
energies

Article

Efficient Dimensionality Reduction Methods in Reservoir
History Matching

Amine Tadjer 1,* , Reider B. Bratvold 1 and Remus G. Hanea 1,2

����������
�������

Citation: Tadjer, A.; Bratvold, R.B.;

Hanea, R.G. Efficient Dimensionality

Reduction Methods in Reservoir

History Matching. Energies 2021, 14,

3137. https://doi.org/10.3390/

en14113137

Academic Editors: Vasily Demyanov;

Leonardo Azevedo

Received: 25 February 2021

Accepted: 24 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Energy Resources, University of Stavanger, 4021 Stavanger, Norway;
reidar.bratvold@uis.no (R.B.B.); remus.hanea@uis.no (R.G.H.)

2 Equinor ASA, Forusbeen 50, 4035 Stavanger, Norway
* Correspondence: amine.tadjer@uis.no

Abstract: Production forecasting is the basis for decision making in the oil and gas industry, and can
be quite challenging, especially in terms of complex geological modeling of the subsurface. To help
solve this problem, assisted history matching built on ensemble-based analysis such as the ensemble
smoother and ensemble Kalman filter is useful in estimating models that preserve geological realism
and have predictive capabilities. These methods tend, however, to be computationally demanding, as
they require a large ensemble size for stable convergence. In this paper, we propose a novel method
of uncertainty quantification and reservoir model calibration with much-reduced computation
time. This approach is based on a sequential combination of nonlinear dimensionality reduction
techniques: t-distributed stochastic neighbor embedding or the Gaussian process latent variable
model and clustering K-means, along with the data assimilation method ensemble smoother with
multiple data assimilation. The cluster analysis with t-distributed stochastic neighbor embedding
and Gaussian process latent variable model is used to reduce the number of initial geostatistical
realizations and select a set of optimal reservoir models that have similar production performance to
the reference model. We then apply ensemble smoother with multiple data assimilation for providing
reliable assimilation results. Experimental results based on the Brugge field case data verify the
efficiency of the proposed approach.

Keywords: uncertainty quantification; history matching; reservoir simulation; data assimilation;
dimensionality reduction

1. Introduction

Research scientists have worked for many years to develop viable methods to calibrate
complex reservoir models. However, the uncertainty associated with reservoir models
is highly significant, introducing considerable errors in the modeling process. There are
several ways to quantify uncertainty in reservoirs. One is the conditioning of reservoir
parameters to observed production data, a process referred to as inverse problem or
history matching (HM). The first step of HM is parameterization, namely to independently
define and vary the model variables in a numerical reservoir simulation model: porosity,
permeability, the density and permeability of fractures, the initial depths of oil-water and
gas-oil contacts, relative permeability curves, capillary pressure curves, fluid composition,
aquifer strength, and the size and fault transmissibility [1]. It is not realistic to do so,
however, because of the large area of possible adjustment caused by the large number of
grid blocks and variables; the number of varying parameters should therefore be as small
as possible. To do this, a reparameterization method based on the pilot point method, the
spline function method, the wavelet function method, Karhunen–Loeve reparameterization,
and discrete cosine transform was used [2]. The second step is to select the production data,
which must be sensitive to the parameters needed to be history matched. The sensitivity
becomes more complex, however, in cases using reservoirs with multiphase flow. In these
cases, the cross-covariance of production data to model variables is used instead, its main
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advantage being that it is generally smoother and can show a more global relationship
between data and variables, since it is a product of sensitivities and covariances.

The algorithms for HM are diverse. Evolutionary algorithms are often considered the
standard approach, since, by generating a new model combining two Gaussian reservoir
models, the gradual deformation algorithm reduces the HM problem to a one-dimensional
minimization problem [2]. Sambridge (1999) [3] introduced a neighborhood algorithm in
which a resampling of the parameters is led by using information in an available ensemble.
In addition, several other methods have been introduced to optimize reservoir models via
particle swarm optimization [4], simulated annealing [5], and simultaneous perturbation
stochastic approximation [6]. When solving the history matching problem, a key issue
must be considered: uncertainty quantification. Uncertainty quantification requires strong
knowledge of the reservoir characteristics, and uncertainty should be represented by a
set of reservoir models (or realizations) instead of a single history-matched model. The
Markov chain Monte Carlo method (McMC) [7], the randomized maximum likelihood
method [8], the EnKF method [8–10], the ensemble smoother (ES) [11], and the ensemble
smoother with multiple data assimilation (ES-MDA) [12,13] are useful methods to quantify
uncertainty. For all of these techniques, accuracy and speed are two main factors due to the
non-unique solutions and the ill-posed inverse problems.

Many parametrization methods used in DR have already been introduced. For in-
stance, Vo and Durlofsky [14] used principal component analysis (PCA) to reparametrize
high dimension data into low dimensional space, then regenerated new realizations based
on principal parameters from PCA for data assimilation, while others have used singular
value decomposition [15] and Kernel PCA (KPCA) [16]. Muzammil. H et al. [17] applied
PCA to account for the model-error component during model calibration. Kang et al.
(2017) and Kang et al. (2019) [18,19] also introduced PCA to select suitable models for
EnKF. Tolstukhin et al. [20] demonstrated how data analytics can improve efficiency of
ensemble history matching by analyzing the statistics that link the static model ensemble
and the dynamic model ensemble update. Satija et al. [21] proposed a method known as
direct forecasting (DF) based on projecting the prior predictions into a low-dimensional
canonical space to maximize the projected oil data and estimate the joint distribution of
historical and forecasted data through linear Gaussian regression; they concluded that
this method provided uncertainty estimates regarding production forecast that reasonably
agreed with rejection sampling. Park et al. [22] proposed an extended approach based on
direct forecasting, where both of the geological model parameters and dynamic data are
simultaneously used. Our approach in the current paper is different from the previous
work in Kang et al. (2019) [19]. Dimensionality reduction techniques such as PCA and SVD,
however, are linear approaches that may not accurately represent the relationship between
high dimensional parameters and latent variables in reduced space, which likely lead to
poor performance of model assimilation and prediction. In addition, the use of EnKF tends
to be computationally prohibitive in certain circumstances and also generates spurious
correlations leading to loss of geological realism and underestimation of uncertainties
(ensemble collapse). In this work, we propose a novel scheme to reduce the number of
ensemble members while preserving the prediction quality by combining ES-MDA with
machine learning DR techniques and cluster analysis. In this paper, we demonstrate the
efficiency of using the non-linear DR techniques t-distributed stochastic neighbor em-
bedding (t-SNE) [11] and Gaussian process latent variable model (GPLVM) [23,24] along
with clustering K-means to select effective reservoir models and save computational time
without simulating and assimilating the entire initial ensemble. This study uses the Brugge
field reservoir case to demonstrate that the new implementation can make computation
faster and more robust than the standard procedure proposed in [12,13] and can provide
appropriate posterior uncertainty quantification.

The paper is structured as follows. In the next section, we present the complete
methodology, by which we tested the proposed workflow in the well-known Brugge
field reservoir model. In addition, several cases, involving different reference models,
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are considered. Finally, some concluding remarks and possible future work directions
are provided.

2. Materials and Methods

The procedure applied in this study has four main stages:

1. The first stage includes generating ensemble reservoir models and analyzing whether
the observed (reference) prior data can predict posterior distribution that appertains
to the prior range.

2. The second stage involves reducing the ensemble dimension and constructing a 2D
space by using t-SNE and GPLVM.

3. The third stage uses clustering K-means to extract a set of reservoir models with the
least production error compared to the reference model.

4. After extracting the models and selecting the most informative ones, we began the
HM process using ES-MDA, and finally we compared the performance of history
matching analysis of the proposed workflow with the standard ES-MDA without
using dimensionality reduction techniques.

The general steps of the approach are shown in Figure 1 and algorithm solutions
employed are described in more detail later.

Figure 1. Flow chart for the history matching with dimensionality reduction framework.

2.1. Prior Sampling and Analysis

Due to the high dimensionality and nonlinearity of subsurface systems physics-based
models, Monte Carlo simulations were used to sample and identify the possible prior range
of model parameterization and probability distribution for each geological parameter
(e.g., the structural model, rock types, the petrophysical model, and subsurface fluid
distribution). Let m ∈ RN denote the vector of uncertain static parameters of a reservoir
model with a dynamic data variable (e.g., oil production and water cuts) as vector d. The
nonlinear function data forward model is defined as

d = Gd(m) (1)

The function Gd is generated through a reservoir simulator and by applying it to prior
geological model realizations, m =

{
m1, m2, m3, . . . . . . . . . mN}. We obtained a set of N

samples of dynamic data variables, d =
{

d1, d2, d3, . . . . . . . . . dN}. We refer to the vector of
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observation data as dobs. Once the prior samples are generated, it is important to check
that the observed data can be predicted by the prior model, in order for the posterior
distribution to appertain in the prior range. Otherwise, there is a risk that the prediction
will be erroneous. If the prior model is falsified, which indicates inconsistency with the data,
we must revise the prior data distribution herein to evaluate the quality of the prior model
and its ability to predict the data. We proposed a statistical procedure based on Robust
Mahalanobis distance (RMD) [25,26], which handles high dimensional and different types
of measurements of the data, the main objective being to detect outliers and determine if
the prior model is falsified or not. The RMD for each data variable realization d or dobs was
computed as follows:

RMD (d(n)) =
√
(d(n) − ρ)β−1(d(n) − ρ), f or n = 1, 2, 3 . . . . . . . . . , N (2)

where ρ and β are the mean and covariance of the data d. Assuming the distribution of the
data is multivariate Gaussian, the distribution of [RMD(dn)]2 would be chi squared x2

d.
We set the 95th percentiles of x2

d as the tolerance threshold for multivariate dimensional
point dn. If RMD (dobs) fell outside of the tolerance threshold (RMD (dobs) > RMD (dn),
the dobs would be regarded as outliers, and the prior model would be falsified, as it has a
very small probability. It should also be noted that this method requires data distribution to
be Gaussian; if it is not, other outlier detection techniques such as isolation forest [27], local
outliers detection [28], and one-class support vector machines [29] are highly recommended.

2.2. Dimensional Reduction

A single reservoir model is represented by numerous grid blocks, each with unique
reservoir properties, such as permeability, porosity, and net-to-gross. Accordingly, we con-
struct a vector X containing the reservoir properties of all grid blocks. We also use multiple
ensembles of realizations to account for geological uncertainties X ∈ RN,m. Furthermore,
typical ensembles are formed by hundreds of realizations, in that we are faced with a high-
dimensional problem. Geological realization with similar geological parameters trends will
have similar production histories. As we aim to analyze the main geological distribution of
the data, reducing the data dimensions is reasonable. Therefore, we utilize two different DR
methods: t-SNE [11] and GPLVM [23,24], to characterize reservoir parameters efficiently
by projecting the parameters into a 2D plane. However, t-SNE is a non-linear DR algorithm
developed for exploring high-dimensional data. It maps multi-dimensional data to a two-
or three-dimensional dataset that can be visualized in a scatter plot. Additionally, t-SNE
learns joint probabilities defined by two points on a two-dimensional space to be as close
as possible to conditional probabilities, defined by two points on high-dimensional space.
For more details about t-SNE, one can refer to [11] and Appendix A. GPLVM differs from
t-SNE, primarily because it is a Bayesian non-parametric DR method that uses Gaussian
process to learn a low-dimensional representation of high-dimensional data. The main
advantage of the GPLVM is that it allows the use of nonlinear covariance functions, i.e.,
that it can represent non-linear functions from the latent space to the data space. The
probabilistic nature of the GPLVM also gives it advantages in dealing with missing data
values. For more details about GPLVM, one can refer to [23,24] and Appendix A.

2.3. Clustering K-Means:

K-means clustering is an unsupervised learning method that is widely used because
of its efficiency and simplicity. K-means is used to find the cluster configuration that
minimizes the square error over all K clusters [30]:

J =
K

∑
k=1

M

∑
x(l)∈ck

∥∥∥x(l) − µk
∥∥∥2

, uk =
∑x(l)∈ck x(l)

|Sk|
(3)
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with uk as the centroid of the cluster, and ck refers to the mean of a point within the cluster,
|Sk| is the number of samples in the cluster ck.

K-means clusters provide an optimal solution by minimizing of the distances between
data and their centroids. The centroid is computed by the average of the data in each
cluster. Several methods exist that allow the selection of the cluster sizes, including the
gap statistics, elbow-method as well as the silhouette-method. In this study, we use the
silhouette-method to determine the optimal number of clusters. The silhouette index varies
between −1 and 1, where a value close to 1 means that the data is appropriate within its
cluster. For all of the data-points, the silhouette value s(i) can be determined with the
following equation:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (4)

where a(i) represents average distances within a specific cluster and b(i) is the minimum
average distance from data in other separate clusters. Specifically, a(i) shows how the
i-th data is grouped within its cluster, and b(i) indicates the closest distance of adjacent
clusters. Therefore, if a(i) is small, that means that the data are well grouped; however, if
the silhouette value is close to 1, the b(i) is large.

2.4. ES-MDA and the Localization Technique

Opposite to the production forecast where the “unknown” reservoir behavior is
predicted by using the “known” reservoir model variables, history matching inverses
the process and estimates the “unknown” reservoir model variables with the “known”
observed reservoir behavior. The general objective function for history matching is

J(m) =
1
2
‖g(m)− dobs‖2 (5)

where g(m) is the simulated data with model variables m composed of reservoir variables
(e.g., permeability, facies, porosity, and net to gross), and dobs is the observed data. The goal
of history matching is to minimize the objective function (m) by finding acceptable model
variables m and minJ(m). ES-MDA is an ensemble-based method introduced by Emerick
and Reynolds [12]. In its simplest form, the method employs a standard smoother analysis
equation a pre-defined number of times, with the covariance matrix of the measured data
error multiplied by coefficient a. The coefficients must be selected such that the following
condition is satisfied:

Na

∑
k=1

1
ak

= 1 (6)

where Na is the number of times the analysis step is repeated. The ES-MDA analysis
applied to a vector of model parameters, m, can be written as

ma
i = mb

i + K(dobs − dsim,i), f or i = 1 . . . . . . .N (7)

Here, i is defined as the ith ensemble members; ma
i is defined as an updated uncertainty

vector, mb
i , the initial or previous uncertainty vector; K, the Kalman gain matrix, which is

used to compute by regularizing with SVD using 99.9 % of all the energy; dsim,i refers to
simulation data obtained from previous models. Ensemble-based HM updates N reservoir
models simultaneously. In addition, the Kalman gain matrix can be determined as follows:

K = Cmd
(
Cdd + apCD

)−1 (8)

Cmd is the cross-covariance matrix between the vector of model parameters m and predicted
data d; Cdd is the auto covariance matrix of predicted data d; ap is the coefficient to inflate CD,
which refers the covariance matrix of the observed data measurement error.

However, there are still conceptual and computational challenges associated with
ES-MDA, one issue is that of ensemble collapse, which may result in unrealistic uncertainty
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and difficulty to cover the target distribution. To avoid this, a localization technique is im-
plemented in the equation by introducing a correlation matrix R via an element-by-element
multiplication, also known as Schur product (◦). There are different ways of computing
R. One of the most common approaches is the distance-dependent localization [31], in
which all data points (oil rate, water rate) and model variables (permeability, porosity)
are presumed to have certain physical locations connection. The ES-MDA equation is
updated to:

ma
i = mb

i + R ◦ K(dobs − dsim,i), f or i = 1 . . . . . . .N (9)

The parameter R is assumed to be from 0 to 1 depending on the distances for well
locations [32]:

R(h, L) =


− 1

4 (
h
L )

5 + 1
2 (

h
L )

4 + 5
8 (

h
L )

3 + 5
8 (

h
L )

2 + 1 , 0 6 h < L
1

12 (
h
L )

5 − 1
2 (

h
L )

4 + 5
8 (

h
L )

3 +− 5
3 (

h
L )

2 − 5( h
L ) + 4− 2

3 (
h
L )
−1 + 1 , L < h 6 2L

0 , h > 2L

 (10)

where h is the Euclidean distance between a specific grid cell and well location, and L refers
to the critical length, corresponding to influential regions for every well data. Therefore, a
high value of R means that grid blocks are close to the wells.

2.5. General Setup

We tested the performance of the proposed methodology in the Brugge field case study.
The Brugge field is a complex oilfield constructed by TNO [33]. The model consists of nine
layers, and each layer has 139× 48 gridblocks. The total number of gridblocks is 60,048,
with 44,550 active cells. There are 20 producers and 10 injectors in the reservoir models.The
reservoir is being depleted by voidage replacement. The producers and injectors are “smart
wells”, i.e., with vertical flow control, with three perforation intervals per well. For each
producer well, the fluid rate is set to max value of 3000 bbl/day, and flowing bottom hole
pressure superior to 50 Bar. For each injector well, the fluid rate is set to a max value of
4000 bbl/day, and the corresponding flowing bottom hole pressure less than 180 Bar. We
used 104 initial geostatistical realizations provided by TNO and assumed one of 104 as a
reference model. In the HM analysis, oil production rates (OPR), water cuts (WCT), and
the bottom hole pressure (BHP) were considered, and the model variables to be updated
included permeability (PERMX, PERMY, and PERMZ), porosity, and NTG in all active cells.
Figure 2 shows the log permeability in the first layer for six random realizations. For more
information about the Brugge benchmark, see [33].

Figure 2. Example log of permeability (K) distribution for six of 103 different geological realizations
of the Brugge field.
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3. Results
3.1. ES-MDA with DR

The data assimilations were conducted using ES-MDA with localization, with Na = 5.
Besides the ES-MDA-t-SNE and ES-MDA-GPLVM, we performed the HM on assimilation
observation data for the first 4 years and the rest (6 years) for forecasting.

To assess the quality of prior models, a field oil production rate of 103 prior models
was used with dobs by applying the RMD outlier detection. The RMD of dobs was found
to be 8.802, which is below the 95th percentile threshold. This means that the prior is
not incorrect. Figure 3 shows a comparison between RMD with dobs and RMD with
103 prior models.

Figure 3. Prior falsification using RMD. The red diamond is the RMD for dobs. Circle dots refer to
the RMD results of 103 data variable samples, and the red dashed line is the 95th percentile of the
chi-squared distributed RMD.

We applied t-SNE and GPLVM to reservoir models and reduced the dimension into
2D space. Additionally, the silhouette method is used to find optimal cluster numbers
(ranges of 2 to 7 clusters) for both GPLVM and t-SNE 2D space. As displayed in Figure 4,
the dashed line is used to denote the average silhouette, the silhouette plot with 2 clusters
showed the highest value. Therefore, each model was divided into 2 clusters.

Figures 5 and 6 show a scatter plot of the 103 models on a 2D plane, with each dot in-
dicating individual models. When selecting the cluster with the least production error and
comparing the forecast accuracy of different forecasting methods among several data sets,
there are many performance measures from which to select. In this study, we chose to eval-
uate, for our forecasting results, a probabilistic metric called the mean continuous ranked
probability score (CRPS). The mean CRPS quantifies both accuracy and precision [34], and
higher values of the CRPS indicate less accurate results. The mathematical formulations of
the mean CRPS are listed in Appendix A. We compared the field oil production rate (FOPR)
errors between each cluster and reference model and selected the cluster with the least
production error for the data assimilation process, as displayed in Table 1. Only 46 models
were selected using t-SNE and 44 models using GPLVM. In Figure 7, we compare the
average permeability values between initial 103 models and the selected 46 and 44 models
using t-SNE and GPLVM, respectively. Both selected models with t-SNE and GPLVM have
a quite similar distribution and quite similar selected reservoir models, and differences
were found only in two models.
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Figure 4. Silhouette plots with different cluster numbers—t-SNE 2D space.

Figure 5. Model selection using t-SNE.

Figure 6. Model selection using GPLVM.
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Table 1. Measurement error between the reference model and each cluster.

Methods
t-SNE GPLVM

CRPS Realization CRPS Realization

Cluster 1 89.78 46 96.77 44
Cluster 2 130.67 57 128.66 59

(a) All ensemble models (103). (b) Selected 46 models with t-SNE.

(c) Selected 44 model with GPLVM.
Figure 7. Mean of permeability Darcy values in logarithmic scale.

The total simulation for each method is listed in Table 2. We can see that ES-MDA
uses around 220 min for the entire process, while ES-MDA-t-SNE and ES-MDA-GPLVM
use around 120 and 101.5, respectively. By employing reduction techniques, more than 45%
of the total simulation time was saved.

Table 2. CPU time for the whole process.

Methods CPU Time (Minutes) Time Reduction

ES-MDA 220 0
ES-MDA-t-SNE 120 45.5%

ES-MDA-GPLVM 101.5 53.86%
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Figures 8 and 9 compare the ensemble means distribution of the reconstructed updated
posterior log-perm and porosity on Layer 1 using the standard ES-MDA, ES-MDA-t-SNE,
and ES-MDA-GPLVM to their counterparts in the prior models. The results suggest a
slight change on the posterior model in areas where the wells are located. Moreover, the
uncertainty reduction is achieved, as the posterior samples are conditioned to the dynamic
data variables of the well that are contained within the prediction domain. The results show
quite similar posterior permeability and porosity distribution for both ES-MDA-t-SNE and
ES-MDA-GPLVM, which is expected, as they differ only in two models.

Figure 8. Average log–permeability distribution on Layer 1 from an initial ensemble, the corresponding updated model by
ES-MDA, ES-MDA-t-SNE, and ES-MDA-GPLVM.
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Figure 9. Average porosity distribution on Layer 1 from an initial ensemble, the corresponding updated model by ES-MDA,
ES-MDA-t-SNE, and ES-MDA-GPLVM.

Figures 10 and 11 depict the HM profiles for both oil and water cuts of two methods
(ES-MDA-t-SNE and ES-MDA-GPLVM) at producers BR-P5, BR-P6, and BR-P19, with
respect to the standard ES-MDA and reference model. The vertical dashed line represents
the last time of the HM process. The production forecast seems to be reasonable and reliable
in the two methods compared to the standard ES-MDA, although only 45.54% and 53.86%
of the simulation time is required for ES-MDA-t-SNE and ES-MDA-GPLVM, respectively.
The ES-MDA-t-SNE, however, predicts the WOPR data at BR-P6 better than the ES-MDA-
GPLVM does, which is likely related to the fact that the WWCT data of BR-P6 are better
when using ES-MDA-t-SNE. The matching and forecast ranges with ES-MDA-GPLVM,
however, deviate from the reference, especially in BR-P5 and BR-P6.
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Figure 10. Oil production rate STB/day for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue
dashed line is utilized as an indication of the end of historical data and the start of the prediction period. The red dashed line
represents the observed data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA.
The light blue region represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.
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Figure 11. Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue dashed line is utilized as
an indication of the end of historical data and the start of the prediction period. The red dashed line represents the observed
data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA. The light blue region
represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.

For a quantitative comparison, we applied the mean CRPS metric to further evaluate
the methods used at all simulated well data from the history-matched ensembles over
the historical and prediction period, as displayed in Figure 12. The ES-MDA-t-SNE and
ES-MDA-GPLVM provide interesting results, with the lowest CRPS average compared to
the prior model, and although we used few ensembles models and saved around 45–53%
of the simulation time, the results seem to be comparable to the standard ES-MDA.
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Figure 12. Violin plot of the mean CRPS of the historical and prediction data (OPR, water cuts, and BHP).

Since the uncertainty ranges are quantified in all wells at the three cases, we con-
ducted another comparison by boxplots of the normalized field cumulative oil and water
production predicted by each method, as displayed in Figure 13. It should be noted that
the values are normalized to the cumulative production from the reference case, which
is also added for comparison. Both ES-MDA-t-SNE and ES-MDA-GPLVM cover the true
values for both oil and water production in the box ranges.

Figure 13. Boxplot of the normalized cumulative production after 10 years.

3.2. Effect of Different “Reference” Models

The previous section evaluated the ES-MDA-DR procedure on a single ‘reference’
model. We now evaluate the methodology on five additional ‘referred’ models: Test
Case 1, Test Case 2, Test Case 3, Test Case 4, and Test Case 5 (we reiterate that neither
reference model was included in the set of N = 103 prior models). Similarly, the data
assimilations were conducted using ES-MDA with localization. Apart from the ES-MDA-t-
SNE and ES-MDA-GPLVM, we performed the HM on assimilation observation data for
the first 4 years and the rest (6 years) for forecasting. Note that the reference value varies
considerably between the test cases, as shown in Figure 14. The cumulative distribution
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function (CDF) for each test case is quite different, except the test case-1 and case-3, which
show some similarities.

Table 3 demonstrates the posterior normalized field cumulative oil and water produc-
tion predicted by each method in terms of P10 and P90 statistics at 10 years. For four cases,
the ES-MDA, ES-MDA-t-SNE, and ES-MDA-GPLVM, predictions surround the reference
data within the the P10 to P90 range and showed a narrower range of uncertain prediction
results. However, in Test Case 2, the cumulative oil production is biased in comparison
with the reference production, which is likely explained by whether the problems with the
prior ensemble or the selected reference model. The ensemble means distribution of the
reconstructed updated permeability posterior for the top-layer for all five cases, as shown
in Figure 15. The results suggest a slight change in the posterior model where the wells
are located. Additionally, one can expect uncertainty reductions due to the conditioning
of the posterior samples to dynamic data variables of wells that are contained within the
forecast domain. The results exhibit quite similar posterior permeability distribution for
both ES-MDA-t-SNE and ES-MDA-GPLVM. In sum, the results for the five different test
cases imply that the DR procedure can indeed provide updated geological models and
predictions with different reference models at a significantly reduced computation time.

Figure 14. Empirical CDF computer from field oil production total for different test cases.

Table 3. Posterior prediction for different test cases. The P10 and P90 statistics are computed using
the forecast results for field cumulative oil at 10 years.

Reference P10 P90

Prior - 9.099 × 105 1.114 × 106

Test Case 1
ES-MDA

1.108 × 106
1.045 × 106 1.112 × 106

ES-MDA-t-SNE 1.049 × 106 1.114 × 106

ES-MDA-GPLVM 1.053 × 106 1.124 × 106

Test Case 2
ES-MDA

1.071 × 106
9.752 × 105 1.042 × 106

ES-MDA-t-SNE 9.764 × 105 1.013 × 106

ES-MDA-GPLVM 9.609 × 105 1.016 × 106

Test Case 3
ES-MDA

1.099 × 106
1.037 × 106 1.116 × 106

ES-MDA-t-SNE 1.052 × 106 1.121 × 106

ES-MDA-GPLVM 1.050 × 106 1.111 × 106

Test Case 4
ES-MDA

1.046 × 106
1.008 × 106 1.088 × 106

ES-MDA-t-SNE 1.012 × 106 1.081 × 106

ES-MDA-GPLVM 1.018 × 106 1.078 × 106

Test Case 5
ES-MDA

9.698 × 105
9.361 × 105 9.993 × 105

ES-MDA-t-SNE 9.428 × 105 9.986 × 105

ES-MDA-GPLVM 9.340 × 105 9.867 × 105
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(a) Test cases 01 (b) Test cases 02

(c) Test cases 03
(d) Test cases 04

(e) Test cases 05

Figure 15. Average log permeability distribution on Layer 1 using different reference models.



Energies 2021, 14, 3137 17 of 23

3.3. Effect of Reference Model Parameters Outside Prior Distribution

In the previous section, we presented the results of ES-MDA, ES-MDA-t-SNE, and
ES-MDA-GPLVM for tests where every ‘reference’ model was within the prior distributions.
This indicates that there is consistency between the prior realizations used in the three
methods with the underlying ‘reference model. Here, we aim to evaluate the performance of
the three methods for cases that involve a reference model, which is not consistent with the
prior realizations. More precisely, the reference model is characterized by parameters that
fall outside the prior ranges. Figure 16 displays the permeability cumulative distribution
function (CDF) between the generated reference model along with P10 and P90 prior
ensemble. We observe that the ‘reference’ model permeability parameters for this example
lie outside the range of the prior distributions. RMD outlier detection was used as displayed
in Figure 17 to verify the prior uncertainty variables (field oil production) on the reference
variable. The results show that the RMD of dobs falls above the 95th percentile threshold, in
that the prior model is falsified.

Figure 16. Empirical CDF computed from prior permeability (P10 and P90) and the reference model.

Figure 17. Prior falsification using Robust Mahalanobis distance (RMD). The red diamond is the
RMD for dobs. Circle dots refer to the RMD results of 104 data variable samples, and the red dashed
line is the 95th percentile of the chi-squared distributed RMD.

Figures 18 and 19 depict the HM profiles for both oil and water cuts of three methods
at producers BR-P5, BR-P6, and BR-P19, with respect to the prior ensemble and reference
model. The results indicate that the standard ES-MDA and ES-MDA with DR failed to
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match the reference data, and the predictions from the referenced models do not lie within
the predicted P10 to P90 percentile. Figure 20 displays a boxplot of field cumulative water
and oil production obtained by each method and the prior ensemble. Overall, the results do
not cover the reference values, which is clearly explained by the lack of representativeness
of the prior realizations. The previous results evidently demonstrate the success of our
procedure based on a degree of the quality in terms of the prior parameter ranges. We
emphasize that it is crucial that the prior simulation results contain the observations. Oth-
erwise, we would not expect ES-MDA with DR to provide reasonable posterior predictions,
and in practice, we should adapt the prior ensemble before using it for model conditioning.

Figure 18. Oil production rate STB/day for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue
dashed line is utilized as an indication of the end of historical data and start of prediction period. The red dashed line
represents the observed data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA.
The light blue section represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.
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Figure 19. Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue dashed line is utilized as
an indication of the end of historical data and the start of the prediction period. The red dashed line represents the observed
data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA. The light blue section
represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.

Figure 20. Boxplot of the normalized cumulative production after 10 years. The red line indicates the cumulative production
of the reference case.

4. Concluding Remarks

In this study, we presented a novel history matching framework with DR while
preserving realistic geology and matching the production data, which was achieved by
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explicitly integrating t-SNE, GPLVM, and clustering K-means with ESMDA to reduce
the simulation time and quantify the uncertainty on reservoir models. The proposed
procedure yielded reliable results by selecting a set of good prior ensemble reservoir
models, with similar production performance to the reference model, before applying
the data assimilation process. Accordingly, we compared the new implementation with
the standard ES-MDA in a field reservoir problem with a large number of wells and a
long production history. Based on the obtained results, the proposed ES-MDA with DR
is concluded to be computationally faster than the original one, and it is very simple to
implement and integrate with different types of data and models. We also evaluated our
procedure with five different ‘reference’ models, where we observed that the ES-MDA
with DR posterior predictions displayed considerably less uncertainty, and was indeed
able to provide improved geological models and predictions at a significantly reduced
computation time. Moreover, we also considered a test case where the reference model
lay outside the prior distributions, but the results were clearly inconsistent and biased. In
conclusion, the accuracy of both methods is highly relied on the ability and quality of the
prior realizations to provide appropriate estimates of the prior uncertainty.

We recommend that further studies apply our procedures to more complex geological
models such as bimodal channelized systems. This approach can be applied to examine
and overcome the challenges in 4D seismic history matching as capturing the value of 4D
seismic data can lead to better reservoir management decisions. It will also be interesting to
introduce into the framework more non-linear DR techniques, such as a deep autoencoder,
a stacked autoencoder, and a generative adversarial network. Additionally, combining
the data-space inversion (DSI) method with ES-MDA may more accurately predict oil
production with computationally faster simulation.
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Appendix A

Appendix A.1. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a non-linear dimensionality reduction algorithm developed for exploring
high-dimensional data [14]. It maps multi-dimensional data to a two- or three-dimensional
dataset Y = {y1, y2, ..., yn} that can be visualized in a scatter plot. The t-SNE algorithm
begins by computing a joint probability distribution pij over pairs of points xi,xj(i 6= j):

pj|i =
exp(−‖xi−xj‖2

/2τ2
i )

∑l,s∈[n],l 6=s(1+‖yl−ys‖2)−1 , pij =
pi|j+pj|i

2n (A1)

where τi is a tunable parameter that controls the bandwidth of the Gaussian kernel around
point xi. In two-dimensional map Y = {y1, y2, ..., yn} ⊂ R2, the affinity qij between points
yi and yj (i 6= j) is defined as:

qij =
(1 +

∥∥yi − yj
∥∥2
)−1

∑l,s∈[n],l 6=s(1 + ‖yl − ys‖2)−1
(A2)

t-SNE then attempts to find points yi in R2 that minimize the KL-divergence between
p and q:
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f (y1, y2, ..., yn) := KL(p ‖ q) = ∑
i,j∈[n],i 6=j

pijlog
pij

qij
(A3)

The objective function f is minimized using the following gradient descent:

∂ f
∂yi

= 4 ∑j∈[n]\{i}(pij − qij)qijZ(yi − yj) , i ∈ [n] (A4)

Appendix A.2. Gaussian Process Latent Variable Model (GPLVM)

GPLVM, introduced by Lawrence (2005) [23], is a Bayesian non-parametric dimen-
sionality reduction method that uses a Gaussian process to learn a low-dimensional Q
representation of high-dimensional data D. In Gaussian process regression (GP) settings,
where we are given inputs X and outputs Y, we choose a kernel and learn hyperparameters
that best describe the mapping from X to Y. The GP likelihood function is written as:

p(Y | X) =
D

∏
d=1

p(yd | X) (A5)

Here, yd represents the dth columns of Y and:

p(Y | X) = N (yd | 0, KNN + β−1 IN) (A6)

N is the number of the observation, and KNN is the covariance matrix defined by
the covariance or kernel function K(x, x́). The kernel function was modified to a squared
exponential form to fit the automatic model selection of the dimensionality of latent space:

K(x, x́) = σ2
f exp

(
1
2

Q

∑
q=1

αq(xq − x́q)
2

)
(A7)

In the GPLVM, we do not have X; we are only given Y. We need to learn X along
with the kernel hyperparameters. We do not perform maximum likelihood inference on X.
Instead, we set a Gaussian prior for X and learn the mean and variance of the approximate
(Gaussian) posterior p(Y | X).

p(X) =
N

∏
n=1
N (xn | 0, IQ) (A8)

With each xn the nth row of X. The joint probability model for the GPLVM model is:

p(Y, X) = p(Y | X)p(X) (A9)

The hyper parameters of the model are the kernel parameters θ == (σ2
f , α1, α2, ..., αQ)

and the inverse variance parameter β.

Appendix A.3. Mean Continuous Ranked Probability Score (CRPS)

Mean CRPS is used to quantify both the accuracy and precision of a probabilistic
forecast [34]. A higher value of mean CRPS indicates less accurate results. CRPS can be
defined as:

CRPS =
∫ ∞

−∞
[p(x)− H(x− xobs)]

2dx (A10)

Here, p(x) =
∫ x
−∞ p(y)dy is the cumulative distribution of a quantity of interest, and

H(x− xobs) is the step function,
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H(x) =
{

0 i f < 0
1 i f > 0

}
(A11)

For N samples, the CRPS can be evaluated as follows:

CRPS =
N

∑
i=0

cici = αi p2
i + βi(1− pi)

2 (A12)

where pi = P(x) = i/N, f or xi < x < xi+1 (piecewise constant function)

αi =


0 i f xobs < xi

xobs − xi i f xi < xobs < xi+1
xi+1 − xi i f xobs > xi+1

 (A13)

βi =


xi+1 − xi i f xobs < xi

xi+1 − xobs i f xi < xobs < xi+1
0 i f xobs > xi+1

 (A14)
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