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This paper reviews current knowledge on sources, spread and removal mechanisms of
antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment
plants and downstream recipients. Antibiotic is the most important tool to cure bacterial
infections in humans and animals. The over- and misuse of antibiotics have played a
major role in the development, spread, and prevalence of antibiotic resistance (AR) in
the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can
be transferred and spread amongst bacteria via intra- and interspecies horizontal gene
transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing
an enormous variety of pollutants, including antibiotics, and chemicals from different
sources. They contain large and diverse communities of microorganisms and provide
a favorable environment for the spread and reproduction of AR. Existing WWTPs are
not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs,
which therefore remain present in the effluent. Studies have shown that raw and
treated wastewaters carry a higher amount of ARB in comparison to surface water, and
such reports have led to further studies on more advanced treatment processes. This
review summarizes what is known about AR removal efficiencies of different wastewater
treatment methods, and it shows the variations among different methods. Results
vary, but the trend is that conventional activated sludge treatment, with aerobic and/or
anaerobic reactors alone or in series, followed by advanced post treatment methods like
UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated
sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR
levels in biosolids, settled by-product from wastewater treatment, and discusses AR
removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-
points and suggestions for dealing with and preventing further increase of AR in WWTPs
and other aquatic environments, together with a discussion on the use of mathematical
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models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models
already play a role in the analysis and development of WWTPs, but they do not consider
AR and challenges remain before models can be used to reliably study the dynamics
and reduction of AR in such systems.

Keywords: antibiotics, antibiotic resistance genes, antibiotic resistant bacteria, spread mechanisms, wastewater
treatment plants

INTRODUCTION

Antibiotic substances are by far the most powerful tools available
for the treatment of infectious diseases by inhibition of bacterial
cell growth. In addition to being used for the treatment of
infections in human patients and farm animals, antibiotics
are also routinely given to healthy farm animals to promote
growth and proactively prevent disease outbreaks. Antibiotic
resistance (AR) is the ability of bacteria to overcome and resist
exposure to antibiotic substances, this is made possible by
the acquisition of antibiotic resistance genes (ARGs) (Davison
et al., 2000; Wright, 2010). Extensive use of antibiotics since
the successful purification and mass production of penicillin in
the middle of the twentieth century until today has led to an
increase in antibiotic resistance, compromising the effectiveness
of antibiotics (Davies and Davies, 2010).

Antibiotic resistance is a global and challenging issue (Walsh,
2003; Deurenberg and Stobberingh, 2008; Livermore, 2012).
The risk it poses needs to be tackled in a context that
combines environmental, and human health, which focuses on
the mechanisms that drive biological (growth and exchange) and
physiochemical (transport and conversion) spread. Considering
human health issues like AR in a context that combines human,
animal and environmental factors is the essence of the One
Health initiative’s perspective, endorsed by the World Health
Organisation (WHO) (One Health Initiative, 2020) and AR has
large implications for half a dozen of the United Nation’s (UN’s)
sustainable development goals (WHO, 2020). Part of the issue
is to understand how ARGs spread in different environments
[wastewater, wastewater treatment plants (WWTPs), soil, and
receiving aquatic eco-system] to prevent the spread existing and
the development of new ARGs (Brooks et al., 2008).

For more than 100 years, the Activated Sludge Process
has been and still is among the most widespread wastewater
treatment technologies used for the removal of key pollutants
from municipal wastewater (Stensel and Makinia, 2014; van
Loosdrecht and Brdjanovic, 2014). By bacterial uptake and
metabolic conversions of organics and nutrients, cellular growth
provides for an auto-catalytical removal process which is further
enhanced by settling and recirculation of active biomass as
originally proposed by Ardern and Lockett (1914). While
bacterial densities in wastewater are normally in the range
of 105–108 cells per ml (Tchobanoglous et al., 2014), the
enhancement of biomass in modern biological WWTPs increases
the bacterial density in the bioreactors by 3 orders of magnitude
and selection by sedimentation results in dense bacterial
aggregates. Additionally, depending on operating conditions and
temperature, there can be very high material turnover (up to

90%) and much higher specific heterotrophic growth rates (up to
13.2 day−1) in WWTPs bioreactors than in natural water systems.
In WWTP bioreactors, microbial diversity and interactions
are ubiquitous and frequent (Daims et al., 2006; Nielsen and
McMahon, 2014). High abundance, density, diversity, activity,
and interactions in the activated sludge bioreactors would suggest
an increased rate of gene transfer, including horizontal and
vertical exchange of ARG. Mechanisms and rates at which
exchange occur in the microbiome of these systems are now
under intense study, and resistomes (all ARG’s in a microbial
community) of activated sludge systems are currently being
mapped (Manaia et al., 2018).

Established effluent standards set the quality of WWTP
effluents based on environmental effect parameters such as
the chemical and biochemical oxygen demand, the amount of
suspended solids, total nitrogen, number of coliform bacteria, etc.
(Directive 91/271/Eec, 1991). It is not known how, or whether
at all, these parameters indicate the prevalence of antibiotic
resistant bacteria (ARB) and ARGs. Lately, more attention has
been paid to examine detection and elimination techniques for
ARB and ARGs, in addition to removal techniques for other
micropollutants like detergents, pesticides, pharmaceuticals, and
personal care products (Łuczkiewicz et al., 2010; Luo et al.,
2014). Some WWTPs use extra disinfection units at the end
of the biological treatment process, which include chlorination,
UV radiation and ozonation, or quaternary advanced treatment
techniques such as advanced oxidation processes (AOPs) or
membrane filtration. Such unit processes can as this review will
show reduce the number of ARB and possibly also ARGs in the
WWTP effluent but are costly to operate and may not be as
effective as observed in laboratory studies (Auerbach et al., 2007;
Zhang et al., 2015, 2016a; Zhuang et al., 2015). Biological removal
of organic material from wastewater is linked to the fast growth of
microorganisms in the WWTP, and since the biomass builds up
some is continuously discarded as excess biological sludge. ARB
and ARGs that are present in the biomass of the reactor will also
be present in the sludge, therefore further treatment processes of
excess sludge need to be considered. We will in the last part of
section four of this review go through the current knowledge of
how effective the different sludge treatment methods are able in
reducing ARB and ARGs.

This review will present the major groups of antibiotics, the
major groups of mechanisms for antibiotic resistance in bacteria,
and the general bacterial mechanisms for genetic exchange, but
only briefly as other reviews already have covered this in general
(Wright, 2010, 2011; Pazda et al., 2019; Zhu et al., 2021) and in
the context of wastewater treatment. More space is instead given
to go through what is known about which wastewater sources
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show the high occurrence of antibiotic resistance, how antibiotic
resistance persists and spreads through WWTPs, and what
contributes to this persistence. Previous works in the literature
already focused on complete lists of every specific type of ARGs
that have been found in WWTPs (Pazda et al., 2019), and on the
strength and weaknesses of different methods used to measure
and analyze ARB and ARGs content in wastewater (Manaia et al.,
2018). Therefore, this review will focus on documenting what
is known about the removal efficiency of different treatment
processes or technologies, i.e., what are the reported elimination
efficiencies of ARGs and ARB for different treatment technologies
for both wastewater and sludge, and whether the reported
results are consistent. Moreover, in this work special efforts have
been put into gathering and reviewing results from studies of
elimination of ARGs and ARB in different sludge and biosolids
treatment processes, as this has been more or less overlooked in
other reviews (Barancheshme and Munir, 2018; Pazda et al., 2019;
Bairán et al., 2020; Zhu et al., 2021).

In essence, this systematic review aims to describe the
factors that affect the persistence and spread of antibiotic
resistance in wastewater treatment and to evaluate current and
emerging treatment technologies. For completeness this review
documents removal efficiencies for antibiotic substances for
different treatment technologies, but it does not aim to discuss the
pathways and mechanisms for the breakdown of these substances
at length, which has been addressed in a recent review by
Zhu et al. (2021). Additionally, this review will also discuss
how mathematical models can be used to better understand the
dynamics of antibiotic resistance spread in WWTPs. It has been
suggested that mathematical modeling can help to quantify and
simulate the spread of ARGs in WWTPs, but as this review
will show only a few models have been proposed and even
fewer have been sufficiently parameterized and validated. It will
discuss why, and which challenges remain to be tackled before
mathematical models can be used to their full potential. Finally,
this review concludes with future directions and some key points
that should be prioritized for improving the current state of
antibiotic resistance in WWTPs.

ANTIBIOTIC RESISTANCE:
MECHANISMS, SOURCES, AND
TRANSFER

Antibiotics are classified into five major groups, according
to their mode of action (Figure 1): (i) Cell wall synthesis
inhibition (vancomycin, cephlosporins, β–lactams, bacitracin); (ii)
Protein synthesis inhibition (aminoglycosides, chloramphenicol,
tetracycline, linezolid); (iii) Nucleic acid synthesis inhibition
(rifampin, metronidazole, quinolones, fluoroquinolones); (iv)
Antimetabolites (trimethoprim, dapsone, sulphonamide) and; (v)
Cell membrane disintegration (polymyxin, daptomycin). Note
that some sources use a coarser division into only four groups
(Calderón and Sabundayo, 2007; Kapoor et al., 2017) whereas
other use a bit finer division into six (Wanger et al., 2017).

Bacteria have developed four main types of resistance
mechanisms against antibiotics (Figure 1; Zhang et al., 2009;

Wright, 2010): (i) Efflux pumps, which effectively excrete
antibiotics from the cell (Wright, 2011). There are five
efflux protein families: ATP-binding cassette (ABC), multidrug
and toxic compound extrusion (MATE), major facilitators
(MFs), resistance nodulation cell division (RND), and small
multidrug resistance (SMR) (Nishino and Yamaguchi, 2001).
(ii) Inactivation of antibiotics occurs when the activity of the
antibiotic substance is directly hindered by hydrolysis, or by
conversion of functional groups etc. (Wright, 2005; Diaz et al.,
2014). (iii) Target by-pass: strategies for target by-pass includes
creating new pathways to circumvent the originally targeted
enzyme, overproduction of the target compound (Munita and
Arias, 2016), structural changes in the cell wall (Vila et al., 2007),
and prevention of the antibiotic to bind to its target (Wright,
2010). (iv) Target modification: occurs through modification of
the antibiotic targets themselves (Wright, 2010). Multiple types
of resistance mechanisms may simultaneously confer resistance
against the same family of antibiotics (de Sousa Oliveira et al.,
2016). Conversely, one type of resistance mechanism can also
confer resistance against more than one type of antibiotics.

Wastewater from hospitals and wastewater and waste
from animal husbandry together with runoff from manure
amended fields are essential ARB and ARGs sources in aquatic
ecosystems (Marti and Balcazar, 2013). Hospital wastewaters
have especially been shown to contain many ARGs (Zhang
et al., 2009; Rowe et al., 2017). One of the first reports dates
back to the early 1970s, Grabow and Prozesky (1973) studied
the presence of resistant coliforms in hospital wastewater
in Pietermaritzburg in South Africa. They found that 26%
of coliform bacteria in hospital wastewater had transferable
resistance while only 4% of coliform bacteria in municipal
wastewater had transferable resistance (Grabow and Prozesky,
1973). The same trend is seen today. Based on several studies
done in Europe and Asia, the total ARGs and ARB concentrations
in hospital wastewater were 2–9 orders of magnitude higher
than municipal wastewater (Li et al., 2015; Lamba et al.,
2017; Hutinel et al., 2019). Rowe et al. (2017) showed that
the normalized abundance of ARGs in hospital wastewater
samples from the Cambridge University Hospitals was 9-folds
greater than in samples collected from the effluent lagoon of
the University of Cambridge dairy farm and 34-folds greater
than in samples from the River Cam source water, which served
as background samples for the environment. Another detailed
study of wastewater from three different hospitals in Romania
showed the presence of genes encoding for resistance for
tetracyclines, aminoglycosides, chloramphenicol, β-lactams,
sulphonamides, quaternary ammonium, and macrolide-
lincosamide-streptogramin B antibiotics with abundance
levels in as high ranges as 0.01–0.1 copies per 16S rRNA gene
copies measured by qPCR (Szekeres et al., 2017). Moreover, in a
recent review by Hassoun-Kheir et al. (2020), 37 studies on the
occurrence of AR in hospital wastewaters were examined. The
review found that 30 (81%) of the studies reported that hospital
wastewater contains higher amounts of AR than community
wastewater. Furthermore, in a subset of studies where the
impact of hospital wastewater on the dissemination of AR in the
environment was considered, 25 out of 32 (78%) studies held
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FIGURE 1 | Antibiotic action and resistance mechanisms (adapted from Wright, 2010).

that hospital wastewaters had an important role as a source of
AR to the environment.

Apart from the vertical inheritance, antibiotic resistance
can be obtained in two ways, through mutation or by
horizontal gene transfer (HGT) (Jury et al., 2010). The latter
is the most concerning regarding the spread of antibiotic
resistance in WWTPs since ARGs can potentially be transferred
between organisms effectively and much faster than resistance
development through mutations. HGT is a non-reproductive
intra- and inter-species transfer of genetic information by
means of mobile genetic elements (MGE), such as plasmids and
transposons (Barlow, 2009; Huang et al., 2017a). The movement
of genes from chromosomes to and between MGEs are mostly
facilitated by integrons (Mazel, 2006; Davies and Davies, 2010;
Gillings, 2014). There are three different HGT mechanisms
for the spread of MGEs. (i) Conjugation: transfer mechanism
that requires cell-to-cell contact, where a recipient bacterium
acquires genetic material from a donor bacterium, usually in
the form of a plasmid (Madigan et al., 2006; Figure 2). (ii)
Transformation: intra- and inter-species exchange of genetic
information by uptake of, free extracellular suspended DNA,
which can only be received by a competent bacterium. Following
uptake and translocation to the cytoplasm, it is incorporated
into the recipient’s chromosome or into a plasmid (Madigan
et al., 2006; Heuer and Smalla, 2007). Finally; (iii) Transduction:
involves bacteriophages that transport different types of genetic
elements from their host to the receiver (Cano and Colomé, 1988;
Snyder and Champness, 2007; Modi et al., 2013), whereupon
this is incorporated into the genome of the new host by
recombination (Figure 2). There are two types of this mode
of transfer, namely generalized and specialized transductions.

In generalized transduction, only a segment of bacterial DNA
is randomly packed into the bacteriophage head, and bacterial
host DNA becomes a part of the DNA of the phage whereas in
specialized transduction, both phage and specific bacterial DNA
are packed into the head (Chiang et al., 2019). Transduction
may also occur via gene transfer agents (GTAs), which are
DNA carrying structures that resemble bacteriophages, but
which do not self-replicate. Although GTAs exact impact has
not yet been determined, their potential to act as carriers
of resistance in the environment continues their attention
(von Wintersdorff et al., 2016).

OCCURRENCE AND SPREAD OF
ANTIBIOTIC RESISTANCE GENES IN
WASTEWATER TREATMENT PLANTS

Although antibiotic resistance (AR) occurs naturally at low
levels in most ecosystems, the occurrence of ARB and ARGs at
high levels is associated with anthropogenic activities. Table 1
shows an overview of resistance genes found in bacteria from
wastewater effluents and in aquatic ecosystems. ARGs are
frequently detected in WWTPs (Chen and Zhang, 2013; Novo
et al., 2013; Rizzo et al., 2013; Manaia, 2014; Table 1), and studies
have shown that the ARGs found in wastewaters often reside
in clinically relevant pathogenic bacteria (Figueira et al., 2011;
Marti et al., 2013a; Hembach et al., 2017). Samples from three
different stages of a WWTP in Poland showed that approximately
22, 5, and 9% of Enterobacteriaceae strains isolated from (i) the
raw sewage in the primary sedimentation tank, (ii) the aeration
tank, and (iii) from the effluent, respectively, carried the intI
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FIGURE 2 | Antibiotic resistance transport mechanisms (adapted from von Wintersdorff et al., 2016).

integron; and that all strains which carried this integron were
resistant to at least three unrelated antibiotics (Mokracka et al.,
2012). Note that, although a significant fraction of bacteria in the
effluent of this WWTP were still resistant, the above percentages
must be interpreted with care as the total number of culturable
coliform bacteria in the effluent was reduced with a factor of as
much as 103 in the effluent as compared to in the raw sewage
(Mokracka et al., 2012). Many of the Enterobacteriaceae isolated
from a wastewater treatment plant in the study by Amador et al.
(2015) were also found to be resistant, and even multi-resistant.
The isolates showed resistance against β-lactam group antibiotics,
including cefoxitin, amoxicillin, cefotaxime, and non β-lactam
groups antibiotics, including trimethoprim/sulfamethoxazole,
ciprofloxacin, and tetracycline. Other studies (Mokracka et al.,
2012; Szekeres et al., 2017; Karkman et al., 2018) have also shown
that resistance genes against antibiotics, including tetracycline,
methicillin and sulphonamide are present in WWTPs. Based
on a review of many studies, tetracycline (tet) resistance genes
have been found to be one of the most commonly occurring
ARGs in wastewater treatment systems in many countries
(Zhang et al., 2009).

Hospital wastewater is a particular risk as it may contain
not only pathogenic single- and multi-drug resistant (MDR)
bacteria, as detailed in the previous section but also relatively
high concentrations of antibiotic compounds. A high percentage
of administered antibiotics are not metabolized in humans

and are thus excreted into the sewerage (Sabri et al., 2018).
Rodriguez-Mozaz et al. (2015) analyzed a broad range of
antibiotics including β-lactams, lincosamides, macrolides,
quinolones/fluoroquinolones, sulfonamides, tetracyclines,
dihydrofolate reductase inhibitors, and nitroimidazoles and
ARGs released from hospitals and urban wastewaters, their
removal by a WWTP effluent and their influence on a receiving
river. The results show that antibiotics were detected at high
concentrations in downstream river samples with antibiotics
such as ofloxacin reaching concentrations up to 131.0 ng/L
while not being detected upstream of the WWTP discharge.
Moreover, ciprofloxacin and sulfamethoxazole had almost
10-fold higher concentrations in downstream than upstream
of the WWTP discharge. Studies indicate that the presence
of incompletely degraded antibiotic compounds may exert
biological selection pressure for the development of ARGs and
provide a breeding ground in WWTPs for HGT between bacteria
(Zhang et al., 2009; McKinney and Pruden, 2012; Bouki et al.,
2013; Sharma et al., 2014) and propagation of resistance genes
(Davies and Davies, 2010).

During wastewater treatment, antibiotics, other
pharmaceutical residues, and heavy metals present in the
wastewater are in continuous contact with bacteria, leading to
the potential selection pressure for resistance genes (Zhang et al.,
2009; Ding and He, 2010; Bouki et al., 2013). It is difficult to
determine a safe concentration of antibiotics in wastewater as
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TABLE 1 | Overview of antibiotic resistance genes (ARGs) found in influent,
effluent, and activated sludge in wastewater treatment plants (WWTPs) and if their
concentrations increase (↑) or decrease (↓) from influent to effluent [adapted from
Pazda et al. (2019) and shortened to only include studies that have measured
changes in concentration from influent to effluent].

Antibiotics Antibiotic
resistance
genes
(ARGs)

Sample Country References

Influent effluent

activated sludge

β–Lactams ampR + ↓ N.A. Canada Biswal et al., 2014

blaAmpC + + ↑ N.A. Germany Alexander et al., 2015

blaCMY−13 + + ↑ N.A. Sweden Bengtsson-Palme
et al., 2016

blaCTX−M + + ↓ N.A. Canada Neudorf et al., 2017

blaCTX−M + + ↓ N.A. Canada Neudorf et al., 2017

blaCTX−M−1 + + ↑ N.A. Portugal Amador et al., 2015

blaCTX−M−9 + – ↓ + Poland Korzeniewska et al.,
2013

blaCTX−M−12 + + ↑ + Canada Biswal et al., 2014

blaCTX−M−32 + + ↓ N.A. Denmark Laht et al., 2014

blaFOX + + ↑ N.A. Portugal Amador et al., 2015

blaOXA + + ↓ + China Yang et al., 2014

blaOXA + + ↑ N.A. Portugal Amador et al., 2015

blaOXA−10 + + ↓ + China Yang et al., 2014

blaOX A−46 + + ↓ + China Yang et al., 2014

blaOX A−58 + + ↓ N.A. Denmark Laht et al., 2014

blaOX A−58 + + ↓ N.A. Finland Hultman et al., 2018

blaSHV−5 + – ↓ + Poland Korzeniewska et al.,
2013

blaTEM + + ↑ N.A. Canada Biswal et al., 2014

blaTEM + + ↑ N.A. Portugal Amador et al., 2015

blaTEM + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

blaVIM−1 + + ↑ N.A. Germany Alexander et al., 2015

blaVIM-11 + + ↓ + China Yang et al., 2014

Quinolone gyrA + + ↓ + China Xu et al., 2015

parC + + ↓ + China Xu et al., 2015

gnrC + + ↑ + China Xu et al., 2015

gnrD + + ↓ + China Xu et al., 2015

gnrS + + ↑ N.A. Canada Neudorf et al., 2017

gnrS + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

gnrS1 + + ↓ N.A. Canada Biswal et al., 2014

Macrolide ereA + + ↑ N.A. Canada Biswal et al., 2014

ereB + + ↑ N.A. Canada Biswal et al., 2014

ermB + + ↓ + China Yang et al., 2014

ermB + + ↓ N.A. Canada Neudorf et al., 2017

ermB + + ↓ N.A. Germany Alexander et al., 2015

ermB + + ↑ N.A. Spain Rodriguez-Mozaz
et al., 2015

ermF + + ↓ + China Yang et al., 2014

macB + + ↓ + China Yang et al., 2014

mef + + ↓ + China Yang et al., 2014

mph(A) + + ↑ N.A. Canada Biswal et al., 2014

Tetracycline tetA + + ↓ + China Xu et al., 2015

(Continued)

TABLE 1 | (Continued)

Antibiotics Antibiotic
resistance
genes
(ARGs)

Sample Country References

Influent effluent

activated sludge

tetB + + ↓ N.A. Canada Biswal et al., 2014

tetB + + ↓ + China Xu et al., 2015

tetB(P) + + ↑ + Sweden Bengtsson-Palme
et al., 2016

tetC + + ↓ N.A. Denmark Laht et al., 2014

tetE + + ↑ + China Xu et al., 2015

tetG + + ↓ + China Yang et al., 2014

tetM + + ↓ N.A. Finland Hultman et al.,
2018

tetM + + ↓ + China Yang et al., 2014

tetO + + ↓ + China Yang et al., 2014

tetQ + + ↓ + China Yang et al., 2014

tetV + + ↑ + China Yang et al., 2014

tetW + + ↓ + China Yang et al., 2014

tetX + + ↓ + China Yang et al., 2014

tetZ + + ↑ + China Xu et al., 2015

tet32 + + ↓ + China Yang et al., 2014

dfrA3 + + ↑ N.A. Sweden Bengtsson-Palme
et al., 2016

dfrA20 + – ↓ N.A. Canada Biswal et al., 2014

dhfrXV + – ↓ N.A. Canada Biswal et al., 2014

sulI + + ↓ N.A. Canada Neudorf et al., 2017

sulI + + ↑ N.A. Canada Biswal et al., 2014

sulI + + ↓ N.A. Denmark Laht et al., 2014

sulI + + ↓ + China Xu et al., 2015

sulI + + ↑ + China Yang et al., 2014

sulI + – ↓ N.A. United
States

Bergeron et al.,
2015

sulII + + ↑ N.A. Canada Biswal et al., 2014

sulII + + ↓ + China Yang et al., 2014

sulIII + + ↓ + Canada Biswal et al., 2014

Multidrug
efflux pump
genes

mdtF + + ↓ + China Zhang et al., 2011

mdtG + + ↓ + China Zhang et al., 2011

mdtH + + ↓ + China Yang et al., 2014

mdtN + + ↓ + China Yang et al., 2014

mexB + + ↓ + China Yang et al., 2014

mexD + + ↓ + China Yang et al., 2014

mexF + + ↓ + China Yang et al., 2014

N.A., not analyzed; N.D, no difference.

results disagree on whether or not antibiotic concentrations
lower than the minimum inhibitory concentrations (MIC)
cause selection of ARGs. Gullberg et al. (2011) competed for
resistant strains against susceptible strains in monoculture
with different antibiotic concentrations. The result showed
that the resistant strains have a selection advantage even in
subminimal inhibitory concentrations and outperform the
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susceptible strains (Gullberg et al., 2011; Andersson and Hughes,
2014). On the other hand, a recent study by Klümper et al.
(2019) suggests that a diverse bacterial community in a mixed
culture may select against resistance. Resistant and non-resistant
(otherwise isogenic) focal strains (Escherichia coli) cultivated
together with a pig fecal community, exhibited more than one
order of magnitude higher minimal selection concentration for
gentamicin or kanamycin. For the gentamicin resistant focal
strain, reduced growth was observed due to higher fitness
cost for a range of gentamicin concentrations (0–10 µg/ml),
indicating that resource limitations have a stronger impact on
resistant phenotypes (Gómez and Buckling, 2011; Wale et al.,
2017; Klümper et al., 2019). However, at very high gentamicin
concentrations (100 µg/ml) only resistant strains could grow.
The same behavior was observed under intermediate kanamycin
concentrations (0–20 µg/ml), the susceptible strain did again
show improved growth compared to the resistant strain when
co-cultured with the pig fecal community. These findings are in
accordance with results from the study of Galera-Laporta and
Garcia-Ojalvo (2020), where susceptible Bacillus subtilis and
E. coli were cultivated exposed to ampicillin separately and in
mixed culture. Cultivated separately, B. subtilis was able to grow
after a lag phase, while E. coli died. Cultivated in a mixed culture
the two strains displayed reversed reactions to ampicillin. The
protective effect of the community might play a role and further
experimental effort to evaluate the risk of sub-minimal inhibitory
concentrations are required.

Heavy metals and some organic compounds, such as
quaternary ammonium compounds (QAC), monoaromatic
hydrocarbons (MACH), anti-fouling agents and detergents can
increase the selective pressure for ARGs through co-selection
(Schlüter et al., 2007; Tuckfield and McArthur, 2008; Di Cesare
et al., 2016). Two mechanisms for co-selection are normally
distinguished: Co-resistance and cross-resistance. Co-resistance
refers to the presence of resistance against more than one class
of antibiotics in the same bacterial strain. It occurs due to
the physical link between different resistance genes, that are
placed together, for example on a plasmid, where the selection of
resistance to one of the genes leads to resistance to others. Heavy
metal resistance genes (HMRGs), especially against zinc and
copper, have been shown to increase the rate of AR dissemination
by co-resistance (Yazdankhah et al., 2014). Another example is
the co-resistance of qac genes encoding for efflux pumps against
QAC and MACH; the qac genes are typically located on MGEs
(plasmids and transposons), often together with ARGs (Jiao
et al., 2017). In cross-resistance, however, one single resistance
mechanism confers resistance to an entire class of compounds,
antibiotics and/or other toxicants (Baker-Austin et al., 2006). For
example, if two different antimicrobials are present and both
have a common strategy to attack the cell, resistance developed
against one will be effective against both i.e., the resistance gained
for one compound confers resistance for another compound.
An example of cross resistance is multi-drug resistance pumps
that can export both metals and antibiotics (Baker-Austin et al.,
2006). Thus, co-selection is a plausible explanation for the
persistence of some ARGs even when antibiotics are not present
(Zhang et al., 2018) and both co- and cross-resistance have

an important impact on the antibiotic resistance selection in
different environments (Stepanauskas et al., 2005; Knapp et al.,
2017).

ANTIBIOTIC RESISTANCE GENE
REMOVAL IN WASTEWATER
TREATMENT PLANTS

There are many treatment techniques used in WWTPs that
have varying potential to remove organic matter, nitrogen,
phosphorous, pollutants and pathogens from wastewater.
However, the mechanisms and efficacy of these techniques to
remove antibiotics, ARB and ARGs remain mostly unexplored.
This section aims to look at the existing situation for the removal
of ARB and ARGs from wastewater and sludge in WWTPs.

Removal From Wastewater
The operation of redox gradient aerobic, anoxic and anaerobic
activated sludge reactors and their sequence in a WWTP affects
the removal of ARB and ARGs (Christgen et al., 2015; Du
et al., 2015; Szekeres et al., 2017). Du et al. (2015) found
that anoxic and anaerobic treatment reduced the concentration
of ARGs in wastewater, whereas aerobic treatment increased
the concentration. The same has been observed by Pei et al.
(2007) who proposed that the difference is related to lower
growth rates in anaerobic and anoxic compartments compared
to aerobic. However, Christgen et al. (2015) have compared three
different wastewater treatment strategies; anaerobic, aerobic, and
anaerobic–aerobic sequence bioreactors (AAS) in terms of energy
use, treatment performance, and ARG abundance. They reported
an opposite effect that aerobic bioreactors and AAS bioreactors
had higher ARG removal efficiencies than anaerobic bioreactors
alone. The AAS bioreactors showed higher removal of ARGs
(>85%), compared to separate aerobic (83%) and anaerobic
(62%) treatment systems (Christgen et al., 2015). The authors
concluded that even though none of these systems were perfect
for ARG removal aerobic and AAS were superior to anaerobic
bioreactors. Additionally, results suggested that due to lower
energy consumption (32% less) AAS systems were seen to be
a promising treatment alternative. Moreover, temperature also
plays a role in the removal of ARGs showing higher removal at
20◦C than at 4◦C (Pei et al., 2007), and aerobic treatment may
remove more of some types of ARGs than anaerobic at 20◦C.

Membrane bioreactors (MBRs) are potentially much better
at removing ARB and ARGs than traditional activated sludge
reactors. This is because MBRs are better at removing bacteria
in general, due to the extra filtration of the effluent through
the membrane (Pauwels et al., 2006). The previously mentioned
study by Du et al. (2015) reported that the concentration of ARGs
throughout a sequence of treatment steps declined proportionally
more in the final treatment in an MBR than it did in any of the
prior treatment steps in aerobic and anoxic/anaerobic reactors.
The MBR showed more than 5 log10 units gene copies/100 ml
removal of tetG, tetW, tetX, and sulI resistance genes, mostly due
to filtration (pore size 0.1–0.4 µm) (Du et al., 2015; Hiller et al.,
2019). Research by Kappell et al. (2018) has similarly shown the
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effectiveness of anaerobic MBRs with ARG removals of up to
3.6 log10.

Schwermer et al. (2018) investigated the efficiency of
two WWTPs in the removal of ampicillin, sulfamethoxazole,
ciprofloxacin, and tetracycline resistant E. coli. The two WWTPs
employed a biofilm process and a conventional activated
sludge treatment process, respectively. By physical and chemical
treatment strategies in WWTP, the percentage of resistant E. coli
was reduced but full disinfection was not achievable. However,
in both conventional activated sludge and the biofilm processes,
the percentage of cultivable resistant E. coli did not show a
considerable decrease in addition to the physical and chemical
treatment steps. Moreover, the effluents were also subjected to
ultrafiltration (UF) and the total removal effectiveness of E. coli
in both WWTPs with UF was >4.2 log. Although the ability of
DNA to pass through membranes was mentioned by the authors,
they stated that membrane filtration processes can provide an
additional barrier and post-treatment alternative for the effluent
in order to reduce ARB and ARG release by WWTP effluents.
Other membrane filtration processes that can be used as post
treatment methods include microfiltration (MF) and reverse
osmosis (RO). While the effectiveness of MF efficiency against
ARB and ARGs has been studied (Riquelme Breazeal et al., 2013),
the application of RO, alone or combined with other methods,
has yet to be investigated in detail (Schwermer et al., 2018).

Constructed wetlands (CWs) are engineered aquatic systems
with very diverse microbial communities and are used to treat
wastewater by the same biogeochemical processes dominant in
natural wetlands (Doherty et al., 2015; Lv et al., 2017). They
are, however, mostly relevant for cases where the total amount
of wastewater is relatively low, or for wastewater with lower
amounts of organic matter, e.g., urban and agricultural runoff
or post treatment of effluents from conventional treatment
plants, rather than raw sewage (Zhang et al., 2018; Liu et al.,
2019). Their ability to remove ARB and ARGs have brought
CWs to attention. CW’s removal mechanisms are dependent on
different conditions such as phyta and substrate types together
with the physical design of the CW itself (Liu et al., 2019). Li
et al. (2019) investigated removal efficiencies for antibiotic and
ARG in riverine constructed wetlands. Their results showed that
one constructed wetland had 46 and 80% removal efficiency
for antibiotics and ARGs, respectively, while another wetland
had 70 and 88% removal efficiency, respectively. The difference
in efficiencies was associated with antibiotic concentrations in
the influent into both wetlands and the scale of the wetland,
indicating that the presence of sub-inhibitory levels of antibiotics
increases the selective pressure for resistance (Li et al., 2019).
In a different study, Chen et al. (2019) designed four different
hybrid constructed wetlands. Two horizontal sub-surface flow
(HSSF) CWs, one with and one without artificial aeration, and
two vertical sub-surface flow (VSSF) CWs, again one with and
one without artificial aeration. These four CWs were tested for
their ability to remove antibiotics and ARGs. Efficiencies between
87 and 95% for total antibiotic removal, and between 88 and 99%
for total ARG removal, were reported. The authors found that the
hybrid constructed wetlands with artificial aeration compared to
CWs without artificial aeration had higher removal efficiencies

of ARB and ARGs, together with higher removal rates of organic
carbon, ammonia, nitrogen, and phosphorous.

Several recent studies have investigated the removal of
ARGs in WWTPs by chemical disinfection processes, such
as chlorination and advanced oxidation processes (AOPs)
including ozonation and UV. It showed that these processes can
significantly decrease the occurrence of ARGs and pathogenic
microorganisms in WWTP effluents (Luczkiewicz et al., 2011;
Zhuang et al., 2015; Hiller et al., 2019). Zhuang et al. (2015)
reported chlorine disinfection resulted in 1.654–2.28 log10
reduction, and UV irradiation resulted in 0.80–1.21 log10
reduction of ARGs under economically suitable operational
conditions. Although ozonation disinfection achieved 1.68–
2.55 log10 reduction of ARGs, the authors in the same study
advised against the use of this process due to excessive
operational costs. Contrary to this, Alexander et al. (2016)
indicated that even though ozone treatment can reduce the
erythromycin resistance gene (ermB) by 2 orders of magnitude,
ARGs against vancomycin (vanA) and imipemem (blaVIM)
increased within the surviving wastewater bacterial population.
Luczkiewicz et al. (2011) showed that ultrafiltration, ozonation,
and UV irradiation can reduce the amount of fecal coliform
bacteria in wastewater by more than 99%, but there was
a slightly higher percentage of ARGs containing bacteria
among the bacteria surviving disinfection. They found that
of coliforms grown from water samples taken before and
after disinfection, 47–60% of E. coli isolates were resistant
after disinfection compared to 42–50% of isolates before and
that 68–90% of Enterrococus spp. isolates had resistance after
treatment compared to 68–85% before. Recently, using a the
combination of two or more AOPs (like Fenton’s oxidation
reaction, UV/H2O2, solar/H2O2, photo-Fenton process, TiO2
photocatalyst and ionizing radiation) have been shown to be
effective in the removal of refractory organic compounds (like
antibiotics) in secondary effluents (Rizzo et al., 2013; Zhang
et al., 2016b). Karaolia et al. (2014) investigated a solar-
driven Fenton oxidation that may eliminate ARB. Mccullagh
et al. (2007) reported that the utilization of a UV-TiO2
photocatalyst AOP inactivated a diverse array of bacterial, viral,
and protozoal organisms from water and wastewater. While
AOPs represent a potential way to remove antibiotics and
thus prevent antibiotic resistance, they are not widely used
due to their operational costs (Qiao et al., 2018). Table 2
shows different treatment techniques and their effectiveness
in removing different ARGs and pathogens from wastewater
under different conditions. Additionally, Table 3 summarizes
the antibiotic elimination efficiencies in different wastewater
treatment units. Both tables include information on different
treatment techniques categorized in physical, biological, and
chemical processes.

All the studies conducted in the literature together with the
information presented in Tables 2, 3, suggest that the wastewater
to be treated should be analyzed for antibiotics and ARGs, in
addition to the standard wastewater characterization parameters.
The WWTP should be designed using this characterization
specially tailored for the needs of the specific wastewater ensuring
the removal of antibiotics and ARGs to avoid the spread of
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TABLE 2 | Antibiotic resistance gene (ARG) and pathogen elimination efficiencies of different treatment technologies.

Treatment technologies Target ARGs ARG elimination
efficiency

Pathogen elimination
efficiency

References

Physical processes

Membrane separation floR, sulI, and sulII ∼98% 99.9% Ren et al., 2018

Soil aquifer treatment blaTEM and qnrS >2 logs 1.2–6.9 logs Sharma and Kennedy,
2017; Elkayam et al.,
2018

Biological processes

Anaerobic–aerobic seq.
bioreactor (AAS)

Sulfonamide, chloramphenicol, aminoglycoside,
tetracycline, β-lactam resistance genes

>85% Christgen et al., 2015;
Thwaites et al., 2018

Aerobic bioreactor 83% Christgen et al., 2015

Anaerobic bioreactors 62% 18% Christgen et al., 2015;
Zhang et al., 2017

Membrane bioreactor blandM-1, blaCTX-M-15, and blaOXA-48 2.76–3.84 logs 2.7–5.6 logs Cheng and Hong,
2017; Harb and Hong,
2017

sulI, sulII, tetC, tetX, ereA, and int1 0.5–5.6 logs – Zhu et al., 2018

sul1, tetG, tetW, and tetX 5 log/100 ml – Du et al., 2015

ermB, tetO, sulI, and intl1 ≤3.6 log – Kappell et al., 2018

CW-surface flow sulI, sulII, sulIII, tetA, tetB, tetC, tetE, tetH, tetM, tetO,
tetW, qnrB, qnrS, and qepA

77.8% in summer, 59.5% in
winter

0.96–4.46 logs Fang et al., 2017;
Shingare et al., 2019

CW-horizontal subsurface flow intl1, sulI, sulII, dfrA, aac6, tetO, qnrA, blaNMD1,
blaKPC, blaCTX, and ermB

-145.6 to 98.9% 0.7–5.51 logs Yi et al., 2017; Chen
et al., 2019; Shingare
et al., 2019

CW-vertical subsurface flow tet genes and intI1 33.2–99.1% 0.5–2.84 logs Huang et al., 2017b;
Shingare et al., 2019

CW sulI, sulII, tetA, tetC, dfrA1, dfrA12, dfrA13, ermB, and
blaPSE−1

80.2 and 87.5% – Li et al., 2019

Hybrid CWs sulI, sulII, tetG, tetO, ermB, qnrS, qnrD, cmlA, and floR 87.8–99.1% 0.71–4.8 logs Chen et al., 2019;
Shingare et al., 2019

Chemical processes

Chlorination sulI, tetG, and intI1 1.65–2.28 logs ∼3 logs Zhuang et al., 2015;
Furst et al., 2018

sulI, tetX, tetG, and intI1 1.20–1.49 logs – Zhang et al., 2015

tetA, tetB, tetC, sulI, sulII, sulIII, ampC, aph(2’)-Id, katG,
and vanA

Enhancement – Liu et al., 2018

UV sulI, tetG, and intI1 0.80–1.21 logs 30 min, 254 nm,
2.0 ± 0.3 logs

Zhuang et al., 2015;
Sousa et al., 2017

tetW 0.00–1.89 logs – Sullivan et al., 2017

tetX, sulI, tetG, and intI1 0.36–0.58 logs – Zhang et al., 2015

Ozonation tet genes and sul genes <49.2 and <34.5% 30 min, 2.1 ± 0.5 logs Sousa et al., 2017;
Zheng et al., 2017

Photocatalytic oxidation sul1, tetX, and tetG 2.63–3.48 logs (pH = 3.0)
1.55–2.32 logs (pH = 7.0)

2–3 logs Zhang et al., 2016b;
Moreira et al., 2018

Fenton’s oxidation reaction sul1, tetX, and tetG 2.58–3.79 logs (pH = 3.0)
2.26–3.35 logs (pH = 7.0)

<LOQ* Zhang et al., 2016b;
Moreira et al., 2018

*LOQ, Limit of Quantification.

antibiotic resistance in the receiving water body. However, even
though the removal efficiency of disinfection processes is very
high it is not possible to avoid secondary treatment to cut cost,
since the organic matter in the wastewater act as precursors of
disinfection by-products. Additionally, the secondary treatment
also decreases the suspended solids concentration, which is
a key parameter for UV disinfection. As a further treatment
step, membrane filtration systems might be used to remove the
remaining ARG and ARB, and CW can be considered as a post
treatment step for effluents in smaller settings. Finally, MBRs

that combine biological treatment and membrane filtration make
good alternatives for ARB and ARG removal.

Removal From Sludge and Biosolids
Biological wastewater treatment relies on the growth of bacteria
and other microorganisms and subsequent flocculation and
settling of aggregated biomass. At a steady state, excessive
biomass is removed (so called sludge wasting usually done
through the underflow from secondary clarifiers) together with
other solids that are collected in skimmers and primary clarifiers.
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TABLE 3 | Antibiotic elimination efficiencies in different treatment units.

Treatment
technologies

Antibiotics Antibiotic
elimination
efficiency

References

Physical processes

Membrane
separation

SA, ML 5–28% Sahar et al., 2011

Soil aquifer
treatment

SA 68.2–88.9% Qin et al., 2020

ML 90.1% Fang et al., 2017

Biological processes
Anaerobic–aerobic
seq. bioreactor
(AAS)

– – –

Aerobic bioreactor SA >95% Qian et al., 2020

Anaerobic
bioreactors

SA ∼2% Qian et al., 2020

TC, SA >90%, 30–98% Cheng et al., 2020

Membrane
bioreactor

SA 87.4% Song et al., 2017

FQ 81.1%

TC 83.8%

ML 14.3%

CW-surface flow BL, SA, FQ,
TC, ML

–67 to 100% Liu et al., 2019

CW-horizontal
subsurface flow

BL, SA, FQ,
TC, ML

–46 to 100% Liu et al., 2019

CW-vertical
subsurface flow

BL, SA, FQ,
TC, ML

20–100% Liu et al., 2019

Hybrid CWs SA, FQ, TC, ML 43 ± 32% Ávila et al., 2014

Chemical processes

Chlorination BL 97–100% Li and Zhang, 2011

SA 73–100%

FQ 50–74%

TC 39–83%

ML 43–53%

UV-254 nm SA 51% De la Cruz et al.,
2012

FQ 48–65%

ML 0%

SA, FQ >99%, 90 min Michael et al., 2020

Ozonation BL, SA, FQ, ML 100%,
O3 = 14–42 mg

Paucar et al., 2019

TC 86.4–93.6%,
O3 = flow rate
0.5 L/min

Wang et al., 2018

Photocatalytic
oxidation

SA ∼46%, 300 min,
QUV = 42 kj/L

Michael et al., 2020

FQ >99%, 60 min,
QUV = 8 kj/L

SA, FQ, TC 100%, 90–100%,
100%

Palominos et al.,
2008; Kansal et al.,
2014; Espíndola
et al., 2019;
Sandikly et al.,
2019

Fenton’s oxidation
reaction

BL 100%,
H2O2/Fe2+ = 2–
150 µM,
pH = 2–4

Elmolla and
Chaudhuri, 2009

(Continued)

TABLE 3 | (Continued)

Treatment
technologies

Antibiotics Antibiotic
elimination
efficiency

References

SA 74%,
H2O2/Fe2+ = 2.9 µM,
pH = 3–6

Qian et al.,
2020

FQ, ML With citric acid 95%,
H2O2/Fe2+ = 1.75 µM,
pH = 3

Macku’ak et al.,
2015

BL, β-lactam; SA, sulphonamide; FQ, fluoroquinolones; TC, tetracyclines; ML,
macrolides.

Several unit operations reduce water content, stabilize, and
treat the discarded sludge before it is disposed or recycled.
Biosolids from WWTPs are typically applied to agricultural land
as fertilizer, disposed of to landfills, or incinerated (United States
Environmental Protection Agency, 2003; Tchobanoglous et al.,
2014; Collivignarelli et al., 2019).

Unsurprisingly, most of the resistant bacteria and resistance
genes that arrives with the sewage and that grows and propagates
through a treatment plant end up in the settled sludge (Munir
et al., 2011; Calero-Cáceres et al., 2014; Yuan et al., 2019).
Studies examining municipal WWTPs without advanced sludge
treatment in the United States (Munir et al., 2011; Gao et al.,
2012) and in China (Chen and Zhang, 2013; Wen et al., 2016;
Yuan et al., 2019) have shown that although the plants are able to
reduce the abundance of resistance genes and resistant bacteria
in their effluents by 2–4 orders of magnitude, the amount of
resistance genes and resistant bacteria in the biosolids from these
plants are of the same order of magnitude as in the inflow sewage
(around 108–1010 copies of tetW and tetO resistance genes per
100 ml sample and 106–108 CFU of tetracycline resistant bacteria
per 100 ml sample).

Supplementary Table 1 gives an overview of reported levels
of bacteria, resistant bacteria, and resistance genes in biosolids
after sludge treatment at WWTPs around the world. The
table also includes extended information about plant type,
treatment process, sludge sources, and final application of the
biosolids. Conventional sludge treatment methods that simply
thickens and dewaters sludge by gravity thickening, belt pressing,
centrifugation, or other mechanical methods are not effective
at removing resistance genes (Supplementary Table 1). Further
anaerobic or aerobic digestion of the sludge is also in many
cases not enough to substantially reduce the number of resistant
bacteria and genes.

Heat drying, which involves reducing the moisture content
to below 10% by direct or indirect contact with hot gases
(Tchobanoglous et al., 2014), and advanced lime stabilization,
which involves the addition of alkali (lime) to increase pH in
combination with other treatments like pasteurization or heat
drying, are more effective at removing resistance. Heat drying
and advanced lime stabilization reduce the density of bacteria
in biosolids, and thus also the density of resistant bacteria, to
levels similar to and in most cases below what is typical for soil
(Supplementary Table 1). This is due to the high temperatures
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and/or pH that are reached in the processes. The density of
resistance genes is on the other hand in many cases still higher
than what is typical for unfertilized soil. However, it has been
suggested and observed that the genes have lower stability after
treatment as many are trapped within dead microorganisms (Lau
et al., 2017; Murray et al., 2019). In a study that measured the
density of resistance genes in the soil directly after application
of biosolids, the authors found that the abundance of resistance
genes 2 h after application was remarkably low in soil amended
with heat-dried biosolids (Lau et al., 2017). Similar results have
also been found for soil amended with biosolids pasteurized
at more than 70◦C for a period of 30 min in a lab scale
experiment (Burch et al., 2017). It seems that many of the
resistance genes are rapidly destroyed when they come in contact
with soil and moisture.

The N-rich biosolids produced through the N-Viro treatment
used at Thorold, Ontario (Supplementary Table 1) have
particularly low levels of resistance genes. Murray et al. (2019)
found that out of 41 selected genes associated with resistance and
HGT, 38 were below the detection limit and the remaining 3 were
below the quantification limit. The reason is that the pH is so high
that double stranded DNA denatures (Murray et al., 2019).

Pyrolysis is another treatment method that consistently
reduces the density of resistance genes in biosolids to below what
is found in pristine soil in nature. Pyrolysis is not a common
biosolid treatment technique today and has many of the same
disadvantages as incineration. It has high capital and operating
cost, and requires highly skilled operating and maintenance
staff, compared to the simpler dewatering, stabilization, and
heat drying methods (Tchobanoglous et al., 2014; Carey et al.,
2016). It is also energy intensive, but it can potentially be used
as a refinement step in treatment plants that already use heat
drying, as the added energy cost of pyrolysis is reported to
be low compared to the energy already invested in drying the
biosolids (McNamara et al., 2016). The benefit of pyrolysis over
incineration is that more organic content and nutrients remain
in biochar than in incinerated ash, giving biochar a higher
fertilizer potential—biochar has an NKP content of 6-13-0 vs. 0-
6-2 for incinerated ash (Carey et al., 2016). They both, however,
have the risk of containing high levels of heavy metals, which
are concentrated in the product during the production process
(Carey et al., 2016).

From the results combined in Supplementary Table 1, it
is worth noting that the density of remaining resistance genes
after a specific biosolids treatment method can vary with more
than an order of magnitude between facilities (Supplementary
Table 1). This may be due to differences in the sludge loading
or their operation, but also because the methods and protocols
for quantification have different sensitivities and efficiencies for
extracting and measuring the absolute concentration of genes
(Feinstein et al., 2009; Taylor et al., 2019; Yuan et al., 2019).

The trend seen from the numbers in Supplementary Table 1
is that further treatment beyond digestion is needed to reduce
the density of resistant bacteria to levels comparable to or
below what is found in soils. The trend coincides comparatively
well with the grouping of sludge treatment methods used in
the biosolids regulation of the United States (40 CFR Part
503) (United States Environmental Protection Agency, 1994,

2003). Treatment processes are categorized into “processes
to significantly reduce pathogens” (PSRP) and “processes to
further reduce pathogens” (PFRP). PSRP includes the first
set of treatment methods after thickening/dewatering, i.e.,
aerobic digestion, anaerobic digestion, air drying, composting,
and limes stabilization, with specific requirements to process
parameters such as time, temperature, and pH (United States
Environmental Protection Agency, 1994, 2003). PFRP includes
further treatments that use heat or radiation to purposefully
kill pathogens, i.e., heat drying, heat treatment, pasteurization,
beta- or gamma-ray irradiation, and also composting and
thermophilic digestion if the temperature is kept over 55◦C
for a specified number of days (United States Environmental
Protection Agency, 1994, 2003). The PSRP and PFRP grouping
are in the United States are used together with bacteria density
limits (fecal coliforms or Salmonella) to regulate land application
of biosolids. However, the current regulations only require PSRP
treatment or an average fecal coliform density below 2·106

CFU/g for agricultural use (class B biosolids), and there is no
specific mention of either resistant bacteria or resistance genes
(United States Environmental Protection Agency, 1994, 2003).
Similarly, there are currently no specific limits on resistant
bacteria or resistance genes for biosolids in the European Union
(Eur-Lex, 2018; Collivignarelli et al., 2019). The European Union
directive 86/278/EEC (2018), which regulates the application of
biosolids in the EU, does not specify any limits on pathogen
content, but several member states have national regulations with
limit values for indicator bacteria [typically Salmonella and some
type(s) of fecal bacteria] (Collivignarelli et al., 2019).

More and more studies are linking the application of biosolids
to higher levels of resistant bacteria and genes in agricultural
soil (Ross and Topp, 2015; Gondim-Porto et al., 2016; Burch
et al., 2017; Lau et al., 2017; Murray et al., 2019). However,
the resistance levels decrease with time after application (Marti
et al., 2014; Rahube et al., 2014; Ross and Topp, 2015; Burch
et al., 2017; Lau et al., 2017; Murray et al., 2019), and the
current evidence for gene transfer to crops and animals remains
inconclusive (Marti et al., 2013b; Rahube et al., 2014; Lau et al.,
2017; Murray et al., 2019; You et al., 2020). Current regulations in
the US and the EU do include time restrictions from application
to harvesting and/or grazing (United States Environmental
Protection Agency, 1994, 2003; Eur-Lex, 2018; Collivignarelli
et al., 2019). Implementation of limits for the density of resistant
bacteria and resistance genes to the regulations for biosolids
should also be considered. Limits on the density of resistance
genes can be difficult to implement, as measurement methods for
gene amounts have varying sensitivity and accuracy (Feinstein
et al., 2009; Taylor et al., 2019; Yuan et al., 2019). The density
of resistance genes can furthermore be an inconsistent factor
for risk alone because of the difference in stability and transfer
potential between genes in living bacteria, genes in dead bacteria,
and free and adsorbed genes outside of bacteria. Significant risk
reduction can be achieved merely by stricter limits on the general
density of bacteria, e.g., as for biosolids of class A today (Murray
et al., 2019). Treatment operations that consistently reach these
limits are already implemented technologies at many WWTPs.
Stricter limits must, however, be weighed against the implications
they will have for the overall use of biosolids as fertilizer and
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soil improvement. Moreover, limits and regulations for biosolids
must be harmonized with other biological fertilizers such as
manure, which is also known to contain high levels of resistance
(Marti et al., 2013b, 2014; Ross and Topp, 2015; Nõlvak et al.,
2016). Stricter regulations can lead to more incineration and less
reuse, an effect that cannot be disregarded in the context of a
sustainable and circular economy.

MODELING ANTIBIOTIC RESISTANCE IN
WASTEWATER TREATMENT PLANTS

Mathematical models formulated from a mechanistic or holistic
understanding of microbial and biogeochemical interactions in
aquatic systems have advanced our understanding of dynamics in
technical and natural systems (Simon et al., 2002; Benedetti et al.,
2013). Mathematical models describing the processes involved
in the treatment and biodegradation of wastewater have already
successfully been developed and established as standard, well
used tools within the WWTP community (Gernaey et al., 2004;
Solon et al., 2019). Such models are, as mathematical models in
general, functional tools for a priori model and hypothesis testing,
and a posteriori data analysis and performance evaluation. The
standard WWTP models are the so-called activated sludge
models (ASM1, ASM2, ASM2d, ASM3, and variants), which have
been applied for research and process performance evaluations,
as well as for the design of new WWTPs (Henze et al., 2000; Van
Loosdrecht et al., 2015). These models include the major WWTP
processes of biomass growth, carbon oxidation, nitrification,
denitrification, and phosphorus removal. None of the standard
models, however, include the occurrence or spread of antibiotic
resistance among bacteria in WWTPs.

Several mathematical models for the spread of antibiotic
resistance in bacteria populations have been proposed, although
mainly in theoretical, or simplified, environmental settings
(Birkegård et al., 2018). This includes models of the spread of
resistance in axenic cultures of bacteria (Tremblay and Rose,
1985; Imran and Smith, 2007; Svara and Rankin, 2011), and
a few models that include spread through more than a single
strain (Clewlow et al., 1990). There are also models that deal
with the dynamics of antibiotic resistance in relation to antibiotic
concentrations and distinguish the type of resistance mechanism
(Bootsma et al., 2012; Krzyzanski and Rao, 2017); and finally,
models that deal with the spread between hosts of bacteria, i.e.,
in an epidemiological setting (Spicknall et al., 2013; Levin et al.,
2014).

The development of mathematical models that combine
the biodegradation processes and population dynamics of
microorganisms in a WWTP with the presence of antibiotic
compounds, ARGs, and the spread of antibiotic resistance in the
populations through HGT is still in its early stages. Attempts
to combine the use of WWTP and ARG models are few and
limited to early-stage developments. There have, however, been
attempts to combine antibiotic degradation dynamics with the
traditional activated sludge models (ASM-X by Polesel et al.,
2016) to assess degradation kinetics of antibiotics and other
pharmaceuticals in WWTPs. Few examples exist of models that

have been set up to address the effect of antibiotic resistance
in realistic environments that are partly similar to WWTPs
(Hellweger et al., 2011; Hellweger, 2013; Baker et al., 2016). Baker
et al. (2016) modeled the spread of antimicrobial resistance in a
slurry tank that collects and stores fecal and urinary waste from
cows at a dairy farm. Their model includes most processes that
should be considered to capture both population dynamic and
resistance spread, i.e., cellular growth and death processes, HGT,
segregation loss, antibiotic concentration (to capture selection
pressure), slurry inflow and fitness cost. We think that this
model structure with the addition of the treatment processes
from the ASM models can serve as a basis for a model suitable
for a WWTP environment. Baker et al. (2016) parameterized
their model based on their experimental data and data from
the literature and showed through sensitivity analysis that gene
transfer rate is one of the most important parameters for the
spread of resistance. Hellweger et al. (2011) and Hellweger (2013)
used a mathematical model to test if observed concentrations
of antibiotics and densities of tetracycline resistant bacteria in
the Poudre River in Colorado could be explained by different
scenarios for how resistant exogenous bacteria that arrive at
the river grow and exchanges genes with indigenous bacteria.
They showed that the observed data could not be explained by
a scenario with high input of exogenous resistant bacteria to the
river without growth in the river itself; their model suggested
that there has to be the growth of resistant bacteria and thus
maintenance of the resistance gene in the river itself, is most
likely due to soft selection pressure from low concentrations of
tetracycline (Hellweger et al., 2011).

Wastewater treatment plants are highly complex systems
with mixed cultures of microorganisms, and a wide range of
modeling approaches, including individual-based models (IbMs),
are needed to understand the functioning of such plants from
micro to macro scale. Deterministic population-level models,
like the classical ASM models, allow for studying the average
behavior of systems, e.g., the overall dynamics of populations
and concentrations in the plant reactors. However, they may
miss some important individual effects on biological processes
rates in the bacterial community. Population-level models do
not account for individual heterogeneity, local interactions, or
adaptive behavior. IbMs do on the other hand treat bacteria as
single cells, as discrete entities, and might be better suited to
account for the spread of resistance and can potentially overcome
these limitations that arise from population model design. HGT
is a micro-level process. For example, conjugation of resistance
plasmids, as this is a discrete event between individual cells,
happens when an individual donor bacterium and a recipient
bacterium are close enough in space that a pilus from the
donor can attach to the recipient and bring them together
(Seoane et al., 2011). IbM of conjugation mechanism allows
presenting the intrapopulation variability, to capture the changes
that occur during the coupling process (Merkey et al., 2011;
Seoane et al., 2011). Moreover, local variations in population
density, e.g., flocculation, plays a role in the spread of resistance
(Merkey et al., 2011), and the description of actions on the level
of the single organism in the model may thus be needed
to explain the total population development (Breckling, 2002;
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Hellweger et al., 2016). IbMs can determine the relevance of a
specific interaction or location for the overall behavior of the
biofilm Therefore, IbMs can give insights into the emergence
of antibiotic resistance from biofilms to aquatic environments.
Moreover, the combination of different level models, population
and individual, can provide quantitative analysis of the spread of
antibiotic-resistant bacteria.

Although mathematical models can be powerful tools and
the ASM models have been very successful for understanding
and developing treatment processes, mathematical modeling
approaches have so far not yet been able to help improve our
understanding of the conditions that drive maintenance, spread
or extinction of ARGs or ARB in WWTPs. The main weakness
of many of the proposed models of antimicrobial resistance
is the lack of experimental data available to parameterize and
validate the models (Birkegård et al., 2018). Any extensions
of the standard WWTP models to include resistant and non-
resistant bacteria, the presence of ARGs, different mechanisms
for HGT, and concentrations of antibiotics, should include
considerations on how to experimentally measure associated
process rates and concentrations. An integrated AR-WWTP
model designed -with this in mind- can become a promising
tool for theoretical and diagnostic studies of ARG spreading, and
it can be of help in identifying which mechanisms and factors
that are the most important for the spread of resistance under
different circumstances. That is, in evaluating which operational
conditions or parameter values that can minimize spread, and
which parameters are key drivers.

FUTURE DIRECTIONS AND
CONCLUSION

In this review, we assessed the causes and the mechanisms for
the spread of ARGs, together with their occurrence, transfer,
and potential removal in WWTPs. While the issue of antibiotic
resistance could never have completely been prevented, the
current universal problem of resistant bacteria is solely due to
anthropogenic activities. Moreover, the absence of regulations
and strict monitoring regimes have contributed to the escalation
of the occurrence of antibiotic resistance in the environment. The
research shows that neither conventional nor advanced WWTPs
are efficient enough to completely remove ARGs and ARB
from water environments, but that more advanced treatment
methods perform better. Advanced post treatment methods like
UV, ozonation and oxidation of water effluents, and heat drying,
lime stabilization and pyrolysis of biosolids, remove considerably
more ARGs and ARB than activated sludge treatment alone but
are not without disadvantages like more difficult and complex
operation and higher cost. Finally, the following key points are
proposed to improve current WWTPs and provide guidance for
future application:

(i) In order to reduce the threat of antibiotic resistance, it
is advisable to set strict threshold limits for antibiotic
release from point sources like hospitals and animal
husbandries, together with the thresholds for release of

metal residues, biocides, and other pharmaceuticals that
drive co-selection of resistance.

(ii) Plans for implementation of more advanced treatment
processes should consider the economy and ecology of
the whole waterway. It may be more cost effective to
employ smaller scale treatment plants with disinfection
units at point sources than to redesign and rebuild larger
municipal WWTPs.

(iii) Efforts should be made to devise and agree upon standard
methods to measure and report ARB and ARG levels
to make it easier to compare resistance levels between
different countries and at different treatment plants. This
will also make it easier to evaluate removal efficiencies
of treatment methods and to evaluate the performance of
already established treatment plants, which can facilitate
the decision process of operators and regulatory agencies
of whether additional post-treatment steps are necessary.

(iv) Experimental studies should be combined with
mathematical modeling to further examine the
mechanisms for the spread and population growth
of resistant and non-resistant bacteria in wastewater
treatment environments. The effect of different treatment
methods and plant operation strategies on the spread
of resistance genes should be further studied, including
the effect of operating conditions (pH, temperature,
COD, BOD) on HGT.

These approaches can provide a further understanding of the
processes and mechanisms of spread and can therefore help in
the design of WWTPs that are less likely to become breeding
grounds for antibiotic resistance, and which function better
as final barriers.
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