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Abstract. This study presents a data-driven model to predict mean turbulence intensities at 
desired generic locations, for all wind directions. The model, a multilayer perceptron, requires 
only information about the local topography and a historical dataset of wind measurements and 
topography at other locations. Five years of data from six different wind measurement mast 
locations were used. A k-fold cross-validation evaluated the model at each location, where four 
locations were used for the training data, another location was used for validation, and the 
remaining one to test the model. The model outperformed the approach given in the European 
standard, for both performance metrics used. The results of different hyperparameter 
optimizations are presented, allowing for uncertainty estimates of the model performances. 

1. Introduction 
Wind turbulence, in the atmospheric boundary layer, is an important phenomenon in the design of civil 
structures for both static and dynamic wind loads, and for the safe operation of transport vehicles. It 
arises from both mechanical and thermal sources. Frictional forces between the moving air and the 
Earth’s surface are the main drivers of atmospheric turbulence and are closely linked to the local 
topography. Thermal sources such as surface heating/cooling and downbursts can also cause turbulence 
in the atmosphere by convection. 

Measuring the wind properties at some desired locations can be challenging, despite promising 
advances in remote sensing [1-4]. Cheynet et al. [5] showed a high heterogeneity of wind turbulence in 
a fjord with the wind direction, which can significantly impact the design of wind-sensitive bridges and 
other man-made structures. In these situations, wind measurements, when available, are often only found 
at nearby locations. If there is enough diversity in the topography of the available measurement locations 
and sufficient wind data is available, it is in principle possible to use machine learning to learn the 
complex effects that the upstream topography has on the wind turbulence.  

Artificial neural networks (ANN) (see e.g. [6, 7]), can be of different types. Among them, multilayer 
perceptrons [8, 9] have been used in many problems in atmospheric sciences [10]. They have been used 
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to e.g. predict wind speeds from ocean surface images [11], and effectively identify topographic features 
such as water bodies, hills and vegetation [12]. They are thus deemed adequate for the simplified vector 
inputs used in this study, despite a broader support for e.g. convolutional neural networks and 
transformers in more challenging computer vision tasks [13, 14]. To the authors knowledge, this study 
is the first attempt to use topographic information to predict mean wind turbulence intensities at new 
locations, without explicitly parametrizing the topography. Parametric models representing terrain 
effects are inherently imperfect and are based on numerous simplifications and difficult assessments in 
an attempt to systematically represent a complex terrain. They were previously proposed in e.g. the 
Eurocode [15], Engineering Science Data Unit [16] and Bitsuamlak et al. [17]. Other studies [18-20] 
model the dependencies between wind measurements at different locations and predict wind speeds, but 
are unable to predict mean wind characteristics at new locations where no measurements were available, 
given only information about the local topography. Bodini et al. [21] predict the turbulent kinetic energy 
dissipation rate while condensing the effects of the upstream topography into two variables, namely the 
standard deviation of the terrain elevation and the mean vegetation height, but also test their model at 
previously trained locations. 

The model developed in this study is trained, validated and tested using measured along-wind 
turbulence intensities that are averaged within 1-degree-wide wind direction sectors, here denoted 
sectoral averages, and the topographic data associated with each sector, for each measurement mast 
location. The model hyperparameters were optimized after each iteration of a so-called k-fold cross-
validation, and uncertainty estimates were provided for the model performance on each tested location. 

2. Data description 

2.1. Wind measurement data 
Five years of wind data, between 2015 and 2020, from six measurement masts in the region around the 
Bjørnafjord, in Norway, are used. The locations and names of these masts are shown in Figure 1. 

Each mast has 3 sonic anemometers (model: Gill WindMaster Pro) that measured the three 
components of the wind with a sampling frequency of 10 Hz. The anemometers are located at 13, 33 
and 48 meters above ground. To avoid measurements affected by smaller nearby obstacles such as trees 
and buildings, which are not represented in the topographic data, only the data recorded at 48 m height 
was used, for simplicity. Thus, the turbulence intensities being predicted at the different locations also 
refer to a 48 m height above ground. The data is pre-processed to address faulty and missing data. An 
outlier detection is performed through a Z-score analysis, where the 99.99% most probable data is kept. 

For each 10-minute interval in the five-year period, the mean wind speed 𝑈𝑈, the mean wind direction 
and the along-wind turbulence intensity 𝐼𝐼𝑢𝑢 are recorded for each anemometer at 48 m height, when 
available. A threshold of 5 m/s was adopted and observations with smaller mean wind speeds were 
discarded. High threshold values require more data but help to remove turbulence observations that are 
not likely governed by friction, but by e.g. local thermal effects. 

2.2. Topographic data 
The Norwegian mapping authority provides freely accessible Digital Terrain Models of Norway [22]. 
A 10 × 10 meter resolution model was used (DTM 10), consistently represented in the map projection 
system UTM 33. For each mast and for each 1-degree-wide wind sector, a 10 km long upstream terrain 
profile aligned with the wind was obtained. Note that a 10 km fetch is also suggested in NS-EN 1991-
1-4:2005+NA:2009 NA.4.3.2(2) (901.1). The heights above sea level of 45 points along the profile at 
the upstream distances 𝑋𝑋 = [0, 10,30,60,100,150, … ,9900] (meters) were collected into a normalized 
terrain profile vector 𝑍𝑍, where for each single point a min-max normalization is performed from that 
point’s extreme values (for all masts and directions), as exemplified in Figure 2. Note the linearly 
increasing distance between points. This decrease in resolution assumes that, far upstream, only larger 
topographic features still affect turbulence (see e.g. [15], NA.4.3.2(2) (901.2)). Different sizes of 𝑋𝑋, 
between 15 and 60, were also tested, with roughly similar results. To consider the effect of the different 
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categories of terrain roughness, a vector 𝑅𝑅 was added to the data used. Two categories were considered, 
sea and ground, normalized into a binary vector, but more terrain categories could be included. 

 

 

 

 

 

 

Figure 1. Locations and adopted names of the wind measurement masts used. 

 

     

 

 

Figure 2. Example of an elevation (𝑍𝑍) and roughness (𝑅𝑅) data sample collection, given a location 
and a mean wind direction, associated with an upstream fetch and terrain profile.  
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3. Methodology 

3.1. Artificial neural network 
An artificial neural network (ANN) was established using PyTorch (v.1.9.0) (a Python library for deep 
learning). A multilayer perceptron arrangement was used, whose representation is shown in Figure 3. 
The ANN predicts the sectoral/directional averages of the along-wind turbulence intensities 𝐼𝐼𝑢𝑢� , i.e., the 
mean value of all 𝐼𝐼𝑢𝑢 within each 1-degree wide wind sector, at each wind mast, at 48 m above ground. 
A k-fold cross-validation method is used where the data is divided into six folds and where each fold 
corresponds to the data of one measurement mast location. This forces the model to predict turbulence 
intensities at locations it has never “seen” before. Each fold contains up to 360 data samples, one for 
each wind sector. The procedure for training, validating, optimizing and testing is further detailed in 
Figure 3. The domain of hyperparameters investigated is described in Table 1. 

 

Figure 3. Representation of the multilayer perceptron and the cross-validation procedure adopted. 
 

Table 1. Domain of hyperparameters investigated. 

Hyperparameter Sampled intervals / categories 
Num. of hidden layers 0 – 4 (each having ≈ 2/3 of the size of the preceding one) 
Activation function ReLU / Leaky ReLU / ELU 
Loss function L1 Loss / MSE Loss / Log-Cosh Loss 
Num. of epochs 20 - 2000 
Learning rate 10−3 - 1 
Weight decay 10−5 - 1 
Momentum 0 - 0.95 
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A min-max normalization is applied to all inputs and target outputs to improve learning and stability. 
The target values 𝐼𝐼𝑢𝑢�  are compared with the predicted values 𝐼𝐼𝑢𝑢��  through a loss function and learning is 
achieved by backpropagation. A batch gradient descent was found suitable due to limited data size and 
use of GPU-accelerated algorithms. The hyperparameters were optimized to maximize the 𝑅𝑅2 value 
(coefficient of determination) of the validation data predictions, using 500 iterations with a so-called 
“Tree-structured Parzen Estimator Approach”. This is preferable to grid and random searches and has 
been shown to have a good balance between performance and computer efficiency when compared to 
other methods such as gaussian processes and random forests [23, 24]. Since the resultant “optimal” 
hyperparameters depend on the initial conditions, 20 initial sets of arbitrary hyperparameters, thus 20 
different models, were used to estimate the uncertainty of the 𝑅𝑅2 of the final testing data predictions. 
Lastly, when predicting the sectoral averages 𝐼𝐼𝑢𝑢� , instead of each 10-min occurrence of 𝐼𝐼𝑢𝑢, the 
topographic effects are better isolated and other time- and thermal-related effects can be disregarded. 

3.2. Norwegian Standard - Eurocode NS-EN 1991-1-4 
For comparison purposes, the along-wind turbulence intensity is also estimated following the Norwegian 
Standard and Eurocode NS-EN 1991-1-4 (ref. [15]). The measurement masts presented in this study are 
in a region with strong contrasts of terrain roughness, namely sea water (terrain cat. 0) and forests in 
relatively small hills (terrain cat. III). This transition in the upstream terrain roughness is considered in 
the Eurocode NA.4.3.2(2) (901.2.2). Different orographic effects on turbulence could also be 
considered. Those described in NA.4.3.3 (901.2.1) and NA.4.3.3 (901.3.2) can be applicable to some of 
the studied locations. However, in NA.4.4 it is not clear how to combine these effects with those from 
the different terrain roughnesses upstream, so only the latter ones are considered. Also, the orography 
factor is intended to represent isolated hills and escarpments, not undulating and mountainous regions.  

To consider the upstream roughness heterogeneity, the upstream terrain is divided into two 
continuous patches of either terrain category 0 or III. The length of the two patches and the location of 
the transition between them was found iteratively for each mast and wind direction, by minimizing the 
number of misclassifications when compared to the original 𝑅𝑅 vector. 

4. Results and discussion 
The main results of the data-driven analysis are presented in Figure 4, Figure 5 and Figure 6.  

In Figure 4, the predictions of one ANN model, per location, are plotted. The plotted models were 
those that had their performance (𝑅𝑅2) closest to the average performance of all models for a given 
location (dark red dots in Figure 5). Displaying only the best performing ANN models would lead to 
bias, due to a regression to the mean of future dataset test performances, and is thus avoided. Contour 
and line plots are shown for each mast location. The contour plots show the upstream topography for 
each mean wind direction, with the same resolution as given in the input data for the 𝑍𝑍 and 𝑅𝑅 vectors 
(see Section 2.2). A blue color is superposed to represent the sea water, with lower surface roughness. 
The line plots show the measurements and ANN predictions of 𝐼𝐼𝑢𝑢� . The sectoral averages of the mean 
wind speeds, 𝑈𝑈�, from the data described in Section 2.1, are also included for completeness. 

Upstream hills close to the masts affect the results to a greater extent than hills further away. Long 
upstream fetches of water are characterized by low turbulence intensities. The ANN predictions are best 
at Ospøya 1 and Ospøya 2 as expected, due to the proximity (260 meters) and topographic similarity 
between them. Some predicted values at Ospøya 2, Landrøypynten and Nesøya seem slightly misaligned 
with the measurements. This can be due to local deflections of the wind direction around hills or/and 
due to discrepancies between reported and real anemometer orientations. At Svarvhelleholmen, the 
ANN underestimates turbulence for southern winds due to the inexistence of such high turbulence 
intensities in its training database. The Eurocode prediction also underestimates turbulence, but it could 
be argued that the alternative procedure in NA.4.3.3 (901.3.2) (“Lower lying construction site 
downstream of a hill or escarpment”) would lead to slightly higher turbulence intensities for this 
particular site and direction. At Synnøytangen, the presence of nearby buildings and tall trees 
presumably affects the measurements to some extent for some directions. 
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Figure 4. Upstream topography for each mast and wind direction. Sectoral (1-degree-wide) 

averages of 𝐼𝐼𝑢𝑢: measurements vs predictions of an average performing ANN vs NS-EN 1991-1-4. 
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In Figure 5, the 𝑅𝑅2 values, between the predictions of all ANN models and the tested measurements, 
are shown as an indication of the model performances. Note that the hyperparameter optimization is a 
chaotic process that is dependent on the initial conditions, hence the 20 models per tested location and 
associated 𝑅𝑅2 uncertainty estimates. A value of 𝑅𝑅2 = 1 indicates a perfect fit, whereas 𝑅𝑅2 = 0 indicates 
a fit that is as good as a simple average of all 360 values of 𝐼𝐼𝑢𝑢�  (which is unknown a priori). Another 
performance metric, accuracy, is also included, taken as 100%−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (mean absolute percentage 
error). 

In Figure 6, seven histograms show the final choices of the hyperparameters for all the different ANN 
models tested, after all optimization iterations were complete. It took roughly 110 hours to compute the 
6 mast locations × 20 ANN models × 500 optimization iterations, on a laptop PC (Intel Core i7-8850H, 
64 GB 2666 MHz RAM, Nvidia Quadro P4200). 
 

     
Figure 5. 𝑅𝑅2 values and accuracies of the ANN predictions of 𝐼𝐼𝑢𝑢� . Kernel density estimations (KDE) 

are provided to help visualize the underlying uncertainties. The Eurocode (NS-EN 1991-1-4) 
predictions are included for comparison. 

 

   

    
Figure 6. Histograms of the optimal hyperparameters of all ANN models. 

For all masts, the ANN predictions were able to roughly capture the main trends of the mean 
turbulence intensities with the location and wind direction, showing overall better performances than 
the Eurocode predictions. Nonetheless, it remains a challenging task to accurately predict turbulence, 
regardless of the model adopted. 
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5. Conclusions 
A data-driven model was developed to predict mean wind turbulence intensities for each mean wind 
direction in a complex terrain, where no wind measurements are available. The model consists of an 
artificial neural network, namely a multilayer perceptron, whose hyperparameters were systematically 
optimized to improve the predictions. First, a database of topographic data and measured turbulence 
intensities at 48 meters height above ground, at different locations, for each wind direction, was used to 
train the model. Each topographic data sample consisted of 45 terrain elevation points, associated with 
a location, a wind direction and an upstream terrain profile, plus 45 binary classifications of those points’ 
roughnesses into “ground” or “sea”. Then, the model required only the topographic data at the desired 
new location to predict the mean turbulence intensities at the same height above ground, for each mean 
wind direction. 

For the six locations studied, prediction accuracies between 72% and 87% were obtained, despite the 
relatively small training databases with only four or five locations. The model outperformed the 
procedures given in the relevant standard (Eurocode NS-EN 1991-1-4), which inherently require 
numerous simplifications that are difficult to implement and systematize in a complex terrain. The model 
is simple to establish, and the suggested framework can be easily adapted to include other input features 
and/or to predict other wind properties. 

These findings can be useful when estimating the design wind loads on structures in complex terrains 
as a function of the wind direction. The proof-of-concept presented could also encourage other 
stakeholders in establishing a comprehensive and global database, with a larger number of measurement 
locations and diversified topographies, which could lead to an increase in model accuracy and reliability. 
Such a database and model could significantly impact the design, safety and cost-effectiveness of wind 
sensitive structures. 

6. Recommendations for further work 
A few recommendations and ideas on how to expand the current work are as follows: 

• Wind measurements at different heights above ground should be collected, to expand the scope 
of the model and capture the turbulence relationship with the height above ground. 

• More terrain categories, or a continuous roughness parameter, could be directly estimated as in 
[25, 26], using e.g. the finer point cloud models available in [22] (0.25 × 0.25 m resolution). 

• The crosswind and vertical turbulence intensities, often assumed to have a linear relationship 
with the along-wind turbulence, could be included in the model. 

• Expanding the inputs to “see” a wider upstream topography, such as a ±15° sector around the 
wind direction, could improve the predictions and capture effects such as wind deflection around 
hills and the horizontal diffusion of turbulence. All-around topographies could also be 
considered, to capture channeling and downstream blockage effects. In the present study and 
limited data, this resulted in no obvious gains in accuracy. 

• Convolutional neural networks and other state-of-the-art computer vision models could be used 
to capture the spatial information of the expanded inputs mentioned above. 

• A hybrid ANN + Eurocode model could be pursued, where the Eurocode predictions could be 
added to the ANN inputs. 

• Predefined probability density functions of wind turbulence could be predicted instead of the 
sectoral mean turbulence intensity. Attempts in the present study have shown that functions with 
more parameters resulted in a better representation of the real data, but led to worse predictions, 
and vice-versa, presumably due to the lack of data in some wind sectors and the small number 
of mast locations in the database. 
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