
Title page for master’s thesis
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

Spring/ Autumn semester, 20......

Open / Confidential

Author:

Programme coordinator:

Supervisor(s):

Title of master’s thesis:

Credits:

Keywords:

 Number of pages: …………………

 + supplemental material/other: …………

 Stavanger, ………………..
 date/year

Eihab Serrari
Data Science

Eihab Serrari

Eihab Serrari
Fadwa Maatug

Eihab Serrari
Professor Reggie Davidrajuh,

Eihab Serrari
Rituka Jaiswal

Eihab Serrari
Anomaly Detection of Smart Meter Data

Eihab Serrari
30

Eihab Serrari
87

Eihab Serrari
27/07/2021

Eihab Serrari
Power consumption, Anomaly detection, FB Prophet, Imbalanced classification, Machine learning.

Eihab Serrari
21

Eihab Serrari
Tomasz Wiktorski

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Anomaly Detection of Smart Meter
Data

Master’s Thesis in Computer Science
by

Fadwa Maatug

Supervisors

Reggie Davidrajuh
Rituka Jaiswal

Spring, 2021

“People are capable at any time in their lives, of doing what they dream of”

Paulo Coelho

Abstract

Presently, households and buildings use almost one-third of total energy consumption
among all the power consumption sources. This trend is continuing to rise as more and
more buildings install smart meter sensors and connect to the Smart Grid. Smart Grid
uses sensors and ICT technologies to achieve an uninterrupted power supply and minimize
power wastage. Abnormalities in sensors and faults lead to power wastage. Along with
that studying the consumption pattern of a building can lead to a substantial reduction
in power wastage which can save millions of dollars. According to studies, 20% of energy
consumed by buildings are wasted due to the above factors. In this work, we propose an
anomaly detection approach for detecting anomalies in the power consumption of smart
meter data from an open dataset of 10 houses from Ausgrid Corporation Australia.

Since the power consumption may be affected by various factors such as weather conditions
during the year, it was necessary to search for a way to discover the anomalies, considering
seasonal periods such as weather seasons, day/night and holidays. Consequently, the
first part of this thesis is to identify the outliers and obtain data with labels (normal or
anomalous). We use Facebook prophet algorithm along with power consumption domain
knowledge to detect anomalies for two years of half-hour sampled data.

After generating the dataset with anomaly labels, we proposed a method to classify future
power consumptions as anomalous or normal. We use four different approaches using
machine learning for classifying anomalies. We also measure the run-time of different
classification algorithms. We are able to achieve a G-mean score of 97 per cent.

Acknowledgements

First and foremost, I am grateful to Allah the Most Merciful for allowing me to fulfil
my goal of finishing my studies and answering my prayers.

I would like to express my sincere thanks to my supervisors, Professor Reggie Davidra-
juh and Rituka Jaiswal, for their faithful encouragement, exceptional guidance, and
comprehensive support through this dissertation. Their expertise in thesis research
and their insights and suggestions aided me in improving my academic knowledge and
overcoming the challenges I faced.

My heartfelt gratitude to my husband and my kids for their incredible support during
my learning; this journey could not be possible without them. I thank my husband for
his reassurance through my rough times. I am eternally thankful to my dear kids for
their constant love and patience with my busyness and absence.

Last but most certainly not least, I am grateful to have wonderful parents who believed
in me and motivated me to pursue my dreams. I am thankful for their encouragement to
prove and improve myself in every aspect of my life.

viii

Contents

Abstract vi

Acknowledgements viii

Abbreviations xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Approach and Contributions . 2
1.3 Outline . 3

2 Related Work 5

3 Methodology Background and Theoretical Structure 7
3.1 Introduction . 7
3.2 The Prophet Method . 8
3.3 Data Sampling . 10
3.4 Cost-Sensitive Logistic Regression Algorithm 11
3.5 Clustering using DBSCAN Algorithm . 12
3.6 Ensemble Random Forest Algorithm . 13
3.7 One-Class Isolation Forest Algorithm . 15
3.8 Model Evaluation . 17

4 Solution Approach And Implementation 21
4.1 Proposed Solution Introduction . 21
4.2 Ausgrid Dataset . 22
4.3 Phase 1 . 23

4.3.1 Phase 1 - Data preprocessing . 23
4.3.2 Anomaly Identification . 29

4.4 Phase 2 . 35
4.4.1 Experimental Setup . 36
4.4.2 Phase 2 - Data Preprocessing . 39
4.4.3 Cost-Sensitive Logistic Regression Model 41
4.4.4 DBSCAN Model . 42

ix

x CONTENTS

4.4.5 Ensemble Random Forest Model 43
4.4.6 One-Class Isolation Forest model 45
4.4.7 Models Evaluation . 46

5 Experimental Results And Discussion 49
5.1 Anomaly Detection . 49
5.2 Imbalanced Classification Experimental Results 52

5.2.1 Grid Search and Bayesian Hyperparameters Optimisations 52
5.2.2 Cost-sensitive Logistic Regression Experimental Results 53
5.2.3 DBSCAN Experimental Results . 54
5.2.4 Ensemble Random Forest Experimental Results 55
5.2.5 Isolation Forest Experimental Results 55
5.2.6 The Final Evaluation Results for All Models 56

5.3 Future Work . 59

6 Conclusions 61

List of Figures 61

List of Tables 65

A Source Code 67

Bibliography 69

Abbreviations

ICT Information and Communications Technology

OCC One Class Classifier

ML Machine Learning

GAM Generalised Additive Model

SMOTE Synthetic Minority Oversampling TEchnique

ENN Edited Nearest Neighbours

MLE Maximum Likelihood Estimation

LR Logistic Regression

DBSCAN Density-Based Spatial Clustering of Application with Noise

RF Random Forest

OOB Out-Of-Bag

iForest isolation Forest

iTree isolation Tree

BTS Binary Search Tree

TP True Positive

TN True Negative

FP False Positive

FN False Negative

FPR False Positive Rate

TPR True Positive Rate

P Precision

R Recall

ROC Receiver Operating Characterictic

AUC Area Under the Curve

GG Gross Generation

xi

Abbreviations ABBREVIATIONS

GC General Consumption

CL Controlled Load

RMSE The Root Mean Squared Error

TPE Tree Parzen Estimator

KNN K Nearest Neighbour

RAM Random Access Memory

Chapter 1

Introduction

1.1 Background and Motivation

The recent smart grid is an enhanced electrical network infrastructure that incorporates
advanced metering and information communication technologies in order to increase the
efficiency, reliability, and security of the power grid. Additionally, it enables the collection,
transmission, and storage of real-time data of energy consumption [1]. As a matter of
fact, The smart grid is crucial for economic growth, energy structure adjustment, and
climate change adaptation, all of which can lead to energy savings and pollution decreases
[2].

Preventing and detecting power losses has become more necessary in today’s global
power system. Each year, the economy losses total hundreds of millions caused by illegal
electricity use by customers in various countries’ power industries [3]. With the growth
and popularity of Internet of things, demand and supply complexity, monitoring and
forecasting of power consumption is critical for power companies in terms of power
generation, scheduling and dispatching. It benefits power consumers by allowing them to
enhance their usage schedules and thus reduce their costs. Additionally, power suppliers
can detect abnormal meter readings caused by unforeseen meter failures, intentional
meter manipulations, or users’ unusual consumption behaviors [1, 3, 4].

Discovering unusual meter measurements and unexpected customers habits is known as
Anomaly detection or outlier detection. Anomaly detection is the process of identifying
relatively infrequent events, and it has been widely applied in a variety of applications,
such as fraud detection and fault detection in safety-critical systems. Anomaly detection
can be applied to smart meter data to assist power consumers in identifying abnormal
activities, such as forgetting to turn off irons after use, wasteful appliances, or over-
lighting. Anomaly feedback can alert customers to reduce their energy consumption or

1

Abbreviations Chapter 1 Introduction

replace inefficient appliances. Additionally, anomaly detection can assist suppliers in
identifying energy leakage and theft, as well as unnoticed meter faults. For example,
when daylight savings time begins, the meter may fail to record any consumption for
that hour; similarly, when daylight savings time ends, and the clock is turned back, the
meter may over-write the previous hour’s data. Further, power utilities can establish a
baseline for more precise demand-response programs for their clients [5].

1.2 Approach and Contributions

Since smart meters are digital devices capable of recording power usage at hourly or lesser
intervals, they could still record consumer measurements in real-time or near real-time,
enabling the monitoring of unusual activities or consumption patterns instantaneously [5].
This led us to develop a method for detecting abnormalities in historical consumption data
and identifying the oddity within the consumption patterns using statistical approaches
such as confidence interval estimation. Subsequently, we employ the most appropriate
classification algorithm to ascertain if the future power consumption data is anomalous
or normal.

The study consists of two phases in this thesis. In the first, we used a Prophet method,
which analyzes and forecasts highly seasonal time-series data, producing predicted values
and confidence intervals for trend changes. Prophet, is a Facebook-developed generalized
additive model (GAM) that is mainly used to analyze time-series data and excels at
forecasting highly periodic data [6]. Identifying the anomalies depends on the Prophet
model’s confidence intervals, which provides the regular interval of power consumption.
Any data point that lies outside the interval is considered an outlier. Further, while
zero energy consumption is illogical, we classify all zero values in the data as anomalous
readings.

After classifying the data into two categories (positive class indicates anomaly, negative
class indicates normal), we ended up with an unbalanced dataset. Thus, the second phase
of our study includes experimenting with four alternative models: Cost-sensitive Lo-
gistic Regression, Clustering using DBSCAN , Ensemble Random Forest, and
One-class Isolation Forest. Moreover, evaluating their performance using Sensitivity,
Specificity, G-mean, and F-score measures emphasises minority class.

The contribution of this thesis is to offer a statistically-based anomaly detection method-
ology based on past consumption patterns of consumers. Additionally, to suggest the
most appropriate classification approach for imbalanced data amongst the available

Abbreviations 3

strategies for predicting and classifying future data and assessing the model using the
most suitable metrics.

1.3 Outline

This thesis is divided into the following chapters: Chapter 2 will introduce previously
published works relevant to the thesis. Chapter 3 will demonstrate the principal method-
ologies of the thesis approach. Then the dataset structure will be presented in Chapter
4, as well as the approach implementation and experiments design. Chapter 5 will report
and discuss the outcomes of the experiments as well as future suggestions. Finally,
Chapter 6 will contain the conclusions to the thesis work.

Chapter 2

Related Work

Monitoring and detecting anomalies are essential tasks on time-series data of power
consumption. Liu and Nielsen [5] proposed a model, which first applied a mixture of
supervised learning algorithm called Periodic Auto-Regression with eXogenous variables
PARX and Gaussian statistical distribution to detect the anomalies on historical con-
sumption data. Second, they employed the Lambda architecture, which has three layers,
Spark streaming as the speed layer technology, Hive as the batch layer technology and
PostgreSQL as the serving layer technology, to detect anomalies in time and achieve much
accuracy. Even though their results have validated the proposed system’s effectiveness,
their suggested method could not detect missing values, negative energy usage, and device
faults. Fathnia et al.[7] provided a method that combined the Local Outlier Factor LOF
index and Ordering Points To Identify the Clustering Structure OPTICS density-based
algorithm to detect the unusual nature of the data. Their strategy recognised outliers
as transmitted faults in the smart meter data to the control center. They reasoned
that cyberattacks caused these failures. While the research findings demonstrated the
efficiency of the proposed technique, they have not considered unnatural users’ activities
or inefficient appliances.

In the same direction, Zhang et al. [3] introduced an adaptive method to detect the
abnormalities in smart meter data. They labelled the data set using the Gaussian
Mixture Model Linear Discriminant Analysis GMM-LDA algorithm, which clusters some
data sets to obtain the optimal feature representation of normal and abnormal patterns.
Subsequently, they used the Practical Swarm Optimization Support Vector Machine
PSO-SVM classifier to learn from the labelled data and predict future unlabelled data.
While in [8], the authors experimented with two approaches for detecting oddities in real
and synthetic datasets. They started with a statistical technique, which uses Standard
Deviation to identify extremes. The second technique utilised the K-Nearest Neighbor

5

Abbreviations Chapter 2 Related Work

KNN clustering algorithm to distinguish anomalous from normal data using the point-to-
point distance measure. Research work by Janetzko et al. [9] defined aberrant behaviour
in the principal scenario of utilisation as a variation from the expected daily pattern.
They introduced two methods that can be adapted to the periodicity of the energy
consumption data. The first approach estimated the error rate using weighted prediction,
where the more substantial influence of current measurements than older ones. The latter
approach used similarity-based anomaly detection after transforming the daily pattern
into the frequency domain by Fourier transformation. Additionally, they provided a range
of time series visualisation techniques for resulting anomaly scores that aid in analysing
and comprehending energy consumption behaviour. Nevertheless, a significant drawback
of all three previous papers is that they have not considered the effect of exogenous
factors, such as weather conditions, on the power demand.

In light of the shortcomings of the mentioned prior works, we presented a technique to
detect a wide range of anomalies considering the multi-period seasonality that correlated
to the weather conditions and human behaviours.

Chapter 3

Methodology Background and
Theoretical Structure

The necessary theory and methodology background are introduced in this chapter,
including the Prophet algorithm and preprocessing techniques. In addition to four
machine learning models such as Cost-Sensitive Logistic Regression, DBSCAN, Ensemble
Random Forest and One-Class Isolation Forest. In the end, the chapter provides a brief
knowledge of model evaluation metrics.

3.1 Introduction

Before we begin, it is necessary to establish some fundamental definitions. As a start, let
us define Machine Learning (ML). It is a set of fundamental mathematical techniques
used for extracting significant characteristics from the data. The learning can be
made by utilising unique meaningful patterns formed from the data and generating
predictions. There are several types of machine learning, including semi-supervised
learning, reinforcement learning, supervised learning, and unsupervised learning. We
are particularly interested in the latter two. Supervised data mining algorithms are
presented with labelled data sets, where classification may be used if the labels are
categorical; otherwise, a regression can be applied to optimise the model for the labelled
data provided. In contrast, for unlabeled data, an unsupervised learning algorithm must
be employed to discover patterns in the data in a principled manner to determine how to
cluster and categorise new data [10].

In this thesis, a detection method is proposed to find the anomalies in consumers’ history
consumption via the unsupervised learning and statistical algorithm, which resulted

7

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

in labelled data with an imbalanced distribution of the known classes. Imbalanced
classification is the process of classifying this sort of data. In the two-class (binary)
imbalanced classification problem, the minority (underrepresented) group is typically
referred to as the positive class, while the dominant group is the negative class [11].

There are four major categories of approaches that may accurately identify the minority
class according to [11–13]:

• Algorithm-Level Approaches: These techniques try to change the classifier learning
procedure without affecting the data distributions. It is focused on a single
classifier type, making it more adaptable to different types of imbalanced datasets.
This requires an in-depth study of the chosen strategy to ascertain which precise
mechanism may be accountable for forming a bias against the majority class. This
category includes One-Class Classifier methods OCC, which can be used for binary
classification problems with a severely skewed class distribution. These methods
can be trained on the data-set’s majority class and treat the minority class as
outliers.

• Data-Level (Preprocessing) Approaches: These approaches employ a variety of
procedures to modify and rebalance the distribution of classes. Rebalancing datasets
improves classification tasks significantly when compared to unbalanced sets.

• Cost-sensitive learning Approaches: They integrate both Data and Algorithm
levels, where costs added to data samples, and the learning method is modified to
admit these costs. Higher misclassification costs are assumed for the minority class,
aiming to reduce the entire cost error for both classes.

• Ensemble-based Approaches: They are frequently combined with one of the above
mentioned approaches, particularly data-level and cost-sensitive learning (the cost
minimisation is supervised via the ensemble algorithm). The ensemble classifier usu-
ally uses boosting technique, where the samples trained serially with the training’s
weights adjusted adaptively during the training process according to the preceding
classifier.

We shall employ all of the techniques’ types stated above in our thesis and evaluate them
using the particular metrics discussed later in this chapter.

3.2 The Prophet Method

The Prophet is an Generalize Additive Model GAM that Facebook has as open-source.
Additionally, Facebook modified Prophet parameters in R and Python and adopted it as

Abbreviations 9

its application. Prophet’s processing capability is exceptional for forecasting data with
high seasonal effects and long-term non-stationary rends [14]. Besides, the Prophet is
based on the Bayesian model’s curve fitting approach. It is attempting to fit different
linear and non-linear time functions as elements. Further, Prophet forms seasonal
components as additive elements, same strategy as exponential smoothing. It features
simple-to-understand parameters and does not need much time-series data to make a
prediction. Moreover, the Prophet technique is capable of managing both stationary and
non-stationary components. Not only it can handles the time-series data affected by
solid seasonal factors, but it also performs well in the presence of missing data, trend
variance, and outlier detection. Additionally, it accounts for scheduled breaks or holidays
in continuous data [15, 16].

The Prophet core is to work on as an additive regression model that accommodates three
components as indicated by the following mathematical notation and as mentioned in
[17–19].

y(t) = g(t) + s(t) + h(t) + ε(t) (3.1)

where,

• g(t) is the trend function that represents the linear or logistic non-periodic changes
in power consumption readings obtained at evenly time-space intervals.

• s(t) is a seasonal component formed using Fourier series, and it captures the histori-
cal data periodic changes, which can be daily, weekly, monthly or yearly seasonality.
In this study, we focused on daily, weekdays, weekends, yearly seasonality, so the
Prophet model regression equation will be as following [20]:

y(t) = g(t) + s(t)daily + s(t)weekdays + s(t)weekends + s(t)yearly + h(t) + ε(t) (3.2)

• h(t) represents the holidays during the year and can be provided by the user or
unusual expected times that can happen irregularly.

• ε(t) indicates an independent error term, which assumed to be normally distributed.

A drawback of the Prophet that it requires two input columns with the name ds and
y, where the first represents the date and the second represents, in our case, the power
consumption. Afterwards, the model can be fitted on the train data and finally, the
forecasting is performed on the data. Additionally, the prediction in Prophet not only
returns the estimated values but also returns uncertainty intervals for each component,

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

such as ŷlower and ŷupper for the forecast ŷ. These are quantiles of the posterior predictive
distribution, and specifying which quantiles to employ can be done via the Prophet’s
library parameter interval_width. Adjusting the interval_width parameter will only
modify the uncertainty interval and will not affect the prediction values [21].

When the training data is fitted to the Prophet model, a collection of datasets will
be generated from the likelihood and priors of the model. This collection will form
the posterior predictive distribution, which illustrating how predicted data may appear
considering all the average frequency and magnitude of history data trend changes
[21, 22]. In this project, the posterior predictive distribution is employed to show how
the normal behaviour of the data should be. We considered an uncertainty interval by
taking the 99-th quantile of the posterior predictive distribution, which has a 99% chance
of containing the parameter’s actual value [23]; Besides, any value that lies outside the
interval would identify as an outlier. We define the uncertainty interval I as:

I = [ŷlower, ŷupper] (3.3)

We established the following decision rule for an original data sample y [24]:

y is normal, if y ∈ I

y is anomaly, if y /∈ I
(3.4)

3.3 Data Sampling

One of the most popular imbalanced classification solutions is to change the structure of
the training dataset, which is referred to as Data sampling techniques. They are simple to
comprehend and apply without requiring any adaptation to account for the observational
imbalance. After implementing them on the training dataset, the ML algorithms options
will increase, including the algorithm developed for balanced classification [12].

Data sampling techniques can be divided into three groups [11, 12]:

• Undersampling methods are removing majority class instances to form a subset
of the original dataset. Edited Nearest Neighbour Rule (ENN) is an example of
undersampling methods. ENN is a data cleaning-based technique that eliminates
majority class instances that differ from two of its three Nearest Neighbours.

• Oversampling methods replicate some instances or generate new instances from
existing ones that belong to the minority class to produce a comprehensive of

Abbreviations 11

the original dataset. One of the Common oversampling approaches is Synthetic
Minority Oversampling Technique (SMOTE). It selects instances that lie nearby in
the feature space to create new minority class examples. The over generalisation
problem is a limitation of oversampling due to the way it generates synthetic data
samples without regard for close instances, which increases the likelihood of class
overlapping.

• Hybrid methods combine both sampling approaches. For instance, (SMOTE +
ENN) is a widely used method. SMOTE and ENN combination methods apply
SOMTE first. It then eliminates instances from both classes using ENN, aiming
to reduce noisy points along with the classes boundaries, which improves the
performance of the classifiers fitted to the modified dataset.

3.4 Cost-Sensitive Logistic Regression Algorithm

Cost-Sensitive learning is a recent ML approach that trains classifiers to distinguish the
various costs associated with several classification errors. Further, it may be classified into
direct and indirect cost-sensitive techniques. A direct cost-sensitive learning algorithm
is built by including various misclassification costs into the training process directly. In
contrast, the indirect method may convert a classifier to be cost-sensitive by preprocessing
the training data through data sampling methods [25].

Logistic Regression LR is a linear model with the optimal coefficients determined by
maximizing the log-like function. LR estimates a positive class’s posterior probabilities
in a particular context of binary classification [25, 26]. High interpretability and low
time complexity are advantages of LR. Penalising the misclassification costs differently
while training the model within the log-likelihood objective function can moderate the
bias on the imbalanced data [26].

The predicted probability of the positive class for a given sample Xi is estimated as
P (y = 1|Xi), and for the negative as P (y = 0|Xi) = 1 − P (y = 1|Xi) [25]. Besides,
The values of input independent variables (i.e. xj0, ..., xjm) are linearly combined in LR
[26], as defined in the following equation [25], then transformed by a logistic (sigmoid)
function as defined in equation (3.6) [25]:

g(x, β) = β0 +
m∑
j=1

βjxj j = 1...m (3.5)

where β is the estimated coefficients of the independent variables, m is the total number
of explanatory variables.

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

pi = P (y = 1|Xi) = f(g(x, β)) = 1
1 + e−g(x, β) i = 1...n (3.6)

where n is the total number of observations, and the value of pi is restricted between 0
and 1 and it refers to the hypothesis of i given the parameters Θ. pi is the probability
of the sample predicted to be 1 when the true value is 1; the difference between the
estimated and truth will be smaller as the pi value is bigger. While 1−pi is the probability
that the sample is predicted to be 0 when the actual value is 0, as 1 − pi is closer to
1, the difference between the predicted value and the true value will be smaller. In
addition, to assure that a consistent estimate with an actual value, the formed LR model
is determined using the maximum likelihood estimation MLE, which assume that each
data sample is independent. β is is achieved by maximizing L(x, β) in equation (3.7) to
ensures that the difference between the predicted and the actual value is the smallest
[25]. The below equations illustrates the standard MLE function according to [25, 27]
respectively.

L(x, β) =
n∏
i=1

f(g(x, β))yi .(1− f(g(x, β))(1−yi)) (3.7)

lnL(β|y) =
∑

yiln(πi) +
∑

(1− yi)ln(1− πi) (3.8)

Nevertheless, the Cost-Sensitive Logistic Regression is employed the weighted MLE
function, which adds a positive class Weight W1 and a negative class Weight W0 to
punish the misclassifications of anomaly and normal differently. The estimated population
proportion of events τ and the sample proportion of events ȳ defines the classes weights
[27]. The weighted MLE equation is defined in (3.9) [27].

lnLW (β|y) = W1
∑

yiln(πi) +W0
∑

(1− yi)ln(1− πi) (3.9)

Where,

πi = 1
1 + e− (β0 + β1x1 + ...+ βmxm) ,W1 = τ

ȳ
, W0 = 1− τ

1− ȳ (3.10)

3.5 Clustering using DBSCAN Algorithm

When the data has no defined label, such as "anomaly" or "not-anomaly", the unsupervised
detection technique is utilised. Clustering is an unsupervised technique for identifying
patterns in data groups across a wide range of data, and studies have demonstrated that

Abbreviations 13

anomaly detection may be done using clustering [28].The anomaly detection methods
can be divided into two approaches, which are statistical approaches and distance-based
approaches. The first type seeks to create a statistical model of the data and identify data
that does not fit the model as an outlier. The latter type considers the distance between
the data to identify the outliers, which has a greater distance than the predefined distance
[29]. This section of the study concentrates on detecting outliers using the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) method to
define normal and anomalous data groups and evaluate the model’s labels across the
Prophet labels.

DBSCAN is one of the most potent algorithms on mass and dense datasets for finding
anomalies, where it will create membership points labelled as cluster members or as an
outlier that do not fit any clusters. DBSCAN requires two user-defined parameters to
identify a cluster: the maximum neighbourhood distance epsilon ε and the minimum
number of the points within the cluster minpts [29]. Starting with a random data point
~p, DBSCAN locates all the neighbour points within radius epsilon distance from the
point ~p, based on the following equation [30].

Nε(~p) =
{
~q ∈ D|dist(~p, ~q) ≤ ε

}
(3.11)

The distance between ~p and ~q is calculated based on Euclidean distance [30]:

dist(~p, ~q) =

√√√√ m∑
i=1

(pi − qi)2 i = 1...m (3.12)

Where ~p and ~q are a vectors points with m features. The neighbouring points of ~p are
called a cluster if they are more than or equal minpts [29]. DBSCAN is continued until
labelled all the data points into one of the three categories: Core points, which are the
points within a cluster. Border points, which are not core points but are their neighbours.
Last, Outlier points, which are not core points or border points and not members of any
of the clusters [28, 29]. In other words, a cluster can be defined as a set of members
containing core points circled by border points [28].

3.6 Ensemble Random Forest Algorithm

Ensemble learning is a consensus technique in which is used to aggregate the predictions
in order to enhance the classifier model’s performance. It is intended to rectify the errors
of its classifiers members. Hence, each classifier within the ensemble might make various

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

errors in different training sample instances as a strategy. The combination of these
several classifiers can minimize the overall error [31]; some of the ensemble methods are
Bagging and boosting [32].

The Random Forest RF classification method is an ensemble of many decision tree
classifiers that uses bagging, i.e., bootstrap aggregation [32], and the outcome of RF
is a combination of all the ensemble trees’ predictions [31]. In other words, each tree
comprises several bootstrap samples created by original samples referred to as bagging,
which created multiple training data values by randomly resampling the original dataset
with replacement. In order to avoid tree correlation, bagging generates a variety of
trees completing multiple training data subsets [33]. Furthermore, a classification tree
separates data recursively into subgroups without considering the underlying connections
between predictor factors and response variables [32]. The decision trees will have low
bias and high variance when they grow deeply, leading to irregular patterns learning and
overfit training. Random forests give improvement over just bagged trees because they
decorrelate the trees while building the RF [31]. Specifically, The training data is sampled
to create two partitions; an In-Bag division constructs the tree; a smaller division named
out-of-bag (OOB) tests and evaluates the built tree’s performance [32]; the OOB error
is an unbiased estimation of the generalisation error that provides information about
significant factors [33].

The RF algorithm’s fundamental ideas include that each sample obtained from the dataset
for the training process can be reused for another training tree operation. Additionally,
the features utilized in each tree during the training phase are a subset of the features in
the dataset [34]. As discussed in [32], the following steps illustrate how a decision tree in
the RF is constructed:

1. The number of trees m is determined to be used with the following criteria:

• A bootstrap sample of size n is produced, and an Sn sample is chosen for tree
growth.

• To create a tree at each node, f features are randomly chosen and utilised to
determine the optimal split.

• The tree is allowed to develop to its full potential without being pruned.

2. The maximum number of features k that will be used to split each node is de-
termined, and it should be less than the total number of input data features.
Throughout the process of forest development, the subset of features k is main-
tained constant.

Abbreviations 15

3. A majority voting system categorises a sample X by evaluating votes from each
tree in the forest.

For better classification results, a higher value of m might be chosen, while for k value,
it is recommended to use square root or logarithm of the total number of features in the
dataset [34].

As stated in [33], using the RF classifier has several advantages, as it has a low compu-
tational cost and compelling performance on massive datasets. Besides, it can perform
many input features without feature exclusion. Further, RF can determine the essential
variables for classification, establish a correlation between variables and classification,
and avoid overfitting.

3.7 One-Class Isolation Forest Algorithm

Unsupervised anomaly detection techniques are based on two essential assumptions. To
begin, the vast majority of events are normal, with just a small number being aberrant.
Second, the outlier deviates statistically from the norm [35]. Isolation Forest (iForest)
is an unsupervised ensemble learning-based method for detecting anomalies. The approach
generates anomalous scores by learning the data set’s tree structure, eliminating the need
to calculate costly distance or density measurements. By partitioning the sample space,
it creates a forest with a limited height; anomalies are more possible to be located at a
shallow depth in a tree than non-anomalous values. As with random forests, iForest is
composed of a vast number of isolated trees (iTree). Therefore, iForest may split into
two stages. Firstly, create iTrees and establish a forest. Secondly, the anomaly score for
the identified samples is computed [36–38].

The iForest algorithm chooses a random feature from a random subset (or the whole set)
of all features during each iteration of tree construction. Subsequently, using a random
split value within the range of this feature’s minimum and maximum values, a subset
of the current node samples is split into two subgroups. Further, when each tree node
includes exactly one sample (leaf node), the split is complete. The path length from
the root node to the selected leaf node is the number of splittings required to isolate
this sample, and it represents a measure of normality. This random partitioning results
in noticeably shorter pathways for anomalies because fewer anomalies result in fewer
partitions – shorter paths in a tree structure - and instances with distinct attribute
values are more likely to be segregated during early partitioning. Therefore, when iTrees
produces a shorter path length for particular samples, they are likely to be anomalies
[39, 40].

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

According to [36], iTree’s production process is as follows: for a given sample with
Q-dimension distribution of a data sets D = x1, ..., xk, ..., xψ which has ψ examples.

1. Choose a feature ai ∈ Q at random.

2. Choose a split value from (min,max) range values of ai → V
′ .

3. According to the feature Vaik, for each sample xk, the Vaik that is smaller than V ′

is categorized as left child node set, and the remaining as right child node set.

4. Recursively create the left and right child sets until: the entering data set D has
just one record or all data in D has the same value; the tree reaches the l-threshold
height.

According to their path lengths or anomaly scores, sorting data points is the way to
detect anomalies in this method. The path length h(x) of a new example x is determined
as the total number of edges traversed by x from the root node to its belonging leaf node.
The average height grows in the order of log(ψ). Since iTree’s structure is similar to that
of a Binary Search Tree (BTS), the estimated average path length in iTrees is [36]:

c(ψ) = 2H(ψ − 1)− 2(ψ − 1)
ψ

(3.13)

where H(i) is the harmonic number and it can be estimated as [36]:

H(i) = ln i+ 0.5772156649 (3.14)

where the constant introduced is Euler’s constant. Further, the anomaly score s of an
sample x is defined as [36]:

s(x, ψ) = 2
−E(h(x))
c(ψ) (3.15)

where E(h(x)) is the expected of path length h(x) from a collection of iTrees [36]. As
discussed in [40] in equation 3.15:

• when E(h(x))→ c(ψ), s→ 0.5

• when E(h(x))→ 0, s→ 1

• and when E(h(x))→ ψ − 1, s→ 0

Abbreviations 17

We are capable of making the appropriate determination using the anomaly score s, since
s is monotonic to h(x) and applied the conditions where s ∈ [0, 1] for 0 < h(x) ≤ ψ − 1
[40]:

• Instances identified as anomalies when s very close to 1, or 1.

• Instances regarded as normal when s is much smaller than 0.5, or 0.

• The whole sample does not have any distinct anomaly when s for all the instances
≈ 0.5.

3.8 Model Evaluation

The classification algorithm’s performance is often assessed by comparing the predicted
class labels to the real ones. The model is trained on the training set and then evaluated
on the holdout test set. Data preprocessing and model selection are an exploration area
that needs to be driven by the evaluation metric. Consequently, various models must be
used in the experiments, and each experiment’s outcomes should be quantified using a
suitable metric. Besides, standard evaluation metrics, such as Accuracy (which is the
percentage of accurately categorised samples), evaluate all classes’ importance equally.
Alternatively, in an imbalanced classification problem, the majority class is rated as less
important than the minority class. Therefore, performance metrics concentrating on the
minority class may be both important and problematic, as the minority class lacks the
requisite samples for training an effective model [11, 12].

Before presenting the evaluation matrices that have been used, we need to understand
the Confusion Matrix for binary classification tasks. The confusion matrix can provide
more insight into the model performance and gives information about the correctly and
incorrectly predicted labels [12]. Besides, it has four possibilities: True Negative TN,
which means the truth labels are negative as the predicted labels; True Positive TP
indicates that the truth and predicted labels belong to the positive class; False Positive
FP shows the number of actual negative samples that predicted as positive labels; Last
False Negative FN presents the number of positive data points predicted as negative
labels. We focus while evaluating the best model on the latter case, False Negative, since
it shows how many true anomalies are predicted as normal samples; And it must be as
lower as possible.

The character of anomaly detection application demands a relatively high rate of accurate
detection in the minority class while allowing for a small error rate in the majority class
to achieve this [13].

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

Negative Prediction Positive Prediction
Negative Class True Negative (TN) False Positive (FP)
Positive Class False Negative (FN) True Positive (TP)

Table 3.1: Confusion Matrix of Binary Classification

The following paragraphs will present the matrices employed in our study as mentioned
in [11–13, 41].

• Sensitivity indicates the accuracy with which the positive class was anticipated.1

Sensitivity = TP

TP + FN
(3.16)

• Specificity indicates the accuracy with which the negative class was anticipated.

Specificity = TN

TN + FP
(3.17)

• G-mean combines Sensitivity and Specificity into a single score that takes both
considerations into account.

G−mean =
√
Sensitivity × Specificity (3.18)

• Precision quantifies the proportion of instances allocated to the positive class
that actually belong to it, and it is suitable when the objective is to minimise false
positives.

P = TP

TP + FP
(3.19)

• Recall quantifies the proportion of the true positive samples that correctly detected
by a classifier; And it is suitable when the objective is to minimise false negatives.

R = TP

TP + FN
(3.20)

• F-measure focuses on the analysis of positive classes. Its purpose is to examine
the trade-offs between accuracy and coverage while categorizing positive examples.
The measure does this by calculating a weighted harmonic mean between precision
and recall, a high score of precision and recall will lead to a high F-measure value.
The general β formulation of F-measure is shown in the next equation, where β is a
parameter that manages the importance provided to each term. A common choice

1It’s important to note that the same equation is used to compute sensitivity, Recall R, and True
positive rate TPR.

Abbreviations 19

is setting β = 1, which balance the weight on precision and recall, leading to the
F1 measure (F1-score), and when β = 2 is referred by F2 measure (F2-score), it
gives less weight on precision, more weight on recall. Both measures are employed
in the study.

Fβ = (1 + β2)× P ×R
(β2 × P) +R

(3.21)

F1 = 2× P ×R
P +R

(3.22)

F2 = 5× P ×R
(4× P) +R

(3.23)

• True Positive Rate TPR It is the possibility that an actual positive will be
detected.

TPR = TP

TP + FN
(3.24)

• False Positive Rate FPR It is the probability of receiving a positive label when
the real value is negative.

FPR = FP

FP + TN
(3.25)

• ROC Curves The Receiver Operating Characteristic (ROC) curve is a graphical
evaluation technique that widely used for summarising classifier performance over
a range of true positive and false positive error rates trade-offs. Additionally, ROC
demonstrates that the true positive rate cannot be increased without raising the
false positive rate for any classifier. Furthermore, the Area Under the Curve (AUC)
summarises a classifier’s achievement into a single measure. It can evaluate a
model performance as independent of the decision criterion and prior probability
used; The higher the AUC score, the more accurate the classifier, and the optimal
classifier would score one.

Abbreviations Chapter 3 Methodology Background and Theoretical Structure

Figure 3.1: Illustration of a ROC Curve [12].

Chapter 4

Solution Approach And
Implementation

4.1 Proposed Solution Introduction

The primary purpose of this study is to detect anomalies in power consumption data and
obtain the best model to classify future events. This chapter outlines the steps necessary
to accomplish this goal. Besides, it defines the utilised dataset and Python libraries
used to fulfil the study’s implementation. Further, we discuss the experiments that were
conducted and the evaluation’s implementation in this chapter.

Figure 4.1: The solution approach’s workflow.

Figure 4.1 is a graphical presentation that illustrates the solution approach’s workflow,
divided into two stages. In brief, the first phase starts with collecting and analysing
the data set, following with cleaning and filtering the data to be ready for identifying

21

Abbreviations Chapter 4 Solution Approach And Implementation

anomalies by using the Facebook Prophet algorithm. Besides, extraction some features
based on Date feature information to use later with ML algorithms. The first phase’s
outcome is a data set that contains the extracted features and the Prophet model’s labels.
After this point, the second phase begins by splitting the dataset as an experimental
set-up into two sets,Training and Testing. Following this, Data preprocessing is applied
as needed, such as data sampling and data scaling, which is crucial for better performance
with applied models. After that, we utilised four ML models: Cost-Sensitive LR,
DBSCAN, Ensemble RF, and OCC iForest. The models’ evaluation is implemented at
the final step, describing the models’ performance and identifying the best model.

4.2 Ausgrid Dataset

The data we used is available by an Australian energy provider (Ausgrid) in New South
Wales (NSW), Australia. Ausgrid dataset was collected from 300 randomly selected
solar customers in Ausgrid’s energy network region charged on a residential tariff and
installed a gross metered solar system between 1 July 2010 and 30 June 2013 registered
at half-hour intervals. The Ausgrid corporation used three separate meter recording
devices for three different categories (Gross Generation GG, General Consumption GC,
Controlled Load CL). The first meter records the solar generation (GG) of the solar
PV units placed at the rooftop of each household. At the same time, the second meter
records the daily power consumption (GC) in (KWh) for each customer over 48 periods
of the day; the period duration is a half-hour. While the last meter correlated with
water heating is placed in some of the houses by offering a monetary incentive, these
devices allow the provider to control customers’ water heating system for managing
the entire demand on the network [42]. Furthermore, Ausgrid company deleted from
their dataset any personal information that may identify the customers to comply with
clients’ privacy protection. As a result, the dataset contains customer IDs ranging from
1 to 300 and the postcode associated with each consumer, which totals 100 different
postcodes. In summary, for each line, the dataset file contains 54 columns. Starting with
five description columns: Customer IDs, Postcode, Generator Capacity, Consumption
Category and Date, followed by 48 columns of half-hour power meter data. In addition
to the last column (Row Quality), which defined the type of recorded data as actual or
estimated reading [43].

In this project, we used Ausgrid’s dataset from 1 July 2011 – 30 June 2013, separated into
two files (2011-2012 Solar home electricity data) and (2012-2013 Solar home electricity
data) .

Abbreviations 23

4.3 Phase 1

This stage explains the data preprocessing steps required for both (anomaly detection and
anomaly classification) and how we identified the outliers in this study. Moreover, the
data preprocessing illustrates the five significant tasks applied to the data. It starts with
data cleaning by removing any missing values to enhance the data quality, following this,
data filtering by choosing the most relative features. After that, the data is explored and
visualised to interpret the data thoroughly. Next, the feature extraction task defines the
predictive features based on date information, and feature transformation by converting
data into a suitable format for ML models. However, the anomaly identification part
determines the Prophet algorithm and the anomaly decision rules implementation and
discusses the model’s necessary parameters tuning.

4.3.1 Phase 1 - Data preprocessing

The Anaconda platform is utilised to implement the code via Python programming
language, particularly the Jupyter notebook application. The Jupyter application is a
Web-based interactive computing notebook environment used to edit and run Python
code and human-readable documents while representing the data analysis [44]. Moreover,
the Ausgrid datasets are combined in a zipped file, and each year’s data is contained in a
separate CSV file. We began by uploading the dataset files for two years, (2011-2012) and
(2012-2013), with Pandas data frame to perform the data preprocessing. The following
five sections illustrate the data preprocessing tasks applied to the datasets.

Data Cleaning

Data cleaning is a necessary step since the smart meter data may contain some missing
values resulting from an error during the transportation or faults in smart meter records.
Additionally, ML algorithms perform efficiently without the missing values that may
affect parameters’ estimation. To ensure the reliability of our work, we retained only the
actual data and eliminated all Non-Actual values based on the Row Quality feature’s
categories:

• Row Quality is (Blank), indicates that row data represents the actual electricity
measured by the meter during that half-hour [43].

• Row Quality is (NA), implies that the row data are estimations or substitutes for
the power used or generated [43].

Abbreviations Chapter 4 Solution Approach And Implementation

On the other hand, we held all zero numbers and classified them as outliers because
zero power consumption is irrational and clearly indicates a mistake in the smart meter
readings.

Data Filtering

The following are the primary reasons for filtering the dataset:

• The dataset contains two years of readings for 300 customers, which is an enormous
amount of data for experimentation; as a result, we picked only ten customers to
represent a small community and therefore minimise the amount of time required
for experimentation. To accomplish this task, we analysed the Postcode feature
and selected the area with the most customers. Since the selected customers had
the same postcode, we removed the Postcode feature and limited the customers’
IDs feature to ten.

Figure 4.2: The distribution map of Ausgrid. The circles represent postcode regions
covered in the 300-customer dataset.

Our files contain postcodes ranging from 2008 to 2330, which relate to New South
Wales (NSW), Australia. Additionally, as seen in Figure 4.2, the largest area is
located between Newcastle and Sydney; and its postcode value is 2259. Besides,
The selected customers are the top ten customers intersected within both dataset
files (2011-2012) and (2012-2013), the ten selected customers’ IDs as shown in table
4.1.

7 29 30 64 155
160 184 202 206 215

Table 4.1: Selected Customers’ IDs

• This study aims to detect the outliers in the residential consumption load of the
households; therefore, we eliminated all the data features relevant to the power

Abbreviations 25

generation, including the Generator Capacity and all the generation (GG) readings.
Similarly, we excluded all Controlled-Load (CL) readings as this service is not
available in every house. Further, since they are measured with a separate meter
device, the readings would have different patterns which could not be added to the
target general consumption. As a result, we retained only the General Consumption
(GC) readings, which represent the primary and the most significant part of the
household’s daily energy consumption.

• Due to the Prophet algorithm input’s restriction, which requires only two features
with specific names, We reshaped the dataset and combined each date with the 48
half-hour intervals as Date_Time feature, and we listed all the corresponding GC
readings as General Consumption feature. The dataset was filtered and converted
from 54 features into two per ten unique customer IDs over two years. We applied
the Prophet algorithm on each customer independently as an individual experiment;
because each customer has unique behaviour on daily consumption.

Data Exploration

To obtain a summary of the energy outlines of the customers, we started by aggregating
the data annually using the summation method over a year for each customer. Figure
4.3 shows the overall households’ consumption over two years. It indicates how the
individuals’ behaviour varies from one to another, as some of the houses have more power
demand than others. Additionally, energy usage differs by year, such as in 2012, where it
has the most consumption, these changes may have occurred as a consequence of external
factors, for example, weather conditions.

Figure 4.3: Total power consumption over two years for the selected customers.

Abbreviations Chapter 4 Solution Approach And Implementation

Furthermore, we combined all the consumption historical data of our selected consumers
into a single aggregated consumer. The energy form of this aggregated consumer was
resampled on a seasonal basis (three months). Bearing in mind, that the seasons in
Australia defined differently. For instance, the Winter period includes (June - July -
August), the Spring period includes (September - October - November), the Summer
period includes (December - January - February), and the Autumn period includes
(March - April - May). Figure 4.4 shows the peak in total power usage corresponding
to winter/2012, in addition to summer/2012, which have more power demand than
spring/2012 and autumn/2012 due to weather requirements, as people tend to use air
conditioning in the summer and heating in the winter. However, winter/2011 recorded
the lowest consumption value, due to the warm winter.

Figure 4.4: Total seasonal power consumption over two years aggregated across all
customers.

Similarly, the aggregated consumer was grouped on a day-of-week and a monthly basis,
which enabled us to compute a daily power form for a total aggregated customer over
12 months. Figure 4.5 determines that the highest energy demand across all selected
customers was in July (winter season), while the lowest demands were in September and
October (autumn), which confirm the conclusions made in figure 4.4. Besides, it shows
how consumers prefer staying home during the weekends because the consumption is
higher than on weekdays. In contrast, Thursdays have the lowest power demand amongst
all weekdays.

Abbreviations 27

Figure 4.5: Total power consumption over two years by month and day-of-week aggre-
gated across all customers.

Nevertheless, when the aggregated consumer was grouped on a day-of-week and an
hour-of-day basis, we observed a higher variation in energy consumption during the day.
Figure 4.6 indicates higher peaks occurs during the evenings between 5 p.m and 9 p.m,
which reaches around 1000 KWh or more; while it decreases at least by 70 per cent (from
1000 to 300 KWh) after midnight and until 6 a.m.

Figure 4.6: Total power consumption over two years by hour-of-day and day-of-week
aggregated across all customers.

Feature Extraction

Not all ML algorithms can handle the Date-Time feature and perform well; for this
reason, feature extraction is essential to ensure that our ML algorithms perform optimally.
The purpose of this step is to extract the data contained in the original features. Besides,
through data exploration and analysis, we were able to derive the following features:

Abbreviations Chapter 4 Solution Approach And Implementation

• hour-of-day: Figure 4.6 demonstrates that the energy consumption varies by hour,
and there are ups and downs patterns, which are vital for classifying the anomalies
tasks.

• minute-of-hour: considering that the dataset is collected every half-hour, this
feature is critical to avoid confusion caused by repeating the hour-of-day feature
over two half-hour periods. Table 4.2 illustrates an example of features as mentioned
above.

Custom-IDs hour-of-day minute-of-hour General Consumption
7 11 00 0.13
7 11 30 0.27

Table 4.2: Example shows hour-of-day and minute-of-hour features.

• day-of-week: 4.5 and 4.6 figures display the differences in the energy usage
between the days of the week. The day-of-week is an important feature to be
included when training a machine learning algorithm.

• day-of-month: it holds the information of which day of the month the consumption
occur; we included this feature since the clients’ activity patterns vary throughout
the month.

• month-of-year: Figure 4.5 shows that consumers power demand varies from a
month to another; this feature is included to enable ML algorithms to capture
monthly patterns.

• year: It is undoubtedly from figure 4.3 that including the year as a feature is
essential since the customers have various habits over the years.

Feature Transformation

After the features extraction step, we ended up with eight features in the dataset. Some
of these features are considered categorical since their values are determined by labels,
which are customer-ID and year features. ML algorithms usually require numerical
variables as input to achieve better performance. As a result, the dataset’s categorical
features transformed into numerical features before being used to fit and assess models.
The method used for the transformation is called Ordinal Encoder from Scikit-learn
module, which converts the categorical variables into ordinal integers. The output will
be a column of numbers ranging from 0 to (number of categories - 1); for example,
the year feature has three values (2011, 2012 and 2013), and it will transform to (0,
1 and 2) respectively. Additionally, most of the techniques used in this project are

Abbreviations 29

from Scikit-learn module, which is a python package that integrates a diverse set of
state-of-the-art ML methods for solving supervised and unsupervised problems, aiming to
make machine learning accessible to non-specialists through the use of a general-purpose
high-level language [45, 46].

4.3.2 Anomaly Identification

As mentioned in the previous chapter, The efficiency of the Prophet method to address
any seasonality present in time-series data is the primary objective of using it. Power
consumption data is closely related to human activities, which are influenced by various
factors such as holidays, weather seasons, and day/night rhythm. For instance, individuals
may choose to stay at home on weekends and travel on holidays. These historical
patterns in power usage may be analysed and utilised to identify outliers. Consequently,
we employed the Prophet method to analyse and identify the outliers by applying the
anomaly decision rules mentioned in chapter 3.

Implementing an algorithm is usually required parameters tuning step, which is the task
to select the best collection of parameters for a learning method; these parameters values
regulate the learning process and refer to as Hyperparameters. Since we had historical
energy consumption data of ten different customers, we tuned the hyperparameters of
the Prophet method for each of them separately, as each customer had varying power
demands.

First, we installed the required fbprophet package into the anaconda environment to
perform the Prophet method. Following that, we prepared the dataset for modelling by
choosing only the Date-Time and General Consumption (GC) features and renaming
them ’ds’ and ’y’, respectively, as the Prophet demanded. Subsequently, we used a time
series cross-validation technique to tune the hyperparameters. The Prophet package
offers this technique for calculating forecast inaccuracy using historical data, which is
accomplished by picking "cutoff" points in the history and fitting the model using the
data up to those "cutoff" points. After fitting the model, a prediction is formed for
a particular period referred to as the "horizon". The forecasted numbers can then be
compared to the actual values to evaluate the current model. The "cutoff" points can be
defined as a range of historical points, either automatically or manually [21], considering
the following :

• The "initial" training period is chosen to be three times the length of the "horizon"
forecasting period, and its size required to be large enough to capture the seasonality
being studied. For instance, if the yearly seasonality is included in the model, the
initial period must be at least one year in length [21].

Abbreviations Chapter 4 Solution Approach And Implementation

• Cutoffs can be made every half a "horizon" [21].

With the range of two years data and taking the mentioned consideration into account,
we determined an initial training period as 18 months, a horizon forecasting period as
six months and a single cutoff point of "01-12-2012".

The Prophet module provides a performance metrics tool that can be used to select the
hyperparameter combination set with the lowest evaluation measure. This utility analyses
each hyperparameters combination forecast and calculates some valuable statistics on the
prediction performance, such as the root mean squared error (RMSE). The RMSE
is a commonly used metric to assess the difference between the actual and forecasted
values; the smallest RMSE indicates that the model performs the best.

To tune the hyperparameters, we created a dictionary of all rational hyperparameter
combinations. The parameters included in the tuning part is:

• change_point_range: This is the percentage of time in history during which a
trend is permitted to alter. This parameter prevents overfitting from trending
changes towards the time series’s end, where there is a limited runway for fitting it
correctly. For instance, if the parameter is set to 0.8 (80%), the model will not fit
any trend changes occurred during the final 20% of the time series [21].

• changepoint_prior_scale: It establishes the trend’s flexibility, more precisely how
much the trend varies at trend changepoints. This parameter is the most significant.
The too-small value of the parameter will lead to trend underfitting, and too large
the parameter will lead to a trend overfitting [21].

• seasonality_prior_scale: This setting affects the seasonality’s adaptability. Sim-
ilarly, a large value of the parameter permits the seasonality to accommodate
substantial swings. In contrast, a small value of the parameter reduces the season-
ality’s amplitude [21].

• holiday_prior_scale: This regulates the degree of flexibility to holiday impacts, as
with the seasonality_prior_scale [21].

• seasonality_mode: There are two options: additive or multiplicative. By default,
Prophet accommodates additive seasonalities, which means that the seasonality’s
influence is added to the trend to get the prediction. The multiplicative seasonality
grows with the trend, and it is not a constant additive component [21].

After optimising the hyperparameters for each customer’s data and obtaining the optimal
settings, three primary functions are run over each of the ten customers’ data separately.

Abbreviations 31

The three functions are responsible for fitting and predicting the model, identifying and
plotting the anomalies.

• fit_predict_model: this function initialised the Prophet model and added the
necessary seasonality. Including the built-in components such as daily_seasolaity,
yearly_seasonlity and add_country_holidays. Besides the manually implemented
week_days and week_ends seasonality. We set the interval_width parameter to
0.99 to obtain the 99 per cent of confidence interval, in addition to the tuned
hyperparameters. Further, we fitted the model on the whole data of the individual
customer, then predicted the entire data to yield the estimated general consump-
tion ŷ and the associated ŷupper, ŷlower values. Finally, visualised the model’s
components. The following figures show an example of the Prophet components
using customer (number seven) data. The actual data is depicted in Figure 4.7
as black dots, whereas the predicted power usage is depicted as a dark blue line.
Simultaneously, the light blue boundaries denote the ŷupper, and ŷlower values, while
the region between them denotes the confidence interval.

Figure 4.7: The Prophet model’s predictions.

The trend changes are visualised in Fig 4.8, starting with a peak in 2011 and
decreasing to a low in 2013. The holiday component, seen in Figure 4.9, Figure
4.10 captures the yearly seasonality, while the daily seasonality is displayed in fig
4.11, and the week_days and week_ends components are presented in 4.12.

Abbreviations Chapter 4 Solution Approach And Implementation

Figure 4.8: The trend of the Prophet model.

Figure 4.9: The holidays component of the Prophet model.

Figure 4.10: The yearly component of the Prophet model.

Figure 4.11: The daily component of the Prophet model.

Abbreviations 33

Figure 4.12: The week_days and week_ends components of the Prophet model.

• detect_anomalies: in this function, we utilised the forecasting results from the
preceding function as an input to identify the anomalies, where any point beyond
the uncertainty interval is defined to be anomalous. Following the next decision
rules:

– if the true point > ŷupper, anomaly_class ⇒ 1.

– if the true point < ŷlower, anomaly_class ⇒ 1.

– if the true point = 0, anomaly_class ⇒ 1.

– otherwise, anomaly_class ⇒ 0.

This function returns the anomaly classes.

• plot_anomalies: this function visualises the data and the anomalies points. Figure
4.13 shows an example of the same customer data we used in the (fit_predict_model)
section, customer number seven. The figure presents all 35088 rows of data collected
during two years. Actual data are represented by a black circle, whereas green
circles represent anomalies with a diameter proportionate to their distance from
the interval range [ŷlower,ŷupper]. In addition, the yellow interval represents the
uncertainty interval. Moreover, the plot may look complicated as a result of the
massive amount of data points. As a consequence, we exhibit a subset of the
data to illustrate the abnormalities in greater depth. Figure 4.14 depicts actual
consumption data over three months; on the contrary, figure 4.15 depicts anomalies
over the same period.

Abbreviations Chapter 4 Solution Approach And Implementation

Figure 4.13: The anomalies detected in customer data.

Figure 4.14: Half-hour power consumption of customer over three months.

Figure 4.15: Anomalies of half-hour power consumption over three months.

Abbreviations 35

4.4 Phase 2

The first phase’s output data is used as input in this step. The dataset contains
the nine features mentioned above: customer ID, GC, hour_of_day, minute_of_hour,
day_of_week, day_of_month, month_of_year, year, and Anomaly_class. We con-
catenated together all the data of the ten selected customers to create 350888 rows of
labelled power consumption data. However, when we computed the percentage of data
with a negative class (Anomaly class = 0), the result was 96.6 %. By contrast, the
positive class (Anomaly class = 1) accounts for 3.4 % of the total data, resulting in
an imbalanced ratio of 0.036 %, which is referred to as a severe imbalance distribution.
Additionally, the minority class has a 3:100 class distribution, which significantly skewed
the class distribution. When data exhibits these characteristics (severely imbalanced
and skewed distribution), it necessitates the use of particular techniques to correctly
manage the minority class, as discussed in Chapter 3. Figure 4.16 depicts how the data
is disproportionately distributed across the two classes. Further, the link between the
general consumption feature and the Anomaly class feature is illustrated in figure 4.17,
which clearly demonstrates how the anomaly class consumes more and more power than
the normal class, as expected.

Figure 4.16: The histogram of the data classes.

Abbreviations Chapter 4 Solution Approach And Implementation

Figure 4.17: The relationship between power consumption and class variable.

This phase discusses the experimental setup, the imbalanced data preparation procedures
used in our research and the suggested ML models, and how they were executed and
verified. Finally, it discusses the evaluation measures implementation.

4.4.1 Experimental Setup

Model assessment involves more than simply evaluating a model; it also entails evaluating
alternative data preparation techniques, alternative learning algorithms, and alternative
hyperparameters for optimal learning algorithms [12]. Hence, we split the data as 70/30
for a train set and test set to achieve the testing of all possible alternatives. Scikit_learn
has a helper function (train_test_split) to split the data into training and testing sets
randomly. This function has a significant feature for imbalanced data, whereby each set
can have about the same proportion of samples from each target class as the whole set
[45, 46]. The next section of the code is used to split the data into the train and test sets
with precise percentages of 96.6% for the negative class and 3.4% for the positive class.

1 from sklearn . model_selection import train_test_split

2

3 x_train , x_test , y_train , y_test = train_test_split (df.loc [:, ~df. columns

.isin ([’Anomaly ’])], df.Anomaly , test_size =0.3 , random_state =4,

stratify =df.Anomaly , shuffle =True)

Splitting the dataset

Moreover, to experiment with the train set with different data preparation designs, we
used the Scikit_learn function (RepeatedStratifiedKFold). This function split the
training set into k folds and guarantees that the original distribution’s proportion of
positive to negative samples is maintained across all folds. A model is trained with the
first k - 1 folds, while the remaining fold is used to validate the model. The procedure

Abbreviations 37

is continued until the model is validated using each of the folds; then, the model’s
performance is calculated as the average of all k folds runs [12]. The following code
illustrates this procedure.

1 from sklearn . model_selection import RepeatedStratifiedKFold

2

3 # model: is any of the ML models that we would like to test.

4 # f1 is a model evaluation ’s measure

5

6 cv = RepeatedStratifiedKFold (n_splits =10, n_repeats =3, random_state =1)

7 scores = cross_val_score (model , train_set , train_labels_set , scoring =’f1’

, cv=cv)

8 print(’Mean F1_score : %.3f’ % mean(scores))

The learning process with a train set.

Furthermore, to find the optimal hyperparameters of each model under consideration, we
examined two techniques. First, we used GridSearchCV from Scikit_learn, which
examines all possible parameter combinations comprehensively. The function produces
its candidates using a grid of parameter values defined with the param_grid parameter.
In addition, it evaluates all the possible combinations and returns the best combination.
In the code below, we display an example of how this function is implemented [45, 46].
We used the GridSearchCV with the mentioned above K-folds cross-validation method.

1 from sklearn . model_selection import GridSearchCV

2

3 # model: is any of the ML models that we would like to test.

4 # f1 is a model evaluation ’s measure

5

6 param_grid = dict ()

7 param_grid [’model__parameter1 ’] = [" parameter1 ’s values "]

8 param_grid [’model__parameter2 ’] = [" parameter2 ’s values "]

9

10 cv = RepeatedStratifiedKFold (n_splits =10, n_repeats =3, random_state =0)

11 search = GridSearchCV (model , param_grid ,scoring =’f1’, cv=cv)

12 best_model = search .fit(train_set , train_labels_set)

Using the GridSearchCV for hyperparameters optimisation.

Secondly, we used Bayesian hyperparameter optimisation. This method chooses its
parameter combinations by concentrating on those regions of the parameter space that
might yield the most validation scores. This method considers previous assessments when
determining which hyperparameter set to evaluate next [47]. Additionally, this method
requires four main components; the Hyperopt python library is utilised to implement
it:

Abbreviations Chapter 4 Solution Approach And Implementation

• The search space of hyperparameters can be defined as a distribution or a list of
categories of choices [47], as illustrated in the following code.

1 # import the libraries

2 from hyperopt import tpe , STATUS_OK , Trials , hp , fmin

3

4 ’’’ Domains of parameters can be created using one of many

Hyperopt - specific distribution functions . A hp. choice can be used

to indicate parameters consists of a list of categories . ’’’

5 space = { ’parameter1 ’: hp. choice (’parametert1 ’, [" parameter1 ’s

values "]) ,’parameter2 ’ : hp. choice (’parameter2 ’, [" parameter2 ’s

values "]) }

6

The Bayseian search space of hyperparameters example.

• The objective function evaluates hyperparameters set to maximise the objective
measure [47], which is the "F1" measure score in our case. The next code shows an
example of this function.

1 def objective (params):

2 # Use early stopping and evaluate based on f1 -score.

3 # model: is any of the ML models that we would like to test.

4 # f1 is a model evaluation ’s measure .

5

6 scores = cross_val_score (model , train_set , train_labels_set ,

cv=5, scoring =’f1’)

7 # Extract the best score

8 best_score = max(scores)

9 # Loss must be minimised , as maximising the f1 score is

equal to minimising the loss

10 loss = 1 - best_score

11 return {’loss ’: loss , ’status ’: STATUS_OK }

12

The Bayseian objective function example.

• The surrogate function suggests parameter choices for the objective function that
probably increase the abjective measure’s score. In this project, Tree Parzen
Estimator (TPE) is used as a surrogate function, which is a probabilistic model
that maps hyperparameters to the likelihood of achieving a particular score on the
objective function [47].

• The selection function defines the criterion on the surrogate function to suggest the
hyperparameters set to the objective function. The TPE-based surrogate function
uses a common metric referred to as Expected Improvement [47].

The following code displays an example for both functions.

Abbreviations 39

1 # Tree Parzen Estimators Algorithm tpe (the surrogate function)

2 tpe_algorithm = tpe. suggest

3

4 # Trials : This method saves the initialization data and the

dictionary returned by the objective function .

5 model_trials = Trials ()

6

7 # Setting up the surrogate and selection functions in Hyperopt

8 MAX_EVALS = 25 # max number of iterations

9 best_parms = fmin(fn = objective , space = space , algo = tpe.

suggest , max_evals = MAX_EVALS , trials = model_trials)

10

The Bayseian surrogate and selection functions example.

As explained at [47], each iteration follows three main steps, which are:

• Determine the set of hyperparameter values that maximises the Expected Improve-
ment by optimising the selection function over the surrogate function, .

• Submit this hyperparameter combination for evaluation to the objective function,
and obtain the appropriate score.

• Update the surrogate function along with the objective function’s feedback.

4.4.2 Phase 2 - Data Preprocessing

Phase 2 - preprocessing methods are used to enhance the performance of machine learning
models, either through a reduction in execution time or an improvement in the scores of
assessment measures. Two primary techniques were employed and examined with our
models, Data sampling and Data scaling.

Data Sampling

One of the categories to address imbalanced classification problems is Data-Level ap-
proaches which include Data sampling technique; this method modifies the training
examples to provide more balanced class distribution, allowing classifiers to perform
similarly to conventional classification [48]. In chapter 3, we reviewed the three groups of
data sampling. However, the method utilised in this project is based on the suggestions
and findings of the [48] publication.

Abbreviations Chapter 4 Solution Approach And Implementation

Batista et al. [48] discuss and analyse the behaviour of several data sampling techniques
to address imbalanced datasets. They examine various methods that belong to all data
sampling categories. The categories include undersampling, oversampling and hybrid
sampling (oversampling and undersampling combinations). Furthermore, their findings
indicate that hybrid approaches produce very good results for datasets with few positive
examples. According to the authors, SOMTE + ENN removes more examples than the
other hybrid methods, resulting in a more in-depth data cleaning, whereby ENN is used
to exclude instances from both classes, and every example that is misclassified by three
of its nearest neighbours is eliminated from the training set. Consequently, we employed
SMOTE + ENN as a data sampling approach to re-balance the distribution of the data
classes.

The SOMTEENN ready-to-use class from Scikit-imbalanced-learn is utilised in the
study. Whereas SMOTE generates new instances of the minority class, while ENN
reduces noisy points along with class borders. It is worth mentioning that sampling
techniques are used only with the train set, not the test set. Figure 4.18 demonstrates
the difference in the distribution of classes before and after data sampling.

Figure 4.18: The histogram plots of the class distribution for the imbalanced training
set and resampled training set.

Data Scaling

Scaling the dataset and approximating the distributions of the individual features to a
standard normal distribution is a common criterion of many ML algorithms to improve
their performance. As if the data features have various significant variances, the feature
of greater variance may dominate a model’s objective function and prevent the model
from learning from other features appropriately [45, 46].

The Scikit-learn StandardScaler class is examined with some of our models since
the features’ variances vary significantly. The StandardScaler is eliminating the mean

Abbreviations 41

and scaling to unit variance by computing the mean and standard deviation on each
feature individually; subsequently, the standard score of sample x can be calculated by
subtracting the sample from the mean of its feature and dividing the answer on the
standard deviation [45, 46]. Bearing in mind that the data scaling must be applied on
both train and test sets.

4.4.3 Cost-Sensitive Logistic Regression Model

The scikit-learn library has an implementation of a logistic regression algorithm called
LogisticRegression, which support weighted class. The model has a class_weight
hyperparameter, which can be set to a "balanced" value or set to a dictionary with
weights associated with dataset classes. The "balanced" option automatically adjusts
weights inversely proportional to class frequencies in the input data using class labels’
values. The "balanced" class weights can be calculated as follows [45, 46]:

class_weight of a class = Number of total samples
Number of classes× number of samples belongs to the class

(4.1)

Experimental Design

We examined four alternative weighted logistic regression models with the training set.
Three runs of 10-fold stratified cross-validation are adopted to evaluate their performance.
The F1-score is computed in each iteration of cross-validation. Subsequently, the four
LR models are compared by the model’s average F1-score and execution time. The
comparison is involved each of the following models:

• Balanced class weighted LR model with original training dataset.

• Balanced class weighted LR model with (SMOTEENN) resampled training dataset.

• Balanced class weighted LR model with a standardised training dataset.

• Balanced class weighted LR model with a standardised and resampled training
dataset.

Cost-sensitive Logistic Regression Hyperparameters

The two mentioned methods of hyperparameters optimisation are used to tune the
parameters of weighted logistic regression. The reason for utilising both approaches is

Abbreviations Chapter 4 Solution Approach And Implementation

to allow for a comparison between them. We were particularly interested in tuning the
following hyperparameters since it is critical to examine with a variety of different values
in order to determine which values improve the performance of the model:

• Class_weight: It is used to indicate the weights assigned to classes. It is possible
that different class weighting would result in improved performance [46].

• C: It is the inverse of the strength of regularisation, which must always be a positive
float [46].

• Solver: indicates which algorithm should be used to solve the optimisation problem
[46].

• Penalty: is used to define the standard that will be utilised in penalising (regulari-
sation) [46].

4.4.4 DBSCAN Model

Clustering is performed on our dataset using the DBSCAN model from the Scikit-
learn package. The model requires tuning of two critical parameters, namely eps and
min_samples. Additionally, the default metric parameter option is set to "euclidean",
which uses the Euclidean distance measure to determine the distance between samples.

Experimental Design

We started the experiment by defining the hyperparameters’ values based on heuristics.
Authors in [49] stated that the min_samples parameter’s purpose is to smoothen the
density estimate. They suggested setting the parameter to twice the dataset’s dimensions;
for instance, the dimensions of our dataset excluding the class feature are 8; hence the
min_samples value = (2.dim = 2.8 = 16). While [28] proposed determining eps value
by using the nearest neighbour (KNN) algorithm. KNN method is a supervised ML
algorithm that gathers data points to their nearest cluster utilising a preset number
of clusters given by the k parameter. In addition, we assigned the min_samples value
to the k parameter; after that, we plotted the average distance between each point
and its nearest neighbours. The eps value is selected at the graph’s knee point using
KneeLocater from the kneed library. The 4.19 figure shows an example of the average
distance plot.

Moreover, we explored two different DBSCAN models: one that utilised the original
training dataset and another that used a standardised training dataset. The models

Abbreviations 43

Figure 4.19: The knee and KNN distance plot.

were trained throughout the complete training set and provided clustering labels used
to calculate the F1-score. Additionally, the comparison is made using the F1-score and
execution time of the models under consideration.

DBSCAN Hyperparameters

We examined both hyperparameters optimisation methods with the DBSCAN model,
to compare between them. Further, the two parameters that considered in the tuning
experiment are:

• eps: It is the maximum distance between two instances where a point can be
considered a neighbour of another. Which is not a limit on the maximum distance
between points inside a cluster [46].

• min_samples: the total number of neighbours for a point to be deemed as a core
point, including the point itself [46].

4.4.5 Ensemble Random Forest Model

The RandomForestClassifier class from Scikit-learn is used for implementing the
ensemble random forest algorithm.

Experimental Design

With the training dataset, we evaluated seven different ensemble Random Forest models.
As with logistic regression trials, their performance is evaluated using three rounds of
10-fold stratified cross-validation. Each cycle of cross-validation is evaluated using the

Abbreviations Chapter 4 Solution Approach And Implementation

F1-score. Besides, The number of trees in the forest was defined as 100 for all compared
models. Following that, the average F1-score and execution time for the seven RF models
are compared. Each of the following models was included:

• Standard Random Forest model with the original training dataset.

• Standard Random Forest model with (SMOTEENN) resampled training dataset

• Balanced class-weighted Random Forest model with the original training dataset.

• Balanced class-weighted Random Forest model with (SMOTEENN) resampled
training dataset.

• Bootstrap class-weighted Random Forest model with the original training dataset.

• Bootstrap class-weighted Random Forest model with the (SMOTEENN) resampled
training dataset.

• Random Forest model with (Random Undersampling) resampled training dataset.

Furthermore, Jason Brownlee proposed in [12] a modified random forest model called
Balanced Random Forest, which uses bootstrap data sampling to alter the class
distribution explicitly. As by using this modification we would anticipate a more significant
influence on model performance. Hence, we evaluated this model (the last model in
the previous list) using BalancedRandomForestClassifier class from the Scikit-
imbalanced-learn library; this class randomly undersamples the majority class in each
bootstrap sample. Further, we did not investigate the standardisation step because the
nature of RF does not require any scaling preprocessing.

Ensemble Random Forest Hyperparameters

The RandomForestClassifier class has many hyperparameters, and good results are
usually obtained by applying their default values; however, these settings are frequently
not optimal and may result in models that consume a significant amount of RAM. Hence,
cross-validation should be used to determine the optimal parameter values [46]. The
following list summarizes the parameters that are vital to be adjusted.

• n_estimators: is the forest’s trees number. When it is set to a large number, the
results are improved; however, the model takes a longer time for computation.
Besides, the outcomes will plateau after a certain number of trees [46].

Abbreviations 45

• criterion: The quality of a split is determined by this parameter. The terms "gini"
and "entropy" are used to refer to the Gini impurity and the information gain,
respectively [46].

• max_depth: is the tree’s maximum depth. If "None" is specified, nodes are extended
until all leaves are either pure or contain less than min_samples_split samples [46].

• min_samples_split: is the minimum sample size necessary to divide an internal
node [46].

• min_samples_leaf : is the bare minimum number of samples that must be present
at a leaf node. Any split point, regardless of depth, will only be evaluated when
each of the right and left branches has at least min_samples_leaf of training
samples at leaves [46].

• max_features: is the size of random feature subsets to consider when dividing a
node. The smaller number leads to a greater reduction of the variance, while a
larger number can increase the bias [46].

• class_weight: is the weights associated with classes. We consider two options of
this parameter values, which are "balanced" and "balanced_subsample". The former
automatically adjusts weights inversely proportionate to class frequencies in the
input data based on the values of class labels; it can be calculated as equation 4.1.
The latter is identical to "balanced", except that weights are generated for each tree
built using the bootstrap sample [46].

4.4.6 One-Class Isolation Forest model

Scikit-learn offers an implementation of the isolation forest algorithm called Isolation-
Forest. This class isolates data points by randomly choosing a feature and a split-value
in a range between [minimum value, maximum value] of the selected feature. Further,
the number of splitting required to isolate a sample is set to the path’s length from
the root to the terminal node. Additionally, random partitioning significantly reduces
the pathways taken by anomalies, and any specific sample with shorter path lengths is
considered to be anomalous [46]

Experimental Design

We divided the training set into train and validation sets to fit and predict the iForest
models. Based on their F1-score and run duration, we investigated and contrasted two
models. The first model was trained on the new training set and predicted using the

Abbreviations Chapter 4 Solution Approach And Implementation

validation set. In contrast, the second model was only trained over the new training set’s
majority class and predicted the labels of the validation set. As we know the percentage
of positive class samples to negative class samples, we set the contamination parameter
of iForest models to 0.01. This parameter is used to define the number of the dataset’s
outliers.

Isolation Forest Hyperparameters

The following hyperparameters are critical for optimizing iForest performance, as specified
in [46]:

• n_estimators: is the ensemble’s number of base estimators.

• max_samples: is the number of samples obtained from a train set for training each
base estimator.

• contamination: is the fraction of data points that contain outliers. This variable
is used to determine the threshold for the samples’ scores during fitting, and it
should be between [0, 0.5].

• max_features: is the max number of features extracted from a train set for each
base estimator’s training.

• bootstrap: When set to True, individual trees are fitted using replacement on
random subsets of the training data. While if set to False, no replacement sampling
is conducted.

4.4.7 Models Evaluation

To evaluate the models, we created a function called (evaluation) that computes all the
evaluation measures discussed in chapter 3.

We started by using Scikit-learn Confusion_Matrix metric to compute and return
the True Negative TN, False Positive FP, False Negative FN, and True Positive TP
values. After that, the Sensitivity, Specificity, G-mean, True Positive Rate TPR and
False Positive Rate FPR scores can be computed using the Confusion_Matrix returned
values, as explained in chapter 3.

Additionally, we computed the weighted Precision, weighted Recall and weighted F1
scores by utilising Scikit-learn precision_score, recall_score and f1_scoremetrics,
respectively. Besides, a weighted score indicates that a score is calculated by the metric

Abbreviations 47

for each class and averaged across the support samples (the number of actual samples
for each class). Moreover, the F2 score is computed by using fbate_score from Scikit-
learn metrics. This score is vital as we concentrated on the positive class. These metrics
require the true and predicted labels as input.

Furthermore, we used the roc_curve and roc_auc_score functions from Scikit-
learn. The first function enables us to visualise the ROC curve of our models, which
are calculating the probabilities of the estimated class labels (all the models except
DBSCAN). The second function computes the area under the ROC curve, which can be
added to the ROC plots to have an excellent evaluation of the models understudied.

Finally, we used a Core layer machine with a processor of 2 GHz Quad_Core Intel Core
i5 and 16 GB RAM to measure the running time of our models.

Chapter 5

Experimental Results And
Discussion

5.1 Anomaly Detection

As we pointed out in chapters 3 and 4, the Prophet algorithm is an additive model which
combined a collection of components for forecasting. It is noticeable from the example
in figure 5.1 that the Prophet’s annual component captured the monthly peak power
demand for customer-ID #7, comparable to the plot in figure 5.2, which depicts total
historical power consumption aggregated by month and day of the week. Likewise, the
Prophet’s daily component example in figure 5.3 demonstrated the peak hours of the day
for customer-ID #7, which corresponds to the plot of an hour of the day and day of the
week in figure 5.4; both figures display the same insights that the customer consumed
more energy during the evening than after midnight.

Figure 5.1: The Prophet’s yearly component for customer-ID:7.

49

Abbreviations Chapter 5 Experimental Results And Discussion

Figure 5.2: The total energy consumption by month and day of the week for customer-
ID:7.

Figure 5.3: The Prophet’s daily component for customer-ID:7

Figure 5.4: The total energy consumption by an hour of the day, and day of the week
for customer-ID:7.

The Prophet’s model considers all the information and patterns when creating the
forecasted data and the uncertainty interval. We chose a 99% uncertainty interval to
account for any unexpected events requiring additional energy, such as parties. As seen
in figure 5.5, the orange region represents the uncertainty interval, and the blue line
denotes the power consumption for customer-ID #7 during a random ten-day period.
The red dots indicate locations where the blue line exceeded the predicted range region.
These red points describe the outliers in which consumption exceeded expectations.

Abbreviations 51

Figure 5.5: A random ten days of power consumption for customer-ID:7, and the
Prophet’s uncertainty interval.

Furthermore, figure 5.6 displays two graphs of power consumption for two distinct
customers; these graphs present the power consumption over three months and the
uncertainty interval of the Prophet model, highlighting the locations of the anomalies
with red circles. The two customers exhibit various patterns and, therefore, different
outliers. Further, graph (B), which belongs to customer #29, contains red circles
within the uncertainty interval due to the dataset’s zero values for general consumption.
Additionally, figure 5.7 illustrates two different customers’ energy usage over two years;
the black circles indicate actual data, whereas green circles denote anomalies with a
diameter proportional to their distance from the interval range. As a result of a great
number of data points, the plot may appear compact and unclear.

(a) Anomalies of half-hour power consumption over
three months of Customer-ID: 7

(b) Anomalies of half-hour power consumption over
three months of Customer-ID: 29

Figure 5.6: The anomalies of two different clients over three months.

Abbreviations Chapter 5 Experimental Results And Discussion

(a) Anomalies of half-hour power consumption over
two years of Customer-ID: 30

(b) Anomalies of half-hour power consumption over
two years of Customer-ID: 160

Figure 5.7: The anomalies of two distinct customers over two years.

5.2 Imbalanced Classification Experimental Results

This section discusses the experiments conducted on the imbalanced training dataset
using the four stated algorithms and various alternative setups. Additionally, this part
addresses the evaluation of the best models and establishes the final model for categorising
future data points based on the outcomes of the imbalanced classification training.

5.2.1 Grid Search and Bayesian Hyperparameters Optimisations

We evaluated and compared Grid search and Bayesian optimisation as one of the
experiments conducted throughout our research. Both approaches were applied to two
models: logistic regression and DBSCAN.

Grid search trains and validates the model for each parameter combination supplied,
even if the combination area produces unsatisfactory results. Additionally, grid search
may be successful when parameter space is limited; otherwise, it takes a considerably
longer time. On the other hand, Bayesian optimisation selects a parameter combination
based on prior assessments and discards parameter areas that provide undesirable results,
which requires a shorter time than grid search. Simultaneously, Bayesian optimisation
may avoid attempting a new combination region that may produce better results since it
is focused on the area that produces good outcomes [47].

Abbreviations 53

Model Results Grid Search Bayesian Optimisation

LR Run-Time 3678.4s 1486.8s
LR F2-score 0.667 0.667

DBSCAN Run-Time 20888.06s 2108.68s
DBSCAN F2-score 0.155 0.155

Table 5.1: The comparison of the tuning methods.

Table 5.1 compares the execution times of both techniques using LR and DBSCAN
models; the findings indicate that Bayesian optimisation spent less time than Grid search
while maintaining the same F2-score.

5.2.2 Cost-sensitive Logistic Regression Experimental Results

We compared four models in cost-sensitive logistic regression trials. We began by
performing logistic regression with weighted penalty functions on the original training
set. In the second model, we used the SMOTEENN sampling approach and the weighted
LR on the training set. While, in the third model, we used a standardised training set to
execute the weighted LR model. Finally, we used a sampled and standardised training
set to run the weighted LR.

SMOTEENN Scaling F1-score Run-Time

× × 0.516 28.44s
√

× 0.958 46.07s
×

√
0.516 7.39s

√ √
0.958 13.15s

Table 5.2: The Cost-sensitive LR Experimental Results.

As shown in Table 5.2, the final LR model achieved the highest score based on both the
F1-score and the duration time. Additionally, we see that data scaling has no effect on
the F1-score but does influence the model’s execution time. Furthermore, cost-sensitive
LR is a subset of the algorithmic changes for class imbalance discussed in Chapter 3.
However, integrating it with a data-level approach such as data sampling produced far
better outcomes.

Abbreviations Chapter 5 Experimental Results And Discussion

5.2.3 DBSCAN Experimental Results

The reason for using DBSCAN is its capability for detecting outliers. We examined
DBSCAN with both original and standardised training data. Further, we avoided data
sampling because increasing the number of samples from the minority class will degrade
the algorithm’s performance and make it incapable of recognising outliers. The following
figure shows that scaling the data can affect the KNN distance plot, resulting in various
eps parameter values. Besides, Scaling the data ensures that all features contribute
equally to the model and avoid bias towards features with a larger scale.

(a) DBSCAN with original data (b) DBSCAN with standardised data

Figure 5.8: The knee and KNN distance plots.

Additionally, Table 5.3 explains how scaling improves the performance of F1-score and
duration time, as well as how the eps value changes. As the eps parameter decreased
and the min_sample parameter was set to be 16, we observed a rise in the frequency of
anomalies and an enhancement in the F1-score.

Scaling F1-score Run-Time eps min_samples

× 0.075 82.75s 2.008 16
√

0.575 56.97s 0.752 16

Table 5.3: The DBSCAN Experimental Results.

Furthermore, we tested the algorithm’s performance utilising adjusted hyperparameters
and heuristics parameters. As seen in table 5.4, the latter consistently outperforms the
tuned ones. While the heuristics parameter considered all points, the tuned parameters
resulted from several assessments using folds of the training data.

Abbreviations 55

Hyperparameters F2-score G-mean

Tuned parameters 0.155 0.358
Heuristics parameters 0.587 0.908

Table 5.4: The DBSCAN hyperparameters Results.

5.2.4 Ensemble Random Forest Experimental Results

Ensemble random forest merges many classifiers into one classifier without requiring
altering the dataset’s structure. Considering the nature of the RF method, we did not
scale the training data in our trials. The results in Table 5.5 demonstrate that the
standard RF has a slightly better F1-score than the balanced class-weighted RF but
with a longer duration time. Further, bootstrap class-weighted RF produces a higher
F1-score than the latter two. Additionally, the findings reveal that integrating ensemble
RF with the SMOTEENN technique is significantly raised the F1-score considerably
with or without class-weighting; nevertheless, the execution time is increased. Given that
F1-score of balanced and bootstrap class-weighted models were similar, we opted to tune
this parameter, with the outcome favouring bootstrap. Finally, the F1-score indicates
that standard RF with SMOTEENN is superior to random undersampling, despite the
latter’s shorter run-time.

Class-weight Data-sampling F1-score Run-Time

× × 0.857 419.82s
× SMOTEENN 0.993 1061.18s

balanced × 0.851 309.03s
balanced SMOTEENN 0.994 910.32s
bootstrap × 0.865 444.48s
bootstrap SMOTEENN 0.994 1165.81s

× Random Undersampling 0.606 199.07s

Table 5.5: The Ensemble RF Experimental Results.

5.2.5 Isolation Forest Experimental Results

As referred to in chapter 3, One-class classification iForest belongs to algorithm-level
solutions for imbalanced classification tasks, which trains a classifier on the majority class
and regards the minority class as outliers. This type of solution does not require any
data preprocessing to manage the class distribution skew; as a result, we did not apply
data sampling or data scaling. The trials we conducted using iForest are summarized in

Abbreviations Chapter 5 Experimental Results And Discussion

table 5.6. We began by training the model using all of the training data. In comparison,
in the second trial, we trained the model only by using data points from the majority
class and verified it using a dataset from both classes. According to the results, the
second model has a higher F1-score and runs slightly longer.

Dataset F1-score Run-Time

Original dataset 0.296 6.825s
Majority-class dataset 0.526 6.95s

Table 5.6: The iForest Experimental Results.

5.2.6 The Final Evaluation Results for All Models

Our four models were chosen in accordance with the categories of solution techniques
outlined in Chapter 3 for problems involving imbalanced classification. The following
stages guided the research for this project:

• Experiment with the four specified algorithms using a variety of different settings
on the training dataset.

• Tune the hyperparameters of the best models based on the results of the experiments
conducted on the first step.

• Evaluate the best models with the most suitable hyperparameters’ values on the
test dataset to determine the final model for classifying future data points. The
final comparison involved the following models:

1. Class-weighted logistic regression model, which trained on the standardised
and resampled training dataset.

2. DBSCAN model with the heuristics parameters, which trained on the stan-
dardised training dataset.

3. Bootstrap class-weighted ensemble random forest, which trained on the re-
sampled training dataset.

4. One-class iForest model, which trained on the majority class training dataset.

According to Table 5.7, ensemble RF has the most significant score in terms of Sensitivity,
Specificity, and G-mean, indicating the RF’s ability to identify both the negative and,
more importantly, the positive classes. Further, the DBSCAN and iForest produce
comparable results, whereas cost-sensitive LR produces slightly greater results than the
latter two. Furthermore, figure 5.9 demonstrates that ensemble RF outperforms the

Abbreviations 57

other models and has the highest F2-score; LR surpasses DBSCAN and iForest, which
have similar F2-scores.

Models Sensitivity Specificity G-Mean

Cost-sensitive LR 0.911 0.932 0.921
DBSCAN 0.921 0.896 0.908

Ensemble RF 0.972 0.975 0.973
One-class iForest 0.926 0.895 0.91

Table 5.7: The models’ comparisons part-1.

Figure 5.9: The models’ F2-scores.

Additionally, we evaluated our models using the weighted Recall, Precision and F1-score.
The weighted score generates the score for each class individually, but when combined,
they are multiplied by a weight based on the number of actual labels for each class.
These measures are focusing on the majority class. Table 5.8 illustrates that RF has the
highest score amongst the three measures. On the other hand, figure 5.10 shows the
true positive rate TPR and false positive rate FPR for each of the four models. The
capability of RF to detect true positives (TPR) is the highest, while its potential to
misclassify negatives (FPR) is the lowest of the four models. Further, it is noticeable
that DBSCAN and iForest performed similarly and had a superior TPR score than LR;
yet, the LR model has a better FPR.

Models Recall Precision F1-score

Cost-sensitive LR 0.931 0.973 0.946
DBSCAN 0.897 0.971 0.924

Ensemble RF 0.975 0.985 0.978
One-class iForest 0.896 0.971 0.924

Table 5.8: The models’ comparisons part-2.

Abbreviations Chapter 5 Experimental Results And Discussion

Figure 5.10: The models’ True positive rate/ False positive rate.

Moreover, the receiver operating characteristic (ROC) curve is utilized to evaluate the
models (except DBSCAN). These models supplied the necessary false positive, true
positive rates and threshold values for plotting the curve, unlike DBSCAN. The ROC
curves and AUC values for the random forest, iForest, and logistic regression models
are shown in figure 5.11. We observe that RF produces highly significant findings from
the figure, whereas logistic regression produces the lowest score. On the contrary, from
figure 5.12 we notice that logistic regression consumed the shortest execution time, while
DBSCAN took the longest time. At the same time, the RF spent a fairly long time than
LR, which should be considered when we utilise the model.

Figure 5.11: The ROC curves and AUC scores.

Abbreviations 59

Figure 5.12: The models’ execution-times.

As seen by the results and graphs, the ensemble random forest model outperforms all
other models. Combining many classifiers as a single classifier in ensemble random
forest adds more strength to the imbalanced classification than a single classifier does, as
viewed in table 5.5, where the standard random forest gave good results. Additionally,
by integrating the random forest model with a class-weighted method to minimise the
total cost error for the dataset classes and by preprocessing the data with SMOTEENN,
the dataset’s class distribution is rebalanced, resulting in a significant improvement in
the classification task.

5.3 Future Work

We aim to employ a scheduling cluster system in the future to enhance the speed and
reliability of a single computer. We intend to use the entire Ausgrid dataset rather than
just ten clients. Additionally, we plan to utilize and analyze the Ausgrid dataset’s other
categories, such as the controlled load CL category dataset. Moreover, we intend to
test our approach using a variety of different datasets in order to detect negative energy
usage. We plan to compare our anomaly detection model results with other baseline
models like Twitter anomaly detection and Multiuser anomaly detection approaches.

Chapter 6

Conclusions

This thesis proposed an approach for anomaly detection of smart meters and classifying
future smart meter events based on historical power consumption data. This approach is
more effective and efficient than the related works mentioned in chapter 2 since it can
detect and classify a broader range of anomalies.

We applied an unsupervised learning and statistical algorithm for finding the anomalies
based on the customer’s power consumption patterns (FB Propthet). This algorithm
considered the multi-period seasonality and the influence of external factors on real-
world power demand data. Furthermore, after labelling the data with anomalies, we
generated a new dataset which is available for further experimentation by anyone. We also
experimented with classification approaches on the new dataset with labelled anomalies
to find future anomalies. The classification approach achieved a good G-mean score of
97 per cent. For classification, we utilised an ensemble-based machine-learning algorithm
for imbalanced classification. The performance and results of the suggested approach
have verified its efficacy as a powerful method for detecting smart meter anomalies that
could potentially prevent Grid imbalance.

61

List of Figures

3.1 Illustration of a ROC Curve [12]. 20

4.1 The solution approach’s workflow. 21
4.2 The distribution map of Ausgrid. The circles represent postcode regions

covered in the 300-customer dataset. 24
4.3 Total power consumption over two years for the selected customers. . . . 25
4.4 Total seasonal power consumption over two years aggregated across all

customers. 26
4.5 Total power consumption over two years by month and day-of-week aggre-

gated across all customers. 27
4.6 Total power consumption over two years by hour-of-day and day-of-week

aggregated across all customers. 27
4.7 The Prophet model’s predictions. 31
4.8 The trend of the Prophet model. 32
4.9 The holidays component of the Prophet model. 32
4.10 The yearly component of the Prophet model. 32
4.11 The daily component of the Prophet model. 32
4.12 The week_days and week_ends components of the Prophet model. 33
4.13 The anomalies detected in customer data. 34
4.14 Half-hour power consumption of customer over three months. 34
4.15 Anomalies of half-hour power consumption over three months. 34
4.16 The histogram of the data classes. 35
4.17 The relationship between power consumption and class variable. 36
4.18 The histogram plots of the class distribution for the imbalanced training

set and resampled training set. 40
4.19 The knee and KNN distance plot. 43

5.1 The Prophet’s yearly component for customer-ID:7. 49
5.2 The total energy consumption by month and day of the week for customer-

ID:7. 50
5.3 The Prophet’s daily component for customer-ID:7 50
5.4 The total energy consumption by an hour of the day, and day of the week

for customer-ID:7. 50
5.5 A random ten days of power consumption for customer-ID:7, and the

Prophet’s uncertainty interval. 51
5.6 The anomalies of two different clients over three months. 51
5.7 The anomalies of two distinct customers over two years. 52
5.8 The knee and KNN distance plots. 54
5.9 The models’ F2-scores. 57

63

Abbreviations LIST OF FIGURES

5.10 The models’ True positive rate/ False positive rate. 58
5.11 The ROC curves and AUC scores. 58
5.12 The models’ execution-times. 59

List of Tables

3.1 Confusion Matrix of Binary Classification 18

4.1 Selected Customers’ IDs . 24
4.2 Example shows hour-of-day and minute-of-hour features. 28

5.1 The comparison of the tuning methods. 53
5.2 The Cost-sensitive LR Experimental Results. 53
5.3 The DBSCAN Experimental Results. 54
5.4 The DBSCAN hyperparameters Results. 55
5.5 The Ensemble RF Experimental Results. 55
5.6 The iForest Experimental Results. 56
5.7 The models’ comparisons part-1. 57
5.8 The models’ comparisons part-2. 57

65

Appendix A

Source Code

The source code of the thesis is available on: https://github.com/Fadwa-Maatug/

Master-Thesis-Anomaly-Detection-of-Smart-meter-Data.

There are two sub-folder: Part-1 and Part-2.

• The Part-1 folder contains a Jupyter notebook file with the python code of the
first phase of the proposed solution approach (Anomaly detection and labelling the
datasets), besides the dataset files and a file of the best hyperparameter values.

• The Part-2 folder contains a Jupyter notebook file with the python code of the
second phase of the suggested approach (Imbalanced classification models) and the
labelled dataset resulting from the first phase.

67

https://github.com/Fadwa-Maatug/Master-Thesis-Anomaly-Detection-of-Smart-meter-Data
https://github.com/Fadwa-Maatug/Master-Thesis-Anomaly-Detection-of-Smart-meter-Data

Bibliography

[1] Xiaohui Wang, Ting Zhao, He Liu, and Rong He. Power Consumption Predicting
and Anomaly Detection Based on Long Short-Term Memory Neural Network. In
2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), pages 487–491, April 2019. doi: 10.1109/ICCCBDA.2019.8725704.

[2] Yimin Zhou, Yanfeng Chen, Guoqing Xu, Qi Zhang, and Ludovic Krundel. Home
energy management with PSO in smart grid. In 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE), pages 1666–1670, June 2014. doi:
10.1109/ISIE.2014.6864865. ISSN: 2163-5145.

[3] Leping Zhang, Lu Wan, Yong Xiao, Shuangquan Li, and Chengpeng Zhu. Anomaly
Detection method of Smart Meters data based on GMM-LDA clustering feature
Learning and PSO Support Vector Machine. In 2019 IEEE Sustainable Power
and Energy Conference (iSPEC), pages 2407–2412, November 2019. doi: 10.1109/
iSPEC48194.2019.8974989.

[4] Rituka Jaiswal, Antorweep Chakravorty, and Chunming Rong. Distributed Fog
Computing Architecture for Real-Time Anomaly Detection in Smart Meter Data.
In 2020 IEEE Sixth International Conference on Big Data Computing Service and
Applications (BigDataService), pages 1–8, Oxford, United Kingdom, August 2020.
IEEE. ISBN 978-1-72817-022-0. doi: 10.1109/BigDataService49289.2020.00009.
URL https://ieeexplore.ieee.org/document/9179551/.

[5] Xiufeng Liu and Per Sieverts Nielsen. Regression-based Online Anomaly Detection
for Smart Grid Data. arXiv:1606.05781 [cs], June 2016. URL http://arxiv.org/

abs/1606.05781. arXiv: 1606.05781.

[6] Wen-Xiang Fang, Po-Chao Lan, Wan-Rung Lin, Hsiao-Chen Chang, Hai-Yen Chang,
and Yi-Hsien Wang. Combine Facebook Prophet and LSTM with BPNN Forecasting
financial markets: the Morgan Taiwan Index. In 2019 International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS), pages 1–2,
December 2019. doi: 10.1109/ISPACS48206.2019.8986377. ISSN: 2642-3529.

69

https://ieeexplore.ieee.org/document/9179551/
http://arxiv.org/abs/1606.05781
http://arxiv.org/abs/1606.05781

Bibliography BIBLIOGRAPHY

[7] Froogh Fathnia, Farid Fathnia, and D. B. Mohammad Hossein Javidi. Detection
of anomalies in smart meter data: A density-based approach. In 2017 Smart Grid
Conference (SGC), pages 1–6, December 2017. doi: 10.1109/SGC.2017.8308852.
ISSN: 2572-6927.

[8] Vikramaditya Jakkula and Diane Cook. Outlier Detection in Smart Environment
Structured Power Datasets. In 2010 Sixth International Conference on Intelligent
Environments, pages 29–33, July 2010. doi: 10.1109/IE.2010.13.

[9] Halldor Janetzko, Florian Stoffel, Sebastian Mittelstädt, and Daniel Keim. Anomaly
Detection for Visual Analytics of Power Consumption Data. Computers & Graphics,
38:27–37, February 2014. doi: 10.1016/j.cag.2013.10.006.

[10] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge University Press,
February 2019. ISBN 978-1-108-42209-3. Google-Books-ID: CYaEDwAAQBAJ.

[11] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz
Krawczyk, and Francisco Herrera. Learning From Imbalanced Data Sets. Springer,
Cham, Switzerland, 2018. ISBN 978-3-319-98073-7. URL http://search.

ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1920612&scope=site.

[12] Jason Brownlee. Imbalanced Classification with Python. Jason Brown-
lee, v1.3 edition, 2021. URL https://machinelearningmastery.com/

imbalanced-classification-with-python/.

[13] Oded Maimon and Lior Rokach, editors. Data Mining and Knowledge Discovery
Handbook. Springer US, Boston, MA, 2010. ISBN 978-0-387-09822-7 978-0-387-
09823-4. doi: 10.1007/978-0-387-09823-4. URL http://link.springer.com/10.

1007/978-0-387-09823-4.

[14] Wen-Xiang Fang, Po-Chao Lan, Wan-Rung Lin, Hsiao-Chen Chang, Hai-Yen Chang,
and Yi-Hsien Wang. Combine Facebook Prophet and LSTM with BPNN Forecasting
financial markets: the Morgan Taiwan Index. In 2019 International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS), pages 1–2,
December 2019. doi: 10.1109/ISPACS48206.2019.8986377. ISSN: 2642-3529.

[15] Anusha Garlapati, Doredla Radha Krishna, Kavya Garlapati, Nandigama mani
Srikara Yaswanth, Udayagiri Rahul, and Gayathri Narayanan. Stock Price Prediction
Using Facebook Prophet and Arima Models. In 2021 6th International Conference for
Convergence in Technology (I2CT), pages 1–7, April 2021. doi: 10.1109/I2CT51068.
2021.9418057.

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1920612&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1920612&scope=site
https://machinelearningmastery.com/imbalanced-classification-with-python/
https://machinelearningmastery.com/imbalanced-classification-with-python/
http://link.springer.com/10.1007/978-0-387-09823-4
http://link.springer.com/10.1007/978-0-387-09823-4

Bibliography 71

[16] Bineet Kumar Jha and Shilpa Pande. Time Series Forecasting Model for Supermarket
Sales using FB-Prophet. In 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC), pages 547–554, April 2021. doi:
10.1109/ICCMC51019.2021.9418033.

[17] Md. Mehedi Hasan Shawon, Sumaiya Akter, Md. Kamrul Islam, Sabbir Ahmed, and
Md. Mosaddequr Rahman. Forecasting PV Panel Output Using Prophet Time Series
Machine Learning Model. In 2020 IEEE REGION 10 CONFERENCE (TENCON),
pages 1141–1144, November 2020. doi: 10.1109/TENCON50793.2020.9293751. ISSN:
2159-3450.

[18] Cynthia Freeman, Jonathan Merriman, Ian Beaver, and Abdullah Mueen. Exper-
imental Comparison of Online Anomaly Detection Algorithms. In Experimental
Comparison of Online Anomaly Detection Algorithms, Sarasota, Florida, USA, May
2019. Artificial Intelligence Research Society Conference.

[19] Karthick Thiyagarajan, Sarath Kodagoda, Nalika Ulapane, and Mukesh Prasad.
A Temporal Forecasting Driven Approach Using Facebook’s Prophet Method for
Anomaly Detection in Sewer Air Temperature Sensor System. In 2020 15th IEEE
Conference on Industrial Electronics and Applications (ICIEA), pages 25–30, Novem-
ber 2020. doi: 10.1109/ICIEA48937.2020.9248142. ISSN: 2158-2297.

[20] Ritchie Vink. Build Facebook’s Prophet in PyMC3; Bayesian time
series analyis with Generalized Additive Models - Ritchie Vink, Oc-
tober 2018. URL https://www.ritchievink.com/blog/2018/10/09/

build-facebooks-prophet-in-pymc3-bayesian-time-series-analyis-with-generalized-additive-models/.

[21] Open Source Facebook. Quick Start, March 2021. URL http://facebook.github.

io/prophet/docs/quick_start.html.

[22] Shravan Vasishth, Bruno Nicenboim, and Daniel Schad. An Introduction to Bayesian
Data Analysis for Cognitive Science. BOOKDOWN, June 2021. URL https:

//vasishth.github.io/Bayes_CogSci/.

[23] Jeremy Oakley. Chapter 5 Interval estimates and confidence inter-
vals | MAS113 Part 2: Data Science. BOOKDOWN, February 2021.
URL http://www.jeremy-oakley.staff.shef.ac.uk/mas113/notes/

interval-estimates-and-confidence-intervals.html.

[24] Anastasios Bellas, Charles Bouveyron, Marie Cottrell, and Jerome Lacaille.
Anomaly Detection Based on Confidence Intervals Using SOM with an Appli-
cation to Health Monitoring. arXiv:1508.04154 [stat], 295:145–155, 2014. doi:

https://www.ritchievink.com/blog/2018/10/09/build-facebooks-prophet-in-pymc3-bayesian-time-series-analyis-with-generalized-additive-models/
https://www.ritchievink.com/blog/2018/10/09/build-facebooks-prophet-in-pymc3-bayesian-time-series-analyis-with-generalized-additive-models/
http://facebook.github.io/prophet/docs/quick_start.html
http://facebook.github.io/prophet/docs/quick_start.html
https://vasishth.github.io/Bayes_CogSci/
https://vasishth.github.io/Bayes_CogSci/
http://www.jeremy-oakley.staff.shef.ac.uk/mas113/notes/interval-estimates-and-confidence-intervals.html
http://www.jeremy-oakley.staff.shef.ac.uk/mas113/notes/interval-estimates-and-confidence-intervals.html

Bibliography BIBLIOGRAPHY

10.1007/978-3-319-07695-9_14. URL http://arxiv.org/abs/1508.04154. arXiv:
1508.04154.

[25] Feng SHEN, Run WANG, and Yu SHEN. A Cost-Sensitive Logistic Regression Credit
Scoring Model Based on Multi-Objective Optimization Approach. Technological &
Economic Development of Economy, 26(2):405–429, March 2020. ISSN 20294913.
doi: 10.3846/tede.2019.11337. URL http://search.ebscohost.com/login.aspx?

direct=true&db=bth&AN=142286599&scope=site. Publisher: Vilnius Gediminas
Technical University.

[26] Lili Zhang, Trent Geisler, Herman Ray, and Ying Xie. Improving logistic regression on
the imbalanced data by a novel penalized log-likelihood function. Journal of Applied
Statistics, 0(0):1–21, June 2021. ISSN 0266-4763. doi: 10.1080/02664763.2021.
1939662. URL https://doi.org/10.1080/02664763.2021.1939662. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/02664763.2021.1939662.

[27] Lili Zhang, Herman Ray, Jennifer Priestley, and Soon Tan. A descriptive
study of variable discretization and cost-sensitive logistic regression on imbal-
anced credit data. Journal of Applied Statistics, 47(3):568–581, February 2020.
ISSN 0266-4763. doi: 10.1080/02664763.2019.1643829. URL https://doi.

org/10.1080/02664763.2019.1643829. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/02664763.2019.1643829.

[28] S. Wibisono, M. T. Anwar, A. Supriyanto, and I. H. A. Amin. Multivariate
weather anomaly detection using DBSCAN clustering algorithm. Journal of Physics:
Conference Series, 1869(1):012077, April 2021. ISSN 1742-6596. doi: 10.1088/
1742-6596/1869/1/012077. URL https://doi.org/10.1088/1742-6596/1869/1/

012077. Publisher: IOP Publishing.

[29] Mete Celik, Filiz Dadaser-Celik, and Ahmet Dokuz. Anomaly Detection in Tem-
perature Data Using DBSCAN Algorithm. Springer Science+Business, June 2011.
doi: 10.1109/INISTA.2011.5946052. Journal Abbreviation: INISTA 2011 - 2011
International Symposium on INnovations in Intelligent SysTems and Applications
Publication Title: INISTA 2011 - 2011 International Symposium on INnovations in
Intelligent SysTems and Applications.

[30] Hossein Saeedi Emadi and Sayyed Majid Mazinani. A Novel Anomaly Detec-
tion Algorithm Using DBSCAN and SVM in Wireless Sensor Networks. Wireless
Personal Communications, 98(2):2025–2035, January 2018. ISSN 0929-6212, 1572-
834X. doi: 10.1007/s11277-017-4961-1. URL http://link.springer.com/10.

1007/s11277-017-4961-1.

http://arxiv.org/abs/1508.04154
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=142286599&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=142286599&scope=site
https://doi.org/10.1080/02664763.2021.1939662
https://doi.org/10.1080/02664763.2019.1643829
https://doi.org/10.1080/02664763.2019.1643829
https://doi.org/10.1088/1742-6596/1869/1/012077
https://doi.org/10.1088/1742-6596/1869/1/012077
http://link.springer.com/10.1007/s11277-017-4961-1
http://link.springer.com/10.1007/s11277-017-4961-1

Bibliography 73

[31] Yashaswini Hegde and S.K. Padma. Sentiment Analysis Using Random Forest
Ensemble for Mobile Product Reviews in Kannada. In 2017 IEEE 7th International
Advance Computing Conference (IACC), pages 777–782, IEEE 7th International
Advance Computing Conference, January 2017. doi: 10.1109/IACC.2017.0160. ISSN:
2473-3571.

[32] Akin Ozçift. Random forests ensemble classifier trained with data resampling strategy
to improve cardiac arrhythmia diagnosis. Computers in biology and medicine, 41(5):
265–271, 2011. doi: http://dx.doi.org.ezproxy.uis.no/10.1016/j.compbiomed.2011.03.
001. URL http://www.proquest.com/docview/863432648?pq-origsite=primo.
Num Pages: 7.

[33] Shaghayegh Miraki, Sasan Hedayati Zanganeh, Kamran Chapi, Vijay P. Singh, Ataol-
lah Shirzadi, Himan Shahabi, and Binh Thai Pham. Mapping Groundwater Potential
Using a Novel Hybrid Intelligence Approach. Water Resources Management, 33(1):
281–302, January 2019. ISSN 0920-4741, 1573-1650. doi: 10.1007/s11269-018-2102-6.
URL http://link.springer.com/10.1007/s11269-018-2102-6.

[34] Yoga Pristyanto, Anggit Ferdita Nugraha, Irfan Pratama, and Akhmad Dahlan. En-
semble Model Approach For Imbalanced Class Handling on Dataset. In 2020 3rd In-
ternational Conference on Information and Communications Technology (ICOIACT),
pages 17–21. IEEE, November 2020. doi: 10.1109/ICOIACT50329.2020.9331984.

[35] Ehdieh Khaledian, Shikhar Pandey, Pratim Kundu, and Anurag K. Srivastava. Real-
Time Synchrophasor Data Anomaly Detection and Classification Using Isolation
Forest, KMeans, and LoOP. IEEE Transactions on Smart Grid, 12(3):2378–2388,
May 2021. ISSN 1949-3061. doi: 10.1109/TSG.2020.3046602. Conference Name:
IEEE Transactions on Smart Grid.

[36] Kai Song, Yujie Zhou, Hongming Liu, and Nianhao Zhu. Isolated forest in keystroke
dynamics-based authentication: Only normal instances available for training. In 2017
2nd IEEE International Conference on Computational Intelligence and Applications
(ICCIA), pages 63–67. IEEE, September 2017. doi: 10.1109/CIAPP.2017.8167061.

[37] Yu Qin and YuanSheng Lou. Hydrological Time Series Anomaly Pattern Detection
based on Isolation Forest. In 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), pages 1706–1710. IEEE,
March 2019. doi: 10.1109/ITNEC.2019.8729405.

[38] Shaoqing Liu, Zhenshan Ji, and Yong Wang. Improving Anomaly Detection Fusion
Method of Rotating Machinery Based on ANN and Isolation Forest. In 2020
International Conference on Computer Vision, Image and Deep Learning (CVIDL),
pages 581–584. IEEE, July 2020. doi: 10.1109/CVIDL51233.2020.00-23.

http://www.proquest.com/docview/863432648?pq-origsite=primo
http://link.springer.com/10.1007/s11269-018-2102-6

Bibliography BIBLIOGRAPHY

[39] Alexander I. Filippov, Artem V. Iuzbashev, and Alexey S. Kurnev. User authentica-
tion via touch pattern recognition based on isolation forest. In 2018 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
pages 1485–1489. IEEE, January 2018. doi: 10.1109/EIConRus.2018.8317378.

[40] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In 2008
Eighth IEEE International Conference on Data Mining, pages 413–422, Pisa, Italy,
December 2008. IEEE. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.2008.17. URL
http://ieeexplore.ieee.org/document/4781136/.

[41] Giang Hoang Nguyen, Abdesselam Bouzerdoum, and Son Lam Phung.
Learning Pattern Classification Tasks with Imbalanced Data Sets. Inte-
chOpen, October 2009. ISBN 978-953-307-014-8. doi: 10.5772/7544.
URL https://www.intechopen.com/books/pattern-recognition/

learning-pattern-classification-tasks-with-imbalanced-data-sets.
Publication Title: Pattern Recognition.

[42] Elizabeth L. Ratnam, Steven R. Weller, Christopher M. Kellett, and Alan T. Murray.
Residential load and rooftop PV generation: an Australian distribution network
dataset. International Journal of Sustainable Energy, 36(8):787–806, September
2017. ISSN 1478-6451, 1478-646X. doi: 10.1080/14786451.2015.1100196. URL
https://www.tandfonline.com/doi/full/10.1080/14786451.2015.1100196.

[43] Solar home electricity data - Ausgrid, 2020. URL https://www.ausgrid.com.au:

443/Industry/Our-Research/Data-to-share/Solar-home-electricity-data.

[44] Anaconda | The World’s Most Popular Data Science Platform, 2021. URL https:

//www.anaconda.com/.

[45] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL
http://jmlr.org/papers/v12/pedregosa11a.html.

[46] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques
Grobler, Robert Layton, Jake Vanderplas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. API design for machine learning software: experiences from the scikit-
learn project. arXiv:1309.0238 [cs], September 2013. URL http://arxiv.org/abs/

1309.0238. arXiv: 1309.0238.

http://ieeexplore.ieee.org/document/4781136/
https://www.intechopen.com/books/pattern-recognition/learning-pattern-classification-tasks-with-imbalanced-data-sets
https://www.intechopen.com/books/pattern-recognition/learning-pattern-classification-tasks-with-imbalanced-data-sets
https://www.tandfonline.com/doi/full/10.1080/14786451.2015.1100196
https://www.ausgrid.com.au:443/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
https://www.ausgrid.com.au:443/Industry/Our-Research/Data-to-share/Solar-home-electricity-data
https://www.anaconda.com/
https://www.anaconda.com/
http://jmlr.org/papers/v12/pedregosa11a.html
http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238

Bibliography 75

[47] Mike Kraus. Using Bayesian Optimization to reduce the time spent on
hyperparameter tuning, March 2019. URL https://medium.com/vantageai/

bringing-back-the-time-spent-on-hyperparameter-tuning-with-bayesian-optimisation-2e21a3198afb.

[48] Gustavo Batista, Ronaldo Prati, and Maria-Carolina Monard. A Study of the Be-
havior of Several Methods for Balancing machine Learning Training Data. SIGKDD
Explorations, 6:20–29, June 2004. doi: 10.1145/1007730.1007735.

[49] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei
Xu. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DB-
SCAN. ACM Transactions on Database Systems, 42(3):1–21, July 2017. ISSN
03625915. doi: 10.1145/3068335. URL http://search.ebscohost.com/login.

aspx?direct=true&db=bth&AN=124428091&scope=site. Publisher: Association
for Computing Machinery.

https://medium.com/vantageai/bringing-back-the-time-spent-on-hyperparameter-tuning-with-bayesian-optimisation-2e21a3198afb
https://medium.com/vantageai/bringing-back-the-time-spent-on-hyperparameter-tuning-with-bayesian-optimisation-2e21a3198afb
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=124428091&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=124428091&scope=site

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Approach and Contributions
	1.3 Outline

	2 Related Work
	3 Methodology Background and Theoretical Structure
	3.1 Introduction
	3.2 The Prophet Method
	3.3 Data Sampling
	3.4 Cost-Sensitive Logistic Regression Algorithm
	3.5 Clustering using DBSCAN Algorithm
	3.6 Ensemble Random Forest Algorithm
	3.7 One-Class Isolation Forest Algorithm
	3.8 Model Evaluation

	4 Solution Approach And Implementation
	4.1 Proposed Solution Introduction
	4.2 Ausgrid Dataset
	4.3 Phase 1
	4.3.1 Phase 1 - Data preprocessing
	4.3.2 Anomaly Identification

	4.4 Phase 2
	4.4.1 Experimental Setup
	4.4.2 Phase 2 - Data Preprocessing
	4.4.3 Cost-Sensitive Logistic Regression Model
	4.4.4 DBSCAN Model
	4.4.5 Ensemble Random Forest Model
	4.4.6 One-Class Isolation Forest model
	4.4.7 Models Evaluation

	5 Experimental Results And Discussion
	5.1 Anomaly Detection
	5.2 Imbalanced Classification Experimental Results
	5.2.1 Grid Search and Bayesian Hyperparameters Optimisations
	5.2.2 Cost-sensitive Logistic Regression Experimental Results
	5.2.3 DBSCAN Experimental Results
	5.2.4 Ensemble Random Forest Experimental Results
	5.2.5 Isolation Forest Experimental Results
	5.2.6 The Final Evaluation Results for All Models

	5.3 Future Work

	6 Conclusions
	List of Figures
	List of Tables
	A Source Code
	Bibliography

