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ABSTRACT: Serological assessment of cardiac troponins (cTn) is the gold standard to assess myocardial injury in clinical 
practice. A greater magnitude of acutely or chronically elevated cTn concentrations is associated with lower event-free 
survival in patients and the general population. Exercise training is known to improve cardiovascular function and promote 
longevity, but exercise can produce an acute rise in cTn concentrations, which may exceed the upper reference limit in a 
substantial number of individuals. Whether exercise-induced cTn elevations are attributable to a physiological or pathological 
response and if they are clinically relevant has been debated for decades. Thus far, exercise-induced cTn elevations have 
been viewed as the only benign form of cTn elevations. However, recent studies report intriguing findings that shed new 
light on the underlying mechanisms and clinical relevance of exercise-induced cTn elevations. We will review the biochemical 
characteristics of cTn assays, key factors determining the magnitude of postexercise cTn concentrations, the release 
kinetics, underlying mechanisms causing and contributing to exercise-induced cTn release, and the clinical relevance of 
exercise-induced cTn elevations. We will also explain the association with cardiac function, correlates with (subclinical) 
cardiovascular diseases and exercise-induced cTn elevations predictive value for future cardiovascular events. Last, we will 
provide recommendations for interpretation of these findings and provide direction for future research in this field.
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Cardiac troponins (cTn) are proteins that facilitate the 
contraction of cardiomyocytes after the influx of 
calcium into the cell. Because of their cardiac-spe-

cific isoforms, serological assessment of cTn is the gold 
standard to assess myocardial injury in clinical practice.1 
A greater magnitude of chronically or acutely elevated cTn 
concentration is associated with lower event-free survival 
in patients2,3 and the general population.4

Exercise training improves cardiovascular function, 
lowers the risk for cardiovascular events, and promotes 
longevity. However, a bout of exercise can produce an 
acute rise in cTn concentrations,5 which may exceed the 

upper reference limit in a substantial number of individu-
als and meet the criteria for myocardial injury.1 Multiple 
studies over the past 3 decades have reported elevated 
cTn concentrations after exercise of different types, 
durations, and intensities and among subjects of differ-
ent ages, sex, and health and training status.5–7 However, 
the clinical significance of such findings was not clear 
because of the descriptive nature, small sample size, and 
cross-sectional design of the studies, as well as a lack of 
long-term follow-up and mechanistic studies.

Recent studies shed new light on the underlying 
mechanisms and clinical relevance of exercise-induced 
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cTn elevations. For example, endurance exercise can 
compromise cardiomyocyte sarcolemmal integrity,8 which 
may result in leakage of cTn fragments into the circula-
tion.9 Furthermore, the magnitude of exercise-induced 
increases in cTn concentrations has been associated 
with occult obstructive coronary artery disease10 and an 
increased risk for mortality and major adverse cardiovas-
cular events in middle-aged and older individuals.11

This narrative review will summarize recent insights 
into factors determining the magnitude of exercise-
induced cTn release, the underlying mechanisms respon-
sible for these elevations, and the clinical relevance and 
considerations for the interpretation of exercise-induced 
elevations in cTn concentrations.

ASSESSMENT OF CARDIAC TROPONINS
Molecular Basis
Troponin (Tn) is an intracellular protein complex that is 
part of the contractile apparatus of cardiac and skel-
etal muscle. Tn consists of 3 subunits (ie, I, T, and C) 
of which cardiac- and muscle-specific isoforms for I and 
T exist. Within cardiomyocytes, the cTn protein com-
plex is attached to tropomyosin, a structural protein that 
is wrapped around the thin filament. With the influx of 
calcium, calcium ions bind to the TnC subunit, leading 
to a conformational change of the cTn complex, allow-
ing the myosin head to bind to the actin filament, and 
leading to cardiomyocyte contraction (Figure 1). In ad-
dition to tropomyosin-bound cTn, cTn molecules are also 
present in an early releasable pool, and this fraction of 
cTn may be significantly larger than previously estimated 
(5%–10%).12

Analytic Considerations
The first commercial cTn assays became available in 
1996, but the rapid evolution of assay technology has 
tremendously improved the analytic sensitivity.13 High-

sensitivity cTn assays are characterized by a low analytic 
coefficient of variation (coefficient of variation <10%) at 
the 99th percentile or upper reference limit (URL) es-
tablished in apparently healthy individuals, and they have 
the ability to quantify cTn levels in >50% of those healthy 
individuals.13 Men typically have higher resting cTn lev-
els,11,14 underlining the importance of sex-specific URLs.

More than 20 immunoassays are commercially avail-
able for cardiac troponin I (cTnI), ranging from contem-
porary, high-sensitivity to point-of-care assays, each 
using their own monoclonal antibodies specific to dif-
ferent epitopes of cTnI. Despite efforts by international 
workgroups, the standardization of cTnI measurements 
remains limited.15

Circulating cTn Forms
Different cTn forms and fragments have been identi-
fied in the circulation, caused either by intracellular or 
extracellular processes.16,17 The fragmentation process 
is not completely understood but may depend on deg-
radation, phosphorylation, ubiquitination, complex forma-
tion, and binding to specific anti-cTn immunoglobulins. 
For patients with myocardial infarction, cardiac troponin 
T (cTnT) has predominantly been found intact (37 kDa) 
in the first hours after presentation, and as primary (29 
kDa) and secondary fragments (15–20 kDa) thereaf-
ter.17 The primary fragment is cleaved at the N-terminal 
end of cTnT, whereas the secondary fragments are fur-
ther cleaved at the C-terminal end.17,18 Patients with end-
stage renal disease had only small cTnT fragments with 
molecular weights comparable to the secondary frag-
ments as seen with myocardial infarction.19 It remains to 
be determined whether these secondary cTn forms are 
comparable between patients with end-stage renal dis-
ease and myocardial infarction or whether they represent 
different types of disease-specific fragments. It also re-
mains a topic of discussion how cTn forms (either intact 
or fragments) are cleared from the blood circulation, but 
it is thought that smaller proteins pass through the glo-
merular membrane for clearance.20 After an acute myo-
cardial infarction, however, extrarenal clearance turned 
out to dominate in studies on rats.21 Extrarenal clearance 
might be associated with scavenger receptor clearance; 
however, this topic has not been fully elucidated.

EXERCISE-INDUCED CARDIAC TROPONIN 
ELEVATIONS 
Brief Historical Perspective
The majority of studies examining the possibility of myo-
cardial injury after exercise have used cTn as the mark-
er of choice. However, initial evidence supporting the 
concept of exercise-induced cardiac injury was based 
on studies measuring serum CK-MB (creatine kinase 

Nonstandard Abbreviations and Acronyms

AMI acute myocardial infarction
CAD coronary artery disease
cTn cardiac troponin
CVD cardiovascular disease
CVRF cardiovascular risk factor
LGE late gadolinium enhancement
LV left ventricular
MD mean diffusivity
MRI  magnetic resonance imaging
RV right ventricular
URL upper reference limit
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myocardial band).22 Although CK-MB was widely adopt-
ed for the clinical diagnosis and management of acute 
coronary syndromes, it was subsequently shown to lack 
cardiac tissue specificity and sensitivity, especially among 
athletes in whom skeletal muscle CK-MB concentrations 
were higher (8.9±1.3% versus 3.3±0.7% in the gastroc-
nemius muscle of marathoners compared with untrained 
controls), and released in response to exercise-induced 
muscle injury.22 Accordingly, cTn replaced CK-MB as the  
gold-standard marker for myocardial injury following  
the Redefinition of Myocardial Infarction in 2000. Since 
the development of the first-generation cTn assays, 
>200 studies examining the effect of exercise on cTn 
release have been published.

Findings from the initial descriptive studies using a 
simple preexercise, postexercise measurement design, 
coupled with the results of subsequent meta-analyses,6 
suggest that circulating cTnI and cTnT concentrations 
are above the URL in >50% of athletes after endur-
ance activities. In addition, evidence suggests that run-
ning events may be more likely to cause cTn elevation 

than cycling events.6 However, direct comparisons are 
not available. The mechanism is also unclear but may 
relate to the higher intensity of running versus cycling. 
Additional studies and further meta-analyses have rep-
licated these initial findings, in general, and have also 
documented postexercise cTn elevations in a variety of 
populations including children, adolescents, postmeno-
pausal women, and athletic animals.5 cTn elevation has 
also been associated with numerous exercise stimuli 
including endurance running, prolonged marching, bas-
ketball, high-intensity treadmill running, high-intensity 
cycling, and clinical exercise tests.23

Predictors: Exercise Duration and Intensity
Numerous investigators have tried to examine which 
factors contribute to the release of cardiac-specific 
biomarkers. Age, training experience, blood pressure, 
environmental factors, exercise intensity, and exercise 
duration are among the predictors potentially associ-
ated with the magnitude of postexercise cTn concen-

Figure 1. The cTn complex plays an essential role in cardiomyocyte contraction.
When an action potential reaches the cardiomyocyte, calcium enters the cell, leading to a conformational change after binding of calcium 
ions to the TnC subunit. Hence, the myosin binding sites are exposed, allowing the myosin head to bind to the actin filaments and facilitating 
cardiomyocyte contraction. Note that the majority of cTn complexes are bound to the actin filament but are also present in an early releasable 
pool. cTn indicates cardiac troponin.
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trations14,24–26 (Figure 2). The variance explained by 
multivariate prediction models is low (r2<35%), how-
ever, and appears to be driven primarily by the intensity 
and duration of exercise. Early studies suggested that 
the magnitude of cTn release was positively related to 
the duration of exercise.24 However, a meta-analysis of 
26 studies published in 2007 with exercise durations 
from 0.5 to 22 hours showed that postexercise cTn 
was inversely associated with exercise duration.6 Spe-
cifically, more athletes had a cTn concentration greater 
than the URL after marathon running than after sub-
stantially longer ultraendurance events. These data 
suggest that exercise intensity, rather than duration, 
may be the more potent stimulus for cTn release,27 be-
cause marathons are run at a higher intensity than ul-
traendurance events. In a recent study that document-
ed a direct relationship among exercise heart rate, a 
surrogate for exercise intensity, and the prevalence of 
cTn after exercise,7 the importance of exercise inten-
sity was also suggested.

To directly examine the effect of exercise duration 
and intensity, a recent study compared cTnI release 

following cycling at low (50%–60% lactate threshold 
for 60 minutes), moderate (60%–70% lactate thresh-
old for 4 hours), and high intensities (80%–90% lac-
tate threshold for 60 minutes).28 cTnI was elevated 
after both moderate- and high-intensity exercise but 
not after the low-intensity stimulus. Furthermore, cTn 
concentrations were significantly higher after the 
short-duration, high-intensity exercise than after the 
long-duration, moderate-intensity exercise.28 A similar 
study compared running at a moderate (60 minutes at 
70% of peak heart rate) or high intensity (2 series of 
12×30-second repeated sprints at 90% peak heart 
rate).29 cTnT was statistically higher 4 hours after the 
high-intensity than the moderate-intensity exercise. 
Also, a field study among 177 cyclists participating 
in a 91-km mountain bike race showed that the time 
spent performing high-intensity exercise (heart rate 
>150 bpm) was an independent predictor of postex-
ercise cTnI and cTnT concentrations.30 In aggregate, 
these data suggest that postexercise cTn elevations 
are related to overall cardiac workload, the product of 
both duration and intensity.

Figure 2. Factors driving the magnitude of exercise-induced troponin release.
There is great variability in the effect of each factor on postexercise troponin concentrations across studies and all factors have limited predictive value 
(r2<35%). Exercise intensity and duration appear to have the largest impact on postexercise concentrations, likely reflecting overall cardiac workload.
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Influence of Exercise Training
The heart remodels in response to exercise training, 
prompting several studies to examine the relationship 
of fitness or training status to postexercise cTn re-
lease.24,31 Event completion times or years of training 
were used as surrogates of fitness. More experienced 
marathon runners were less likely to have cTn eleva-
tions after the events than less experienced runners in 
several studies, but other studies have failed to confirm 
this relationship.26,32

Two recent studies have examined whether exercise 
training alters postexercise cTn release. One assessed 
cTnT concentrations at rest and after a 60-minute maxi-
mal run, before and after a 14-week training program in 
the intervention and control group.33 Before training, the 
60-minute maximal run produced a heterogeneous cTnT 
response in both groups with 71% of subjects exceeding 
the URL. Baseline and postexercise cTnT were higher 
after training in the intervention group than in the con-
trol group.33 This may be because of a higher workload 
in the intervention group during the second maximal run 
as evidenced by a substantially higher speed (12.1±0.9 
versus 10.7±0.9 km/h, P<0.05). The second study ran-
domly assigned 48 young sedentary obese women to 
12 weeks of high-intensity interval training, moderate-
intensity continuous training, or no training and mea-
sured cTnT levels after the same absolute and relative 
(60% of Vo2max) exercise stimulus.34 Training signifi-
cantly increased workload at 60% Vo2max. Before train-
ing, cTnT increased in all groups after exercise. After 
training, resting and postexercise cTnT concentrations at 
the same relative intensity were similar to pretraining val-
ues. However, cTnT did not increase after exercise at the 
same absolute intensity. These results suggest that exer-
cise training reduces cTn increase after the same abso-
lute, but not relative, intensity exercise. These studies 
collectively suggest that the magnitude of postexercise 
cTn release is affected by a combination of both training 
status and exercise intensity, because trained individuals 
require a greater absolute exercise stimulus to achieve 
the same relative stimulus.

Kinetics of cTn Concentrations
The kinetics of cTn concentrations after an acute myo-
cardial infarction (AMI) are well described. Peak values 
of cTnI and cTnT occur ≈10 to 12 hours after an ST-
segment–elevation AMI35 and remain elevated for 4 to 
10 days, although the pattern and magnitude of cTn el-
evations is highly variable among patients because of 
both the size of the AMI and the rapidity of cTn washout 
influenced by reperfusion.

The kinetics of exercise-induced cTn concentrations 
are less clear. Middleton et al36 attempted to describe 
cTn kinetics during and after marathon exercise and 

reported a biphasic release pattern. Subsequently, sev-
eral other studies assessed time-dependent changes 
in cTn concentrations up to 72 hours after exercise, of 
which the findings are summarized in Table S1 (cTnT) 
and Table S2 (cTnI). Differences in exercise duration, 
exercise intensity, and mode of exercise across studies 
exclude the possibility to perform a structured meta-
analysis. Limited data are available to support or refute 
the potential of a biphasic release during exercise, but 
some important observations can nonetheless be made 
regarding postexercise concentrations. First, concen-
trations of cTn appear to progressively increase after 
exercise cessation with peak values typically occurring 
between 2 and 6 hours  after exercise (Figure 3A). 
Second, the magnitude of cTn increase varies greatly 
among individuals,37 with some individuals demonstrat-
ing no or only very small changes in cTn concentrations, 
but others reporting values exceeding several times the 
URL Figure 3B. On average, peak postexercise cTn 
concentrations are ≈1 to 3 times the URL. The median 
change from baseline to postexercise concentrations 
was 10-fold (interquartile range: 5- to 19-fold) in mara-
thon runners.37 Third, exercise-induced elevations in 
cTn concentrations are transient, with values returning 
to baseline after 48 to 72 hours postexercise. The early 
peak and smaller magnitude of exercise-related cTn 
elevations postexercise contrast with the greater mag-
nitude and later peaking of cTn in AMI.

UNDERLYING MECHANISMS
The mechanisms responsible for postexercise cTn in-
creases remain controversial. cTn elevations were ini-
tially interpreted as irreversible damage, because the 
heart was considered a postmitotic organ whose cardio-
myocytes could not be repaired or replaced. Hence, cTn 
release was considered pathognomonic of necrosis.38,39 
There is increasing evidence, however, that cardiac mi-
tosis does occur in adults at a rate of 0.5% to 1% of 
cardiomyocytes per year.40,41 This rate of mitosis may 
increase with exercise training.42,43 Transient increases 
in cTn occur not only after exercise, but also after atrial 
pacing44 and pharmacological stress testing,45 even in 
healthy individuals, highlighting the probability that not 
all cTn release is attributable to cardiomyocyte necro-
sis. The European Society of Cardiology’s Study Group 
on Biomarkers identified 3 possible causes for elevated 
cTn concentrations46: (1) reversible injury attributable 
to cell wounds, cytoplasmatic blebbing, or extracellular 
vesicle release; (2) injury attributable to apoptosis; and 
(3) irreversible injury attributable to myocardial necro-
sis (Figure 4). There are few direct data to support or 
reject a single release mechanism for exercise-induced 
elevations of cTn concentrations, but available evidence 
is presented in the following.
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Reversible Cardiac Injury
Macromolecules can exchange over the plasma mem-
branes of viable cardiomyocytes and such release seems 
to occur through transient disruptions in the plasma 
membrane.47 Stressing the cardiomyocytes by contrac-
tion, β-adrenergic stimulation,47,48 stretching,49,50 or brief 
ischemia51,52 increases the rate of macromolecule re-
lease. These studies did not observe cardiomyocyte 
death on histological examination, but apoptosis could 
have occurred. In contrast, plasma membrane injury does 
not necessarily lead to cardiomyocyte death because (1) 
the cytoplasm is a macromolecular gel with restricted 
diffusion,53 (2) dystrophin complexes stabilize the mem-
brane by forming links between the extracellular matrix 
and the contracting sarcomere,54 and (3) cell wound re-
pair can restore small membrane holes after reoxygen-
ation.48,54 Cardiomyocytes are therefore more resilient 
than previously thought.

The heart supplies most of the increased total body 
oxygen demand of exercise by increasing heart rate and 
stroke volume, which, in turn, increases myocardial oxy-
gen demand, coronary blood flow, and cardiac preload 

and afterload. These responses increase cardiomyocyte 
stress and may alter membrane permeability, leading to 
passive diffusion of cTn from the cell to the extracellular 
space. This hypothesis has been examined in an explor-
ative pilot study (n=11) using cardiac MRI of myocar-
dial tissue water diffusivity (MD).8 MD is a quantitative 
measure of cardiomyocyte integrity and an increase in 
MD is indicative of increased cell membrane perme-
ability. Marathon running increased cTnI concentrations 
and myocardial MD, thus demonstrating increased cell 
membrane permeability. Postmarathon cTnI values corre-
lated directly with MD (r=0.66, P=0.03),8 suggesting that 
higher postexercise cTnI concentrations result, at least, in 
part, from greater cardiomyocyte membrane permeability. 
Both cTnI and MD returned to prerace values within 2 
weeks after the marathon, indicating that these exercise-
induced changes were transient.

The increase in membrane permeability after cardio-
myocyte stress suggests that cTn molecules can leak 
from cardiomyocytes into the circulation, and this may 
be aided by degradation of cTn complexes. Ischemia is 
known to degrade cTn complexes. For example, ischemia 
reduces the size of cTnI and cTnT fragments in isolated 

Figure 3. Proposed pattern of 
exercise-induced elevations of cTn 
concentrations.
A, Schematic illustration of the kinetics 
of cTn concentrations after a bout of 
endurance exercise. Changes of cTn 
concentrations during exercise are unclear 
(dashed line), but cumulative data show 
that cTn concentrations continue to rise 
after exercise cessation, with peak values 
reached between 2 and 6 hours after 
exercise. Complete normalization occurs 
within 24 to 72 hours after exercise. The 
99th percentile or upper reference limit of 
normal (URL) is shown in red. B, Waterfall 
plot of individual (n=151) postmarathon 
cTnI concentrations, highlighting the large 
interindividual variation across athletes 
performing a similar endurance exercise 
bout. Data are pooled from participants of 
the Boston37 and Eindhoven26 marathons. 
Values in both plots are expressed as a 
multiple of the URL of the cTn assay. cTn 
indicates cardiac troponin.
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rat hearts from 24 to 15 kDa and from 35 to 25 kDa, 
respectively,55 making them more readily able to pass 
through the membrane. Only small, degraded, cTnT frag-
ments (<18 kDa) were found in postrace serum samples 
obtained from 10 marathon runners.9 These findings sug-
gest that smaller fragments may leak into the circulation 
with the cardiac stress associated with exercise or isch-
emia, whereas larger fragments might only escape with 
destruction of the membrane after myocardial infarction.

Taken together, it is possible that exercise-induced cTn 
elevations are attributable, at least, in part, to reversible 
membrane damage of viable cardiomyocytes (Table 1). 
Whether this is the only mechanism responsible for exer-
cise-induced cTn elevations, or occurs next to apoptosis 
or necrosis, is unknown. The magnitude of cTn release 
across individuals is extremely variable, even after the 
same exercise.37 It is possible that several mechanisms 

contribute to this variability and that the dominant mech-
anism differs between individuals with low and high 
magnitudes of postexercise cTn elevations (Figure 3B). 
Furthermore, it is unknown whether the putative changes 
in membrane permeability are entirely physiological or 
are an early marker of cardiac vulnerability and subse-
quent cardiac events.

Apoptosis
Apoptosis or programmed cell death is part of normal cell 
turnover. Apoptotic processes can be activated through 
stress caused by oxidative overload, ischemia, and pro-
cesses in other cells such as the detection of intracellular 
pathogens. Apoptosis should not produce cTn elevations, 
because intracellular content is not released when the 
apoptotic cell is fragmented and engulfed by other cells. 

Figure 4. A schematic overview of the potential underlying mechanisms of exercise-induced cTn release.
An increased cardiomyocyte sarcolemmal permeability attributable to cell wounds, release of extracellular blebs, and increased exocytosis 
rates can be considered as reversible cardiac damage, resulting in a physiological increase of cardiac troponin concentrations. Similarly, an 
increased cardiomyocyte turnover may transiently increase cardiac troponin concentrations. A higher rate of apoptosis and especially necrosis 
should be classified as (micro)damage to the cardiomyocyte, representing a pathological response to exercise, which may have long-term health 
consequences. cTn indicates cardiac troponin.
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However, cTn could be released during the destruction of 
apoptotic bodies or as cardiomyocyte apoptosis transi-
tions to secondary necrosis.20

Few studies have explored the effects of exercise on 
apoptosis. Twelve weeks of exercise training reduced 
age-induced apoptosis in the left ventricle of rats, mea-
sured by less DNA fragmentation, terminal deoxynucleo-
tidyl transferase dUTP nick end labeling–positive staining, 
and caspase-3 cleavage.56 A subsequent study demon-
strated that exercise reduces the age-related increase 
in apoptotic signaling markers.57 A large study (n=64)58 
of young (6-month-old) and middle-aged (12-month-
old) mice randomly assigned the animals to cages with 
or without a functioning running wheel. Caspase-inde-
pendent, Fas-dependent, and mitochondrial-dependent 
apoptotic pathways were reduced in both the young and 
middle-aged running mice.58 These findings agree with 
evidence in humans that exercise training is cardiopro-
tective and helps preserve cardiac function during aging.

The acute effects of exercise on apoptosis are not 
well studied. A study (n=18) of young mice (2-month-
old) assessed apoptosis at baseline or immediately after 
8, 24, 48, and 72 hours of running at 60% to 70% of 
Vo2peak (n=3 animals per time point).59 Exercise pro-

duced a transient 150% increase in the rate of myo-
cardial apoptosis at 24 hours after exercise, in part, 
because of catecholaminergic, but not oxidative, stress. 
These findings suggest that, in animals, exercise acutely 
increases the rate of apoptosis, whereas apoptotic rates 
are reduced with chronic exercise training.

The acute increase in left ventricular preload during 
exercise could contribute to increased apoptosis.60 Iso-
lated rat hearts exposed to increased preload demonstrate 
intramyocardial cTnI proteolysis and cTnI release in the 
absence of ischemia.61 This cTnI degradation was blocked 
by antibodies that prevent the activation of endogenous 
calpains. Calpains are involved in cell signaling and cell 
cycle progression. Therefore, cellular calcium entry and 
proteolysis of cTnI may produce stretch-induced cardio-
myocyte apoptosis.62 These findings have been confirmed 
in an in vivo swine model. Acute hemodynamic overload 
produced by phenylephrine infusion provoked transient 
left ventricular (LV) dysfunction, stretch-induced cardio-
myocyte injury, elevated cTnI concentrations, and apopto-
sis in the absence of ischemia.63 Another study in swine 
evaluated changes in cTnI and apoptosis after 10 minutes 
of left anterior descending coronary artery occlusion with 
subsequent reperfusion for 24 hours.64 Brief ischemia 
produced a delayed cTnI release, with significant cTnI 
elevations starting 30 minutes after reperfusion. The cTnI 
elevations persisted for 24 hours. There was a concomi-
tant, transient increase in apoptosis, with a 6-fold increase 
1 hour after reperfusion, which normalized at 24 hours.64 
In humans, 30, 60, and 90 seconds of balloon-induced 
coronary artery occlusion to induce ischemia increased 
cTn concentrations in patients without coronary artery 
disease (CAD), which continued to increase up to the end 
of sampling, 4 hours after ischemia.65 After 90 seconds of 
ischemia, patients had larger and quicker increases in cTn. 
cTnI and cTnT were >URL 3 hours after brief ischemia in 
11% to 25% and 75% of patients, respectively.65 These 
findings indicate that isolated apoptosis can occur after 
increased preload or brief ischemia, conditions that may 
also occur during exercise.

An alternative explanation to increased cTn levels with 
exercise is that exercise increases cardiomyocyte turn-
over. C/EBPβ is a member of the bHLH gene family of 
DNA-binding transcription factors and decreases car-
diomyocyte growth and proliferation.42 Exercise training 
decreased the expression of C/EBPβ in mice with swim 
training. Furthermore, the mice with reduced cardiac C/
EBPβ levels were resistant to cardiac failure produced 
by pressure overload. These results indicate that exer-
cise training decreases C/EBPβ, thereby decreasing 
its inhibition of cardiomyocyte turnover and increasing 
cardiac resilience to external stress. This hypothesis is 
supported by the observation that 8 weeks of running 
increased new cardiomyocytes 4.6-fold in adult mice, 
without evidence of systolic dysfunction or increased 
apoptosis.66 Both studies demonstrate that exercise 

Table 1. Summary of Available Evidence for the Underlying 
Mechanisms of Exercise-Induced Elevations of cTn Concen-
trations

Mechanism Evidence

Membrane 
permeability

Exercise-induced cardiomyocyte stress may alter membrane 
permeability leading to passive diffusion of cTn (fragments) 
from the cell to the extracellular space and circulation.

Apoptosis Animal studies showed that an acute bout of exercise can 
increase the rate of apoptosis, whereas increases in preload 
and brief ischemia can also induce isolated apoptosis. In 
contrast, long-term exercise training reduces apoptotic rates.

Cardiomyo-
cyte turnover

Exercise training increases cardiomyocyte turnover in mice, 
which might release cTn into the circulation from replaced 
cardiomyocytes if this process is accelerated by an acute 
bout of exercise.

Necrosis No evidence of incident myocardial edema or late gadolinium 
enhancement has been found in marathon runners directly 
after exercise. Nonetheless, MRI studies may lack sensitiv-
ity to assess a small degree of necrosis, which could be 
responsible for cTn elevations.

Hemocon-
centration

Exercise-induced disruptions in fluid balance (ie, hemoconcen-
tration) are usually small and restore soon after exercise cessa-
tion (ie, hemodilution), which is contradictory to the magnitude 
and release kinetics of cTn elevations after exercise.

Compro-
mised kidney 
function

An exercise-induced mild reduction in kidney function may 
attenuate renal elimination of cTn and thus increase cTn 
concentrations after exercise. However, cTn concentrations 
increase multifold after exercise and renal function quickly 
restores after exercise.

Cross-
reactivity

Few studies report evidence of cross-reactivity with muscle 
damage and cTnT concentrations, but this was limited to cer-
tain patients (ie, rhabdomyolysis/skeletal myopathies) and not 
to athletes or cTnI assays. Also, assay-specific cross-reactivity 
is extremely low (<0.5%), so cannot explain the changes in 
cTn concentrations observed before to after exercise.

cTn indicates cardiac troponin.
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 activates the endogenous regenerative capacity of the 
mammalian heart, suggesting that replaced cardiomyo-
cytes could release cTn into the circulation if this process 
is accelerated by an acute bout of exercise.

The association between exercise and apoptosis 
appears dependent on the time frame. Exercise train-
ing reduces apoptotic rates56–58 and increases cardio-
myocyte growth and proliferation.42,66 In contrast, (supra)
physiological challenges to untrained animals, such as 
forced running,59 volume overload,61,63 or ischemia,64 
increase apoptosis with associated increases in cTn 
concentrations (Table 1). Whether these findings can be 
extrapolated to humans is not presently clear.

Cardiomyocyte Necrosis
Myocardial necrosis is the most frequent cause of cTn 
elevations unrelated to exercise. Cardiomyocyte me-
tabolism shifts from aerobic to anaerobic pathways to 
produce ATP during myocardial ischemia. This shift to 
anaerobic metabolism eventually disrupts the sarcolem-
ma. Ischemia >15 minutes irreversibly damages the car-
diomyocyte,1 allowing intracellular proteins to enter the 
circulation. There is an old hypothesis67 that, after AMI, 
there is first an immediate and substantial release of cTn 
from an early releasable pool, followed by a smaller peak 
of cTn caused by the slower process of degrading myofi-
brils.1 Although this hypothesis has been disputed,12 the 
exact mechanism of cTn release remains to be unrav-
eled. As discussed earlier, the cTn release after exercise 
is smaller, appears to peak sooner, and resolves faster 
than that observed with AMI. These differences make it 
unlikely that necrosis causes exercise-induced cTn el-
evations but does not exclude the possibility that a small 
degree of necrosis could produce elevated cTn concen-
trations in vulnerable individuals after exercise.

Acute cardiac necrosis cannot be definitely deter-
mined in vivo. Cardiac MRI studies of participants in the 
Manitoba,68 London,69 and Detroit70 marathons found 
no myocardial edema or late gadolinium enhancement 
despite increased cTn concentrations after exercise. The 
absence of myocardial edema or scar argue against car-
diac necrosis, but cardiac MR is not sensitive enough 
to detect a small degree of necrosis. Only 40 mg of rat 
myocardial necrosis increases cTnT and cTnI >URL,71 but 
this would not be detected by cardiac MRI. It could be 
speculated that long-term exercise training could pro-
duce myocardial damage from repetitive single exercise 
sessions. This hypothesis is supported by the observation 
that lifelong endurance athletes have more late gado-
linium enhancement (LGE) than their physically inactive 
peers and that the amount of LGE increases with the 
number of race completions and years of training.72 Thus, 
although no direct evidence exists of myocardial necrosis 
after exercise, it cannot be excluded as contributing to 
exercise-induced cTn increases in some cases (Table 1).

Noncardiac Explanations
Several alternative hypotheses have been suggested to 
contribute to exercise-induced elevations of cTn concen-
trations (Table 1). First, exercise-induced hemoconcen-
tration may impact postexercise cTn concentrations, but 
the percentage change of fluid balance markers is (very) 
small relative to the increases in cTn concentrations. 
Also, any hemoconcentration is expected to be quickly 
restored with postexercise rehydration, which is contra-
dictory to the progressive increase in cTn concentrations 
up to 2 to 6 hours after exercise. Evidence also suggests 
that hemodilution may occur after endurance exercise,73 
so the role of hemoconcentration in elevated cTn con-
centrations after exercise is likely limited if not negligible.

Second, prolonged exercise and dehydration are asso-
ciated with a compromised kidney function, but exercise-
induced increases in cTn concentrations far exceed the 
modest reduction in renal function observed immediately 
after exertion. Cystatin C increased 21% to 25% imme-
diately after a marathon run, indicating a similar rela-
tive decrease in renal function.74 This reduction in renal 
function may reduce renal cTn clearance and contribute 
to increased cTn concentrations, but cTn concentrations 
increase a median 1000% postmarathon,37 whereas renal 
function quickly recovers (<24 hours),74 demonstrating 
that the contribution of attenuated renal function to the 
magnitude of exercise-induced cTn elevations is limited.

Third, increases in cTn were hypothesized to be attrib-
utable to the cross-reactivity of the assay with skel-
etal Tn or skeletal muscle damage with cTn release. 
Cross-reactivity of cTn assays with skeletal Tn has been 
reported for cTnT75 and for certain assays of cTnI.76 For 
cTnT, it was estimated that cross-reactivity is limited 
to 0.003% (package insert Roche Diagnostics [2017-
03, V9.0 English]) to 0.02%75 and for cTnI, 0.04% to 
0.44%.76 Nevertheless, in a clinical setting of rhabdomy-
olysis, no association between CK and cTnT or cTnT was 
reported.77 In patients with neuromuscular diseases, end-
stage renal disease, and even in healthy human skele-
tal muscle samples, cTnT but not cTnI was detected.78 
Similarly, blood cTnT concentrations were often >URL 
in patients with skeletal myopathies, whereas cTnI was 
rarely elevated.79 Thus, skeletal muscle injury could con-
ceivably contribute to exercise-induced cTnT increases 
but likely could not contribute to cTnI increases. We are 
also unaware of data showing increases in cTn, either T 
or I in muscle samples from exercise-trained subjects.

CLINICAL RELEVANCE
Exercise-induced increases in cTn have traditionally 
been interpreted as the only benign form of cTn release, 
because these elevations are mild, occur often, in appar-
ently healthy individuals, and are not related to cardiac 
symptoms. However, cTn concentrations taken at rest 
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in large populations and clinical studies predict mortal-
ity and cardiovascular morbidity,2,4 even within the nor-
mal range.3 The prognostic value of exercise-induced in-
creases in cTn has rarely been studied80,81 but may have 
clinical relevance in some populations as discussed later 
on in this article.

Postexercise cTn and Cardiac Function
A number of studies have examined the association be-
tween postexercise reductions in cardiac function and 
cTn concentrations.7 Reductions in cardiac function af-
ter exercise are typically mild and transient and occur 
mostly after prolonged endurance events such as mara-
thons, triathlons, and ultraraces. A meta-analysis using 
echocardiography found reductions in LV ejection frac-
tion and diastolic function after such races.7 Postexercise 
cTn concentrations correlated directly with reductions in 
diastolic function measured as E/A ratio, but no associa-
tion between cTn and change in LV ejection fraction was 
found, because only a few studies reported a significant 
association and not with the standard echocardiographic 
parameters. This is probably because of the limited num-
ber of studies (4/22) investigating the association be-
tween cTn and LV ejection fraction.7

Exercise appears to affect right ventricular (RV) 
more than LV function, possibly because the relative 
increase in RV wall stress with exercise is greater than 
in the LV.82 Eight studies measured RV function and 
exercise-induced cTn concentrations (Table S3). Only 4 
of 8 studies reported a significant reduction in RV sys-
tolic function. Of those 4 studies, only 2 reported asso-
ciations between RV systolic function and postexercise 
cTn concentrations, which found an association between 
exercise-induced cTn and the reduction in RV ejection 
fraction (r=0.49, P=0.00283), and RV basal (r=0.68), mid 
(r=0.70), and apical (r=0.72) strain (P<0.001 for all).25 
The only 2 studies reporting postexercise reductions 
in RV function and associations with postexercise cTn 
found a direct correlation, but the absence of an asso-
ciation in the other studies may not have been reported. 
Potential explanations for discrepant outcomes between 
studies likely relate to the selection of endurance races, 
the timing of blood drawings, and the inclusion of less 
sensitive measures of systolic function (strain analyses 
were more likely to reveal reductions in cardiac func-
tion25 because both studies that used RV strain found 
reductions in RV function).

Overall, some evidence suggests that postexercise 
cTn concentrations are associated with decreased LV 
diastolic function and possibly with LV and RV systolic 
function, but this was observed in only a few studies, and 
the strength of the association was moderate. An impor-
tant caveat of available evidence is that studies have only 
examined associations between cTn concentrations and 
cardiac function using a single postexercise assessment, 

most often acquired immediately after exercise cessa-
tion. Because cTn kinetics appear to show a delayed peak 
after exercise, a single postexercise cTn may obscure the 
true association between cTn and cardiac function.

Is Exercise-Induced cTn an Indicator of Subclinical 
Disease? 
How and why exercise-induced cTn increases occur in 
ostensibly healthy people is unclear, but increases in 
cTn may reflect subclinical myocardial vulnerability. Epi-
demiological and clinical studies demonstrate that in-
dividuals with cardiovascular risk factors (CVRFs) and 
diseases (CVDs) have higher resting cTn concentra-
tions11,84,85 than their healthy counterparts. Similarly, after 
short and prolonged exercise, individuals with CVD and 
CVRF showed larger cTn increases than their healthy 
peers.11,84 For example, patients with heart failure have 
higher baseline, exercise-induced cTnT concentrations 
than healthy controls after a short-graded bicycle exer-
cise test.84 Among 725 long-distance walkers with an 
average age of 61 years, resting cTnI concentrations 
were higher (P<0.001), but the proportion of concentra-
tions >URL was similar (P=0.86), in individuals with CVD 
(n=104, 7 [2–15] ng/L, 1.0% >URL), CVRF (n=186, 3 
[0–9] ng/L, 1.7%), and healthy controls (n=435, 1 [0–5] 
ng/L, 1.2%). After 30 to 55 km of walking, cTnI concen-
trations increased in all groups (P<0.001), but patients 
with CVD more often had a postexercise cTn concentra-
tion >URL (16%) compared with individuals with CVRF 
(10%) and controls (6%; P=0.003).11

cTn elevations may indicate demand ischemia, so sev-
eral studies have explored the association between the 
magnitude of exercise-induced cTn increases and signif-
icant CAD, but the results are inconsistent.86–88 Several 
studies have found no increase in cTn after a short-
duration (<15 minutes) clinical exercise test in individu-
als with CAD.89 Other studies have reported significant 
cTn increases after clinical exercise or dobutamine stress 
tests. A recent meta-analysis including studies published 
between 2008 and 2016 found only minor increases in 
cTn concentrations after clinical exercise stress tests, 
with no difference in exercise-induced elevations of cTn 
concentrations between patients with inducible and non-
inducible ischemia (cTnT: 0.5 [0–0.9] ng/L versus 1.1 
[0–2.2] ng/L, P=0.29; cTnI: 2.4 [0.2–4.7] ng/L versus 
1.8 [0.6–3.0] ng/L, P=0.61).90 Similar findings were 
reported for pharmacological stress testing.90 Overall, 
these findings may be attributable to (1) exercise inten-
sity or duration at the ischemia threshold being insuffi-
cient to produce cTn elevations sufficient to discriminate 
between those with and without severe CAD or myocar-
dial ischemia; (2) cTn concentrations being measured 
too early after exercise and missing the cTn peak (Fig-
ure 3A); or (3) the lack of an association between myo-
cardial ischemia and exercise-induced cTn elevations.
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Observations among long-distance runners and 
cyclists largely confirm the findings from clinical stud-
ies with the majority of studies showing no association 
between cTn concentrations and CAD (Table 2). For 
example, no relation was found between postexercise 
cTnT concentrations and coronary artery calcification 
scores (r=–0.013, P=0.95) in 27 participants of the 
Paavo Nurmi marathon.91 Also, postexercise cTnI con-
centrations were not different between marathon run-
ners with coronary artery calcification scores greater 
than or less than the median score (P>0.99).92 The North 
Sea Race Endurance Exercise Study (n=120) also found 
no relation between cTn concentrations 3 hours after a 
91-km mountain bicycle race, although cyclists with 
occult obstructive CAD (n=9) had significantly higher 
cTnI and cTnT concentrations 24 hours  after exercise 
than controls.10 The delayed cTn release in individuals 
with obstructive CAD may relate to impaired blood flow 
through the obstructed coronary arteries as is also seen 
with AMI. Future studies that evaluate whether postexer-
cise cTn is a marker for occult CAD should include mul-
tiple time points of assessment.

Myocardial fibrosis has also been reported in osten-
sibly healthy endurance athletes. Only 2 studies to our 
knowledge have investigated the association between 
postexercise cTn concentrations and the presence of 
LGE (Table 2). German marathon runners with LGE 
(n=9) had higher cTnI concentrations immediately post-
marathon than those without LGE (n=65).92 In contrast, 
triathletes with (n=10, 49±8 years) and without LGE 
(n=20, 42±10 years), showed no difference in postex-
ercise cTnT concentrations collected at 2.4±1.1 hours 
posttriathlon (40±26 versus 65±103 ng/L).93 These 2 
studies included only 19 individuals with LGE, so it is 
impossible to determine whether a relation exists.

In summary, CVRF and CVD are associated with 
higher resting and postexercise cTn concentrations. Most 
exercise studies have found no association between 
postexercise cTn elevations and CAD severity or myocar-
dial fibrosis, but few studies have been performed and 
they used different exercise intensities, durations, and 
blood sampling protocols.

Prognostic Value in Patients
We are aware of only 2 exercise stress test studies 
evaluating the prognostic value of exercise-induced cTn 
 concentrations80,81 (Table 3). Neither found a predictive 
relationship. There was no difference in 4 hours postexer-
cise cTnT concentrations between patients with unstable 
angina who did (n=23) or did not (n=46) develop recur-
rent angina at 6-month follow-up.80 Another study re-
ported no difference in the incidence of a composite end 
point (death, myocardial infarction, acute revasculariza-
tion, hospitalization for unstable angina, or heart failure) 
in patients with CAD with 8 to 12 and 24-hour postex-

ercise cTnI concentrations greater than versus less than 
the URL (27% versus 17%, P>0.05) during 36 (15–49) 
months of follow up.81 The absence of an association of 
exercise cTn with subsequent symptoms may be attribut-
able to the short duration of exercise, sample size, sam-
pling times, only a small number of clinical events, or the 
absence of a clinically important relationship.

Prognostic Value in Exercising Individuals
In contrast with a paucity of exercise/cTn studies in the 
clinical setting, a plethora of studies exist that follow en-
durance exercise events, but to our knowledge only 3 
studies have assessed the prognostic value of these cTn 
elevations (Table 3). cTnI concentrations increased from 
baseline to postexercise in 74 male marathon runners 
(57±6 years), with 36.5% of the runners demonstrating 
postexercise cTnI concentrations >URL. During 6 years 
of follow-up, 6 CAD events occurred, evenly split be-
tween individuals with postmarathon cTnI concentrations 
greater than and less than the median value.92

Our group previously followed 725 long-distance 
walkers (61.4 [54.4–69.1] years), 9% of whom had a 
cTnI concentration >URL ±10 minutes after walking 
30 to 55 km.11 During a median follow-up of 43 (23–
77) months, 62 participants experienced a composite 
end point of death (n=29, 47%), myocardial infarction 
(n=6, 10%), stroke (n=17, 27%), heart failure diagnosis 
(n=4, 6%), revascularization (n=5, 8%), or resuscitated 
sudden cardiac arrest (n=1, 2%). Of individuals with 
postexercise cTnI >URL, 27% experienced an end point 
compared with 7% of those with cTnI <URL (crude haz-
ard ratio 5.21 [95% CI, 2.96–9.17]). After adjusting for 
age, sex, and the presence of CVD and CVRF, the haz-
ard ratio was 3.21 (95% CI, 1.79–5.77). This decreased 
further to 2.48 (95% CI, 1.29–4.78) after adjusting for 
baseline cTnI. When separating mortality from other end 
points (Figure 5), mortality was not significantly asso-
ciated with cTnI increases (fully adjusted hazard ratio, 
1.09 [0.38–3.10]), whereas major adverse cardiovas-
cular outcomes were strongly associated (fully adjusted 
hazard ratio, 3.75 [1.56–9.02]). This could be attribut-
able to the lower statistical power of the independent 
outcomes or to examining all-cause and not cardiovas-
cular mortality. The study cohort was not an athletic pop-
ulation but rather physically active individuals from the 
general population including older individuals with CVRF 
and CVD. Accordingly, these data are not applicable to 
younger cohorts of athletes with cTn values >URL, even 
when markedly elevated.

Preliminary data examined postexercise cTn con-
centrations in 991 healthy participants (46 [40–53] 
years) in the North Sea Race 91-km bike race.94 Par-
ticipants were followed for 5 years, and 12 (1.2%) 
experienced a cardiovascular event during follow-up. 
The prevalence of cTn >URL for cTnI and cTnT at 3 
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and 24 hours after exercise were 83% and 92%, and 
17% and 27%, respectively. Postexercise cTn concen-
trations >URL were not associated with cardiovascular 
events at 3 (log-rank test, cTnI: P=0.11, cTnT: P=0.35) 
or 24 hours (cTnI: P=0.45, cTnT: P=0.06).94 The low 
event rate may have contributed to the absence of an 
association, but the near-significant result for cTnT at 
24 hours is noteworthy.

Together, these 3 studies suggest that exaggerated 
postexercise cTn elevations may not be benign and 

may portend cardiovascular events in older individuals. 
It is unknown whether these findings can be extrapo-
lated to younger subjects and to athletes performing 
vigorous activities.

Clinical Management and Considerations
Exercise-induced cTn elevations can lead to clinical con-
fusion in the emergency department when individuals 
present postexercise with elevated cTn  concentrations. 

Table 2. Correlates Between Coronary Atherosclerosis, Myocardial Fibrosis, and Exercise-Induced cTn Release

Study
Cohort  
characteristics Health status

Exercise  
exposure cTn concentrations Findings

Coronary atherosclerosis

 Paana et al91 28 marathon runners

100% male

>44 y

CVD/cardiovascular 
risk factors unclear

15 runners with 
CAC score >0 
(53.6%)

CAC score: 2.0 
[0–80]

42.1-km foot race Before exercise:

hs-cTnT: 7.0 [5.3–8.8] ng/L

2.5% >URL hs-cTnT

0.5 h after exercise:

hs-cTnT: 41.0 [26.0–65.5] 
ng/L

95% >URL hs-cTnT

No association was present be-
tween CAC score and after exercise 
hs-cTnT concentrations (r=0.013, 
P=0.95).

 Mohlenkamp et al92 74 marathon runners

100% male

57.2±5.7 y

12% hypertension

0% CVD

47 runners with 
CAC score >0 
(63.5%)

40 runners with 
CAC score >10 
(54.1%)

42.1-km foot race

250±33 min

Before exercise:

cTnI: 0.01 [0–0.01] µg/L

0 h after exercise:

cTnI: 0.03 [0.02–0.08] µg/L

36.5% >URL cTnI

The prevalence of CAC score >0 
and CAC score >10 was compa-
rable for postexercise cTnI concen-
trations (62% vs 65%, P=0.99 and 
49% vs 59%, P=0.48) and exercise-
induced increases in cTnI (68% vs 
59%, P=0.63 and 54% vs 54%, 
P=0.99) greater than or less than 
the median value.

 Kleiven et al10 120 cyclists

74% male

45 [36–52] y

No CVD, no cardio-
vascular medication

39 cyclists had 
CAD (32.5%), of 
which 30 cyclists 
had nonobstruc-
tive CAD (25%) 
and 9 cyclists had 
obstructive CAD 
(7.5%)

91-km bike race

3.6 [3.4–4.1] h

Before exercise:

hs-cTnT: 3.1 (3.0–5.1) ng/L

3.3% >URL hs-cTnT

hs-cTnI: 2.7 (1.6–6.9) ng/L

8.3% >URL hs-cTnI

24 h after exercise:

hs-cTnT: 22.6 (14.6–36.4) 
ng/L

75.8% >URL hs-cTnT

hs-cTnI: 38.6 (19.1–196.9) 
ng/L

61.7% >URL hs-cTnI

cTn concentrations at 24 h after 
exercise were higher in cyclists with 
obstructive CAD (n=9, hs-cTnI: 151 
[72–233] ng/L, hs-cTnT: 39 [25–55] 
ng/L) than in the rest of the cohort 
(n=109, hs-cTnI: 24 [19–82] ng/L, 
P=0.005, hs-cTnT: 20 (14–31) ng/L, 
P=0.002).

Myocardial fibrosis

 Mohlenkamp et al92 74 marathon runners

100% male

57.2±5.7 y

12% hypertension

0% CVD

9 runners had LGE 
(12.2%)

42.1-km foot race

250±33 min

Before exercise:

cTnI: 0.01 [0–0.01] µg/L

0 h after exercise:

cTnI: 0.03 [0.02–0.08] µg/L

36.5% >URL cTnI

Runners with vs without LGE had 
higher after exercise cTnI concentra-
tions (0.08 [0.04–0.09] µg/L vs 
0.04 [0.03–0.06] µg/L, P=0.039) 
and greater exercise-induced cTnI 
elevations (0.05 µg/L [0.03–0.08] vs 
0.02 [0.01–0.05] µg/L, P=0.0496).

 Tahir et al93 30 triathletes

100% male

45±10 y

No CVD, no cardio-
vascular medication

10 triathletes had 
LGE (66.7%)

Different triathlon 
distances

68±77 km of 
which 1.3±0.5 km 
swimming, 72±89 
km cycling, and 
16±12 km running

3.3±2.7 h

Before exercise:

cTnT: 7±4 ng/L

2.4±1.1 h after exercise:

cTnT: 57±86 ng/L

Triathletes with vs without LGE had 
comparable after exercise cTnT 
concentrations (40±26 vs 65±103 
ng/L, P>0.05).

CAC indicates coronary artery calcification; CAD, coronary artery disease; cTnI, cardiac troponin I; CVD, cardiovascular disease; hs-cTnT, high sensitivity cardiac 
troponin T; hs-cTnI, high sensitivity cardiac troponin I; and URL, upper reference limit.
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Several clinical approaches have been suggested5 and 
remain appropriate. Clinicians should follow usual clini-
cal protocols but be especially cognizant that exercise 
can increase cTn concentrations far above the URL and 
thus can explain cTn elevations after exercise. Patients 
presenting postexercise with any clinical concern for 
an acute coronary syndrome (with elevated cTn or not) 
should undergo the appropriate evaluation including 
12-lead ECG, serial cTn testing, and some form of ei-
ther noninvasive or invasive risk stratification as dictat-
ed by the overall clinical picture. However, assessment 

of CAD (eg, with coronary artery calcification scoring) 
is not indicated solely on the basis of lone postexercise 
cTn elevations.

Clinicians who oversee mass sporting events are 
not recommended to do on-site cTn testing outside of 
a clear research agenda unless future research sup-
ports its added value. If postexercise cTn elevations 
are found, the clinical significance is unclear, although 
some studies suggest that postexercise cTn elevations 
may portend future cardiac events in a small number 
of individuals.

Table 3. Overview of Studies Assessing the Prognostic Value of Exercise-Induced cTn Release

Study Cohort characteristics
Exercise expo-
sure

Prevalence 
postexercise 
cTn >URL

Follow-up 
duration

Clinical out-
comes Findings

Cardiovascular patients

 Lanza et al80 69 patients admitted to 
emergency department 
with suspected unstable 
angina

68% male

58±10 y

67% hypertension

20% previous percutane-
ous coronary intervention

Symptom- or 
sign-limited Bruce 
treadmill exercise 
stress test

7.8±2.7 min

84±11% HRmax

4 h after exer-
cise:

20.3% >URL 
hs-cTnT

0.5 y 23 patients 
with recurrent 
angina (33.3%)

Postexercise hs-cTnT concen-
trations did not differ between 
patients with or without recurrent 
angina during follow-up.

 Kokowicz et al81 118 patients referred for 
elective coronary angi-
ography

64% male

61±9 y

61% hypertension

22% CVD

Symptom- or 
sign-limited Bruce 
treadmill exercise 
stress test

6–12 min

HRmax 128±25 
bpm

24 h after exer-
cise:

9% >URL cTnI

3.0 [1.3–4.1] y 21 adverse 
events (17.8%)

5 deaths

16 MACE

Postexercise cTnI concentrations 
>URL were not prognostic of 
adverse events during follow-up, 
because the event rate did not 
differ in patients above or below 
the URL (27% vs 17%, P>0.05).

Endurance athletes

  Aengevaeren 
et al11

725 older long-distance 
walkers

62% male

61 [54–69] y

26% cardiovascular risk 
factors

14% CVD

30–55 km walking

8.3 [7.3–9.3] h

68±10% HRmax

0 h after exer-
cise:

9% >URL cTnI

3.6 [1.9–6.4] y 62 adverse 
events (8.6%)

29 deaths

33 MACE

Postexercise cTnI concentrations 
>URL independently predicted 
higher mortality and cardiovascu-
lar events (HRadjusted: 2.48 [95% 
CI, 1.29–4.78]).

  Mohlenkamp et 
al 92

74 marathon runners

100% male

57.2±5.7 y

12% hypertension

0% CVD

42.1-km foot race

250±33 min

0 h after exer-
cise:

36.5% >URL 
cTnI

6.2±1.2 y 6 cardiovas-
cular events 
(8.1%)

Runners with a postexercise cTnI 
concentrations greater than or 
less than the median value had a 
similar coronary event rate (8.1% 
vs 8.1%).

 Ørn et al94 1002 healthy cyclists

78% male

46 [40–53] y

2.3% hypertension

0% CVD

91-km bike race

3.8 (3.4–4.3) h

89% [85%–93%] 
HRmax

3 h after exer-
cise:

82.8% >URL 
hs-cTnI

91.8% >URL 
hs-cTnT

24 h after exer-
cise:

16.7% >URL 
hs-cTnI

26.2% >URL 
hs-cTnT

5 y 12 cardiovas-
cular events 
(1.2%)

Postexercise cTn concentrations 
>URL were not associated with 
increased risk of adverse cardio-
vascular events, neither at 3 h 
nor at 24 h after the race.

cTnI indicates cardiac troponin I; CVD, cardiovascular disease; HRadjusted, adjusted hazard ratio; HRmax, estimated maximal heart rate; hs-cTnI, high sensitivity cardiac 
troponin I; hs-cTnT, high sensitivity cardiac troponin T; MACE, major adverse cardiovascular outcome; and URL, upper reference limit. 
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FUTURE DIRECTIONS
Many studies have used 1 phlebotomy time point after 
exercise, and this time point often varies among studies, 
whereas only a few studies have investigated cTn release 
during exercise. Future studies should use similar time 
points for similar outcome measures. It appears that peak 
cTn values are achieved at 2 to 6 hours after a bout of en-
durance exercise. More research is needed to determine 
whether a specific postexercise time point may be predic-
tive of future mortality and cardiovascular outcome.

There is evidence that both physiological and revers-
ible, and pathological and irreversible myocardial injury, 
as well, might contribute to the exercise-induced cTn 
response, and this may be mediated by the population 
being studied. Mechanisms may also differ between 
populations because exercise-induced cTn release may 
be more likely related to reversible myocardial injury 
in healthy individuals, whereas irreversible myocardial 
injury might be more common in individuals with under-
lying CVD. Cellular and animal models, novel imaging 
techniques, and novel biomarker assays are needed to 
examine these possibilities. For example, a study using 
diffusion-weighted MRI could assess whether the larger 
exercise-induced elevations in cTn concentrations in indi-
viduals with CVRF are attributable to larger decreases in 
cardiomyocyte integrity. Assessing the types and sizes of 
cTn fragments and the appearance of apoptotic biomark-
ers would contribute to this analysis. Future work examin-

ing exercise-induced cTn release in healthy participants, 
and those with underlying cardiovascular disease, should 
examine the influence of coronary blood flow, because 
the differential response between these populations may 
be explained by the degree of coronary occlusion or ves-
sel reactivity and the corollary impact on the washout of 
cTn stimulated by exercise.

Large prospective studies in clinical and recreational 
athletic populations with prolonged follow-up are needed 
to determine whether exercise-induced cTn predicts 
future cardiovascular events. Subsequent studies can 
then determine if altering the cTn response by exercise 
training or pharmacological treatment (eg, statins or 
aspirin) can alter cardiovascular outcomes.

CONCLUSIONS
Exercise of different types, durations, and intensities 
commonly increases cTn. cTn transiently increases after 
the performance of endurance exercise with peak val-
ues typically 2 to 6 hours after exercise. The underlying 
mechanisms are not clearly defined, but evidence sup-
ports the hypothesis that sarcolemmal permeability from 
reversible cardiac injury permits cTn fragments from an 
early releasable pool to leak from the cardiomyocyte. Evi-
dence also suggests increased apoptosis or accelerated 
cardiomyocyte turnover attributable to myocardial stress 
or brief ischemia. Few studies have investigated the pre-
dictive value of exercise-induced cTn for cardiovascular 
events, but older long-distance walkers with a postex-
ercise cTn concentration >URL experienced increased 
cardiovascular events. These findings need to be con-
firmed and the prognostic significance of cTn in younger 
athletic subjects needs to be determined.
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Troponin I was measured ≈10 minutes after 30 to 55 km of walking 
in 725 older long-distance walkers who experienced 62 events, 29 
deaths, and 33 MACEs, during 43 [23–77] months follow-up. MACE 
indicates major adverse cardiovascular event.
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