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Abstract— Objective: Computed tomography (CT) scan is a fast
and widely used modality for early assessment in patients with
symptoms of a cerebral ischemic stroke. CT perfusion (CTP) is of-
ten added to the protocol and is used by radiologists for assessing
the severity of the stroke. Standard parametric maps are calculated
from the CTP datasets. Based on parametric value combinations,
ischemic regions are separated into presumed infarct core (irre-
versibly damaged tissue) and penumbra (tissue-at-risk). Different
thresholding approaches have been suggested to segment the
parametric maps into these areas. The purpose of this study is to
compare fully-automated methods based on machine learning and
thresholding approaches to segment the hypoperfused regions
in patients with ischemic stroke. Methods: We test two different
architectures with three mainstream machine learning algorithms.
We use parametric maps as input features, and manual annotations
made by two expert neuroradiologists as ground truth. Results:
The best results are produced with random forest (RF) and Single-
Step approach; we achieve an average Dice coefficient of 0.68 and
0.26, respectively for penumbra and core, for the three groups
analysed. We also achieve an average in volume difference of
25.1ml for penumbra and 7.8ml for core. Conclusions: Our best RF-
based method outperforms the classical thresholding approaches,
to segment both the ischemic regions in a group of patients re-
gardless of the severity of vessel occlusion. Significance: A correct
visualization of the ischemic regions will guide treatment decisions
better.

Index Terms— Computed tomography perfusion; Ischemic
stroke; Machine learning; Thresholding.

I. INTRODUCTION

CEREBRAL stroke is the second leading cause of death and
the third leading cause of disability worldwide [1]. Despite

significantly reduced incidence over the past years in the entire
world, the worldwide prevalence of cerebral stroke is estimated to
be 17 million strokes causing 6.5 million deaths per year [1], [2]. In
Norway, acute cerebral stroke is the third leading cause of death in
adults and the leading cause of disability and admission to nursing
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homes [3], [4]. Changes in demography will result in a predicted
34% increase in stroke incidence in Europe between 2015 and 2035,
which is likely to be mirrored in other parts of the world [2]. Thus,
cerebral stroke has a huge socio-economic impact on society and a
tremendous impact on the quality of life for every single patient [5].

There are two broad categories of cerebral stroke; hemorrhagic
and ischemic stroke. Approximately 20% of all strokes are due to
hemorrhage, while approximately 80% are due to ischemia [6]. Both
groups can further be divided into different subtypes. Ischemic stroke
may be caused by arteriosclerosis, thrombi, emboli, dissections, or
systemic hypoperfusion, all of them leading to ischemia due to
reduced blood flow in regions of the brain.

The severity of ischemia usually varies within the area of reduced
blood flow, and for clinical use, the area is divided into two distinct
regions: ischemic core and penumbra. The ischemic core is defined as
irreversibly damaged brain tissue [7]. The tissue within the penumbra
is critically hypoperfused and is located around and adjacent to the
infarct core. If blood flow is restored timely, this tissue may regain
neurological function [7]. If the blood flow remains low, however, the
area of penumbra will transfer into an irreversibly damaged infarct
core. The ischemic penumbra was introduced by Astrup et al. as “a
region of hypoperfused, electrically silent, and functionally impaired
but viable tissue” [8]. Restoring blood flow and thereby preventing
the penumbra from proceeding to irreversibly damaged infarct core,
is the main treatment goal in patients with acute ischemic stroke
(AIS). Penumbra may change into infarct core rapidly in AIS patients.
Therefore, rapid recognition of stroke symptoms and acute treatment
in a stroke center are of vital importance.

According to the European Stroke Organization guidelines, Com-
puted Tomography (CT) or Magnetic Resonance Imaging (MRI) are
the two modalities recommended for diagnostic imaging in acute
stroke patients [9]. MRI with diffusion-weighted imaging (DWI)
is superior to CT scans for detection of small acute infarctions
and identification of some stroke mimics. Nevertheless, CT is the
preferred imaging modality in many centers for acute stroke patients
due to its widespread availability, rapid scan times, and its high
sensitivity for detecting hemorrhage. DWI has been considered the
gold standard for ischemic core estimation [10]–[14]; however, there
are very few hospitals where MRI are used as the first imaging tool
in acute stroke patients, since it is not always timely available on a
24/7 basis, plus, some patients have contraindications for this type
of modality. MRI is usually performed within the first days after an
AIS. Treatment, timing of treatment, and other variables will affect
further development of the penumbra. Hence, any core of follow-up
MRI might have developed after the acute imaging and might not
be comparable with the imaging results in the acute setting. In the
last years, DWI has been contested as the de-facto gold standard
since it cannot accurately differentiate irreversibly ischemic tissue
from salvageable tissue [15], [16], and it has been shown that the
detected ischemic regions can be partially reverse, especially if DWI
is performed in the early window time [16]–[18].
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At Stavanger University Hospital (SUS), patients with suspected
acute stroke are routinely investigated with non-contrast computed
tomography (NCCT) of the head, CT angiography (CTA) of the
precerebral and cerebral arteries, i.e. arch to vertex angiogram, and
CT Perfusion (CTP) immediately after hospital admission. In most
cases MRI including DWI is performed during the next days. In
patients with suspected stroke with unknown time of symptom onset,
MRI with DWI is used as a first-line diagnostic tool upon hospital
admission.

Whether treatment is applied depends on time from symptom onset
to hospital admission, but also largely depends on imaging results
with CT Perfusion being the key-modality for patient selection. In
CTP a time series of three-dimensional (3D) datasets are acquired
during contrast agent injection. Based on the changes in the tissue
density over time, color-coded parametric maps are calculated. The
different parametric maps highlight spatio-temporal information from
the passage of the contrast agent within the brain tissue. Generally,
parametric maps based on CTP are generated in two steps: the first
step acquires a time-density curve for each pixel based on the track
of the contrast agent. The second step consists of extracting specific
information from the generated time-density curves. Cerebral blood
flow (CBF), cerebral blood volume (CBV), time-to-peak (TTP), mean
transit time (MTT) and time-to-maximum (TMax) are all examples of
parametric maps [7]. Radiologists use parametric maps for diagnosis
and treatment planning and are indirectly assessing penumbra and
core by evaluating such parametric maps. An example of the para-
metric maps of a single brain slice, involved in this study, is given
in Fig. 1.

(a) TTP. (b) TMax. (c) CBF. (d) CBV.

Fig. 1. Parametric maps of a single slide of a patient’s brain. In this
patient there is an ischemic area on the right side in the vascular territory
of the middle cerebral artery (pointed by a red arrow). TTP = time-to-
peak; TMax = time-to-maximum; CBF = relative cerebral blood flow; CBV
= relative cerebral blood volume. Color in the online version.

Time is a fundamental factor for patients affected by an ischemic
stroke. Automation of the recognition process for the ischemic
regions, penumbra and core, can be immensely helpful for medical
doctors for treatment decisions. Over the last decades, different meth-
ods and parameters were tested to find the most suitable approach to
segment the ischemic regions using parametric maps as input.

Region growing is a technique to extract connected areas in an
image based on pixel information; this method is defined as semi-
automatic because the user manually selects a seed for the growing
region algorithm. This technique was used by Matesin et al. [19] in
relation with CT head images of stroke lesions, and by Dastidar et al.
[20], for measuring the volumetric infarction using 3D T2 Fast Spin
Echo MRI in patients affected by stroke. Their goal was to delineate
ischemic areas, and not to distinct the core from the penumbra. The
first delineation of both areas, using a region growing technique in
combination with the parametric maps acquired by CTP analyses,
was implemented by Contin et al. [21].

A series of studies have proposed experiments with threshold
values on the derived parametric maps to improve the results achieved
by the region’s growing approaches. Different thresholds have been
proposed for different parametric maps, generated from different
vendors, and applied to various datasets [10]–[12], [22] to estimate
both the ischemic regions, or the infarct core, or penumbra. These

studies have used follow-up images (such as DWI or NCCT),
acquired hours later after the stroke onset, to delineate the ground
truth of the infarct regions and used them as a comparison for
their predictions. For this reason, studies using DWI as follow-
up imaging present some limitations: they only included patients
who were later identified with infarct lesions in follow-up images,
excluding the ones who underwent the same routine at the time of
hospital admission but did not show any lesion in the follow-up DWI;
they also excluded patients with contraindication for MRI. Moreover,
since the threshold values were compared with final infarctions,
assessed after the patient’s treatment, they do not present a perfect
estimation of the infarctions before treatment decision; thus, they
are not the best candidates to help medical doctors during the
treatment making decision. Furthermore, the studies have proposed
quite distinct thresholding values due to the different vendors used
for post-processing evaluation and the distinct window of time (≤ 1
hour to 7 days) used for follow-up images to evaluate the ground
truth for the ischemic regions. Thus, there is no real consensus to
properly define the ischemic regions based on threshold values on
the parametric maps derived from CTP.

In recent years, Machine Learning (ML) and neural network
algorithms have achieved promising results in a large number of
medical image analysis applications, and have also made their way
into the stroke application [23]–[27]. Kemmling et al. proposed a
generalized linear model using the parametric maps as input and
clinical data to quantify changes of tissue infarction [23]. Qiu et
al. implemented a ML-based algorithm to detect early infarction in
patients with AIS using NCCT as input and follow-up DWI as ground
truth [24]. Kasasbeh et al. used a semi-automatic approach based on a
convolutional neural network (CNN) with the entire set of parametric
maps as input to classify the infarct core using follow-up DWI as
ground truth [26]. However, these ML and CNN based methods were
only trained to classify the infarct core regions and did not find the
penumbra areas. Differently, Qiu et al. developed two distinct ML
models, using a multiphase CTA as input and DWI/NCCT follow-up
images as ground truth, to predict core and penumbra [25]. Their
primary goal was to demonstrate the validity of using multiphase
CTA in comparison to CTP imaging for evaluating ischemic regions,
but they stated limitations in their data material. Nevertheless, using
follow-up images for delineating the ischemic regions limits the
usability for medical doctors since they might not be helpful for
treatment decisions but just for comparison with the clinical outcome.
Our research group was, to the best of our knowledge, the first using
the entire 4D CTP data as input to a neural network to segment both
penumbra and core simultaneously. A modified U-Net model was
used in a small pilot study to segment both penumbra and core regions
using the entire 4D CTP volume as input and with ground truth
generated with manual expert assessment directly from the parametric
maps [27]. The results were promising, but they were based on a very
small pilot study and need to be validated on a larger sample size.

Before continuing to use the entire 4D dataset as input, we wish
to study the utility of automatically segmenting the penumbra and
core based on the parametric maps that are already calculated in the
standard software used in clinical practice. Based on the ideas and the
shortcomings of the published methods, we propose in this paper a
ML-based method using the parametric maps as input and both core
and penumbra regions as output, in addition to healthy tissue. One
can argue that CNN naturally fits this type of problem; nevertheless,
several examples of classical ML methods with this application can
be found in the literature [23]–[25] using follow-up images as ground
truth, bearing with them the same issues mentioned earlier. Moreover,
learning good CNN models usually require large datasets, and/or
transfer-learning, and we have a limited dataset to work with. Thus,
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we aim to properly understand if well-established ML models, less
data-hungry and complex than CNN models, can help to predict both
the ischemic regions and have the potential to assist medical doctors
during treatment decisions. We give a comparison of the proposed
method with different parameters and with thresholding methods from
the literature. This paper contributes with the following:
• Proposing a fully-automatic ML-based algorithm to segment

both penumbra and infarct core regions in patients affected by
AIS, since a correct visualization of the salvageable tissue will
guide treatment decision better,

• Using the parametric maps as input, due to their wide usage by
medical doctors for early assessment of ischemic strokes,

• Training the models using a dataset with different groups of
patients based on their level of vessel occlusion, generalizing
the models and the training data and not restricting the type of
patients that can be tested,

• Adopting as ground truth, images annotated by expert neurora-
diologists directly from the parametric maps based on CTP,

• And finally, testing different ML algorithms and parameters to
find the most suitable approach. Both a single-step approach,
segmenting normal brain, penumbra, and core in one go; and a
two-step approach, segmenting penumbra and core individually
before combining them, were tested. This was further compared
to thresholding approaches.

II. DATA MATERIAL

A. Dataset and ground truth
1) Context: Stavanger University Hospital (SUS) serves a popula-

tion of 365.000. Close to 450 patients with AIS are annually admitted
to the hospital. All consecutive patients with suspected AIS having
received intravenous thrombolytic therapy are prospectively listed
in a population-based database. Information about clinical severity
measured by the National Institutes of Health Stroke Scale (NIHSS,
scoring scale assessing neurological deficit) on admission, and at
discharge are available. Long term functional outcome measured by
the modified Rankin scale (mRS, scoring scale assessing long term
functional outcome) at 90 days are also registered, in addition to mRS
on hospital admission.

2) Dataset: The dataset in this study comprises CTP scans from
152 patients between January 2014 and August 2020. 137 of these
patients had an AIS with visible perfusion deficit. Patients with AIS
were divided into the following groups: 77 patients with large vessel
occlusion (LVO), and 60 patients with non-large vessel occlusion
(Non-LVO) Additionally, 15 patients without ischemic stroke (WIS)
who were admitted with suspicion of stroke, but turned out not to
have a stroke in the diagnostic workup, were included in the dataset.
Age, gender, and NIHSS score for the groups are shown in Table I.

TABLE I
PATIENT CHARACTERISTICS.

LVO Non-LVO WIS

Age (average/range) 72 (39-94)
years

75 (41-94)
years

60 (27-85)
years

Gender Male 49 (64%) 37 (62%) 8 (53%)
Female 28 (36%) 23 (38%) 7 (47%)

NIHSS score
(maximum
/minimum
/average)

On
hospital
admission

38/0/13 19/0/6 14/1/3

On
hospital
discharge

25/0/5 10/0/2 1/0/0

LVO was defined using CT angiography; occlusion of the internal
carotid artery, M1 and proximal M2 segment of the middle cerebral
artery, A1 segment of the anterior cerebral artery, P1 segment of the
posterior cerebral artery, basilar artery, and vertebral artery occlusion
were regarded LVO. Non-LVO was defined as patients with perfusion

deficits and affection of more distal arteries or with perfusion deficits
without visible proximal artery occlusion.

3) Ground truth: Ground truth images are manually annotated
by two expert neuroradiologists. The manual annotations are done
using the entire set of the CT examination including the parametric
maps from the CTP (CBV, CBF, TTP, TMax), the maximum intensity
projection (MIP) images, calculated as the maximum Hounsfield unit
value over the time sequence of the CTP, providing a 3D volume
from the 4D acquisition of CTP. Furthermore, the MRI examination
performed within 1 to 3 days after the CT examination was used in
assistance to generate the ground truth images. In-house developed
software was used for the annotations.

B. Imaging protocol and Analysis
The CT scanners used for image acquisition were Siemens So-

matom Definition Flash (installed in 2012) and a Siemens Somatom
Definition Edge (installed in 2014), Erlangen, Germany.

Patients with suspected acute cerebral stroke with symptom onset
within 4,5 hours prior to hospital admission were routinely inves-
tigated by NCCT of the head. If contraindications were excluded,
intravenous thrombolysis bolus-dose was administered in the CT
lab. Then CTA and CTP were performed. Technical details about
the protocols are shown in Table II. Further, the CTP images were
analyzed using the software “syngo.via” from Siemens Healthineers
with manufacturer default settings to generate color-coded parametric
maps (CBF, CBV, TTP, MTT, and TMax).

TABLE II
COMPUTED TOMOGRAPHY TECHNICAL PROTOCOL FOR ACUTE

ISCHEMIC STROKE.

NCCT of
the head

CTA of the
cerebral arteries CT perfusion

Patient position Head first,
supine

Head first,
supine

Head first,
supine

Spiral/sequence Spiral Spiral Spiral
kV 120 100 80
mAs 280 160 200
Rotation
time (s) 1 0.28 0.28

Slice
collimation 3 mm c 20 x 0.6 mm 0.6 mm c 128 x 0.6 mm 5 mm c 32 x 1.2 mm

Pitch 0.55 1.0 -
X-care Yes No No

IV contrast No 60 ml Omnipaque
350 mg I/ml + 40 ml NaCl

40 ml Omnipaque
350 mg I/ml + 40 ml NaCl

Flow rate - 5 ml/second 6 ml/second

Start delay - 4 seconds 4 seconds,
≥60 seconds after CTA

Scan direction Caudocranial

III. ISCHEMIC SEGMENTATION BY THRESHOLDING

Several studies define threshold values on some of the parametric
calculations or on a combination of them to segment the ischemic
stroke regions. The variability in the chosen thresholding value(s)
is mainly due to the various vendors used for post-processing the
parametric maps, the different definitions of the ground truth for the
ischemic regions. It also lies in the decision of using the entire brain
or just the ipsilesional hemisphere in statistical evaluations. Table III
lists some of them in addition to information about their dataset, the
number of patients, NIHSS score, time of stroke onset, vendor used,
and their defined threshold values on different parametric maps. It
also shows the different optimal thresholds that are proposed in each
of these studies to segment either core, penumbra, or both.

Most of the listed studies evaluated their method by testing the
mismatch between values from parametric maps derived from CTP
images and the corresponding follow-up DWI, as the gold standard.
The only study which did not use DWI as ground truth for the
ischemic regions is Murphy et al. [22]. They defined the core region
5 to 7 days after the onset of stroke in the NCCT images, while
the penumbra was the difference between the infarct and ischemic
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TABLE III
INFORMATION ABOUT THE DATASET AND THE THRESHOLD VALUE(S) OF

THE VARIOUS RESEARCH METHOD ANALYZED.

Article Patients NIHSS
(mean) Vendor Stroke

onset
Follow-up

Images
Threshold

Penumbra Core
Bathla et al. [28] 39 7 Siemens N.A. ≤ 24h TMax>6s CBF<20%

Wintermark et al. [11] 130 15.3 Philips ≤ 12h ≤7d MTT > 145% CBV ≤ 2.0ml/100g

Campbell et al. [12] 49 16.5 Philips ≤ 6h ≤1h TMax>6s CBF<31%
(with TTP >4s)

Cereda et al. [10] 103 16 In-house ≤ 8h ≤3h N.A. CBF<38%
(with TMax>4s)

Bivard et al. [13] 180 12 Toshiba ≤ 6h ≤24h TTP>+5s CBF<50%

Murphy et al. [22] 25 15.1 General
Electric ≤ 7h N.A. CBF≤ 25ml/100g

CBV≤ 2.15ml/100g
CBF ≤ 13.3ml/100g
CBV≤ 1.12ml/100g

Schaefer et al. [14] 55 14 General
Electric ≤ 9h ≤3h N.A. CBF≤15% +

CBV≤30%

region. Nevertheless, they state that this difference “could lead to
an underestimation of the final infarct size”. All the approaches
displayed in Table III, with differences in their chosen parametric
maps and the optimal values, demonstrate the lack of a consensus to
define the ischemic regions based on thresholds.

Only the default setting used by “syngo.via” to define the ischemic
regions after the parametric maps generation (CBF<27ml/100ml/min
to define tissue at risk and CBV<1.2ml/100ml for non-viable tissue)
and the thresholds proposed by Bathla et al. [28] were implemented
for comparison with our best method due to the usage of the same
vendor and software system as our input. We compare with a gold
standard based on expert assessment of the parametric maps and
manual delineation of the regions since these expert assessments are
used normally for treatment decisions and are clinically relevant.

IV. MACHINE LEARNING APPROACHES

Applying ML algorithms in the field of medical image analysis
is rapidly growing [29]. To train state-of-the-art ML models, patient
data sets that have the necessary size and quality of samples are
needed. Given that the patient data is protected by strict privacy
and security rules this can be a challenge, however, if the necessary
training set is available to train appropriate ML algorithms, good
prediction models can be obtained. The ML models tested in this
study include Support Vector Machine, Decision Tree learning, and
Random Forest. Each ML algorithm uses in input a training set
T = {(x1, y1), . . . , (xT , yT )}, composed of xi features vectors and
the relative yi class label.

Support Vector Machine (SVM) is an algorithm used for binary
classification that creates a line or a hyperplane, which separates the
features from the input data into classes. In 1992, Boser et al. [30]
proposed a supervised classification algorithm that has evolved into
SVM as we know it today.

Decision Tree learning (DT), firstly introduced by Breiman et
al. [31], is an efficient classification technique that creates a tree-like
structure by computing the relationship between independent features
and a target. DT covers both binary and multi-class classification. The
tree splits into branches by using conditions at each internal node and
the end of the branch that does not split anymore is the decision (leaf).

Random Forest (RF) is a supervised learning algorithm and the
“forest” consists of an ensemble of decision trees. To classify a new
object from an input vector, the input vector is fed to each tree in the
forest and each tree casts a unit vote for the most popular class at the
input vector. Finally, the forest chooses the classification having the
most votes. Breiman proposed this algorithm to minimize a possible
overfitting problem generated by the usage of a single DT [32].

V. PROPOSED METHOD

In this paper, we test a single and a two-step method for segmenting
core and penumbra in patients suspected of AIS using machine
learning based on the parametric maps (CBF, CBV, TTP, and
TMax), derived from CTP datasets acquired at admission, the MIP

map, and the NIHSS score. Various stages are performed during
the proposed methods: (1) Brain extraction and data imbalance:
extracting the brain tissue from the parametric maps to use only the
pixel values inside the brain as input features, (2) SLIC: obtaining the
3D superpixel version of the parametric maps (CBF, CBV, TMax, and
TTP), (3) Machine Learning algorithm: Feeding the features from the
parametric maps and their generated superpixel to our implemented
machine learning algorithms to predict the ischemic regions.

Fig. 2 shows the flowchart of our proposed methods. In the
reminder of the paper, we call them Single-Step and Two-Step
approaches. The features used for the proposed methods are the four
parametric maps, the MIP map, and the NIHSS score. The input to
the Single-Step method is all the aforementioned features (top part of
Fig. 2) and it classifies both core and penumbra simultaneously. The
Single-Step approach was tested with the DT and RF algorithms,
but not with the SVM model since our implemented SVM model
performs only binary classifications. In addition to the Single-Step
method, we test another multi-stage classification method, which
is simply adapted from the way neuroradiologists at SUS perform
during the treatment decision process. The Two-Step approach is
based on:

Step1:Takes as input the MIP, TTP, and TMax maps, plus the
NIHSS score; it performs a prediction of the penumbra
region and outputs a binary image showing the predicted
penumbra.

Step2:CBV and CBF parametric maps are used as input; it predicts
the ischemic core resulting in a binary image.

A. Brain extraction and Data imbalance
We introduce a preprocessing step to extract the brain tissue from

the whole image and work with pixels within the brain tissue (BT).
In the reminder of the paper, the set of pixels belonging to the brain
tissue for all patients p is called BT =

⋃
BTp, while the various

parametric maps are called CBF p,CBV p,TTP p, and TMax
p. This

step helps to balance the classes inside the dataset. Moreover, we
convert the pixel values into a [0, 1] interval for each input feature
based on the color bar on the right of each corresponding parametric
map. Each input feature is mapped with the corresponding color in
the bar and transformed into a value in the [0, 1] interval, where the
value 0 corresponds to the bottom value in the bar, while the value
1 indicates the top value. This was performed to reduce each input
feature into a single value instead of keeping all three color channels.

B. Superpixel (SLIC)
A modified version of the Simple Linear Iterative Clustering

(SLIC) algorithm [33] is employed to generate superpixel regions in
the parametric maps. The regions are based on the initial segmenta-
tion of the intensity values of the maps. Using SLIC, we stacked
each slice to obtain a 3D superpixel version for each parametric
map and used it as extra features as input to the model. These
new features should help the models to consider the adjacent pixels
along the third dimension (z-axis). In the reminder of the paper, the
superpixel version of the parametric maps for a patient p are called:
CBF p

SLIC,CBV p
SLIC,TTP p

SLIC, and TMax
p
SLIC. SLIC generates su-

perpixel regions by clustering pixels utilizing their proximity and
similarity in the image plane. An example of a normalized TTP map
from one of the patients analyzed and the generated superpixel image
is given in Fig. 3.

C. Machine Learning for core and penumbra
We implement three mainstream classical ML methods including,

support vector machines, decision tree, and random forest. To the best
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Fig. 2. Visual description of the proposed multi-classification methods: for the Single-Step approach, all the parametric maps are adopted as input
features for the ML algorithm to generate a final prediction image. The Two-Step approach work in a different way: Step1 takes in input six features
for each pixel inside the brain and generates a binary map to classify the penumbra region(s) in a brain slice; Step2 takes in input 4 features, for
each pixel, from different parametric maps and returns as output a binary map containing the predicted core region(s) if any. The final prediction
combines the two binary maps only including the core regions that are inside the penumbra regions. A final post-processing step using a 3D mode
filter is implemented. SLIC refers to the algorithm to extract superpixel regions. Color in the online version.

Fig. 3. Visual comparison of a TTP map in grayscale (left) and the
generated superpixel image (right) after the brain extraction.

of our knowledge, there exists no defined convention on which of
the parametric maps should be used to detect core and which shows
penumbra better. Let Lp be the number of pixels in BTp. In the
training phase, the totality of input features to these ML approaches
are defined as a matrix. For a patient p, let the input features vector
for CBV be:

xpCBV = stack(CBVp(i, j))∀(i,j)∈BTp

where xpCBV is a vector of size Lp. The stack function concatenates all
the pixels in an image, row-by-row, into a vector. The input features
totality of the parametric maps for a patient p is given by the matrix
Xp. For simplicity we omit the p in the following notation where all
definition are on a single patient:

X = [xCBV xCBF xTTP xTMax xMIP xNIHSS]

Defining [1] as a all-ones vector of length Lp, xNIHSS is defined as
xNIHSS = NIHSS · [1]. In the same way, the input features totality for
the superpixel version of the parametric maps is given by the matrix
Xp

SLIC, defined as:

XSLIC = [xCBVs xCBFs xTTPs xTMaxs
]

where xCBVs is represented as a vector:

xCBVs = stack(CBVp
SLIC(i, j))∀(i,j)∈BTp

The total matrix XT is given by the combination of the two input
features matrices depending on the model trained: XT = [X XSLIC].

In the prediction phase, as shown in Fig. 2, the input features
matrix Xp used for Step1 has 6 columns since the CBF and CBV
parametric maps are excluded. Then, the model generates a binary
map for the penumbra region over the entire image. Subsequently,
the input feature matrix for the second step is derived only from
CBV and CBF parametric maps plus their corresponding superpixel
versions. This matrix has 4 columns as illustrated in Fig. 2. The
selection of parametric maps is also in line with proposed methods
in the literature [12]–[14] since TTP and TMax are often used for
detecting penumbra, while the other parametric maps are used for
segmenting core regions.

To create the final prediction image, in the Two-Step approach,
the binary predictions of core and penumbra are logically combined
so the common white areas in both predictions indicate ischemic
core in the final result. The logical AND combination simulate the
medical constraint, where the ischemic core is limited to be inside
the penumbra since the hypoperfused tissue always contains the
dead tissue. For both the approaches (Single-Step and Two-Step),
the patient’s predictions pass through a 3D mode filter. This post-
processing step helps to reduce unwanted noise and it also allows
the predictions from a ML method to rely on the adjacent voxels in
the z-axis, i.e. between adjacent slices.

VI. EXPERIMENTS AND RESULTS

A. Dataset division
In this paper data from 152 patients were used, 137 from AIS

patients divided into two groups (LVO and Non-LVO) and 15 patients
WIS but who were admitted with suspicion of stroke. The dataset was
randomly split into a training, validation, and holdout set, as described
in Table IV, carefully dividing the LVO, Non-LVO, and WIS patients
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over the sets. The idea behind this division is to create a model that
generalizes the classification of the ischemic regions working for all.

TABLE IV
DIVISION IN TRAINING, VALIDATION, AND HOLDOUT DATASET.

Training (#; %) Validation (#; %) Holdout (#; %) Tot. (#; %)
LVO 29; 37.7 29; 37.7 19; 24.6 77; 50.6
Non-LVO 24; 40 25; 41.7 11; 18.3 60; 30.5
WIS 6; 40 6; 40 3; 20 15; 9.8
Total 59; 38.8 60; 39.5 33; 21.7 152; 100

As many have reported, DWI is a questionable measure to describe
the ischemic core [10], [15]–[18], thus we propose to use manual
annotations made by two expert neuroradiologists as the golden
ground truth to assess both the ischemic regions during early stages
and with different level of severity.

Even with removing the background and only considering the
pixels inside the BT, the core and penumbra classes are still un-
dersampled, leading to a class imbalance problem in the dataset.
To overcome this problem, during the training phase we implement
the Synthetic Minority Over-sampling Technique (SMOTE) algorithm
[34] to over-sample the classes with a minor number of occurrences.
SMOTE relies on the generation of synthetic examples on the
difference between the feature vector under construction and its
nearest neighbor. We over-sample the penumbra by a maximum of
5 times its standard amount and the core by a maximum of 20
times. These maximum values were chosen for their class importance
and amounts. Before applying the SMOTE algorithm, the core and
penumbra classes represent only 0.5% and 9.4% of the entire set
respectively. After the application of the algorithm, they represent
7.6% and 36.5% of the dataset respectively.

B. Evaluation metrics

In all the experiments the predictions are compared with the ground
truth and multi-class confusion matrices are generated. Our dataset
is composed of three classes C ∈ {core, penumbra, healthy brain}.

TABLE V
EXAMPLE OF MULTI-CLASS CONFUSION MATRIX FOR THE CORE CLASS.
TP =TRUE POSITIVE, FP = FALSE POSITIVE, FN = FALSE NEGATIVE,

AND TN = TRUE NEGATIVE.
Predicted class

Core Penumbra Healthy
Brain

A
ct

ua
l

cl
as

s Core TPc FNc FNc

Penumbra FPc TNc TNc

Healthy
Brain FPc TNc TNc

Table V presents a multi-class confusion matrix example for
the core class: TPc (True Positive) indicates the number of pixels
predicted correctly as the core; FPc (False Positive) represents the
number of pixels classified as core class but belonging to a different
class; FNc (False Negative) is the number of pixels predicted as a
different class but labeled as the core in a ground truth image; TNc

(True Negative) displays the number of pixels that are classified as
not core and belonging to one of the other classes. All the values
in each multi-class confusion matrix are calculated based only on
the number of voxels inside the BT, excluding all non-brain tissue
voxels as the binary mask of brain vs background is found during pre-
processing. From each confusion matrix of class c ∈ C, we calculate
the recall recc = TPc

TPc+FNc
, the precision precc = TPc

TPc+FPc , and the

Dice coefficient (equivalent to the F1-score) Dicec =
2·precc·redc
precc+recc

=
2·TPc

2·TPc+FPc+FNc
. The range for these values is [0, 1]. We also consider

the Hausdorff distance between predictions and ground truth regions
[35], and the absolute difference in the volume among the predictions
(Vp [ml]) and the ground truth (Vg [ml]): ∆V = |Vg−Vp|. The range

value for the Hausdorff distance and ∆V is [0,∞] Bland-Altman
plots were used to illustrate mean differences and limit of agreement
between predicted volume and volume calculated from ground truth
images.

C. Hyper-parameter optimization of ML algorithms

Before evaluating our methods, a series of hyper-parameter opti-
mizations on the ML algorithms were performed using a Bayesian
optimization. The input features for these optimizations, for a patient
p, were solely based on Xp, without the usage of SLIC nor SMOTE
algorithms. For DT and RF models, the hyper-parameters taken into
consideration during the optimization were:
• the minimum number of leaf, with a range [1, Lp/2],
• the maximum number of decision splits, in the range [1, Lp−1],
• Gini’s diversity index, Twoing rule, and Cross-entropy for the

split criterion to use,
• the number of decision trees in the model (1 for the DT

algorithm, a range of [1, 500] for the RF).

TABLE VI
OPTIMAL HYPER-PARAMETERS FOR THE DT AND RF ALGORITHMS

DIVIDED BY Single-Step AND Two-Step APPROACHES.

Method # DT Split
criterion

Min
# Leaf

Max
# Split

DT
Single-Step

1
Cross-entropy 138 22489

Two-Step Step1 Cross-entropy 153 358000
Step2 Cross-entropy 10 34427

RF
Single-Step 4 Gini 345 5535

Two-Step Step1 10 Cross-entropy 384 1400500
Step2 10 Gini 2 20979

Differently, for the SVM model, we considered the following:
• Gaussian, Linear, and Polynomial kernel functions,
• the maximum penalty on the observations with a range of

[0.001, 1000],
• standardized vs not standardized features.
The values display in Table VI show the best hyper-parameters

for the DT and RF algorithms divided by Single-Step and Two-Step
approaches, after an exhaustive set of experiments. Table VII presents
the optimal hyper-parameters for the SVM model. All the experiments
described in the next sections use the same set of hyper-parameters
defined in Table VI and Table VII.

TABLE VII
OPTIMAL HYPER-PARAMETERS FOR THE SVM MODEL WITH THE

Two-Step APPROACH.

Method Kernel
Function

Max
penalty Standardize

SVM Two-Step Step1 Gaussian 993.73 No
Step2 Gaussian 0.487 No

D. Experiment 1 - ML algorithms and feature combination

Parametric maps  
(TTP, TMax, CBF, CBV) + MIP + NIHSS Superpixel version of the parametric maps SMOTE

Input Features:

Mdl-1.1 Mdl-1.3Mdl-1.2 Mdl-1.4 Mdl-1.5 Mdl-1.6

Models:

Mdl-2.1 Mdl-2.3Mdl-2.2 Mdl-2.4 Mdl-2.5 Mdl-2.6

Mdl-3.1 Mdl-3.3Mdl-3.2 Mdl-3.4 Mdl-3.5 Mdl-3.6

DT

RF

SVM

Two-steps
 approach

Mdl-4.1 Mdl-4.3Mdl-4.2 Mdl-4.4 Mdl-4.5 Mdl-4.6

Mdl-5.1 Mdl-5.3Mdl-5.2 Mdl-5.4 Mdl-5.5 Mdl-5.6

DT

RF

Single-step
 approach

Data augmentation: 

Fig. 4. Description of the models implemented to test the two ap-
proaches, the input features used (the parametric maps with or without
the superpixel regions), the usage of data augmentation (SMOTE).
Experiments’ names are included in the reminder of the paper. DT =
Decision Tree; RF = Random Forest; SVM = Support Vector Machine.
Color in the online version.
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Fig. 5. Results generated with the validation set on the 30 experiments described in Fig. 4. The x-axis contains the experiment IDs, while the
y-axis refers to the statistic values. Each value represents the average of the patients in the validation set, including all the different severities. Note
that for the top subplot we want high values, but for the mid and bottom subplots we want low values. All the experiments were tested with a number
of superpixel regions equal to 10. The colored regions in the plot represent the division of the various experiments: blue, green, and red contain the
experiments with the two steps approach using DT, RF, and SVM models respectively; yellow and purple have the experiments for DT and RF with
the Single-Step approach. The colored horizontal lines display the average for the corresponding statistical measures. With the only exception of
Mdl-5.1, Mdl-5.2 (inside a red rectangle) is the one that presents the best tradeoff for all the evaluation metrics among the set of experiments. Color
in the online version.

For both the Two-Step and the Single-Step approaches, a series of
six experiments were conducted to determine whether the inclusion of
superpixels as extra features is beneficial and to see if using SMOTE
to balance the classes during training gives better models. These six
experiments were repeated for the different ML algorithms except
SVM for Single-Step approach, due to our implementation of the
approach which performs only binary classification.

Fig. 4 illustrates the 30 conducted experiments: (Two-Step×3 ML
algorithms)×6 + (Single-Step ×2 ML algorithms)×6. The number of
superpixel regions used for this set of experiments is 10. Fig. 5 shows
the results for all models during the first experiment set taking into
account all the various groups (LVO, Non-LVO, and WIS) together.
The best model was selected mainly based on the averaging metrics
in Fig. 5 for both the classes. Looking at Fig. 5, Mdl-5.1 shows
the best performances both for core and penumbra regardless of the
group. Nevertheless, Mdl-5.2 offers comparable results to Mdl-5.1 in
the majority of the metrics. Moreover, Mdl-5.2 uses the superpixel
regions as input features, on the contrary of Mdl-5.1, and the best
number of superpixel regions should be investigated further.

E. Experiment 2 - Number of superpixels
After the first experiment set, we performed a series of empirical

analyses on Mdl-5.2 to choose the most adequate number of super-
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Fig. 6. Various plots (Dice coeff., Hausdorff dist., ∆V ) achieved with
the validation set for selecting the best number of superpixel regions
for Mdl-5.2. The x-axis indicates the number of superpixel regions.
Results achieved by the best-performed model are highlighted with a
red rectangle. Solid lines represent the average of the patients in the
validation set, including all the different severities. Color in the online
version.
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Fig. 7. Statistical measures to select the best input data combination to use. All the methods were tested with the best number of superpixel
regions (100). The best model (Mdl-5.2) is highlighted inside a red rectangle. Color in the online version.

pixel regions for the SLIC algorithm that produces the best results.
We repeat a series of experiments using the Mdl-5.2 starting with
25 total number of 3D superpixel regions and continue by increasing
the number until 600. The increment is 25 for each iteration. Fig. 6
presents the results obtained with different numbers of superpixel
regions including 10 and also the total number of pixels in the
image for Mdl-5.2. Fig. 6 shows the average metrics for the LVO
and Non-LVO groups, and the average for the entire validation set
(LVO, Non-LVO, and WIS). The combination of statistical metrics
for both penumbra and core classes shows a clear difference when
superpixel is used as shown in Fig. 6. As highlighted in the figure,
100 superpixel regions give slightly better results compared to the
others. It is noticeable that 100 superpixel regions yield the lowest
volume difference for the penumbra class, which highly influenced
the selection decision, the highest Dice coefficient for the core class
on average, and significant results for the other metrics, and as such
we propose to use 100 in further experiments.

F. Experiment 3 - Validate the superpixel result
The chosen number of superpixels, 100, was validated by repeating

all the thirty experiments described in Fig. 4 and using 100 superpixel
regions instead of 10 regions, which was used during the first
evaluation round. Due to ineffective performance, SVM has been
exempt from this validation step. Results are depicted in Fig. 7
showing the overall metrics for both the two ischemic regions. The
model Mdl-5.2 still shows the most promising results even compared
with Mdl-5.1. It achieves the highest Dice coefficient and precision
values for both the classes, and excellend ∆V results.

G. Hyper-parameter optimization on the best model

The selected Mdl-5.2 model went under a final step of performing
optimization of its hyper-parameters with the current setting (100
superpixel regions) validated in the previous experiment set. We have
taken into consideration the same hyper-parameters defined in Sec.
VI-C for RF. The new optimal hyper-parameters for Mdl-5.2 are 48
number of DT, cross-entropy as the selected split criterion, 68982 as
the maximum number of decision splits, and 315 as the minimum
number of leaves.

H. Final test of the best model

We test the holdout set proposing Mdl-5.2 as the best model, 100
as the most efficient number of superpixel regions, with the hyper-
parameters defined in Sec. VI-G. A visual result of two sample
predicted images along with ground truth and their corresponding
parametric maps are shown in Fig. 8.

Furthermore, we remove the post-processing step (3D mode filter)
and predict the regions to understand how the results are influenced
by this step. Table VIII presents the results of the proposed best
model, i.e. the Single-Step method with RF, Mdl-5.2, and 100 as the
number of superpixels, in comparison with the same model without
any post-processing step, the “syngo.via” default setting to define the
ischemic regions, and the thresholding values proposed by Bathla et
al. [28], since it is, to the best of our knowledge, the only research
using “syngo.via” as vendor. Table VIII also depicts reported results
from other thresholding methods ([11]–[13], [22]) which used other
vendors for parametric maps acquisition and post-processing steps,
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thus a direct comparison with our model is not possible. Bland-
Altman plots are used to visualize the predicted volume in comparison
with the ground truth volume between the four methods compared in
Table VIII, shown in Fig. 9. For all rows, the statistical results are
based solely on our holdout set to establish fair comparability with
the other approaches. The results for two subsets of the data (LVO,
Non-LVO) are presented separately, while for the WIS subset only
∆V is displayed.

Inter-observer variability
33 randomly selected patients (19 from the LVO subset, 11 from

the Non-LVO subset, and 3 from the WIS group) were manually
annotated by two different neuroradiologists, using the same criteria
adopted for the creation of the ground truth images. The aim is to
understand the inter-observer variability between two neuroradiolo-
gists. We investigate the inter-observer variability and compare it with
the metrics of the automated method. Table VIII shows the inter-
observer variability in the measurements of the ischemic regions for
the two subsets of the data, LVO and Non-LVO, in comparison with
the results achieved with our best method Mdl-5.2.

VII. DISCUSSION

We have proposed a multi-stage algorithm based on ML that
automatically classifies ischemic core and penumbra regions in
parametric maps generated from CTP images. The CTP scans were
acquired from patients with AIS and WIS. In a real-life situation,
medical doctors need to decide the treatment for a patient in a small
time window; thus, an automatic approach can be valuable. Expert
assessments used as ground truth are commonly implemented in
clinical use in many applications. We consider it to be a good method
to interpret the ischemic regions, due to the lack of consensus on
thresholding methods and the recent oppositions over the de-facto
DWI as the gold standard [15]–[18]. Nevertheless, these assessments
present some variability among the experts (Table VIII), thus an au-
tomatic approach might present some advantages during analysis and
can aid medical doctors in rapid recognition of ischemic regions. We
have trained our method with ground truth images directly acquired
from the CTP parametric maps, MIP, and follow-up images. This
results in better and more precise visualization of the two ischemic
regions in the brain: the salvageable (penumbra) and the irreversibly
damaged tissue (infarct core). Fast and correct visualization of the
penumbra will guide the treatment better since it is fundamental to
treat patients where relevant tissue can be saved, and not invest a lot of
resources and time in trying to save tissue that is already irreversibly
damaged and where the treatment might even harm the patient due
to the risk of hemorrhage.

The criteria to select the best method was based on a study of
various implemented experiments and their relative statistical results.
First, we performed a set of thirty experiments described in Sec.
VI-D and in Fig. 4, to select the right features and model. From
the relative outcomes in Fig. 5, the results provided by Mdl-5.2
(RF with Single-Step approach using all parametric maps at once)
produces considerable statistical measures in the majority of the
metrics, regardless of the severity group or class. It is interesting
to notice that the Single-Step approach generates better results or
all metrics but the Two-Step approach with RF producs slightly
better results in the Hausdorff distance for the core class. Results
for irreversibly damaged tissue for SVM models were not taken into
consideration since these models fail to predict the mentioned class.

Subsequently, we applied a different number of superpixel regions
to Mdl-5.2 to find one that gives the best prediction results (Sec.
VI-E, and in Fig. 6). It is clear that the results are not the best

CBF CBV TTP

Ground Truth Prediction

Classes: Brain Penumbra Core

(a) A 71-year-old man with LVO and a baseline NIHSS score of 8.

CBF CBV TTP

Ground Truth Prediction

Classes: Brain Penumbra Core

(b) A 60-year-old woman with Non-LVO and a baseline NIHSS score of 1.

Fig. 8. Visual comparison with four parametric maps (top), ground
truth images (left), and the corresponding predicted image with the best
method (right) of one slice for two patients included in the testset, one
labeled as LVO (a), the other as Non-LVO (b). The dark grey area is
healthy brain tissue, the light gray area represents the penumbra, and
the white region indicates the ischemic core. Color in the online version.

without applying superpixel, however, there is not a clear difference
between different numbers of superpixel regions; Dice coefficient
and Hausdorff distance outcomes do not present large discrepancies
during the increment of superpixel regions; the metric influencing
the final decision was the volume difference due to its drastic drop
for the selected number of superpixels for the penumbra class and a
significantly low value for the core class. Another important factor
that helped to select the best number of superpixel regions was
how the performances of the models differ with the various stroke
severity groups. From Fig. 6 it is clear to notice that, among all
the experiments in this set, Mdl-5.2 presented the best tradeoff
between the difference in volume and Dice coefficient for both the
classes. One can argue that 125 superpixel regions give more or less
similar results as 100 regions, however, ∆V is higher especially for
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TABLE VIII
PATIENTS INCLUDED IN THIS TABLE ARE ALL PART OF THE HOLDOUT SET. THE RESULTS ARE PRESENTED FOR PENUMBRA (CORE) REGIONS.

COMPARISON BETWEEN VARIOUS RESEARCHES USING THRESHOLDING VALUES WITH THE SAME VENDOR “SYNGO.VIA” (DEFAULT SETTING AND

[28]) AND OUR BEST MODEL (Mdl-5.2). PREDICTIONS FROM [11]–[13], [22] ARE PRESENTED BUT THEY ARE NOT FOR COMPARISON DUE TO THE

USAGE OF DIFFERENT VENDOR AND/OR POST-PROCESSING STEPS FOR GENERATING PARAMETRIC MAPS. ‡ MARKS THE RESULTS FOR THE Mdl-5.2
METHOD WITHOUT USING ANY POST-PROCESSING STEP. INTER-OBSERVER VARIABILITY FOR TWO EXPERT NEURORADIOLOGISTS (NR1 , NR2) AND

THE SELECTED MODEL Mdl-5.2 IS ALSO PRESENTED. NOTE THAT FOR THE DICE COEFFICIENT HIGHER VALUES ARE BETTER (⇑), WHILE FOR

HAUSDORFF DISTANCE AND ∆V LOWER VALUES ARE PREFERABLE (⇓).

Method Vendor
Dice Coefficient ⇑ Hausdorff Distance ⇓ ∆V (ml) ⇓

LVO Non-LVO All LVO Non-LVO All LVO Non-LVO WIS All
Penumbra (Core)

Best Method (Mdl-5.2) ‡
Siemens

“syngo.via”

0.66 (0.26) 0.51 (0.03) 0.66 (0.26) 6.9 (4.8) 3.5 (0.9) 5.2 (3.1) 44.2 (16.2) 6.9 (0.8) 1.4 (0.0) 27.9 (9.6)
Best Method (Mdl-5.2) 0.69 (0.27) 0.56 (0.03) 0.68 (0.26) 6.5 (4.3) 3.0 (0.7) 4.8 (2.7) 40.7 (12.9) 4.9 (1.0) 0.9 (0.0) 25.1 (7.8)

Default Setting 0.31 (0.25) 0.11 (0.04) 0.27 (0.20) 7.8 (6.2) 5.6 (4.4) 6.6 (5.2) 67.5 (48.2) 51.8 (37.4) 3.7 (12.1) 58.2 (40.8)
Bathla et al. [28] 0.47 (0.17) 0.22 (0.03) 0.45 (0.14) 6.9 (6.9) 4.5 (4.7) 5.6 (5.7) 65.2 (65.3) 16.5 (44.5) 22.5 (6.6) 43.3 (53.5)

Other thresholding methods presented but not used for comparison
Bivard et al. [13] Toshiba 0.42 (0.19) 0.16 (0.03) 0.39 (0.15) 7.3 (6.5) 4.6 (4.4) 5.8 (5.4) 70.6 (52.9) 30.2 (36.0) 1.5 (9.1) 50.8 (43.3)

Cambell et al. [12] Philips N.A. (0.22) N.A. (0.04) N.A. (0.18) N.A. (5.9) N.A. (3.9) N.A. (4.9) N.A. (35.2) N.A. (24.9) N.A. (5.6) N.A. (29.1)

Murphy et al. [22] General
Electric 0.17 (0.27) 0.08 (0.05) 0.16 (0.23) 7.5 (5.0) 4.8 (3.1) 6.1 (4.0) 96.7 (13.4) 21.1 (13.3) 8.6 (2.1) 63.5 (12.3)

Wintermark et al. [11] Philips N.A. (0.19) N.A. (0.02) N.A. (0.14) N.A. (7.5) N.A. (5.5) N.A. (6.4) N.A. (90.8) N.A. (71.4) N.A. (20.1) N.A. (77.9)
Inter-observer variability

NR1 vs NR2 Siemens
“syngo.via”

0.80 (0.55) 0.67 (0.33) 0.79 (0.54) 5.1 (3.2) 1.9 (0.5) 3.6 (2.0) 33.3 (5.6) 5.5 (0.7) 0.0 (0.0) 21.0 (3.5)
Mdl-5.2 vs NR1 0.69 (0.25) 0.51 (0.01) 0.68 (0.25) 6.6 (4.2) 3.3 (0.5) 5.0 (2.6) 53.6 (12.4) 8.7 (0.3) 0.9 (0.0) 33.8 (7.2)
Mdl-5.2 vs NR2 0.71 (0.30) 0.56 (0.03) 0.70 (0.30) 6.4 (4.2) 3.0 (0.7) 4.8 (2.9) 38.6 (12.2) 4.9 (1.0) 0.9 (0.0) 23.9 (7.3)

penumbra regions, meaning that 125 superpixel regions provide an
overestimation of the tissue at risk, especially for the LVO group.

Finally, we validated the selected superpixel number by applying
it to the other experiments (Sec. VI-F). SVM was excluded from this
step as it performed poorly from the beginning (reference to Fig.
5). As shown in Fig. 7, increasing the number of superpixel regions
slightly improved the statistical measures for both classes. Moreover,
results achieved by Mdl-5.2 present higher precision and lower ∆V
in comparison with the other models. The proposed method can
classify correctly both penumbra and core in patients affected by
a large vessel occlusion. The differences between the healthy and the
ischemic tissue are more noticeable, in contrast with ischemic regions
in patients with Non-LVO; an example is given in Fig. 8 for two brain
slices of two patients affected by LVO (Fig. 8 (a)) and Non-LVO (Fig.
8 (b)). From the examples in Fig. 8 and the results in Table VIII, our
best method is shown to predict penumbra regions more precisely
than core areas. In patients with LVO, the prediction of core regions
achieved promising results. However, the detection of core regions in
patients with Non-LVO is more challenging; the small core area can
be difficult to classify correctly. This issue might be related to the
limited number of samples for that particular class, since patients in
the Non-LVO group does not always have a core region. We compared
the performance of the proposed RF-based method with approaches
based on thresholding suggested in the literature and the results
are presented in Table VIII; comparison is only performed with the
default setting and values from Bathla et al. [28] due to the usage of
the same vendor. Predictions from the other methods [11]–[13], [22]
are just presented for visualization purposes; a comparison does not
apply to the utilization of different vendors to generate the parametric
maps, but it illustrates an important limitation of thresholding.

The proposed method (Mdl-5.2) performs better than the thresh-
olding approaches concerning the evaluation metrics. The use of a
post-processing step slightly increment the performances of the best
method, as it is possible to evince from Table VIII and Fig. 9. The
Mdl-5.2 method (using a 3D mode filter as a post-processing step)
achieved the highest metrics for all the classes regardless of the stroke
severity level. The sole exception where the model does not perform
well is with the core class for Non-LVO group since, as it is possible
to evince from Table VIII, it is the hardest class to predict correctly
due to its limited number of samples and its narrow size in the BT.

Core predictions are slightly better than the one presented by

(a) Mdl-5.2 without post-processing. (b) Mdl-5.2

(c) “syngo.via” default setting (d) Bathla et al. [28]

Fig. 9. Bland-Altman plots of the volume calculated between the
predictions and the ground truth images for model Mdl-5.2 with (b),
without (a) post-processing step, the “syngo.via” default setting (c), and
the values presented by Bathla et al. [28] (d). Color in the online version.

the thresholding methods regardless of the group, while penumbra
predictions are superior. This indicates a reliable understanding and
agreement among ML predictions, threshold values, and neuroradi-
ologists’ annotations for the core regions. While, at the same time, it
presents some uncertainties regarding the penumbra’s definition. This
might be related to the fact that the infarct core and penumbra are
two dynamic regions inside the brain and highly dependent on the
acquisition time of CTP and DWI. The perfusion examination shows
the perfusion at that specific time, the penumbra and core size may
change rapidly. In many studies, MRI is not performed immediately
after CTP. DWI, often used as the gold standard for defining the
ischemic core, cannot define penumbra. Our method, relying the
ground truth on both CTP generated right after hospital admission
(parametric maps derived from CTP, and MIP) and follow-up images,
seems to provide a reliable method to predict both penumbra and
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core. Note that we propose to make predictions only based on
data available right after hospital admission. The areas defined as
ground truth from the DWI sequence can over- or underestimate
the ischemic core in individual patients, making it unrealistic to
expect perfect concordance between ischemic core measurements
on CTP and DWI [10], [16]–[18]. Other reasons are: first, they are
not taking into consideration any spatial characteristics of an image;
second, the values are very sensitive to image artifacts. Third, patients
with contraindication to MRI, i.e. heart pacemaker, metal foreign
body, might be excluded from studies where MRI and DWI images
are used. Moreover, it is complicated to find an optimal threshold
value for any group of patients. All the methods rely on selected
thresholds, which might produce good results for a particular and
predefined group, but it might not be the best for a single case study
or the entire dataset studied. Their validation method relies on the
comparison of the thresholding values with the clinical outcome of the
patient; however, this is not perfect as the patient might have received
treatment or the symptoms might have changed. Nevertheless, the
delineation of the core should not be smaller due to treatment if the
model delineates the core region correctly.

Table VIII shows the inter-observer variability in thirty patients
divided by stroke severity into LVO and the Non-LVO subsets. There
is a discrepancy between the results for the LVO and the Non-
LVO subsets. Results for the LVO group have some similarities be-
tween the manual annotations and the Mdl-5.2. Nevertheless, manual
annotations present better results in all the statistic measurements
in comparison with the Mdl-5.2 method in the Non-LVO subset.
However, results in Table VIII illustrate the difficulties of achieving
a consensus even among neuroradiologists.

VIII. CONCLUSION

We proposed an automatic multi-classification approach for seg-
menting both ischemic core and penumbra based on random forest us-
ing the parametric maps as input features, Mdl-5.2. We implemented
other approaches based on thresholding, proposed in the literature,
and compared them with our proposed method considering manual
annotations as the ground truth generated from parametric maps. The
method was trained with patients, both with AIS and WIS, grouped
by different stroke severities. It shows good results for patients with
large vessel occlusions, but not very good for patients with non-
large vessel occlusions. Our method generates more precise results
than the thresholding approaches for the two regions, but there is
still room for improvement. We achieve an average Dice coefficient
of 0.68 and 0.26, respectively for penumbra and core, for the three
groups analyzed. We also achieve an average in volume difference
of 25.1ml for penumbra and 7.8ml for core. Detecting ischemic core
and penumbra regions in patients with non-large vessel occlusion can
be very complicated, as shown in Fig. 8. Therefore, in the future, we
plan to use approaches based on deep neural networks with 4D CTP
volume as input instead of the parametric maps to work with the
original acquired data.

LIST OF ABBREVIATIONS

BT Brain Tissue.
CBF Cerebral blood flow.
CBV Cerebral blood volume.
CNN Convolutional Neural Network.
CT Computed Tomography.
CTA Computed Tomography Angiography.
CTP Computed Tomography Perfusion.
DT Decision Tree.
DWI Diffusion-weighted Imaging.

LVO Large Vessel Occlusion.
MIP Maximum Intensity Projection.
ML Machine Learning.
MRI Magnetic Resonance Imaging.
MTT Mean transfer time.
NCCT Non-contrast Computed Tomography.
NIHSS National Institutes of Health Stroke Scale.
RF Random Forest.
SLIC Simple Linear Iterative Clustering.
SMOTE Synthetic Minority Over-sampling Technique.
SVM Support Vector Machine.
Non-LVO Non-Large Vessel Occlusion.
TMax Time-to-maximum.
TTP Time-to-peak.
WIS Without Ischemic Stroke.
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