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Abstract 

 

Seismic attributes are a fundamental part of seismic interpretation and are routinely used 

by geoscientists to extract key information and visualize geological features. By 

combining different findings from each attribute, they can provide a good insight of the 

area and help overcome many geological challenges. However, individually analyzing 

multiple attributes to find relevant information can be time-consuming and inefficient, 

especially when working with large datasets. It can lead to miscalculations, errors in 

judgement and human bias. This is where Machine Learning (ML) methods can be 

implemented to improve existing interpretations or find additional information. ML can 

help by handling large volumes of multi-dimensional data and interrelating them. Methods 

such as Self Organizing Maps (SOM) allow multi-attribute analysis and help extract more 

information as compared to quantitative interpretation. SOM is an unsupervised neural 

network that can find meaningful and reliable patterns corresponding to a specific 

geological feature (Roden and Chen, 2017). 

The purpose of this thesis was to understand how SOM can help make interpretations of 

direct hydrocarbon indicators (DHI) in the Statfjord Field area easier. Several AVO 

attributes were generated to detect DHIs and were then used as input for multi-attribute 

SOM analysis. SOMPY package in Python was used to train the model and generate 

SOM classification results. Data samples were classified based on BMU hits and clusters 

in the data. The classification was then applied to the whole dataset and converted to 

seismic sections for comparison and interpretation. 

SOM classified seismic lines were compared with the results of the AVO attributes. Since 

DHIs are anomalous data, they were expected to be represented by small data clusters 

and BMUs with low hits. While SOM reproduced the seismic reflectors well, it did not 

define the DHI features clearly for them to be easily interpreted. Use of fewer seismic 

attributes and computational limitations of the machine could be some of the reasons 

behind not achieving desired results.  
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However, the study has room for improvement and the potential to produce meaningful 

results. Improvements in model design and training, and also the selection of input 

attributes are some of the areas that need to be addressed. Furthermore, testing other 

Python libraries and better handling of large datasets can allow better performance and 

more accurate results.   
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Chapter 1: Introduction 

 

Machine Learning (ML) has been applied in geosciences since the 1970s (Dramsch, 

2020), but over the last few years, there has been a boost in the application and 

development of ML by geoscientists in more practical settings. Most of the techniques are 

being adopted from other fields of research, where ML is rapidly developing. Workflows 

currently used require time-consuming manual labour and experienced-based decisions 

that often lead to miscalculations, errors in judgment and human bias. Due to lack of 

technology, time, and high costs, large datasets are inefficiently used that leaves a void 

in the important information that can be filled if all the relevant data is used. However, 

now with the availability of more open source libraries such as sklearn, scipy, tensorflow, 

as well as geoscience-specific libraries such as Segyio, Fatiando e Terra and PetroPy, 

and GPU-enabled high-performance computing, geoscientists are able to better handle 

‘big data’ and make the most of it. ML models allow for more accurate and precise 

interpretations, which saves time and eliminates human bias. Furthermore, the 

emergence of data analytics platforms with readily available ML workflows allows 

geoscientists to focus on solving geoscience problems rather than developing algorithms 

and codes for specific cases (Larsen et al., 2018).  

Attribute analysis allows extraction of concealed information from prestack or stacked 

seismic data that can help in delineating prospects, determining facies distribution, 

enhancing fractures and faults, and even highlight direct hydrocarbon indicators (DHIs) 

(Burnett et al. 2003; Castagna et al. 2003; Chopra and Marfurt 2007; Farfour et al. 2012; 

Hossain, 2020). Seismic attributes are categorized as geometric, instantaneous, spectral 

decomposition, seismic inversion, and AVO, and collectively they make up hundreds of 

individual attributes (Brown, 2004; Chen and Sidney, 1997; Chopra and Marfurt, 2007; 

Roden and Chen, 2017).  

DHIs are frequently used in petroleum companies to evaluate prospect risks and 

determine precise well locations (Roden et al., 2005; Fahmy and Reilly, 2006; Forrest et 

al., 2010; Roden et al., 2012; Rudolph and Goulding, 2017). DHIs are seismic amplitude 
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anomalies caused by changes in rock physics properties (P and S wave velocities and 

density) due to the presence of hydrocarbon as compared to the reservoir rock holding 

the hydrocarbon or the brine solution present in the reservoir. Several types of DHIs 

include flat spots, bright spots, phase change at the fluid contacts, amplitude variation 

with offset, and amplitude conformance to structure (Roden et al., 2012). Seismic 

attributes generally applied for identifying DHIs are AVO, instantaneous, and inversion 

attributes. AVO attributes such as intercept times gradient, far offset-minus near offset-

times the far offset, Lamda/Mu/Rho and fluid factor can highlight the hydrocarbon-bearing 

reservoirs. Whereas, sweetness, average energy, and amplitude envelope can make the 

amplitude anomalies stand out against the background, in turn identifying potential 

hydrocarbon accumulation. However, even with abundant seismic attributes that can be 

applied, the interpretation of DHI characteristics is not straightforward. Using multiple 

attributes can be intricate and complicated (Roden and Chen, 2017).  

Machine Learning can help by handling large volumes of multi-dimensional data and 

interrelating them. Using appropriate algorithms, computers can find meaningful and 

reliable patterns that correspond with the presence of hydrocarbons (Roden and Chen, 

2017). Methods such as Self Organizing Maps (SOM) allow multi-attribute analysis and 

help extract more information as compared to quantitative interpretations. It is an 

unsupervised, robust classification method that reduces the dimensionality of multi-

dimensional data. It better represents the seismic characters and detects geologic trends 

in the area, while allowing ‘muting’ irrelevant data (i.e. seismic noise) (Manouchehri et al., 

2020).  

SOM has been successfully applied by many geoscientists, such as Rocky Roden, for 

facies classification, reservoir characterization, delineating existing and new prospects, 

and understanding structural trends in the area. Furthermore, recognizing the advantages 

of multi-attribute analysis, Paradise software by Geophysical Insight offers a built-in ML 

module for SOM analysis. This allows geoscientists who are not familiar with 

programming to easily handle and combine several different attributes and gain new 

information. 
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1.1 Aim and Objectives 

1.1.1 Aim 

Geoscientists can benefit tremendously by utilising all of the useful information provided 

by different seismic attributes. One way to combine and collectively understand the trends 

in the data from the attributes is through SOM analysis. The aim of this study is to 

understand how Self-Organizing Maps can help to identify DHI anomalies in the Statfjord 

area or reinstate present interpretation to increase confidence. 

1.1.2 Objectives 

• Determine and calculate different seismic attributes for identifying DHIs 

• Identify and interpret hydrocarbon presence and related DHIs on the seismic 

attributes using Petrel. 

• Using SOMPY library in Python, design and train SOM model specific to the data 

set. 

• Interpret results from SOM analysis and compare with the results of seismic 

attributes. 

• Determine whether SOM helps to refine interpretation and identify new anomalies. 
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Chapter 2: The Statfjord Field 

 

The Statfjord Field is one of the largest and oldest producing fields in the North Sea. It is 

located on the border between the Norwegian and UK sectors in the northern part of the 

North Sea, geologically known as Tampen Spur (Figure 2.1) (Gibbons et al., 2003; Norsk 

Petroleum, 2021). It was discovered by Mobil Exploration Norway in 1974 and started 

production in 1979. Today, it is jointly owned by Equinor ASA (44.34%), Spirit Energy 

(34.29%) and Var Energi (21.37%). The hydrocarbon-bearing reservoir of the field covers 

approximately 24km by 4km area, making Statfjord the largest oil field in the Northern 

North Sea (Roberts et al., 1987; Gibbons et al., 2003).  

 

Figure 2.1: Location of the Statfjord Field (Modified after www.npd.no) 

 

2.1 Regional Setting 

The Statfjord Field (Kirk, 1980) lies within the East Shetland Basin, along the western 

margin of the North Sea Rift System (Figure 2.2a). The field is situated along the crest of 
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a NE-SW trending fault block that is slightly dipping towards the northwest (Figure 2.2c). 

Along the east flank, the field comprises of smaller, faulted, and rotated compartments 

that are referred to as gravitational collapse structures. It is bounded in the south west by 

the major Brent Fault, and in the north east by a horst structure (Hesthammer et al., 1999).  

Tectonic history of the area can be defined by at least two major rifting events that 

followed the Devonian thinning and regional stretching of the Caledonian crust 

(Hesthammer et al., 1999). The first rift phase in the Permo-Triassic led to the opening of 

the Viking Graben (Badley et al. 1984, 1988; Beach et al. 1987; Roberts et al. 1995). The 

second rift phase that occurred in the latest middle Jurassic to earliest Cretaceous, led to 

an extension in generally NW-SE direction (Figure 2.2b) (Roberts et al., 1990). This phase 

was followed by a rise in sea level that resulted in the burial of the Triassic and Jurassic 

aged reservoir formations. The burial continued in the Cretaceous and Paleocene ages, 

during the thermal subsidence of the whole North Sea Basin in the post-rift stage 

(Gibbons et al., 2003). 

Structurally, the Statfjord Field can be divided into two domains: a heavily faulted east 

flank characterized by rotated slide blocks and associated erosional debris, and a 

relatively undeformed section, covering most of the field with W-NW dipping strata and 

several NW-SE oriented cross faults that offset the base Cretaceous. The two domains 

are separated by the base of slope failure (BSF) surface, which can be mapped 

seismically (Hesthammer et al., 1999). The faulted blocks of the east flank cut through 

the reservoir formations (Gibbons et al., 2003). Most of the traps for petroleum are found 

in the rotated fault blocks along both margins of the Viking graben, formed as a result of 

Late Jurassic rifting (Faleide et al., 2010). 
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Figure 2.2: a) Map of the northern North Sea and regional setting of the Tampen Spur area. (Modified after Ketzer, 
1999). b) Tectonics overview of the northern North Sea. (Modified after Fossen et al., 2000. c) Regional profile across 
the norther North Sea and the location of different fields, including the Statfjord Field. (Modified after Gawthorpe et 

al., 2019). 

 

2.2 Stratigraphy of the Statfjord Field Reservoirs 

The principal reservoirs of the Statfjord Field are Late Triassic–Early Jurrasic age 

Statfjord Formation and Mid-Jurassic age Dunlin and Brent Groups. They vary in 

thickness from 20 to 200m in the Statfjord Field area, and their average net-to-gross (N/G) 

is 0.75 for Brent Group, 0.05-0.45 for Dunlin and 0.6 for Statfjord reservoirs. Average 

porosity and permeability go as high as 27% (Brent Group) and 470mD (Statfjord 

Formation), respectively. Trap types for these reservoirs can be structural or stratigraphic, 

and in some places, a combination of both (Gibbons et al., 2003). 

 

A B 

C 
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Figure 2.3: Stratigraphic column for the Tampen Spur area that contains the Statfjord Field. (Millenium Atlas, 2003). 
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2.2.1 Statfjord Formation 

Statfjord Formation was deposited during latest Rhaetian to latest Sinemurian period and 

conformably overlies the Hegre Group (Figure 2.3). It is composed of interlayered 

sandstone/siltstone and shale with the total thickness of the formation ranging from 150 

to 300m on the Statfjord Field. Towards the NNE, a thinning trend can be observed on 

the Statfjord Field as well as on a regional scale in the Tampen area (Hesthammer et al., 

1999). In the northern most parts of the field, some localized thickening trend could be 

seen on the isochore maps of the formation. This indicates a change in depositional 

environment possibly related to the contemporaneous down throw of the hanging wall of 

the Alwyn-Ninian-Hutton fault zone in the southwest (Johnson & Eyssautier, 1987; 

Richards et al., 1993). No movement along the Statfjord Field boundary fault is exhibited 

during the deposition of the Statfjord Formation (Hesthammer et al., 1999; Gibbons et al., 

2003).  

The paleoenvironment of the Statfjord Formation can be described as alluvial plain 

deposits dissected by northward flowing axial rivers with local lateral fans along the Viking 

Graben margins (Gibbons et al., 2003). Statfjord Formation along with the Hegre Group 

forms the thick continental basin-fill rift and post-rift sequences found within the graben. 

Base of the Statfjord Formation is identified by a coarsening-upwards stratum which 

marks the change from Lunde Formation’s (Hegre Group) shaly fluvial and 

fluviolacustrine deposits to Statfjord Formation’s massive deposits of the alluvial 

plain/braided stream environment. This represents a regional basinward shift of the facies 

(Gibbons et al., 2003). 

The Statfjord Formation is divided into three members: the Raude, Eiriksson and Nansen 

members. The Raude Member, which overlies the Lunde Formation of the Hegre Group, 

is mainly composed of fluvial channel sandstones embedded in a mudstone matrix. It is 

underlain by the Eiriksson Member comprising of more amalgamated fluvial channel 

sandstones and mudstones. The thin, transgressive sandstones of the Nansen Member 

was deposited as a result of marine transgression due to subsidence and a regional rise 

in sea-level. This sandstone unit has good reservoir properties (Gibbons et al., 2003). 
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2.2.2 Dunlin Group 

The shallow marine mudstone, siltstone and sandstone deposits of the Dunlin Group 

range from the latest Sinemurian to earliest Bajocian age. The lower part of the Dunlin 

Group corresponds to the basin subsidence and a rise in sea-level initiated during 

deposition of the Nansen Member (Statfjord Formation). The transition from sandstones 

of the upper Statfjord Formation to silty mudstones of the lower Dunlin Group can be 

clearly seen on the gamma ray log. The log character for the Dunlin Group is more regular 

as compared to the overlying Brent Group and underlying Statfjord Group (Gibbons et al., 

2003). 

Four formations that make up the Dunlin group are the Amundsen, Burton, Cook and 

Drake Formations. All four formations can be characterized as heterolithic with alternating 

beds of sandstone and mudstone. The Amundsen and Burton Formations consist of 

shallow marine siltstones and mudstones. The Burton Formation comprises mostly of 

mudstones from offshore open marine environment and thus tends to be shalier. The 

transition to the Amundsen Formation’s marine shales from the Nansen Member’s marine 

sandstones is represented by the presence of calcareous sandstone near the base of the 

Amundsen Formation in the southwestern part of the Statfjord Field. The mudstones and 

sandstones of the Cook Formation overlie the Burton Formation. Deposition of the Cook 

Formation can be corresponded with a regional regression and a rapid sea-level fall 

during the late Pleinsbachian-early Toarcian, verified by sequence stratigraphic studies 

(Parkinson and Hines 1995; Dreyer and Wiig, 1995). Two large scale coarsening upwards 

sequences can be identified in the formation that are composed of heterolithic mudstones 

and sandstones deposited in wave-influenced lower shoreface and offshore 

environments (Gibbons et al., 2003). In the east of the Gullfaks area, deposits of a more 

tide-dominated deltaic environment can be found in the upper part of the Cook Formation 

(Dreyer and Wiig, 1995). Pre-rift doming and tectonic uplift along the eastern flank of the 

Viking Graben can be linked to the regional regression. Sea-level began to rise leading 

to a regional transgression towards the end of the early Toarcian, and this resulted in 

deposition of the Drake Formation’s marine mudstones (Gibbons et al., 2003). 
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2.2.3 Brent Group 

180 – 250m thick (Statfjord Field) Brent Group is made up of regressive and transgressive 

delta system’s deposits consisting of sandstone, siltstone, shale, and coal. It was 

deposited during lower Bajocian to middle Bathonian ages. It is the principal reservoir of 

the Statfjord Field and has been divided into five formations, the Broom, Rannoch, Etive, 

Ness and Tarbert formations (Hesthammer et al., 1999).  

The three oldest formations of the Lower Brent are deposits of coastal to shallow marine 

environment and can be interpreted as progradation deposits of the deltaic complex. The 

Broom Formation is part of a shallow marine platform that comprises of storm deposits 

and small distal bar build-ups. The depositional environment changes to storm wave 

dominated pro-delta, delta front and ebb-tidal for the Rannoch Formation, and then to 

tidal inlet/ebb-tidal, upper shoreface foreshore and lagoon barrier for the Etive Formation 

(Gibbons et al., 2003). 

Upper Brent’s upper two formations exhibit maximum progradation of the delta followed 

by onset of regression. This is represented by fluvio-deltaic deposits of the Ness formation 

and overlying Tarbert Formation’s shallow marine deposits. The inter-fingering 

sandstones with shales of the Tarbert Formation in the southern Statfjord Field are 

determined to be fluvio-deltaic; however, in the northern part of the field that sandstones 

are interpreted as middle to lower shoreface (Johannessen et al., 1995). This makes 

transgressional nature of the Tarbert Formation highly debatable (Gibbons et al., 2003).  
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Chapter 3: Theoretical Background 

 

3.1 Seismic Attribute Analysis 

Since their introduction in the 1970s, seismic attributes have advanced considerably and 

are now an essential analytical tool for seismic interpretation (Taner, 2001). A seismic 

attribute measures qualitative and quantitative information of seismically driven 

subsurface parameters, such as frequency, velocity, amplitude, and their rate of change 

in terms of time and space. They are abundantly used for reservoir characterization to 

improve hydrocarbon exploration and development by reducing uncertainties and risks. 

Some of the oldest attributes include bright spot analysis that led to gas discoveries, along 

with some failures. As an improvement, AVO and seismic inversion were introduced 

combined with colour display (Taner, 2001; Chopra and Marfurt, 2005). Further 

development in the 1990s led to the introduction of coherence technology, spectral 

decomposition, and neural network applications, which further enhanced pattern 

recognition and visualization. With continuous advancements in computing power, 

geoscientists are able to combine different attributes and perform multi-attribute analysis 

to better understand the subsurface data (Chopra and Marfurt, 2005).    

With the growing variety and number of attributes, many authors have tried to classify 

them into different groups depending on their computation and/or applications. For 

example, Taner et al. (1994) broadly categorizes attributes into physical and geometrical. 

While geometrical attributes enhance visualisation of the geometrical characteristics of 

the seismic data such as dip, azimuth, and continuity; physical attributes are associated 

with lithology of the subsurface and therefore, frequency, amplitude, and phase. These 

categories can be further divided into prestack and poststack attributes. A more recent 

classification by Liner et al. (2004) consists of specific and general categories. Attributes 

in the general category measure seismic features such as dynamic, kinematic, geometric, 

or statistical. These can be reflector dip and azimuth, reflector time and reflector 

amplitude, complex amplitude and frequency, edge detection/coherence, generalized 

Hilbert attributes, AVO, and spectral decomposition. These attributes are related to 
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general lithology or geology and can be applied to different basins in different locations. 

Whereas, specific attributes are exclusive to each basin in question. They are correlated 

to a geological feature or reservoir property of a basin. Chopra and Marfurt (2005) suggest 

a third category to Liner et al.’s classification that is ‘composite’ attributes. These can be 

of two types: those that display more than one attribute at a time and those combined 

with the help of geostatistical methods, and ML algorithms such as neural networks 

(Chopra and Marfurt, 2005). 

3.1.1 Attributes to Identify Direct Hydrocarbon Indicators 

Some of the most commonly used attributes used to detect DHI features are 

instantaneous, AVO and inversion attributes. Usually, DHI characteristics are associated 

with anomalous seismic data within the reservoir interval. Seismic attributes help compare 

these anomalous events to other features such as background trends, models, similar 

events, and geologic features (Roden and Chen, 2017). 

Instantaneous Attributes: 

Instantaneous attributes are computed sample-wise, and display variations of different 

parameters. These can be determined from complex traces. Some of the examples of 

instantaneous attributes are trace envelope, instantaneous phase and instantaneous 

frequency (Taner, 2001). 

AVO Attributes: 

The two fundamental attributes of AVO are intercept and gradient. After calculating 

variations in amplitudes with offset from the common-midpoint (CMP) gathers in each 

offset cubes, intercept (I) and the gradient (G) is computed in a cross-plot of amplitude 

versus 𝑠𝑖𝑛2𝜃, with the help of linear regression. I is the cut-off on the amplitude axis: 𝑅0 

and G is the slope of the regression line. By cross-plotting, the data is converted to the 

‘amplitude versus angle-of-incidence’ (AVA) domain from the offset domain. This is 

achieved by Snell’s law application at the interfaces and applying interval velocities from 

the smoothed normal moveout (NMO) velocities.  
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For AVO attribute analysis, it is common to calculate the product of intercept and gradient, 

I*G attribute. The results are often displayed in ‘product stack’ sections so that the 

behaviour can be inspected. Another attribute that is computed is the fluid factor (FF), 

which can be calculated in several ways, such as the I – G cross-plot method and the 𝑉𝑝- 

𝑉𝑠 cross-plot method. The generated cubes from these attributes are closely inspected for 

anomalies that indicate the presence of hydrocarbon in the reservoir (Veeken and Rauch-

Davies, 2006).  

Reservoirs can be AVO classified based on the amplitude characteristics of the top 

reflection as a function of offset (Rutherford and Williams, 1989; Castagna and Swan, 

1998). The widely used classification consists of 4 classes: 

Class 1: Large positive 𝑅0 amplitude that remains positive (dimming of reflection on 

stack). 

Class 2: Small positive 𝑅0 that converts to negative reflections with offset (polarity reversal 

and dimming or brightening of reflection on stack). 

Class 3: Negative 𝑅0 amplitude that becomes more negative (brightening of reflection on 

stack). 

Class 4: Negative amplitude becomes less negative with offset (Veeken and Rauch-

Davies, 2006). 

 

3.2 Machine Learning 

Machine learning is a branch of artificial intelligence (AI) that uses statistical 

computational methods and experience to make accurate predictions or improve 

performance. It consists of designing accurate and efficient algorithms that can provide 

more insight to the data and help with decision making. A learning problem is a problem 

of improving performance of a program through some form of data training (Jordan and 

Mitchell, 2015). Training the algorithm is done using a set of samples extracted from the 

dataset, known as ‘training data’. Typically, a supervised machine learning algorithm 

learns through three processes: a decision process, an error function, and an optimization 
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process. The unique and important quality of machine learning algorithms is that they 

update independent of human intervention, and with each update the analytical accuracy 

improves (UC Berkeley, 2021). Practical applications of ML include classifications such 

as document classification, natural language processing (NLP), speech processing or 

recognition, fraud detection, learning to play games, computational biology and so on 

(Mohri at al., 2018). ML is now being applied actively in a range of industries, especially 

those concerned with data-intensive issues, to optimize business operations (Jordan and 

Mitchell, 2015; UC Berkeley, 2021). 

Machine learning methods are usually classified into these categories: 

Supervised Learning: the learning algorithm uses pre-labelled data to train and predict 

the outcome. With this type of learning, performance can be assessed for how accurate 

it is as the intended output is provided. Common methods of supervised machine learning 

are linear regression, support vector machine (SVM), logistic regression, naïve bayes and 

random forest (IBM Cloud Education, 2020). 

Unsupervised Learning: for unsupervised learning, humans do not need to supervise 

the model. The algorithm works on its own to analyse clusters and patterns to find hidden 

information from unlabelled data. It allows for processing of more complicated tasks as 

compared to supervised learning, but there is greater unpredictability in the outcome. 

Nonetheless, unsupervised learning can benefit the users by finding all kinds of unknown 

patterns and features that can be useful for categorization. It can also be used for 

dimensionality reduction by reducing the number of features; singular value 

decomposition (SVD) and principal component analysis (PCA) are an example of this. 

Some methods of unsupervised learning are neural networks, k-mean clustering and self-

organizing maps (SOM) (IBM Cloud Education, 2020). 

Semi-supervised Learning: as the name suggests, it is partially supervised and partially 

unsupervised. During the training process, it uses a smaller, labelled dataset to perform 

classification and feature extraction from a larger, unstructured dataset. This improves 

learning accuracy (Expert.ai, 2020). 
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Reinforcement Learning: this learning model is similar to supervised or semi-supervised 

learning, but instead of using labels, the algorithm learns through trial and error. During 

the training stage, reward signals are assigned for correct sequences, and errors for 

incorrect ones. This way the program maximises its performance by determining the best 

behaviour (Jordan and Mitchell, 2015). 

3.2.1 Self-Organizing Maps  

Self-organizing maps (SOM), or sometimes also known as Kohonen maps, are a type of 

artificial neural networks that was first introduced by Professor Teuvo Kohonen in the 

1980s (Miljković, 2017). SOM networks are inspired by the operations of the brain. 

Observations show that many sensory impressions are mapped into the brain spatially 

and the neurons are organized into a two-dimensional map (Kohonen, 1984, 1995, 2012). 

SOM is a form of unsupervised, non-linear, competitive learning algorithm that produces 

low-dimensional (1-D or 2-D), visually interpretable clusters from a multi-dimensional, 

complex data. Therefore, it is a powerful data clustering and visualizing tool. The data 

points on the low-dimensional map are positioned such that they maintain original 

topological relations from the multi-dimensional space and show relative similarity 

between the points (Kiang, 2001; Miljković, 2017; Cottrell et al., 2018). 

Self-organizing systems can adapt their internal functions and/or structure in response to 

external stimuli and circumstances. Within the system, elements are able to organize 

each other, that results in a more stable structure or function against external fluctuations. 

The process involves enhancing space-time complexity of the self-organizing system that 

leads to an emergence of new phenomena and positive and negative feedback loops of 

internal regulation. This process can be observed in several natural phenomena, such as 

from arrangements of nanoparticles to stars and galaxies, and in living ecosystems 

(Banzhaf, 2009).  

A SOM consists of a single, hidden layer of neurons set along a planar grid, that is 

connected to an input layer containing input or codebook vectors (Figure 3.1). Each 

neuron in the hidden layer has n-components and neighbouring neurons. Number of 

neighbouring neurons depends on the grid geometry. Most applications use rectangular 
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grids, but hexagonal grids are also common. SOM operate on three common principles, 

which are: 

1. Competitive process: discriminant function for classifying the data points is calculated 

for each input vector connected to the map. The neuron that matches best or with the 

most similarity to the input pattern vector is the best matching unit (BMU) or a winner 

neuron. 

2. Cooperative process: the BMU finds its spatial location among the neurons in the 

topological neighbourhood, that can then cooperate with each other. 

3. Synaptic Adaptation: through the process of weight adjustments, neurons are able to 

change the values of their discriminant function associated with the input vectors 

(Miljković, 2017). 

 

Figure 3.1: Overview of self-organizing map neural network. (Modified after Haihan Lan, 2018). 

 

SOM algorithm: 

1. Measure of distance and similarity: 

Different measurement calculation methods can be used to determine the similarity 

between the input vector and the neurons on the map (Figure 3.1). Some of the commonly 
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used ones are Euclidian, direct cosine, correlation, and block distance. Squared 

Euclidean distance is most popular, found in most application and can be defined as: 

𝑑𝑗 =  ∑(𝑥𝑖 − 𝑤𝑖𝑗)2

𝑖

 (1) 

 

2. Neighbourhood functions: 

Neighbourhood function is used by the neurons to interact with each other in the grid. 

These functions can take the form of the Mexican hat, Gaussian, cone or cylinder. The 

learning rate of the function can be linear, exponential, or inversely proportional, and it 

decreases with time.  

3. Initialization: 

SOM can be initialized in multiple ways before the training step. Common approaches 

are using random sample values from the input training data or using Principal 

Components that reflects the distribution of the data.  

4. Training: 

There are two methods to train SOM model: sequential and batch training. For sequential 

training, one vector at a time is presented to the map and then the neurons adjust their 

weights. Whereas, for batch training, all vectors are presented together before the 

adjustments to the neuron weights. 

Steps for training are:  

I. Initialization: initialising the neuron weights (iteration steps n=0) 

II. Sampling: randomly sampling the input vectors  𝑥(𝑛). 

III. Similarity matching: iterated through each neuron on the map and find the best 

matching unit (BMU), 𝑖, with weights 𝑤𝐵𝑀𝑈 = 𝑤𝑖. (2) 

𝑐 = 𝑎𝑟𝑔𝑖𝑚𝑖𝑛 ∥ 𝑥(𝑛) − 𝑤𝑖(𝑛) ∥ (3) 

 

Where, 𝑥 is the training vector from the observation and 𝑤𝑖 is a single neuron in the matrix. 
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IV. Updating: each neuron is updated using the following rule: 

𝑤𝑖(𝑛 + 1) = 𝑤𝑖(𝑛) + 𝛼(𝑛)ℎ(𝑤𝐵𝑀𝑈(𝑛), 𝑤𝑖(𝑛), 𝑟(𝑛)) ∥ 𝑐 − 𝑤𝑖(𝑛) ∥ (4) 

 

𝑤𝑖(𝑛): the weight vector before the neuron is updated. 

𝑤𝑖(𝑛 + 1): the weight vector after the neuron is updated. 

𝑥(𝑛): the training vector from the observations. 

𝛼(𝑛): the learning-factor, which can be linear, exponential or inversely proportional.  

ℎ(𝑤𝐵𝑀𝑈(𝑛), 𝑤𝑖(𝑛), 𝑟(𝑛)): the neighbourhood function (a smoothing kernel defined over the 

lattice points). 

𝑟(𝑛): neighbourhood radius (Miljković, 2017; Yuan, 2018). 

V. Increment n. Repeat steps 2-4 until the map has reached a stable state (Figure 

3.2). Stability and convergence can be confirmed when the learning-factor 𝛼(𝑛) 

and neighbourhood radius 𝑟(𝑛) are decreasing towards zero with each iteration 

(Miljković, 2017). 

 

Figure 3.2: Updating the Best Matching Units (BMUs) and the neighbour radius of the data during the training process 
of the SOM until it reaches stability (Modified after Haihan Lan, 2018).
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Chapter 4: Dataset and Methodology 

 

4.1 Dataset 

Dataset for this study was provided by Equinor ASA that consists of 3D seismic cubes 

and several wells from the Statfjord Field area. 

4.1.1 Seismic Data 

Seismic cube ST9703RZ16 is a 3D, depth-migrated seismic cube acquired by the 

WesternGeco in 1997 and was reprocessed in 2016. The cube covers the main Statfjord 

Field and the Northern Flank. Partial stacks, near, mid and far stacks, along with velocity 

cubes were provided. However, only partial angle stacks were utilised for this study. 

Some more information about the data and angle stacks is provided in Table 1. 

Table 1: ST9703RZ16 seismic data summary. 

Coordinate reference 
system 

ST_ED50_UTM31N_P23031_T1133 

Polarity SEG Reverse Polarity 

Near angle stack 13.5° 

Mid angle stack 22.5° 

Far angle stack 31.5° 

 

4.1.2 Well Data 

Several wells with their well logs were provided, but only a handful were used. Mainly, 

wells that were located within the cropped seismic volume and were used for assessment 

were: 33/9-1, 33/9-3, 33/9-4, 33/9-9, 33/12-1, 33/12-2, 33/12-4 and 33/12-5. Logs such 

as gamma-ray, neutron, density and resistivity were analysed for this research. 
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4.2 Methodology 

4.2.1 Thesis Workflow 

Thesis workflow is summarised in Figure 4.1. Schlumberger’s Petrel software was used 

to carry out initial seismic and well data sorting and seismic attribute analysis. The results 

from Petrel were then transferred to Jupyter notebooks for the ML process using Python 

programming language.  

 

Figure 4.1: Thesis workflow. 

4.2.2 Data Sorting 

Purpose of data sorting was to identify main areas of interests. For this study, area of 

interests were the reservoir zones where hydrocarbon presence was proven or expected. 

With the help of the provided horizons, reservoirs for this seismic data were divided into 

three zones (Figure 4.2), which can be defined as: 

Zone 1: reservoir interval between the BCU and the Top Cook Formation. 

Zone 2: reservoir interval between the Top Cook Formation and the Top Statfjord 

Formation. 

Zones 3: reservoir interval between the Top Statfjord Formation and to the end of the 

well. 

Create Seismic 
Attributes for DHIs

Designing ML 
model for SOM 

analysis
SOM Generation

Qualitative 
Interpretation of 

the SOM attribute
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4.2.3 Generating Seismic Attributes 

Seismic attributes were generated for this study to detect and evaluate Direct 

Hydrocarbon Indicators (DHIs) with the help of Petrel software. Petrel offers a 

comprehensive package of attributes for seismic interpretation that can be classified as 

either surface or volume attributes (Sarhan, 2017). As previously discussed, common 

attributes for DHIs are instantaneous, AVO and inversion attributes. Volume attributes 

generated for this study are summarised in Table 2. 

 

 

 

 

 

Seabed 

Base Utsira 

Top Balder 

Top Shetland 

Red Marker 

BCU 

Top Statfjord 

Statfjord OOWC 
Top Cook 

Figure 4.2: Seismic section with wells, key surfaces and zones. 

Zone 1 

Zone 2

 
 Zone 1 
Zone 3

 
 Zone 1 
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Table 2: Seismic attributes generated for analysis. 

Instantaneous attributes: 

Stack: Attribute: 

Far Instantaneous 
Phase 

Near Trace Envelope 

AVO attributes: 

Intercept  

Gradient 

Intercept * Gradient 

Intercept + Gradient 

Intercept - Gradient 

Far - Near 

(Far – Near)*Far 

AVO attributes displayed the desired results and were proceeded further for ML. To 

further improve the interpretation of AVO attributes, AVO Class Cube was generated 

using Cegal’s module in Petrel. Intercept and gradient are first calculated from the partial 

stacks to generate the cube. The cross-plot of intercept and gradient shows in which class 

the points lie (Figure 4.3). The muting function can be used to mute the background trend 

of the data. Only selected attributes were chosen for ML due to constraints on the 

computational power of the available computer. For also this reason, the attribute 

volumes were cropped to focus only on the reservoir zones and reduce the data size. The 

selected attribute volumes were then exported as SEG-Y files to be used for the ML 

model. 

4.2.4 Data Preparation for ML Model Generation 

SEG-Y files of the attribute volumes were imported in Python with the aid of Segyio 

Python library. Segyio is a Python library developed by Equinor ASA for handling 3D 

seismic data stored in a SEG-Y format. To start with, after importing the SEG-Y file for 

one of the attribute volumes, text file header or EBCDIC header was printed to check if 

the file was read correctly. EBCDIC header states information about acquisition and 

processing workflow of the data. It mentions information about the coordinates, number 

of inlines and crosslines, sampling interval, amplitude range, etc. that can be used to QC 

the geometry of the seismic. After sorting out the inline, crossline, trace and sample 
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numbers, a central seismic line from the cube was viewed using Python’s Matplotlib 

library to ensure data was consistent (Figure 4.4). The process was then repeated for all 

the attribute volumes, one by one.  

  

Figure 4.3: AVO classification of the seismic data.  

AVO Classes: 
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Figure 4.4: Seismic lines from each attribute imported in Python. 

The seismic data was converted to a 3D array using Xarray. Xarray is a Python package 

that allows efficient and easy handling of multi-dimensional arrays. It stores information 

in the form of dimensions, coordinates and attributes in addition to raw NumPy arrays for 

better handling and manipulation of the data with less errors for developing purposes 

(Xarray Developer, 2021). Once the data for all attributes was converted to an array, it 

was stored into a dataset where each seismic attribute is a feature/variable (Figure 4.5). 

The dataset can then be converted to a matrix to be used as an input for the ML model.   
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Figure 4.5: Xarray dataset with data arrays of different seismic attributes stored as variables. 

4.2.5 SOM Model Generation and Training 

For this study, SOMPY library for implementation and visualization of the Self-Organizing 

Maps in Python was used. This library is closely based on SOM Toolbox, the SOM library 

for MATLAB, developed by the Helsinki University of Technology. It depends on other 

Python packages such as NumPy, SciPy, Scikit-learn, Pandas and Matplotlib, and offers 

functionalities such as batch training, random and PCA initialization, rectangular and 

hexagonal shape for 1-D or 2-D SOM grid, BMU Hitmap and U-Matrix visualization.  

Once the input data was converted to a multi-dimensional NumPy array, SOM model was 

constructed. Parameters for building a model and their description are summarised in 

Table 3: 

Table 3: SOM model parameters and their brief description. 

Parameter Description 

Data Input data that is to be clustered. In a matrix format with n rows 
as data point and m columns as features. 

Neighbourhood Calculation of neighbourhood matrix by either Gaussian or 
bubble method 

Normalization Normalizing data using the variance method 

Map size Defined as dimensions of the SOM or number of nodes 
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Map shape Shape of the SOM map. SOMPY only offers an option of a 
planar map 

Lattice Type of lattice for the SOM. Options for this are rectangular or 
hexagonal 

Initialization Method to select the samples from the input data to initialize 
the SOM. Samples can be chosen randomly or by PCA. 

Component names Names of the individual variable or attributes of the data. 

Training Either batch or sequential training algorithm to train the model. 

 

When designing the model, it is essential to understand the function of each parameter 

and how it can affect the training process as well as the outcome. Finding the right 

parameter also requires several trials and then choosing the ones that give the best 

response. However, this can be a very time-consuming process, especially when working 

with a large dataset, such as the one used for this project, as training the model can take 

several hours. Therefore, the parameter for the model were selected based on theoretical 

knowledge (discussed in Chapter 3) to reduce the number of trials.  

To efficiently train the model, batch training algorithm was selected to speed up the 

training as the model takes input data in one batch rather than vector-by-vector for 

sequential training. Data samples were chosen randomly and were standardized using 

the variance method, where variance is standardized to 1. Rectangular lattice with 225 

neurons (map dimensions 15 x 15) displayed the best result when compared with other 

map sizes as it resulted in none to least amount of ‘dead neurons’, which are neurons 

with no BMUs. 

To initiate training, the number of epochs were defined so that SOM can thoroughly iterate 

through all the nodes and update their weights until the map reaches a stable condition 

and finds BMU for all the sample points (Figure 4.6).  
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Figure 4.4: Neighbourhood radius decreasing with each iteration. (Modified after Amir Ali, 2019) 

Training with SOMPY is divided into rough training and fine-tune training. Rough training 

is the organizing or the ordering phase during which the weight vectors are topologically 

ordered on the map. While, fine-tune training is the convergence phase that trains the 

input vectors and provides a statistical representation of the data (Miljković, 2017). 

Epochs for rough training was set as 2, and for fine-tune training was set as 3. Epochs 

for fine-tune training could have been set to a higher value to ensure model convergence, 

however, this training phase is computationally expensive and can take several hours to 

days with the given data size. 

4.2.6 SOM Visualization and Clustering 

SOM is versatile tool for data analysis by visualization and the results of a trained SOM 

can be viewed in various ways. Extracted features and their values can be projected on 

the grid for analysis. The aim of this project was to detect DHI characteristics in the 

seismic data, and these can be identified by anomalous data points.  

Initially, to understand which part of the map best corresponds to the data, BMUs from 

the investigated samples are displayed on the map (Figure 4.7). BMU Hit map shows how 

the data responds to the map and how many times each neuron on the map was the BMU 

for the input data sample. This helps to visualise how many data values each neuron 

holds. The neurons with high values are representing more data points, therefore, 

neurons with low values could possibly be holding the anomalies. Furthermore, clustering 
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classifies each map unit into classes to represent the natural clusters present in the data 

(Figure 4.7). Natural clusters in a geological data such as seismic can represent 

subsurface facies distribution, seismic reflection characteristics, faults, and other 

geological features. Clustering in SOMPY utilises Scikit-learns cluster.KMeans method 

that groups data into n groups with equal variance after dimensionality reduction. This 

minimises a criterion known as ‘inertia’ or sum-of-squares within clusters (Equation 5) 

(Scikit-learn User Guide, 2020).  

∑ min
𝜇𝑗∈𝐶

(‖𝑥𝑖 − 𝜇𝑗‖
2

)

𝑛

𝑖=0

 (5) 

 

Where, 𝑥𝑖 is the sample point and 𝜇𝑗 is the mean of the samples in the cluster. 

 

Figure 4.7: Data Analysis from SOM. (Modified after Vesanto, 2000). 

Number of clusters needs to be specified and it is hard to know what the optimal number 

of clusters is to define the natural clustering in the data. One of the methods to overcome 

this is using the ‘Elbow Curve’. The ‘Elbow Curve’ method takes into account inertia and 

distortion, which is the average of the squared distances from the cluster centres, and 

usually the Euclidean distance metric is used. The plot, such as the one in Figure 4.8, 

shows distortion values for each number of clusters. Cluster values beyond the ‘elbow’ of 

the curve do not contribute towards modelling the data better and may lead to ‘over-
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fitting’. Therefore, by identifying the ‘elbow’, the optimal number of clusters can be 

determined. After this, cluster in SOM can be evaluated and anomalies can be identified 

by isolated neurons that are away from their data class. 

To further investigate, BMUs can be projected over the whole dataset and classified by 

the cluster classes. This process gives an array with same amount of values as the input 

data, which allows converting the array to original data geometry so the results can be 

viewed as a new seismic attribute cube and assessed for new information. 

 

Figure 4.8: The ‘elbow curve’ to determine the optimal number of clusters. 

 

4.2.7 SOM Quality Measures 

It can be challenging to assess the outcome of SOM training since it is an unsupervised 

ML method and target values are not factored into the training. However, there some 

measures that can be calculated to check the accuracy of the model. The most popular 

and the ones evaluated in this study are Quantization error (QE) and Topographic error 

(TE). For a SOM model to be accurate, it has to maintain the neighbourhoods and the 

topology of the input data (Breard, 2017).  

Quantization Error: 

QE is a basic quality measure and is computed by calculating the distance between the 

data points and the map nodes. The error reaches towards zero with increasing iterations 

and/or map size. Smaller value of QE indicates a better fit; however, it is only a measure 
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of quality when compared with the maps of the same input data (Breard, 2017). For this 

study, QE values after each iteration were observed to evaluate the quality of the final 

map. The calculation can be defined as: 

𝑄𝐸(𝑀) =  
1

𝑛
∑‖𝜙(𝑥𝑖) − 𝑥𝑖‖

𝑛

𝑖=1

 (6) 

 

Where 𝑛 is the number of training data points and 𝜙: 𝐷 ↦ 𝑀 denotes mapping of the SOM 

𝑀 from the input space 𝐷.  

Limitations of QE are that it only evaluates the local structure of the data, and not the 

interrelationship of the neurons (Breard, 2017).  

Topographic Error: 

TE measures SOM’s ability to preserve topological features of the input space in a low 

dimensional space. It estimates the local discontinuities in the mapping by evaluating the 

positions of the best-matching and second best-matching neuron for each input (Breard, 

2017).  Topology is preserved if the neurons are besides each other, otherwise it accounts 

for an error. Topographic error for the map is calculated by dividing the total number of 

errors by the total number of data points (Equation 7). 

𝑇𝐸(𝑀) =  
1

𝑛
∑ 𝑡(𝑥𝑖)

𝑛

𝑖=1

 (7) 

 

𝑡(𝑥) =  𝑓(𝑥) = {
0, 𝑖𝑓 𝜇(𝑥) 𝑎𝑛𝑑 𝜇′(𝑥) 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Chapter 5: Results and Discussion 

 

5.1 Results 

5.1.1 Seismic Attributes 

The focus of this study was on direct hydrocarbon indicators (DHIs), to understand the 

types of fluid present in the Statfjord Field area and their response on seismic. Both oil 

and gas can be found in the reservoirs of the Statfjord Field. Porosity and permeability of 

the reservoirs can range from 11% to 30% and 5 to 5000mD, respectively (Gibbons et 

al., 2003). These reservoirs can be classified into AVO classes by studying the effect of 

hydrocarbon on seismic amplitude with respect to offset. AVO classes are discussed in 

chapter 3, and by applying that knowledge we can observe the angle stacks to determine 

the AVO classes of hydrocarbon accumulations. In Figure 5.1, an inline from near, mid 

and far angle stacks located in the south-west of the study area is compared. The circled 

area corresponds to the top of Etive Formation of the Brent Group that is oil-bearing, as 

recorded in the well 33/9-1. A brightening effect, or a ‘bright spot’ which is a common DHI, 

is observed for the negative (red) reflector in the far and mid angle stacks when compared 

to the near angle stack. This behaviour corresponds to AVO Class 3 that states negative 

amplitude becomes more negative.  

A quick and minimal AVO Class Cube was generated after calculating the intercept and 

gradient parameters from the partial stacks. The cube confirms that the anomaly is of 

Class 2 negative and Class 3 (Figure 5.2a). The whole extent of the anomaly can be seen 

on the time slice in Figure 5.3a. Figure 5.3b shows the intercept and gradient cross-plot 

where AVO Class 3 has a negative intercept and gradient. The grey-coloured ellipse 

indicates muting of the background trend and the outer ellipse is the strength scale, which 

is twice the radius of the mute ellipse. Gamma-ray log from well 33/9-1 overlying the 

anomaly on crossline (Figure 5.2b) indicates that the interval corresponds to good quality 

sands. Class 3 reservoirs are often porous, loose sands that have lower acoustic 

impedance than the overlying shales. Whereas, Class 2 reservoirs are moderately 
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consolidated with the same acoustic impedance as the overlying shales. It is possible that 

the shalier sands observed on the gamma-ray log corresponds with Class 2. 

Multiple attributes were generated from the combination of intercept, gradient and angle 

stacks, with the assumption that the reservoir is of AVO Class 3. The effect of these 

attributes on the anomaly mentioned above is shown in Figure 5.4. As mentioned before, 

intercept and gradient are negative for Class 3, therefore, their product (I*G) is positive. 

Similarly, the result of (F-N)*F is also positive and clearly highlights the AVO effect. 

Results for I+G, I-G and F-N were all negative, indicated by the red colour of the reflector. 

These attributes may not emphasize Class 2 anomalies in this particular inline but can be 

good indicators for Class 2 anomalies, that may be present elsewhere in the field. 
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Figure 5.1:  Inline 1791 from angle stacks (from top to bottom: near, mid and far) with AVO anomaly highlighted. The 
top interpreted horizon is BCU and the bottom is Top of Statfjord Formation. 

Mid Angle Stack 

Near Angle Stack 

Far Angle Stack 
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Figure 5.2: a) Inline 1791 from AVO cube. b) Crossline 964 with gamma-ray log from well 33/9-1 overlaid. 

Figure 5.3: a) Time slice -2436ms from the AVO class cube showing the extent of the AVO anomaly. b) Intercept and 
gradient cross-plot with AVO classification as background. C) Map of seismic survey with crossline 964 and well 

33/9-1. 
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Figure 5.4: Derivative AVO 
attributes from angle stacks and 
intercept and gradient. 
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5.1.2 SOM Analysis 

The AVO attributes identified the presence of hydrocarbon and their effect on seismic 

amplitudes and helped understand the reservoir characteristics. This information can be 

used to identify new accumulations and reduce risk and failures of future prospects in the 

field. However, analysing each attribute individually can be time-consuming and 

inefficient. The attributes can instead be combined to further enhance the results and 

highlight new, discrete anomalies and features that were previously missed or were not 

visible. This can be achieved by multi-attribute analysis using SOM as it takes into 

account variation in the data to provide new information or build confidence in previous 

interpretations. 

Figure 5.5 shows the resultant BMU Hit map after training the SOM model. It consists of 

225 neurons on a 15 by 15 lattice. The neurons are annotated by the number of data 

points that particular neuron is representing. For example, green neurons in the top, right 

corner and bottom, left corner have values 2977114 and 4305134, respectively. These 

values are the highest number of data any BMU is representing. Whereas, the dark red 

cells have comparatively lower values, that indicates fewer data points representation. 

The model was trained with 2 rough training epochs and 3 fine-tune training epochs. The 

final Quantization error (QE) was 0.449, that decreased from the initial error of 10.378, 

and the final Topographic error (TE) was 0.287.  

Clustering was done to classify data by their characteristics (Figure 5.6). Number of 

clusters were determined using the ‘elbow curve’ (discussed in Chapter 4) that suggested 

the optimal number of clusters is 5 (Figure 4.8). Different clusters can represent different 

geological feature in the seismic data. Since DHIs are anomalous features, they were 

expected to belong to small data clusters. Therefore, cluster ‘4’ in the top write corner and 

the isolated cluster ‘3’ on the left were of particular interest.  
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Figure 5.5: BMU Hit map of rectangular lattice and 225 neurons. Low value neurons are outlined in black. 

 

Figure 5.6:  Result of data clustering with cluster number = 5. Clusters of interest are highlighted in black. 
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To visualise the results of the SOM classifications, the BMUs from the prototype vectors 

were project over the whole data. Dataset with assigned BMU was then viewed as 

seismic. Similarly, the BMU assigned data values were clustered using the cluster 

prototype vector and transformed into seismic. Results of the new ‘SOM attributes’ are 

presented in figures 5.7 and 5.8. Though the figures are of slightly lower resolution, both 

classifications show the geological structure and dipping of the horizons. The reflectors 

are continuous and separate horizons can be interpreted, even more easily with well 

control. Strong reflectors, such as the BCU and the Top of Statfjord Formation, are clearly 

evident in the BMU classification cube by the dark-green coloured reflectors, just like in 

the original seismic. They are a little difficult to delineate in cluster classification cube, but 

still interpretable by continuous reflectors, such as those in green and brown colour.  

However, it is difficult to interpret the DHI previously identified in the AVO attribute cubes.  

White circle on the figures infers the position of the anomaly. Apart from slight dimming 

of the reflector on the BMU classification cube, no distinct irregularities were found. On 

the plot of the time-slice that corresponds with the time slice in Figure 5.3a, the anomaly 

approximately lies within the white box in Figure 5.9. Therefore, it can be speculated that 

by SOM classification, the Class 2/3 anomaly is possibly the cluster in brown colour, which 

is clusters ‘3’.  
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Figure 5.7: Seismic inline classified by BMUs with BCU and Top Statfjord Fm interpretations in black, dashed line.  

 

Figure 5.8: Seismic inline classified by SOM clustering with BCU and Top Statfjord Fm interpretations in black, 
dashed line.  
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Figure 5.9: SOM cluster classification time-slice corresponding to time slice -2436ms in the original seismic. 

 

5.2 Discussion 

The calculated seismic attributes provided good insight to detect hydrocarbon indicators, 

such as ‘bright spots’ and ‘flat spots’, to characterize the reservoir. The accumulation 

marked in Figure 5.3a lies in the Etive Formation of the Brent group, which is a highly 

prolific reservoir in the field. The Derivative attributes such as I*G and (F-N)*F highlighted 

the AVO Class 3 behaviour well, while other attributes did not. Class 3 response can be 

correlated to the clean, porous sands that were observed on the gamma-ray log of the 

33/9-1 well. Although Class 2 anomalies are present in the Statfjord Field area and can 

also be seen on the AVO Class Cube, they were hard to detect from these attributes. 

None the less, the attributes were successful in identifying DHIs, which was the aim of 

generating these seismic attributes, so they can be used as input for the SOM analysis.  

The resultant Hit map of the SOM training shown in Figure 5.5, displays the spread of 

data across the SOM map. The Hit map had no neurons with 0 hits, which implies that all 

the sampled data points were represented by a BMU and that different dimensions of the 
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data are connected. However, with large and non-linear sizes it should be expected that 

not all data points will have a BMU as dimensionality reduction cannot be connected 

everywhere. These characteristics of the SOM map express the natural clustering in the 

data. The natural clusters can also be viewed on the cluster map (Figure 5.6), assuming 

that the training was completed successfully, and the correct number of clusters was 

selected. The data are grouped into clusters based on the similarity of their 

characteristics. That is why it is safe to assume that DHI anomalies could be found in 

small clusters since they have distinct characters, making them stand out from the rest of 

the data. Considering this, it is possible that the DHIs were not highlighted in the output 

results because the cluster map does not represent the data well and a higher cluster 

number that does not separate the anomalies.  

SOMPY Python package is well built and offers sound functionalities to perform SOM 

analysis. It offers good amount of freedom to users to freely design their SOM model 

based on their objectives. However, for this study, there were some limitations that 

possibly led to not achieving desired results. To start with, SOMPY only offered 

standardization of the data samples by the variance method, although this is not the 

preferable method for non-linear data. A method such as log-normal normalization would 

have been more suitable for non-linear seismic data. For re-modelling and re-training 

purposes, there is no ‘seed’ function offered by the program to ensure that the same data 

samples are used each time model is re-trained. This function would help understand 

how each parameter affects the outcome and make it easier to reproduce the model that 

was considered to be the best one. Different models were compared based on the TE, 

which should be as low as possible. The value of 0.287 was deemed to be good as 

compared to other models that had higher values. However, the calculation of TE is 

computationally expensive, especially for large datasets, such as the one used in this 

study. QE, on the other hand, is a standalone assessment and helped determine the 

number of iterations to run to improve the results. Figure 5.10 shows how QE value 

decreased with each iteration. Models trained with minimum 3 and maximum 5 fine-tune 

training iterations yielded QE values between 0.41 and 0.45. Since the values did not 

reach a plateau, it is assumed that the model did not converge and that there is still room 

to reduce the error further. Even though, running more iterations and/or increasing the 
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map size improves the quality of the map, it was extremely time-consuming to run 

iterations more than 5 and was not feasible with available computational power. This is a 

fundamental shortcoming that can be improved with the help of a more efficient 

computation solution by, for example, pipelining and/or utilizing GPU to speed up the 

process without overburdening the computer’s memory.   

 

Figure 5.10: Resultant QE after each training epoch. 

Although the outcome of the SOM classifications can be used to interpret horizons, they 

do not offer improved visualization of anomalies as they were expected to. Apart from 

poor SOM model construction, this could be due to several other reasons. It is possible 

that there were not enough input attributes or that they did not offer variation in data to 

derive new results. Utilizing instantaneous and inversion attributes could have provided 

more depth and insight to intensify DHI characteristics on the SOM map. Moreover, other 

SOM classifications, such as classification based on the distance of the sample from the 

winning neuron, could have been explored to find better results. 

The study has a lot of room for improvement, and it is believed that with these 

improvements can achieve the desired results. A deeper understanding of the SOM 

algorithm and exploring other Python libraries available for SOM analysis can prove to be 

beneficial. Improving the quality of the input data by developing more variety of seismic 

attributes can tremendously influence the outcome of SOM analysis and offer more 

information. 
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Chapter 6: Conclusion 

 

The purpose of this study was to conduct multi-attributes analysis using an unsupervised 

machine learning method called Self-Organizing Maps (SOM) to detect hydrocarbon 

indicators in the field. The aim was to understand how SOM can assist in developing a 

better understanding of the data and finding new geological information related to 

hydrocarbon fluid presence in the Statfjord field, that can improve the current 

interpretation.  

For this study, however, SOM did not produce the desired results owing to a number of 

reasons. While some of the attributes used detected the DHI features, not all of the 

attributes provided distinct information to better delineate the hydrocarbons. Therefore, 

SOM failed to provide new observations. Moreover, better construction of the SOM model 

could have yielded better results. Despite the poor results of this study, it is important to 

recognize that SOM offers a lot of potential and is a powerful visualization tool for multi-

dimensional data. This is proved in multiple studies done by geologists such as Rocky 

Roden, Deborah Stacey, Sharareh Manouchehri and many more, where SOM has helped 

define the geological features better.  

The analysis of this study can be upgraded to achieve desired results by implementing 

instantaneous and inversion attributes, and by improving the model design. Other SOM 

packages based on Python’s powerful machine learning libraries, such as Tensorflow and 

Keras, can be explored to improve the model for analysis. Furthermore, it is important to 

program more efficient ways to compute the model that can accommodate large datasets 

such as seismic data. To do this, a deeper understanding of data mining and machine 

learning is required.  
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Chapter 7: Future Work Recommendations 

 

To address the shortcomings of this thesis and improve the results, following issues can 

be addressed in the future work: 

• Calculate more seismic attributes of different types that relevant to the problem, 

such as instantaneous and inversion attributes, multi-trace and single-trace 

attributes, so they provide more variation in the data. 

• Explore other SOM libraries and Python packages, such as Tensorflow, that offer 

more comprehensive calculations for model design and training.  

• Design efficient pipelines and generators for large datasets to utilise GPU and 

reduce computer’s memory consumption so that model can be trained well.  
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