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Abstract: The introduction of Industry 4.0 is expected to revolutionize current maintenance practices
by reaching new levels of predictive (detection, diagnosis, and prognosis processes) and prescriptive
maintenance analytics. In general, the new maintenance paradigms (predictive and prescriptive) are
often difficult to justify because of their multiple inherent trade-offs and hidden systems causalities.
The prediction models, in the literature, can be considered as a “black box” that is missing the links
between input data, analysis, and final predictions, which makes the industrial adaptability to such
models almost impossible. It is also missing enable modeling deterioration based on loading, or
considering technical specifications related to detection, diagnosis, and prognosis, which are all
decisive for intelligent maintenance purposes. The purpose and scientific contribution of this paper is
to present a novel simulation model that enables estimating the lifetime benefits of an industrial asset
when an intelligent maintenance management system is utilized as mixed maintenance strategies
and the predictive maintenance (PdM) is leveraged into opportunistic intervals. The multi-method
simulation modeling approach combining agent-based modeling with system dynamics is applied
with a purposefully selected case study to conceptualize and validate the simulation model. Three
maintenance strategies (preventive, corrective, and intelligent) and five different scenarios (case
study data, manipulated case study data, offshore and onshore reliability data handbook (OREDA)
database, physics-based data, and hybrid) are modeled and simulated for a time period of 20 years
(175,200 h). Intelligent maintenance is defined as PdM leveraged in opportunistic maintenance
intervals. The results clearly demonstrate the possible lifetime benefits of implementing an intelligent
maintenance system into the case study as it enhanced the operational availability by 0.268% and
reduced corrective maintenance workload by 459 h or 11%. The multi-method simulation model
leverages and shows the effect of the physics-based data (deterioration curves), loading profiles, and
detection and prediction levels. It is concluded that implementing intelligent maintenance without
an effective predictive horizon of the associated PdM and effective frequency of opportunistic
maintenance intervals, does not guarantee the gain of its lifetime benefits. Moreover, the case study
maintenance data shall be collected in a complete (no missing data) and more accurate manner (use
hours instead of date only) and used to continuously upgrade the failure rates and maintenance times.

Keywords: maintenance management; lifetime benefit; simulation modeling; multi-method simula-
tion; industry 4.0; oil and gas; centrifugal compressor

1. Introduction

The opportunities within information and communication technology have revolu-
tionized the industry by bringing the fourth industrial revolution, Industry 4.0, into reality.
The main enablers of this new era are associated with the opportunities within emerging
technologies such as the internet of things, big data, and cloud computing (including
detection, diagnosis, and prognosis). These technologies are the fundamentals of Industry
4.0′s core concept, namely the cyber-physical-system that enables converging the physical
space of equipment with cyberspace. Therefore, Industry 4.0 is considered as the future

Appl. Sci. 2021, 11, 3487. https://doi.org/10.3390/app11083487 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5121-6544
https://doi.org/10.3390/app11083487
https://doi.org/10.3390/app11083487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083487
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11083487?type=check_update&version=2


Appl. Sci. 2021, 11, 3487 2 of 29

scenario of industrial production since it enables a new level of organizing and controlling
the entire value chain within the product lifecycle, by creating a dynamic and real-time
understanding of cross-company behaviors.

Several case studies [1] highlight the benefits of digital transformation in the oil and gas
(O&G) sector. For example, reducing the upstream operations’ finding and development
costs by 5 percent; maintenance costs by 20 percent; overtime cost by 20 percent; downtime
by 5 percent (mainly due to predictive maintenance (PdM)); inventory levels for spare
parts by 20 percent; while boosting production by a conservative 3 percent in conventional
land operations [1]. However, maintenance management and performance are complex
aspects of an asset’s operation that are difficult to justify because of their multiple inherent
trade-offs and hidden systems causalities. Nevertheless, companies want to be capable
of estimating the lifetime benefits in terms of improving availability and reducing the
maintenance management workload, etc., by incorporating intelligent maintenance into
the operation and maintenance of their engineering assets to demonstrate (1) how much to
invest, (2) when to invest, and (3) the resulting expected lifetime benefits.

Therefore, the industry has really begun to appreciate the benefits of applying mod-
eling and simulation methodologies as a supportive function to enable assessing the
behavior and predicting the future outcome of, e.g., maintenance management. For exam-
ple, Shoreline AS provides a simulation model that helps to simulate possible maintenance
alternatives for offshore wind farms and select the most cost-effective by considering
operational aspects such as weather forecast, accessibility, and resources i.e., technicians
and type of vessel. Moreover, Miriam RAM studio simulates the availability and produc-
tivity of O&G installations based on reliability analysis. This helps designers to redesign
or design out items to enhance availability and overall equipment effectiveness. These
industrial simulation tools shall be enhanced until they capture and are able to estimate
all the lifetime benefits of an intelligent maintenance management system. For example,
industrial managers are looking forward to estimating the lifetime benefits of PdM and the
potential opportunistic maintenance intervals in (1) reducing the corrective maintenance
and unintended maintenance events, (2) reducing the preventive maintenance workload
and minimizing the planned maintenance campaigns, (3) reducing the level of damage
and repair, and (4) extending the lifetime of industrial assets. The desired simulation tool
shall support estimating the scheduled maintenance workload (maintenance campaigns),
potential corrective maintenance workload, PdM capabilities (effectiveness and earliness),
and the planned and potential opportunistic maintenance intervals to perform intelligent
maintenance. These basic functions shall enable industrial managers to (1) redesign their
maintenance campaigns and potential corrective maintenance (with the help of intelligent
maintenance) to fit opportunistic maintenance intervals, (2) reschedule maintenance cam-
paigns at the utilization phase, and (3) redefine their loading and operating profile (optimal
profile to produce as high as possible at a deterioration rate as low as possible) either
for short-term tactical decisions as toleration to utilize the next potential opportunistic
maintenance (avoid unintended maintenance visit) or for long-term strategic decisions to
extend their assets’ lifetime. For instance, Arun [2] illustrates how the change in loading
profile (from stand-by redundancy to preschedule redundancy) extends the asset lifetime.
In this case study, two out of three crude oil pumps were operating continuously, while
one pump was in stand-by mode functioning as redundancy (triggered once one of the
other two pumps fail). Following this, the company decided to change the operating policy
and run each pump based on time, whereas each pump was operating for two months
followed by one month in redundancy (monthly shift between the pumps to ensure that
two pumps were running continuously).

The state-of-the-art of simulation models for maintenance practices shows three
schools of thinking: discrete event, system dynamics, and agent-based modeling. The
discrete-event simulation models for maintenance services and failure events are nicely
summarized by Alabdulkarim, Ball et al. [3]. These models have the objective of inde-
pendently simulating preventive maintenance and corrective maintenance events (due
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to probabilistic failures) and consider them as discrete events that return the asset to a
state of “as good as new”. First, maintenance practitioners and researchers [4,5] have
noticed that preventive maintenance has a long-term effect on corrective maintenance and
maintenance resources, and they defined the “shift the burden” phenomenon. Second,
they noticed that preventive maintenance activities fix the symptoms of failures but might
not fix the fundamental problem or cause of the propagating deterioration. Therefore, the
system dynamics approach came as the second wave with its ability to model interactions
(causalities) between maintenance policies (corrective and preventive) to enable the field of
maintenance simulation to study the effect of several and mixed maintenance policies e.g.,
total productive maintenance [5], reliability centered maintenance [6], overall equipment ef-
fectiveness [7], and condition-based maintenance (CBM) [8–11]. In this context, simulation
models involving maintenance policies using systems dynamics are nicely summarized
by Linnéusson, Ng et al. [12]. In fact, system dynamics models are well known for their
high level and abstractive representations (they consider the entire industrial system as one
single system), which made maintenance practitioners and researchers search for another
approach that models the individual behaviors (where they can decompose the system,
but with traceable connections). Therefore, the third wave of maintenance simulation
started with agent-based modeling where multi-agent models, multi-simulation models,
and individual state-transition (statechart) were enabled. The agent-based models for
maintenance simulation are still few, but rapidly growing [2,13–15].

The literature clearly introduces two research gaps. First, none of the existing sim-
ulation models have modeled the deterioration based on loading. Second, a model that
includes the PdM capabilities of detection, diagnosis, and prediction processes is missing.
In summary, to get the lifetime benefits of the referred simulation models and make them
fit with the required above-mentioned functionalities (opportunistic maintenance intervals,
PdM, and load-based deterioration), further contributions are required. In fact, the future
simulation model required shall be able to consider: (1) the individual agent (physical
component and failure modes), as Endrerud, Liyanage et al. [14] have done, besides, (2)
modeling the PdM module, as Adegboye, Fung et al. [15] have done, (3) modeling the
asset determination based on loading function as Arun [2] has done, and (4) modeling
opportunistic maintenance intervals and leveraging PdM into these intervals in terms of
intelligent maintenance. Table 1 highlights what is covered by the three latter studies and
the missing scientific contribution (research gap) required to enable simulating intelligent
maintenance operations.

Table 1. Existing research and required scientific contributions to satisfy intelligent maintenance operations.

Reference
Preventive and Corrective
Maintenance Considering

Agents

Modeling CBM and
PdM

Load-Based
Deterioration

Intelligent Maintenance
(Leveraging PdM into

Opportunistic Intervals)

[14] X - - -

[15] X X - -

[2] X X X -

This study X X X X

Therefore, the purpose and scientific contribution of this work is to develop a novel
multi-method simulation model that enables estimating the lifetime benefits of an industrial
asset, whereas intelligent maintenance is utilized as mixed maintenance strategies and the
PdM is leveraged into opportunistic intervals.

Leveraging PdM requires an enhanced level of detection, diagnosis, and progno-
sis [16] with an integrated load-based deterioration model. To be more specific, the desired
simulation model shall enable simulating the behavior of several maintenance strategies
and fulfill specific industrial requirements to ensure its effectiveness, fitness to purpose,
and adaptability. The desired model shall enable maintenance engineers to (1) allocate
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the scheduled maintenance campaigns for each component and differentiate between
campaigns that lead to operational unavailability and not, (2) simulate the potential failure
events and associated corrective maintenance events, and utilize their real historical failure
and maintenance data or data extracted from the well-known failure database, i.e., the
offshore and onshore reliability data handbook (OREDA) [17], or both, (3) assign “failure
rate” and “mean time to repair” (MTTR) values for each maintainable item (component
level) and associated failure modes, (4) simulate maintenance events that are triggered by
CBM or PdM algorithms, (5) assign the capability level of condition monitoring techniques
and prediction algorithms [16], and leverage the predicted failure events into opportunistic
maintenance intervals in terms of intelligent maintenance, (6) simulate deterioration pro-
cess and predict failure events based on realistic (fluctuating, seasonal patterns, stand-by
operations, extreme loading intervals) loading and operating profiles. Thus, to build such
a model and validate its structure and behavior, a case study of a centrifugal compressor
used for natural gas transportation is purposefully selected.

The novel multi-method computational simulation model in this paper is decomposed
into four sub-models (1) working state for operational availability and intelligent mainte-
nance, (2) scheduled maintenance states (component level and equipment level) which also
presents the opportunistic maintenance intervals, (3) failure states which represent failure
modes and triggers for failure events, and (4) corrective maintenance states. Furthermore,
to highlight the expected lifetime benefits of intelligent maintenance during 20 years of
operation, two main use case scenarios shall be modeled: with and without intelligent
maintenance. The latter use case scenario (without intelligent maintenance) has several
sub-scenarios that also study the effectiveness of several possible data sources: (1) empiric
case study data (experience), (2) manipulated empiric case study data, (3) the OREDA
database [17], and (4) mixed data-input from both the empiric case study and the OREDA
database. These four sub-scenarios along with the intelligent maintenance scenario result
in a total of five simulated use case scenarios.

The six-step modeling and simulation methodology, presented in the following section,
is applied to build the desired novel multi-method computational simulation model that
combines agent-based modeling with system dynamics to simulate the five use case
scenarios. In this case, the multi-method modeling software Anylogic 8 is utilized.

The rest of this section is organized as follows. First, Section 2 explains the materials
and methodology of this study, which includes the entire six-step simulation modeling
methodology adopted. Section 3 presents the simulated results obtained from the computa-
tional model. Section 4 discusses and validates the findings of this study. Finally, Section 5
offers some conclusions and makes recommendations for future work.

2. Materials and Methods

In this section, the adopted six-step simulation modeling methodology is presented.
Thus, detailed descriptions of how the real-world case study was analyzed, conceptualized,
and computerized into a simulation model are presented.

In fact, model-based representations in terms of process modeling and industrial simu-
lation approaches have become a highly embraced tool with their growing complexity and
capabilities [18]. Current literature presents several different methodologies that facilitate
the successful development of a simulation model, with the most trusted modeling method-
ologies being that of [19–21], whereas the majority of literature relies on the methodology
proposed by Sterman [21]. Nevertheless, the essence of the different methodologies is quite
similar. This research adopts a six-step simulation modeling methodology that extends the
essence of Sterman [21] by allocating additional emphasis on systems analysis and scenario
modeling. The adopted six-step modeling and simulation methodology is as follows:
(1) System analysis and project planning, (2) Conceptual modeling, (3) Computational
modeling, (4) Scenario modeling, (5) Verification and validation, and (6) Visualization. In
the following subsections, each step will be described in detail.
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2.1. Step 1: System Analysis and Project Planning

The first step in the six-step modeling and simulation process starts with a system
analysis addressing the needed fundamentals to attain an understanding of the system’s
behavior, i.e., structure, interfaces, processes, interactions, etc. To do so, relevant stake-
holders must be addressed, including their needs and requirements to the system under
study. Then, the model constraints must be defined by studying, e.g., system context,
hierarchy, interface architecture, and functional and physical architecture in greater detail.
In addition, other features posing a significance to the purpose must be identified, e.g.,
politics, market, technology.

The purpose of the system analysis step is to (1) identify the purpose and objective of
the simulation, (2) analyze the case study data that is required to conceptualize the mainte-
nance management practices (scheduled, corrective, condition monitoring, opportunistic
intervals), especially, workflow, rules, conditions, and actions, (3) analyze the case study
data that is required as inputs for the simulation model e.g., failure rates, maintenance
service times, and (4) analyze the case study data that is required to validate the simulated
behavior e.g., real availability and real corrective maintenance workload.

The purpose of the proposed multi-method simulation model is to simulate and
estimate the potential lifetime benefits of implementing an intelligent maintenance manage-
ment system in terms of availability and corrective maintenance workload during a time
period of 20 years. Thus, the simulated outputs of the computational model address: (1)
operational behavior, (2) maintenance event: timeline and workload, and (3) the occurrence
of failures allocated at the component level. It is evident that operational availability is
essential for the case company, as the end-user consumption is traceable to industrial
operation and human welfare in Europe. Therefore, the operational behaviors including
availability and unavailability caused by failures and the need for corrective maintenance
are analyzed. This is easiest illustrated through a time-plot diagram showing continuous
availability and unavailability as a function of time during operation. The maintenance
event timeline of both scheduled maintenance and corrective maintenance is analyzed.
First, a scheduled maintenance event timeline is analyzed as it introduces opportunistic
maintenance intervals whereas future predicted failures can be allocated. Second, a cor-
rective maintenance event timeline that demonstrates the corrective maintenance events
required by the different use case scenarios is analyzed. This is especially interesting when
it comes to comparing the corrective use case scenarios with the intelligent maintenance
scenario. The maintenance workload is analyzed to demonstrate the allocation of main-
tenance management. The number of component failures occurring during operation is
analyzed to compare different use case scenarios, which supports highlighting the number
of corrective maintenance events that can potentially be replaced with intelligent main-
tenance. In addition, it addresses possible differences in input data originating from the
empiric case study and the OREDA database.

To simulate the possible lifetime benefits of incorporating an intelligent maintenance
system into the specific case study, data concerning failure rates and MTTR values of the
specific case of interest is needed. In addition, data that enables determining the capabilities
of detection, diagnosis, and prognosis of such a system is also needed. To do so, an analysis
tool that has been developed by the authors on a previous occasion can be adapted [16]. A
more detailed system analysis has already been performed and presented by the authors
in [22].

2.2. Steps 2 and 3: Conceptualization and Computational Modeling

The conceptual modeling is all about synthesizing the developer’s understanding of
the real situation analyzed in the “system analysis and project planning” into a conceptual
model. This is known as a time-consuming task in comparison to the other steps in the
simulation modeling process [23]. In this context, the authors have already published a
paper [24] where the conceptual model is described using a system dynamic approach.
However, the authors later recognized that a multi-method modeling approach combining
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system dynamics with an agent-based modeling approach, whereas statecharts either trig-
gered by rates, parameters, or conditions connected to system dynamics approaches are
used, can enable better modeling of the maintenance policies. The statecharts in Figure 1
represent the maintenance management process in the case company, specifically for com-
pressor equipment. The statechart is modeled using Anylogic Simulation package (8.5.1)
and decomposed into the following four sub-models (1) Working state for operational
availability and intelligent maintenance representing the daily operation and maintenance
(including condition monitoring) activities that do not affect the operational behavior, (2)
scheduled maintenance states (at component level and equipment level), requiring shut-
down of the compressor equipment (presents the opportunistic maintenance intervals), (3)
failure states, representing failure modes and triggers for failure events, and (4) corrective
maintenance states, referring to the corrective maintenance needed to put the compressor
equipment back in normal operation post-failure. These four sub-models are illustrated in
Figures 2–4 and described in more detail in the following subsections, respectively.

2.2.1. Operational Availability and Intelligent Maintenance

The “working” state is considered as the mother state in Figure 2, which means that the
equipment is available as long as the agent “Compressor” has not triggered a maintenance
event requiring equipment stoppage. However, the equipment might be available and
running normally in the “normal” state while the condition monitoring system is active,
and the equipment health is being checked on a daily and monthly basis (rates). The daily
and monthly checks have specific time amounts (i.e., timeout in Anylogic) and might trigger
a maintenance event that results in equipment stoppage. The monthly monitoring checks
are done by two stakeholders (1) condition monitoring providers and (2) the technical
service provider. Moreover, there are minor and major scheduled maintenance work that is
taking place while the equipment is running (which does not lead to production stoppage).
Furthermore, the PdM might also trigger a maintenance event that can take place in the
following opportunistic intervals. This state is named “Intelligent Maintenance” and does
not lead to production stoppage as it utilizes potential opportunistic intervals. The time
amount for these maintenance events specifically connected to the intelligent maintenance
and is extracted based on OREDA data for MTTR.

Table 2 addresses the triggers of the transitions between the different states included
in Figure 2. As seen, the transitions from the “normal” state to the states concerning (minor
and major) “scheduled maintenance”, and back again, are triggered by timeouts (specific
time interval). The states of “condition monitoring” are triggered by rates. In this case,
a conditional transition including a “randomTrue probability distribution” of the input
failure data is used to demonstrate the probability of detection. This means that, if the
condition is false, the condition monitoring system is not able to detect anything abnormal
with the operation and enters the normal working state again. In contrast, if the condition
is true, the condition monitoring system has detected abnormal behavior of the system and
the presence of failure. The logic of these latter states concerning condition monitoring
is not yet incorporated into the computational model, as the extracted failure rates used
in this research only contain system failure, and therefore the impact of the monitoring
system has already been taking into consideration, indirectly. However, the states are
included in the computational model as they pose an impact on the model output in terms
of maintenance workload. At last, the “IntelligentMaintenance” is triggered by the flow
“OpportunisticMaintenance” from system dynamics and then back to the “normal” state
again by a timeout function of 18 h that is extracted from the OREDA database [17] and
traceable to the specific MTTR values of the failure modes monitored in this case study.
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Figure 1. The novel computational model of intelligent maintenance.
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Figure 2. Operational availability and intelligent maintenance.

Figure 3. Scheduled maintenance state (at both system and component level) representing oppor-
tunistic maintenance intervals.
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Figure 4. Failure events and corrective maintenance.

Table 2. The connection between states, triggers, logics, and data sources in Figure 2.

From State To State Trigger Logic Data Source

Normal Scheduled maintenance
non prod. Impact Condition Scheduled maintenance > 0 Case study

Scheduled maintenance
non prod. Impact Normal Timeout Triangular distr. Case study

Normal Condition Monitoring Rates Parameter Case study

Condition Monitoring Normal Timeout & Condition Parameter and
randomTrue(failure rate) distr. Case study

Normal Intelligent Maintenance Condition Opportunistic Maintenance > 0 Calixto

Intelligent Maintenance Normal Timeout 18 OREDA

2.2.2. Scheduled Maintenance and Opportunistic Maintenance Intervals

The second sub-model highlights the scheduled maintenance at both system level and
component level, as depicted in Figure 3. More specifically, the scheduled maintenance at
both component and system level includes all the scheduled maintenance activities that
require stoppage of the system under study. In this case, scheduled maintenance at the
component level concerns maintenance activities directly connected to the components of



Appl. Sci. 2021, 11, 3487 10 of 29

the case study, while scheduled maintenance at the system level focuses on system-level
(systems connected to the case study, e.g., scrubber, cooler)—hence, scheduled maintenance
causing unavailability of any of these systems requires stoppage of the case study.

Table 3 highlights the triggers that are causing transitions between the different states
present in the scheduled maintenance and opportunistic maintenance intervals. In this
case, the scheduled maintenance states are triggered by rates that are extracted from the
case company data. The durations of the states are, on the other hand, highlighted by
triangular distributions either based on the case study data or the OREDA database [17]
(dependent on use case scenario). Since the MTTR values of the scheduled maintenance
activities are average values (assuming normal distribution), the triangular distribution is
used to incorporate some variance in the data.

Table 3. The connection between states, triggers, logics, and data sources in Figure 3.

From State To State Trigger Logic Data Source

Normal Scheduled maintenance
at System Level Condition Scheduled maintenance > 0 Case study

Scheduled maintenance
at System Level Normal Timeout Triangular distr. Case study

Normal Scheduled maintenance
at Component Level Condition Scheduled maintenance > 0 Case study

Scheduled maintenance
at Component Level Normal Timeout Triangular distr. Case study

The main purpose of modeling the scheduled maintenance at both system and com-
ponent levels is to address all planned maintenance activities that are causing production
stops. These stops are decisive to address as they can be used as opportunistic maintenance
intervals in which PdM can be leveraged in terms of intelligent maintenance. Hence, if
the intelligent maintenance system enables detecting and predicting the future deteriora-
tion propagation of a failure, it can allocate the future required maintenance activity to a
coming opportunistic maintenance interval, as long as this interval appears prior to the
component fault.

2.2.3. Failure Events and Corrective Maintenance

The third sub-model concerns the occurrence of failure events and the associated
corrective maintenance actions required to put the component back in operation. Figure 4
highlights all the failure modes that are associated with the case study based on both the
empiric case study data and the OREDA database. The systems analysis step revealed some
differences between the failure modes presented in the OREDA database and the ones
presented in the case company notification system, as demonstrated in Table 4. Therefore,
only the failure modes represented by the specific scenarios are assigned with values
traceable to their specific data source, while the failure modes that do not appear in the
specific use case scenario are assigned with a value of zero.

During simulation, the “failures” are triggered by either (1) failure rates that are either
extracted from the empiric case study data or the OREDA database [17] (Scenarios 1–4)
or (2) a condition based on deterioration rates supported by Calixto [25] (only valid for
intelligent maintenance and thus Scenario 5). Then, the state of “corrective maintenance” is
triggered by timeout functions including a triangular distribution of the MTTR values that
are transparent with the specific use case scenario. Since the MTTR values of the corrective
maintenance activities are average values (assuming normal distribution), the triangular
distribution is used to incorporate some variance in the data. The connection between the
states, triggers, values, and data source are summarized in Table 5.
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Table 4. Differences in failure modes of centrifugal gas compressor presented by the empiric case study data and the
offshore and onshore reliability data handbook (OREDA) database.

Component Failure Mode Failure Mode Abbreviation Case Study OREDA Database

Rotor
Abnormal instrument reading AIR X -
Breakdown BRD X -
Low output LOO - X

Bearing

Abnormal instrument reading AIR X X
Breakdown BRD X -
Parameter deviation PDE - X
Vibration VIB - X
External leakage—Utility
medium ELU X -

Motor

Abnormal instrument reading AIR X -
Breakdown BRD X -
Parameter deviation PDE X -
External leakage—Utility
medium ELU X -

Spurious stop UST X X
Fail to start on demand FTS - X
Minor in-service problems SER X X

Seal

Abnormal instrument reading AIR X X
Breakdown BRD X X
Parameter deviation PDE X X
Vibration VIB - X
External leakage—Utility
medium ELU X X

Spurious stop UST - X
Fail to start on demand FTS - X
Minor in-service problems SER - X
External leakage—Process
medium ELP - X

Low output LOO - X
Internal leakage INL X X
Unknown UNK - X
Other OTH - X

Table 5. The connection between states, triggers, logics, and data sources in Figure 4.

From State To State Trigger Logic Data Source

Working Failure Rates Parameter Case study/OREDA

Working 1 Failure 1 Condition 1 Fault > 0 1 Calixto 1

Failure Corrective Maintenance Timeout Parameter Fixed

Corrective Maintenance Normal Working Timeout Triangular distr. Case study/OREDA
1 Only valid for the condition monitoring systems with detection and prediction capabilities. In this paper, this refers to intelligent
maintenance.

2.3. Step 4: Scenario Modeling

This section is dedicated to scenario modeling, which facilitates simulating different
use case scenarios, and furthermore attaining an understanding of sensitive data and
influencing factors identified through the model outputs. To do so, four different use
case scenarios are modeled with the purpose of highlighting the associated sensitiveness
connected to the model input data i.e., failure rates and MTTR values extracted from either
(1) the case study, (2) the well-known OREDA database, [17] which is highly applied in
the O&G industry, or (3) both. In final, the last use case scenario (use case scenario 5) that
concerns the loading and deterioration process of the case study is modeled. Its purpose is
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to highlight the connection between component deterioration, detection, diagnosis, and
prognosis purposes in the context of implementing an intelligent maintenance management
system into the case study. Therefore, this paper models in total five use case scenarios.
The connection between the input data and use case scenarios is summarized in Table 6
and described in more detail in the following subsections.

Table 6. The five use case scenarios and associated input data.

Scenario

Input Data

Failure Rate Deterioration Rate MTTR

Case Study OREDA Calixto Case Study OREDA

1 X - - X -

2 X - X 1 -

3 - X - - X

4 X - - - X

5 X - X - X
1 Manipulated input data.

2.3.1. Scheduled and Corrective Maintenance Scenarios (1, 2, 3, and 4)

Scenario 1 includes failure rates and associated MTTR values that are extracted from
the notification system of the case company. The data is extracted exactly how it is presented
in the notification system.

Scenario 2 includes the same data as in the previous scenario. However, the difference
in Scenario 2 is that all the values considered as “unreasonably extreme” are replaced with
values the authors anticipate to be more reasonable when taking the connection between
the specific failure and associated MTTR value into consideration.

Scenario 3 addresses input data involving both failure rates and MTTR values ex-
tracted from the OREDA database [17]. The OREDA database is in fact well-known and
highly adopted by O&G companies in connection with analyses concerning risk and techni-
cal integrity. In practice, the OREDA database categorizes failure rates in terms of “lower”,
“mean”, and “upper” failure rates, and MTTR values in terms of “mean” and “max”. This
research adopts the “upper failure rates” and the “max MTTR values”, which experts claim
to represent industrial experience the best.

The interesting context of this use case scenario is to highlight whether the case
company experiences either higher or lower failure rates and MTTR values in comparison
to the OREDA database. This will underpin whether the industry shall be recommended to
support integrity assessments based upon their own empiric case study data or the OREDA
database, dependent on the associated risk profile (“risk-averse”, “risk-seeking”, etc.).

The estimation of MTTR values originating from the empiric case study data is associ-
ated with the highest uncertainty as it depends on two different variables the maintenance
personnel need to report (start of maintenance and end of maintenance). Therefore, Sce-
nario 4 replaces the MTTR values from the empiric case study data with the ones presented
in the OREDA database.

2.3.2. Intelligent Maintenance Based on Deterioration Modeling (Scenario 5)

One of the main issues of applying failure rates in connection with detection, diagnosis,
and prognosis purposes is due to the straight lines in terms of pulses produced by the
simulation. In more detail, such straight lines make it difficult, or even impossible, to
justify the opportunity to detect, diagnose, and predict future deterioration evolution. The
maintenance timeline concept based on failure events is not effective to enable CBM and
PdM, as they require deterioration curves instead. Therefore, a deterioration model based
on loading that addresses the deterioration curves for the individual component associated
with the case study must be modeled.
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The deterioration modeling process starts by first modeling the component deterio-
ration using system dynamics, depicted in Figure 5. As seen from the loading model, it
contains three different flows: (1) Loading, (2) Failure, and (3) Intelligent maintenance.
Furthermore, one stock representing the “accumulated loading”, and one parameter of
“Opportunities” which represents the future opportunistic maintenance intervals defined
by the scheduled maintenance requiring stops in operation.

Figure 5. Loading model using systems dynamics.

The logic of each flow in the deterioration and intelligent maintenance module is
described in more detail in Table 7.

Table 7. Description of the deterioration and intelligent maintenance module.

Element Function Logic

Loading Estimates the loading rate per hour. Described in Table 8.

Accumulated Loading Accumulates the loading rate. Integral value of loading.

Failure
Triggers failure and the need for corrective
maintenance when the deterioration has
reached a defined level.

rint(AccumulatedLoading) ≥ uniform_discr
(100,100)? AccumulatedLoading = initial
AccumulatedLoading value: 0

Opportunistic Maintenance
Interval

Represents the opportunistic maintenance
intervals defined by the scheduled
maintenance.

Defines all scheduled maintenance events that
are causing a stop in the operation in terms of
pulseTrains.

Intelligent Maintenance

Triggers intelligent maintenance event when
two conditions are satisfied: (1) opportunistic
maintenance interval is available, and (2) the
accumulated loading triggers detection or
prediction alarm at the defined level.

OpportunisticMaintenanceInterval! = 0 &&
rint(AccumulatedLoading) ≥ uniform_discr
(70,100)? AccumulatedLoading = initial
AccumulatedLoading value: 0

Table 8. Connection between components, loading equations, and designed lifetimes.

Component Loading Equation Designed Lifetime [25]

Rotor 0.00013738 × AccumulatedLoading
(initial AccumulatedLoading value = 0.5) 4.4 years (38,544 h)

Bearing 0.00010045 × AccumulatedLoading
(initial AccumulatedLoading value = 0.5) 6.0 years (52,560 h)

Seal 0.00075232 × AccumulatedLoading
(initial AccumulatedLoading value = 2 × 10−14) 4.7 years (41,172 h)

In more detail, the “Loading” flow expresses the entire deterioration process and
includes the loading equation of the specific component under study. Such an equation can
be established by first identifying a failure distribution that demonstrates the evolution
of a specific failure through a deterioration curve. To do so, there exist several failure
distributions applied to demonstrate the degradation evolution from a healthy component
to a faulty one [26–28]. Some of the most applied failure distributions concerning aging
equipment are, e.g., “traditional view”, “bathtub curve”, and “slow aging” (linear dete-
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rioration) [29]. However, concerning component deterioration, the distribution of either
exponential distribution or power-law distribution is most frequently adopted.

Second, a designed load case that assumes constant loading from the beginning of the
operation until it fails must be addressed. Such time to failure can for instance be based on
recommendations from the component vendor, estimated through equations offered by the
manufacturer (e.g., [30]) or other reliable data sources (e.g., Calixto [25] or OREDA [17]).
In final, the suitable deterioration curve identified must be fitted with the time to failure
through an iterative simulation process that highlights the entire deterioration process
from a healthy component to a faulty one.

In practice, the condition monitoring system monitors the deterioration process of
the component during normal operation. If the monitoring system is not capable of de-
tecting and predicting the deterioration, the accumulated deterioration level reaches the
designed lifetime (100% deterioration) that triggers the “Failure” flow in system dynamics
(Figure 5), which furthermore triggers the associated “failure” state in the agent-based
computational model (shown in Figure 1). However, if the condition monitoring system
is able to detect and predict the level of deterioration propagation prior to component
failure, it tries to leverage the PdM event into a coming opportunistic maintenance in-
terval represented by the “OpportunisticMaintenanceInterval” parameter connected to
the “IntelligentMaintenance” flow. In this case, the opportunity of leveraging a predicted
failure event to a future opportunistic maintenance interval is based on two criteria: (1)
when the future opportunistic maintenance intervals appear and (2) the capabilities of-
fered by the specific monitoring system, i.e., levels of detection and prediction that are
demonstrated in detail in [16]. Illustratively, if the condition monitoring system is able
to detect component deterioration one week prior to failure and the next opportunistic
maintenance interval appears first after four weeks, there exists no opportunity to leverage
the PdM into an opportunistic maintenance interval, and corrective maintenance is thus
required. In contrast, if the deterioration is detected five weeks prior to component failure
and the next opportunistic maintenance interval appears after four weeks, the PdM can
be leveraged into the future opportunistic maintenance interval in terms of “intelligent
maintenance”. Therefore, exploiting these opportunistic maintenance intervals to perform
intelligent maintenance will thus reduce the unplanned operational unavailability and cost
(since corrective maintenance is replaced by intelligent maintenance).

At last, this paper presents an illustrative example of how an intelligent maintenance
system that enables detecting, diagnosing, and predicting the specific failure mode of
breakdown (BRD) of the rotor, bearing, and seal. It is important to emphasize that the
transparency between failure modes, and detection, diagnosis, and prognosis processes
shall be analyzed individually for the specific condition monitoring system applied. In
this context, the authors recommend the future readers perform the analysis presented
in [16] to determine these specific capabilities of an associated condition monitoring system
of interest.

The final use case scenario, Scenario 5, is dedicated to the deterioration modeling of
the components associated with the case study, i.e., rotor, bearing, and seal. Modeling com-
ponent deterioration is required to highlight the capabilities of implementing an intelligent
maintenance management system, i.e., levels of detection, diagnosis, and prognosis [16].
This paper develops individual loading equations of the components of interest, based on
the plot presented by Calixto [25]. Since Calixto only represents the deterioration curves
and not the specific deterioration equations, the associated loading equations presented in
Table 8 are replications.

The individual loading equations developed are then incorporated into the “Loading
model” (shown in Figure 5) and are simulated and optimized to fit the designed lifetime
presented by Calixto [25] using Anylogic, as depicted in Figure 6. As seen, the deterioration
curves highlight the entire deterioration process from when the specific component starts
operating until a fault is present at the designed lifetime. The deterioration curves also
demonstrate that the component deterioration propagates differently. Clearly, this affects
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the opportunities of detecting, diagnosing, and predicting the future behavior of the
associated component deterioration process. For example, the deterioration of the seal
appears with a steeper slope in comparison to the two other components, which thus
reduces the opportunities of performing intelligent maintenance as it is more difficult to
detect and predict the occurrence of seal deterioration. In contrast, the deterioration curve
of bearing introduces the gentlest slope, which increases the opportunities to perform
intelligent maintenance as it is possible to detect and predict the occurrence of bearing
deterioration at an early stage.

Figure 6. The deterioration curves modeled for each component, individually.

It is important to highlight that this research adopts a detection and prediction level
of 70% for Scenario 5. The main justification of this selection is based on recommendations
from the literature [31] and experts in the field.

2.4. Steps 5 and 6: Verification, Validation, and Visualization

The fifth step in the simulation modeling methodology concerns the verification and
validation of the simulation. In this case, all the applied data, i.e., operation and mainte-
nance including condition monitoring (Figure 2), scheduled maintenance plans (Figure 3),
and experienced failures and following corrective maintenance (Figure 4) including failure
modes, failure rates, and MTTR values are extracted from the notification system of the
case company and incorporated into the computational model. The applied data is also
validated through several discussions with engineers and experts in the field represented
by the case company and stakeholders for verification and validation purposes to attain
a correct description of the case study, to increase the reliability of the results obtained
from the simulations. In final, to improve the reliability of the simulations even more,
similar data, i.e., failure modes, failure rates, and MTTR values are extracted from the
well-known OREDA database [17] and also compared to the real-time data extracted from
the notification system of the case company.

The computational model is considered generic in that sense the future adopter can fit
the model to their own purposes. In more detail, this means that the future adopters can
replace the components with the ones of interest. Furthermore, the associated scheduled
maintenance causing operational unavailability and thereby representing opportunistic
maintenance intervals, and corrective maintenance data including failure modes, failure
rates, and MTTR values can be replaced. This means that all data can be replaced by the
ones of interest, however, the logic of the model must be kept, i.e., triggers and equations.

3. Results

The simulated results for the five scenarios are presented in accordance with the
model outputs presented in Section 2.1. The following results are presented for each use
case scenario: (1) operational behavior, (2) maintenance event: timeline and workload,
and (3) component failure during a time period of 20 years (175,000 h). In addition, one
subsection is dedicated to comparing the corrective maintenance (Scenario 4) with the
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intelligent maintenance scenario (Scenario 5). At last, one subsection demonstrates the
effect of proliferating PdM capabilities in connection with intelligent maintenance.

3.1. Operational Behavior and Availability

The operational behavior highlights the operational availability and unavailability for
each scenario, shown in Figures 7–11 and summarized in Table 9. In the figures, the y-axis
shows the operational behavior in percentage as a function of time in hours represented by
the x-axis.

Figure 7. Operational behavior of Scenario 1 during 20 years of operation.

Figure 8. Operational behavior of Scenario 2 during 20 years of operation.
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Figure 9. Operational behavior of Scenario 3 during 20 years of operation.

Figure 10. Operational behavior of Scenario 4 during 20 years of operation.
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Figure 11. Operational behavior of Scenario 5 during 20 years of operation.

Table 9. Summary of operational behavior of the different simulated use case scenarios.

Scenario
Operational Behavior [%]

Availability Unavailability Total

1 37.756 62.244 100

2 73.384 26.616 100

3 96.220 3.780 100

4 95.750 4.250 100

5 96.018 3.982 100

The results highlight that Scenario 1, which is based on case study historical failure
data, offers the lowest operational availability of approximately 37.756% availability dur-
ing 20 years of operation, which is not valid. Scenario 2 provides more valid numbers
of availability with 73.384%, as the unreasonably extreme data values (closed dates for
maintenance events) caused by human factors in the notification process are manipulated
and corrected. Scenario 3, which is based on OREDA failure rates and MTTR values,
highlights the availability of 96.220%, which is a significant improvement compared to
scenarios 1 and 2. Scenario 4, which is a mixed scenario based on case study failure rates
and OREDA MTTR values, shows the availability of 95.750%. Scenarios 3 and 4 demon-
strate the effect of failure rates on availability, where the availability decreased 0.470%
(96.220–95.750%) when case study failure rates are used. Scenarios 2 and 4 highlight the
effect of MTTR on availability, where the availability increased 22.366% (95.750–73.384%)
when OREDA MTTR values are used. Scenarios 3 and 4 are valid scenarios when compared
with real availability numbers. However, it shows that OREDA is more reliable and valid
in terms of MTTR data, as the used unit is hours, not days like in case study data. In final,
Scenario 5 addresses a total of operational availability of 96.018%, which corresponds to an
improvement of 0.268% (96.018–95.750%) in comparison to Scenario 4, which includes the
same input data but without an intelligent maintenance system.
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3.2. Maintenance Event: Timelines and Workloads

This subsection presents the maintenance event timelines during 20 years of operation
that include the associated workloads of (1) scheduled maintenance policy, (2) corrective
maintenance policy with five different scenarios, and (3) intelligent maintenance policy.

3.2.1. Scheduled Maintenance Event Timeline

The scheduled maintenance plan provided by the case study company covers two
categories: (1) downtimes that lead to production stoppage, and (2) downtimes that have
no effect on production. In this context, the scheduled maintenance intervals that lead to
production stoppages are especially interesting as they represent opportunistic intervals, as
shown in Figure 12. In the figure, the x-axis represents the simulated time in hours and the
y-axis defines the state of the operation that is either characterized by 0 or 1. Furthermore,
0 defines an operational state when the equipment operates as normal and 1 defines an
operational state when the equipment is out of operation due to scheduled maintenance.
As highlighted by the figure, there are in total 19 opportunistic maintenance intervals
occurring during 20 years of operation, which PdM can be leveraged into in terms of
intelligent maintenance.

Figure 12. Scheduled maintenance representing opportunistic maintenance intervals during 20 years of operation.

3.2.2. Corrective Maintenance Event Timeline

The corrective maintenance event timelines for the five modeled use case scenarios
are depicted in Figures 13–17. In the figures, the x-axis represents the simulated time in
hours and the y-axis defines the state of the operation that is either characterized by 0 or 1.
Furthermore, 0 defines an operational state when the equipment operates as normal and
1 defines an operational state when the equipment has failed and is out of operation due
to corrective maintenance. The planned maintenance timeline, presented in Figure 12, is
also included in all these corrective scenarios. The corrective maintenance event timeline
shows the failure and corrective maintenance events for the most important components, i.e.,
bearing, rotor, seal, and motor. The corrective maintenance timeline of Scenario 1, Figure 13,
clearly highlights the effect of incomplete maintenance data, where some maintenance events
have quite a long maintenance time interval (due to the closing date either being missing
or considered as an unreasonable extreme value). This issue was enhanced in Scenario 2,
shown in Figure 14, where the closing dates were manipulated. Thus, the availability has
changed from 37.756% in Scenario 1 to 73.384% in Scenario 2, which means that 35.629%
of the availability in Scenario 1 is just related to incomplete maintenance dates. However,
the availabilities obtained for Scenarios 1 and 2 do not match the real availability figures.



Appl. Sci. 2021, 11, 3487 20 of 29

One issue that shall be highlighted is that the time unit used for maintenance time (MTTR)
in the case company is days. It means the maintenance time for any maintenance event
will have a minimum duration of 24 h, even though it might take 4 h in reality. This issue
can clearly be illustrated when OREDA MTTR values are used, as in Scenario 4 (Figure 16),
where the availability increases from 73.384% (days used in Scenario 2) to 95.750% (hours
used in Scenario 4). Thus, the time unit for the MTTR values is of significant importance,
which may lead to an error of 22.366% (95.750–73.384%) in availability if days unit is used
instead of hours.

Figure 13. Corrective maintenance event timeline of Scenario 1 during 20 years of operation.

Figure 14. Corrective maintenance event timeline of Scenario 2 during 20 years of operation.
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Figure 15. Corrective maintenance event timeline of Scenario 3 during 20 years of operation.

Figure 16. Corrective maintenance event timeline of Scenario 4 during 20 years of operation

The maintenance timeline for Scenario 3 (Figure 15), which is based on OREDA failure
rates and MTTR values, shows different numbers (at the component level) and locations
of corrective maintenance events compared to Scenario 4 (which is based on case study
failure rates and OREDA MTTR values). This is caused by the fact that the scenarios
include different failure rates at the component level. However, the number of corrective
maintenance events in total (at equipment level) and availability are almost the same.
The corrective maintenance timeline for Scenario 5 (Figure 17) provides a smaller number
of corrective maintenance events compared to Scenario 4 (Figure 16), due to the lower
failure rates presented by the deterioration curves. For example, bearing deterioration
curves estimate the bearing to fail every six years (around three times during 20 years of
operation), while the OREDA database anticipates that the bearing will fail 26 times during
20 years of operation.

In summary, the maintenance timelines (presented in Figures 13–17) visualize the
number of corrective maintenance events with their associated maintenance time intervals.
To get more insight into the maintenance workload for each scenario, Table 10 is provided.
In addition, Table 11 presents the number of maintenance events for each scenario in
more detail.
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Figure 17. Corrective maintenance event timeline of Scenario 5 during 20 years of operation.

Table 10. Summary of the maintenance workload of the five simulated use case scenarios.

Scenario

Maintenance Workload [h]

Corrective
Maintenance

Scheduled Maintenance Intelligent
Maintenance

Total
with Impact without Impact

1 107,700 1311 3425 0 112,436

2 44,055 2578 6682 0 53,316

3 3385 3237 8763 0 15,385

4 4183 3262 8736 0 16,181

5 3724 3251 8765 360 16,101

Table 11. Failures occurring during 20 years of operation based on the simulated results.

Component

Number of Failures during 20 Years of Operation

Scenario

1 2 3 4 5

Rotor 8 8 2 8 3

Bearing 13 14 26 13 5

Seal 19 35 45 29 22

Motor 24 27 7 26 26

Total 64 84 80 76 56

By comparing the number of failures for Scenarios 1, 2, and 4 (which is based on
case study historical failure data) and for Scenario 3 (based on OREDA data), it can
be observed that the OREDA data is underestimating the number of failures for some
components (e.g., rotor and motor), while it is overestimating the number of failures
for some components (e.g., bearing and seal). That might be due to the mean issue (as
the OREDA database presents the mean and upper failure rates of several failure events
occurring based on several installations, where some failure events might even not be
registered). By comparing the number of failures occurring in Scenarios 1, 2, and 4 with
Scenario 5, it can be concluded that Scenario 5 (based on well-known deterioration curves)
underestimates the number of failures. Let us take rotor as an example, the mean time
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between failures based on the deterioration curve is 4.4 years for rotor (see Table 8), while
the mean time between failures based on case study historical failure data is 2.5 years (see
Table 11). This can be justified as the available deterioration curves that authors could find
only cover three out of twenty-eight failure modes considered in Scenario 1, 2, and 4.

3.3. Intelligent Maintenance and the Effect of Proliferating Detection and Prediction Levels

This subsection demonstrates the maintenance events based on prediction leveraged
intelligent maintenance at several detection and prediction levels (50, 60, 70, 80, 90, and
100%), as depicted in Table 12. In contrast to the other use case scenarios, these results are
only based on designed lifetimes presented by Calixto specifically (see Table 8). Therefore,
the sole purpose of this subsection is to study if the assumption of increasing levels of
detection and prediction offers increasing flexibilities of leveraging PdM into an oppor-
tunistic maintenance interval in terms of intelligent maintenance. Not surprisingly, the
table underpins the connection between increasing detection and prediction levels, and
the opportunity of performing intelligent maintenance. Furthermore, it highlights that the
detection and prediction levels of 50% and 60% provide the same opportunities in this case
(in total eight intelligent maintenance events), while the detection levels of 70, 80, and 90%
include five, four, and three intelligent maintenance events, respectively.

Table 12. The effect of proliferating detection and prediction levels.

Detection and
Prediction Level Corrective Events Opportunistic

Events

Corrective
Maintenance

Reduction [%]

50% 3 8 72.727

60% 3 8 72.727

70% 6 5 45.454

80% 7 4 36.363

90% 8 3 27.272

100% 11 0 0

4. Discussion and Validation
4.1. Data Collection

Data in terms of scheduled maintenance plans and experienced corrective maintenance
including failure modes, failure rates, and MTTR values were extracted from the notification
system of the case company and incorporated into the computational model. In addition,
several discussions with engineers have been conducted to attain a correct description
and understanding of the case study and its data. In final, to improve the reliability of the
simulations, data including failure modes, failure rates, and MTTR values were extracted
from the OREDA database and compared with the experienced case study data.

4.2. Human Factors in Notification Processes

The data collection process of the empiric case study data became a lot more time-
consuming than first anticipated. Its sole reason is traced back to human factors present
in the notification processes that evidentially reduced the quality of the data significantly.
This issue is clearly demonstrated by the simulated results. Use case Scenarios 1, 2, and 4
include the same failure rates extracted from the case study but with different MTTR values.
In more detail, Scenario 1 includes MTTR values as presented in the notification process,
Scenario 2 includes manipulated MTTR values considered as unreasonable extremes in
the previous scenario, and Scenario 4 includes MTTR values extracted from the OREDA
database [17]. Therefore, the volatile changes in operational behavior and significant
differences in maintenance workload between these three scenarios are solely traced
back to the MTTR values. Respectively, the maintenance workload (in hours) devoted
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to corrective maintenance for Scenarios 1, 2, and 4 are 107,700, 44,055, and 3262 with
associated operational availabilities of 37.756, 73.384, and 95.750%.

From the authors’ perspective, the main issue of incorporating human factors in the
notification processes is traced back to the maintenance personnel’s opportunity of devel-
oping a notification that is solely based on subjective perceptions, without any associated
requirements concerning the level of details of the individual notifications. Following
this, the simulated results also justify why the O&G companies keep using the OREDA
database [17] and not their own empiric data in connection with analysis related to, e.g.,
technical integrity and risk. However, it is a paradox that case-specific data do not express
the case of interest the best. Therefore, for the future, it shall be recommended that the
notification processes avoid incorporating human factors, at least, reducing its impact by
making the notification process (partial) automatic or based on a templated questionary
with pre-defined alternatives the maintenance personnel is required to answer before the
notification is considered as complete.

At last, it is also important to emphasize that the failure data originating from the
case study includes several components of one component, i.e., rotor, bearing, and seal.
However, due to difficulties in differentiating between these specific components, the
failure rates presented in this research do not take into consideration the number of each
component. Illustratively, this means that this research estimates one failure rate composing
all the failures associated with one type of component, without taking its population into
consideration. Therefore, the failure rate assumes that failure of, for instance, one bearing,
results in failure of all the bearings present in the case study at the same time.

4.3. Intelligent Maintenance (Scenario 5) vs. Corrective Use Case (Scenario 4)

The final results of this research clearly demonstrate tempting lifetime benefits during
20 years of operation. In comparison, the intelligent maintenance system is expected
to improve the operational availability by 0.268% by replacing 2.721% ((4183/16181) −
(3724/16101) = 2.721%) of the corrective maintenance workload with intelligent mainte-
nance. In workload, it equals replacing 459 h of corrective maintenance which corresponds
to a reduction of 11% ((4183 − 3724)/4183 = 11%) of the total corrective maintenance work-
load. Specifically, the intelligent maintenance system reduced the unintended corrective
maintenance visits by 20 (26.316%), whereas a reduction of 5 (62.500%), 8 (61.538%), and
7 (24.138%) corrective maintenance visits are traced back to the rotor, bearing, and seal,
respectively. Following, these 20 corrective maintenance events were replaced by intelli-
gent maintenance which leverages the PdM capabilities into opportunistic maintenance
intervals and thereby does not affect the operational availability.

4.4. Additional Lifetime Benefits of Intelligent Maintenance in Industry 4.0

There exist some aspects that can improve the lifetime benefits even more, which are
not presented in this paper. First, reducing component loading to extend the remaining
useful life estimation and by this reach an opportunistic maintenance interval that was
initially not reachable. Second, the expected improvements in terms of maintenance
performance and in reducing the level or repair. In fact, enabling detecting, diagnosing,
and predicting the future behavior of component deterioration is expected to support
developing detailed work orders and ensure that the necessary spare parts and resources
are available at the time of intelligent maintenance. However, since the proposed intelligent
maintenance system remains to be implemented, it is difficult to justify the realistic values
of these improvements. Nevertheless, this can be implemented in a future stage after
obtaining operational experience post the implementation, which is traceable back to the
MTTR values presented in, e.g., the notification system.

4.5. Intelligent Maintenance vs. Maintenance 4.0

There exists a large number of terminologies that are supposed to define maintenance
management in Industry 4.0 such as, e-Maintenance [32], intelligent maintenance [33,34],
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smart maintenance [35], deep digital maintenance [36], and Maintenance 4.0 [37]. However,
this paper adopts the terminology of intelligent maintenance, which intentionally differs
from other terminologies e.g., smart maintenance [35], e-maintenance [32], as the focus is
not primarily based on data analysis i.e., detection, diagnosis, and prognosis. However, this
paper extends the scope to also consider enterprise-level data e.g., spare part management,
seasonal loadings, available resources, in order to provide a solid foundation for the
maintenance decision management that shall ensure that the right maintenance takes place
at the right time. Furthermore, the term Maintenance 4.0 might bring the question about
other technologies like robotics, augmented reality, additive manufacturing, i.e., 3D printed
spare parts.

4.6. From a Case-Specific Computational Model into a Generic Computational Model

Although this paper develops a computational model based on a case study and
presents simulated results associated with the case-specific data, it is important to em-
phasize that the computational model is easily converted to other cases of interest as the
paper adopts a generic research methodology. To do so, the future adopter solely needs to
incorporate general information from the specific case of interest including failure modes,
scheduled maintenance plans representing opportunistic maintenance intervals, failure
rates, and MTTR values. In this context, the authors recommend future adopters apply the
PdM assessment matrix [16] to identify associated failure modes, failure mechanisms, and
to determine the levels of detection, diagnosis, and prognosis associated with the specific
condition monitoring system included in the case of interest. The only requirement is that
the computational model presented in this research retains its model structure, triggers,
and logic.

5. Conclusions

The simulated results obtained from the multi-method computational model devel-
oped in this paper clearly show the ability to estimate the lifetime benefits of applying
several maintenance strategies (preventive, corrective, predictive, and opportunistic) on
an industrial asset. Simulating preventive, corrective, and opportunistic maintenance
is already done in literature (discussed in the introduction). The novelty and scientific
contribution of this computational model is mainly traced back to its ability to (1) simulate
and estimate CBM and PdM behaviors and their lifetime benefits, (2) leverage PdM into op-
portunistic maintenance in terms of intelligent maintenance, and (3) estimate and quantify
the maintenance workload and determine the specific maintenance event timeline.

Simulating CBM and PdM behaviors was enabled by the deterioration timeline con-
cept where a deterioration curve based on loading profile is simulated, and detection and
prediction levels are incorporated. In fact, most of the existing simulation models utilize the
failure timeline concept generating pulse train curve, which is useless in order to incorpo-
rate detection and prediction levels. It can be concluded that the load-based deterioration
curve, shown in Figure 6, is an effective concept to enable the lifetime benefits estimation
of CBM and PdM. Definitely, this is a challenging issue since there are some components
that either have an unknown deterioration curve or random failure curve (undetectable or
unpredictable). For example, only deterioration curves for the rotor, bearing, and seal were
available for this case study.

The developed multi-method simulation model enables leveraging PdM capabilities
into potential opportunistic intervals in terms of intelligent maintenance. It enables study-
ing if the designed PdM specifications support gaining the lifetime benefits by utilizing
potential opportunistic intervals or not. It is a core aspect to consider whether the mainte-
nance system is intelligent or not. Intelligence in this context means that the maintenance
management system is able to use detection, prediction, and scheduling analytics to opti-
mize the maintenance events and utilize opportunistic intervals. It can be concluded based
on Table 11 that the corrective maintenance events were reduced by earlier detection level
or farther predictive horizon, e.g., detection and prediction at 60% of a component lifetime
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offers increased lifetime benefits (72.727% reduction in corrective maintenance events
related to bearing, seal, and rotor) compared with the corrective maintenance reduction
percent (27.272%) at 90% of asset lifetime. Please note that PdM at 90% of a component
lifetime is capable of detecting sudden failures before their occurrence, however, the oppor-
tunistic intervals will not be utilized due to the short time notice. It is important to enable
maintenance engineers to determine the optimal technical specifications, i.e., detection and
predictive capabilities, and be able to revise and optimize such technical specifications at
the design phase.

Moreover, this model has adopted the “timeline” concept to estimate and quantify the
maintenance workload amount (how much) in the specific timeline (when), rather than just
the accumulated workload amount for the entire lifetime. As shown in Figures 13–17, the
corrective maintenance events are time-specific. The timeline concept is required and highly
useful for maintenance scheduling purposes, especially, to utilize opportunistic mainte-
nance (based on usage or season) in an intelligent manner. Regarding the quantification of
lifetime benefits of intelligent maintenance, the developed simulation model mainly covers
two aspects of lifetime benefits (1) operational behavior and (2) maintenance workload.
For example, the intelligent maintenance system for this case study at 70% detection and
prediction level (able to detect failures after 70% of the asset lifetime), is estimated to im-
prove the operational availability by 0.268% (shown in Table 9) and reduce the maintenance
workload devoted to corrective maintenance by 459 h (based on Table 10) which equals
11% during 20 years of operation. Furthermore, intelligent maintenance management is also
estimated to reduce the scheduled maintenance workload (that leads to downtime) by 0.339%
((3262–3251)/3262 = 0.339%), however, it will increase the scheduled maintenance workload
(that does not lead to downtime) by 0.333% ((8765–8736)/8736 = 0.333%).

In summary, the developed simulation model has shown the ability to estimate the
lifetime benefits in terms of operational availability and its reduction of corrective mainte-
nance workload. The authors claim that the lifetime benefits of intelligent maintenance
will become even greater than what is anticipated in this paper, once other lifetime benefit
aspects, which are not covered by this research, are considered. This includes lifetime
benefit aspects, i.e., increasing both number and levels of detection and prediction of failure
modes, improving maintenance performance by reducing the level of repair, reducing
scheduled maintenance workload, enhancing asset performance, lifetime extension mea-
sures for tactical and strategical decisions, and health, safety, and environmental issues,
and capital allocations. Definitely, the simulation model shall be developed further to
estimate all these lifetime benefits.

The structure of the developed simulation model is valid as it was extracted and
validated based on experts from the case study. The structure illustrated in the statechart
(Figure 1) represents (1) maintenance policy type (corrective and scheduled) and decision
making (trigger and condition to get notifications), and (2) failure modes. The statechart
represents how the system in this specific case company generates failure or maintenance
notification and how it can trigger maintenance events. It is important to highlight that
this state chart is valid for other O&G companies operating in the Norwegian Continental
Shelf. Regarding the failure modes, the statechart considers all standardized failure modes
(based on ISO14224) matching the well-known OREDA database. Thus, the authors claim
that the presented state chart is generic for O&G compressors, while the methodology is
generic for any equipment of interest.

The model inputs are also analyzed in a pragmatic manner, i.e., several data sources
(historical data records from the case study, OREDA, and physics-based deterioration
curves). The historical data related to failure and corrective maintenance events provide
valid and reliable failure rates and MTTR values, as long as the incomplete data (e.g.,
maintenance ending date) are manipulated. Failure rates and MTTR values extracted from
the OREDA data are well known and accepted in the Norwegian O&G industry as a valid
and reliable source of information. The deterioration curves extracted from Calixto [25] are
also valid and reliable curves.
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The model outputs, i.e., simulated behaviors and estimated key performance indi-
cators have been validated by comparing them to real-world data (case study historical
data). The simulated availability and corrective maintenance timelines were validated with
case company experts and numbers originating from case study literature [1]. It can be
concluded that the computational model is quite effective in terms of computation time.
This simulation model uses hours as time-unit, which means it simulates failure rate per
hour and checks all conditions (triggers) every time unit. It takes on average around 48 h
(where a “normal computer” is used) to provide results at equipment level, i.e., compressor.
However, for future simulations, the authors recommend days as time-unit, especially
once the model is scaled up to system-level, i.e., compression section and plant-level. In
addition, it is recommended that the failure rates are simulated based on years instead
of hours.

The computational model is easily generalized to fit any condition monitoring system
of interest. In this context, future adopters solely need to incorporate general information
from the specific case of interest, i.e., failure modes, scheduled maintenance representing
opportunistic maintenance intervals, failure rates, and MTTR values. In fact, the authors
recommend applying the PdM assessment matrix [16] to identify associated failure modes,
failure mechanisms, and to determine the levels of detection, diagnosis, and prognosis
associated with the specific condition monitoring included in the case of interest. The only
requirement is that the computational model presented in this retains its model structure,
triggers, and logic.

Regarding scenarios (Table 6), it is recommended to use Scenario 4 for further sim-
ulation as the failure rates are quite reliable in the case study historical data, while the
MTTR values presented by the OREDA database are most reliable and accurate (presented
in hours in comparison to the case study presenting the MTTR in days).

At last, besides the quantifiable results presented in this research, it also addresses
the sensitiveness and challenges concerning incorporating human factors into the failure
notification processes. From the authors’ perspective, the main issue of incorporating the
human factors in the notification processes is traced back to the maintenance personnel’s
opportunity of developing a notification that is solely based on subjective perceptions,
without any associated requirements to the level of detail for the individual notification.
Following this, the simulated results also justify why O&G companies keep using the
OREDA database [17] and not the company’s own empiric data in connection with analysis
related to, e.g., technical integrity and risk. Therefore, for the future, it shall also be
recommended that the notification processes avoid incorporating human factors, at least,
reducing its impact by making the notification process (partially) automatic or based on a
templated questionary with pre-defined alternatives that the maintenance personnel are
required to answer before the notification is considered as complete.
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