
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Use of machine learning algorithms to
predict well barrier elements and
envelopes in drilling operations

Master’s Thesis in Applied Data Science
by

Daiana dos Anjos

Internal Supervisors

Antorweep Chakravorty

August 17, 2021

“I am not young enough to know everything”

Oscar Wilde

Abstract

Digitalization is a concept that have been widely approached in the oil and gas industry
in the recent years. The amount of information generated in this industry is vast and
the operation requirements are strict. However, the access and management of the
information is still a challenge. Many tasks when planning and executing a drilling and
well operation are still performed manually by the drilling and well team responsible for
the field in development.

The idea proposed in this thesis is the automation of a time consuming task required on
the well construction process: define the well barrier element (WBE) and well barrier
schematics (WBS) for drilling operations. The idea is to explore the use of text based
machine learning classification techniques applied to the text information obtained from
previously available well barrier schematics from drilling operations.

Although there are software available on the market that are capable of auto-generate
well barrier schematics, this application of machine learning algorithms is believed to
be the first attempt. No previous studies have been identified with a similar approach.
Consequently, an important contribution of this work is the database, most likely the
first open database in a format that facilitate machine learning application in this area.

The experiments performed in this work started with the database creation by reading
and extracting the text information from existing WBS in different file formats. Many
challenges were identified during this step due to the variation in text and file formatting.
After the information was extracted from the original files, text pre-process techniques
were applied in the final database, resulting in a total of 1373 drilling operations WBS
and over 32000 well barrier elements samples.

After the database is created, eight supervised classifiers are chosen to be evaluated on
the experiment: Naive Bayes, Support Vector Machine (SVM), K-Nearest Neighbours
(KNN), Decision Tree, Random Forest, Multi Layer Perceptron (MLP), a simple deep
learning classifier and finally a Convolutional Neural Network (CNN) classifier.

On the experiments the samples are split in training and test based on the drilling
operation WBS. A five fold cross-validation is applied for each model. With exception
of the CNN classifier, a feature reduction technique is also evaluated. In the end of the
experiment, five different CNN models and ten models of each of the remaining classifiers
are trained and the average and best performance is compared during the evaluation.

The models are evaluated based on the correct classification of well barrier, barrier
envelope and drilling operation WBS. The results show that machine learning classification
can be applied to predict drilling operation WBS. Random Forest is the classifier that
performed the best, achieving a maximum accuracy up to 96% for the classification of a
well barrier element and 67.4% for the classification of an entire drilling operation WBS.

Acknowledgements

This work has come with a set of personal completely unforeseen challenges, in which
life decided that the best timing to throw lemons was in the middle of this master thesis
study. But if you are reading this, it means I made it, maybe not fully in the way it was
planned, but in the way I could make lemonade out of it.

I am specially grateful to professor Antorweep Chakravorty for the opportunity to pursue
this idea and the understanding shown during the development of the work and challenges
presented in the way.

I would like to thank my colleagues in FLX for the support I have received along the way,
specially Atle Sivertsen and Tomas Fjelde for the flexibility given to me when needed for
fulfilling the studies.

To my family and friends for the nice words of encouragement.

And most importantly, to my partner in life, that has been by my side lifting me up even
when our ground has been taken away from us.

vii

Contents

Abstract v

Acknowledgements vii

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Challenges . 3
1.4 Contributions . 4

2 Background 5
2.1 Machine Learning . 5

2.1.1 Natural Language Processing and text processing 5
2.1.2 Machine Learning Algorithms . 7

2.2 Drilling and Well . 8
2.2.1 Well Construction . 8
2.2.2 Well Design . 9
2.2.3 Well Barrier Schematics (WBS) . 12

2.3 Norsok D-010 Definitions . 15

3 Data Extraction and preparation 17
3.1 Raw Data . 17
3.2 Database Creation . 18

3.2.1 Information Extraction . 19
3.2.2 Text preprocessing . 21
3.2.3 Adding Well Components . 21
3.2.4 Final Database . 21

4 Main Approach 25
4.1 Features and Feature Selection . 25
4.2 Model Selection . 26

ix

x CONTENTS

5 Experimental Evaluation 29
5.1 Experimental Set-up . 29

5.1.1 Evaluation measurements . 31
5.1.2 Model parameters set-up . 32

5.2 Experimental Results . 33

6 Conclusion and Future Directions 37

List of Figures 38

List of Tables 41

A Main Code 43
A.1 preprocess.py - Preprocess text from database 43
A.2 wbs_features.py - Features related functions 47
A.3 wbs_classifiers.py - Classifiers . 53
A.4 wbs_predict.py - Running experiments with cross-validation 60

Bibliography 69

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

BOP Blow-out Preventer

CIV Chemical Injection Valve

CNN Convolutional Neural Network

CSV Comma Separated Values

DHPG Downhole Pressure Gauge

DHSV Downhole Safety Valve

GLV Gas Lift Valve

KNN K-Nearest Neighbours

MD Measured Depth

MLP Multi Layer Perceptron

NLP Natural Language Processing

NCS Norwegian Continental Shelf

SVM Support Vector Machine

TOC Top Of Cement

TVD True Vertical Depth

XMT Christmas Tree

WBE Well Barrier Element

WBS Well Barrier Schematics

xi

Chapter 1

Introduction

1.1 Motivation

The motivation for this work is somewhat personal. Since October 2009, I have been
working in the oil and gas industry as an engineer in drilling and well operations. Being
part of the industry has given me an inside view of the potential opportunities for
automation and digitalization of activities and processes that are required to ensure the
safe planning, operation and production of oil and gas.

Despite the technological advance in the oil and gas industry in the recent years, many
of the tasks performed on the preparation for developing a well are performed manually1

by the personnel responsible for planning and executing the drilling and well activities.
These activities include for example creating documents such as calculations and drawings
in which the well specific input needs to be entered manually by the user.

One very important task usually assigned to the engineers during the planning of drilling
and well operations is the definition of the well barriers and creation of the well barrier
schematics (WBS) for those operations. From my own experience, this task is as important
as it is tedious to be performed without the correct tools.

The task hold such importance because it determines how safe the drilling and well
operation is planned to be. Before drilling any hole in the ground, the planning team
needs to ensure that all the operations will be performed with the correct barriers in
place at all stages of the well life cycle. In other words, the team needs to think through
the entire operation, step by step, and make a visual representation of the equipment
installed and identify which of the well components are acting as a barrier to stop the

1by manually it can be understood as using digital solutions that are not fit for purpose, requiring
manual input from the user.

1

Chapter 1 Introduction

formation fluids from blowing out uncontrollably to the surface, where people are working
in the rig floor.

Without the correct tools, the time spent drawing this well barrier schematics can be
quite long. It is a requirement to have a well barrier schematic for all the operations
and activities during the well life cycle. In practice, it means roughly twenty to thirty
different drawings to be prepared for each new wellbore being constructed. The time
used to manually draw these different drawings is quite considerable. However, only a
small fraction of the time utilized in this task is to actually plan the well barriers, while
a big portion of the time is spent is updating inputs and adjusting color and curves in
the drawing itself.

While creating a couple of hundreds of those drawings, I was motivated to look for
solutions that could automate the drawing of these well barrier schematics and spare the
use of engineering time to quality check the drawings to ensure they are according to the
industry requirements.

This work is an attempt on the automation of the before mentioned task, to define the
well barrier schematics for different drilling operations by predicting the well barrier
elements and envelopes using machine learning classification. The idea is to use available
well barrier schematics from previous drilling activities to train machine learning models
and further predict the well barrier elements and envelopes for a given drilling operation.

1.2 Related Work

As far as this point, no direct related work has been found in the literature that uses
machine learning on the proposed application of predicting well barrier elements and
barrier envelopes. However, artificial intelligence (AI) is not new in the oil and gas
industry and some inspiring work can be related to the idea proposed.

The oil and gas industry has invested large amounts in innovative technology along the
years to make the operations safer and more lucrative. Large part of the investment has
been in equipment, such as downhole tools and rig technology. However, the workflow on
planning, developing and abandoning a wellbore has remained very similar to the start
of the industry and its strength in the 1970’s.

Even though computers have facilitated the well planning and operations in the last
decades, digitalization is still a recent idea in the oil and gas industry.

The motivation of this work is shared with the recent study presented by B. Brechan [1] in
his P.h.D thesis: "Framework for automated well planning and Digital Well Management".

3

Brechan proposed a theoretical method to achieve automation on well planning, well
intervention and well integrity during a well lyfe cycle. According to Brechan, "The
techniques to recover oil and gas onshore and offshore are essentially the same. These
techniques have been refined and improved over the years, but the workflows and processes
from planning through construction to final plugging of wells is still human-oriented.
Project teams scoped to plan construction or maintenance of wells often read and produce
texts which then is shared with other disciplines vital to achieve the project objective"
[1].

The work proposed here could fit in Brechan’s Digital Well Management framework as
part of the well integrity module, where instead of using engineering hours to create the
well barrier drawings, the system proposed here would do the prediction and could be
extended further to draw the barrier in an automated way.

In 2011 Tollow Oil presented the importance of a Well Integrity Management System
(WIMS) and the implementation of a software solution [2]. These type of systems already
exist in the industry, however, most of them remain like a hub of information, gathering
the different documents and reports in one place, still depending on the human factor to
update and maintain the documentation.

AI and machine learning are slowly entering the oil and gas industry, many ideas have
been proposed and some are already implemented. Some examples of these proposed
ideas using machine learning in drilling and well operations are presented in [3] and [4].

An important work considered is presented in [5], studying the data management efficiency
on oil and gas data; and in [6] using machine learning and Natural Language Processing
(NLP) to analyse drilling and completion data. On both works text mining and text
processing techniques are applied to extract important information from the heavy
text based data available in the industry. Similar techniques will be applied on the
development of this work.

1.3 Challenges

The first challenge presented on the development of this study is the lack of previous
work in the specific area. Many machine learning applications have been developed in
the oil and gas industry, however, no similar application has been found in the same
thematic as well integrity and well barrier classification. The lack of references and
previous databases adds an extra effort required on the data preparation and opens the
possibilities when selecting the classifiers to be used. On the other hand, the challenge
presented here can also be seen as an opportunity to start in an area of study that has

Chapter 1 Introduction

not been previously explored and consequently the contributions of this work could be
valuable to continue further development.

The multi-disciplinary characteristic of this work is also a challenge. Two different
audience might be interested on the solution proposed in this document: the readers with
background in the petroleum technology field and the readers from the data science field.
In order to reach both audiences, it is important to give the readers enough information
to provide the understanding of the problem and the solution proposed. With the
intention to make this work accessible to any interested reader, Chapter 2 will approach
the necessary background information on drilling and well and machine learning.

A third challenge worth mention is the lack of a fit for purpose database. The quality of
the data used in a machine learning algorithm has direct consequences on the response
achieved. As mentioned, no previous work has been found in this area, therefore the
database created in this work will be crucial to verify if the solution proposed is applicable.

The raw data (samples) utilized in the database creation on this work have different
file formats and different user formatting. Each sample raw file is unique, created by a
different person. The characteristics of the samples and lack of standardization of the
textual content leads to challenges with regards to text preprocessing and text extraction
of the data. More details about data extraction and pre-processing will be discussed in
Chapter 3.

1.4 Contributions

The database creation is an important contribution of this work. There are many
databases containing WBS from the many wellbores constructed in the NCS and world-
wide, but this may be the first database for well barrier elements to be used in machine
learning.

The main idea proposed is also a valuable contribution of this work. Since there is no
published work within this application, the automation on defining well barrier elements
by itself is an important contribution.

Chapter 2

Background

The main focus of this work is the application of machine learning on an industry problem,
however, some concepts from oil and gas industry and drilling activities are necessary for
a better understanding of the application.

This section approaches some fundamentals on machine learning principles and methods
used, as well as some simplified explanation on the well construction and components,
and the use of these elements as well barriers.

2.1 Machine Learning

2.1.1 Natural Language Processing and text processing

Most of the information available on the samples in this work is text based. Even though
text is one of the most common forms of communication for humans, computers require
some extra processing when dealing with text information. Machine learning algorithms
usually do not accept text as input, instead, the text need to be transformed in a vector
of numbers. The processes of transforming text in a vector is known as "vectorization".
Prior vectorizing a text, the text information is divided in smaller units called "tokens",
that can be comprised of characters, words or combinations of N words (N-grams). The
process of breaking down text into tokens is called "tokenization". After the tokenization
of text, each token is then assigned to a number during the vectorization process, creating
the final vector of numbers to be used in the machine learning algorithm.

The text information in the raw data can appear in different formatting and containing
characters that do not necessarily aggregate information. An important task when using
text as the input on a machine learning algorithm is the text preprocessing, in which

5

Chapter 2 Background

the text is "cleaned-up" prior the tokenization. The tasks performed during the text
preprocessing are varied and depend on the type of text used and its formatting. For
example, it is typical during the preprocessing to set the text to lower-case, remove some
special characters and punctuations, remove too common words, remove sufixes, etc.
The preprocessing if done correctly can reduce significantly the amount of information
transferred to the machine learning algorithm without compromising the quality of the
results.

Text processing and the use of text in machine learning includes several concepts and
techniques that are important to mention:

Term frequency (tf) is associated to the number of times one term appears in the
document. The tf of a term in a document is calculated by the following equation:

tf(t, d) = ft,d∑
t′εd ft′,d

, (2.1)

where ft,d is the term count of term t in the document d and ∑
t′εd ft′,d is the count of

all terms in the document.

Inverse document frequency (idf) accounts for the importance of a term by measuring
the occurrence of the term in the set of all documents. The idf of a term in a document
set is calculated by the following equation:

idf(t,D) = log N
nt
, (2.2)

where N is the total number of documents in the dataset and nt is the number of
documents in which the term t is present.

tf − idf is the product of term frequency and inverse document frequency, and it gives a
measure of importance of a term in the document for a corpus of documents. tf − idf is
calculated as follows:

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D) (2.3)

Natural Language Processing can be understood as techniques that attempt to teach the
computer to understand the content in natural language text. Natural language text is

7

the text that originates from a language, such as english, and contains a set of rules and
patterns that makes the sentence to have a meaning. While for a human it can be easy
to identify the content and meaning of a sentence, for the computer it can be a challenge.
NLP comes into attempt to teach the computer some of the language structure, such as
lexical analysis (meaning of each word), syntactic analysis (relationship between words),
semantic analysis (meaning of a sentence), etc. [7].

Bag-of-words (BOW) is a technique in NLP to perform the vectorization of text by
assigning an integer number (term frequency) to each unique term in the vocabulary. A
document is represented by a vector of the vocabulary dimension, containing values of
zeros and integers, where integers are only present for the terms present in that document
and zeros are assigned to the remaining terms not in the document.

Text Embedding is a NLP technique used to represent a word by a vector in a high di-
mensional space, where similar words are represented by similar vectors. Text embedding
can be used in deep learning as input to the deep learning algorithm. Word2Vec [8] is
one of the known algorithms used to perform text embedding by transforming text into
the vector representation.

2.1.2 Machine Learning Algorithms

Machine learning algorithms can be understood as algorithms that allows the computer
to learn and adapt by using the patterns from the data feed to it. These algorithms can
be divided in three main groups:

• Supervised learning - where the machine is given both inputs and outputs (labels)
and the algorithm try to identify the relation between input and output.

• Unsupervised learning - the algorithm receives only the inputs and find the similar-
ities on the data samples.

• Reinforcement learning - the machine interacts in an environment to achieve a
specific goal and learns through a feedback with reward mechanism.

Supervised learning uses the training data to learn a function that describes the relation
between inputs and outputs. After learning, the algorithm is capable of making predictions
of the outputs given the inputs. Under supervised learning, three main tasks are worth
mentioning:

Chapter 2 Background

• Classification - given a set of predefined categories, the algorithm tries to identify
which category the inputs belongs to. Ex: given a set of parameters, predict if a
well component is a barrier or not.

• Regression - given a range of values, the algorithm tries to predict the output value
given the inputs. Ex: predict the price of a house in the market given the size,
location, etc.

• Similarity - a combination of classification and regression that tries to predict the
similarity given a set of inputs. Ex: ranking of documents in a search engine.

The work presented in this document is a supervised learning classification problem, in
which a set of parameters for each well component is given and the algorithm will attempt
to classify the well component as a barrier, and to which barrier envelope (primary and/or
secondary) the well component belong.

2.2 Drilling and Well

2.2.1 Well Construction

When planning a new wellbore, the design of the well follow the well construction process,
that for this application can be defined as the planning and execution workflow to achieve
all the preparation necessary in order to plan and develop the well in a safe and efficient
way.

Well integrity and well control are two fundamental principles applied in the well
construction process, in which the main objective is to reduce the risk that uncontrolled
formation fluids are released to the surface. NORSOK D-010 [9] defines the well integrity
requirements and guidelines for the Norwegian Continental Shelf and shall be followed in
all drilling and well activities in the NCS.

Well integrity can be understood as the use of technical, operational and organizational
barriers to prevent uncontrolled well flow. The well integrity must be maintained in all
stages of a well life cycle and operations being executed. Well control is strongly linked
to well integrity and can be understood as the measures to ensure that for each well
operation the control over the formation flow is maintained. If one well barrier fails, a
well control incident has happened and the well integrity is compromised. A well control
incident can have dramatic consequences to human life and environment, as seen in the
Macondo incident in April 2010 in the Gulf of Mexico [10], one of the most recent and
catastrophic examples of the consequences when the well control is lost.

9

As stated in NORSOK D-010 chapter 4, sections 4.2.1 "The well barriers shall be defined
prior to commencement of an activity or operation by identifying the required well barrier
elements to be in place, their specific acceptance criteria and monitoring method." and
4.2.2, "Well barrier schematics shall be prepared for each well activity and operation" [9].

A well barrier element can be understood as one element that can stop the flow of the
well. However, one well barrier element alone might not be enough to stop the flow. A
well barrier envelope is comprised by a set of well barrier elements that together can
enclose the flow. The NCS and several other locations worldwide follow the two barriers
principle, which determines that two barriers shall always be in place in a well during the
entire well life cycle. The first barrier that fluids from the formation meet is known as
primary barrier. The secondary barrier is the second barrier met by the flow in case the
primary barrier envelope fails. A WBS is a visual representation of the well components
and barrier envelopes in place for a specific activity or operation in the well.

2.2.2 Well Design

Explaining in a simplified way, a well is constructed by drilling a set of holes in the
ground in steps. In order to guarantee the physical structure of the holes drilled, a casing
(large diameter pipe) is set inside each hole section and cemented by placing cement on
part of the annular volume between the hole wall and the casing outside wall. After the
cement has hardened, a seal is created against the formation fluids and pressures, and
the mechanical forces from the formations behind the casing and cement. When the
sealing is achieved, a smaller new hole can be drilled. This process repeats until the final
target depth is reached.

The well total depth depends on the wellpath and location of the target. The target is
a location underground in which the wellpath must reach before or at the final depth
drilled. For producer wells, the target can be a source of hydrocarbons that will be
drained. In the case of an injector well, the target could be a strategical location where
water or gas can be injected in order to improve the production of neighbour producer
wells.

A well typically contains standard sections and components, such as wellhead, casings,
cement, tubing, liners, valves, Christmas tree (XMT), etc. Below is some basic explanation
of some of these well components:

• Wellhead - is the well component at the top of the well where the casings are hung,
and the Blow-out Preventer (BOP) and/or XMT are installed. For subsea wells

Chapter 2 Background

the wellhead is located at seabed, while for dry wellheads they are located at the
surface.

• Casing is a large diameter pipe that is placed and cemented into a new drilled section
hole with the main purpose of sustain and protect the opening from underground
to surface. Typical casings types installed in a well are [11]:

– Conductor casing - the first and largest casing. Its main function is to give
stability of the hole for further drilling and future placement of the wellhead
by protecting the hole against hole collapse from the surface (or seabed in
case of offshore wells). Common diameter of a conductor casing in the NCS is
30", drilled in a 36" hole section.

– Surface casing - The second casing installed in a well. The wellhead may be
installed on top of the surface casing. Typical sizes in NCS are 18 5/8" and
20" casings, drilled in sections ranging from 20" to 26" holes.

– Intermediate casing - Usually set prior to a production zone, to isolate the low
pressure zones and unstable formations that can cause hole collapse. A well
can have more than one intermediate casing. Common sizes of intermediate
casings in NCS can range from 11 3/4" to 14" casings. Typical hole sections
vary from 13 1/2" to 17 1/2" hole diameter.

– Production casing - Used to isolate production zones that contain formation
pressures in the event of a tubing leak [11]. Typical sizes in NCS range from
7" to 9 5/8" and hole diameter from 8 1/2" to 12 3/4".

– Liner - is a casing that doesn’t go all the way to the wellhead, instead, it stops
in the previous casing string installed by the use of a liner hanger. Common
sizes in the NCS are from 4" to 7", but can be also found in larger diameters.

– Tie-back string - is a casing string connected from the liner hanger top to the
wellhead, usually not cemented.

– Tubing - is the last tubular installed in a well and it is responsible for trans-
portation of the hydrocarbons from the reservoir to the surface. Additional
components may be installed in the tubing string, such as Downhole Safety
Valve (DHSV), Chemical Injection Valve (CIV), Gas Lift Valve (GLV) and
Downhole Pressure Gauge (DHPG).

11

Figure 2.1: Casing Illustration [12].

• Casing hanger - the last piece of a casing installed in the wellhead to hang/connect
the casing to the wellhead and provide sealing between the formations behind the
casing and the outside environment.

• Liner hanger - it is the last piece of a liner installed in the previous casing wall
by anchoring the liner to the casing and providing a seal between the formations
behind the liner and the previous casing.

• Casing cement - Cement is applied in most casings and liners installed in a well.
Cement must provide the physical structure to hold the casing in place and the
hole from collapse directly into the casing wall. In addition, cement may provide

Chapter 2 Background

zonal isolation and seal the formations above the cement column from getting into
contact with the formation fluids and pressures from the formations drilled deeper.

• Cement plug - a cement plug is placed in a well when the intention is to permanent
plug the hole. The cement plug is placed inside the casing or hole section to be
plugged.

• Christmas tree - is a set of valves used to control and monitor the flow during
production or injection on development wells.

During drilling, completions and well intervention activities, additional equipment is
installed in the well in order to prevent a well blowout. Some of the main components
are:

• Blowout Preventer - is the equipment used during drilling, completion and well
intervention activities to prevent an uncontrolled flow from the well. A BOP is
usually a set of stacked valves with capability to seal the wellbore against the
formation flow towards the surface.

• Riser - Riser is a large diameter pipe that connects the BOP to the wellhead or
the BOP to the rig surface equipment.

• Fluid column - it is the fluid used to stabilize the well pressure by forcing a
hydrostatic pressure from the fluid weight against the formation pressure. In
drilling activities, the fluid column is typically provided by the drilling mud. The
drilling mud weight and properties are designed and adjusted depending on the
formation type and pressure behavior. In conventional drilling it is desired always
to keep the formation pressure in overbalance, meaning that the fluid column weight
exerts a hydrostatic pressure higher than the pressure exerted by the formation
being drilled.

2.2.3 Well Barrier Schematics (WBS)

Norsok Standard D-010 [9] defines the requirements for each well component to be
accepted as a barrier element. In Norsok D-010 documentation all acceptable barrier
elements are defined and ordered in a table format, in which the barrier elements are
identified by an identification number. In the table, the requirements for testing and
monitoring the elements are explained. The element identification information used in
this work follows the Norsok D-10 Revision 4 [12] due to the time period of the well
operations in the samples available.

13

The requirements for what the well barrier schematics should contain are also presented
in Norsok D-010, chapter 5.2.2 [9]. Amongst those requirements, some are replicated
below:

• A drawing illustrating the well barriers, with the primary well barrier shown with
blue colour and secondary well barrier shown with red colour.

• The formation integrity when the formation is part of a well barrier.

• Reservoirs/potential sources of inflow.

• Tabulated listing of WBEs with initial verification and monitoring requirements.

• All casings and cement. Casing and cement (including TOC) defined as WBEs
should be labelled with its size and depth (TVD and MD).

• Well information: field/installation, well name, well type, well status, well/section
design pressure, revision number and date, “Prepared by”, “Verified/Approved by”.

• Clear labelling of actual well barrier status – planned or as built.

• Any failed or impaired WBE to be clearly stated.

• A note field for important well integrity information (anomalies, exemptions, etc.).

Chapter 2 Background

Figure 2.2: WBS illustration example from a typical drilling operation, Norsok D-010
[9].

As part of the well integrity requirements, each operation that changes the well barrier
envelope needs to have a WBS describing the barriers active for that operation. That
results in many WBS drawings for each well being constructed and operated during the
well life cycle.

15

2.3 Norsok D-010 Definitions

1. Well construction process - A subset of activities from the planning to execution of
the operations required to construct a well or wellbore.

2. Well life - The period in which a well or wellbore is planned to be active.

3. Primary well barrier - first well barrier that prevents flow from a potential source
of inflow [12].

4. Secondary well barrier - second well barrier that prevents flow from a potential
source of inflow [12].

5. Well barrier - envelope of one or several well barrier elements preventing fluids
from flowing unintentionally from the formation into the wellbore, into another
formation or to the external environment [12].

6. Well barrier element - a physical element which in itself does not prevent flow but
in combination with other WBE’s forms a well barrier [12].

7. Well control - collective expression for all measures that can be applied to prevent
uncontrolled release of wellbore fluids to the external environment or uncontrolled
underground flow[12].

8. Well integrity - application of technical, operational and organizational solutions
to reduce risk of uncontrolled release of formation fluids and well fluids throughout
the life cycle of a well [12].

Chapter 3

Data Extraction and preparation

3.1 Raw Data

The raw data used in this work is comprised of a collection of well barrier schematics in
various file formats, such as Excel with embedded Visio drawing, PDF and Microsoft
Visio files. The collection includes drilling operations on wellbores constructed in the
Norwegian Continental Shelf, with operation dates ranging from 2014 to 2020.

Each WBS contains information about the well itself, such as components installed, the
status of the well in the well life cycle, the operation that the WBS is applicable for, and
the well barrier elements that comprise the primary, secondary and if applicable tertiary
envelopes. The Figure 3.1 illustrates one WBS drawing from the raw dataset utilized in
this work.

17

Chapter 3 Data Extraction and preparation

Figure 3.1: WBS drawing from the sample dataset raw data.

In total, 57 wellbores are used as samples. From all the drilling operations in those
wellbores, 1373 WBS are analysed and the main relevant information is extracted to be
used in the machine learning algorithm.

3.2 Database Creation

The database in a machine learning algorithm can directly define the quality of the
results. If bad or wrong data is passed to the model, even the best models will not
perform well.

In order to create the database for the machine learning algorithms and due to the
different file formatting, the information on each WBS is extracted and pre-processed
differently, according to the original file format. The work process for the different file
formats is described in the following section.

19

3.2.1 Information Extraction

The first step on the database creation was to extract the main information from the
raw files. This process might sound simple, however, the diversity in file formats and
non-standard wording makes the task challenging.

Not all the information available in the WBS is utilized in the final database. From each
WBS, the information extracted was the following:

• Operation that the WBS is applicable for (text).

• Well type: text information.

• Primary well barrier elements: Description (text).

• Primary well barrier elements: Norsok table number (int).

• Primary well barrier elements: Verification (text).

• Secondary well barrier elements: Description (text).

• Secondary well barrier elements: Norsok table number (int).

• Secondary well barrier elements: Verification (text).

Excel

For the excel files, Pandas library [13] was used to read the documents and extract the
text information into a Pandas Dataframe. The original files have the main information
placed on a three column table, with the placement of the table varying slightly from file
to file. One excel file may contain several sheets on the working document, one sheet
for each drilling operation WBS. The first step in the pre-processing of the Excel files
was to divide the main original file into its different sheets, saving each sheet as a CSV
(Comma separated Values) file to facilitate further text handling.

Visio

Microsoft Visio files have a different structure than a text file or Excel worksheet document.
The latest Microsoft Visio file formats ".vsdx" have the structure similar to a Zipfile,
like a container, containing multiple files inside. When unzipped, the Visio file can
contain multiple files and information, such as: information in "xml" files, the relationship

Chapter 3 Data Extraction and preparation

between the files in the container (also structured as a "xml") and additional information
in other file formats such as ".doc", ".docx", ".xlsx", images, etc.

The first stage on the data extraction of the original Visio files was to ensure that all the
files where converted to the ".vsdx" extension. This process was done manually in the
data gathering step.

After, each Visio file was unzipped and the information on the many files inside the
container was extracted. As for the Excel files, one Visio document may contain several
tabs, one for each operation step, resulting in a zipfile containing many "pages" and many
"embedding" documents. When analysing the original Visio files, it was observed that
the main text information was contained in the equivalent "pageXX.xml" files, where
"XX" is the integer ID given by Visio, equivalent to a tab. The table with the barrier
elements and barrier envelopes was contained in a "embedding" file, either in Microsoft
Word or Excel document format. However, the page ID and embedding document ID
are not necessarily the same. Visio creates relationship tags to link the different items.
The page relationship to the embedding document was found on the "pages.xml.rels" file,
that also uses the "xml" structure to describe the relationships.

In order to facilitate the further text processing, the information of interest from the
Visio files was extracted and stored in a "json" format. The information extracted was
the page versus embedding document relationship, the text extracted from the "page.xml"
file and the corresponding text information from the tables on the embedding files.

PDF

The PDF files presented additional challenges. Even though it is possible to extract the
text content from some of the original files, the result was in most cases not the expected.
For example, some files returned the text without spacing between the words, making it
difficult to extract the relevant information automatically.

Most of the documents available are originated from scanned documents, in those cases
the automatic text extraction was not possible.

Due to the challenges mentioned, the information from the PDF files was extracted
manually.

21

3.2.2 Text preprocessing

After extracting the information from the original WBS files, text preprocessing techniques
were used to create a standard format. The main text preprocessing techniques applied
at this stage were the following:

• The text was set to lower case.

• Multiple spaces were standardized to single space.

• Symbols and punctuation were removed.

• Stop words were removed.

3.2.3 Adding Well Components

In the way that WBS are constructed, only the well components that are active as
barrier elements are represented in the WBS table. Consequently, using only the text
information from the WBS as input for the machine learning algorithm would lead to a
model completely biased simply by the reason that only samples with labels ẗrueẅould
be present in the database.

In order to improve the databse in the attempt to reduce the bias and add the elements
that are not barriers (label f̈alse)̈, all the well components that could be present in a
wellbore are added to the WBS table for each drilling operation. These additional well
components are well elements that by definition could be barrier elements under other
circumstances, but are not active for that specific operation. Note that These additional
components may include elements that are not installed in the well at that stage on the
well construction phase, however, considering the characteristics of machine learning
algorithms, the "non-existent" components are assumed to be sorted out by the algorithm
during the learning process.

Principles of the well construction design, as described in Section 2.2, are applied in the
identification of the components installed in the well and those added to the database.

3.2.4 Final Database

The final database was stored in a CSV file containing in total 1373 drilling operation
WBS that can be used as samples. Each operation WBS contains in average 23 well
components, resulting in a database with a total of 32014 well barrier elements to be

Chapter 3 Data Extraction and preparation

used during training and evaluation. Each well barrier element input has six parameters
and three boolean labels, as following:

• id - integer - Well component identification number.

• ops - string - description of the operation being performed and that the WBS is
applicable for.

• name - string - well component name.

• number - integer - corresponding NORSOK table number [12].

• norsok - string - corresponding NORSOK description/name for the well component
[12].

• ops_id - integer - operation identification number, unique for each drilling operation
WBS.

• barrier - label boolean - True indicates that the well component is acting as a
barrier on that specific WBS.

• primary - label boolean - True indicates that the element is part of the primary
well barrier envelope for that WBS.

• secondary - label boolean - True indicates that the element is part of the secondary
well barrier envelope for that WBS.

Table 3.1 contains a sample of the database, corresponding to a full WBS for the operation
id number 10.

Note that a well component can be part of both the primary and secondary well envelopes
simultaneously, however, this scenario is not common for drilling operations, consequently
no samples are available in the database in which an element belongs to both the primary
and secondary envelopes.

23

Table 3.1: Sample from database.

ops name number norsok barrier primary secondary ops_id
id

225 cement 1338 intermediate casing fluid column 1 fluid column True True False 10
226 cement 1338 intermediate casing formation integrity 20 surface shoe 51 insitu formation True False True 10
227 cement 1338 intermediate casing 20 surface surface casing cement 22 casing cement True False True 10
228 cement 1338 intermediate casing 20 surface surface casing 2 casing True False True 10
229 cement 1338 intermediate casing wellhead annulus valve 12 wellhead annulus access valve True False True 10
230 cement 1338 intermediate casing riser 26 surface high pressure riser True False True 10
231 cement 1338 intermediate casing bop 4 drill bop True False True 10
232 cement 1338 intermediate casing 1338 intermediate casing 2 casing True False True 10
233 cement 1338 intermediate casing 1338 intermediate casing float valve 41 casing float valve True False True 10
234 cement 1338 intermediate casing conductor casing 2 casing False False False 10
235 cement 1338 intermediate casing conductor casing cement 22 casing cement False False False 10
236 cement 1338 intermediate casing insitu formation conductor casing shoe 51 insitu formation False False False 10
237 cement 1338 intermediate casing production casing 2 casing False False False 10
238 cement 1338 intermediate casing production casing cement 22 casing cement False False False 10
239 cement 1338 intermediate casing insitu formation production casing shoe 51 insitu formation False False False 10
240 cement 1338 intermediate casing wellhead 5 wellhead False False False 10
241 cement 1338 intermediate casing mechanical plug 28 mechanical tubular plug False False False 10
242 cement 1338 intermediate casing collapse formation 52 creep formation False False False 10
243 cement 1338 intermediate casing stabin safety valve 40 stabin safety valve False False False 10
244 cement 1338 intermediate casing liner hanger packer 43 liner top packer tieback packer False False False 10
245 cement 1338 intermediate casing drill string 3 drill string False False False 10

Chapter 4

Main Approach

The main objective of this study is to evaluate the use of machine learning techniques on
the classification of a well component as a barrier element, and in which barrier envelope
the barrier element belongs: primary, secondary or both. The main goal is to evaluate
the full set of well components for a well operation, giving as final result the WBS for a
drilling operation.

As described in details on Chapter 3, most of the data extracted from the well barrier
schematics is text in natural language. Due to the characteristics of the data, the work
presented here will focus on the evaluation of text based classification techniques.

In order to evaluate the best results, different approaches on features and model selection
are explored as described in the following sections.

4.1 Features and Feature Selection

The features in a text classification task are mainly the text itself and the intrinsic
information contained in the text. Since machine learning algorithms are unable to take
text as input directly, the text needs to be transformed to numeric information prior
running the training and prediction, as explained in more details in Section 2.1.

The first approach in this work was to test the classification using text vectorization
based on unigrams (words) and digrams (word pairs) as the features on the machine
learning models. Scikit-lean library [14] and the function Vectorize() was applied on the
text information to obtain the vectorized model input data.

25

Chapter 4 Main Approach

The second approach applied is based on Natural Language Processing and uses the
tf − idf information from the text on the database. For the tf − idf , the frequencies of
both unigrams and digrams are used as features.

A common challenge in text classification is the high dimensionality of the features. The
dimension is proportional to the size of the vocabulary for all the documents evaluated
and the use of both unigrams and digrams can increase considerably the number of
features, therefore the dimensionality. In order to reduce the number of features, a
feature selection technique is also applied and evaluated.

In this work, the γ2 statistic is the feature selection technique chosen to be evaluated
due to its application in text based features, as in [15].

The third and last feature explored in this work are word embeddings, also a NLP
technique in which the words or combinations of words are transformed in vectors in a
vectors space, where similar words are believed to be close to each other in the vector
space.

The Word2Vec [8] algorithm is chosen here to perform the vector space transformation.
The algorithm uses neural networks to train and then transform the words into vectors in
the defined vector space. Even though oil and gas related pre-trained word2vec models
exist in the literature [16], the coverage of words on the pre-trained models didn’t seem
to be applicable for the specific terms used on the WBS. For this reason, a word2vec
model was trained specifically for this work using the words available in the database,
limiting the vocabulary to the text contained in the samples available. The word2vec
model is trained using unigrams and digrams, through 500 epochs, transforming each
word into a vector of dimension 300.

4.2 Model Selection

Along the years, several classification techniques have been researched and applied on text
classification tasks. These techniques vary largely in complexity, and their application
are strongly correlated to the specific task.

As mentioned previously, up to the time of this study there were no references found
on the application of AI on the classification of well barrier elements. This fact opened
the research to a broad range of possibilities of machine learning methods that could
be explored. Keeping in focus the classification models used in text classification tasks,
eight different models are chosen and will be tested and evaluated in this work:

• Multinomial Naive Bayes Classifier

27

• Support Vector Machine (SVM) Classifier

• K-Nearest Neighbours (KNN) Classifier

• Decision Tree Classifier

• Random Forest Classifier

• Multi-layer Perceptron / Artificial Neural Network (ANN)

• Deep learning ANN - Two dense layers with 64 nodes each

• Convolutional Neural Network (CNN)

The methods chosen to be evaluated in this work vary in complexity as well. Some
classical approaches are chosen, such as Naive Bayes, SVM and KNN classifiers, very
popular amongst text classification studies.

Decision tree and random forest are selected here based on the technical knowledge of the
way the WBS is built and the requirements that the barrier selection needs to follow. As
described in Section 2.2.3, there are certain patterns when choosing the barrier elements
in a WBS. As a consequence some well components tend to fall in one barrier envelope
more often than others. Due to this intrinsic pattern and the characteristics of tree based
techniques, tree based classifiers are considered in this work as promising and worth to
be evaluated.

Artificial Neural Networks and deep learning ANNs have shown impressive results in the
text classification literature. For this reason these methods should not be left unexplored
for the problem in this work.

The CNN model tested is inspired by the work presented in [17] and [18], in which
convolutional neural networks are used to classify sentences using word embeddings. The
idea is implemented here with the thought that each barrier element text input could be
understood as a sentence to be classified, therefore in this case the CNN proposed could
be a good candidate as a classifier to the problem.

In order to apply the CNN, the word embeddings are implemented using word2vec, as
previously mentioned. Word embeddings is only applied to the CNN classifier, while
the remaining classifiers evaluated use exactly the same features and feature reduction
techniques.

Chapter 5

Experimental Evaluation

5.1 Experimental Set-up

The experiments are built upon testing the performance of the different machine learning
classification models presented in Chapter 4 and evaluation of their performance on the
well barrier schematics (WBS) prediction given a drilling operation.

All the experiments presented are performed using Python programming language and
dedicated python libraries. The main libraries used for building the machine learning
models were the following:

• Scikit-learn [14] - A Python integrated module for machine learning. It contains
many machine learning models and preprocessing tools.

• Tensorflow [19] - open source, end-to-end, machine learning platform. Used to
build and train deep learning models.

• Keras [20] - A deep learning API build on Tensorflow 2.0, used to facilitate the
interface between humans and the deep learning projects. Keras API comes
integrated with Tensorflow 2.0.

The input preparation was performed by first splitting the samples into test and training.
The items on the dataset were grouped by drilling operation WBS and each operation
received an unique identification number (id). To ensure that the final product is a model
that can predict a full WBS, the test and training samples were selected based on the
operation ids. 20% of the operations are randomly selected as test samples and the 80%
remaining operations are used for training.

29

Chapter 5 Experimental Evaluation

Each WBS contains on average 23 well components, labelled as "barrier", "primary"
and "secondary", indicating if the well component is active as a barrier element for that
operation and in which barrier envelope it is active: primary, secondary or both. The
final sample split used in the experiments is comprised of 274/1099 test/train operations,
and approximately 25650/6350 train/test well components to be trained and evaluated.

The samples are not evenly distributed. The Figure 5.1 shows the number of samples
per type of well element according to NORSOK name.

Figure 5.1: Database samples distribution with labels.

fluid
column

insitu
formation

casing
cement

casing wellhead wellhead
annulus
access
valve

mechanical
tubular

plug

surface
high

pressure
riser

drill
bop

casing
float
valve

creep
formation

stabin
safety
valve

liner
top

packer
tieback
packer

drill
string

Norsok Name

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f s
am

pl
es

1401

4783

5382

6238

1820

1379 1375 1377 1373 1376 1374 1373 1390 13731341

923

1706

2599

1763

807

69

1061
969

427

175
53

160
2460

3860
3676 3639

57

572

1306

316
404

949

1199
1320

1230
1349

Samples distribution per Norsok name.
Total
True
False

Each model is trained and evaluated in a 5-fold cross validation. The test samples for
each split are selected by first shuffling the order of the operation ids, and then splitting
the total samples in 5 parts.

A word2vec model was trained using the text information from all the samples available
on the database. For each test and training split, the samples are transformed using the
pre-trained word2vec model and the resulting word embeddings are used as the input in
the CNN model.

For the remaining models, text vectorization and tf − id transformation are applied
and the combination of the resulting features is used as input for the models. For these
models, a γ2 feature reduction is also applied, in which the features with γ2 values below
2 are removed and a second training and evaluation is performed.

31

5.1.1 Evaluation measurements

The evaluation of each model is performed by measuring the accuracy of the classification
in five different measurements, in three levels:

• Individual level, in which the individual accuracy for the three different labels is
calculated - labels "barrier", "primary" and "secondary";

Accuracybarrier = correct classified elements on label "barrier"
total number of elements (5.1)

Accuracyprimary = correct classified elements on label "primary"
total number of elements (5.2)

Accuracysecondary = correct classified elements on label "secondary"
total number of elements (5.3)

• well element level, where a correct prediction is assumed if all the 3 labels for the
given well component are correct classified;

Accuracyelement = correct classified well components
total number of elements (5.4)

• WBS level, in which a prediction is considered correct if all the well components
within the same operation id are correct classified.

Accuracyoperation = correct classified operations
total number of operations (5.5)

The best performing classifier is also evaluated per element type according to the
NORSOK table[12]. In this step the precision, recall, specificity and F1-score for all the
labels is calculated.

Precision = TP
TP+FP (5.6)

Recall = TP
TP+FN (5.7)

Chapter 5 Experimental Evaluation

Specificity = TN
TN+FP (5.8)

F1 − score = 2 ∗ Precision ∗Recall
Precision+Recall

(5.9)

Where TP (True Positive) are the true samples predicted as true, FP (False Positive) are
the false samples predicted as true, TN (True Negative) are the false samples predicted
as false and FN (False Negative) are the true samples predicted as false.

The total time used by the algorithm to train the model and perform the prediction is
also measured and evaluated. The results for the 5-fold cross validation performed for
each model is displayed in the Section 5.2.

5.1.2 Model parameters set-up

The models implemented have the following parameters:

• Naive Bayes - used default settings from scikit-lean method MultinomialNB().

• SVM - Default settings from scikit-lean method SGDClassifier().

• KNN - Default settings from scikit-lean method KNeighborsClassifier().

• Decision tree - Default settings from scikit-lean method DecisionTreeClassifier().

• Random Forest - Default settings from scikit-lean method RandomForestClassifier().

• MLP - Default settings from scikit-lean method MLPClassifier(random_state =
1)).

• Deep Learning classifier - Different layer set-ups were experimented by try and
error. The final set-up uses an initial Keras sequential layer, followed by two dense
layers with 64 nodes each both with reLU activation function; and a dense output
layer with 3 nodes and Sigmoid activation function. The model is trained in 10
epochs with a batch size of 5, binary cross-entropy as loss function, Adam optimizer
and accuracy as the main metric.

• CNN - Using the idea presented on [17], the final CNN model applied to this
problem is build as the following: one static embedding layer initialized with the
pre-trained word2vec model weights; two 1D-CNN layers with kernel size 2 and max

33

pooling 2, activation function reLU; one 1D-CNN layer with kernel size 3, activation
function reLU; one flatten layer; one dense layer with 300 nodes, activation function
reLU; one drop-out layer with drop-out rate 0.5; and finally, an output dense layer
with 3 nodes and Sigmoid activation function. Padding is applied on the CNN
layers. During training a Binary cross-entropy is used as loss function, optimizer is
Adam and the metric is accuracy.

5.2 Experimental Results

The experiments were run in the linux environment, on a stationary computer with the
following configuration:

• Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz x 20

• 64 Gb Memory

• GPU GeForce RTX 3090, Nvidia, Cuda version 11.1

• Linux operational system - Ubuntu 20.04.2 LTS

Tables 5.1 and 5.2 contain the average accuracy for the machine learning classification
methods evaluated without and with feature reduction techniques applied, respectively.

Table 5.1: 5-fold cross validation average classification results without feature reduction.

Model Total time Barrier Primary Secondary Element Operation
[s] [%] [%] [%] [%] [%]

Naive Bayes 0.48 89.1 94.05 88.3 83.6 1.9
SVM 31.7 94.97 98.07 94.53 92.38 44.76
KNN 65.04 95.75 98.1 94.96 94.32 55.53
Decision Tree 32.82 96.39 98.28 95.65 95 61.10
Random Forest 20.25 97.07 98.29 96.18 95.61 65.35
MLP 124.28 96.56 98.45 96.01 95.04 62.20
DL 39.63 96.55 98.34 95.85 94.94 60.73
CNN 163.46 96.85 98.34 96.06 95.23 60.81

Table 5.2: 5-fold cross validation average classification results with feature reduction.

Model Total time Barrier Primary Secondary Element Operation
[s] % % % % %

Naive Bayes 0.31 89.42 95.6 88.7 84.69 1.9
SVM 19.11 95.19 97.7 94.06 92.09 41.25
KNN 36.46 96.19 98.07 95.36 94.73 57.36
Decision Tree 5.32 96.44 98.27 95.61 94.99 61.39
Random Forest 12.59 97.11 98.31 96.19 95.67 64.76
MLP 146.81 96.63 98.39 95.91 94.95 62.34
DL 39.43 96.56 98.33 95.77 94.91 59.78

Chapter 5 Experimental Evaluation

From these results, the Randon Forest method is the classifier with the best performance
on predicting a full WBS, achieving 65.35 % average accuracy without feature reduction.
By applying the γ2 feature reduction suggested, the Random Forest classifier presented a
decrease in the average accuracy of 0.59% and a considerable reduction in the total time
for training and prediction, using less than 2/3 of the time used with all the features.

The best results from the 5-fold cross-validation are presented in the Tables 5.3 and 5.4.

Table 5.3: 5-fold cross validation maximum accuracy classification results without
feature reduction.

Model Total time Barrier Primary Secondary Element Operation
[s] % % % % %

Naive Bayes 0.47 89.67 94.84 88.71 84.46 2.93
SVM 28.55 95.61 98.58 95.09 92.99 49.08
KNN 62.10 95.98 98.4 95.34 94.74 58.61
Decision Tree 19.22 96.8 98.5 95.97 95.45 63.74
Random Forest 19.65 97.21 98.54 96.42 95.89 67.03
MLP 96.95 96.81 98.72 96.26 95.36 64.84
DL 39.28 96.85 98.55 96.21 95.54 64.1
CNN 45.81 97.41 98.54 96.73 95.73 63.74

Table 5.4: 5-fold cross validation maximum accuracy classification results with feature
reduction.

Model Total time Barrier Primary Secondary Element Operation
[s] % % % % %

Naive Bayes 0.30 89.91 95.98 89.3 85.5 2.56
SVM 17.35 95.62 98.03 95.31 92.98 47.99
KNN 35.75 96.28 98.3 95.58 94.98 60.44
Decision Tree 3.76 96.77 98.48 95.9 95.32 64.47
Random Forest 12.22 97.27 98.54 96.5 96.01 67.40
MLP 93.58 96.78 98.55 96.29 95.38 66.30
DL 38.98 96.79 98.52 96.2 95.42 63.37

Again, the results show that the Random Forest classifier is the best performer for the
problem proposed, achieving a maximum accuracy on the WBS level of 67.03% without
feature reduction and 67.4% when using the feature reduction technique suggested. Note
that the maximum accuracy has been improved using feature reduction.

The CNN, Decision Tree, ANN-MLP and Deep Learning classifiers have also performed
well, achieving average accuracies above 60%. It is important to note that parameter
tuning was not performed during the experiments, leading to a potential of improvement
on the results if a more detailed selection would to be performed.

From the classifiers evaluated, considering the computational efficiency and the results
achieved, Random Forest classifier was clearly the best performer. The CNN presented a
very slow first epoch, something also experienced by other users in tensorflow forums.

35

The first epoch lasted close to 10 minutes, driving the average training time of the
CNN model to a much higher value than the following runs in which it was required
approximately 42 seconds for a full training and prediction.

An additional evaluation was performed with the objective of verifying the performance
of the classifier for each well barrier element type available in this database. The table 5.5
display the classification results for the Random Forest classifier on the label "barrier".

Table 5.5: Random Forest well barrier classification average results without feature
reduction per NORSOK name.

NORSOK % True % False Accuracy Precision Recall Specificity F1-score
name samples samples
fluid column 95.72 4.28 0.96 0.96 1.0 0.13 0.98
insitu formation 19.3 80.7 1 1 1 1 1
casing cement 31.7 68.3 0.96 0.95 0.9 0.98 0.93
casing 41.64 58.36 0.96 0.97 0.93 0.98 0.95
wellhead 96.88 3.12 0.97 0.97 0.99 0.07 0.98
wellhead annulus access valve 58.5 41.5 1 1 1 1 1
surface high pressure riser 77.12 22.88 0.93 0.94 0.97 0.8 0.96
drill bop 70.68 29.32 0.92 0.93 0.95 0.84 0.94
casing float valve 31.1 68.9 0.99 1 0.98 1 0.99
mechanical tubular plug 5.02 94.98 0.98 0.98 0.62 1 0.75
creep formation 12.7 87.3 1 1 1 1 1
stabin safety valve 3.86 96.14 0.98 0.92 0.68 1 0.77
liner top packer tieback packer 11.44 88.56 0.99 0.98 0.89 1 0.93
drill string 1.76 98.24 0.99 0.57 0.33 1 0.38

From the results in Table 5.5 it can be observed that the type of element versus barrier
label is unbalanced in the test dataset. For example, there are more "not barrier" elements
(label = False) for the well components "drill string", "mechanical tubular plug" and
"stab-in safety valve" in the test dataset. This could be explained by the type of operations
available in the dataset, in this case only drilling operations and due to the characteristics
of drilling operations these elements are more often not active as barriers. In the other
hand the elements "fluid column" and "wellhead" are very often a barrier during drilling
operations and consequently the dataset is unbalance towards the True values.

The recall for the positive labels is high and the specificity for the negative labels is
low for the elements "fluid column" and "wellhead", indicating that the classifier tend to
predict the elements as barrier (True). The opposite is observed for the elements "drill
string", "mechanical tubular plug" and "stab-in safety valve".

The drilling operations characteristics can be seen as an advantage when considering
that the unbalanced characteristic of the dataset will reflect the barrier conditions for
the operation and the classifier will tend to predict the barrier correctly. However, it

Chapter 5 Experimental Evaluation

will be a disadvantage for the operations that are slightly different from the standard
operations, since those will have more well elements predicted wrong.

Chapter 6

Conclusion and Future Directions

This study aimed to explore the use of machine learning on the prediction of well barrier
elements on a well barrier schematics for drilling operations. The experiments were
performed using previous WBS information from drilling operations on a set of wells in
the Norwegian continental shelf and known machine learning algorithms previously used
for text classification.

The main conclusions with the study are the following:

• Results show that it is possible to use artificial intelligence techniques to achieve
the prediction of well barrier elements on the proposed problem, and that the
automation for predicting and drawing well barrier schematics is achievable.

• Data preparation is an important, but time consuming step. The different file
formats resulted on additional manual work and tailor made automation, making it
difficult to apply the same algorithm on a different sample set. However, the result
of this effort is an unique database that could be further explored on future studies.

Some possible future directions are suggested:

• Parameter tuning for the best models could potentially improve the results achieved.

• Implementation of a drawing feature using the outputs of the prediction algo-
rithm would complement this study and give the visual feature of the well barrier
schematics.

• The time frame for this study was limited and consequently the scope was reduced
to the prediction of WBS for drilling operations. However, the idea could be
extended to WBS for operations in the entire well life cycle.

37

Chapter 6 Conclusion and Future Directions

• Storing the WBS in a standard format and possibly integrated to a database
system would facilitate the automation. If such a standardization is applied in the
correct way, the database would increase automatically as new WBS are created,
eliminating the manual work of data preprocessing.

• This study focused on the text information contained in the WBS. The oil and gas
industry produce a vast amount of information that was not taken into consideration
in the prediction methods implemented here, but this information could potentially
be valuable if added as input parameters in the algorithms. For example, information
such as formation depths, casing shoe and cement depths could possibly improve
the prediction of the well barrier elements.

List of Figures

2.1 Casing Illustration [12]. 11
2.2 WBS illustration example from a typical drilling operation, Norsok D-010

[9]. 14

3.1 WBS drawing from the sample dataset raw data. 18

5.1 Database samples distribution with labels. 30

39

List of Tables

3.1 Sample from database. 23

5.1 5-fold cross validation average classification results without feature reduction. 33
5.2 5-fold cross validation average classification results with feature reduction. 33
5.3 5-fold cross validation maximum accuracy classification results without

feature reduction. 34
5.4 5-fold cross validation maximum accuracy classification results with feature

reduction. 34
5.5 Random Forest well barrier classification average results without feature

reduction per NORSOK name. 35

41

Appendix A

Main Code

The code implemented in this work uses Python language, version 3.8. The final database,
trained word2vec model and code will be also available in the authors github repository
[21] upon evaluation and approval of this document.

A.1 preprocess.py - Preprocess text from database

1 import pandas as pd

2 import numpy as np

3 import os

4 import re

5 import json

6 from random import randint

7 import multiprocessing

8 import nltk

9 nltk. download (’stopwords ’)

10 from nltk. corpus import stopwords

11 stop_words = list(stopwords .words(’english ’)) + [’in’,’inches ’]

12

13 sizes = [’13 5/8 ’, ’13 3/8 ’, ’11 3/4 ’, ’10 3/4 ’,’9 5/8 ’, ’5 1/2 ’,’17 1/2 ’

,’12 1/4 ’, ’8 1/2 ’,’7 5/8 ’]

14

15 casing_sizes = [’20’, ’13 5/8 ’, ’13 3/8 ’, ’11 3/4 ’, ’10 3/4 ’,’9 5/8 ’, ’7’

,’5 1/2 ’]

16 std_casings = {

17 ’conductor ’:[’30’, ’36’],

18

19 ’surface ’: [’20’, ’26’,’18 5/8 ’,’18.625 ’],

20

21 ’intermediate ’: [’13 3/8 ’, ’13.375 ’, ’13 5/8 ’,’13.625 ’, ’14’, ’11 3/4

’,’11.75 ’],

43

Appendix A Main Code

22 ’production ’: [’10 3/4" x 9 5/8 ’,’9 5/8 ’, ’9.625 ’, ’7 5/8 ’, ’7.625 ’,’

7’, ’5’]

23 }

24

25 #read the database and return the main information to be used in the ML

algorithm as a dataframe

26 def read_data (file , type_data =’processed ’):

27 if type_data == ’processed ’:

28 df = pd. read_csv (file , usecols = [’id’,’ops ’,’ops_id ’,’name ’,’

number ’,’norsok ’,’barrier ’,’primary ’,’secondary ’], index_col =’id’)

29 else:

30 df = pd. read_csv (file , usecols = [’id’,’ops ’,’name ’,’number ’,’

norsok ’,’barrier ’,’primary ’,’secondary ’], index_col =’id’)

31 return df

32

33 # find multiple files in a directory with given extension

34 # returns a list of full files path + names

35 def walk_files (initial_path , extension = [’xlsx ’]):

36 all_files = []

37 for root , dirs , files in os.walk(initial_path):

38 for name in files:

39 f, ext = os.path. splitext (name)

40 if ext in extension :

41 all_files . append (os.path.join(root ,name))

42 return all_files

43

44 # Check if word is stopwords using nktl stopwords corpus

45 # return NaN if word is stopword

46 def rmstopwords (word):

47 if word not in stop_words :

48 return word

49 else:

50 return ’NaN ’

51

52 # Remove some sufixes and single letters

53 def sufix(word):

54 if len(word) >= 1:

55 # Remove s from plural words

56 if word [-1] == ’s’ and word [-2:] != ’ss’ and word [-2:] != ’us’:

57 return word [: -1]

58 # remove punctuation in the end of the word

59 elif word [-1] == ’.’:

60 return word [: -1]

61 # remove ’ing ’ from words except casing and tubing

62 elif ’string ’ not in word and ’casing ’ not in word and ’tubing ’

not in word and word [-3:] == ’ing ’:

63 return word [: -3]

64 # remove ’ed ’ and ’ly’ from word

45

65 elif word [-2:] == ’ed’:# or word [-2:] == ’ly ’:

66 return word [: -2]

67 # remove sufixes ’ness ’ and ’less ’

68 elif word [-4:] == ’ness ’ or (word [-4:] == ’less ’ and len(word) !=

4):

69 return word [: -3]

70 elif word [-2:] == ’nn’:

71 word = word [: -1]

72 return word

73 else:

74 return ’NaN ’

75

76 # Check the type of casing and return the type (surface , conductor , etc)

or empty string

77 def find_casing_type (size):

78 for key in std_casings .keys ():

79 if size in std_casings [key]:

80 return key

81 else:

82 return ’’

83

84 # Append the type of casing to the string (surface , conductor , etc)

85 def append_casing_type (text):

86 for size in casing_sizes :

87 if size in text:

88 casing_type = find_casing_type (size)

89 index = text.find(size)+len(size)+1

90 if casing_type != ’’:

91 text = text [: index] + ’ ’ + casing_type + text[index :]

92 break

93 return text

94

95

96 # split the text by spaces and new line , excluding the sizes (casing and

hole sizes)

97 def split_text (text):

98 global sizes

99 text = text. replace (’ Â ’,’1/4 ’). replace (’Â¡’,’1/2 ’). replace (’âĚİ ’,’

5/8 ’). replace (’Â¿’,’3/4 ’)

100 for size in sizes:

101 if text.find(size) != -1:

102 text = text. replace (’csg ’, ’casing ’). replace (’casg ’, ’casing ’

). replace (’cais ’, ’casing ’)

103 text = text [: text.find(size)] + size. replace (’ ’,’’) + text[

text.find(size)+len(size):]

104

105 return re.split(r’[\s*\n]’,text)

106

Appendix A Main Code

107

108

109 def preprocess (doc):

110 """ Preprocesses text.

111

112 Args:

113 doc: String comprising the unprocessed contents .

114

115 Returns :

116 String comprising the corresponding preprocessed text.

117 """

118 # Set all text to lower text

119 doc = doc.lower ()

120 # Punctuations to be removed

121 punctuation = ’!#$%@&\’ âĂŹ"âĂİ () *+ , -:; <= >?[\\/]^_ ‘{|}~ ’ #

122

123 # append type of casing on string

124 doc = append_casing_type (doc)

125 # Split by white spaces (take into accont sizes like 11 3/4, converst

to 113/4)

126 textlist = split_text (doc)

127 # Remove punctuation , stop words and sufix of each word , make it to

pandas series to easily clean up the empty elements

128 words = pd. Series ([sufix(rmstopwords (text. translate (str. maketrans (’’,

’’, punctuation)))) for text in textlist])

129 words = words[words != ’NaN ’]

130 text = ’ ’.join ([word for word in words. to_list ()])

131 return text

132

133

134 def preprocess_multiple (docs):

135 """ Preprocesses multiple texts.

136

137 Args:

138 docs: List of strings .

139

140 Returns :

141 List of strings , each comprising the corresponding preprocessed

text.

142 """

143 alldocs = []

144 # Process each string for a document using preprocess () and append in

alldocs

145 for doc in docs:

146 alldocs . append (preprocess (doc)+’ ’)

147

148 # Returns the list of lists for all documents

149 return alldocs

47

150

151

152 def preprocess_dataframe (df):

153 for col in [’ops ’,’name ’,’norsok ’]:

154 df[col] = preprocess_multiple (df[col]. values)

155

156 return df

157

158 def find_ops_ids (df):

159 previous = ’’

160 ids = []

161 list_ids = []

162 count = -1

163 for i,ops in enumerate (df[’ops ’]. values):

164 if previous != ops:

165 ids. append (i)

166 previous = ops

167 count += 1

168 list_ids . append (count)

169 return ids , list_ids

A.2 wbs_features.py - Features related functions

1 import pandas as pd

2 import numpy as np

3 import preprocess as pp

4 from random import sample

5 from time import time

6 import scipy. sparse as sparse

7 import os

8 import pickle

9 import json

10 from datetime import datetime

11 from nltk.util import ngrams

12

13 # import gensim

14 from gensim . models import Word2Vec

15 from tensorflow .keras. preprocessing . sequence import pad_sequences

16

17 # Feature vectorizers

18 from sklearn . feature_extraction .text import CountVectorizer ,

TfidfVectorizer

19 from sklearn . metrics import accuracy_score , make_scorer

20 # Feature selection

21 from sklearn . feature_selection import RFECV

22 from sklearn . feature_selection import chi2 , SelectKBest

Appendix A Main Code

23

24

25

26 def vectorize_X (data_X):

27 ’’’ Prapare dataset using unigrams and digrams . Uses the text from

the columns

28 ’ops ’, ’name ’ and ’norsok ’ concatenated as one string of text as

input for

29 CountVectorizer .

30 data_X - features in pandas Dataframe

31 Returns a sparse matrix ’’’

32 vectorizer = CountVectorizer (analyzer =’word ’, ngram_range =(1, 2))

33 X = vectorizer . fit_transform (data_X [’ops ’] + data_X [’name ’] + data_X [

’norsok ’])

34 return X

35

36

37 def tfidf_X (data_X):

38 ’’’ Prapare dataset using TF_IDF for unigrams and digrams . Uses the

text from the

39 columns ’ops ’, ’name ’ and ’norsok ’ concatenated as one string of text

as input for

40 CountVectorizer .

41 data_X - features in pandas Dataframe

42 Returns a sparse matrix ’’’

43

44 vectorizer = TfidfVectorizer (analyzer =’word ’, ngram_range =(1, 2),

use_idf =True ,

45 smooth_idf =True , sublinear_tf =True)

46 X = vectorizer . fit_transform (data_X [’ops ’] + data_X [’name ’] + data_X [

’norsok ’])

47 return X

48

49 def append_sparse (A, B):

50 return sparse . hstack ((A,B))

51

52 def load_database ():

53 ’’’ Loading database - if preprocessed database not created , do the

text

54 preprocessing and save database . ’’’

55 try:

56 data = pp. read_data (’preprocessed_database .csv ’)

57

58 except :

59 data = pp. read_data (’database_all_without_pna .csv ’,’main ’)

60 data = pp. preprocess_dataframe (data)

61 ids , ops_ids = pp. find_ops_ids (data)

49

62 # Adding operation id to dataframe columns - input will be

evaluated per operation

63 data[’ops_id ’] = ops_ids

64 data. to_csv (’preprocessed_database .csv ’)

65

66 # Save train X inputs as one dataframe - uses columns ’ops ’,’name ’,’

norsok ’,’number ’

67 data_X = data [[’ops ’,’name ’,’norsok ’,’number ’,’ops_id ’]]. copy ()

68 # Save train y labels (3 labels) in one dataframe - multiply by 1 to

get 0/1

69 y = data [[’barrier ’,’primary ’,’secondary ’]]*1

70 return data_X , y

71

72 def prepare_features (data_X , features = ’all ’):

73 if features == ’all ’:

74 # Preparing data with TF -IDF for unigrams and digrams

75 X= tfidf_X (data_X)

76 # Preparing data with for unigrams and digrams

77 a = vectorize_X (data_X)

78 # Append sparse vectors with two vectorizers

79 X = append_sparse (X,a)

80

81 elif features == ’tfidf ’:

82 # Preparing data with TF -IDF for unigrams and digrams

83 X = tfidf_X (data_X)

84

85 else:

86 # Preparing data with for unigrams and digrams

87 X = vectorize_X (data_X)

88

89 # Adding norsok codes (integers) to the X sparse matrix

90 X = sparse . hstack ((X,np.array(data_X [’number ’]. values)[:, None])).A

91

92 return X

93

94 # Calculate chi2 statistic of features

95 # Return chi2 and p- values

96 def chi_squared (X, y):

97 chi_scores = chi2(X,y)

98 return chi_scores

99

100 # Select features with chi2 statistic above 2 and return train and test

datasets reduced

101 def select_best_features (X,y, test_X):

102 k = sum(chi_squared (X,y)[0] > 2)

103 f_select = SelectKBest (chi2 , k = k)

104 new_X = f_select . fit_transform (X,y)

105 test_new_X = f_select . transform (test_X)

Appendix A Main Code

106 return new_X , test_new_X

107

108

109 # read pickle file

110 def read_pickle (filename):

111 with open(filename , ’rb’) as file:

112 model = pickle .load(file)

113 return model

114

115 # Save data into a json file

116 def save_data_to_json (data , filename):

117 jsonObject = json.dumps(data)

118 with open (filename +’.json ’, ’w’,encoding =’utf -8’) as f:

119 json.dump(jsonObject ,f, ensure_ascii =False)

120 return

121

122 #read a json file and return a dict

123 def read_json (filename):

124 try:

125 with open (filename , ’r’, encoding =’utf -8’) as f:

126 data = json.load(f)

127 return json.loads(data)

128 except :

129 return False

130

131 def load_data (features = ’all ’):

132 data_X , y = load_database ()

133 X = prepare_features (data_X , features)

134 return X, y, data_X

135

136 def prepare_embeddings (test_index = [], previous =False , resultsfile =’’,

137 model_file =’word2vec_bigrams .model ’):

138 data , y = load_database ()

139 data_text ,model , max_len = load_word2vec (model_file)

140 # Load results from previous run , load train and test samples ready

arrays

141 if previous :

142 with open(resultsfile , ’rb’) as file:

143 results = pickle .load(file)

144

145 train_X = results [’train_X ’]

146 train_y = results [’train_y ’]

147 test_X = results [’test_X ’]

148 test_y = results [’test_y ’]

149 test_index = results [’test_index ’]

150 print(’Loaded test and train ... ’)

151

51

152 # Prepare train and test arrays text embedings using word2vec and

unigram and bigrams

153 else:

154

155 # Use test index if provided

156 if len(test_index) == 0:

157 # splitting train and test

158 ids = data. ops_id . unique ()

159 np. random . shuffle (ids)

160 n_test = len(ids)//5

161 i=0

162 # finding operation ids for the test set

163 test_ids = ids[i* n_test :(i+1)* n_test]

164 # finding indexes for test set

165 test_index = data.loc[data. ops_id .isin(test_ids)]. index.

values

166

167 # finding indexes for training set

168 train_index = data.loc [~ data.index.isin(test_index)]. index. values

169

170 # preparing / spliting train and test tokens

171 train_X = tokenize (data_text .iloc[train_index]. values ,2)

172 test_X = tokenize (data_text .iloc[test_index]. values ,2)

173 # preparing labels

174 train_y = y.iloc[train_index]

175 test_y = y.iloc[test_index]

176 # preparing sequences

177 train_X = tokens_to_sequences (train_X ,model.wv)

178 test_X = tokens_to_sequences (test_X ,model.wv)

179

180 # padding embeddings

181 train_X = pad_sequences (train_X , maxlen = max_len)

182 test_X = pad_sequences (test_X , maxlen = max_len)

183 print(’Test shape/train shape:’)

184 print(test_X .shape , train_X .shape)

185

186 return train_X ,train_y ,test_X ,test_y ,test_index ,model , max_len

187

188 # tokens to sequences

189 def tokens_to_sequences (tokens ,w2v):

190 ’’’ Transform tokens in a sequence of numbers using word2vec keys. ’’’

191 seq_tokens = []

192 for line in tokens :

193 seq = []

194 for word in line:

195 seq. append (w2v. key_to_index [word])

196 seq_tokens . append (seq)

197 return seq_tokens

Appendix A Main Code

198

199 def tokenize (data_text , n_grams =1):

200 ’’’ Tokenize string to unigrams or digrams ’’’

201 if n_grams == 1:

202 unigrams = [x.split () for x in data_text]

203 return unigrams

204 if n_grams == 2:

205 # adding bigrams

206 unigrams = [x.split () for x in data_text]

207 bigrams = [[’ ’.join(l) for l in list(ngrams (x ,2))] for x in

unigrams]

208 tokens = [unigrams [i] + bigrams [i] for i in range(len(unigrams))]

209 return tokens

210 else:

211 return []

212

213

214 def load_word2vec (modelname =’word2vec_bigrams .model ’):

215 ’’’ Load word2vec model or train model with text from the samples .

216 returns data_tex - text information from samples ; model -

word2vec model;

217 max_len - max sentence length from the samples analysed ’’’

218

219 # reading data

220 data , y = load_database ()

221 # concatenating the text info from the data. Adds the NORSOK codes as

text

222 data_text = data[’ops ’] + data[’name ’] + data[’norsok ’] + data[’

number ’]. astype (str)

223 # Creating tokens

224 tokens = tokenize (data_text ,2)

225

226 len_tokens = [len(x) for x in tokens]

227 # max_len is twice the length of the longest sentence , taken as

number of words

228 max_len = max(len_tokens)*2

229

230 # Loading / Creating Word2Vec model and training using tokens

231 try:

232 model = Word2Vec .load(modelname)

233 print(’Loaded Word2Vec ’)

234 except :

235 model = Word2Vec (vector_size =300 , min_count =1)

236 model. build_vocab (tokens)

237 total_examples = model. corpus_count +1

238 model.train(tokens , epochs =500 , total_examples = total_examples)

239 model.save(modelname)

240

53

241 return data_text , model , max_len

A.3 wbs_classifiers.py - Classifiers

1 import numpy as np

2 from random import sample

3 from time import time

4 import scipy. sparse as sparse

5 import os

6 from datetime import datetime

7 import pickle

8

9 # Classifiers

10 from sklearn . linear_model import SGDClassifier

11 from sklearn . naive_bayes import MultinomialNB

12 from sklearn .tree import DecisionTreeClassifier

13 from sklearn . ensemble import RandomForestClassifier

14 from sklearn . neural_network import MLPClassifier

15 from sklearn . neighbors import KNeighborsClassifier

16

17 import tensorflow as tf

18 physical_devices = tf. config . list_physical_devices (’GPU ’)

19 tf. config . experimental . set_memory_growth (physical_devices [0], True)

20 from tensorflow import keras

21 from tensorflow .keras. models import Sequential

22 from tensorflow .keras import layers

23 from tensorflow .keras. backend import clear_session

24 from tensorflow .keras. preprocessing . sequence import pad_sequences

25 from tensorflow .keras. callbacks import TensorBoard

26

27

28 # Naive Bayes classifier

29 def nb_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

30 ’’’ Naive Bayes classifier . Uses MultinomialNB () from sklearn .

31 Perform the training and prediction for each label and returns array

with predictions .

32 train_X - training features

33 train_y - training labels

34 test_X - test features

35 fold - cross - validation actual fold number

36 dirname - folder to save results , model trained and features

37 returns - time used in training and prediction (list) and predictions

for all labels .

38 ’’’

39 times = []

40 preds = []

Appendix A Main Code

41 classifier = MultinomialNB ()

42 for label in train_y . columns :

43 # Train classifier using fit ()

44 t0 = time ()

45 classifier .fit(train_X , train_y [label])

46 # record training time

47 times. append (time ()-t0)

48 t1 = time ()

49 pred = classifier . predict (test_X)

50 # record prediction time

51 times. append (time ()-t1)

52 preds. append (pred)

53 #save model

54 filename = os.path. abspath (dirname +’/ models /’+’nb_model_ ’+str(

fold)+’_’+ label +’.pkl ’)

55 save_model (classifier , filename)

56 # record total time

57 times. append (sum(times))

58

59 # Format predictions

60 preds = np.array(preds).T

61 return preds , times

62

63 # SVM classifier

64 def svm_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

65 ’’’ Support Vector Machine (SVM) classifier . Uses SGDClassifier ()

from sklearn .

66 Perform the training and prediction for each label and returns array

with predictions .

67 train_X - training features

68 train_y - training labels

69 test_X - test features

70 fold - cross - validation actual fold number

71 dirname - folder to save results , model trained and features

72 returns - time used in training and prediction (list) and predictions

for all labels .

73 ’’’

74 times = []

75 preds = []

76 classifier = SGDClassifier ()

77 for label in train_y . columns :

78 # Train classifier using fit ()

79 t0 = time ()

80 classifier .fit(train_X , train_y [label])

81 # record training time

82 times. append (time ()-t0)

83 t1 = time ()

84 pred = classifier . predict (test_X)

55

85 # record prediction time

86 times. append (time ()-t1)

87 preds. append (pred)

88 #save model

89 filename = os.path. abspath (dirname +’/ models /’+’svm_model_ ’+str(

fold)+’_’+ label +’.pkl ’)

90 save_model (classifier , filename)

91 # record total time

92 times. append (sum(times))

93 # Format predictions

94 preds = np.array(preds).T

95 return preds , times

96

97 # KN classifier

98 def kn_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

99 ’’’ KN classifier . Uses KNeighborsClassifier () from sklearn .

100 Perform the training and prediction for all labels in one run.

101 train_X - training features

102 train_y - training labels

103 test_X - test features

104 fold - cross - validation actual fold number

105 dirname - folder to save results , model trained and features

106 returns - time used in training and prediction (list) and predictions

for all labels .

107 ’’’

108

109 times = []

110 classifier = KNeighborsClassifier ()

111 # Train classifier using fit ()

112 t0 = time ()

113 classifier .fit(train_X , train_y)

114 # record training time

115 times. append (time ()-t0)

116 t1 = time ()

117 preds = classifier . predict (test_X)

118 # record prediction time

119 times. append (time ()-t1)

120 # record total time

121 times. append (sum(times))

122 #save model

123 filename = os.path. abspath (dirname +’/ models /’+’kn_model_ ’+str(fold)+’

.pkl ’)

124 save_model (classifier , filename)

125 return preds , times

126

127 # Decision Tree classifier

128 def dt_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

Appendix A Main Code

129 ’’’ Decision Tree classifier . Uses DecisionTreeClassifier () from

sklearn .

130 Perform the training and prediction for all labels in one run.

131 train_X - training features

132 train_y - training labels

133 test_X - test features

134 fold - cross - validation actual fold number

135 dirname - folder to save results , model trained and features

136 returns - time used in training and prediction (list) and predictions

for all labels .

137 ’’’

138

139 times = []

140 classifier = DecisionTreeClassifier ()

141 # Train classifier using fit ()

142 t0 = time ()

143 classifier .fit(train_X , train_y)

144 # record training time

145 times. append (time ()-t0)

146 t1 = time ()

147 preds = classifier . predict (test_X)

148 # record prediction time

149 times. append (time ()-t1)

150 # record total time

151 times. append (sum(times))

152 #save model

153 filename = os.path. abspath (dirname +’/ models /’+’dt_model_ ’+str(fold)+’

.pkl ’)

154 save_model (classifier , filename)

155 return preds , times

156

157 # Random Forest classifier

158 def rf_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

159 ’’’ Random Forest classifier . Uses RandomForestClassifier () from

sklearn .

160 Perform the training and prediction for all labels in one run.

161 train_X - training features

162 train_y - training labels

163 test_X - test features

164 fold - cross - validation actual fold number

165 dirname - folder to save results , model trained and features

166 returns - time used in training and prediction (list) and predictions

for all labels .

167 ’’’

168

169 times = []

170 classifier = RandomForestClassifier ()

171 # Train classifier using fit ()

57

172 t0 = time ()

173 classifier .fit(train_X , train_y)

174 # record training time

175 times. append (time ()-t0)

176 t1 = time ()

177 preds = classifier . predict (test_X)

178 # record prediction time

179 times. append (time ()-t1)

180 # record total time

181 times. append (sum(times))

182 #save model

183 filename = os.path. abspath (dirname +’/ models /’+’rf_model_ ’+str(fold)+’

.pkl ’)

184 save_model (classifier , filename)

185 return preds , times

186

187 # MLP classifier

188 def mlp_classifier (train_X , train_y , test_X ,fold=’’,dirname =’.’):

189 ’’’ Multilayer perceptron classifier . Uses MLPClassifier () from

sklearn .

190 Perform the training and prediction for all labels in one run.

191 train_X - training features

192 train_y - training labels

193 test_X - test features

194 fold - cross - validation actual fold number

195 dirname - folder to save results , model trained and features

196 returns - time used in training and prediction (list) and predictions

for all labels .

197 ’’’

198 times = []

199 classifier = MLPClassifier (random_state = 1)

200 # Train classifier using fit ()

201 t0 = time ()

202 classifier .fit(train_X , train_y)

203 # record training time

204 times. append (time ()-t0)

205 t1 = time ()

206 preds = classifier . predict (test_X)

207 # record prediction time

208 times. append (time ()-t1)

209 # record total time

210 times. append (sum(times))

211

212 #save model

213 filename = os.path. abspath (dirname +’/ models /’+’mpl_model_ ’+str(fold)+

’.pkl ’)

214 save_model (classifier , filename)

215 return preds , times

Appendix A Main Code

216

217

218 def dl_classifier (train_X , train_y , test_X , epoc = 100, batch = 10, fold=’

’,dirname =’.’):

219 ’’’ "Deep learning " classifier . Builds a Neural Network with hidden

layers using

220 Keras and Tensorflow . Perform the training and prediction for all

labels in one run.

221 train_X - training features

222 train_y - training labels

223 test_X - test features

224 fold - cross - validation actual fold number

225 dirname - folder to save results , model trained and features

226 returns - time used in training and prediction (list) and predictions

for all labels .

227 ’’’

228

229 clear_session ()

230 times = []

231 dimension = train_X .shape [1]

232 X_val = train_X [-2400: ,:]

233 y_val = train_y .iloc [-2400:]. copy ()

234 new_train_X = train_X [: -2400 ,:]

235 new_train_y = train_y .iloc [: -2400]. copy ()

236 t0 = time ()

237 model = Sequential ()

238 model.add(layers .Dense (64, input_dim =dimension , activation =’relu ’))

239 model.add(layers .Dense (64, activation =’relu ’))

240 model.add(layers .Dense (3, activation =’sigmoid ’))

241 model. compile (loss=" binary_crossentropy ",optimizer =’adam ’, metrics ="

accuracy ")

242

243 history = model.fit(new_train_X , new_train_y , epochs =epoc , verbose =

True ,

244 validation_data =(X_val , y_val), batch_size =batch)

245 times. append (time ()-t0)

246

247 # saving model

248 model_file = os.path. abspath (dirname +’/ models / dl_model_ ’+ str(fold))

249 model.save(model_file)

250

251 # Predicting using trained model

252 t1 = time ()

253 preds = model. predict (test_X , verbose =False)

254 times. append (time ()-t1)

255 times. append (sum(times))

256 # Transform results in 0 and 1 using 0.5 as cut

257 preds = (preds >= 0.5) *1

59

258 return preds , times

259

260

261 def cnn_classifier (train_X ,train_y ,test_X ,test_y , model , max_len , fold =0,

dirname =’.’,

262 epochs =5, activation =’sigmoid ’):

263 ’’’

264 Convolutional Neural Network Classifier . Builds a CNN with embeddings

as input ,

265 using Keras and Tensorflow .

266 Perform the training and prediction for all labels in one run.

267 train_X , train_y , test_X , test_y - input data transformed by word2vec

268 model - word2vec model

269 max_len - max length for embeddings

270 fold - actual cross - validation fold number

271 dirname - folder to save results , models , logs and predictions

272 epochs - number of epochs to be used for training the model

273 activation - activation function on output layer

274

275 returns - the predictions and times used to train the model and

predict the results ’’’

276

277 times = []

278 embedding_layer = layers . Embedding (len(model.wv),model.wv. vectors .

shape [1],

279 weights = [model.wv. vectors], input_length =max_len ,

trainable = False)

280 input_model = layers .Input(shape =(max_len ,),dtype=’int32 ’)

281 embedded_input = embedding_layer (input_model)

282 main_model = layers . Conv1D (model.wv. vectors .shape [1], kernel_size

=(2 ,) ,

283 activation =’relu ’, padding =’causal ’)(

embedded_input)

284 main_model = layers . MaxPooling1D (2)(main_model)

285 main_model = layers . Conv1D (model.wv. vectors .shape [1], kernel_size

=(3 ,) ,

286 activation =’relu ’, padding =’causal ’)(main_model)

287 main_model = layers . MaxPooling1D (2)(main_model)

288 main_model = layers . Flatten ()(main_model)

289 main_model = layers .Dense(model.wv. vectors .shape [1], activation =’relu

’)(main_model)

290 main_model = layers . Dropout (0.5)(main_model)

291 main_model = layers .Dense (3, activation = activation)(main_model)

292

293 CNN = keras.Model(input_model , main_model)

294 CNN. compile (loss=’binary_crossentropy ’, optimizer =’adam ’,metrics =’

accuracy ’)

295 print(CNN. summary ())

Appendix A Main Code

296

297 # saving logs on tensorboard

298 logdir = dirname + "/logs"

299 if not os.path. exists (logdir):

300 os.mkdir(logdir)

301 logs = logdir + ’/’+ datetime .now (). strftime ("%Y%m%d-%H%M%S")

302 tensorboard_callback = TensorBoard (log_dir =logs , histogram_freq =1)

303

304 # Training CNN model

305 t0 = time ()

306 history = CNN.fit(train_X ,train_y , epochs =20, validation_data =(test_X ,

test_y),verbose =1,

307 callbacks =[tensorboard_callback])

308

309 times. append (time () - t0)

310

311 # saving trained model

312 model_file = os.path. abspath (dirname +’/ models / cnn_model_ ’+ str(fold)+

’. model ’)

313 CNN.save(model_file)

314

315 # Predicting using CNN model trained

316 t1 = time ()

317 preds = CNN. predict (test_X)

318 times. append (time ()-t1)

319 times. append (sum(times))

320 # Transform results in 0 and 1 using 0.5 as cut

321 preds = (preds >= 0.5) *1

322

323 return preds , times

324

325 #save model as pickle file

326 def save_model (model , filename):

327 with open(filename , ’wb’) as file:

328 pickle .dump(model , file)

329 return

A.4 wbs_predict.py - Running experiments with cross-validation

1 from wbs_features import *

2 from wbs_classifiers import *

3 import os

4 import pickle

5 from datetime import datetime

6

7 def save_results (results , filename):

61

8 ’’’

9 Save results in pickle format .

10 results - dictionary . Times and predictions .

11 filename - filename of file to be saved.

12 ’’’

13 # saving results in file

14 with open(filename , ’wb’) as file:

15 pickle .dump(results , file)

16 return dirname

17

18 def save_features (features , filename = ’./ wbs_prediction / features /

features_ ’):

19 ’’’

20 Save features as pickle file.

21 features - dictionary format , train + test features and labels .

22 filename - filename , string .

23 return - None.

24 ’’’

25 # saving features in file , add date/time and pickle extension .

26

27 with open(filename , ’wb’) as file:

28 pickle .dump(features , file)

29 return

30

31 def create_storage_folders (dirname = ’./ wbs_prediction ’):

32 ’’’

33 Create folders to save results . If folder already exists , creates a

new folder .

34 dirname - directory to save results . return - new dirname , string .

35 ’’’

36 if not os.path. exists (dirname):

37 os.mkdir(dirname)

38 else:

39 dirname = dirname + datetime .now (). strftime (’%d%m%Y_%H_%M’)

40 os.mkdir(dirname)

41 os.mkdir(dirname +’/ models ’)

42 os.mkdir(dirname +’/ features ’)

43 os.mkdir(dirname +’/ results ’)

44 return dirname

45

46

47 def split_train_test (data , n_test = 0.2):

48 ’’’

49 data - database in a pandas DataFrame format

50 n_test - percentage of test samples to be used

51 returns - three lists with test operation ids , test and train indexes

on the DataFrame ’’’

52 ids = data. ops_id . unique ()

Appendix A Main Code

53 np. random . shuffle (ids)

54 n_test = int(n_test *len(ids))

55 # finding operation ids for the test set

56 test_ids = ids [: n_test]

57 # finding indexes for training set

58 train_index = data.loc [~ data. ops_id .isin(test_ids)]. index. values

59 # finding indexes for test set

60 test_index = data.loc[data. ops_id .isin(test_ids)]. index. values

61

62 return test_ids , test_index , train_index

63

64 def split_train_test_cv (data ,cv =5):

65 ’’’

66 Split train and test data by operation id on a cross - validation split

.

67 data - database in a pandas DataFrame format

68 cv - cross - validation fold

69 returns - dictionary with test operation ids , test and train indexes

on the dataframe

70 for all the cv folds ’’’

71 cv_split = {}

72 ids = data. ops_id . unique ()

73 np. random . shuffle (ids)

74 n_test = len(ids)//cv

75 for i in range(cv):

76 # finding operation ids for the test set

77 test_ids = ids[i* n_test :(i+1)* n_test]

78 # finding indexes for training set

79 train_index = data.loc [~ data. ops_id .isin(test_ids)]. index. values

80 # finding indexes for test set

81 test_index = data.loc[data. ops_id .isin(test_ids)]. index. values

82 cv_split [i] = {}

83 cv_split [i][’test_ids ’] = test_ids

84 cv_split [i][’test_index ’] = test_index

85 cv_split [i][’train_index ’] = train_index

86

87 return cv_split

88

89 def split_data (X,y,test_index , train_index):

90 ’’’

91 Split features from database into train and test samples

92 X - features , numpy matrix .

93 y - labels , pandas DataFrame .

94 test_index - index for test samples in DataFrame .

95 train_index - index for train samples in DataFrame .

96 returns - test and train samples features and labels

97 ’’’

98 train_X = X[train_index]

63

99 test_X = X[test_index]

100 train_y = y.iloc[train_index]

101 test_y = y.iloc[test_index]

102 return train_X , train_y , test_X , test_y

103

104 def cross_validate_operations (X, y, data ,cv=5, dirname =’./ wbs_prediction ’,

105 feature_reduction = False , previous = False):

106 ’’’

107 Perform cross - validation on samples for all classifiers .

108 X - features , numpy matrix .

109 y - labels , pandas DataFrame .

110 data - database in DaraFrame format .

111 cv - cross - validation split (folds).

112 dirname - directory to save results .

113 feature_reduction - True/False. Perform feature reduction on samples

in addition .

114 returns - None. Save times , predictions and models .

115 ’’’

116 previous = True

117 if previous :

118 old_results = read_pickle (’../ main/ results_cv .pkl ’)

119 cv_split = {}

120 for i in old_results .keys ():

121 cv_split [i] = {}

122 cv_split [i][’test_ids ’] = old_results [i][’test_ids ’]

123 cv_split [i][’test_index ’] = old_results [i][’test_index ’]

124 cv_split [i][’train_index ’] = old_results [i][’train_index ’]

125 del old_results

126 else:

127 cv_split = split_train_test_cv (data ,cv)

128 for fold in range(cv):

129 print(’\ nCross validation fold: ’, fold)

130 results = {}

131 # finding operation ids for the test set

132 test_ids = cv_split [fold][’test_ids ’]

133 # finding indexes for training set

134 train_index = cv_split [fold][’train_index ’]

135 # finding indexes for test set

136 test_index = cv_split [fold][’test_index ’]

137 results [’test_ids ’] = test_ids

138 results [’test_index ’] = test_index

139 results [’train_index ’] = train_index

140

141 # Training and predicting all the models

142 pred = predict_all (X,y,test_index , train_index ,test_ids ,fold ,

dirname ,False)

143 results [’times ’] = pred[’times ’]

144 results [’preds ’] = pred[’preds ’]

Appendix A Main Code

145 # Scoring models

146 print(’Scoring models ... ’)

147 test_y = y.iloc[test_index]

148 results [’scores ’] = score_all_classifiers (test_y , results [’preds ’

], data , test_ids)

149

150 # saving results in file

151 filename = os.path. abspath (dirname +’/ results / results_ ’+str(fold)+

’.pkl ’)

152 save_results (results , filename)

153 print(results [’scores ’])

154

155 # Repeat CV for feature reduction

156 # if feature reduction , uses chi2 with chi2 value 2 to select

best features

157 if feature_reduction :

158 if not os.path. exists (dirname +’_reduced_ ’):

159 dirname_red = create_storage_folders (dirname +’_reduced_ ’

)

160 print(’Applying feature selection ’)

161 # selecting best features

162 pred = predict_all (X,y,test_index , train_index ,test_ids , fold ,

dirname_red ,True)

163 results [’times ’] = pred[’times ’]

164 results [’preds ’] = pred[’preds ’]

165 filename = os.path. abspath (dirname_red +’/ results /

results_reduced_ ’+str(fold)+’.pkl ’)

166 results [’scores ’] = score_all_classifiers (test_y , results [’

preds ’], data , test_ids)

167 save_results (results , filename)

168 print(results [’scores ’])

169

170 return

171

172 def score_all_classifiers (true_y , predictions , data , test_ids):

173

174 # Dictionary of results

175 scores = {}

176 # Run classification for classifier in the set " classifiers "

177 for name , pred in predictions .items ():

178 score = []

179 if ’_’ not in name:

180 aux = true_y == pred

181

182 score. append (np.mean(aux. barrier))

183 score. append (np.mean(aux. primary))

184 score. append (np.mean(aux. secondary))

185 score. append (score_elements (true_y .values , pred))

65

186 score. append (score_operations (true_y ,pred ,data.loc[data.

ops_id .isin(test_ids)]))

187 score. append (np.mean(aux. values))

188 scores [name] = score

189 #print (’{} score: {}’. format (name , score))

190

191 return scores

192

193 # Score correct if all labels are classified correct : [1 ,0 ,1] == [1 ,0 ,1]

-> True

194 def score_elements (true_y , pred):

195 return accuracy_score (true_y , pred)

196

197 def score_operations (true_y , pred , test_data_X =[]):

198 ops = test_data_X .iloc [0][’ops_id ’]

199 n_ele = 0

200 scores = []

201 score = 0

202 for i,line in enumerate (pred):

203

204 ops_now = test_data_X .iloc[i][’ops_id ’]

205 if ops != ops_now :

206 scores . append ([score/n_ele , ops])

207 ops = test_data_X .iloc[i][’ops_id ’]

208 score = 0

209 n_ele = 0

210 if np.sum(pred[i] == true_y .iloc[i]. values) == 3:

211 score += 1

212 n_ele += 1

213 scores = np.array(scores)

214 return np.sum(scores [: ,0] == 1)/len(scores)

215

216 # run classifiers on the set

217 # Load data if not passed as input

218 def predict_all (X, y,test_index , train_index ,test_ids , fold=’’,dirname =’./

wbs_prediction ’,

219 freduction =False):

220 ’’’

221 Perform train and prediction for all classifiers . Saves models for

each classifier in

222 ’models ’ folder .

223 X - features , numpy matrix .

224 y - labels , pandas DataFrame .

225 test_index - index for test samples in DataFrame .

226 train_index - index for train samples in DataFrame .

227 fold - actual cross - validation split.

228 dirname - directory to save results .

Appendix A Main Code

229 feature_reduction - True/False. Perform feature reduction on samples

if True.

230 returns - Predictions and times for training and predictions . Saves

models and

231 features in folder .

232 ’’’

233 # Dictionary of results

234 pred = {}

235 pred[’times ’] = {}

236 pred[’preds ’] = {}

237

238 #split data

239 train_X , train_y , test_X , test_y = split_data (X,y,test_index ,

train_index)

240 #save features

241 save_features ({’train_X ’: train_X ,’train_y ’:train_y ,’test_X ’:test_X ,’

test_y ’:test_y ,

242 ’test_ids ’:test_ids ,’test_index ’:test_index ,’

train_index ’: train_index },

243 dirname +’/ features / features_ ’+str(fold)+’_’)

244

245 if freduction :

246 # selecting best features

247 train_X , test_X = select_best_features (train_X ,train_y , test_X)

248 classifiers = ((’Naive Bayes ’, nb_classifier (train_X , train_y ,

test_X ,fold , dirname)),

249 (’SVM ’ ,svm_classifier (train_X , train_y , test_X ,fold ,

dirname)),

250 (’KNN ’,kn_classifier (train_X , train_y , test_X ,fold ,

dirname)),

251 (’Decision Tree ’, dt_classifier (train_X , train_y , test_X ,

fold , dirname)),

252 (’Random Forest ’ , rf_classifier (train_X , train_y , test_X

,fold , dirname)),

253 (’MLP ’,mlp_classifier (train_X , train_y , test_X ,fold ,

dirname)),

254 (’DL’, dl_classifier (train_X , train_y , test_X ,10,5,fold ,

dirname)))

255 else:

256 # create and split data using embeddings

257 cnn_train_X , cnn_train_y ,cnn_test_X ,cnn_test_y , test_index ,model ,

max_len = prepare_embeddings (

258

test_index = test_index)

259 save_features ({’train_X ’: cnn_train_X ,’train_y ’: cnn_train_y ,’

test_X ’:cnn_test_X ,

260 ’test_y ’:cnn_test_y ,’test_ids ’:test_ids ,’test_index ’:

test_index ,

67

261 ’train_index ’: train_index }, dirname +’/ features /

cnn_features_ ’+str(fold)+’_’)

262 classifiers = ((’Naive Bayes ’, nb_classifier (train_X , train_y ,

test_X ,fold , dirname)),

263 (’SVM ’ ,svm_classifier (train_X , train_y , test_X ,fold ,

dirname)),

264 (’KNN ’,kn_classifier (train_X , train_y , test_X ,fold ,

dirname)),

265 (’Decision Tree ’, dt_classifier (train_X , train_y , test_X ,

fold , dirname)),

266 (’Random Forest ’ , rf_classifier (train_X , train_y , test_X

,fold , dirname)),

267 (’MLP ’,mlp_classifier (train_X , train_y , test_X ,fold ,

dirname)),

268 (’DL’, dl_classifier (train_X , train_y , test_X ,10,5,fold ,

dirname)),

269 (’CNN ’,cnn_classifier (cnn_train_X , cnn_train_y ,cnn_test_X ,

cnn_test_y , model ,

270 max_len ,fold=fold , dirname =dirname ,

epochs = 129)))

271

272

273

274 # Run classification for classifier in the set " classifiers "

275 for name , classifier in classifiers :

276 print(’\ nClassifier : ’, name)

277 preds , times = classifier

278 pred[’times ’][name] = times

279 pred[’preds ’][name] = preds

280

281 return pred

282

283 if __name__ == ’__main__ ’:

284 ’’’

285 Load database . Load features . Run 5-fold cross - validation for all

classifiers and

286 classification using feature reduction .

287 ’’’

288 dirname = create_storage_folders (dirname = ’./ wbs_prediction_original

’)

289 data ,y = load_database ()

290 X = prepare_features (data)

291 cross_validate_operations (X,y,data ,5, dirname =’./

wbs_prediction_original ’,

292 feature_reduction = True)

Bibliography

[1] BjÃÿrn A. Brechan. Framework for automated well planning and Digital Well
Management. PhD thesis, NTNU - Norwegian University of Science and Technology,
2020.

[2] S. J. Sparke, R. Conway, and S. Copping. The seven pillars of well integrity
management: The design and implementation of a well integrity management
system. Society of Petroleum Engineers, 2011. ISBN SPE 142449.

[3] Ying Zhao, Ting Sun, Jin Yang, Qishuai Yin, Hongshu Wei, Zhengli Liu, Zhong
Li, and Yi Huang. Combining drilling big data and machine learning method to
improve the timeliness of drilling. Society of Petroleum Engineers, 2019. ISBN SPE
194111-MS.

[4] Anisa Zhurda. Automated well monitoring: Machine learning and web application.
Master’s thesis, University of Stavanger, 2020.

[5] Hasan Asfoor and Walid Kaskas. Harnessing the power of natural language processing
and fuzzy theory to improve oil and gas data management efficiency. Society of
Petroleum Engineers, 2019. ISBN SPE 196259-MS.

[6] David CastiÃśeira, Robert Toronyi, Nansen Saleri, and Quantum Reservoir Impact.
Machine learning and natural language processing for automated analysis of drilling
and completion data. Society of Petroleum Engineers, 2018. ISBN SPE 192280-MS.

[7] ChengXiang Zhai and Sean Massung. Chapter 2 - Text Data Understanding. Associ-
ation for Computing Machinery and Morgan and Claypool Publishers, first edition,
2016. ISBN 978-1-97000-116-7, paperback.

[8] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey A. Dean. Computing
numeric representations of words in a high-dimensional space, 2013. URL https://

patents.google.com/patent/US9037464B1/en. US patent number US9037464B1.

[9] NORSOK. Norsok Standard D-010, Revision 5, January 2021.
www.standard.no/petroleum, 2021.

69

https://patents.google.com/patent/US9037464B1/en
https://patents.google.com/patent/US9037464B1/en

Bibliography BIBLIOGRAPHY

[10] CSB Chemical Safety and Hazard Investigation Board. Macondo blowout and
explosion. https://www.csb.gov/macondo-blowout-and-explosion/, 2016.

[11] Larry W. Lake and Robert F. Mitchell. Petroleum engineering handbook : Volume
II, : Drilling engineering. Society of Petroleum Engineers, Richardson, TX, USA,
first edition, 2006. ISBN 1-55563-332-3, 978-1-55563-332-5.

[12] NORSOK. Norsok standard d-010, revision 4, june 2013.
www.standard.no/petroleum, 2013.

[13] Pandas. Pandas documentation. https://pandas.pydata.org/pandas-
docs/stable/index.html, 2021.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[15] Yujia Zhai, Wei Song, Xianjun Liu, Lizhen Liu, and Xinlei Zhao. A chi-square
statistics based feature selection method in text classification. In 2018 IEEE 9th
International Conference on Software Engineering and Service Science (ICSESS),
pages 160–163, 2018. doi: 10.1109/ICSESS.2018.8663882.

[16] Language Technology Group at the University of Oslo. Nlpl word embeddings
repository, 2021. URL http://vectors.nlpl.eu/repository/.

[17] Yoon Kim. Convolutional neural networks for sentence classification. 2014. ISBN
1408.5882v2.

[18] Ye Zhang and Byron C. Wallace. A sensitivity analysis of (and practitionersâĂŹ
guide to) convolutional neural networks for sentence classification. 2016. ISBN
1510.03820v4.

[19] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

http://vectors.nlpl.eu/repository/
https://www.tensorflow.org/

Bibliography 71

[20] François Chollet et al. Keras. https://keras.io, 2015.

[21] Github repository., 2021. URL https://github.com/daianjos/wbs.

https://keras.io
https://github.com/daianjos/wbs

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Challenges
	1.4 Contributions

	2 Background
	2.1 Machine Learning
	2.1.1 Natural Language Processing and text processing
	2.1.2 Machine Learning Algorithms

	2.2 Drilling and Well
	2.2.1 Well Construction
	2.2.2 Well Design
	2.2.3 Well Barrier Schematics (WBS)

	2.3 Norsok D-010 Definitions

	3 Data Extraction and preparation
	3.1 Raw Data
	3.2 Database Creation
	3.2.1 Information Extraction
	3.2.2 Text preprocessing
	3.2.3 Adding Well Components
	3.2.4 Final Database

	4 Main Approach
	4.1 Features and Feature Selection
	4.2 Model Selection

	5 Experimental Evaluation
	5.1 Experimental Set-up
	5.1.1 Evaluation measurements
	5.1.2 Model parameters set-up

	5.2 Experimental Results

	6 Conclusion and Future Directions
	List of Figures
	List of Tables
	A Main Code
	A.1 preprocess.py - Preprocess text from database
	A.2 wbs_features.py - Features related functions
	A.3 wbs_classifiers.py - Classifiers
	A.4 wbs_predict.py - Running experiments with cross-validation

	Bibliography

