletion is by gas expansion and 
desorption. We can also see in Fig. 6a that the end points of M (M0 and 
Mb) vary with the adsorption and compressibility parameters, even for 
the same initial and boundary pressure. Clearly also variations in p0 and 
pb affect M0 and Mb, respectively. In later results, we will therefore use 
the normalized bulk gas density Mn from (66) with values between 1 
(initial high p0 and M0) and 0 (final low boundary pb and Mb). In Fig. 6b 
it is seen that higher amax increases the adsorbed gas fraction. Higher 
compressibility reduces the pore space for free gas at low pressure and 
thus increases the adsorbed fraction more than a low compressibility 
would. Finally, in Fig. 6c, higher adsorption capacity reduces recovery 
that can be obtained at a given pressure since gas desorption is less 
sensitive at higher pressures than low. Note that the above plots do not 
depend on the value of initial pore radius if initial porosity is assumed 
the same. We also remark that although compressibility does not seem to 
affect mass parameters as above, permeability and porosity vary and can 
give noticeable transient impacts. 

3.4. Sensitivity analyses 

In this section we systematically vary input parameters around the 
reference case to investigate the impact on:  

- the diffusion coefficient D against Mn,  
- the flow function F against Mn,  
- recovery RIN vs time t,  
- normalized recovery Rg vs 

̅̅
t

√
,  

- spatial distributions of Mn against xL. 

Recovery curves are calculated based on both the numerical (full 
lines) and semi-analytical (dashed lines) solutions, where the critical 
time tc at which the semi-analytical solution becomes invalid is marked 
(red circle). Each recovery curve is calculated until t = 36tc (i.e. 

̅̅̅̅̅̅̅̅
t/tc

√
=

6). The spatial distributions are plotted at times t = tc and at t = 9tc (i.e. 
̅̅̅̅̅̅̅̅
t/tc

√
= 3). The times were based on that there is 

̅̅̅̅̅̅̅̅
t/tc

√
times more mass 

Fig. 8. The role of adsorption capacity amax (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs 
square root of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the 
point where it ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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produced at t than at tc, had square root of time recovery continued. In 
Table 2 the cases are summarized. Note that one of the six parameters 
are varied from the reference case as indicated in the table, while 
holding all other parameters fixed. 

The impact of the parameter variations is illustrated in Fig. 7 to 
Fig. 12 for each parameter. Before investigating the role of each 
parameter, we make some general observations from the figures:  

- The diffusion coefficient D = ρ ka
μ

dp
dM is positive (all the involved 

factors are positive) and appears to increase with M, typically by an 
order of magnitude from the lowest to highest M, see Figs. 7a to 12a. 
For the reference case (with ~600 nD permeability) the diffusion 
coefficient is in the range 10− 6 − 10− 5 m2/s. In that case, the gas 
density increases by a factor ~9 from the lowest to highest pressure, 
see Fig. 5b. However, inverse viscosity and apparent permeability 
decrease with pressure, see Fig. 5a and e. Considering the shape of 
M(p) in Fig. 6a we see that dM

dp (the slope of M vs p) decreases with 

pressure, such that dp
dM increases with pressure. If free gas is dominant, 

an approximation with the ideal gas law results in a constant dp
dM, 

while the change in dp
dM is more significant with high adsorbed gas 

content. Significant changes in permeability due to compressibility 
will shift the apparent permeability function to increase more 
strongly with pressure.  

- Similar to some of the examples in Fig. 2 it seems that the functions 
D(Mn) are monotonous, positive and increasing. From visual in
spection, |D|0.5 ∼ 0.2 − 0.4, but cases with higher fraction of adsor
bed gas and with permeability more significantly increasing with 
pressure (due to compressibility) can shift the D functions more, 
yielding even lower |D|0.5. From Fig. 4b we can thus expect the semi- 
analytical solution to be valid to relatively low recoveries of 
0.2–0.25, although being a good approximation for recoveries up to a 
range 0.45–0.6 (when the numerical solution is a factor 0.98 of the 
semi-analytical solution recovery).  

- The fractional flow function is defined as the flux at a given point 
divided by the flux at x = 0. As seen in Figs. 7b to 12b, F decreases 
from F(Mn = 0) = 1 to F(Mn = 1) = 0 meaning the flux is highest at 
the open face and decreasing into the system. In other words there is 
net flow towards the open face. 

Fig. 9. The role of boundary pressure pb (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs square 
root of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the point where 
it ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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- The flow function F is flat at M = 0 and becomes steeper with higher 
M, meaning higher M travel with higher speed into the system. M0 
has highest speed and Mb has zero speed.  

- Recovery follows exactly a profile that is linear with the square root 
of time until the critical time tc, indicated by red circle, see Figs. 7d to 
12d. Recovery then is usually around Rg(tc) ≈ 0.20, which is in line 
with the results in Fig. 4b for the low |D|0.5 cases. Square root of time 
recovery is however a very good approximation even until 

̅̅̅̅̅̅̅̅
t/tc

√
=

2 − 2.5, i.e. times up to 6 times longer than when they match exactly. 
Similar observations were made by March et al. (2016). Recovery is 
then around Rg(2.5tc) ≈ 0.45. In other words, the semi-analytical 
solution predicts recovery accurately until roughly half the produc
ible gas is recovered at given pressure conditions.  

- For times t≫6tc the numerical solution always falls visibly below the 
extrapolated analytical solution at late times, i.e. recovery goes 
slower than by the square root of time, see Fig. 7c and d to Fig. 12c 
and d. 

- All spatial profiles of Mn

(
x
L

)
exactly reach the noflow boundary at 

t = tc. There is perfect overlap between the numerical (full lines) and 
semi-analytical solution (crossed points) at that time (see Figs. 7e to 12e) 
and earlier times (not shown). At later times the semi-analytical solution 
is not valid and only numerical profiles are shown (Figs. 7f to 12f). 

Increased rock compressibility cr, see Fig. 7, reduces D, primarily 
because permeability is reduced and dM

dp is increased in (6) (M reduces 
more by greater pore volume reduction through the porosity). The shape 
of D remains similar (not identical), hence the impact on F and the 
spatial profiles is small, although we see that F is lifted for a given Mn 
with higher compressibility. Recovery is delayed by the permeability 
reduction (falling from ca 0.7 μDat reference to 0.5 μD with 30x higher 
compressibility, see Fig. 5). After 400 days Rg ≈ 0.80 with low 
compressibility and 0.70 with high compressibility. 

Adsorption capacity amax is varied in Fig. 8 to give initial adsorbed 
mass fractions ρba

M equal to 0.19, 0.40 and 0.77, consistent with reported 

Fig. 10. The role of initial radius r0 (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs square root 
of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the point where it 
ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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ranges in the literature (Kuuskraa et al., 1985; Curtis, 2002). Increased 
values of amax reduces D since dM

dp is increased in (6). At low adsorption 
capacity, free gas is dominant. If gas is ideal and porosity and perme
ability are constant, M∝p, i.e. dM

dp = constant and D∝M. A close to linear 
trend of D(M) is also seen for low capacity, while at high adsorption 
capacity the trend D vs Mn is more nonlinear. Adsorption delays the 
velocity of a given pressure (Berawala et al., 2019). Since little 
desorption happens at high pressures (where the isotherm is flatter, see 
Fig. 5), high pressures are less delayed by adsorption than low pressures 
(the diffusion coefficient is less reduced). This is reflected in the F 
function which is elevated with higher capacity and thus steeper at 
higher M and the corresponding spatial profiles where low M have 
reached a shorter distance than high M when M0 is at x = L. The re
covery Rg at tc (see red circles) is thus lower at greater adsorption 
capacity. 

The boundary pressure pb is varied in Fig. 9. Higher pb shifts the range 
of M to high values, where also high values of D are found. A shorter 
range of D is therefore spanned over Mn starting from the same M0, 
making D more flat. The different M travel with more similar speeds and 

increases the recovery at tc. This is consistent with the trends seen for a 
shift towards higher |D|0.5. The generally higher D gives faster recovery 
Rg of the recoverable gas in the considered pressure interval. The 
increased boundary pressure however reduces drawdown, and we 
observe that recovery relative to the gas in place RgIN slows down, giving 
an opposite, but not contradicting trend with Rg. 

Variation of initial radius r0 is illustrated in Fig. 10. The main impact 
is on intrinsic permeability which increases with radius and gives faster 
recovery. Also, at higher pore radii, slip effects are less significant and 
apparent permeability is almost constant at 15 μD for 60 nm, while it 
increases from 0.7 to 1 μDat low pressure for 12 nm, see Fig. 5. The 
relatively higher permeability at low pressures for low pore radii, is 
reflected in the spatial distributions of Mn where the low Mn (or low 
pressures) are less delayed than at high pore radius, compared to the 
fastest traveling Mn (which equals 1). Consequently, lower recovery at tc 
results for larger radii. Had the compressibility been high (30 times the 
reference), we see from Fig. 5 that intrinsic permeability would be 
reduced almost linearly with pressure towards half the original value. 
The apparent permeability would counteract this effect more at low 

Fig. 11. The role of system length L (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs square root 
of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the point where it 
ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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radius. Increased compressibility would thus delay propagation of low 
pressures more than high pressures, but the relative impact would be 
less for low radii. 

System length L was varied in Fig. 11. This parameter does not appear 
in the calculation of A, F or D, and the functions D(M), F(M) are therefore 
not changing. The time scales τ, tc however both increase with L2, see 
(16) and (17), and higher length is therefore seen to increase recovery 
time. The spatial profiles at equal scaled times are equal. 

In Fig. 12 the Langmuir pressure pL was varied. Higher pL gives more 
similar amount of desorption per pressure change than at low pL where 
little desorption occurs at high pressures. The contribution from 
adsorption in dM

dp (which is ρb
da
dp) becomes more constant for high pL 

instead of high at low pressure and low at high pressure. This results in a 
flatter D(M), where D is lowered at high pressure and increased at low 
pressure. This trend makes low pressures less delayed than higher 
pressures and higher recovery at tc. The overall magnitude of D(M) does 
not appear to change and very similar recovery curves Rg result, 

meaning it takes similar time to recover similar fractions of the pro
ducible gas. However, the initial gas in place and end recovery are both 
affected by pL giving recovery curves RgIN that differ more significantly. 
The increased flatness of the D function with higher pL can be related to a 
higher |D|0.5 and similar to Fig. 2b and c we see that the F function is 

reduced and the spatial profiles M
(

x
L

)
at tc are reduced, consistent with a 

slightly higher recovery Rg at the critical time. 

3.5. Scaling of recovery 

A variety of parameter combinations, as listed in Table 3 were run to 
generate 17 different recovery curves as shown in Fig. 13a. From the 
table, we see that 6 parameters are varied, 5 of which are nonlinearly 
related to the performance and in half the cases 2 or more parameters 
are varied from the reference values simultaneously. Each case was run 
until t = 36tc. The resulting curves demonstrate a great span in recovery 
levels (RgIN from 25 to 70%) and time scales (20–800 d). All the cases 

Fig. 12. The role of Langmuir pressure pL (in factors times the reference value) on (a) D(M), (b) F(M), (c) recovery RgIN vs time, (d) normalized recovery Rg vs square 
root of time, spatial profiles of Mn at (e) t = tc and (f) t = 9tc. In the recovery plots dashed lines indicate the semi-analytical solution and the red circle the point where 
it ceases to be valid. In the spatial plot at t = tc, crosses indicate the semi-analytical solution. 
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were scaled by presenting Rg against 
̅̅
t
τ

√
in Fig. 13b. It is seen that all the 

curves fall on the same line at early times and do not differ significantly 
until Rg reaches between 0.35 and 0.5. Also, at late times the curves are 
closely collected as a consequence of the scaling, but can be seen to 
differ. The scaled curves were colored according to their value of |D|0.5. 
It is seen that the curves can be grouped well by this parameter and that 
at late times a curve with high |D|0.5 can be expected to have higher 
recovery Rg than a curve with low |D|0.5. The recovery at the critical 
time, the highest value when the semi-analytical solution is valid, is 
plotted against |D|0.5 in Fig. 13c. The range of |D|0.5 is between 0.1 and 
0.4, which is consistent with that the functions D(Mn) are increasing, as 
also seen in the previous examples. The recovery at critical time in
creases close to linearly with |D|0.5 from ~0.12 to ~0.22. The deviation 
from the semi-analytical solution (the square root of scaled time line) is 
noticeable at 0.2–0.25 recovery units higher. 

3.6. Proposed new effective diffusion coefficient 

We have shown that regardless the form of D(M), recovery follows a 
square root of time profile before encountering the no-flow boundary. 
There hence exists a constant characteristic Dch which gives the exact 
same root of time profile at early times, as represented by the resulting 
flux coefficient A: 

A(D(M))=A(Dch) (82) 

The late time behavior and onset of late time may differ by the 
constant vs nonconstant shape of D. The specific value Dch depends on 
the system parameters, but we assume it can be approximated by 
selecting a representative value of D systematically. The 17 cases listed 
in Table 3 were run to evaluate Atrue (where the full nonlinear diffusion 
coefficient was applied) and Ach (based on a constant Dch). The following 
approaches to estimate Dch were tested:  

- Dm− ar
ch : the arithmetic mean of D(M),  

- Dm− h
ch : the harmonic mean of D(M),  

- DM− av
ch : evaluation of D at Mav = 0.5(Mb + M0),  

- D*
ch: evaluate ρ ka

μ at the average pressure and dM
dp ≈ ΔM

Δp based on end 
pressures.  

- Dm− ar,corr
ch : the arithmetic mean of D(M) multiplied by the correction 

factor A
AconD 

as function of |D|0.5, taken from (77). 

Mathematically these relations are expressed as: 

Dm− ar
ch =

1
M0 − Mb

∫M0

Mb

D(M)dM =
1

M0 − Mb

∫M0

Mb

ρ ka

μ
dp
dM

dM, (83)  

Dm− h
ch =

1
M0 − Mb

⎡

⎢
⎣

∫M0

Mb

dM
D(M)

⎤

⎥
⎦

− 1

=
1

M0 − Mb

⎡

⎢
⎣

∫M0

Mb

(

ρ ka

μ
dp
dM

)− 1

dM

⎤

⎥
⎦

− 1

, (84)  

DM− av
ch =D(Mav), (85)  

D∗
ch =

[

ρ ka

μ

]

pav

/(
ΔM
Δp

)

,

(
ΔM
Δp

)

=
[φρ + ρba]p0

− [φρ + ρba]pb

p0 − pb
(86)  

Mav = 0.5(M0 +Mb)= 0.5
(
[φρ + ρba]p0 + [φρ + ρba]pb

)
(87)  

pav = 0.5(p0 + pb) (88)  

Dm− ar,corr
ch =Dm− ar

ch ⋅
[

A
AconD

]
(
|D|0.5

)
(89) 

The arithmetic mean (83) was suggested to scale nonlinear capillary 
diffusion coefficients for COUSI in Andersen et al. (2014). The use of a 
harmonic mean (84) better reflects the presence of small values. Eval
uation of D at a characteristic input (85) has been applied for scaling 
COUSI by Zhou et al. (2002) and Standnes and Andersen (2017). Bera
wala et al. (2019) and Berawala and Andersen (2020) scaled shale gas 
production with pressure depletion in a fracture-matrix system ac
counting for different mechanisms using a similar form as (86) where the 
flux coefficient was evaluated at the mean pressure and the impact of 
adsorption and rock compressibility included by a retardation factor, 
R = ΔM

Δp (converted to the current notation). 
The calculated flux coefficient values of Atrue and the 5 different es

timates of A(Dch) are listed in Table 4 for all 17 cases together with the 

values of |D|0.5 and resulting correction factor 
[

A
AconD

]

(|D|0.5) calculated 

from (77). The 5 estimates are plotted against Atrue in Fig. 14 together 
with best-fit linear relations and the coefficients of determination R2. 
For all estimates there is obtained a very strong correlation, with the 
lowest R2 = 0.9853 when harmonic mean is used. The second highest 
R2 = 0.9987 is obtained when the coefficient is evaluated at Mav which 
is thus a relatively simple and fast estimation. The best estimate is ob
tained when using the arithmetic mean with correction factor, with R2 =

0.9999. Note that the correction factor was predicted in these examples 

Table 3 
Parameter combinations for cases used in scaling example. The values indicate the factor each parameter is multiplied by compared to the reference values. Differences 
from the reference case are highlighted with bold.  

Case ID Compressi-bility Adsorption capacity Boundary pressur Initial poreradius Length Langmuir pressure  

cr  amax  pb  r0  L  pL  

1 1 1 1 1 1 1 
2 30 1 1 1 1 1 
3 1 0.35 1 1 1 1 
4 1 5 1 1 1 1 
5 1 1 3 1 1 1 
6 1 1 1 5 1 1 
7 1 1 1 1 0.5 1 
8 1 1 1 1 1 2 
9 1 1 1 1 1 5 
10 30 0.35 1 1 1 1 
11 30 5 1 1 1 1 
12 30 0.35 3 1 0.5 1 
13 30 5 3 1 0.5 1 
14 30 0.35 1 5 1 1 
15 30 5 1 5 1 1 
16 30 0.35 3 5 2 5 
17 30 5 3 5 2 5  
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Fig. 13. Recovery RgIN vs time (a) for a varied parameter dataset. Rg vs square root of scaled time (b) to where each case is colored according to the value of |D|0.5. In 
(c) the recovery at the critical time is plotted against |D|0.5 for each case. 
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and the good performance supports its applicability. 
The true flux coefficient Atrue strongly correlates with the estimated 

ones. Looking at the linear trends we do however see signs of either 
systematic underestimation (on average 8.6% lower estimated flux using 
Dm− h

ch ) or overestimation (on average ∼ 25% higher estimated flux using 
D*

ch and less overestimation for the remaining alternatives. For Dm− ar,corr
ch 

the difference is negligible with less than 0.3% underestimation. The 
other misestimations can be corrected as follows: 

Dcor
1 =

1
1.231

Dm− ar
ch ,Dcor

2 =
1

0.914
Dm− h

ch , (90)  

Dcor
3 =

1
1.108

DM− av
ch ,Dcor

4 =
1

1.250
D∗

ch. (91) 

This follows since the flux is directly proportional to the diffusion 
coefficient, see (20) in the Appendix. 

4. Discussion 

We have demonstrated that shale gas production from matrix into a 
constant pressure boundary can be modeled as a nonlinear diffusion 
process which can be solved semi-analytically to yield self-similar 
behavior at early time and square root of recovery profiles. Although 
the solution has been shown to account for very many mechanisms, one 
should be aware that other flow mechanisms also may be relevant 
during shale gas production that the solution is not valid for. For 
instance, water from hydraulic fracturing or formation water may result 
in multiphase flow and water blockage phenomena reducing the effec
tive gas permeability. Unpropped or poorly propped fractures can be 
sensitive to pressure depletion and lose conductivity as closure stress 
increases (Cipolla et al., 2010). Complex or dynamic (closing) fracture 
geometries and flow properties can restrict flow and give a pressure 
gradient rather than a constant pressure in the fracture (fractur
e-dominated flow). If the pressure in the fracture changes with time, the 
matrix conditions derived to model matrix flow are not valid. 

If water blockage is negligible and the fractures have good conduc
tivity, the semi-analytical solution can predict decline curves for shale 
gas. The decline curve is stated as one of the best techniques to estimate 
tight gas reserves (Holditch, 2006). It then follows that production rates 
should fall by the square root of time, at least for an early production 
phase. When the rate profile deviates from such a trend, the no-flow 
boundary has been met (likely some time ago) and it is possible to es
timate gas in place. We have observed that deviation from the 
infinite-acting square root of time behavior takes place after 35–50% 
obtainable recovery indicating that it may be necessary to produce for a 
while before an accurate estimate is obtained. 

Compared with counter-current spontaneous imbibition (COUSI) 
processes, which can be modeled with similar type equations, the 
nonlinear diffusion coefficient for shale gas production is nonzero and 
increasing with the mass variable, while for COUSI it is tied to zero at 
both end points. Our results show that the critical time and late time 
behavior are strongly determined by the parameter |D|0.5, which could 
be explored also in such a context. The increase in D with pressure (or M) 
is related to the proportionality with gas density, which increases 
strongly with pressure. This increase also gives high pressures faster 
velocities than low pressures and results in a fairly low recovery when 
the no-flow boundary is encountered. The semi-analytical solution is 
however a good approximation long after this event, typically 0.2 to 
0.25 recovery units higher. 

5. Conclusions 

In this work we have demonstrated that shale gas production from a 
1D linear system can be modeled as a nonlinear diffusion process, even 
when accounting for shale and gas compressibility, apparent perme
ability and nonlinear adsorption. The main variable is then a bulk gas 
density M accounting for free gas, porosity and adsorbed gas. The ulti
mate behavior of the system is controlled by a nonlinear diffusion co
efficient which is function of the bulk gas density. The impact of all 
system parameters can be described by how they impact this diffusion 
coefficient function. The behavior of the nonlinear diffusion equation 
was first investigated for arbitrarily shaped input diffusion coefficient 
functions D(M) with same magnitude.  

- Gas recovery follows exactly a square root of time profile until the 
critical time, defined by when the fastest pressure reaches the no- 
flow boundary.  

- Recovery can be scaled such that all curves are identical at early time 
(before critical time). Then obtainable recovery equals the square 
root of scaled time.  

- At late time, recovery is slower than by the square root of time. 
- The fraction of the diffusion coefficient’s area on the lower M in

terval, termed 0 < |D|0.5 < 1, characterizes how skewed (non-flat) 
the D-function is and was found to be a very useful parameter to 
characterize recovery at the critical time and recovery at late time.  

- The flux coefficient A stating how fast the square root of recovery 
occurs, could be predicted accurately based on the arithmetic mean 
of the diffusion coefficient and the parameter |D|0.5. Diffusion co
efficients with higher |D|0.5 have higher flux.  

- Functions with higher |D|0.5 have higher recovery at the critical time 
(0.1–0.65 of obtainable recovery for |D|0.5 ∼ 0.1 and ~0.9, 
respectively). 

Table 4 
Calculated values of flux coefficients for the cases in Table 3.  

Case ID Atrue  A(Dm− ar
ch ) A(Dm− h

ch ) A(DM− av
ch ) A(D∗

ch) |D|0.5  Corr fac 
(

A
AconD

)
A(Dm− ar

ch ) ⋅corr ​ fac  

1 0.0194 0.0229 0.0186 0.0222 0.0238 0.260 0.838 0.0192 
2 0.0166 0.0203 0.0152 0.0192 0.0204 0.227 0.813 0.0165 
3 0.0184 0.0210 0.0184 0.0206 0.0218 0.306 0.873 0.0183 
4 0.0243 0.0324 0.0206 0.0266 0.0336 0.152 0.751 0.0243 
5 0.0151 0.0168 0.0160 0.0166 0.0171 0.368 0.916 0.0154 
6 0.0883 0.1065 0.0815 0.1026 0.1111 0.241 0.824 0.0877 
7 0.0194 0.0229 0.0186 0.0222 0.0238 0.260 0.838 0.0192 
8 0.0200 0.0236 0.0194 0.0226 0.0244 0.264 0.841 0.0199 
9 0.0204 0.0236 0.0204 0.0228 0.0244 0.291 0.862 0.0203 
10 0.0159 0.0186 0.0155 0.0180 0.0187 0.273 0.848 0.0158 
11 0.0205 0.0286 0.0160 0.0219 0.0288 0.121 0.724 0.0207 
12 0.0135 0.0148 0.0139 0.0145 0.0148 0.355 0.907 0.0134 
13 0.0166 0.0193 0.0167 0.0182 0.0194 0.280 0.853 0.0165 
14 0.0729 0.0867 0.0686 0.0838 0.0874 0.256 0.835 0.0724 
15 0.0936 0.1333 0.0679 0.0993 0.1343 0.107 0.712 0.0949 
16 0.0642 0.0708 0.0661 0.0694 0.0711 0.342 0.898 0.0636 
17 0.0921 0.1062 0.0931 0.1004 0.1066 0.290 0.861 0.0914  
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- The semi-analytical solution is a very good approximation to the true 
solution (evaluated numerically) also at late times, for recovery 
values typically 0.2–0.3 units higher than the recovery at the critical 
time. 

The following conclusions were made when investigating systems 
with shale gas specific parameters:  

- Most of the diffusion coefficients calculated for relevant shale gas 
systems were increasing with M, resulting in values of |D|0.5 between 
0.1 and 0.4. This is highly related to the proportionality with gas 
density, which increases strongly with pressure. As a result, obtain
able recovery at the critical time was usually low, around 0.12 to 
0.22. The semi-analytical square root of time solution was still a good 
approximation until obtainable recovery of 0.30–0.50, respectively.  

- Each pressure (or M) travels at a speed that decreases by the square 
root of time and depends on M. By the diffusion process nature, 

Fig. 14. Comparison of flux coefficients A based on different constant diffusion coefficients.  
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higher pressures travel at higher velocities. However, changes in 
input parameters that increase the diffusion coefficient more at low 
pressures than high, can reduce the separation between the high and 
low pressures.  

- Higher well pressure (lower drawdown) increases the lower pressure 
limit and the average diffusion coefficient. This results in a faster rate 
of obtainable recovery with time, although the rate of recovery of gas 
initially in place is reduced.  

- If permeability reduces significantly with pressure and adsorbed gas 
makes a high fraction of what is produced, it can be expected that 
|D|0.5 is low which implies that a limited part of the recovery follows 
a square root time profile. 
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Appendix. Discretization 

Consider the system: 

∂tM = ∂x(D(M)∂xM),D(M)= ρ ka

μ
dp
dM

(92)  

M(x, t= 0)=M0,M(x= 0, t)=Mb, ∂xM|x=L = 0. (93) 

The system is discretized implicitly and the boundary conditions are implemented directly in the fluxes of the first and last cell: 

Mn+1
i − Mn

i

Δt
=

1
Δx2

⎡

⎢
⎣Dn+1

i+1
2

(
Mn+1

i+1 − Mn+1
i

)
− Dn+1

i− 1
2

(
Mn+1

i − Mb
)

⎤

⎥
⎦, (i= 1) (94)  

Mn+1
i − Mn

i

Δt
=

1
Δx2

⎡

⎢
⎣Dn+1

i+1
2

(
Mn+1

i+1 − Mn+1
i

)
− Dn+1

i− 1
2

(
Mn+1

i − Mn+1
i− 1

)

⎤

⎥
⎦, (i= 2 : N − 1) (95)  

Mn+1
i − Mn

i

Δt
=

1
Δx2

⎡

⎢
⎣0 − Dn+1

i− 1
2

(
Mn+1

i − Mn+1
i− 1

)

⎤

⎥
⎦, (i=N) (96)  

where the coefficients are evaluated as: 

Dn+1
i− 1

2
= 2D

(
Mn+1

i

)
, (i= 1) (97)  

Dn+1
i− 1

2
=

1
2
[
D
(
Mn+1

i− 1

)
+D

(
Mn+1

i

)]
, (i= 2 : N) (98) 

The factor 2 in (97) is included to evaluate the gradient between the center of cell 1 and its left boundary instead of between the centers of two cells. 
Introducing the notation γ = Δt

Δx2 and rearranging, this system can be written as: 
⎛

⎜
⎝1+ γDn+1

i+1
2
+ γDn+1

i− 1
2

⎞

⎟
⎠Mn+1

i − γDn+1
i+1

2
Mn+1

i+1 =Mn
i + γDn+1

i− 1
2

Mb, (i= 1) (99)  

− γDn+1
i− 1

2
Mn+1

i− 1 +

⎛

⎜
⎝1+ γDn+1

i+1
2
+ γDn+1

i− 1
2

⎞

⎟
⎠Mn+1

i − γDn+1
i+1

2
Mn+1

i+1 =Mn
i , (i= 2 : N − 1) (100)  

− γDn+1
i− 1

2
Mn+1

i− 1 +

⎛

⎜
⎝1+ γDn+1

i− 1
2

⎞

⎟
⎠Mn+1

i =Mn
i , (i=N) (101) 

This corresponds to the following tridiagonal linear system of equations: 
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 e1
c2 d2 e2

c3 d3 e3

ci di ei
ci+1 di+1 ei+1

cN− 1 dN− 1 eN− 1
cN dN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1
M2

Mi− 1
Mi
Mi+1

MN− 1
MN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1
b2

bi− 1
bi
bi+1

bN− 1
bN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
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with the following definitions: 

bi =Mn
i + γDn+1

i− 1
2

Mb, di =

⎛

⎜
⎝1+ γDn+1

i+1
2
+ γDn+1

i− 1
2

⎞

⎟
⎠, ei = − γDn+1

i+1
2
, (i= 1) (103)  

bi =Mn
i , ci = − γDn+1

i− 1
2
, di =

⎛

⎜
⎝1+ γDn+1

i+1
2
+ γDn+1

i− 1
2

⎞

⎟
⎠, ei = − γDn+1

i+1
2
, (i= 2 : N − 1) (104)  

bi =Mn
i , ci = − γDn+1

i− 1
2
, di =

⎛

⎜
⎝1+ γDn+1

i− 1
2

⎞

⎟
⎠, (i=N) (105) 

The terms bi, ci, di, ei depending on Mn+1
i are considered constants such that the system can be solved as linear equations. After time step n they are 

first estimated using the solution Mn
i . Solving the system gives improved estimates for Mn+1

i and the terms, which after enough iterations gives the same 
estimate Mn+1

i . 
The linear system is solved directly using the Thomas algorithm: First define the sequence of parameters αi,Si(i = 1 : N)

α1 = d1, S1 = b1, (106)  

αi = di −
ciei− 1

αi− 1
, Si = bi −

ciSi− 1

αi− 1
, (i= 2 : N) (107) 

Then calculate Mi as: 

MN =
SN

αN
,Mi =

Si − eiMi+1

αi
, (i=N − 1 : 1) (108) 

At a given time step the numerical solution was evaluated to converge if the estimated solution vectors from last Mest and current iteration Mnew
est 

were sufficiently equal: |Mest − Mnew
est |

N0.5
x

< 10− 9 kg/m3. 
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Glossary 

Roman 
A: Flux proportionality coefficient, kg/m2/ŝ0.5 
a: Adsorbed mass gas per mass rock, kg/kg 
amax: Maximum capacity adsorbed mass gas per mass rock, kg/kg 
cr: Rock compressibility, Pa-1 
C1,C2 : Integration constants 
D: Nonlinear diffusion coefficient, m2/s 
D1,D2: Curve parameters, 
|D|0.5: Area of diffusion coefficient between Mn = 0 and 0.5, 
F: Flow function, 
ka: Apparent permeability, m2 

Kn: Knudsen number, 
k∞: Intrinsic permeability 
L: System length, m 
M: Bulk gas density, kg/m3 
Mn: Normalized bulk gas density, 
Mw: Molar weight, kg/mol 
N: Total number grid blocks, 
n: Curve exponent, 
p: Gas pressure, Pa 
pL: Langmuir pressure, Pa 
q: Mass flux, kg/m2/s 
R: Universal gas constant, J/mol/K 
Rg: Gas recovery, 
r: Pore radius, m 
rEP: Ratio of end points in diffusion coefficient, 
T: Absolute temperature, K 
t: Time, s 
u: Darcy velocity, m/s 
x: Length from open side, m 
z: Gas compressibility factor, 

Greek 
αK: Rarefaction coefficient, 
γ: Discretization parameter, m/s2 
Δt: Time step, s 
Δx: Grid length, m 
λ: Mean free path length, m 
τf : Formation tortuosity, 
τ: Time scale of recovery, s 
ρr: Rock density, kg/m3 
μ: Gas viscosity, Pa s 
ρ: Gas density, kg/m3 

φ: Porosity, 

Indices 
0: Initial 
b: Boundary 
g: Gas 
i: Grid block index 
n: Time step index 

Abbreviations 
COUSI: Counter-current spontaneous imbibition 
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