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a b s t r a c t

This paper considers the problem of designing a shifting state-feedback controller via quadratic
parameter-dependent Lyapunov functions (QPDLFs) for systems subject to symmetric time-varying
saturations. By means of the linear parameter varying (LPV) framework and the use of the shifting
paradigm and the ellipsoidal invariant theory, it is shown that the solution to this problem can be
expressed with linear matrix inequalities (LMIs) which can efficiently be solved via available solvers.
Specifically, three hyper-ellipsoidal regions are defined in the state-space domain for ensuring that
the control action remains in the linearity region of the actuators where saturation does not occur.
Furthermore, the closed-loop convergence speed is regulated online according to the instantaneous
saturation limit values through the shifting paradigm concept. The main characteristics of the proposed
approach are validated by means of two illustrative examples.
© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

All real-world systems’ performances are affected negatively
y the inherent physical limitations of actuators. Among these
imitations, actuator saturations arise in control systems as pro-
ressively decreasing actuation signals due to, for example, tem-
orary shortages in the availability of the required power. If
aturations are not taken into account properly, they may cause
ctuator performance deterioration and even lead to the instabil-
ty of the closed-loop system. For this reason, in the last decades
his phenomenon has attracted a strong attention by several
esearchers, which is supported by the large amount of books
bout this topic, see [1–3]. Actuator saturations can be taken into
ccount through the anti-windup compensator approach, in which
pre-designed controller can handle the saturation constraints
fter a compensator is added [4,5]. On the other hand, alternative
olutions use the direct control design approach where the input
aturation constraints are considered directly in the controller
esign stages [6,7].
In recent years, the linear parameter varying (LPV) framework

as been applied widely to address the presence of nonlineari-
ies in various fields such as automotive, robotics, or aerospace,
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see [8] and references therein. These systems were introduced by
Shamma in 1988 as a particular case of linear time varying (LTV)
systems where the time-varying elements are dependent upon
quantifiable parameters which vary over time [9,10]. Nonlinear
systems can be represented within this framework through an
appropriate definition of the time-varying parameters, which let
us embed the nonlinearities through parameters that are de-
pendent on endogenous signals. In this situation, the system is
referred to as quasi-LPV, in order to emphasize the fact that
the varying parameters are not dependent on exogenous signals.
Three different ways to model these systems have emerged as
the most successful ones in the literature, i.e. linear fractional
transformation (LFT), LPV input–output models and the polytopic
approach. Furthermore, the LPV framework has been applied
successfully in many plants where, e.g., the parametrization of
the nonlinearities allows the controller to take into account the
generator shaft speed and wind speed variations improving the
conversion efficiency in variable-speed wind energy conversion
systems [11] or the suspension’s deflections in a semi-active
suspension control of a vehicle [12].

Note that the existing works assume commonly that the ac-
tuator saturation limits are constant in time. For instance, a
health-aware control based on the remaining useful life estima-
tion of a battery has been designed for an autonomous racing
vehicle assuming that the input/output limits are constant [13].
The same assumption holds for [14], where a model predictive
te-feedback controllers for LPV systems subject to time-varying saturations via
1016/j.isatra.2021.07.025.
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ontrol (MPC) algorithm has been developed for polytopic LPV
ystems subject to input saturations. On the other hand, some
orks have proposed to use a saturation indicator parameter to
chedule the input constraints whose limits are still constant in
ime [15,16]. The lack of literature addressing time-varying satu-
ations motivates us to consider the possible degradation of the
ctuators over time, which would affect the online performance
f the designed controller. It is worth highlighting that, practically
peaking, time-varying saturation limits could occur in control
ystems due to the natural wear and tear of the machinery or to
he temporary loss of energy availability. This fact would provide
progressively decreasing availability of the actuation signal in

he case of multi-rotor vehicles, such as the loss of thrust force
n each rotor due to the discharge of the battery [17] or the
ariations of the aerodynamic coefficients as a consequence of
nvironment changes [18].
With the goal of designing a state-feedback controller with

he ability to regulate the closed-loop convergence speed online
ccording to the instantaneous saturation limits, a linear matrix
nequality (LMI)-based methodology has been proposed in [19].
imilarly, a shifting H∞ LPV state-feedback controller has been
eveloped in [20], where the designed controller could adapt
ts disturbance rejection performance online taking into account
he control action availability. In both works, the overall de-
ign has been performed using a quadratic Lyapunov function
QLF) and the ellipsoidal invariant theory [21]. Furthermore, these
orks have exploited the shifting paradigm concept which was

ntroduced in [22] for polytopic LPV systems, thus defining a
cheduling parameter vector that allows changing online the
losed-loop performance index under consideration. Neverthe-
ess, it is well known that the use of QLFs introduces some
onservativeness that can lead to sub-optimal performance or
ven make the design problem infeasible. This issue can be alle-
iated by considering parameter-dependent Lyapunov functions
PDLFs) [23–26], piecewise functions [27] or polyhedral func-
ions [28], although at the cost of increasing the computational
urden.
The main contribution of this work lies in proposing an LMI-

ased methodology for designing a shifting state-feedback con-
roller via a quadratic parameter-dependent Lyapunov function
QPDLF), thus overcoming the conservativeness of the design
ethodology presented in [19]. The design conditions are ob-

ained through the application of the invariant ellipsoidal theory
nd the shifting paradigm concept. In particular, three hyper-
llipsoidal regions are defined in the state-space domain for
nsuring that the control action remains in the linearity region
f the actuators. Furthermore, the shifting paradigm is used to
chedule the convergence speed of the closed-loop system re-
ponse according to the instantaneous saturation limit values. The
MI conditions are obtained by applying Schur complements [21]
ogether with the Pólya’s relaxation inherited from [29]. The
inal solution is a set of LMIs that can be solved using available
olvers, and which are less conservative than the set provided
n [19], as demonstrated by the examples, showcasing both a
omparison using a numerical example and a proof of concept
ith a nonlinear quadrotor model.
The paper is organized as follows. The problem formulation is

rovided in Section 2. In Section 3, the LMI-based methodology
or the controller design is given. In Section 4, the design im-
lementation procedure is summarized. In Section 5, simulation
esults are presented using a numerical system and the nonlinear
uadrotor model. Finally, the main conclusions and perspectives
n future research are outlined in Section 6.
2

1.1. Notation

For a real symmetric matrix M ∈ Rm×m, the notation M ≻

0 (M ⪰ 0) stands for a positive (semi-)definite matrix and indi-
cates that all the eigenvalues of M are positive (non-negative). In
the same way, M ≺ 0 (M ⪯ 0) denotes a negative (semi-)definite
atrix, which implies that all the eigenvalues of M are negative

non-positive). The symbols In, diag(. . .) and ⊗ denote the n-
imensional identity matrix, a diagonal matrix and the Kronecker
roduct of matrices [30], respectively. Moreover, He{A} = A + AT

here AT is the transpose of A. Finally, given the Pólya’s relaxation
egree d ∈ N with d ≥ 2 and the number of vertices N , the
ymbols P(d,N) and P+

(d,N) denote the following sets:

P(d,N) ≜
{
q⃗ = [q1, . . . , qd] ∈ Nd

| 1 ≤ qk ≤ N ∀k = 1, . . . , d
}
,

(1)

P+

(d,N) ≜
{
q⃗ ∈ P(d,N) | qk ≤ qk+1 k = 1, . . . , d − 1

}
, (2)

whereas P(q⃗) ⊂ P(d,N) corresponds to the set of permutations,
with possible repeated elements, of multi-index q⃗.

2. Problem statement

Let us look at the following continuous-time saturated LPV
system:

ẋ(t) = A(ϑ(t))x(t) + B(ϑ(t))sat(u(t), σ (t)), (3)

where x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu denotes
the control input vector. A(ϑ(t)) ∈ Rnx×nx and B(ϑ(t)) ∈ Rnx×nu

denote the state and the input matrices, respectively, which de-
pend on a scheduling parameter vector ϑ(t) ∈ Θ ⊂ Rnϑ , with
set Θ known, closed and bounded. Moreover, ϑ(t) is assumed
throughout this work to be continuously differentiable for t ≥ 0
in order to guarantee the existence of ϑ̇(t), and it is assumed that
ϑ̇(t) ∈ Θd ⊂ Rnϑ , with set Θd known, closed and bounded.

The input u(t) in (3) is affected by symmetric input saturations
with time-varying limits:

sat(uh(t), σh(t)) = sign(uh(t))min(|uh(t)|, σh(t)), (4)

here h = 1, . . . , nu and σh(t) ∈ Rnu
+ is the instantaneous satura-

ion limit value. σh(t) takes values within the interval [σ h, σ h],
here σ h is the lowest possible saturation limit and σ h is the
ighest possible saturation limit for each input uh(t). Hence, the
inear region of the actuators L(t) ⊂ Rnu , defined as the hyper-
ube region of the input space in which u(t) does not saturate, is
ime-varying and given by:

L(t) ≜ {−σ1(t), σ1(t)} × · · · × {−σh(t), σh(t)} , (5)

here × denotes the Cartesian product and {−σh(t), σh(t)} indi-
ates the corresponding set of each instantaneous saturation limit
alue ∀h = 1, . . . , nu.
Before stating the problem formally (Section 2.5), let us in-

roduce the polytopic representation, the shifting paradigm, the
erformance criterion and the established region constraints.

.1. Polytopic representation

In the rest of the work, a polytopic representation of the
ystem (3) will be used, according to the following definition.

efinition 1 (Apkarian and Gahinet [31]). The LPV system (3)
s said to be polytopic if it can be represented by state-space
atrices whose dependence on the scheduling parameter vector
(t) satisfies:[
A(ϑ(t)) B(ϑ(t))

]
∈ Co

{[
Ai Bi

]}
, ∀i = 1, . . . ,N, (6)
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ith Co {[Ai Bi]} representing the convex hull of a finite number
f N vertex matrices:{

N∑
i=1

µi(ϑ(t))
[
Ai Bi

]
:

N∑
i=1

µi(ϑ(t)) = 1, µi(ϑ(t)) ≥ 0,

∀i = 1, . . . ,N

}. (7)

Note that, taking into account the knowledge of the bounds of
and Θd, µ̇i(ϑ(t)) ∀i = 1, . . . ,N can be bounded as follows:

vi ≤ µ̇i(ϑ(t)) ≤ vi, (8)

with known bounds vi, vi ∈ R.

.2. Shifting paradigm

The shifting paradigm was presented in [22] as a possible
pproach to take advantage of the properties of polytopes and
MIs, enabling the design of a gain-scheduling controller that
dapts the performance of the closed-loop system online depend-
ng on some chosen criteria, e.g., guaranteed decay rate, pole
lustering or H∞/H2 bounds. This paradigm has been used re-
ently in [19] and [20] for describing the time-varying saturation
n polytopic form by introducing a new scheduling parameter
ector ϕ(t) ∈ Φ ⊂ Rnϕ . Roughly speaking, ϕ(t) was used to
ncrease/decrease online the convergence speed [19] or the dis-
urbance effectiveness [20] of the closed-loop system according
o the instantaneous value of σh(t). In this way, a faster response
or a better disturbance rejection can be guaranteed when a large
control action is available (σh(t) → σ h) whereas the controller
ill provide a more conservative performance when the instan-
aneous value of σh(t) is closer to σ h. Then, the time-varying limit
hanges in (4) can be described by the scheduling parameter ϕ(t),
hich is chosen to be a weighted function of σh(t), for example
aking values within the interval [0, 1].

Similarly to the case of ϑ(t), the matrices which depend on
(t) and satisfy T (ϕ(t)) ∈ Co

{
Tj
}
can be described as follows:

o
{
Tj
}
≜

⎧⎨⎩
M∑
j=1

ηj(ϕ(t))Tj :

M∑
j=1

ηj(ϕ(t)) = 1, ηj(ϕ(t)) ≥ 0,

∀j = 1, . . . ,M

⎫⎬⎭
, (9)

where M is the number of vertices of the polytope Φ and, T (ϕ(t))
and Tj correspond to the chosen polytope and vertex matrices,
respectively.

Additionally, the time-derivative of this new scheduling pa-
rameter vector is assumed to satisfy ϕ̇(t) ∈ Φd ⊂ Rnϕ , with
set Φd known, closed and bounded, so that the following holds
∀j = 1, . . . ,M:

p
j
≤ η̇j(ϕ(t)) ≤ pj, (10)

ith known bounds p
j
, pj ∈ R.

.3. Performance criterion

Let us consider the following LPV state-feedback control law
or (3) and the quadratic parameter-dependent Lyapunov func-
ion (QPDLF) which depends on the scheduling parameter vectors
(t) and ϕ(t):

u(t) = K (ϑ(t), ϕ(t))x(t), (11)
 m

3

V (x(t), ϑ(t), ϕ(t)) = x(t)TP(ϑ(t), ϕ(t))x(t), (12)

where K (ϑ(t), ϕ(t)) ∈ Rnu×nx is the parameter-dependent con-
troller gain and P(ϑ(t), ϕ(t)) ∈ Rnx×nx denotes a positive definite
parameter-dependent Lyapunov matrix.

Then, based on the shifting paradigm idea and the above
defined QPDLF (12), let us define the performance criterion con-
sidered throughout this work.1

Definition 2 (Guaranteed Shifting Decay Rate). The LPV system (3)
with state-feedback control law (11) is said to satisfy the guar-
anteed shifting decay rate λ(ϑ, ϕ) with the parameter-dependent
matrix P(ϑ, ϕ), if:

V̇ (x, ϑ, ϕ) ≤ −2λ(ϑ, ϕ)V (x, ϑ, ϕ). (13)

By means of the above defined performance criterion the
shifting state-feedback controller (11) ensures the closed-loop
exponential stability of the LPV system (3) if λ(ϑ, ϕ) ∈ R+.
Moreover, the closed-loop response of (3) adapts its behaviour
online, in the sense that the convergence speed will change online
according to the instantaneous value taken by λ(ϑ, ϕ). However,
the fulfilment of the Lyapunov condition (13) is conditioned to
the use of a nonlinear expression of u(t) complicating the obten-
tion of computationally applicable design conditions. This issue
can be alleviated by ensuring that u(t) ∈ L(t) ∀t ≥ 0, thus
allowing to neglect the saturation nonlinearity during the design
stage.

2.4. Region constraints

The approach used to guarantee that u(t) ∈ L(t) is based on
the definition of appropriate hyper-ellipsoidal regions. Consider
the parameter-varying set U(ϕ) ⊂ Rnu defined as the maximal
hyper-ellipsoidal region contained in L(t), as follows:

U(ϕ) ≜
{
u ∈ Rnu : uT S(ϕ)u ≤ 1

}
, (14)

where S(ϕ) ∈ Rnu×nu is a known matrix function that defines
the parameter-varying orientation and size of the region U(ϕ).
Due to the LPV state-feedback control law (11), the region U(ϕ)
can be mapped to a corresponding state-space region Ux(ϑ, ϕ), as
follows:

Ux (ϑ, ϕ) ≜
{
x ∈ Rnx : xTK (ϑ, ϕ)T S(ϕ)K (ϑ, ϕ)x ≤ 1

}
. (15)

Let us define V(ϑ, ϕ) as the parameter-dependent region of
he state-space that is delimited by the unit level curves of the
PDLF (12) and E as the region of the state-space which contains
he initial conditions of interest for the system:

V (ϑ, ϕ) ≜
{
x ∈ Rnx : xTP(ϑ, ϕ)x ≤ 1

}
(16)

E ≜
{
x ∈ Rnx : xTX0x ≤ 1

}
, (17)

here X0 ∈ Rnx×nx with X0 ≻ 0 defines the size and orientation
f E .
The hyper-ellipsoidal regions described in (15)–(17) must sat-

sfy inclusions:

E ⊆ V(ϑ, ϕ) ⊆ Ux(ϑ, ϕ) (18)

n order to guarantee that u(t) does not saturate ∀t > 0 during
he transient response of x(t) no matter the initial state x(0) ∈ E .

1 Hereafter, the time dependency of x, u, ϑ and ϕ is dropped to sim-
lify the notation, and it will be made explicit only when needed to avoid
isinterpretations.
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If (18) holds, the LPV system with saturations (3) can be
reduced to the following non-saturated LPV system for design
purposes:

ẋ(t) = A(ϑ(t))x(t) + B(ϑ(t))u(t). (19)

2.5. Problem definition

Finally, on the basis of the performance criterion ( Definition 2)
and the region constraints established in (18), the design problem
considered in this paper can be formulated as follows:

Problem 1. Given the polytopic LPV system (3) and (6) subject
to the time-varying saturations (4), a desired guaranteed shifting
decay rate λ(ϑ, ϕ) and the regions (15)–(17), find P(ϑ, ϕ) and
K (ϑ, ϕ) such that for any x(0) ∈ E the response of the closed-loop
LPV system satisfies (13).

Remark 1. In this paper, in order to keep the mathematical
complexity somehow limited, the presence of external distur-
bances is not considered. The interested reader is referred to [20],
where a shifting H∞ LPV state-feedback controller has been
designed to ensure that a polytopic LPV system subject to sym-
metric time-varying input saturation is quadratically bounded
with respect to unknown disturbances. The extension to the
parameter-dependent case of quadratic boundedness or similar
robust techniques goes beyond the scope of this paper and will
be addressed in future work.

3. Shifting LPV state-feedback synthesis

Let us start by introducing the following theorem which gives
a parameter-dependent LMI for designing a parameter-dependent
controller gain that ensures some desired guaranteed shifting
decay rate.

Theorem 1. Consider the continuous-time LPV system (19), the
control law (11) and the QPDLF in (12), and assume that there
exist a positive symmetric matrix function Q (ϑ, ϕ) ∈ Rnx×nx and
a parameter-dependent matrix Γ (ϑ, ϕ) ∈ Rnu×nx such that the
following parameter-dependent LMI is satisfied:

He {A(ϑ)Q (ϑ, ϕ) + B(ϑ)Γ (ϑ, ϕ)}

− Q̇ (ϑ, ϕ) + 2λ(ϑ, ϕ)Q (ϑ, ϕ) ⪯ 0.
(20)

Then, if the controller gain is computed as K (ϑ, ϕ) = Γ (ϑ, ϕ)
P(ϑ, ϕ), the closed-loop LPV system satisfies the guaranteed shifting
decay rate λ(ϑ, ϕ) with the parameter-dependent matrix P(ϑ, ϕ) =

Q (ϑ, ϕ)−1.

Proof of Theorem 1. By introducing the control law (11) into
the system’s equation (19), the following LPV closed-loop system
representation is obtained:

ẋ = (A(ϑ) + B(ϑ)K (ϑ, ϕ)) x = Acl(ϑ, ϕ)x, (21)

where Acl(ϑ, ϕ) denotes the closed-loop parameter-dependent
state matrix.

Then, let us calculate V̇ (x, ϑ, ϕ) from the expression described
by (12), thus obtaining:

V̇ (x, ϑ, ϕ) = ẋTP(ϑ, ϕ)x + xTP(ϑ, ϕ)ẋ + xT Ṗ(ϑ, ϕ)x. (22)

By replacing (21) in (22), the following expression for V̇ (x, ϑ, ϕ)
is obtained:

V̇ (x, ϑ, ϕ) = xT
(
Acl(ϑ, ϕ)TP(ϑ, ϕ) + P(ϑ, ϕ)Acl(ϑ, ϕ)

)
x

T ˙
(23)
+ x P(ϑ, ϕ)x.
4

In order to ensure that the LPV closed-loop system response of
(21) satisfies a guaranteed decay rate λ(ϑ, ϕ), V̇ (x, ϑ, ϕ) must
satisfy the inequality (13), thus obtaining:

He {P(ϑ, ϕ)Acl(ϑ, ϕ)} + Ṗ(ϑ, ϕ) + 2λ(ϑ, ϕ)P(ϑ, ϕ) ⪯ 0. (24)

Then, by pre- and post-multiplying (24) by Q (ϑ, ϕ), one gets the
following inequality:

He {Acl(ϑ, ϕ)Q (ϑ, ϕ)} + Q (ϑ, ϕ)Ṗ(ϑ, ϕ)Q (ϑ, ϕ)
+ 2λ(ϑ, ϕ)Q (ϑ, ϕ) ⪯ 0,

(25)

which is equivalent to:

He {Acl(ϑ, ϕ)Q (ϑ, ϕ)} − Q̇ (ϑ, ϕ) + 2λ(ϑ, ϕ)Q (ϑ, ϕ) ⪯ 0, (26)

where Q̇ (ϑ, ϕ) = −Q (ϑ, ϕ)Ṗ(ϑ, ϕ)Q (ϑ, ϕ) [32,33] has been used.
Then, by replacing (21) in (26), the following is obtained:

He {A(ϑ)Q (ϑ, ϕ) + B(ϑ)K (ϑ, ϕ)Q (ϑ, ϕ)} − Q̇ (ϑ, ϕ)
+ 2λ(ϑ, ϕ)Q (ϑ, ϕ) ⪯ 0,

(27)

which is a bilinear matrix inequality (BMI) due to the prod-
uct between the decision variables K (ϑ, ϕ) and Q (ϑ, ϕ). In or-
der to transform it into a parameter-dependent LMI, the change
of variable Γ (ϑ, ϕ) = K (ϑ, ϕ)Q (ϑ, ϕ) is used, thus obtaining
(20). ■

Note that the parameter-dependent LMI (20) represents an
infinite number of constraints, which can be converted into a
finite number of LMIs by considering the polytopic assumption.
To this end, a suitable polytopic representation for the terms
λ(ϑ, ϕ), Γ (ϑ, ϕ), Q (ϑ, ϕ) and Q̇ (ϑ, ϕ) appearing in (20) is found.

For λ(ϑ, ϕ), Γ (ϑ, ϕ) and Q (ϑ, ϕ) such representations can be
obtained straightforwardly by assuming that:

λ(ϑ, ϕ) =

N∑
i=1

µi(ϑ)
M∑
j=1

ηj(ϕ)λij, (28)

Γ (ϑ, ϕ) =

N∑
i=1

µi(ϑ)
M∑
j=1

ηj(ϕ)Γij, (29)

Q (ϑ, ϕ) =

N∑
i=1

µi(ϑ)
M∑
j=1

ηj(ϕ)Qij, (30)

where λij ∈ R+, Γij ∈ Rnu×nx and Qij ∈ Rnx×nx correspond to a
desired decay rate value and two decision variables, respectively,
for the pair (i, j).

Then, by differentiating the expression (30), we find out that
Q̇ (ϑ, ϕ) can be expressed as:

Q̇ (ϑ, ϕ) =

N∑
i=1

µ̇i(ϑ)
M∑
j=1

ηj(ϕ)Qij +

N∑
i=1

µi(ϑ)
M∑
j=1

η̇j(ϕ)Qij

=

N∑
i=1

M∑
j=1

µ̇i(ϑ)ηj(ϕ)Qij +

N∑
i=1

M∑
j=1

µi(ϑ)η̇j(ϕ)Qij,

(31)

where µ̇i(ϑ) and η̇j(ϕ) vary within the defined bounds (8) and
(10). According to [23–26], note that µi(ϑ) and ηj(ϕ) fulfil (7) and
(9), respectively, implying that:

d
dt

(
N∑
i=1

µi(ϑ)

)
=

N∑
i=1

µ̇i(ϑ) = 0, (32)

d
dt

⎛⎝ M∑
ηj(ϕ)

⎞⎠ =

M∑
η̇j(ϕ) = 0. (33)
j=1 j=1



A. Ruiz, D. Rotondo and B. Morcego ISA Transactions xxx (xxxx) xxx

w
t
c
(
o
h
c

f
s

i
u

T
n
p
t
L

w
P

t
Moreover, it is possible to compute a finite number of O
vectors f {k} and R vectors g {l} that satisfy:

N∑
i=1

f {k}
i = 0 ∀k = 1, . . . ,O, (34)

M∑
j=1

g {l}
j = 0 ∀l = 1, . . . , R, (35)

here O and R are the number of vertices of the polytopes ob-
ained as the intersections of the hyper-rectangles defined by the
onstraints (8) and (10) and the hyperplanes defined in (32) and
33), respectively. f {k}

i and g {l}
j denote the ith and jth component

f each vector, such that (32) is fulfilled ∀k = 1, . . . ,O and (33)
olds ∀l = 1, . . . , R. Then, the regions where µ̇i(ϑ) and η̇j(ϕ) lie
an be described as the convex hull of f {k} and g {l} as follows:⎡⎢⎣µ̇1(ϑ)

...

µ̇N (ϑ)

⎤⎥⎦ ∈ Co
{
f {k}}

≜

{
O∑

k=1

αk(ϑ, ϑ̇)f {k}
:

O∑
k=1

αk(ϑ, ϑ̇) = 1, αk(ϑ, ϑ̇) ≥ 0

}
(36)

⎡⎢⎣ η̇1(ϕ)...
η̇M (ϕ)

⎤⎥⎦ ∈ Co
{
g {l}}

≜

{
R∑

l=1

βl(ϕ, ϕ̇)g {l}
:

R∑
l=1

βl(ϕ, ϕ̇) = 1, βl(ϕ, ϕ̇) ≥ 0

}.

(37)

Thus, the polytopic representation of Q̇ (ϑ, ϕ) is:

Q̇ (ϑ, ϕ) =

N∑
i=1

M∑
j=1

O∑
k=1

ηj(ϕ)αk(ϑ, ϑ̇)f
{k}
i Qij

+

N∑
i=1

M∑
j=1

R∑
l=1

µi(ϑ)βl(ϕ, ϕ̇)g
{l}
j Qij,

(38)

or some coefficients αk(ϑ, ϑ̇) and βl(ϕ, ϕ̇) satisfying the con-
traints appearing in (36)–(37).
Given the above discussion, we can now introduce the follow-

ng theorem which provides a finite number of LMIs that can be
sed to assess the parameter-dependent LMI (20).

heorem 2. Consider the parameter-dependent LMI (20), a finite
umber of vectors f {k} and g {l} for which (34)–(37) hold, and some
reviously chosen Pólya’s relaxation degrees d ∈ N and s ∈ N. If
here exist matrices Qi,j ≻ 0 and Γi,j such that the following set of
MIs is satisfied ∀k = 1, . . . ,O and ∀l = 1, . . . , R:∑
j⃗∈P(r⃗)

∑
i⃗∈P(q⃗)

[
He
{
Ai1Qi2,j1 + Bi2Γi1,j1

}
+ 2λi1,j1Qi2,j2 −Ξi1,j1

]
⪯ 0,

(39)

here multi-indexes q⃗ and r⃗ are associated to the sets P+

(d,N) and
+

(s,M), respectively, and

Ξi1,j1 ≜

N∑
f {k}
m Qm,j1 +

M∑
g {l}
n Qi1,n, (40)
m=1 n=1

5

hen (20) holds with λ(ϑ, ϕ), Γ (ϑ, ϕ) and Q (ϑ, ϕ) given by (28)–
(30).

Proof of Theorem 2. See Appendix A.1. ■

Remark 2. Note that the possible codependence between the
coefficients µi(ϑ) and αk(ϑ, ϑ̇) has been neglected. The same
applies to the codependence between ηj(ϕ) and βl(ϕ, ϕ̇). Albeit
introducing some conservativeness, this assumption has enabled
the application of Pólya’s theorem [29], so that the computational
complexity during the design stage has been reduced.

Remark 3. According to [32], the fact of considering arbitrarily
large values for the bounds (8) and (10) in Theorem 2 implies
that the only possible solution for solving the condition (39) is
to choose Q11 ≈ . . . ≈ QNM , thus making the term in (40) equal
to zero. In this case, the QLF V (x) = xTPx can be recovered by
considering Q ≻ 0 as the common decision variable for all the
pairs (i, j) in (30).

Taking into account the theoretical results obtained so far, the
following theorem provides a set of LMIs for solving Problem 1,
i.e., a set of LMIs that can be used for obtaining a controller that
ensures that the closed-loop response of the LPV system (3) is
adapted online according to the instantaneous saturation limit
values of σ (t) through the scheduling parameter vector ϕ(t).
Furthermore, this theorem guarantees that the control action u(t)
will remain inside the linearity region of the actuators L(t) due
to the inclusion chain described in (18). Note that the inclusion
E ⊆ V(ϑ, ϕ) for x(0) ∈ E ensures that x(t) ∈ V(ϑ, ϕ) ∀t as
long as the system works in the linear region described by (4).
Also, taking into account V(ϑ, ϕ) ⊆ Ux(ϑ, ϕ) any state trajectory
x(t) contained in V(ϑ, ϕ) will also be located in Ux(ϑ, ϕ), so no
saturation happens and, therefore, the convergence of x(t) → 0
when t → ∞ is guaranteed for any x(0) ∈ V(ϑ, ϕ), and hence for
any x(0) ∈ E .

Theorem 3. Consider the continuous-time LPV system (19), the
control law (11), the QPDLF in (12), the hyper-ellipsoidal regions
(15)–(17) with the given matrices X0 and S(ϕ), a guaranteed decay
rate λ(ϑ, ϕ) and finite number of vectors f {k} and g {l} for which
(34)–(37) hold. Consider also that the Pólya’s relaxation degree d ∈

N and s ∈ N have been selected. Furthermore, suppose that the
inverse of the parameter-dependent matrix function S(ϕ) can be
expressed as:

S(ϕ)−1
=

M∑
j=1

ηj(ϕ)S−1
j , (41)

where M denotes the number of vertices of the polytope Φ . If there
exist Qij ≻ 0 and Γij such that the set of LMIs defined in (39) and
the next set of LMIs are feasible ∀i = 1, . . . ,N and ∀j = 1, . . . ,M[
Qij In
InT X0

]
⪰ 0, (42)

[
S−1
j Γij

Γij
T Qij

]
⪰ 0, (43)

then the closed-loop system response, obtained as the interconnec-
tion of (19) and (11), with controller gain calculated as K (ϑ, ϕ) =

Γ (ϑ, ϕ)Q (ϑ, ϕ)−1 with Γ (ϑ, ϕ), Q (ϑ, ϕ) obtained from Γij and Qij
using (29)–(30), has a guaranteed shifting decay rate λ(ϑ, ϕ) given
by (28) for every x(0) ∈ E .

Proof of Theorem 3. The fact that (39) ensures that the closed-
loop system (19) satisfies the guaranteed decay rate λ(ϑ, ϕ) as
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ong as it works in the region of linearity of the actuators, L(t), has
een shown in the proof of Theorem 2. Hence, let us demonstrate
hat if the LMIs (42)–(43) hold, then u(t) remains inside the region
(ϕ) for all t , as long as x(0) ∈ E .
To this end, let us consider the inclusions in (18). The inclusion

E ⊆ V(ϑ, ϕ) may be formulated as:

xTP(ϑ, ϕ)x ≤ xTX0x, (44)

which is equivalent to:

X0 − InTP(ϑ, ϕ)In ⪰ 0 (45)

and that, by applying Schur complements, becomes:[
Q (ϑ, ϕ) In

InT X0

]
⪰ 0. (46)

Thereupon, as the parameter-dependent matrix Q (ϑ, ϕ) is de-
scribed by means of (30), the set of LMIs (42) is obtained.

In the same way, taking into account (15), the inclusion V
(ϑ, ϕ) ⊆ Ux(ϑ, ϕ) can be rewritten as:

xTK (ϑ, ϕ)T S(ϕ)K (ϑ, ϕ)x ≤ xTP(ϑ, ϕ)x. (47)

Then, manipulating the above expression one gets:

P(ϑ, ϕ) − K (ϑ, ϕ)T S(ϕ)K (ϑ, ϕ) ⪰ 0. (48)

Now, let us pre- and post-multiply (48) by Q (ϑ, ϕ), thus obtain-
ing:

Q (ϑ, ϕ) − Q (ϑ, ϕ)K (ϑ, ϕ)T S(ϕ)K (ϑ, ϕ)Q (ϑ, ϕ) ⪰ 0. (49)

By applying the change of variable Γ (ϑ, ϕ) = K (ϑ, ϕ)Q (ϑ, ϕ),
and using Schur complements, (49) becomes:[

S(ϕ)−1 Γ (ϑ, ϕ)
Γ (ϑ, ϕ)T Q (ϑ, ϕ)

]
⪰ 0. (50)

Finally, the set of LMIs (43) is obtained by taking into account
(29), (30) and (41), thus concluding the proof. ■

4. Design implementation procedure

Problem 1 is solved using the methodology given by The-
orem 3, which corresponds to an LMI-based feasibility prob-
lem subject to the performance criterion (13), the region con-
straints (15)–(17) and the inclusion chain (18). The design and
implementation procedure can be summarized as follows:

Off-line computation:

1. Obtain an LPV representation of the system as in (6)–(8);
2. Define the region (14) through the matrix S(ϕ) taking into

account the bounds of the instantaneous saturation limit
values (4)–(5);

3. Express the matrix S(ϕ)−1 as in (41);
4. Define the region (17) through the matrix X0;
5. Choose the desired decay rate values in (28) for each pair

of (i, j);
6. Obtain a finite number of vectors (34)–(35) as in (51);
7. Choose the Pólya’s relaxation degrees d and s;
8. Obtain the vertex matrix values of Γ (ϑ, ϕ) and Q (ϑ, ϕ) by

solving Theorem 3 (see Remark 4).

Online computation:

1. Compute the current polytopic weights µi(ϑ) and ηj(ϕ) for
all i = 1, . . . ,N and j = 1, . . . ,M;

2. Compute the current value of Γ (ϑ, ϕ) using (29);
3. Compute the current value of Q (ϑ, ϕ) using (30);
4. Compute K (ϑ, ϕ) = Γ (ϑ, ϕ)Q (ϑ, ϕ)−1.
6

Remark 4. Previous knowledge of the plant is required to
define regions E and U(ϕ) described in (14) and (17) through the
matrices X0 and S(ϕ), so that they have a physical meaning. These
regions define the initial conditions of interest and the control
action space, respectively. As a consequence of this fact, the
solution of Theorem 3 is conditioned by trade-offs related to these
regions, for example, a choice of the expected initial conditions
closer to the origin facilitates the feasibility of the LMI-based
problem, although it is desirable that the controller operates over
a region of possible initial conditions as big as possible. However,
from a practical point of view, this is constrained by the available
range of the control action. For instance, when a wide range of
control action is available, a larger region of initial conditions
could be considered while maintaining feasibility of the solution.

5. Illustrative examples

In this section, the proposed design approach is demonstrated
through two examples comparing the advantages of using a
QPDLF versus the LMI methodology proposed in [19], where a
constant quadratic Lyapunov function (QLF) was used. Section 5.1
presents a numerical example where the influence of the satura-
tion limit variation range and the bounds of η̇j(ϕ) is shown. Then,
Section 5.2 shows the closed-loop response of the attitude control
of a quadrotor with a performance that varies online according
to the value of the instantaneous saturation limits given by the
maximum angular rotor speed.

The simulations are obtained in MATLAB environment, by im-
plementing Theorem 3 via the YALMIP toolbox [34] using the
solver SeDuMi [35]. Additionally, the Multi-Parametric Toolbox 3.0
(MPT3) [36] was used in both examples in order to obtain a finite
number of vectors (34)–(35) by solving a vertex enumeration
problem through the function Polyhedron, whose input arguments
are A, b, Ae and be. These arguments can be obtained by expressing
the constraints (8) and (32) in the form of Ax ≤ b and Aex ≤ be
s follows:

A = IN ⊗

[
1

−1

]
, b =

⎡⎢⎢⎢⎢⎣
v1

−v1
...

vN
−vN

⎤⎥⎥⎥⎥⎦ ,
Ae =

[
1 1 . . . 1

]  
N

be = 0,

(51)

nd similarly for the constraints (10) and (33).
For both examples, the polytopic weights µi(ϑ) were obtained

y means of the simplest polytopic approximation, known as
ounding box, which relies on bounding each scheduling param-
ter of ϑ by an interval [31]. Similarly, ηj(ϕ) were obtained
pplying the same approach except for Section 5.2, where a less
onservative approach was used, as described therein.

.1. Example 1: Numerical example

Consider an open-loop unstable LPV system modelled as in (3),
(t) ∈ [0, 1] and the following state-space matrices:

A(ϑ(t)) =

[
4.25 + 3.5ϑ(t) 3.8971

3.8971 8.75 − 5.5ϑ(t)

]
B =

[
1 0
0 0.5

]
,

(52)

here the parameter-dependent matrix A(ϑ(t)) and the matrix B
can be written in polytopic form by means of the Definition 1,
assuming that B has the same value for all the N = 2 vertices:

A1 =

[
4.25 3.8971

3.8971 8.75

]
, A2 =

[
7.75 3.8971

3.8971 3.25

]
. (53)
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able 1
xperiment specifications for Example 1. (d, s Pólya’s relaxation degree; X0
agnitudes of (17); µ̇i(ϑ), η̇j(ϕ) time-derivative polytopic weights limits (8)

and (10).)
Scenario d s X0 µ̇i(ϑ) ∀i = 1, 2 η̇j(ϕ) ∀j = 1, 2

A 2 – diag(100, 100) – –
B 2 2 diag(100, 100) [−1, 1] [−1, 1]
C 2 2 diag(100, 100) [−1, 1] [−5, 5]
D 2 2 diag(100, 100) [−1, 1] [−10, 10]

Table 2
Expected initial conditions for Euler angles in Example 2. (ξ

κ
and ξ κ denote the

ower and upper bound value expressed in [rad], respectively.)

κ [ξ
κ
, ξ κ ]

1 [−0.0087, 0.0087]
2 [−0.0436, 0.0436]
3 [−0.0873, 0.0873]
4 [−0.1309, 0.1309]
5 [−0.1745, 0.1745]

5.1.1. Time-varying saturation limits definition
Let us define the time-varying saturation for the inputs u1(t)

and u2(t) as follows:

sat(uh(t), σh(t)) = sign(uh(t))min(|uh(t)|, σh(t)) h = 1, 2,

(54)

where σ1(t) varies within the interval [5, σ 1] and σ2(t) = σ2 = 5.
Thereupon, let us introduce the scheduling parameter ϕ(t), which
is linked to σ1(t) as follows:

ϕ(t) =
σ1(t)2 − 25
σ 2

1 − 25
, (55)

so that ϕ(t) ∈ [0, 1]. Moreover, note that (55) allows us express-
ing σ1(t)2 as a function of ϕ(t):

σ1(ϕ(t))2 = 25 + ϕ(t)(σ 2
1 − 25). (56)

hen, assuming that the control inputs are aligned with the axis
f the hyper-ellipsoidal region U(ϕ(t)) (14), the matrix function
(ϕ(t)) is described as follows:

S(ϕ(t)) = diag(σ1(ϕ(t))2, 25)−1 (57)

nd the corresponding vertex matrices are

S1 =

[ 1
25 0
0 1

25

]
, S2 =

[
1
σ2
1

0

0 1
25

]
. (58)

.1.2. Methodology comparison
Let us establish the following set conditions with the purpose

f evaluating the advantage of using the QPDLF (12) instead of a
LF. To this end, σ 1 and the maximum desired decay rate value
λ are generated as follows:

σ 1 ≜ {n ∈ R+ : 5 < n ≤ 105} , λ ≜ {n ∈ R+ : 0 ≤ n ≤ 100} .

urthermore, the desired vertex values of (28) are fixed to

i1 = 0, λi2 = λ ∀i = 1, 2,

here λi2 will be evaluated for each combination of the selected
values of σ 1 and λ.

Table 1 shows the selected specifications for the different
stablished scenarios. Scenario A corresponds to use the QLF
efined in [19], whereas Scenarios B-D correspond to use the
PDLF defined as in (12) and the polytopic representations (30)
nd (38).
Finally, Theorem 3 is evaluated for each element of σ 1 and λ

under the different scenarios described in Table 1. Fig. 1 shows,
 s

7

for each fixed value of σ 1, the maximum value obtained for λ so
that the set of LMIs (39) and (42)–(43) described in Theorem 3 is
feasible. The benefits of using a QPDLF instead of using a QLF can
be observed, as a larger feasible guaranteed decay rate is obtained
when a larger range of variation of σ1(t) is considered. However,
note that for small variations of σ1(t), the maximum feasible
values of λ are practically the same for both cases. Furthermore,
when large bounds are considered for η̇j(ϕ), the QLF approach
nd the proposed QPDLF approach provide similar performance
or big values of σ 1.

.2. Example 2: Attitude control of a quadrotor

Consider the attitude model of a quadrotor borrowed from [37]
ith parameters as described in [38]. The state vector x(t) =

[φ, φ̇, θ, θ̇ , ψ, ψ̇]
T is constructed with the Euler angles φ(t)–roll,

θ (t)–pitch, ψ(t)–yaw and the Euler angle rates φ̇(t), θ̇ (t) and
ψ̇(t). The input vector u(t) = [u1(t), u2(t), u3(t)]T contains the
moments produced by the rotors as follows:

u1(t) = kT l(Ω2
4 (t) −Ω2

2 (t))

u2(t) = kT l(Ω2
1 (t) −Ω2

3 (t))

u3(t) = kQ (−Ω2
1 (t) +Ω2

2 (t) −Ω2
3 (t) +Ω2

4 (t))

, (59)

where l is the distance expressed in metres from the centre
of gravity (CoG) of the corresponding rotor to the quadrotor’s
CoG, kT denotes the thrust coefficient expressed in [N/rpm2] and
kQ corresponds to the torque coefficient in [N m/rpm2]. Ωi(t)
denotes the angular speed of the ith propeller in [rpm].

Thereupon, the parameter scheduling vector ϑ(t) =

[φ̇(t), θ̇ (t),Ωr (t)] is constructed2 by the Euler angle rates φ̇(t) ∈

[−1, 1] [rad/s] and θ̇ (t) ∈ [−1, 1] [rad/s], and the gyroscopic
effect Ωr (t) ∈ [−105, 105] [rad/s] which is characterized as
follows:

Ωr (t) =
π

30
(Ω1(t) +Ω3(t) −Ω2(t) −Ω4(t)). (60)

In this way, the polytope Θ is a cube with N = 8 vertices and
he following parameter-dependent state-matrices:

A(ϑ(t)) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 0 a24(·) 0 a26(·)
0 0 0 1 0 0
0 a42(·) 0 0 0 a46(·)
0 0 0 0 0 1
0 a62(·) 0 a64(·) 0 0

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
Jx

0 0
0 0 0
0 1

Jy
0

0 0 0
0 0 1

Jz

⎤⎥⎥⎥⎥⎥⎥⎦

, (61)

here a24(ϑ3(t)) = −ϑ3(t)
Jtp
Jx
, a26(ϑ2(t)) = ϑ2(t)

Jy−Jz
Jx

, a42(ϑ3(t)) =

ϑ3(t)
Jtp
Jx
, a46(ϑ1(t)) = ϑ1(t) Jz−Jx

Jy
, a62(ϑ2(t)) =

ϑ2(t)
2

Jx−Jy
Jz

and

a64(ϑ1(t)) =
ϑ1(t)
2

Jx−Jy
Jz

. The symbols Jtp, Jx, Jy, Jz correspond to
the total rotational moment of inertia around propeller axis and
the body moment of inertia around the x, y, z − axis expressed in
[kg m2], respectively.

Consider that the angular speed of each propeller Ωi varies
within the same interval [Ω,Ω(t)] ∀i = 1, . . . , 4. The symbol
Ω corresponds to the minimum propeller angular speed, fixed

2 Note that the obtained model is quasi-LPV due to the dependence of the
cheduling vector on endogenous variables.
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Fig. 1. Results of applying Theorem 3 in the numerical system (52). (The following symbols denote the selected scenarios: · · ·■ · · · A; · · ·♦ · · · B; · · ·▲ · · · C; and
· · · • · · · D.)

Fig. 2. Polytope Φ . (• denotes the normalized values of ϕn,1(t) and ϕn,2(t); • denotes the polytope vertices).

Fig. 3. Quadrotor’s attitude closed-loop response.

8
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Fig. 5. Quadrotor’s attitude control actions.
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o 1075 [rpm]. Then, let us assume that the function Ω(t) is
nown and that it describes how the maximum propeller angular
peed decreases over time due to the discharge of the battery.
o this end, Ω(t) is considered as the instantaneous value of
he maximum propeller angular speed, and it is assumed to vary
ithin the interval [4907, 8600] [rpm].

.2.1. Time-varying saturation limits definition
In order to handle the propeller speed limitation, let us define

he time-varying saturation for u(t) as follows:

sat(uh(t), σh(t)) = sign(uh(t))min(|uh(t)|, σh(t)) h = 1, 2, 3,

(62)

where σ1(t), σ2(t) and σ3(t) are defined as the largest available
positive control action through Eq. (59) and the function Ω(t) as
ollows:

σ1(t) = σ2(t) = kT l(Ω(t)2 −Ω2)

σ3(t) = 2kQ (Ω(t)2 −Ω2).
(63)

Similarly to Section 5.1, let us assume that the axes of u(t) are
ligned with the axes of the hyper-ellipsoidal region U(ϕ(t)) (14).
hen, let us define the squared expression of Eq. (63) as follows

σ1(t)2 = σ2(t)2 = k2T l
2(Ω(t)4 − 2Ω(t)

2
Ω2

+Ω4)
2 2 4 2 2 4

(64)

σ3(t) = 4kQ (Ω(t) − 2Ω(t) Ω +Ω ).

9

Thereupon, let us introduce the following scheduling parame-
ters ϕ1(t) and ϕ2(t) which are linked to Ω(t)2 and Ω(t)4, respec-
tively, thus obtaining expressions of σ1(t)2, σ2(t)2 and σ3(t)2 as a
unction of ϕ(t) = [ϕ1(t), ϕ2(t)]T :

σ1(ϕ(t))2 = σ2(ϕ(t))2 = k2T l
2(ϕ2(t) − 2ϕ1(t)Ω2

+Ω4)

σ3(ϕ(t))2 = 4k2Q (ϕ2(t) − 2ϕ1(t)Ω2
+Ω4).

(65)

nce Eq. (65) is obtained, the axis magnitudes of U(ϕ(t)) are
stablished through the matrix function S(ϕ(t)) as follows:

S(ϕ(t)) = diag(σ1(ϕ(t))2, σ2(ϕ(t))2, σ3(ϕ(t))2)−1. (66)

For the purpose of solving Problem 1, let us define the poly-
ope Φ (where the scheduling parameters ϕ1(t) and ϕ2(t) lie)
enerating a set of possible values for both parameters taking
nto account the bounds of Ω(t). Note that these sets reach large
values due to ϕ1(t) and ϕ2(t) being linked to square and fourth
power of Ω(t), respectively. Hence, it is necessary to normalize
both parameters in the range [0, 1] in order to avoid numerical
issues when computing ηj(ϕ(t)).

Fig. 2 shows the generated values for the normalized param-
eters ϕn,1(t) and ϕn,2(t) as well as the selected M = 3 vertices
VI = [0, 0], VII = [0.5, 0.2456] and VIII = [1, 1] that define the
polytope Φ .

Then, taking into account the bounds of the polytope Φ , it is
possible to compute η (ϕ(t)) ∀j = 1, 2, 3 as the solution of the
j
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Fig. 6. Propellers’ angular speed.
Fig. 7. QPDLF and guaranteed shifting decay rate. ( corresponds to V (x(t), ϑ(t), ϕ(t)); denotes λ(ϑ(t), ϕ(t))).
ollowing equation:[
ϕn,1(t)
ϕn,2(t)

1

]
=

[VI,1 VII,1 VIII,1
VI,2 VII,2 VIII,2
1 1 1

][
η1(ϕ(t))
η2(ϕ(t))
η3(ϕ(t))

]
. (67)

.2.2. Methodology comparison
Let us now describe the performance specifications for the

ontroller design considering that the initial state of the quadro-
or is around the hover attitude point (φ(t) = 0, θ (t) = 0)
ith the purpose of evaluating the LMI methodology described

n Theorem 3 versus the procedure proposed in [19] under the
cenarios indicated in Table 2.
To this end, let us define the shape of the region (17) con-

idering that the initial attitude of the vehicle φ(0), θ (0) and
(0) belongs to the interval [ξ

κ
, ξ κ ] expressed in [rad] for each

cenario κ . Furthermore, each initial value of the Euler angle
ates φ̇(0), θ̇ (0) and ψ̇(0) is expected to be inside the interval
−0.3491, 0.3491] [rad/s], thus specifying:

−2
X0 = diag(ξ κ , 0.3491, ξ κ , 0.3491, ξ κ , 0.3491) , i

10
Table 3
Maximum feasible values of λi,3 . (∆ denotes the improvement in percentage
with respect to the value obtained through the Theorem 2 [19].)
κ Theorem 2 [19] Theorem 3 ∆ (%)

1 19.27 26.46 37.31
2 10.70 14.13 32.06
3 7.67 10.03 30.77
4 6.15 7.56 22.93
5 5.65 7.07 25.13

Table 4
Off-line computational cost.

Theorem 2 [19] Theorem 3

Number of LMIs 134 90792
Computation timea [s] 0.7126 19134

a4 cores 2.80 GHz CPU with 16 GB RAM.

where ξ κ denotes the corresponding κ upper bound value of the
nterval.
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Then, with the aim of controlling online the convergence
speed of the closed-loop system, let us define the desired decay
rate values in (28) as follows:

λi1 = 0, λi2 = 0, λi3 = λ ∀i = 1, . . . , 8,

hus specifying the fastest closed-loop system response when the
argest saturation limit of u(t) is available.

Once the performance specifications are defined, let us pro-
eed to compare Theorem 3 against Theorem 2 in [19] by evalu-
ting λ for each value of the set {n ∈ R+ : 0 ≤ n ≤ 100}. Thus,
btaining the maximum feasible decay rate λ shown in Table 3 for
ach scenario κ under the consideration of choosing the Pólya’s
elaxation degrees d = s = 2, the bounds of (8) ∀i = 1, . . . , 8
s [−0.8, 0.8] and, similarly, the bounds in (10) are established
j = 1, 2, 3 as [−0.05, 0.05].
The benefits of using Theorem 3 instead of using the procedure

roposed in [19] can be observed in Table 3, as an improvement
f 20–30% with respect to the largest feasible guaranteed decay
ate obtained when QLF is used for the above defined conditions.
owever, this improvement comes at the cost of increasing sig-
ificantly the computational cost, as shown in Table 4. Note that
he increase in computational burden affects only the off-line
omputation due to the growth of the number of LMIs that must
e satisfied. On the other hand, the online computation is not
ffected, since the total number of vertices does not depend on
hich of the methodologies is used.

.2.3. Closed-loop response
Let us show how the performance varies online according to

he value of the instantaneous saturation limits given by Ω(t)
hrough the results shown in Figs. 3–7 which correspond to the
ontroller designed under the initial conditions of scenario κ = 3
and guaranteed decay rates: λi,1 = 0, λi,2 = 0, and λi,3 =

10.0 ∀i = 1, . . . , 8.
As shown in Fig. 3, the closed-loop system stability is guar-

anteed ∀t ≥ 0. Moreover, note that jumps in the values of φ(t)
and ψ(t) were introduced every 10 s in order to show the effec-
tiveness of the controller. It can be seen that the slowest system
response corresponds to when Ω(t) → Ω at t ≥ 30, as shown in
ig. 4. Conversely, the fastest closed-loop response corresponds to
hen the maximum angular speed of each propeller is available.
his demonstrates that the designed shifting LPV state-feedback
ontroller adapts online the closed-loop system response in the
ense of convergence speed according to the available control
ction.
Fig. 4 shows the evolution of the maximum available propeller

ngular speed, which decreases its value over time reproducing
n incipient discharge of the battery, which limits the instan-
aneous value of u(t) according to (63). This fact is exemplified
n Fig. 5, where smaller values of u(t) were obtained over time
preventing saturation to occur. Similarly, Fig. 6 shows the be-
haviour of the angular speed for each propeller under the scenario
described above.

Finally, Fig. 7 shows the adaptability of the control perfor-
mance through the evolution of the QPDLF (12). Note that the
largest value of λ(ϑ(t), ϕ(t)) stands for the fastest closed-loop
response showed in Fig. 3, whose instantaneous saturation limits
corresponded to the largest possible ones. Furthermore, V (x(t),
ϑ(t), ϕ(t)) is under the unit value ∀t ≥ 0, which provides
theoretical guarantees that none of the control actions saturates
during the transient response, as already shown in Fig. 5.
11
6. Conclusions

In this work, we have considered the issues of designing a
shifting LPV state-feedback controller via QPDLFs for LPV sys-
tems subject to time-varying input saturation limits. The design
procedure proposed in [19] has been extended through the use
of a QPDLF obtaining a suitable set of LMIs, which can be accu-
rately solved with accessible solvers. Furthermore, Pólya’s theo-
rem has been used in order to deal with the multiple polytopic
summations, reducing the complexity in the design stage.

The results obtained in the illustrative examples have shown
the improvements and the effectiveness brought by the proposed
approach. The designed controller has shown its ability to regu-
late the closed-loop system convergence speed according to the
instantaneous saturation limit values of the actuators. The results
obtained so far appear to be less conservative, although at the
cost of increasing the computational burden and the mathemat-
ical complexity, which could hinder the implementation of the
proposed design approach in higher-order plants due to the large
number of required LMIs. Future research will aim at reducing
the computational complexity by focusing on the application
of hybrid techniques (for example, MPC with LPV, or feedback
linearization with LPV) or more advanced LPV frameworks which
incorporate switching elements, in order to reduce the number of
LMIs to be handled.
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Appendix

A.1. Proof of Theorem 2

Proof of Theorem 2. Let us take into account the polytopic
representation of matrices A(ϑ) and B(ϑ) as in (7), so that the
parameter-dependent LMI (20) is equivalent to:

He
{ N∑

a=1

µa(ϑ)AaQ (ϑ, ϕ) +

N∑
b=1

µb(ϑ)BbΓ (ϑ, ϕ)
}

˙

(A.1)
+2λ(ϑ, ϕ)Q (ϑ, ϕ) − Q (ϑ, ϕ) ⪯ 0.
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Then, let us take into account the polytopic representation of

λ(ϑ, ϕ), Γ (ϑ, ϕ) and Q (ϑ, ϕ) given in (28)–(30), thus obtaining:

He
{ N∑

a=1

N∑
b=1

M∑
c=1

µa(ϑ)µb(ϑ)ηc(ϕ)AaQbc

+

N∑
a=1

N∑
b=1

M∑
c=1

µb(ϑ)µa(ϑ)ηc(ϕ)BbΓac

}

+ 2
N∑

a=1

N∑
b=1

M∑
c=1

M∑
d=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)λacQbd

− Q̇ (ϑ, ϕ) ⪯ 0.

(A.2)

Right after, let us replace Q̇ (ϑ, ϕ) in Eq. (A.2) by the expression

given in (38), as follows:

He
{ N∑

a=1

N∑
b=1

M∑
c=1

µa(ϑ)µb(ϑ)ηc(ϕ)AaQbc

+

N∑
a=1

N∑
b=1

M∑
c=1

µb(ϑ)µa(ϑ)ηc(ϕ)BbΓac

}

+ 2
N∑

a=1

N∑
b=1

M∑
c=1

M∑
d=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)λacQbd

−

N∑
m=1

M∑
c=1

O∑
k=1

αk(ϑ, ϑ̇)ηc(ϕ)f {k}
m Qmc

−

N∑
a=1

M∑
n=1

R∑
l=1

µa(ϑ)βl(ϕ, ϕ̇)g {l}
n Qan ⪯ 0,

(A.3)

which can be rewritten taking into account that the coefficients

appearing in Eq. (A.3) sum to one, see (7), (9), (36) and (37), thus

obtaining:

He
{ N∑

a=1

N∑
b=1

M∑
c=1

M∑
d=1

O∑
k=1

R∑
l=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)AaQbc

+

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

O∑
k=1

R∑
l=1

µb(ϑ)µa(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)BbΓac

}
+ 2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

O∑
k=1

R∑
l=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)λacQbd

−

N∑
a=1

N∑
b=1

N∑
m=1

M∑
c=1

M∑
d=1

O∑
k=1

R∑
l=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)f {k}
m Qmc

−

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

M∑
n=1

O∑
k=1

R∑
l=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)g {l}
n Qan ⪯ 0.

(A.4)
12
The following Eq. (A.5) is obtained from Eq. (A.4) through the
application of the common factor:

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

O∑
k=1

R∑
l=1

µa(ϑ)µb(ϑ)ηc(ϕ)ηd(ϕ)αk(ϑ, ϑ̇)

× βl(ϕ, ϕ̇)[
He
{
AaQbc + BbΓac

}
+ 2λacQbd −

N∑
m=1

f {k}
m Qmc −

M∑
n=1

g {l}
n Qan

]
⪯ 0.

(A.5)

By applying Pólya’s theorem on the definiteness of quadratic
forms involving multiple summations [29], the set of LMIs in (39)
is obtained, thus concluding the proof. ■
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