
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received July 19, 2021, accepted August 3, 2021, date of publication August 13, 2021, date of current version August 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104724

Automatic Diagnostic Tool for Predicting Cancer Grade
in Bladder Cancer Patients Using Deep Learning
RUNE WETTELAND 1, VEBJØRN KVIKSTAD 2,3, TRYGVE EFTESTØL 1, (Senior Member, IEEE),
ERLEND TØSSEBRO 1, MELINDA LILLESAND 2, EMIEL A. M. JANSSEN 2,3,
AND KJERSTI ENGAN 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Stavanger, Norway
2Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway
3Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway

Corresponding author: Rune Wetteland (rune.wetteland@uis.no)

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Regional Committees for Medical and Health Research Ethics (REC) under Application No. 2011/1539, and performed in
line with the Norwegian Health Research Act.

ABSTRACT The most common type of bladder cancer is urothelial carcinoma, which is among the cancer
types with the highest recurrence rate and lifetime treatment cost per patient. Diagnosed patients are stratified
into risk groups, mainly based on grade and stage. However, it is well known that correct grading of bladder
cancer suffers from intra- and interobserver variability and inconsistent reproducibility between pathologists,
potentially leading to under- or overtreatment of the patients. The economic burden, unnecessary patient
suffering, and additional load on the health care system illustrate the importance of developing new tools
to aid pathologists. We propose a pipeline, called TRIgrade, that will identify diagnostic relevant regions in
the whole-slide image (WSI) and collectively predict the grade of the current WSI. The system consists
of two main models, trained on weak slide-level grade labels. First, a WSI is segmented into the different
tissue classes (urothelium, stroma, muscle, blood, damaged tissue, and background). Next, tiles are extracted
from the diagnostic relevant urothelium tissue from three magnification levels (25x, 100x, and 400x) and
processed sequentially by a convolutional neural network (CNN) based model. Ten models were trained for
the slide-level grading experiment, where the best model achieved an F1-score of 0.90 on a test set consisting
of 50 WSIs. The best model was further evaluated on a smaller segmentation test set, consisting of 14 WSIs
where low- and high-grade regions were annotated by a pathologist. The TRIgrade pipeline achieved an
average F1-score of 0.91 for both the low-grade and high-grade classes.

INDEX TERMS Automated cancer grading, bladder cancer, convolutional neural networks, multiscale
classification, urothelial carcinoma, weakly labeled data, whole-slide image.

I. INTRODUCTION
Bladder cancer is the 10th most commonly diagnosed cancer
disease worldwide, with 573 278 new cases in 2020 [1].
The most common type of bladder cancer is urothelial
carcinoma, in which men are overrepresented. It is among the
cancer types with the highest recurrence rate, approximatly
50 to 70%, which makes it especially challenging [2].
It requires an intensive treatment and follow-up plan, which
results in it being one of the cancer types with the highest
lifetime treatment cost per patient [3], [4]. In the case of
muscle-invasive bladder cancer (MIBC), where the cancer
has invaded the muscle wall of the bladder, a cystectomy
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is often required. However, cancers that stay confined in
the bladder mucosa are referred to as non-muscle-invasive
bladder cancer (NMIBC) and are easier to treat.

In histopathological diagnostics, pathologists use grading
and staging to describe the tumor. These parameters are
used to stratify patients into risk groups and form a suitable
treatment and follow-up plan. The grade of a tumor describes
the differentiation state of the tumor cells under amicroscope.
Different cancers have different grading scales, but in general,
if the cancer cells are similar to that of healthy non-cancerous
cells, the grade will be low, and the cancer will have a
lower likelihood of spreading. On the other hand, if the
cells have a more abnormal appearance and are disorganized,
the grade will be higher. In addition to the grade, tumor stage
is also important and is determined by the size of the primary
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FIGURE 1. Examples of low-grade and high-grade tiles extracted from a
WSI. The tiles are extracted from three magnification levels (25x, 100x,
and 400x) and all have the same size of 256 × 256 pixels.

tumor, how far it has spread into the surrounding tissue,
and the number of primary tumors present. In this paper,
we focus on grading of NMIBC. However, it is well known
that correct grading of bladder cancer suffers from intra-
and interobserver variability and inconsistent reproducibility
between pathologists [5], [6], which can lead to both under-
or overtreatment of the patients. New tools to aid pathologists
are therefore desired.

TheWorld Health Organization (WHO) has proposed three
grading systems for bladder cancer. The first grading system
was introduced in 1973, referred to as WHO73, which is
still somewhat used today. It consists of three categories,
grade 1, grade 2, and grade 3, where grade 3 is themost severe
state. A revised edition of the grading system was introduced
in 2004 called WHO04, and further updated in 2016 as
WHO16. In these versions, cases are split into low- and high-
grade carcinoma. Some examples of low- and high-grade
areas are shown in Fig. 1. Grade 1 patients are referred to
as low-grade patients, and grade 3 patients are high-grade
patients. Patients diagnosed as grade 2, however, are now split
into either the low- or high-grade case. This might seem like
a minor change, but for a patient to be diagnosed as low-
or high-grade may result in very different follow-up regimes
and local treatment with potential adverse events. A patient
falsely diagnosed as a high-risk patient is an example of
unnecessary patient suffering by overtreatment, additional
load on the health care system, and extra cost. The data
material used in this paper was collected and diagnosed prior
to 2016 and will therefore focus on the WHO04 grading
system.

After the tumor is removed, it is placed on an object glass
and stained before a pathologist examines it. This is usually
done through a microscope; however, with the introduction of
digital pathology, digital versions of the stained specimen are
also available in the form of whole-slide images (WSI). This
has multiple advantages, such as remote access, storage and
sharing cases between institutes, cloud computing, improved
workflow, as well as computational pathology, which enables
the use of new tools to process and interpret the tissue
samples. All of which can improve the diagnostic accuracy
and the clinical outcome of the patients [7]–[11].

Recent years have seen a rapid increase in both interest
and usage of machine learning applications. Such tools could
potentially be used to assist pathologists and help reduce
the increasing workload. Also, because the errors made by
a machine learning system may be different from that of a
pathologist, the two may be combined for improved accuracy
by the pathologist, as shown by Wang et al. [12]. Low
reproducibility and variability in interpretations may also be
reduced if a trustworthy computer-aided diagnosis (CAD)
system could be implemented in a clinical setting.

With a CAD system, we want to map a WSI input to one
of the disease output categories. The traditional machine-
learning method to achieve this is by supervised learning.
A set of known image and label pairs are shown to the
model, which uses a gradient descent algorithm to optimize
its parameters. For these algorithms to work efficiently
and create robust models, a large set of image-label pairs
are needed. Within digital pathology, we have access to a
large amount of image data in the form of WSIs. However,
annotated data is limited, challenging the practicability of
supervised learning approaches. The nature of the images
also calls for expert input to be able to annotate them. This
is a time-consuming and, in some cases, challenging task.
To create enough of the image-label pairs necessary to train
these models and avoid the expensive annotation process,
one possibility is to utilize data already available in the form
of the slide-level diagnosis information. The WSIs are split
into smaller images in the form of tiles, and the slide-level
diagnosis will be assigned to each of the tiles.

For patients diagnosed with NMIBC, the tumor is usually
removed through transurethral resection of bladder tumor
(TURBT). During this process, parts of the tissue get dam-
aged, either heating damage from the cauterization process or
physical damage from tearing. Other tissue types, like stroma
or muscle, as well as blood, are also often present in the slides
of urothelial carcinoma. For the purpose of grading NMIBC,
urothelium is the most diagnostic relevant tissue. For staging,
both urothelium and stroma, and particularly the border
between them, is essential. The presence of muscle tissue
also has importance for correct staging. However, cauterized
tissue from the TURBT process, as well as areas containing
blood, have no diagnostic relevance. Feeding a deep learning
model with these irrelevant tissue classes, e.g., blood or
damaged tissue, may harm the diagnostic model’s accuracy.
To avoid this, we have previously proposed a method
based on convolutional neural networks (CNN), which
automatically segments NMIBC slides into background and
five foreground classes (urothelium, stroma, muscle, blood,
and damaged tissue). This tissue classification model is
referred to as the TRItissue-model in the following and is
explained in detail in Wetteland et al. [13].

In the current paper, we propose a system called
TRIgrade for automatically grading WSI according to the
WHO04 grading system. The proposed system uses the
TRItissue-model as a first-stage network for preprocessing
the WSI to find regions of urothelium tissue. The extracted
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urothelium tissue is then fed through a second-stage network
called the TRIWHO04-model for automatic grading.

The large size of the gigapixel images causes some
challenges. It is not possible to feed the entire image into a
deep learning algorithm; instead, tiles of a suitable size are
extracted from the WSI and fed to the algorithm sequentially.
The CNN-based model assigns a prediction score to every
tile. These predictions are used to create a heatmap showing
which regions were predicted with low- or high-grade
carcinoma. The final decision can further be aggregated from
the micro predictions into a slide-level prediction.

A WSI is stored in a pyramid format with multiple
magnification levels, where the different levels will give
different information. An example of such a pyramidal WSI
is shown in Fig. 2. A pathologist will typically zoom in and
out of a WSI to gather information at several scales before
reaching a final decision. Our proposed method mimics this
behavior by combining global context information and local
details by utilizing a multiscale model architecture.

A. PREVIOUS WORK
With the introduction of digital pathology, there has been an
increase in medical application research utilizing machine
learning and deep learning approaches. Most research is
related to cancer diseases such as breast, lung, prostate, brain,
and skin cancer [14]. By looking at the list of US Food
& Drugs Administration (FDA) approved artificial intelli-
gence (AI) based medical technologies, most are in the fields
of radiology, cardiology, and Internal Medicine/General
Practice [15]. Still, a lot of effort is also aimed towards
histological images [16]–[20].

The majority of CAD research conducted on histolog-
ical images utilize two or more seperate models in their
methods [16], [21]–[24]. First, a segmentation algorithm or
region of interest (ROI) selection step is performed to narrow
down the area which needs additional processing. This is
an important step that helps in several ways. Compared
to standard images, the WSIs are very large in size, and
it is computationally expensive to process the entire WSI.
By limiting the number of extracted tiles, the classification
runtime is reduced, speeding up the classification step. Also,
by removing the unwanted and diagnostically irrelevant
areas, the extracted datasets will consist of higher quality
tiles, which aids the classification algorithm in the following
steps. After segmentation, tiles from the ROI are processed,
usually by a classification model, which will predict the
class of the tiles. Examples of tile classes can be cancer vs.
non-cancer, recurrence vs. no recurrence, cancer grading or
staging, or other classes related to cancer diagnosis. After
all the selected tiles have been classified, the predictions are
aggregated into a final slide-level prediction, usually using
statistical or machine-learning methods.

Some research has been aimed towards urothelial
carcinoma, otherwise known as bladder cancer. In
Jansen et al. [22], they utilized two individual single-scale
neural networks to detect and grade 328 cases of bladder

FIGURE 2. WSI images are stored in a pyramidal format, where the base
image corresponds to the highest magnification level. The right-hand side
shows a set of three tiles extracted so that the center of the tile
corresponds to the same physical area in the WSI, forming a triplet.

cancer collected from 232 patients. A U-net-based segmenta-
tion networkwas trained to detect and segment the urothelium
tissue, used as input to a second network trained to grade the
urothelium tissue according to the WHO04 grading system.
The classification network assessed the WHO04 grading
on slide-level, using the majority vote of all classified
tiles. The predictions were compared with the grading of
three experienced pathologists. According to the consensus
reading, the classification model achieved an accuracy score
of 74%. The included whole-slide images were all exported
at 20x magnification (0.5 µm per pixel).
From the same research group, thework of Lucas et al. [24]

utilized the same urothelium segmentation model as
presented in [22]. Regions of urothelium were then fed into
a selection network which classified tiles into recurrence
vs. no recurrence. A strategy was applied to select features
from 200 tiles fed into a final bidirectional gated recurrent
unit (GRU) classification network that predicts 1-year and
5-year recurrence-free survival (RFS) in bladder cancer
patients.

The work of Zhang et al. [23] was also performed on
bladder cancer. They used three different neural networks
referred to as s-net, d-net, and a-net. The s-net model is
a U-net-like architecture that classifies each pixel as tumor
vs. non-tumor. The d-net then characterizes the tumor ROIs
and generates an interpretable diagnosis and low-dimensional
encodings. Finally, the a-net uses the ROI encodings and
predicts a slide-level WHO04 grading.

Multiscale cancer subtype classification, where two
or more different magnification scales are fed to the
classification model, has been shown to improve the accuracy
compared to single-scale models [13], [25]. This mimics
the pathologist’s process, which will zoom in and out to
investigate the tissue area at several scales.

In Skrede et al. [21] theWSI is first segmented, before tiles
are extracted at 10x and 40x resolution. The tiles from each
scale are fed to an ensemble of 5 models, using a total of ten
CNN-based models. The average score from the ensembles
is used to predict the prognosis of colorectal patients.
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TABLE 1. Overview of how the data material in this study is distributed
into training, validation, and test sets. For triplets in the training dataset,
see Table 2.

TABLE 2. Extracted triplets for the training dataset.

In the work of Hashimoto et al. [26] WSIs from malignant
lymphoma were fed to a multiscale CNN-based model. They
compared the results of models using tiles extracted at 10x
or 20x resolution. However, the best result was achieved
by combining the two scales into a multiscale model. The
authors of this study also confirm that class-specific features
exist at different magnification scales.

Previous work from our group, on bladder cancer, included
tissue segmentation [13], [27], [28], and prediction of
recurrence in NMIBC patients [29]. In Wetteland et al. [13],
we experimented with three magnification scales and any
combination of these. We proposed three MONO-models
(Mono-25x, Mono-100x, and Mono-400x), three DI-models
(DI-25x-100x, DI-25x-400x, and DI-100x-400x), and finally
a model utilizing all three magnification scales, TRI-25x-
100x-400x. All models used the VGG16 network as a feature
extractor and were trained and evaluated on six tissue classes.
The MONO-models performed worst, and the best result was
achieved with the TRI-model utilizing all scales, supporting
the claim that multiscale models achieve better results. Both
frozen and unfrozen weights were experimented with, but the
TRI-model trained with frozen weights in the VGG16models
performed best and achieved an average F1-score of 96.5%
when evaluated on all six classes, and an average F1-score
of 97.6% for the urothelium class alone.

Based on this result, we continued with the TRI-model and
VGG16 as feature extractors in the current paper.We have not
evaluated the MONO- or DI-models on the diagnostic data.
The model referred to as TRI-25x-100x-400x in [13] is in the
current paper referred to as the TRItissue-model. It is used for
tissue extraction as shown in Fig. 4. The name, architecture,
and base model have also been carried over to this paper and
are the basis for the TRIWHO04-model we propose here.

B. OUR CONTRIBUTIONS
The current study’s main contributions is listed below.
• A novel, fully automated pipeline called TRIgrade is
proposed. The system consists of a tissue segmentation

FIGURE 3. A close-up image from a WSI with a superimposed urothelium
ROI mask (semi-purple). As N increases, the density of the tiles (red
squares) also increases. The illustrated tiles are shown on 400x
magnification level, but tiles from 25x and 100x are also extracted.

model and a diagnostic WHO04 grade model. The
system’s output consists of a tissue segmentation
map, a WHO04 heatmap, and a predicted slide-level
WHO04 grade. The proposed TRIgrade system correctly
predicted 45 of the 50 WSIs in the test set, achieving an
accuracy of 90%.

• The TRIgrade system-generated heatmaps are both visu-
alized and evaluated against a segmentation test set. This
helps to demonstrate the usage of such a system for a
pathologist in a clinical setting.

• An algorithm for finding the optimal value of a decision
threshold for classifyingWSIs at slide-level is proposed.

• We trained models on differently sized training sets. The
results for this provide insight on how dataset sizes affect
the performance of the models, training time per epoch,
and trained epochs before reaching stopping criteria
during early stopping.

• Source code for this paper is accessible at the following
URL address https://git.io/J3OdW.

II. METHODS
The proposed TRIgrade system presented in this paper utilizes
multiscale models, which use tiles extracted at multiple
magnification levels as input. For improved readability,
we define these tiles as a triplet. A triplet is denoted Ti
and is defined as a set of three tiles extracted from a
WSI at three different magnification levels (25x, 100x, and
400x). Let T denote a set of triplets in a WSI, where
T = {T1,T2 . . . Ti . . . Tmax}, and the number of elements
in the set is given by the cardinality |T |. An example of a
triplet is shown in Fig. 2.

A. DATA MATERIAL
The data material consists of 300 digital whole-slide images
from patients diagnosed with NMIBC, where the tissue is
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FIGURE 4. This figure presents the pipeline for our proposed system, TRIgrade. Input) A WSI of urothelial carcinoma is used as input. 1) A foreground
discriminative mask is found by evaluating the pixel intensity values and used as a reference to extract tiles from the WSI. 2) The TRItissue-model is used
to generate a tissue segmentation map. 3) The urothelium regions are used to create a urothelium discriminative mask. 4) Using the urothelium mask,
triplets consisting of tiles from three magnification levels are extracted from the input WSI. 5) The urothelium triplets are fed sequentially to the
TRIWHO04-model, which outputs a probabilistic score for the two classes, low- and high-grade carcinoma. Output) The system will output a WHO04 grade
heatmap and a slide-level WHO04 prediction.

removed from the patient through transurethral resection
of bladder tumor. The data was collected at the University
Hospital of Stavanger, Norway, in the period 2002-2011.
All non-muscle invasive bladder cancers are included in
the dataset, making it a true population based dataset. The
biopsies were formalin-fixed and paraffin-embedded, from
which 4 µm thick sections were cut and stained with
Hematoxylin, Eosin, and Saffron (HES).

The slides were diagnosed and graded according to
WHO73 and WHO04 [30]. All slides have the label low-
grade or high-grade in the WHO04 system. In addition,
cancer stage and follow-up data on recurrence and disease
progression are recorded, and all patients have stage Ta or T1,
i.e., non-muscle invasive. We have, however, no annotated
regions with healthy non-cancerous urothelium available.
All WSI have gone through a manual quality check at
the department of pathology, Stavanger University Hospital,
and only high-quality slides, with little or no blur, have
been included in the dataset. However, as mentioned,
NMIBC is removed by cauterization, which will leave
burned and damaged tissue areas. All WSI are from the
same laboratory, and the variation in staining color is rela-
tively low. Ethical approval from Regional Committees for
Medical and Health Research Ethics (REC), Norway, ref.no.:
2011/1539, regulated according to the Norwegian Health
Research Act.

The glass slides were digitized using a Leica SCN400 slide
scanner, producing WSI images in the vendor-specific scn
file format. These WSI images are gigapixel images with a
typical resolution of 100 000 × 100 000 pixels, stored as a
pyramidal tiled image with several down-sampled versions
of the base image in the same file to accommodate for rapid
panning and zooming. The pyramidal structure of the WSI
is depicted in Fig. 2. The Vips library [31] can extract the
base image and the down-sampled versions, making it easy
to extract the dataset at each resolution.

Tiles are extracted from the image pyramid at levels
corresponding to 25x, 100x and 400x magnification, which
is equivalent to a spatial resolution of 4µm/pixel, 1µm/pixel
and 0.25 µm/pixel, respectively. For the TRItissue-model,
we used a tile size of 128 × 128 pixels, which for the three
magnification levels correspond to (512 µm × 512 µm),
(128 µm × 128 µm), and (32 µm × 32 µm). For the
TRIWHO04-model, we had access to a much larger library of
WSIs, and thus a larger tile size of 256 × 256 pixels was
chosen. For the three magnification levels, this corresponds
to (1 024 µm × 1 024 µm), (256 µm × 256 µm), and
(64 µm × 64 µm).
The 300 WSIs included in this study were split into

220/30/50 WSIs for training, validation, and testing, respec-
tively. Demographic characteristics of the data material were
not used when splitting the data material into the different
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FIGURE 5. Architecture of the TRIWHO04-model. Three separate VGG16 networks are used to extract features from each magnification scale. The
global average pooling layer (GAP) is used to flatten the features into feature vectors, which are concatenated. The classification network consists
of fully-connected layers and dropout layers. The output uses a softmax activation function to predict the input tiles to the two classes, low-grade
and high-grade carcinoma.

datasets. Instead, the WSIs were randomly selected and
stratified to include the same ratio of all diagnostic outcomes
based on theWHO73 andWHO04 grading, stage, recurrence,
and disease progression, to represent the data material best.
The distribution of low- and high-gradeWSIs in each dataset,
as well as the number of triplets in the validation and test set,
can be seen in Table 1.

The 50 WSIs in the test set will use the slide-level label as
ground truth to evaluate the TRIWHO04-model. In addition,
a pathologist has carefully annotated low- and high-grade
regions in 14 of the 50 WSIs. The 14 WSIs are a sub-set of
the test set and are referred to as the segmentation test set and
will be used to evaluate the low- and high-grade segmentation
performance of the best TRIWHO04-model.
From the 220 WSIs used for training, five datasets were

extracted with a different number of triplets extracted from
eachWSI. A set of N triplets was selected randomly from the
predicted urothelium regions in each WSI, where N was set
to 250, 500, 1 000, 3 000, and 5 000.

Some of the WSIs in the data material contain only
small amounts of urothelium, either because the tissue
sample itself is small or because most of the tissue
sample consists of damaged tissue or other tissue classes.
For these WSIs, an augmentation strategy was employed,
where a randomly selected set of triplets were augmented.
The aim of this process is for each WSI to contribute
equally, or as close as possible, to the number of triplets
specified by N . Augmentation was performed by rotation
and vertical/horizontal mirroring of the individual tiles in the
triplet. All tiles in the triplet were augmented in the same
manner. By combining rotation and mirroring, a tile can be
oriented in eight uniquely defined ways, making this the
maximum number a particular tile can be augmented. For
N ≥ 1 000, some WSIs did not reach the desired number
of triplets, even with 8x augmentation. No augmentation was
performed on the validation or test datasets. Table 2 shows a
list of total triplets extracted, before and after augmentation,
for each value of N .
Fig. 3 shows a region from oneWSI with the extracted tiles

superimposed. The semi-transparent purple color indicates
the predicted urothelium region. From this region, N
randomly selected tiles are extracted as indicated by the red

tiles on the image. As N increase, the density of extracted
tiles also increases. Also, note that only the tile extracted at
magnification level 400x is visualized in the figure. At each
tile position, tiles from all three magnification levels (25x,
100x, and 400x) are extracted in such a manner that the
center position of each tile corresponds to the same physical
location, as illustrated in Fig. 2.

For preprocessing, all pixel intensity values were normal-
ized from 0-255 values into 0-1 values, and the order of the
color channels was altered from RGB to BGR. These steps
ensure that the input data is presented to the VGG16 network
in the same fashion as when it was pre-trained on the
ImageNet data. No stain normalization was performed on the
extracted tiles.

Our data material contains slide-level diagnostic informa-
tion; however, no location annotations exist, showing where
in theWSI the low- or high-grade regions are found, except on
our segmentation test set, as explained. As manual annotation
is time-consuming, expensive, and requires expert input, it is
not feasible to get this type of detailed annotations on large
datasets as needed for training such models, particularly
considering both the size of eachWSI and the total number of
WSIs in the data material. Instead, each extracted tile inherits
the slide-level WHO04 grade as its label. This is not ideal,
as high-grade slides may contain regions with low-grade tis-
sue. Consequently, all the extracted datasets are thus regarded
as weakly labeled due to the inaccurate labels, which is
consistent with what is called a weak label in many tasks [32].
The segmentation test set is considered strongly labeled.

B. PROPOSED SYSTEM
We propose a pipeline, called TRIgrade, that takes a
WSI as input and outputs a tissue segmentation map,
a WHO04 grading heatmap, and a slide-level WHO04
grade prediction. The pipeline consists of two main models,
denoted as TRItissue-model and TRIWHO04-model. The task
of the TRItissue-model is to classify an input triplet as a tissue
type which then can be used to make a tissue segmentation
map. The task of the TRIWHO04-model is predicting the
cancer grade, i.e., low- or high-grade, based on the urothelium
tissue. The TRIgrade pipeline is depicted in Fig. 4 and
explained in detail below.
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Algorithm 1 Find Optimal Threshold Value Dt

Initialize: Y , Ŷ ,R, Dcbest are empty lists
Initialize: Accmax = 0
for WSI ← training set do
Feed WSI through pipeline in Fig. 4
Rhigh = 1

|T |
∑|T |

i=1 ci
Append Rhigh to the listR
Append the true grade Y of WSI to the list Y

end for
for Dc← 0 to 50 do
for Rhigh←R do

Ŷ =
{
High-grade, if Rhigh ≥ Dc
Low-grade, otherwise

Append the slide-level prediction Ŷ to the list Ŷ
end for
AccDc = sklearn.metrics.accuracy_score(Y , Ŷ)
if AccDc > Accmax then
Accmax ← AccDc
Clear list Dcbest

end if
if AccDc ≥ Accmax then
Append Dc to list Dcbest

end if
end for
Dt = d 1

|Dcbest |

∑
Dcbest e

1) TRIgrade PIPELINE
The TRIgrade pipeline depicted in Fig. 4 contains five steps
explained here. The input to the pipeline consists of a WSI
file in the vendor-specific.scn file format. First, in step 1,
a foreground discriminative mask is found on the 400x level
by evaluating the pixel intensity values as grey background
or not. Using the foreground mask as reference, tiles with
dimension 128 × 128 pixels were extracted from the WSI
with 87.5% overlap, resulting in the inner 16 × 16 pixels
being classified for each tile. Three tiles were extracted in
the WSI (25x, 100x, and 400x) for each location, forming
a triplet. All tiles in each triplet have the same dimension
of 128× 128 pixels and are extracted such as the center point
corresponds to the same physical location in the WSI for all
three tiles, as shown in Fig. 2.

In step 2, triplets are sequentially fed into the TRItissue-
model we proposed in Wetteland et al. [13]. This model will
evaluate the triplets and predict which of the six tissue
classes (urothelium, stroma, muscle, blood, damaged tissue,
and background) the current triplet belongs. In our case,
the class of damaged tissue is a collection of all tissue that
is not one of the other classes, and in our dataset, this is
mainly cauterized or torn tissue areas. If blurred regions are
a problem in the dataset, this can be made as a separate
class or included in the damaged tissue class. After predicting
all triplets, a segmented tissue map is created, visualizing
all tissue regions in the WSI. This tissue map can also be
presented to the clinician to help guide them more efficiently
to the specific tissue types in the WSI.

From the generated tissue map, all urothelium regions are
extracted in step 3. Small regions are filtered to suppress
noise, and a urothelium discriminative mask is created on
the 400x level. In step 4, a grid of non-overlapping tiles is
overlayed on the WSI at the 400x level, this time using tiles
of dimension 256 × 256 pixels. The individual tiles in the
grid are checked against the discrimination mask. If 80% or
more of a tile lay within the discriminate mask, the position
is saved, while the remaining tiles are discarded. For the
validation and test sets, triplets from all the saved positions
are extracted. Whereas for the training set, N randomly
selected triplets are extracted from the saved positions, where
training sets are formed with N set to 250, 500, 1 000,
3 000, and 5 000. If fewer than N positions are saved,
the augmentation strategy explained in the data material
section is employed. The total number of extracted triplets
for each dataset is shown in Tables 1 and 2.

A comprehensive description of how triplets are extracted
from the WSI is given in Wetteland et al. [33], where a
parameterized method for extracting tiles in multilevel
images is given. The parameters used in this paper are the tile
size parameter LT = 256. The overlap-ratio between a tile
and the discriminative mask is set to 80%, which corresponds
to a value of φ = 0.8. Tiles are checked at the 400x level by
setting α = 0, and the corresponding tiles in the triplets are
found at level 25x and 100x, i.e., Sβ = {1, 2}. The binary
mask Bk is set as the urothelium discriminative mask, and the
starting coordinate of the grid is at position (0, 0). With these
parameters and the methods described in [33], extraction of
the triplets in the WSIs is repeatable and reproducible.

In step 5, the extracted urothelium triplets are fed to the
TRIWHO04-model, which outputs a probabilistic score for
the two classes, low- and high-grade carcinoma. Finally, all
scores are used to generate a heatmap which is overlayed on
the WSI, and the aggregated micro-predictions are measured
against the decision threshold Dt to get the final slide-level
prediction.

2) MODEL ARCHITECTURE
The proposed pipeline in Fig. 4 contains two CNN-based
models used for different tasks; the TRItissue-model is used for
tissue classification and the TRIWHO04-model for grading of
urothelium tissue. The models are built upon the same archi-
tecture but have different inputs and outputs. The architecture
consists of three separate VGG16 networks, one for each
input scale. Both the model architecture and the TRI-
terminology comes from our previous work on the tissue
model in Wetteland et al. [13].

The input to the TRItissue-model is a triplet consisting of
three 128× 128 pixel tiles (25x, 100x, and 400x). The model
can predict triplets extracted from anywhere in the WSI, but
a foreground discriminative mask is usually used to save pro-
cessing time by removing the background. The output of the
TRItissue-model is a probability distribution over the six pre-
dicted classes (urothelium, stroma, muscle, blood, damaged
tissue, and background). The input to the TRIWHO04-model
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is a triplet consisting of three 256 × 256 pixel tiles
(25x, 100x, and 400x) extracted from urothelium tissue
regions. The model outputs a probability distribution over
the two predicted classes, low- and high-grade carcinoma.
A block diagram of the TRIWHO04-model architecture is
depicted in Fig. 5. The TRItissue-model has almost the same
architecture but has six output classes instead of two.

The individual tiles in the input triplet are fed to separate
VGG16 networks. The VGG16 networks are used as base
models with weights pre-trained on the ImageNet dataset,
a large dataset containing annotated photographs used for
computer vision research. Each VGG16 network acts as a
feature extractor and takes a high dimensional tile as input
(128 × 128 × 3 or 256 × 256 × 3 pixels) and compresses it
down to a feature volume (8 × 8 × 512). A global average
pooling (GAP) layer is used as the output layer for each
VGG16 network, transforming the feature volume into a
feature vector of length 512. The three feature vectors, one
for each scale, are concatenated into one final feature vector
of length 1 536 and fed to the classification network.

The classification network consists of two fully-connected
(FC) layers using a rectified linear unit (ReLU) activation
function, each followed by a dropout layer for regularisation.
Lastly, an output layer with a softmax activation function
is used to provide the prediction of the model. The two
FC-layers and the two dropout layers each have a dimension
of 4 096 neurons, and the output layer has one output
neuron for each class. The TRIWHO04-model consists of 67M
parameters, where 23M of the parameters are trainable
parameters belonging to the classification network.

3) TILE-LEVEL PREDICTION
When a triplet Ti is fed to the TRIWHO04-model, the model
outputs a list of probabilities for the two classes, low-
and high-grade. These probabilities are denoted as [pil, p

i
h].

To find the class with the largest predicted probability,
the argmax function is used.

ci = argmax([pil, p
i
h]) (1)

where ci is the index to the predicted class for the triplet at
position Ti. The low-grade class has an index of 0, and the
high-grade class has an index of 1.

The proposed system can also produce a heatmap from the
individual triplet probabilities, which indicates the location of
low- and high-grade regions. This is useful for pathologists
who can focus their limited per-patient investigation time on
the diagnostic relevant areas in the WSI. A color mapping
function converts the high-grade probability pih into a color
based on its value. This color is then superimposed on the
WSI at the current triplet’s position, covering the same area
as the 400x magnification tile in the triplet. This results in
the heatmap, as seen in the bottom-right of Fig. 4. Only
the model’s probabilistic score for the high-grade class is
used to generate the heatmaps. However, because there are
only two classes, a low probabilistic score of the high-grade
class implicitly means a high score for the low-grade class.

I.e., red highlighted regions in the heatmaps are associated
with the high-grade class, and blue highlights indicate the
low-grade class.

4) SLIDE-LEVEL PREDICTION
In addition to predicting the individual triplets, we also output
a WHO04 slide-level prediction. A pathologist will often
assign the worst case to a slide during a clinical examination,
meaning that if a high-grade region exists in the WSI,
theWHO04 grading should be high-grade. However, wemust
assume some misclassification in the WSI from both the
TRItissue-model and TRIWHO04-model, so there must be a
minimum amount of high-grade triplets before the slide-level
prediction becomes high-grade, and we would like to find a
decision threshold, Dt , which maximizes correct prediction
of the WSIs.

By summing over ci, the number of triplets predicted as
high-grade is counted, since triplets predicted as low-grade
is at index 0 and thus not adding to the sum. By dividing by
the total number of triplets in the WSI, we get the ratio of
high-grade triplets referred to as Rhigh in this paper:

Rhigh =
1
|T |

|T |∑
i=1

ci (2)

If Rhigh exceeds the decision thresholdDt , the slide is given
the slide-level prediction of high-grade; else, it is considered
low-grade.

Ŷ =

{
High-grade, if Rhigh ≥ Dt
Low-grade, otherwise

(3)

Algorithm 1 describes how to find the optimal threshold
value Dt . Y is considered the ground truth grading of a slide
and consists of a single value, whereas Y is a list of all the
ground truth values. The same holds for Ŷ and Ŷ , which holds
a single slide-level prediction and a list of all the predictions,
respectively. First, all WSIs are processed, and the ratio Rhigh
for each WSI is appended to the list R. The true grade Y
of each WSI is also saved in the list Y . All WSIs in the
dataset are processed before proceeding to the next step. A set
of candidate threshold values, Dc, between 0-50% are tested
one at a time. For each candidate threshold, the slide-level
prediction Ŷ for all WSIs is saved to the list Ŷ . The total
accuracy score is then calculated for the dataset. The decision
threshold Dt is chosen as the candidate threshold with the
highest score, or, if more than one Dc value yielded the same
maximum result, the average integer value is selected as the
decision threshold Dt .

5) TRAINING PARAMETERS
The TRIWHO04-model was trained using a stochastic gradient
descent (SGD) optimizer with a learning rate of 1 × 10-3,
learning rate decay of 1 × 10-6, and momentum set to 0.9.
The batch size used during training was set to 128. Both
dropout layers had a dropout rate of 0.5. The cross-entropy
loss function was used to optimize the model during training.
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TABLE 3. Slide-level prediction results for automatic WHO04 grading tested on the 50 WSIs of the test set. Precision, recall, and F1-score is the weighted
average score for the two classes across all 50 WSIs in the test set. Dt is the decision threshold found using Algorithm 1. The column trained epochs show
how many epochs each model was trained before the early stopping criteria were reached. Training times are shown as hours:minutes.

The pre-trained weights of the VGG16 networks were held
frozen during training. To avoid overfitting the models on the
training set, an early-stopping rule monitored the validation
loss and stopped the training when no improvements were
seen for ten epochs. The best epoch was restored when testing
the models on the test set.

To train the models, a program was written in Python
3.6 using Keras 2.2.4 together with the Tensorflow 1.14 as
backend [34], [35]. The PyVips 2.1 library was used for han-
dling the WSI [31], and Scikit-learn 0.19 for evaluation [36].
The models were training on a Ubuntu 18.04 server, running
on dual Xeon E5-2650 v5 @ 2.2GHz with a total of 48 cores.
An Nvidia Tesla P100 16GB GPU was used for the training.
Training parameters for the TRItissue-model can be found in
Wetteland et al. [13].

III. EXPERIMENTS
We have conducted two experiments, listed here.
Experiment 1: is for slide-level prediction ofWHO04 grade

and is tested on the test set of 50 WSIs. As training of the
TRIWHO04-model is very time-consuming, we wanted to see
if it is preferable to utilize more of the available urothelium
data from each WSI as training data at the cost of additional
training time or if a smaller dataset could perform equally
well. This is interesting, both for our research group as
well as other researchers working with large WSI datasets.
If the optimal number of tiles used from each WSI during
training can be lowered, then time can be saved in future
experiments. To investigate this, we created several datasets
where we extracted N triplets per WSI, as shown in Table 2.
In this experiment, ten versions of the TRIWHO04-model,
all with the same architecture, were trained on training sets
of various sizes, listed in Table 2. The micro predictions
from the individual triplets were aggregated into a slide-level
prediction of the WHO04 grading. A decision threshold Dt
was found for eachmodel using Algorithm 1; then, equation 3
was used to provide the final predicted grade.
Experiment 2: is testing the tile-level prediction and

compare that in detail with the 14 WSIs of the segmentation
test set. This set contains pathologist annotated regions
belonging to either low- or high-grade which are considered
the ground truth. The best model from experiment 1 is used

for this, and the model’s performance will be visualized
as heatmaps. Calculation of recall and F1-score will be
presented for each WSI, in addition to a total score across
all WSIs.

IV. RESULTS
In experiment 1, slide-level test results for the ten models
are listed in Table 3, showing trained epochs, time, precision,
recall, F1-score, and the threshold value Dt . For precision,
recall, and F1-score, the weighted average score is presented
as reported by the classification report function from the
scikit-learn library [36].

For experiment 2, the TRIWHO04-5000-AUG model was
used, as it performed best in experiment 1. The predicted
heatmaps for each WSI in the segmentation test set are
shown in Fig. 6 together with the ground truth. Recall, and
F1-score for each WSI is listed in Table 4. As each ground
truth WSIs only contain annotations for one of the two
classes, the precision score will always be 1.00 because
whenever the model predicts the ground truth class, it will
be correct. The precision column in Table 4 is thus discarded.
The last row in Table 4 shows the average value of all scores
for each class together with the standard deviation. Table 5
shows the total aggregated results for all 14 WSIs. Here,
the predictions for all WSIs are accumulated before the score
is calculated.

A slide-level comparison between the proposed TRIgrade
system and the model presented in Jansen et al. [22] is shown
in Table 6. The TRIgrade system consists of the TRItissue-
model followed by the TRIWHO04-5000-AUG model. Values
for sensitivity, specificity, and accuracy are shown for easier
comparison with the reported results from [22]. These values
are unweighted and calculated using values for true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN). Note that these results are based on models
trained and evaluated on different datasets.

V. DISCUSSION
The three VGG16 networks are identical copies as we have
used frozen (pre-trained) weights in this work. Thus, it would
be possible to use only one copy of the model, with the
appropriate change in the architecture, keeping in mind that
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TABLE 4. Tile-level prediction for each individual WSI in the
segmentation test set, using the TRIWHO04-5000-AUG model. The WSI
numbering is referring to the WSIs in Fig. 6. The last row shows the
average value and standard deviation for its respective column.

the feature vectors from the different magnifications are
concatenated before the classification network. However,
utilizing three versions of the VGG16 network allows us
to train the entire multiscale model end-to-end and allows
unfreezing the weights if a larger training set is available.
We have experimented with unfreezing weights, but we
quickly get overfitting problems with the available data
material, this is therefore omitted from the paper.

Experiment 1 was conducted using ten training sets with a
different number of triplets extracted from the same 220WSI.
From the result in Table 3, we see that the best performing
model is trained on the largest dataset. However, the other
models are not far behind. Even with a small value of
N , the models do a good job at correctly predicting the
WHO04 grade of WSIs.

Regarding overfitting, we tried training the models using
unfrozen weights in the VGG16 networks, but this led
to instantaneous overfitting of the model and had no
improvements on the validation set. However, by freezing the
weights, we see that all models improve on the validation
dataset before reaching a plateau and eventually triggering the
early stopping trigger. E.g., as shown in Fig. 7, the best model,
TRIWHO04-5000-AUG, improved its performance for seven
epochs before training stopped after epoch 17. The weights
from epoch seven were restored when using the model on
the test sets. The number of trained epochs before the early
stopping criteria is triggered decreases as the training dataset
increases. This can be explained by the models trained on
the larger datasets having more parameter updates per epoch
than that of the smaller dataset models, thus reaching the
plateau faster. Similarly, we see that the duration of one epoch
is increasing as the dataset size increases. There is about
a 60-hour difference in the smallest and largest model by
comparing the total training time. Even though we would
advise utilizing the most data to train a production model,
it could be helpful to do an extended hyperparameter search
and train multiple models on a smaller dataset.

TABLE 5. Aggregated tile-level result for all WSIs in the segmentation test
set using the TRIWHO04-5000-AUG model.

TABLE 6. Comparison table for automatic slide-level grading between
our proposed method and the method presented in Jansen et al. [22].
Note that these results are based on models trained and evaluated on
different datasets.

Experiment 2, tile-level prediction, was conducted using
the TRIWHO04-5000-AUGmodel, which had a slide-level F1-
score of 0.90. As seen in Fig. 6, Table 4 and 5, the results are
overall excellent. The model does a very good job at correctly
identifying both the low-grade and high-grade regions in the
different WSIs. Table 4 shows that the model achieved an
average F1-score of 91% for both the low-grade and high-
grade classes. The aggregated score for all WSIs in Table 5
shows a small decrease in performance, with an F1-score
of 81% and 85% for the two classes, respectively.

The largest misclassification in Fig. 6 is one of the regions
inWSI-N,where the ground truth is high-grade, but themodel
predicts low-grade. When reevaluated by the pathologist,
the misclassified area was found to be heterogenous, showing
mixed low- and high-grade features, consequently regarded
as high-grade initially. This illustrates one of the challenges
with automatic grading of urothelial carcinoma, that grading
between low- and high-grade is not two distinct binary classes
but rather a continuous spectrum with a floating transition,
making it difficult to set a hard threshold between the two.

To correct suchmisclassifications, and also avoid the costly
task of annotating a large dataset, one possible solution is
human-assisted learning. For example, the proposed TRIgrade
system could be used to find and predict urothelium regions
into the low-grade and high-grade classes, e.g., like the
regions seen in Fig. 6. Then, a pathologist could verify the
regions in each WSI and correct misclassified regions. This
way, a large, strongly labeled dataset could be created, and
the TRIWHO04-model could be fine-tuned on the new dataset.

A direct comparison of results with others reported in
the literature is not straightforward, as the experiments per-
formed in this paper are conducted on a private dataset, which
is often the case in many medical applications. To our knowl-
edge, there exists no publically available NMIBC dataset or
any publically available models from other researchers that
we can evaluate on our dataset. The work of Jansen et al. [22]
is based on the same labels but evaluated on a private dataset
using different methods. Unfortunately, their models are not
available for us to evaluate, and we do not have access to
labels to train a Unet segmentation model from scratch, hence
we cannot test the same approach by training the models
ourselves. However, even though the dataset or model used in
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FIGURE 6. Ground truth annotations vs. model prediction. The WSI with a black background is the ground truth images with low- and
high-grade annotations. The WSI with a grey background has superimposed a heatmap from the same area as the ground truth and
highlights the predictions from the TRIWHO04-model. For quantitative results, see Table 4 and 5.

Jansen et al. [22] are not publically available, a comparison
is still included as both research results are based on an
NMIBC dataset of similar size (328 WSIs from 232 patients
vs. our dataset of 300 WSIs), a similar split of the dataset
into training, validation, and test, and the use of the same
labels (WHO04). The results in Table 6 compare the slide-
level sensitivity, specificity, and accuracy for our proposed
TRIgrade pipeline, to the results reported in table 3 from [22].
We achieve better results on all metrics, and with 45 of the
50 WSIs correctly predicted, we achieve an accuracy of 0.90.

Training and validation accuracy from the training of the
TRIWHO04-5000-AUG model is shown in Fig. 7. The model
uses frozen pre-trained weights for the VGG16 networks,
and only the last layers in the model have random weights
which are being optimized. The model uses the largest
training dataset from Table 2 with a mini-batch size of 128,
resulting in a large number of weight updates per epoch,
and the majority of the accuracy is achieved from the first
epoch. After the initial epoch, the validation accuracy is
not improving too much. This is most likely because the
datasets use imprecise weak labels (e.g., all urothelium
triplets extracted from a high-grade WSI will have the class
label high-grade, but not all triplets from this WSI will
represent high-grade tissue). Note also that all the urothelium
triplets from all the WSIs in the validation set are predicted
before Tensorflow computes the accuracy score for the
validation set.

A. USAGE SCENARIOS
The automatic TRIgrade system presented in this paper has
many potential applications. The tissue model we presented
in Wetteland et al. [13] provides the tissue segmentation
maps, which clinicians can use to discriminate urothelium
regions from other tissue classes. This can be a valuable tool
to aid pathologists in examining the whole-slide images by
focusing their attention on the diagnostic relevant areas of
the stained specimen. With the addition of the TRIWHO04-
model presented in this paper, the focus can not only be aimed
towards the urothelium regions in general but be further
narrowed down to the most severe urothelium regions.

The automated slide-level prediction can potentially be
used to prioritize high-grade patients for earlier examination.
Also, it can be used as input to an automatic prognostic tool
and output ameasure of the patient’s overall clinical outcome,
such as the risk of recurrence, 1-yr and 5-yr survival rate, and
mortality. In the future, it is also a possibility to use it in an
automatic system that predicts how a patient will respond to
a given treatment and therapy program.

B. LIMITATIONS
In the paper, we train a model to classify urothelium tissue
into two classes, low- and high-grade carcinoma. However,
it is also a possibility that the urothelium tissue can be healthy
non-cancerous tissue. Since our models are dependent on the
weak slide-level label, and all cases in the data material are
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FIGURE 7. Training and validation accuracy for the TRIWHO04-5000-AUG
model. The model is trained on imprecise weak labels, using the largest
training set in Table 2. Results are shown for tile-level prediction on the
entire training and validation sets. Validation accuracy is computed at the
end of each epoch.

diagnosed with cancer, we currently do not have any training
material containing non-cancerous samples.

All WSIs in this study are collected from the same
laboratory and consists of high quality with relatively small
variations in stain colors and little blur. This is both a strength
in the sense that we have produced good models and reliable
predictions, but also a limitation in the sense that we do not
know how the system will perform on slides of lower quality.

C. FUTURE WORK
In future work, preprocessing steps might be added to deal
with color variations, blur, and folded tissue, or the tissue
segmentation model can be updated with a new class for blur,
providing a more generalized system.

From [13] it was concluded that for the tissue segmentation
task, the multiscale TRI-25x-100x-400x model (which is
used as the TRItissue-model in this work) provided the best
performance. Following, a multiscale model was adopted
for the grading task as well, with the masking of the
urothelium tissue performed at the 400x level. However,
the large field-of-view provided by the 25x and 100x
magnification will bring neighboring tissue types into the
triplet, like, for example, damaged tissue, which might affect
the performance in such areas. In future work, we would
like to use the tissue segmentation maps and not only extract
the urothelium tissue but also mask out unwanted regions of
damaged tissue and blood. Incorporating attention modules is
also something we will try, which would further help explain
what parts of the WSI are responsible for the predictions.

Cells of low-grade cancer often resemble that of non-
cancerous cells, and high-grade cells have a more abnormal
appearance and are disorganized. Thus, we expect that non-
cancerous tissue would be predicted as low-grade carcinoma.
However, this is our expectation as we do not have verified
material to test this on. To better detect these non-cancerous
regions in the future, we would have to expand our training
dataset to include examples of non-cancerous urothelium.
The TRIWHO04-model architecture must be updated to
include one additional class on the output and then be trained
on the updated dataset.

The proposed model uses three VGG16 networks as
feature extractors. In the future, we would like to experiment
with other deep learning networks for our base model.
Newer deep learningmodels continuously improve the results
on datasets like ImageNet, and could potentially improve
feature extraction of urothelium tissue. We also plan to look
into different ways of fusing the multiscale information,
both for the tissue classifier (TRItissue) and grade-classifier
(TRIWHO04).

VI. CONCLUSION
In this paper, we have proposed a TRIgrade pipeline for
automatic grading of urothelial carcinoma slides based on
the WHO04 grading system. First, the slide is segmented
into the tissue classes (urothelium, stroma, muscle, blood,
damaged tissue, and background). Next, tiles are extracted
at three magnification levels (25x, 100x, and 400x) from the
urothelium regions. The three tiles form a triplet, which is
fed sequentially to a multiscale CNN-based WHO04 grading
model.

The proposed method will generate a tissue segmentation
map, helpful for the clinicians to easier find diagnostic
relevant regions during an examination. The system will also
output aWHO04 grade heatmap, highlighting themost severe
urothelium tissue regions, beneficial for the pathologists who
can focus their limited per-patient time on the most important
regions in the WSI. Finally, the system produces a slide-level
WHO04 grade that could potentially be used to prioritize
high-grade patients for earlier examination, as well as suggest
the diagnosis to the pathologist.

Ten WHO04 grade models were trained on datasets of
varying sizes. Note that all the same number of WSI were
used all the time, but a different number of triplets were
extracted from each WSI, constituting the training set. The
model trained on the largest training dataset achieved the
best result, a weighted average F1-score of 0.90 on the test
set. This model was further evaluated on a segmentation test
set, where low- and high-grade regions were annotated by a
pathologist. On this task, the model got an average F1-score
of 0.91 on both the low-grade and high-grade classes.

The system as a whole can be used by clinicians and
pathologists to potentially improve their decision-making
and further help patients by receiving correct diagnoses and
treatment.
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