
Arnold Mathematical Journal (2021) 7:407–417
https://doi.org/10.1007/s40598-021-00175-x

RESEARCH CONTRIBUT ION

Interpolation of Weighted Extremal Functions

Alexander Rashkovskii1

Received: 7 June 2019 / Revised: 18 January 2021 / Accepted: 22 February 2021 /
Published online: 16 March 2021
© The Author(s) 2021

Abstract
An approach to interpolation of compact subsets of Cn , including Brunn–Minkowski
type inequalities for the capacities of the interpolating sets, was developed in [8]
by means of plurisubharmonic geodesics between relative extremal functions of the
given sets. Here we show that a much better control can be achieved by means of the
geodesics between weighted relative extremal functions. In particular, we establish
convexity properties of the capacities that are stronger than those given by the Brunn–
Minkowski inequalities.
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1 Introduction

Classical complex interpolation of Banach spaces, due to Calderón [5] (see [3] and, for
more recent developments, [7]) is based on constructing holomorphic hulls generated
by certain families of holomorphic mappings. A slightly different approach proposed
in [8] rests on plurisubharmonic geodesics. The notion has been originally consid-
ered, starting from 1987, for metrics on compact Kähler manifolds (see [10] and the
bibliography therein), while its local counterpart for plurisubharmonic functions on
bounded hyperconvex domains of Cn was introduced more recently in [4] and [18],
see also [1].

In the simplest case, the geodesics we need can be described as follows. Denote
by A = {ζ ∈ C : 0 < log |ζ | < 1} the annulus bounded by the circles A j = {ζ :
log |ζ | = j}, j = 0, 1. Let Ω be a bounded hyperconvex domain in C

n . Given two
plurisubharmonic functions u0, u1 in Ω , equal to zero on ∂Ω , we consider the class
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W of all plurisubharmonic functions u(z, ζ ) in Ω × A, such that

lim sup
ζ→A j

u(z, ζ ) ≤ u j (z) ∀z ∈ Ω.

Its Perron envelope PW (z, ζ ) = sup{u(z, ζ ) : u ∈ W } belongs to the class and
satisfies PW (z, ζ ) = PW (z, |ζ |), which gives rise to the functions

ut (z) := PW (z, et ), 0 < t < 1,

the geodesic between u0 and u1. When the functions u j are bounded, the geodesic ut

tends to u j as t → j , uniformly on Ω . One of the main properties of the geodesics is
that they linearize the pluripotential energy functional

E(u) =
∫

Ω

u(ddcu)n,

which means
E(ut ) = (1 − t) E(u0) + t E(u1); (1)

see the details in [4] and [18].
In [18], this was adapted to the case when the endpoints u j are relative extremal

functions ωK j of non-pluripolar compact sets K0, K1 ⊂ Ω; we recall that

ωK (z) = ωK ,Ω(z) = lim sup
y→z

PNK (y),

where NK is the collection of all negative plurisubharmonic functions u in Ω with
u|K ≤ −1, see [14]. Note that

E(ωK ) = −Cap (K ),

where

Cap (K ) = Cap (K ,Ω) = (ddcωK )n(Ω) = (ddcωK )n(K )

is the Monge–Ampère capacity of K relative to Ω .
If each K j is polynomially convex (i.e., coincides with its polynomial hull), then

the functions u j = −1 exactly on K j are continuous on Ω , and the geodesics ut ∈
C(Ω × [0, 1]). Let

Kt = {z ∈ Ω : ut (z) = −1}, 0 < t < 1; (2)

then (1) implies:
Cap (Kt ) ≤ (1 − t)Cap (K0) + t Cap (K1). (3)

As was shown in [19], the functions ut in general are different from the relative
extremal functions of Kt . Moreover, if the sets K j are Reinhardt (toric), then ut = ωKt
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for some t ∈ (0, 1) only if K0 = K1, so an equality in (3) is never possible unless the
geodesic degenerates to a point.

Furthermore, in the toric case, the capacities (with respect to the unit polydisk
D

n) were proved in [8] to be not just convex functions of t , as is depicted in (3), but
logarithmically convex:

Cap (Kt ,D
n) ≤ Cap (K0,D

n)1−t Cap (K1,D
n)t . (4)

This was done by representing the capacities, due to [2], as (co)volumes of certain
sets inRn and applying convex geometry methods to an operation of copolar addition
introduced in [19]. Furthermore, the sets Kt in the toric situation were shown to be
the geometric means (multiplicative combinations) of K j , exactly as in the Calderón
complex interpolation theory.And again, an equality in (4) is possible only if K0 = K1.
It is worth mentioning that the volumes of Kt satisfy the opposite Brunn–Minkowski
inequality [6]:

Vol(Kt ) ≥ Vol(K0)
1−tVol(K1)

t .

In this note,we apply the geodesic technique toweighted relative extremal functions

uc
j = c j ωK j , c j > 0,

the sets Kt being replaced with the sets K c
t where the functions uc

t attain their minimal
values,−ct . The function t �→ ct turns out to be convex; moreover, it is actually linear,
ct = (1 − t) c0 + t c1, provided K0 ∩ K1 
= ∅. With such an interpolation, one can
have uc

t = ct ωK c
t ,Ω for a non-degenerate geodesic, in which case there is no loss in

the transition from the functional E(uc
t ) to the capacity Cap (K c

t ). And in any case, we
establish the weighted inequality

cn+1
t Cap (K c

t ) ≤ (1 − t) cn+1
0 Cap (K0) + t cn+1

1 Cap (K1),

which, for a smart choice of the constants c j , is stronger than (3) and even (in the toric
case) than (4). In particular, it implies that the function

t �→ (
Cap (K c

t )
)− 1

n+1

is concave.
In the toric setting of Reinhardt sets K j in the unit polydisk, we show that the

interpolating sets K c
t actually are the geometric means, so they do not depend on the

weights c j and coincide with the sets Kt in the non-weighted interpolation; we do not
know if the latter is true in the general, non-toric setting.

Finally, we transfer the above results on the capacities of sets in C
n to the realm

of convex geometry, developing thus the Brunn–Minkowski theory for volumes of
(co)convex sets in Rn [8,12,19].
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2 General Setting

Here, we consider the general case of uc
j = c j ωK j with c j > 0 and K j non-pluripolar,

compact, polynomially convex subsets of a bounded hyperconvex domainΩ ofCn . In
this situation, the functions uc

j (z) = −c j precisely on K j and are continuous onΩ , the

geodesics ut converge to u j , uniformly on Ω , as t → j , and belong to C(Ω ×[0, 1]),
as in the non-weighted case dealt with in [18] and [8].

Denote:

ct = −min{uc
t (z) : z ∈ Ω}

and
K c

t = {z ∈ Ω : uc
t (z) = −ct }, 0 < t < 1, (5)

the set where uc
t attains its minimal value on Ω .

Theorem 1 In the above setting, we have:

(i) ct ≤ (1 − t) c0 + t c1, with an equality if K0 ∩ K1 
= ∅;
(ii) the function t �→ cn+1

t Cap (Kt ) is convex:

cn+1
t Cap (K c

t ) ≤ (1 − t) cn+1
0 Cap (K0) + t cn+1

1 Cap (K1); (6)

(iii) if the weights c j are chosen such that

cn+1
0 Cap (K0) = cn+1

1 Cap (K1), (7)

then the function

V (t) := (
Cap (K c

t )
)− 1

n+1

is concave and, consequently, the function

ρ(t) := V (t)−1 = (
Cap (K c

t )
) 1

n+1

is convex.

Proof (i) Consider v j = c j ωK for j = 0, 1, where K = K0 ∪ K1. The set K might
be not polynomially convex, but ωK is nevertheless a bounded plurisubharmonic
function on Ω with zero boundary values, so the geodesic vc

t is well defined
and converge to v j , uniformly on Ω , as t → j [18, Prop. 3.1]. Since v j ≤
uc

j , we have vc
t ≤ uc

t . Assume c0 ≥ c1, then the corresponding geodesic vc
t =

max{c0 ωK ,−((1− t) c0+ t c1)}, because the right-hand side is maximal inΩ × A
and has the prescribed boundary values at t = 0 and t = 1. Therefore:

−ct ≥ min{vc
t (z) : z ∈ Ω} ≥ −((1 − t) c0 + t c1),
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Interpolation of Weighted Extremal Functions 411

which proves the convexity of ct .
To finish the proof of (i), let z∗ ∈ K0 ∩ K1 
= ∅, then −ct ≤ uc

t (z
∗). Since the

convexity of the function uc
t (z

∗) in t implies uc
t (z

∗) ≤ −((1 − t) c0 + t c1), we get
ct ≥ (1 − t) c0 + t c1 and thus the linearity.

(ii) Since uc
j = c j ωK j , we have:

E(u j ) = cn+1
j

∫
Ω

(ddcωK j )
n = −cn+1

j Cap (K j ), j = 1, 2.

For any fixed t , the function uc
t = −ct on K c

t , so uc
t ≤ −ct ωK c

t
. By [18, Cor. 2.2]

this implies

E(uc
t ) ≤ E(ct ωK c

t
) = −cn+1

t Cap (K c
t ),

and (6) follows from the geodesic linearization property (1).
(iii) It suffices to prove the concavity of the function V . When the weights c j satisfy

(7), inequality (6) rewrites as

V (t) ≥ ct

c0
V (0)

and, since

c1 = V (1)

V (0)
c0,

this gives us

V (t) ≥ (1 − t) V (0) + t V (1),

which completes the proof.

��
The convexity/concavity results in this theorem are stronger than inequality (3)

obtained in [18] by the geodesic interpolation ut of non-weighted extremal functions.
In addition, the non-weighted geodesic ut is very unlikely to be the extremal function
of the set Kt (as shown in [19], this is never the case in the toric situation, unless
K0 = K1), while this is perfectly possible in the weighted interpolation. For example,
given K0 � Ω , let

K1 =
{

z ∈ Ω : ωK0(z) ≤ −1

2

}
,

then ωK1,Ω = max{2ωK0,Ω,−1}. For c0 = 2 and c1 = 1, we get:

uc
t = max{2ωK0 ,−2 + t} = (2 − t) ωK c

t
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with

K c
t = {z ∈ Ω : ωK0(z) ≤ −1 + t/2},

so

Cap (K c
t ) =

(
1 − t

2

)−1

|E(uc
t )| =

(
1 − t

2

)−1−n

Cap (K0).

3 Toric Case

In this section, we assume Ω = D
n , the unit polydisk, and K0, K1 ⊂ D

n to be
non-pluripolar, polynomially convex compact Reinhardt (multicircled, toric) sets.
Polynomial convexity of such a set K means that its logarithmic image

Log K = {s ∈ R
n− : (es1 , . . . , esn ) ∈ K }

is a complete convex subset of Rn−, i.e., Log K + R
n− ⊂ log K ; we will also say that

K is complete logarithmically convex. The functions c j ωK j are toric, and so is their
geodesic uc

t . Note that since K0 ∩ K1 
= ∅, inequality (6) and the concavity/convexity
statements of Theorem 1(iii) hold true.

It was shown in [8] that the sets Kt defined by (2) for the geodesic interpolation
of non-weighted toric extremal functions ωK j are, as in the classical interpolation
theory, the geometric means K ×

t of K j . Here, we extend the result to the weighted
interpolation, which shows, in particular, that the sets K c

t do not depend on the weights
c j . The relation K ×

t ⊂ K c
t is easy, while the reverse inclusion is more elaborate; we

mimic the proof of the corresponding relation for the non-weighted case [8] that rests
on a machinery developed in [19].

Any toric plurisubharmonic function u(z) in Dn gives rise to a convex function

ǔ(s) = u(es1 , . . . , esn ), s ∈ R
n−, (8)

and the geodesic uc
t generates the function ǔc

t , convex in (s, t) ∈ R
n− × (0, 1).

Given a convex function f on R
n−, we extend it to the whole Rn as a lower semi-

continuous convex function on R
n , equal to +∞ on R

n\Rn−, and we denote L[ f ] its
Legendre transform:

L[ f ](x) = sup
y∈Rn

{〈x, y〉 − f (y)}.

Evidently, L[ f ](x) = +∞ if x /∈ R
n+, and the Legendre transform is an involutive

duality between convex functions on Rn+ and R
n−.

It was shown in [19] that for the relative extremal function ωK = ωK ,Dn

L[ω̌K ] = max{hQ + 1, 0},
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Interpolation of Weighted Extremal Functions 413

where

hQ(a) = sup
s∈Q

〈a, s〉, a ∈ R
n+

is the support function of the convex set Q = Log K ⊂ R
n−. Therefore, for a weighted

relative extremal function u = c ωK , we have:

L[ǔ](a) = c j L[ω̌K j ](c−1
j a) = max{hQ(a) + c j , 0}. (9)

Theorem 2 Given two non-pluripolar complete logarithmically convex compact Rein-
hardt sets K0, K1 ⊂ D

n and two positive numbers c0 and c1, let uc
t be the geodesic

connecting the functions u0 = c0 ωK0 and u1 = c1 ωK1 . Then the interpolating sets
K c

t defined by (5) coincide with the geometric means:

K ×
t := K 1−t

0 K t
1 = {z : |zl | = |ηl |1−t |ξl |t , 1 ≤ l ≤ n, η ∈ K0, ξ ∈ K1}.

Proof Since the sets K ×
t and K c

t are complete logarithmically convex, it suffices to
prove that Qt := Log K ×

t coincides with Qc
t := Log K c

t .
The inclusion Qt ⊂ Qc

t follows from convexity of the function ǔc
t (s) in (s, t) ∈

R
n− × (0, 1): if s ∈ Qt , then s = (1 − t) s0 + t s1 for some s j ∈ Q j , so:

ǔt (s) ≤ (1 − t) ǔ0(s0) + t ǔ1(s1) = ct ,

while we have ǔt (s) ≥ −ct for all s. This gives us s ∈ Qc
t .

To prove the reverse inclusion, take an arbitrary point ξ ∈ R
n−\Qt , then there exists

b ∈ R
n+, such that

〈b, ξ 〉 > hQt (b) = (1 − t)hQ0(b) + t hQ1(b). (10)

By the homogeneity of the both sides, we can assume hQ0(b) ≥ −c0 and hQ1(b) ≥
−c1. Then, by (9) and (10), we have:

ǔt (ξ) = sup
a

[〈a, ξ 〉 − (1 − t)max{hQ0(a) + c0, 0} − t max{hQ1(a) + c1, 0}]
≥ 〈b, ξ 〉 − (1 − t)max{hQ0(b) + c0, 0} − t max{hQ1(b) + c1, 0}
> (1 − t)[hQ0(b) − (hQ0(b) + 1)] + t[hQ1(b) − (hQ1(b) + 1)] = −1,

so ξ /∈ Qc
t . ��

Now, the corresponding assertions of Theorem 1 can be stated as follows.

Theorem 3 For non-pluripolar complete logarithmically convex compact Reinhardt
sets K0, K1 ⊂ D

n, the inequality

cn+1
t Cap (K ×

t ,Dn) ≤ (1 − t) cn+1
0 Cap (K0,D

n) + t cn+1
1 Cap (K1,D

n) (11)
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holds true for any c0, c1 > 0 and ct = (1 − t) c0 + t c1.
In particular, the function

t �→ (
Cap (K ×

t ,Dn)
)− 1

n+1

is concave and consequently the function

t �→ (
Cap (K ×

t ,Dn)
) 1

n+1

is convex.

Aswe saw in the example in the previous section, sometimes one can have ut = ωK c
t

for u j = c j ωK j , in which case (11) becomes an equality. Our next result determines
when this is possible for the toric case.

Theorem 4 In the conditions of Theorem 2, the geodesic uc
τ equals cτ ωKτ for some

τ ∈ (0, 1) if and only if

K c0
1 = K c1

0 ,

that is, c0 Log K1 = c1 Log K0.

Proof We will use the toric geodesic representation formula established in [19, Thm.
5.1]:

ǔt = L [
(1 − t)L[ǔ0] + tL[ǔ1]

]
, (12)

which is a local counterpart of Guan’s result [9] for compact toric manifolds; here, ǔ
is the convex image (8) of the toric plurisubharmonic function u.

Let Qt = log Kt , 0 ≤ t ≤ 1. By (9), uc
τ = cτ ωKτ means

(1 − τ)max{hQ0(a) + c0, 0} + τ max{hQ1(a) + c1, 0} = max{hQτ (a) + cτ , 0},

or, which is the same,

max{h(1−τ)Q0(a) + (1 − τ)c0, 0} + max{hτ Q1(a) + τc1, 0} = max{hQτ (a) + cτ , 0}

for all a ∈ R
n+. Therefore, hQ0(a) ≤ −c0 if and only if hQ1(a) ≤ −c1, so c0 Q◦

0 =
c1 Q◦

1 and, since (c Q)◦ = c−1Q◦, we get c0 Q1 = c1 Q0. Here Q◦ is the copolar
(14) to the set Q, see the beginning of the next section. ��

4 Covolumes

In the toric case, the Monge–Ampère capacities with respect to the unit polydisk can
be represented as volumes of certain sets [2,19]. Namely, if K � D

n is complete and
logarithmically convex, then Q := Log K ⊂ R

n− and

Cap (K ,Dn) = n!Covol(Q◦) := n!Vol(Rn+\Q◦), (13)
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where the convex set Q◦ ⊂ R
n+ defined by

Q◦ = {x ∈ R
n : hQ(x) ≤ −1} = {x ∈ R

n : 〈x, y〉 ≤ −1 ∀y ∈ Q} (14)

is, in the terminology of [19], the copolar to the set Q. In particular:

Cap (K ×
t ,Dn) = n!Covol(Q◦

t )

for the copolar Q◦
t of the set Qt = (1 − t)Q0 + t Q1; we would like to stress that

Q◦
t 
= (1 − t)Q◦

0 + t Q◦
1.

Convex complete subsets P ofRn+ (i.e., P +R
n+ ⊂ P) appear in singularity theory

and complex analysis (see, for example, [11–13,15–17]), their covolumes (the volumes
of Rn+\P) being used for computation of the multiplicities of mappings, etc. Such a
set P generates, by the same formula (14), its copolar P◦ ⊂ R

n−, whose exponential
image Exp P◦ (the closure of all points (es1 , . . . , esn ) with s ∈ P◦) is a complete
logarithmically convex subset of Dn . Since taking the copolar is an involution, the
representation (13) translates coherently the inequalities on the capacities to those
on the (co)volumes. Namely, Cap (Q j ) becomes replaced by Covol(Pj ) with Pj =
Q◦

j ⊂ R
n+ for j = 0, 1, while Cap (Qt ) has to be replaced with the covolume of the

set whose copolar is Qt , that is, with
(
(1 − t) P◦

0 + t P◦
1

)◦. The operation of copolar
addition

P0 ⊕ P1 := (
P◦
0 + P◦

1

)◦

was introduced in [19]. In particular, it was shown there that the copolar sum of any
pair of cosimplices in Rn+, unlike their Minkowski sum, is still a simplex.

Corollary 1 Let P0, P1 be non-empty convex complete subsets of Rn+, and let the inter-
polating sets P⊕

t be defined by

P⊕
t = (

(1 − t)P◦
0 + t P◦

1

)◦
, 0 < t < 1.

Then the inequality

cn+1
t Covol(P⊕

t ) ≤ (1 − t) cn+1
0 Covol(P0) + t cn+1

1 Covol(P1)

holds true for any c0, c1 > 0 and ct = (1 − t) c0 + t c1.
In particular, the function

V ⊕[P](t) := (
Covol(P⊕

t )
)− 1

n+1

is concave and, consequently, the function

ρ⊕[P](t) := (
Covol(P⊕

t )
) 1

n+1

is convex.
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Note that the convexity of ρ⊕ (following from the concavity of V ⊕) implies that
the function

ρ̃⊕[P](t) := (
Covol(P⊕

t )
) 1

n

is convex as well. Since ρ̃⊕ is a homogeneous function of P , that is,

ρ̃⊕[c P](t) = c ρ̃⊕[P](t)

for all c > 0 and 0 < t < 1, its convexity is equivalent to the logarithmic convexity
of the covolumes, established in [8] by convex geometry methods:

Covol(P⊕
t ) ≤ Covol(P0)

1−tCovol(P1)
t ,

which is just another form of the Brunn–Minkowski type inequality (4). Therefore, the
concavity of the function V ⊕ is a stronger property than just the logarithmic convexity
of the covolumes.

Acknowledgements The author would like to thank the anonymous referee for suggestions that have
improved the presentation.

Funding Open access funding provided by University Of Stavanger.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abja, S.: Geometry and topology of the space of plurisubharmonic functions. J. Geom. Anal. 29(1),
510–541 (2019)

2. Aytuna, A., Rashkovskii, A., Zahariuta, V.: Widths asymptotics for a pair of Reinhardt domains. Ann.
Polon. Math. 78, 31–38 (2002)

3. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)
4. Berman, R.J., Berndtsson, B.: Moser–Trudinger type inequalities for complex Monge–Ampère oper-

ators and Aubin’s “hypothèse fondamentale”. arXiv:1109.1263
5. Calderón, A.-P.: Intermediate spaces and interpolation, the complexmethod. StudiaMath. 24, 113–190

(1964)
6. Cordero-Erausquin, D.: Santaló’s inequality on C

n by complex interpolation. C. R. Acad. Sci. Paris
Ser. I 334, 767–772 (2002)

7. Cordero-Erausquin,D.,Klartag,B.: Interpolations, convexity and geometric inequalities. In:Geometric
Aspects of FunctionalAnalysis, LectureNotes inMath., vol. 2050, pp. 151–168. Springer,Berlin (2012)

8. Cordero-Erausquin, D., Rashkovskii, A.: Plurisubharmonic geodesics and interpolating sets. Arch.
Math. (Basel) 113(1), 63–72 (2019)

9. Guan, D.: On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric
bundles. Math. Res. Lett. 6(5–6), 547–555 (1999)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1109.1263


Interpolation of Weighted Extremal Functions 417

10. Guedj, V. (ed.): Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics.
Lecture Notes in Math., vol. 2038. Springer, Berlin (2012)

11. Kaveh, K., Khovanskii, A.: Convex bodies andmultiplicities of ideals. Proc. Steklov Inst.Math. 286(1),
268–284 (2014)

12. Khovanskiı̆, A., Timorin, V.: On the theory of coconvex bodies. Discrete Comput. Geom. 52(4), 806–
823 (2014)

13. Kim, D., Rashkovskii, A.: Higher Lelong numbers and convex geometry. To appear in J. Geom. Anal.;
arXiv:1803.07948

14. Klimek, M.: Pluripotential Theory. Oxford University Press, London (1991)
15. Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)
16. Rashkovskii, A.: Newton numbers and residual measures of plurisubharmonic functions. Ann. Polon.

Math. 75(3), 213–231 (2000)
17. Rashkovskii, A.: Tropical analysis of plurisubharmonic singularities. In: Tropical and Idempotent

Mathematics, Contemp. Math., vol. 495, pp. 305–315. Amer. Math. Soc., Providence (2009)
18. Rashkovskii, A.: Local geodesics for plurisubharmonic functions. Math. Z 287, 73–83 (2017)
19. Rashkovskii, A.: Copolar convexity. Ann. Polon. Math. 120(1), 83–95 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1803.07948

	Interpolation of Weighted Extremal Functions
	Abstract
	1 Introduction
	2 General Setting
	3 Toric Case
	4 Covolumes
	Acknowledgements
	References




