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A B S T R A C T

Recurrent neural networks (RNN), which are able to capture temporal natures of a signal, are becoming more
common in machine learning applied to petroleum engineering, particularly drilling. With this technology
come requirements and caveats related to the input data that play a significant role on resultant models. This
paper explores how data pre-processing and attribute selection techniques affect the RNN models’ performance.
Re-sampling and down-sampling methods are compared; imputation strategies, a problem generally omitted
in published research, are explored and a method to select either last observation carried forward or linear
interpolation is introduced and explored in terms of model accuracy. Case studies are performed on real-time
drilling logs from the open Volve dataset published by Equinor. For a realistic evaluation, a semi-automated
process is proposed for data preparation and model training and evaluation which employs a continuous
learning approach for machine learning model updating, where the training dataset is being built continuously
while the well is being made. This allows for accurate benchmarking of data pre-processing methods. Included
is a previously developed and updated branched custom neural network architecture that includes both
recurrent elements as well as row-wise regression elements. Source code for the implementation is published
on GitHub.
. Introduction

.1. Background and state of art

Data preparation is often left as an afterthought when discussing
achine learning (ML) research applied to drilling. Recently conducted

eview of rate of penetration (ROP) prediction papers (Barbosa et al.,
019) acknowledges the issue of data gaps in drilling logs; quoting
irectly from the aforementioned review paper: In general, this problem
as omitted. This is likely due to researchers working on datasets that
re already pre-processed, where they are not exposed to this common
ractical problem. Raw drilling logs extracted from Volve field, dataset
ade public by Equinor (Equinor, 2018), expose that they can be

ccupied in over 80% by data gaps (Tunkiel et al., 2020d). Drilling
ogs from this dataset are used as a case study throughout this paper.

To capture the temporal behavior of a given logged attribute re-
urrent neural networks (RNN) are commonly used (Rumelhart et al.,
986). Basic architecture of such network is shown in Fig. 1; cell A takes
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current input, 𝑥𝑡, as well as the information from recurrent connection
𝑣𝑡−1 from the previous step; this may be simply the cell output ℎ𝑡−1, but
can also contain additional state information. This generates an output
ℎ𝑡. It is in practice implemented in so called unfolded state, as seen on
the right hand side of Fig. 1. Various designs of a RNN cell exist, with
Long Short-Term Memory (LSTM) (Yu et al., 2019) and Gated Recurrent
Units (GRU) (Chung et al., 2014) seeing wide implementations.

When applying the RNN architecture one of the important assump-
tions is the equidistance of the samples along the indexed dimension.
This means that samples are logged every x meters drilled, or every x
seconds, where the value of x does not change throughout the dataset.
This is rarely the case outside of the lab environment, and since the
quantity of sensors used is ever increasing, this problem becomes more
and more prevalent in the industry. To bring drilling log attributes in-
sync and at constant sampling rate, data resampling step is necessary,
where a dataset with uneven sampling rate is converted to a dataset
that has a constant sampling rate. While reviewing the recent literature
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Nomenclature

𝛿𝑐𝑓 Cutoff value
𝛥𝑋 Dataset, first numerical derivative
�̇� First numerical derivative
�̂�𝑡+1 Predicted value of 𝑥 at t+1
𝜃𝑡ℎ% Threshold of zero-value numerical first

derivatives
𝑏 Length of prediction (meters)
𝑔(⋅) Function describing difference between

raw data and resampled data
𝐺𝐶𝑖 Gap coefficient for gap length of i
ℎ𝑡 Cell output at current time t
𝑗 Number of attributes used
𝑚 Number of prediction (rows)
𝑆𝑆𝑔 Riemann sum squared of function 𝑔(⋅)
𝑀𝑆𝐸𝑔 Root Mean Riemann sum squared of func-

tion 𝑔(⋅)
𝑛 Number of memory (rows)
𝑛0 Number of zero-valued first numerical

derivatives
𝑝 Length of memory (meters)
𝑟(⋅) Function describing raw data
𝑅2 R-squared
𝑆𝑔 Riemann sum of function 𝑔(⋅)
𝑀𝑆𝐸𝑔 Riemann sum squared of function 𝑔(⋅)
𝑡 Current sample time (row)
𝑡(⋅) Function describing resampled data
𝑣𝑡 Information from recurrent connection at

time t
𝑥% Percentage of well drilled
𝑥𝑡 Input at current time t
CNN Convolutional neural network
CSV Comma separated values
d Distance in KNN/FRN
F Quantity of the well to be evaluated
F9A One of the wells of the Volve dataset
FRN Fixed radius neighbor
GC Gap coefficient
GRU Gated recurrent unit
K Quantity of neighbors in KNN
k Quantity of datapoints of the first numeri-

cal derivative dataset
KNN K-nearest neighbors
LSTM Long short-term memory
MAE Mean absolute error
MD Measured depth
ML Machine learning
MLP Multi-layer perceptron
MWD Measurement while drilling
NLP Natural language processing
PCA Principal component analysis
r Radius in FRN

this step is often simply mentioned without even indicating which
algorithm or the parameters are used (Song et al., 2020). To the best
of authors’ knowledge, petroleum related papers on the RNN rarely
mention resampling (Chhantyal et al., 2018; Osarogiagbon et al., 2020);
our previous work on the RNN (Tunkiel et al., 2021) admittedly also
2

RNN Recurrent neural network
RNR Radius Neighbor Regressor (implementa-

tion of FRN)
ROP Rate of penetration
RPM Revolutions per minute (rotary speed)
SPP Stand pipe pressure
TL Total length
u Quantity of steps in Riemann sum
w Weight in KNN/FRN
WOB Weight on bit

Fig. 1. Recurrent Neural Network basic architecture.

sparsely touched the topic by simply mentioning the algorithm used.
It is difficult to find valuable, practical information and comments on
the impact of resampling on RNNs also outside of petroleum, with
some papers acknowledge the problem and mention ‘‘window based
resampling’’ (Lipton et al., 2015) without additional details. What
further makes the literature review difficult is the fact that within ML
the term resampling is also used for a method of removing the imbalance
from the dataset, while for data-series, like in the case of real time
drilling logs, resampling means creating a new dataset with a new,
constant polling rate.

This paper focuses not only on the data preprocessing strategies and
the effects on the quality of the models’ results, but also on the attribute
selection. This topic is widely discussed in most, if not all papers
on topics like data-driven ROP modeling. In this paper we compared
attribute selection strategies, applied dynamically through simulated
drilling process, to evaluate which strategy is likely to yield better
results. This is especially important when a given model is applied in a
continuous learning approach, when the training dataset continuously
expands and therefore correlation scores can dynamically change as the
drilling progresses.

1.2. Motivation and contribution

Some aspects have to be considered during ML models/applications
development, like data quality issues, ML models’ process automa-
tion and optimization, ML models’ evaluation and interpretation etc.
Motivation behind this paper is two-fold. First and foremost, closing
knowledge gaps related to data pre-processing is identified as a topic
with an urgent need for attention. Capturing knowledge on temporal
patterns becomes more common in the future, hence appropriate data
preparation for this kind of problems is a crucial building block. The
main contributions are in the following areas:

1. Method for automatic imputation algorithm is presented and
evaluated for data gaps common in drilling data. (Data Quality
Improvement)

2. Resampling process is heavily analyzed. First, evaluation in
terms of the quality of resampling is done; and a novel method
is introduced using Riemann sum to quantify how close the
resampled data is to original data. Secondly, a case study is
presented to show practical model performance improvements.

(Data Quality Improvement)
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3. The resampling rate is evaluated to gauge how reduced data

resolution affects the machine learning model performance in a
case study.(ML Model Evaluation)

This paper does not elaborate on the signal processing methods, such a
median filter, Kalman filter, outlier identification etc. While this is an
important step in data driven methods it is out of scope of this paper.

Secondly, to explore the effects of data pre-processing we have
developed a semi-automatic framework for data preparation, modeling
including temporal information, and evaluation in relation to prob-
lems from the realm of real-time drilling logs. It is challenging to
provide universal answers on topics like attribute selection strategies
in drilling, therefore providing tools to perform such studies case
by case is beneficial. The evaluated framework consists on a two-
branched neural network that contains both elements for row-wise
correlation and pattern identification, as well as a temporal element.
This structure was adapted from our previous work on continuous in-
clination prediction (Tunkiel et al., 2021, 2020c), made target attribute
agnostic, and the whole framework is open sourced and published
on Github (Tunkiel, 000). The case study of predicting inclination
values between the sensors and the bit is used throughout this paper
to evaluate various pre-processing configurations.

Additionally, data selection techniques were developed that are
used to automatically find useful data range in the provided dataset.
This involves automatic differentiation between small gaps that exist
due to varying sampling frequencies and can be easily filled in, and
big gaps, that exist due to equipment failure or change. The main
contributions for that portion are:

4. Algorithm for automated identification of data gaps of varying
significance is proposed.(Data Issue Identification)

5. Framework for RNN implementation in drilling is proposed to
formalize the process, with focus on best practices for data
pre-processing. (ML Process Framework’s Formalization)

1.3. Paper structure

After introduction (Section 1), this paper presents a process frame-
ork (Section 2) where individual pre-processing steps are described, as
ell as the model structure and the way the model is applied and eval-
ated. After the process is established research towards individual pre-
rocessing steps is presented, focusing on data imputation (Section 3),
ata resampling (Section 4), and attribute selection (Section 5).

. Process framework

This paper proposes a process framework designed for data predic-
ion for sequential data logs focused on semi-automatic data processing.
his allows to test approaches to data processing in a uniform rule-
ased manner easily, while keeping everything else equal. For example
y automating the approach for attribute selection at different stages of
ell drilling, different attributes will be selected and therefore model
ynamically adjusted.

The presented process attempts to automatically predict selected
ttribute from a selected raw dataset. Individual steps are listed in
able 1 as well as presented in a flowchart form in Fig. 2. The process

s generally split into four major elements: data selection, data pre-
rocessing, machine learning model development, and its evaluation
nd inspection. First, data selection, focuses on automated identifi-
ation of a usable area of the log in terms of completeness. This
tep is necessary as the framework aims at processing existing drilling
ogs; real-time data often has gaps and unusable regions that have to
e avoided. Pre-processing section handles problems like imputation,
esampling, train/test split and attribute selection. Exploring config-
rations of this section is the key element of this paper. Machine
earning application section, while can consist of any regression al-
3

orithm, in this paper and study was equipped with a model that p
Table 1
Process framework steps. Areas with key contribution of this paper are marked in bold

1 Data selection

1.1 Import raw dataset
1.2 Drop unwanted columns
1.3 Run gap statistics
1.4 Identify and select longest stride
1.5 Remove incomplete columns

2 Pre-processing

2.1 Split dataset into continuous Train/Test dataset
2.2 Imputation
2.3 Resample the dataset
2.4 Scale dataset to (0,1)
2.5 Select attributes/Principal Component Analysis (PCA)
2.6 Shape the dataset to fit the model

3 Applying ML model

3.1 Take out part of Training dataset for Validation
3.2 Train the model
3.3 Stop when validation loss stops dropping
3.4 Calculate error on Test dataset

4 Evaluation and Inspection

4.1 Results analysis
4.2 Sensitivity analysis

takes into account not only attributes row-wise, but has a temporal
element, a recurrent neural network to capture the dynamic behavior
of the predicted attribute. Lastly, the evaluation and inspection section
focuses on result analysis both in terms of presenting results from
continuous application of the algorithm through emulated log creation
while drilling (continuous learning), as well as data-driven sensitivity
analysis (Tunkiel et al., 2020a). Process presented in this paper focuses
in principle on the research-workflow, and not field implementation;
it is however designed such to simulate the field deployment and it is
trivial to adjust it for such purpose. For a complete continuous learning
approach it is necessary to repeat the complete workflow with different
continuous Train/Test splits performed in the step 2.1. Individual steps
are elaborated on below with subsection number matching the steps
listed in the table, while research on specific areas of the framework is
presented separately in the following sections.

2.1. Data selection

2.1.1. Import raw dataset
Typical raw drilling data log consists of columns, designating at-

tributes logged, and rows as the consecutive measurements. Logs often
contain multiple missing readings. Most common format for data series
is a comma separated values (CSV) file. For the framework to work a
prediction target attribute has to be selected as well as the index, which
in drilling logs is typically time or measured depth.

This paper uses the Volve dataset (Equinor, 2018) for all presented
calculations. It was published in 2016 by Equinor and it covers seismic,
drilling, production and additional data related to the Volve field that
is located in the North Sea. The dataset is fully open for everyone to
explore and therefore it was used as a basis for case studies in this
paper. Whenever well name is mentioned in this paper it is possible
to acquire raw logs, daily reports, well plans, production reports etc.
for this well.

Data used in this study was purely numerical, i.e. there were no
status attributes logged as text. If one is to apply presented method-
ology to a dataset containing such data, standard machine learning
methods of converting such attributes to numerical values, such as
one-hot encoding, should be applied.

In this paper the term raw dataset is used to indicate data not
rocessed in any particular way, however if data is for example noisy an
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initial filtering and outlier removal is recommended. This is a very wide
topic, and as this paper does not propose any new methods nor identify
particularly useful ones, it is prudent to evaluate the data at hand and
apply appropriate methods. Basic filtering such as rolling mean is a
typical good starting point and methods such as data validation and
reconciliation (Sui et al., 2018; Geekiyanage et al., 2018, 2020) are
worth considering.

2.1.2. Drop unwanted columns
It is important to remove attributes derived from the target through

simple math. Most basic and common example would be predicting
ROP while Inverse ROP also exists in the dataset, which is calculated
based on the ROP. Leaving the Inverse ROP as an input for predicting
ROP would defeat the purpose of the model and therefore Inverse ROP
parameter has to be manually identified and removed. This is the case
in the Volve dataset, where attribute Inverse ROP (5ft avg) is often
present.

It is important to highlight that the attribute availability is a part of
the architecture of the designed process and should not be confused
with attribute selection for the ML model. Attribute availability is
dictated by what is to be achieved, and attribute selection is related to
how it is being achieved. For example, if a problem at hand is to predict
inclination data that is delayed due to sensor position it is unreasonable
to provide the model with vibration or azimuth data recorded by the
same device, as it is also delayed and hence unavailable. Only surface
recorded parameters, such as ROP, rotary speed (RPM), weight on bit
(WOB) etc. will be immediately available. However, if the task at hand
is to recover inclination data due to this specific sensor failing at some
point, it is valid to include vibration and azimuth data.

In the presented case study of inclination prediction the following
columns were dropped:

• RHX_RT unitless - magnetic sensor raw data
• RGX_RT unitless - gravity sensor raw data
• MWD Continuous Azimuth dega - azimuth

he azimuth data was removed as it is delayed due to the same reasons
s inclination data that is to be predicted. Raw sensor data also exists in
he dataset for both inclination and azimuth, which has to be removed,
s the target is a simple function of those, also delayed, readings.
dditionally index counter was removed, as well as columns containing
ingle constant value, such as well name.

It must be noted that some columns that are fully static within
well, f.ex. well name, can be useful for the model if multiple wells

re fed into the model. In case of categorical data a one-hot encoding
hould be utilized, that is an attribute well 1 and well 2 would be

introduced that would have a binary value of either1 or a 0. Such static
attributes can be processed by the proposed workflow the same way as
other data.

2.1.3. Run gap statistics
Data can be missing from the raw dataset for various reasons. It

can by typically understood that data gaps are either small, created
due to uneven or out of sync logging, or big and generally not easily
recoverable that exist due to equipment change or failure. It is therefore
necessary to evaluate if a given gap in attribute readings is small
enough to be imputed using simple methods such as forward filling (last
valid value forward) or linear interpolation, or the gap is too large such
that it has to be abandoned. Our own novel method of analyzing data
gaps, named Gap Coefficient (GC) is proposed here, where the gaps
are classified based on their continuous length and the percentage of
the dataset that they occupy. It is proportional to the gaps’ continuous
length and inversely proportional to the quantity of gaps of a given
size and the total length of the dataset. This way small, but plentiful
gaps return low value, while few big gaps return high value. The GC is
calculated as:

𝐺𝐶𝑖 =
𝑖 (1)
𝐺𝑄𝑖 ⋅ 𝑇𝐿
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Fig. 3. Gap coefficient calculation example.
Where 𝑖 is the gap length, 𝐺𝐶𝑖 is gap coefficient calculated for the
gap length of 𝑖, 𝐺𝑄𝑖 is the quantity of gaps of length 𝑖 and 𝑇𝐿 is total
length, or row quantity of the whole dataset. Visualization is provided
in Fig. 3. For a more realistic example, when evaluating gap length of
5 rows, if there are 50 gaps in a dataset of total 4000 rows, calculation
will be:

𝐺𝐶5 =
5

50 ⋅ 4000
= 0.000025 (2)

All gap sizes for all attributes are calculated separately. A cutoff
value 𝛿𝑐𝑓 can be selected based on experiences, cases and requirements,
where 𝐺𝐶 > 𝛿𝑐𝑓 signifies a gap that should not be infilled by forward
filling or linear interpolation as it is too big and not caused by typ-
ical small-gap processes as asynchronous logging or varying logging
frequencies. In general, small and plentiful gaps will yield a low GC
value, while few big gaps will return a high GC. In our case studies,
𝛿𝑐𝑓 is set as 0.005, but for other datasets different value may be more
appropriate.

2.1.4. Identify and select longest stride
By using the GC, it is easy to calculate usable or unusable areas of

the log for each attribute. As the same process is applied to the target
(predicted) attribute, it is possible to identify the longest part of the
well log when this attribute has only small gaps, here called a stride.
This is the part of the provided log that will be used for training and
evaluating the model.

2.1.5. Remove incomplete columns
As the longest stride for the target attribute is identified, it is

possible to select compatible attributes that have complete data in the
same area of the log. Small, one percent margins are cut off from
the target attribute stride at the start and at the end. This is done
because target attribute might appear a small distance before others,
which would lead to unnecessary attribute removal. This value may be
tweaked to retain maximum amount of data.

Additional check is performed on the first derivative of the index
attribute (typically depth or time) to ensure continuity of the log. If
there are any outliers, for example a handful of very high values in the
first derivative of the index, it suggests that the log is not continuous
and should be manually inspected.

2.2. Pre-processing

In this section, we put our main focuses and discussions on data
imputation and resampling, attribute selection by PCA and data scaling.
Other important data pre-processing techniques for invalid data, noisy
data, incorrect data, delayed data and data with outliers are out of this
5

work focus.
2.2.1. Split dataset into continuous train/test dataset
To mimic real-life application the dataset is split into continuous

sections for a given percentage of well drilled. This is what this paper
refers to as training while drilling, where training dataset is continuous
section from 0% to x% of well drilled, while testing dataset is from x%
to (x+F)% of the well drilled, where 𝐹 designates the quantity of the
well to be evaluated at a given step; in the case studies used in this
paper 𝐹 = 20%. This paper typically used 𝑥 ∈ (15, 80) in 50 evenly
spaced steps for a full evaluation. The lower boundary of 15% was
selected due to limited nature of the case study’s dataset; predicting
inclination relies on identifying the sliding and rotating sections, and
these are needed in the training dataset. First 15% contained just one
such cycle. Note that when bigger datasets are available, or problem at
hand is simpler, model can begin to show good performance earlier.

It is a common mistake in machine learning applications in data
series, such as drilling logs, to split the dataset randomly into training
and testing. It was shown that even random values, such as a random
walk can be predicted with an 𝑅2 metric as high as 0.9948 based on
index alone if split randomly, as presented in earlier research (Tunkiel
et al., 2020b), despite the model being clearly nonsensical. Random
train/test split is common in other types of ML applications, but when
dealing with data-series the sequential split, as presented in this paper,
is the correct approach.

2.2.2. Imputation
Imputation for data series, in relationship to small data gaps, can

be either done by forward filling (using last valid value forward),
linear interpolation or other types of curve fitting methods. While
many methods of imputation exist they are often either not suitable
for drilling logs, such as filling with mean, or impractical for logs
that contain a lot of missing values throughout the dataset, such as
regression. There are also methods such as polynomial interpolation,
that has potential for higher quality imputation, it will not work in
some common cases, such as data gaps separated by a singular data
point.

To decide whether forward filling or linear interpolation is better
suited a check is performed on each attributes’ first derivative, calcu-
lated while temporarily removing missing data. If more than 90%1 of
values of the first derivative are zero, then forward filling is selected as
presumably the better method. This will identify rarely changing values
such as wellbore diameter, which is more likely to change rapidly
or discretely, where linear interpolation would introduce unrealistic
slopes to the data. Selection of the threshold value is explored and
discussed in detail in further sections of this paper.

It is critical to perform data imputation utilizing linear interpolation
after the division into train and test data. As the dataset is split into
continuous training and testing portions infilling before a split would

1 Base case value, evaluated further in the manuscript.
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leak future information (Kaufman et al., 2011). For example, if drilling
orque suddenly rises and the data train-test split happens to be just
efore data row with the rise, linear interpolation would cause the
alue to rise due to effect in the future, making the model perform
etter than it realistically should in real-life operation. After the data
plit, linear interpolation can be performed without the risk of data
eakage, or ‘peeking’, as the dataset at this stage is split into training
nd testing. Linear interpolation cannot fill missing data that resides at
he edge of the dataset, and those values are filled using forward and
ackward filling.

.2.3. Resample the dataset
Drilling logs are likely needed to be re-sampled before temporal

achine learning models utilizing RNN can be applied. This is because
he sampling rate is not constant leading to stretching and shrinking
f the signal. It may also be desirable to reduce the quantity of data
ows used for various reasons. Resampling will dictate the resolution
f data, meaning what distance (or time) is between two consecutive
amples. Resampling methods are discussed in detail and evaluated in
urther sections of this paper.

.2.4. Scale dataset to (0,1)
Machine Learning algorithms typically work best when inputs are

caled to (0,1). There are competing approaches (Geller, 2019) to
caling, normalizing, or standardizing data, and these are outside of
he scope of this paper. Simple (0,1) scaling is applied when Pearson
r ppscore, Predictive Power Score, is used further in the process for
ttribute selection purposes, as such scaling is transparent to these
orrelation methods. If Principal Component Analysis (PCA) (Pearson,
901) is applied as an alternative to attribute selection, the base case
s also (0,1) scaling; however an option to apply standardization is
rovided; this process is transforming attributes such that the mean be-
omes equal to zero and standard deviation becomes equal to one. This
lternative is explored later together with attribute selection strategies.
ote that the PCA implementation used here (Pedregosa et al., 2011)
utomatically centers the data (but does not scale it) as this is a
rerequisite for the PCA transformation. Therefore practical difference
or two options above are either min–max based scaling or standard
eviation based scaling. PCA is extremely sensitive to scaling and it is
key pre-processing element (Stacklies et al., 2007) that explored in

he further section of this paper. Pre-PCA scaling cannot be omitted,
ecause the resultant PCA component values would be overwhelmed
y attributes with high numerical values.

.2.5. Select attributes, PCA
Two methods of selecting attributes are implemented and evaluated:

earson coefficient (Benesty et al., 2009), ppscore (Wetschoreck et al.,
020) which provides asymmetric correlation of coefficients based on
ecision trees. Additionally, Principal Component Analysis (Pearson,
901), a method for dimensionality reduction, can be applied that
lso achieves the goal of reducing the amount of inputs. These three
pproaches (Pearson, ppscore, PCA) are evaluated in this paper. Despite
he fact that (0,1) scaling was done already, if PCA transformation is
pplied the data is likely not to be within (0,1) range anymore, hence to
mprove machine learning performance (0,1) scaling is applied again.

.2.6. Shape the dataset
The dataset has to be reshaped to fit the machine learning model,

hich means that samples are created that contain the input and
redicted output of the model. A user shall specify the length of data
f the target attribute, say 25 meters in the presented case study for
nclination prediction, is used as input to the recurrent neural network
rocessing the temporal information of the signal. This paper refers to
his as memory area. Further, directly adjacent length of target attribute,
n the case study 25 meters as well, is selected for prediction, which this
aper refers to prediction area. Other attributes from the dataset residing
6

Fig. 4. Shape of the data showing RNN and Multilayer Perceptron (MLP) input shapes.

in the prediction area are also selected as input of a single sample.
For better visualization of the sample shape Fig. 4 is presented, where
memory length is set at 5 samples, prediction length is at 4 samples.
Predicted attribute is A with B, C and D as additional attributes.

In conclusion, a single input sample consists of n + m values of
arget attribute, where n is the row quantity from the memory portion

and m is the row quantity from the prediction area, as well as 𝑚 ⋅ 𝑗
values, as there are m rows in the prediction area and j attributes,
which are all selected attributes from the dataset (or PCA dimensions).
The exact quantity of m and n rows will depend on the length of
the prediction and the memory area (defined by user), as well as
re-sampling rate. In Fig. 4, 𝑚 = 4, 𝑛 = 5 and 𝑗 = 3.

2.3. Applying ML model

2.3.1. Dataset for validation
In the use case of training-while-drilling, or continuous learning, where

the training dataset is created as the well is being drilled, the amount
of data is quite low, especially in the initial model training phase
using continuous training concept. This often leads to overfitting of
the machine learning model (Pasini, 2015). To tackle that a validation
dataset is taken from the training portion of the data. This may also be
referred to as masking, where a portion of data is masked, and therefore
unavailable for training even though it is technically available to the
user. By monitoring the error on the validation dataset it is possible to
pinpoint the moment when the model is no longer learning, but begins
to overfit. This technique is called early stopping and is a recommended
practice, especially for small dataset (Pasini, 2015). In our case study,
the validation portion consists of 15% of the available training data
taken from the newest available samples. These values will change
depending on the problem at hand and computational power available
in deployment.

The approach of masking portion of available dataset for gauging
the models’ performance is commonly used in ML and applied in
petroleum related topics (Esmaeilzadeh et al., 2020, 2019).
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2.3.2. Model training
Model takes into account both temporal information about the

target signal as well as attribute values from the same index rows as
the prediction. For example, when predicting the ROP with taking into
account the WOB and RPM the model will predict the ROP in the
prediction area based on how the ROP changed in the past, as well
as the current WOB and RPM. Simplified model structure is shown in
Fig. 5. Memory (n) and prediction (m) step quantities are selected by
users; the case studies presented in this paper typically use 𝑛 = 100
nd 𝑚 = 100. This, connected with selected resampling rate for the
ase study of 0.25 m between samples, results in the memory and
rediction being 25 meters long. Right hand side model branch consists
ense layers making a Multilayer Perceptron (MLP) (Rosenblatt, 1961)
rtificial network, while left hand side branch consists of Recurrent
eural Network employing Gated Recurrent Units (Chung et al., 2014)

GRU). While in the presented case study and evaluation further in
he manuscript GRU was selected as the RNN due to its performance
n relatively small datasets, it is trivial to substitute it with Long-
hort Term Memory (LSTM). Pure RNN layers are not recommended
s they suffer from the vanishing gradient problem (Hochreiter and
chmidhuber, 1997). Technical details, such as specific Keras imple-
entation, numbers of neurons in all the layers, activation function,

tc. are provided on Github.2

To visualize and better convey the configuration of inputs and
outputs Fig. 6 is shown. It contains complete data related to one
randomly selected sample. Data sharing same 𝑥-axis location is related
to the same physical location in the well in relation to the bit. Inputs
are shown in black; in this example there is one RNN input (here
MWD Continuous Inclination, in degrees), and 5 PCA components as
MLP inputs. Dotted blue line shows true inclination for the sample and
dashed red line shows the prediction generated by the ML model. Note
that in practice all approximately 50 attributes were used as inputs
to the PCA here, and it is possible to consider the ML model to be
inclusive of the 50 physical attributes. This however would be difficult
to visualize and not representative of data fed to the neural network
itself.

2.3.3. Stop when validation loss stops dropping
While training the model validation loss is continuously measured.

If the validation loss at a given epoch is lowest since the training began,
the model is saved for use, but the training continues. Through consec-
utive iterations the validation loss normally drops continuously, until
it levels off and begins to rise, signifying overfitting; this procedure is
called early stopping (Prechelt, 1998) and is widely used in machine
learning. A specified number of epochs is set as patience, which defines
the amount of epochs since the last validation loss improvement is
allowed. In presented implementation patience of 50 epochs was used.

2.3.4. Calculate error on test dataset
The score of the model is calculated on the test dataset, that

remained untouched throughout the training process. To completely
evaluate a given model it is critical to repeat the training process,
each time starting with an untrained model, for multiple points in
the dataset simulating continuous drilling of a well, i.e. training while
drilling. Proposed framework uses mean absolute error (MAE) as a key
metric that is used throughout the paper. Other metrics, such as 𝑅2,
weighted mean absolute error, average percentage error may be better
suitable for specific case studies, however scoring method selection is
outside of the scope of this paper.

2 https://github.com/AndrzejTunkiel.
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Fig. 5. Simplified model schematic.

2.4. Model evaluation and inspection

2.4.1. Results analysis
Results are evaluated by incorporating training-while-drilling

methodology (Tunkiel et al., 2021) derived from a continuous learning
concept (Liu, 2017). In this methodology it is assumed that the machine
learning prediction model will be trained while drilling, hence the
performance of such model has to be explored with consideration of
continuously expanding training dataset available. Fig. 7 shows how
the training and testing datasets are split in relation to the bit position
and which data is considered available. As the drilling progresses, more
data is available. A fixed portion of the data, here 20% is used, that is
at the end of the drilled section is used for testing.

This case study and train-test split is used throughout the paper.
A sample result is shown in Fig. 8, where the error is shown as a
heatmap; the color designates mean absolute error and is a function of
the percentage of well drilled and the prediction horizon. Each row in
the heatmap designates performance of a model trained after reaching
a given depth, shown on the 𝑦-axis together with the percentage
covered of the dataset at hand. The 𝑥-axis designates the location of
the prediction, with 0 m being at the sensor, and the bit being 23
meters away from the sensor. 20% of the dataset directly adjacent to

the training data is used for testing and calculating the error. When this

https://github.com/AndrzejTunkiel
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Fig. 6. Example of inputs, outputs, and predicted values. Inclination prediction case
study. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

paper discusses results as a single value, an average of all prediction
points from all steps in training-while-drilling process is used.

It is important to understand what the presented model predicts to
understand the results fully. It was developed in tackling the sensor
lag problem (Tunkiel et al., 2020c), where, referring to Fig. 9, the
information is not yet recorded for a portion of the well due to sensor
position. Inclination data is unavailable ahead of the sensor, but is
available behind the sensor, and at the same time real-time attributes,
such as ROP, Weight on Bit, Surface Torque, etc. are available for the
complete section. The results are generated for the area on the distance
marked b using m continuous datapoints, or steps; data in the distance
p containing n samples is considered available.

When applying the model in practice there are multiple metrics
that may be interesting depending on the actual problem at hand.
For example, for the inclination prediction model, while based on the
inclination value in degrees, one of the developed metrics was the
predicted position of the bit in (x,y) coordinates later evaluated as using
𝑅2 value (Tunkiel et al., 2021).
8

Fig. 7. Training-while-drilling, train-test data split example.

Fig. 8. Example results of continuous learning applied to predicting 25 meters ahead
of the bit.

2.4.2. Sensitivity analysis
Sensitivity analysis of the model can be performed using Data-

driven Sensitivity Analysis methodology (Tunkiel et al., 2020a), where
the model is made based on the complete dataset and then the complete
dataset is used as a starting point for one-at-a-time sensitivity study.
The results, due to multiple starting points, are considered statistically.
More traditional methods, such as sobol indices (Sobol, 1993) can also
be applied.

As this topic is very broad it is not evaluated in details in this paper,
only presented as one of the elements in the complete workflow. Mul-
tiple sensitivity analysis methods exist and it is beneficial to perform
such analysis when a model is explored, to gain more insights into the
working of the model, as well as to identify potential issues that would
otherwise remain unidentified.
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Fig. 9. Sensor lag case study.

2.5. Hyperparameter tuning

In general, different problems will require different hyperparame-
ters for a machine learning model to perform at the peak performance.
The process of identifying hyperparameters such as neuron count for
individual layers, activation functions, dropout rates etc., called hy-
perparameter tuning, is necessary before finalizing the model. In this
paper, the hyperparameters were tuned for a case study of predicting
continuous inclination with 25 meters of memory and 25 meters of
prediction, PCA dimensionality reduction and moving inclination data
in individual samples to local coordinate system. When evaluating
different aspects of the model, such as re-sampling algorithms with all
their parameters, it is not feasible to perform hyperparameter tuning for
all possible combinations to establish true error minimums. Introducing
changes however will indicate the system’s sensitivity to those changes,
and will be indicative if certain configuration is better than the other
without the need of performing full hyperparameter tuning.

3. Data pre-processing: Imputation

As indicated earlier, the imputation in the data series when related
to real-time drilling logs is often omitted despite being a common
practical problem. This paper tackles two separate issues: big gaps
covering significant stretch of the measured process, and small gaps
resulting from varying sampling rates of measuring equipment. The
other distinction between these two gap sizes is the fact that small gaps
are assumed to be imputable with simple techniques of forward-filling,
otherwise known as last observation carried forward, and linear interpo-
lation, while the data in the big gaps is considered unrecoverable, at
least using simple methods.

Identification of big gaps in the process this paper uses is done as
the one of the first steps after importing data, as this will determine the
usable range for further model evaluation. This is done automatically
based on the selected target attribute using proposed Gap Coefficient
from Eq. (1)

𝐺𝐶𝑖 =
𝑖

𝐺𝑄𝑖 ⋅ 𝑇𝐿

This simple equation is used to calculate an indicator value, that is
roportional to the relative size of the gap and inversely proportional to
he quantity of gaps of the given size. Basic statistics related to gap sizes
nd the percentage of dataset that they occupy are shown in Fig. 10 for
WD Continuous Inclination attribute of Volve well F9a, depth based

ata. In this specific case, under 12% of cells in the raw log contains
ata, and the rest is empty. Gaps are of various lengths from 1 row
o 1480 rows. Note that the row here refers to a raw dataset that is
ampled unevenly; in the case of well F9a the mean distance between
he rows is 0.05 m.
9

Proposed GC data is presented in Fig. 11. The cutoff value 𝛿𝑐𝑓 =
.005 is proposed in dash-line; this value should be considered a tenta-
ive proposal for real-time drilling logs, as the optimal value might be
ifferent for other processes. Once the GC is above such cutoff value,
he data section for a given attribute is considered unusable due to the
arge gap.

When big gaps are identified it is possible to identify continuous
og portions consisting small gaps only that this paper calls strides,
ee Section 2.1.4. In the proposed automatic process the longest stride
s used for analysis by default. This approach has a risk, where an
ttribute significantly correlated with the target, and therefore highly
seful for prediction, exists only in a portion of the stride, which would
xclude it from analysis. This is a limitation of the proposed semi-
utomatic approach and such cases have to be identified and mitigated
anually.

An algorithm is proposed to determine if a given attribute should
e infilled (in relation to small gaps) via forward filling or linear
nterpolation. The working assumption is:

ssumption 1. ]if an attribute is mostly stationary the small gaps are
est filled with forward filling. Other parameters will be filled by linear
nterpolation

Attributes such as nominal wellbore diameter, on-bottom flag, or
tick–slip flag, would be examples where forward filling is best, as it
oes not change often throughout the well, and is unlikely or impossi-
le to change gradually. The validity of this assumption is presented
n further sections, where imputation algorithm selection threshold is
valuated

Rationale behind considering only forward filling or linear interpo-
ation is such, that those algorithms are extremely robust in terms of
he imputation. They only rely on singular data point at one or both
nds of the gap and therefore easily fill all the gaps, with an exception
f linear interpolation failing to fill gaps at the start and the end of the
ata series; this is fixed by applying forward fill and backward fill after
inear interpolation to close those gaps. Furthermore, a correctly setup
easurement system works under assumption:

ssumption 2. the last received measurement is valid, or the polling
ate is fast enough to capture the nature of the signal by being above
yquist rate (Landau, 1967).

If the assumption on the Nyquist frequency is invalid, then signal
ill exhibit artifacts, similar to Moiré patterns, where poorly resolved
igh frequency signal generates a low frequency artifact. In such case
he presented gap infilling will further copy the apparent signal. This
s however in principle logging system failure, not a limitation of
he presented methodology. Statement on the validity of last received
easurement is generic, meaning that values in dataset are considered

orrect at stated index position.
To identify if an attribute falls under forward filling or linear

nterpolation algorithm, this paper proposes to use a threshold (𝜃𝑡ℎ%) as
n selection criterion by calculating the relative quantity of zero-valued
umerical first derivatives of a given data series, and therefore identify
enerally stationary and generally non-stationary signal. For example,
data series with attribute X with 𝑘 + 1 data points is given as

= {𝑥0, 𝑥1,… , 𝑥𝑘}.

et us define a new calculated dataset

𝑋 = {�̇�0, �̇�1,… , �̇�𝑘−1},

and 𝑛𝑜 is the number of zero-valued of points in 𝛥𝑋. The algorithm is
that
- Forward filling is applied if 𝑛𝑜

𝑘 ≥ 𝜃𝑡ℎ%;
- Linear interpolation is used when 𝑛𝑜

𝑘 < 𝜃𝑡ℎ%.
In the case study, to identify optimal value a grid search simulation

was applied, where a full training-while-drilling scenario for inclination
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Fig. 10. Raw gap statistics, MWD Continuous Inclination, Volve well F9a.
Fig. 11. Gap statistics, gap coefficient, MWD Continuous Inclination, Volve well F9a.
prediction consisting of 50 train-test iterations was applied to predict
continuous inclination of well F9a of the Volve dataset. Prediction
distance was set for 25 meters and 100 samples, and the memory was
also 25 meters and 100 samples. The threshold was varied from 0
percent to 100 percent by 10 percent increments. After running the
simulation 23 times for each of the thresholds totaling 12 650 train-
test iterations, the mean absolute error was analyzed, with results
presented in Fig. 12. Multiple simulations were performed for the same
configurations since the training process is stochastic in nature, and
re-running it with different random seed will yield different results.

Results suggest that in this case study threshold should be at least
20%, where the MAE is lowest. Since the spread in MAE values is high,
a t-test was applied to verify that results are significant. The difference
between the worst score at 0% (always forward filling) and best at
20% is significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2.6 ⋅ 10−7, and the difference in
the MAE is 6.5%. Difference between the threshold of 20% and 100%
is also significant at 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2.2 ⋅ 10−5. This shows, that for at least
some cases, there is a significant difference between infilling methods
applied for small gaps and that using only one or the other method is
not optimal with selection based on first numerical derivative a good
alternative.

It is also worth indicating, as shown by the attribute count subplot
in Fig. 12, that drilling attributes in a drilling log generally fall into
one or the other category of filling no matter where the threshold is
set between 10% and 90%.

Another study was run, this time for ROP prediction on the same
dataset, well F9a, and otherwise generally the same settings, corrected
for attribute removal (f.ex. removed Inverted ROP attribute for this case
10

study). In this case, shown in Fig. 13, the imputation based purely on
linear interpolation for all the attributes showed the best results. T-
test between pure forward filling and linear interpolation shows that
results are significant at 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 5.3 ⋅ 10−5 for a mean 1.6%
difference between them. These results show that selecting the optimal
filling method may bring a modest, yet statistically significant per-
formance improvement, and it is worth considering when performing
hyperparameter tuning.

While performance improvement was expected, it is difficult to find
the exact reason for performance change between specific settings. It is
also interesting that while for inclination prediction case study linear
interpolation for all attributes performed poorly, for ROP prediction it
was a reasonable strategy. More research is needed to better understand
results shown here. Simpler machine learning models may be better
suited for such task.

Remark 1. Note that hand-picking and/or evaluating imputation
method for each and every attribute is likely to yield superior results.
Presented method acts as an automation method that can yield modest
prediction quality improvements.

4. Data pre-processing: Resampling

When utilizing the RNN, similarly to other signal processing meth-
ods, it is implied that the steps between the consecutive data points are
evenly spaced. While there is recent research related to modification
of RNN architectures to introduce time gate (Neil et al., 2016) that
mitigates the issue, the asynchronous nature of recorded value remains

a practical problem. Additionally, the RNN architectures implementing
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Fig. 12. Smart filling study, inclination prediction, by varying the threshold for
applying linear interpolation versus forward filling, the percentage of zero-valued first
numerical derivative values. (0% - Forward Fill only, 100% - linear interpolation only).

Fig. 13. Smart filling study, ROP prediction, by varying the threshold for applying
inear interpolation versus forward filling, the percentage of zero-valued first numerical
erivative values. (0% - Forward Fill only, 100% - linear interpolation only).

uch time gate are not included, as for now, in the most common
achine learning libraries such as Tensorflow/Keras or PyTorch.
11
Fig. 14. Importance of resampling, example of signal deformation due to uneven
sampling rate.

Fig. 15. Resampling error study.

In typical real-time drilling logs the sampling rates vary and the
readings are asynchronous. Even if readings are evenly spaced in time
domain, they will not be such in the depth domain and vice versa.
Common technologies, such as mud-pulse telemetry, transfer readings
from multiple sensors sequentially, and therefore out of sync due to
low bit-rate of this data transfer technology. Therefore re-sampling of
the data logs is critical pre-processing step when working with drilling
logs.

To re-sample a dataset it is to change it such that the consecutive
sensor readings are recalculated for arbitrary index values. For exam-
ple, when working with a depth based dataset, original ROP readings
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Fig. 16. Numerical difference visualization.

Fig. 17. Resampling error study.

may be (50, 59, 61, 70) m/h logged for Measured Depth (MD) of (100,
104.5, 105.5, 110) meters respectively. When looking at the raw ROP
values it is obscured that the ROP grows close to linearly in relation
to the MD. In this simple example the log can be re-sampled for MD
of (100, 105, 110) meters resulting with ROP at (50, 60, 70) m/h
respectively. While in this case re-sampling reduced the number of data
points from 4 to 3, the information is much clearer. If the same log has
the WOB readings (30, 40, 35, 35, 35, 40, 40, 35) klbs at corresponding
12

MD of (98, 100, 102, 104, 106, 108, 110, 112) meters re-sampling is f
again necessary to bring the reading in-sync with the other attributes,
even though the sampling rate is even.

4.1. Resampling importance and algorithms

In practice, to perform re-sampling it is necessary to create a re-
gression algorithm to estimate the output variable value (an attribute)
for an arbitrarily selected input (index) variable, which in the case of
drilling logs is typically either depth or time.

To further visualize the problem Fig. 14 is produced to better
explain the issues at hand. First a sine function is applied to values
of 𝑥 between 0 and 10. True sine function is plotted as a dashed
black line. 50 random points in (0,10) were selected from a uniform
distribution and the true value of sine was calculated for those point;
these values are plotted as black dots and represent non-uniformly
sampled sensor readings. If the actual index value for those readings
is ignored and they are plotted as 50 uniformly distributed points the
nature of the sine function is greatly distorted, see red triangles plotted
in the same figure. In numerical signal processing it is common that
the index of a signal is not retained explicitly for each data point
and assumed constant throughout the dataset. This, in presented basic
example, heavily distorts the temporal nature of the sine function and is
detrimental to achieve good results with recurrent neural networks. It
is however possible to re-sample the data to match the original function
much more closely. In Fig. 14 such data is calculated using K-Nearest
Neighbor (KNN) regression (Fix, 1985) algorithm for neighbor count of
3 and distance weighted; results are plotted as green crosses. The results
are not perfect, but are a significant improvement when compared to
no re-sampling, plotted in red.

This paper explores two algorithms that are particularly suited
for re-sampling: KNN (Fix, 1985), and Fixed Radius Neighbor (FRN)
(Bentley, 1975). The two algorithms are similar to each other. Given
a two dimensional dataset, an arbitrary value along the 𝑥-axis can
be selected and the algorithm will identify 𝐾 closest points (KNN) or
points within the specified radius 𝑟 (FRN) and return their average
value. Additionally, it is possible to assign weights to the identified
points based on the distance from the point of interest along the 𝑥-axis,

here individual weights w are equal to inverse distance d, 𝑤 = 1∕𝑑.
or the purposes of this paper scikit-learn implementation of these
lgorithms was used (Pedregosa et al., 2011).

.2. Resampling quality evaluation

.2.1. Known ground truth
It is, in principle, not possible to directly evaluate the performance

f resampling algorithms on drilling data, as the ground truth is not
nown. It is not possible to calculate the difference between resampled
ata and true data, because the samples do not share the same index
alues. True values simply do not exist in the new index positions in
he raw data. Therefore as a first step evaluation using a sine wave
as performed. Values of sine wave can be calculated for any value to

heck the resampling quality against the ground truth. The dataset was
reated the same way as shown in Fig. 14, where 100 points along the
-axis were generated instead of 50 to not exaggerate the errors. Two
lgorithms were evaluated, the KNN using K-Nearest Neighbors Regres-
or implementation and the FRN using Radius Neighbors Regressor,
rom scikit-learn implementation (Pedregosa et al., 2011); two weight
ptions were tested, uniform and distance-based, giving four different
ombinations. For the KNN algorithm the k-value was evaluated from
to 50, and FRN radius multiplier from 1 to 10, with the base radius

eing maximum distance between neighboring data along 𝑥-axis.
Since the test was based on randomly generated values along the

-axis, a Monte Carlo simulation (Caflisch, 1998) was set up with
00 runs for each combination. The results are presented as the mean
bsolute error between the re-sampled data and true value of sine

unction. Additionally, as a reference, the error value for non-resampled
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Fig. 18. Radius Neighbor Regressor, effects of different regressor radius on resampled data.
data is provided from a case where non-uniformly distributed sine
function data is evaluated against uniformly distributed values of the
sine function. Results are presented in Fig. 15.

Inspecting the results it is clear that the lower the radius and the
k-value, the better the results. There is slight exception in case of
KNeighborsRegressor used with distance weights, where the lowest
neighbor count registers an uptick in error. In general the results are in
line with intuitive expectations, where the best correlation with reality
is for methods inspecting the closest vicinity of the re-sampled points,
that is close to the smallest radius or lowest quantity of neighbors.

While synthetic results can be indicative of real-world performance,
it does not mimic the reality fully. While in principle all signals are a
collection of sine waves that can be decomposed thorough a Fourier
transformation, it does not necessarily indicate that results from a
single sine wave will match any arbitrary signal.

4.2.2. Unknown ground truth
To calculate how well the resampled signal matches the original

data, where the ground truth is not known, a method based on inte-
grating squared difference between data is proposed. Let us assume that
𝑔(⋅) is the difference between the function describing original raw data
𝑟(⋅) and a function describing resampled data 𝑡(⋅), or

𝑔(𝑥𝑖) = 𝑟(𝑥𝑖) − 𝑡(𝑥𝑖), (3)

where 𝑥𝑖 is the data variable (point). In practice those functions are
defined by tabulated data, hence let those functions be defined as
straight lines between two neighboring points, see Fig. 16.

It is trivial to calculate the integral of 𝑔(𝑥𝑖) as an area of a set of
polygons, however this is not a robust way of evaluating the goodness
of fit, as it in practice uses linear weight for the error, while a square
error is typically preferred, to penalize few large differences more
than many small ones. This is similar to a technique where the mean
square error is evaluated against a rolling average in function of the
window length, however the task is more complicated in the case of
data resampling since the index of original and new datapoints do
not match. To solve this issue the squared difference between the two
functions is calculated discretely.

The practical implementation is based on Riemann sum (Engelke
and Sealey, 2009). A basic example of the method for calculating the
discrete difference between the curves is shown in Fig. 16. Note that
the index of the data points do not have to match. A Riemann sum 𝑆𝑔
of a function 𝑔(𝑥) is defined as:

𝑆𝑔 =
𝑢
∑

𝑖=1
𝑔(𝑥𝑖)𝛥𝑥𝑖 (4)

where 𝛥𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 and 𝑖 is the index, such as Measured Depth. 𝑢 is
the quantity of equidistant x-coordinates used to calculate the Riemann
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sum. A square function can be easily added to the distance element of
the sum, 𝑔(𝑥𝑖), making it a sum of difference-squared, or

𝑆𝑆𝑔 =
𝑢
∑

𝑖=1

(

𝑔(𝑥𝑖)
)2 𝛥𝑥𝑖. (5)

Additional modification is necessary, since the integral, or the total
sum, which indicates the total cumulative error may not be particularly
informative. The average error is more intuitive, as it is independent
of the actual length of the dataset, hence the equation can be further
transformed to a mean squared error (MSE):

𝑀𝑆𝐸𝑔 = 1
𝑢

𝑢
∑

𝑖=1

(

𝑔(𝑥𝑖)
)2. (6)

It can be done under an assumption that the 𝛥𝑥𝑖 is constant. Fi-
nally, the equation can be transformed to a Root Mean Square (RMS)
equivalent, here denoted as Root Mean Riemann Squared (RMRS):

𝑅𝑀𝑅𝑆𝑔 =

√

√

√

√

1
𝑢

𝑢
∑

𝑖=1

(

𝑔(𝑥𝑖)
)2. (7)

Remark 2. For the Riemann sum to correctly approximate the value
of the integral, relatively high resolution of calculation has to be
employed (here: high value of 𝑢). Since the 𝑟(⋅), 𝑡(⋅), and consequently
𝑔(⋅) are defined as a tabulated data with linear interpolation between
the consecutive points, the quantity 𝑢 has to be higher than the quantity
of datapoints in the resampled dataset. Results in this paper were
calculated at 𝑢 being 10 times higher than the quantity of resampled
datapoints. The higher the value the closer the approximated function
will be to the true value, approaching asymptotically.

To validate the method, it can be applied to the previously used
synthetic dataset, where results were shown in Fig. 15. Error calculated
using RMRS matches, for all intents and purposes, the calculations
using the ground truth nearly perfectly, as seen in Fig. 17 which is
nearly identical to Fig. 15, with 𝑅2 correlation coefficient between the
two being between 0.95 and 0.997.

In Appendix, additional results for a synthetic function (a triangular
function) are presented in Figs. A.26, A.27, and A.28 with more modest
results of 𝑅2 between 0.945 and 0.997.

4.3. Resampling: Case study

4.3.1. Resampling quality evaluation on drilling data
To visualize the difference between the raw and resampled data

in practice Figs. 18 and 19 were produced, where a small section of
the ROP data from the well F9d of Volve dataset is shown. This shows
how detrimental to signal quality resampling can be. Radius Neighbor

Regressor and K-Nearest Neighbor algorithms were applied at three
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Fig. 19. K-Nearest Neighbors, effects of different neighbor count on resampled data.
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Fig. 20. Evaluation using RMRS example.

Fig. 21. Comparing a fixed algorithm throughout the dataset versus always picking
est one.

ifferent configurations of maximum depth-step multipliers of 1, 20,
nd 100 as well as of neighbor count of 1, 20 and 100. When the
niform weight is used then even the relatively small radius distorts
he signal.

In Fig. 18, inspecting signal for resampling using distance-based
eights it is clear that even at very high resampling radius the signal
14

s effectively retaining all of its features. This makes this configuration w
most desirable. The key to this behavior is the weight function applied
to datapoints, which is the inverted distance, 𝑤 = 1∕𝑑. In practice
it means that points that are relatively far, even if they are within
specified radius, will have a low weight attached and will not distort
data significantly. To avoid having to manually inspect the data after
resampling the RMRS method of calculating the deviation between
original and resampled data is employed.

A sample result of the RMRS calculation based on Eq. (7) is shown in
Fig. 20. Here, a Stand Pipe Pressure (SPP) attribute from the well F9a of
the Volve dataset is evaluated for four different resampling algorithms,
Radius Neighbor Regressor and K-Nearest Neighbor with both uniform
and distance based weights. Different radiuses and neighbor quantity
is utilized. Corroborating manual inspection findings, the distance-
weighted algorithms generally provide a lower error. As expected, the
higher the radius and higher the neighbor quantity the higher the error,
since the signal is being smoothed out.

Remark 3. It is worth noting that the error discussed here indicates
the difference between the resampled and original data and is not
indicative of the expected error for the further applied model. It does
however indicate which resampling method keeps the resampled data
closest to the truth, and therefore being desirable for use. It may be
the case that the signal is noisy and therefore replicating the noise in
the resampled data is undesirable. However in such case it is worth
considering denoising the resampled data as a separate step, before or
after resampling, to keep better control over the process.

Using the proposed RMRS method it is possible to evaluate which
algorithms combination is the best for all the attributes in an example
well. This exercise was performed on the well F9a, rows 2000–10000
(longest clean stride), of the Volve dataset and the results are pre-
sented in Table 2, where 112 attributes are used for resampling quality
evaluation with different algorithms. It is clear that the majority of
the attributes can be best resampled using Radius Neighbor Regressor,
uniform weight with radius equal to 1 or 2 times maximum index step
of the raw data. This, however, seems to be counter-intuitive when
compared with Fig. 20, where this algorithm shows rapid error increase
with K and radius.

For further insights additional analysis was performed where av-
erage performance of different algorithms was compared to the best
algorithm for a given attribute. In other words, how much the RMRS
error would increase if one was to always choose a fixed algorithm
‘‘blindly’’ compared to evaluating all possibilities and selecting the
best one. Results are shown in Fig. 21. These results show that if one
resampling algorithm was to be used for all algorithms ‘‘blindly ’’ it is
est to either use Radius Neighbor Regressor, distance weighted, with
adius of 2 times the biggest original index step, or K-Nearest Neighbor,
istance weighted, with 15 neighbors. Either of those two options come

ith penalty of under 5 percent of additional error compared to best
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Fig. 22. Resampling error study, results in terms of mean absolute error.
Fig. 23. Sampling rate study.

Fig. 24. Model selection strategy for MWD Continuous Inclination prediction.
15
Fig. 25. Model selection strategy for MWD Continuous Inclination prediction based on
inclination change.

Table 2
Algorithms that provide the lowest RMRS, out of 112 attributes.

Algorithm N/radius Winner count

RNR uniform 1 49
RNR uniform 2 15
RNR distance 2 9
RNR uniform 3 4
RNR uniform 4 4
RNR distance 3 4
RNR distance 1 3
KNN uniform 7 3
Other n/a 21

algorithm. Out of those two the distance weighted KNN is likely a better
choice, as it overall provides low error no matter the exact neighbor
count selected.

4.3.2. Resampling method selection effect on prediction quality
Considering the findings from the previous sections, it is worthwhile

to evaluate the influence of the re-sampling methods on the overall

performance of machine learning model. Additionally it is possible
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Fig. A.26. Example of resampling issues, triangular function.

o benchmark against non-resampled signals. To achieve an apples-
o-apples comparison, the signal has to be downsampled so that the
uantity of predicted time-steps as well as the average prediction
orizon is the same as for other methods. This makes it possible to
se identical neural network structure for all cases. This is achieved in
ractice by skipping a fixed number of rows in gap-filled dataset such
hat the quantity, and therefore the mean step size is identical to the
ase when data is re-sampled at specific, selected frequency.

Benchmarking was performed via complete training while drilling
scenario when continuous inclination is predicted ahead of the bit while
bent-sub drilling, as described in earlier publication (Tunkiel et al.,
2021), where the training dataset is continuous section from 0% to
x% of well drilled, while testing dataset is from x% to (x+20)% of the
well drilled, ref. previously shown Fig. 7. There are multiple iterations
for the model training and evaluation for 𝑥 ∈ (15, 80) in 50 evenly
spaced percentage-steps. The sampling rate is set at five times the
mean increment of the index value (measured depth), which results in
approximately 100 data-rows for 25 meters of data.

Note that here it is the re-sampling algorithm settings that are
evaluated, not the sampling rate. Effect of the sampling rate selection is
explored in the next subsection. Results are evaluated as the MAE of the
prediction. Data was taken from well F9 A, depth based dataset, from
Equinor’s Volve data (Equinor, 2018) converted to CSV files (Tunkiel
et al., 2020d). This dataset contains all the files related to a Volve
field that was in operation between 2008 and 2018, including seismic,
drilling, and production data.

Fig. 22 shows the results in terms of the MAE as a function of radius
that is described by a multiplier for maximum index step, which in this
case study is 0.15 m. A multiplier for maximum step is used to ensure
that radius regressor will find at least one data point in the series for
any arbitrary location.

Two algorithms were evaluated, K-Nearest-Neighbors and Fixed
Radius Regressor, and two datapoint weighing strategies, uniform and
distance based. Additionally a line is produced on each chart indicating
mean, 5th, and 95th percentiles, results where data was not re-sampled,
but downsampled (based on 100 runs at the same settings to calculate
mean and percentiles). The results indicate that the radius equal to
approximately 18 maximum index derivatives, or maximum steps, for
Fixed Radius Regressor at uniform weight showed best results with
MAE at 0.8 degrees, although the results are fairly spread out.

There are also additional practical reasons for choosing a low radius
for Fixed Radius Regressor as well as low K for K-Nearest Neighbors
algorithm. From practical point of view, if a radius of 5 meters is
16
Fig. A.27. RMS error between resampled values and ground truth.

Fig. A.28. RMS as calculated through RMRS.

selected, then predictions will have to be delayed until further 5 meters
of data is available; a resampled datapoint at MD=x takes into account
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Fig. A.29. Volve well F9a, Pearson correlation.
points between MD=x−5 [m] and MD=x+5 [m]. This may or may not
be an issue, depending on the specific application.

4.3.3. Sampling rate selection effect on prediction quality
When re-sampling or down-sampling the dataset, the new constant

sampling rate has to be decided. In the process presented in this paper,
the sampling rate is based on the mean index increments. To evaluate
practical effects of the sampling rate, again a Monte Carlo simulation
was employed using the continuous inclination prediction scenario as
described earlier.

Results of the inclination prediction study are presented in Fig. 23.
A clear trend is visible, where the longer the sampling rate results in
the higher mean absolute error. While the results are noisy, there is a
visible area for the shortest sampling rates, where the error suddenly
increases defying the general trend. This is most likely an artifact of
the specific neural network size used. Hyperparameter tuning was done
only once for the re-sampling rate equal to five times the mean original
sampling rate, which is the minimum in the results. It is prohibitively
time-expensive to perform hyperparameter tuning for each inspected
re-sampling rate. It is likely that network layer size, dropout rates
and learning rates can be adjusted to prevent that error increase, and
therefore a high (short) sampling rate should be preferred, although
that is achieved at the cost of the computational power needed.
17
5. Attribute selection and PCA configuration

Two attribute selection strategies were implemented in the semi-
automatic process presented in this paper, Pearson correlation coef-
ficient (Benesty et al., 2009), and Predictive Power Score (ppscore)
(Wetschoreck et al., 2020) which provides asymmetric correlation coef-
ficients based on decision trees. As an alternative to attribute selection
PCA transformation is also available. Two scaling methods were tested
as a pre-processing before applying PCA: normalization (i.e. (0,1) scal-
ing) and standardization (scaling so that standard deviation becomes
1).

Simulation was set up to evaluate the mean absolute error for all
four approaches to reducing the quantity of inputs, as well as the actual
quantity of inputs selected. Again, prediction of continuous inclination
case study was chosen for this purpose. Fig. 24 shows the results,
where PCA approach provides significantly lower error, without any
difference between scaling strategies. This result is understandable
considering the data; while continuous inclination is predicted, there
is no direct correlation between the details of the inclination signal
and drilling parameters, as the inclination is constantly rising in the
analyzed curved section with varying rate. This is likely to be also the
case for problems where recurrent neural networks perform the best.
This shows that PCA transformation is a very convenient tool for input
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Fig. A.30. Volve well F9a, ppscore correlation.
quantity reduction, as it captures the behavior of the dataset indepen-
dent of the target attribute. Pearson algorithm, at 80% of available
well data, selected following attributes as correlated with inclination:
Hole depth (MD) m, Bit Drill Time h, Hole Depth (TVD) m, Extrapolated
Hole TVD m, and Corrected Total Hookload kkgf. While those values are
technically corrected with inclination data, they are not particularly
useful for a high quality prediction. ppscore algorithm picked similar
attributes: Extrapolated Hole TVD m, Pump Time h, Measured Depth m,
Total Bit Revolutions unitles, and Hole depth (MD) m.

An alternative simulation was performed, where the same case
study was explored with the exception that the inclination values were
converted to inclination change before feeding it into the model. The
transformation was reversed to nominal inclination after the model’s
output. Such process is related to feature engineering, where attributes
are altered to make the prediction process easier for the machine
learning algorithm. There are pros and cons for such methods, however
this is outside of the scope of this article.

This change allows the Pearson correlation and ppscore algorithm
to work on par with PCA, as seen in Fig. 25. In this case all algorithms
perform similarly, although the spread in the results is significant. This
is again a regrettable artifact of hyperparameters setup for slightly dif-
ferent problem (nominal inclination) and the quality can be improved
by adjusting the neural network layer size, dropout rates and learning
18
rate. Best score was again achieved when inputs were converted via
PCA, this time input quantity of 3 showed the best results.

When investigating attributes selected is becomes clear that convert-
ing the target to inclination change allowed the algorithms to work as
intended. Much more reasonable selection was done using Pearson al-
gorithm, yielding: Total Hookload kkgf, Average Rotary Speed rpm, Total
Downhole RPM rpm, Average Surface Torque kN.m, andWeight on Bit kkgf.
ppscore selection was less obvious, listing Total Downhole RPM rpm,
Average Rotary Speed rpm, MWD DNI Temperature degC, Extrapolated
Hole TVD m, and Corrected Total Hookload kkgf.

Remark 4. The main takeaway here is that it is unwise to depend on
one ‘‘best’’ correlation algorithm to select inputs, as simple change to
the case study makes the results very different. Additionally, in an auto-
mated approach where attributes are selected without a manual expert
selection, PCA is a good alternative to typical correlation methods that
will may when a more complex algorithm, such as RNN is used.

Two examples of correlation plots are reproduced in the Appendix,
Fig. A.29 for Pearson coefficient and Fig. A.30 for ppscore. It is worth
noting that ppscore, unlike Pearson correlation, does not generate
symmetric results, which is rooted in the way how the algorithm works.
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6. On neural network architectures

Work presented in this paper utilizes RNN for prediction purposes,
namely GRU; this also makes it is trivial to substitute it with vanilla
RNN or LSTM. Considering the rapid pace of research within ML,
it is necessary to point out that alternative architectures exist, both
newer and older. Architecture selection can make a model less or more
affected by the pre-processing, such as methods presented in this paper,
and therefore further work is needed to understand this problem. This
paper utilized RNNs in a case study where there was known benefit
from including temporal information in the model (Tunkiel et al.,
2021), and therefore various approaches to pre-processing were likely
to affect the results.

6.1. One to one, one to many, many to one, many to many

There are four distinct approaches to time series prediction in terms
out input–output configuration. Input can consist of one single row of
the data-series, i.e. 𝑋𝑖, or many rows, f.ex. [𝑋𝑖−2, 𝑋𝑖−1, 𝑋𝑖]. Outputs can
also be analogous, where only one step is predicted at a time, i.e. �̂�𝑖+1,
or many steps, f.ex. [�̂�𝑖+1, �̂�𝑖+2, �̂�𝑖+3]. These variants can therefore be
made into four distinct configurations, commonly referred to as One to
One, One to Many, Many to One, and Many to Many.

Using just one row for input has a limitation that very limited
temporal information can be learned by the network, limited in practice
to predicting the first derivative behavior.

In terms of outputs it is possible to predict multiple steps when pre-
dicting just one step by reusing previous predictions, where predicted
value �̂�𝑖+1 can be used as an input, allowing prediction of �̂�𝑖+2 using the
same architecture. This paper utilizes Many to Many approach, where
multiple steps are the outputs of the ML model, as visualized in Fig. 5,
as this was the approach that performed better, however no extensive
research was done to benchmark the alternatives against each other.

Whether it is better to predict one or many will highly depend on the
case study at hand. In the problem of inclination prediction explored
in this paper predicting many was selected because the inclination will
generally rise in the curved portion of the well. This will cause error to
accumulate if predict one approach was to be selected due to re-use of
outputs needed to predict further values. In other case studies this may
not be the case and predicting one value at a time might be the better
solution.

6.2. Transformers

In 2017 a new architecture was introduced called a Transformer
(Vaswani et al., 2017). It displaced LSTM as the state of the art for
natural language processing (NLP) by using attention mechanism. This
allows the network to keep focus on the elements further down the
sequence of inputs compared to RNNs. While it is not a problem fully
analogous to drilling it does indicate that this new architecture should
also be applicable for such problems. At the same time it is not given
that more complex approach will perform better. There is a paper pub-
lished in Nature (Mignan and Broccardo, 2019) that put a single neuron
against an earlier published deep learning network for a problem of
predicting earthquake aftershocks matching the results. Further work
is needed to establish when it is desirable to apply Transformer and
when RNN in drilling.

6.3. Convolutional Neural Networks (CNN

Another potential approach is to use CNN architecture, which was
successfully applied in drilling problems before to determine rock
strength parameters (He et al., 2019) or lithofacies recognition (Lima
et al., 2019). While CNN are typically applied to classification prob-
lems, as opposed to a regression problem presented in this paper, a CNN
element introduction either within the network itself, or as a separate
step identifying sliding and rotating portions of drilling may bring
19

benefits, and even make the proposed architecture more universal.
6.4. Linear regression, decision trees, support vector machines

As indicated in relation to Transformers, it is not given that new,
more complex methods bring improved performance. This at the same
time means that it is possible that simpler methods can perform better
than the architecture presented here. For example decision trees were
successfully used to fill in data gaps in drilling data (Feng et al., 2021).
While the case study of predicting inclination was explored in the past
to benchmark performance against simpler methods (Tunkiel et al.,
2021) showing big benefits of RNNs, it is not guarantied to be the case
for all problems.

7. Conclusion

A number of conclusions can be drawn from the performed studies
related to optimal setup of machine learning processes in real-time
drilling related problems.

1. Pre-processing of data plays a significant role in the quality of
prediction using Recurrent Neural Networks

2. There is a significant difference in results depending whether
small data gaps are filled using forward filling, linear interpo-
lation, or using a smart selection of the two.

3. Re-sampling using fixed radius regressor with a small radius
and uniform weight provided lowest prediction error, however
it results in significant data degradation, and re-sampling with
distance based weights provided similar results without the high
potential for data degradation seen from the uniform weight
approach. Evaluating the difference between raw and resam-
pled data using proposed method of Root Mean Riemann sum
Squared is an efficient way of gauging the quality of resampling.

4. Re-sampling rate has significant effect on accuracy, while bene-
fiting from much faster computation time

5. Performance of attribute selection strategies can vary signifi-
cantly with PCA being a good alternative to commonly used
Pearson correlation coefficient

6. Predictive Power Score (ppscore) algorithm, although has signif-
icant theoretical improvements over the Pearson coefficient did
not provide practical improvements in evaluated case study.

We hope that this paper highlights the need of proper data prepa-
ration in terms of gap filling and resampling, for research in both
petroleum and other fields.

7.1. Future work

Future work is needed to better understand some effects seen in
the presented research. This paper identified that there are differ-
ences in models’ performance based on gap filling strategies, the root
cause of this effect remains elusive. Additional case studies, RNN and
non-RNN, would be beneficial to better quantify the effects of the re-
sampling rate, especially utilizing hyperparameter tuning for different
settings, which is extremely demanding of computational resources.
More research towards the behavior of the RNN models is necessary
to understand better how the length of the input, length of the output,
model update frequency, etc. influence the results.

CRediT authorship contribution statement

Andrzej T. Tunkiel: Conceptualization, Methodology, Software,
Data curation, Writing – original draft. Dan Sui: Formal analysis, Writ-
ing – review & editing, Methodology, Supervision. Tomasz Wiktorski:

Resources, Writing – review & editing, Supervision.



Journal of Petroleum Science and Engineering 208 (2022) 109760A.T. Tunkiel et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix

See Figs. A.28–A.30.

References

Barbosa, L.F.F., Nascimento, A., Mathias, M.H., de Carvalho, J.A., 2019. Machine
learning methods applied to drilling rate of penetration prediction and optimization
- a review. J. Pet. Sci. Eng. 183, 106332. http://dx.doi.org/10.1016/j.petrol.2019.
106332.

Benesty, J., Chen, J., Huang, Y., Cohen, I., 2009. Pearson correlation coefficient. In:
Noise Reduction in Speech Processing. Springer, pp. 1–4.

Bentley, J.L., 1975. Survey of Techniques for Fixed Radius Near Neighbor Searching.
Technical Report, Stanford Linear Accelerator Center, Calif. USA.

Caflisch, R.E., 1998. Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49.
http://dx.doi.org/10.1017/S0962492900002804.

Chhantyal, K., Hoang, M., Viumdal, H., Mylvaganam, S., 2018. Flow rate estimation
using dynamic artificial neural networks with ultrasonic level measurements. In:
Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, EU-
ROSIM 2016, the 57th SIMS Conference on Simulation and Modelling SIMS 2016.
Linköping University Electronic Press, pp. 561–567, Number: 142 tex.organization.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR abs/1412.3, URL: http:
//arxiv.org/abs/1412.3555. tex.arxivid: 1412.3555.

Engelke, N., Sealey, V., 2009. The great gorilla jump: A Riemann sum investigation.
In: Proceedings of the 12th Special Interest Group of the Mathematical Association
of America on Research in Undergraduate Mathematics Education.

Equinor, 2018. Volve field data (CC BY-NC-SA 4.0). URL: https://www.equinor.com/
en/news/14jun2018-disclosing-volve-data.html.

Esmaeilzadeh, S., Salehi, A., Hetz, G., Olalotiti-lawal, F., Darabi, H., Castineira, D.,
2019. A general spatio-temporal clustering-based non-local formulation for multi-
scale modeling of compartmentalized reservoirs. In: SPE Western Regional Meeting
Proceedings 2019. OnePetro, http://dx.doi.org/10.2118/195329-MS.

Esmaeilzadeh, S., Salehi, A., Hetz, G., Olalotiti-lawal, F., Darabi, H., Castineira, D.,
2020. Multiscale modeling of compartmentalized reservoirs using a hybrid
clustering-based non-local approach. J. Pet. Sci. Eng. 184, 106485. http://dx.doi.
org/10.1016/J.PETROL.2019.106485.

Feng, R., Grana, D., Balling, N., 2021. Imputation of missing well log data by random
forest and its uncertainty analysis. Comput. Geosci. 152, 104763. http://dx.doi.
org/10.1016/J.CAGEO.2021.104763.

Fix, E., 1985. Discriminatory Analysis: Nonparametric Discrimination, Consistency
Properties. Vol. 1. USAF school of Aviation Medicine.

Geekiyanage, S.C., Sui, D., Aadnoy, B.S., 2018. Drilling data quality management: Case
study with a laboratory scale drilling rig. In: Proceedings of the International
Conference on Offshore Mechanics and Arctic Engineering. OMAE, American
Society of Mechanical Engineers., http://dx.doi.org/10.1115/OMAE2018-77510.

Geekiyanage, S.C.H., Tunkiel, A., Sui, D., 2020. Drilling data quality improvement
and information extraction with case studies. J. Petrol. Explor. Prod. Technol.
http://dx.doi.org/10.1007/s13202-020-01024-x.

Geller, S., 2019. Normalization vs standardization — Quantitative analysis | by shay
geller | towards data science. URL: https://towardsdatascience.com/normalization-
vs-standardization-quantitative-analysis-a91e8a79cebf.

He, M., Zhang, Z., Ren, J., Huan, J., Li, G., Chen, Y., Li, N., 2019. Deep convolutional
neural network for fast determination of the rock strength parameters using drilling
data. Int. J. Rock Mech. Min. Sci. 123, 104084. http://dx.doi.org/10.1016/J.
IJRMMS.2019.104084.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput.
9, 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735, URL: http://www.
mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735.

Kaufman, S., Rosset, S., Perlich, C., 2011. Leakage in data mining: Formulation,
detection, and avoidance. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press, New York, New
York, USA, pp. 556–563. http://dx.doi.org/10.1145/2020408.2020496.

Landau, H.J., 1967. Sampling, data transmission, and the nyquist rate. In: Proceedings
of the IEEE. Vol. 55. IEEE, pp. 1701–1706.
20
Lima, R.P.d., Suriamin, F., Marfurt, K.J., Pranter, M.J., 2019. Convolutional Neu-
ral Networks As Aid in Core Lithofacies Classification. Vol. 7. Society of
Exploration Geophysicists and American Association of Petroleum Geologists,
pp. SF27–SF40. http://dx.doi.org/10.1190/INT-2018-0245.1, http://www.seg.org/
interpretation, URL: https://library.seg.org/doi/abs/10.1190/INT-2018-0245.1.

Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R., 2015. Learning to diagnose with LSTM
recurrent neural networks. arXiv preprint arXiv:1511.03677.

Liu, B., 2017. Lifelong machine learning: a paradigm for continuous learning. Front.
Comput. Sci. 11, 359–361. http://dx.doi.org/10.1007/s11704-016-6903-6.

Mignan, A., Broccardo, M., 2019. One neuron versus deep learning in aftershock pre-
diction. Nature 574 (7776), E1–E3. http://dx.doi.org/10.1038/s41586-019-1582-8,
URL: https://www.nature.com/articles/s41586-019-1582-8.

Neil, D., Pfeiffer, M., Liu, S.C., 2016. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. arXiv preprint arXiv:1610.09513.

Osarogiagbon, A., Muojeke, S., Venkatesan, R., Khan, F., Gillard, P., 2020. A new
methodology for kick detection during petroleum drilling using long short-term
memory recurrent neural network. Process Saf. Environ. Prot..

Pasini, A., 2015. Artificial neural networks for small dataset analysis. J. Thorac. Dis.
7, 953–960. http://dx.doi.org/10.3978/j.issn.2072-1439.2015.04.61.

Pearson, K., 1901. LIII. On lines and planes of closest fit to systems of points in space.
London Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572. http://dx.doi.org/10.1080/
14786440109462720.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Prechelt, L., 1998. Early Stopping - But when? Springer, Berlin, Heidelberg, pp. 55–
69. http://dx.doi.org/10.1007/3-540-49430-8_3, URL: https://link.springer.com/
chapter/10.1007/3-540-49430-8_3.

Rosenblatt, F., 1961. Principles of Neurodynamics. Perceptrons and the Theory of Brain
Mechanisms. Technical Report, Cornell Aeronautical Lab Inc Buffalo NY.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations
by back-propagating errors. Nature 323, 533–536. http://dx.doi.org/10.1038/
323533a0.

Sobol, I.M., 1993. Sensitivity estimates for nonlinear mathematical models. Math.
Model. Comput. Exp. 1, 407–414.

Song, S., Hou, J., Dou, L., Song, Z., Sun, S., 2020. Geologist-level wireline log shape
identification with recurrent neural networks. Comput. Geosci. 134, 104313. http:
//dx.doi.org/10.1016/j.cageo.2019.104313.

Stacklies, W., Redestig, H., Scholz, M., Walther, D., Selbig, J., 2007. PCAMethods—a
bioconductor package providing PCA methods for incomplete data. Bioinformat-
ics (Oxford, England) 23, 1164–1167. http://dx.doi.org/10.1093/bioinformatics/
btm069.

Sui, D., Sukhoboka, O., Aadnøy, B.S., 2018. Improvement of wired drill pipe data
quality via data validation and reconciliation. Int. J. Autom. Comput. 15, 625–636.
http://dx.doi.org/10.1007/s11633-017-1068-9, URL: http://link.springer.com/10.
1007/s11633-017-1068-9.

Tunkiel, A., Github for TOPPMEIS project. URL: https://github.com/AndrzejTunkiel/
Tape.

Tunkiel, A.T., Sui, D., Wiktorski, T., 2020a. Data-driven sensitivity analysis of complex
machine learning models: A case study of directional drilling. J. Pet. Sci. Eng. 195,
107630. http://dx.doi.org/10.1016/j.petrol.2020.107630.

Tunkiel, A.T., Sui, D., Wiktorski, T., 2020b. Reference dataset for rate of penetration
benchmarking. J. Pet. Sci. Eng. http://dx.doi.org/10.1016/j.petrol.2020.108069.

Tunkiel, A.T., Sui, D., Wiktorski, T., 2021. Training-while-drilling approach to inclina-
tion prediction in directional drilling utilizing recurrent neural networks. J. Pet.
Sci. Eng. 196, 108128.

Tunkiel, A.T., Wiktorski, T., Sui, D., 2020c. Continuous drilling sensor data recon-
struction and prediction via recurrent neural networks. In: ASME 2020 39th
International Conference on Ocean, Offshore and Arctic Engineering. http://dx.doi.
org/10.1115/OMAE2020-18154.

Tunkiel, A.T., Wiktorski, T., Sui, D., 2020d. Drilling dataset exploration, processing and
interpretation using volve field data. In: ASME 2020 39th International Conference
on Ocean, Offshore and Arctic Engineering. http://dx.doi.org/10.1115/OMAE2020-
18151.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Informa-
tion Processing Systems 2017-December. pp. 5999–6009, URL: https://arxiv.org/
abs/1706.03762v5. Neural information processing systems foundation tex.arxivid:
1706.03762.

Wetschoreck, F., Krabel, T., Krishnamurthy, S., 2020. 8080Labs/ppscore: zenodo
release. http://dx.doi.org/10.5281/ZENODO.4091345, URL: https://zenodo.org/
record/4091345.

Yu, Y., Si, X., Hu, C., Zhang, J., 2019. A review of recurrent neural networks: LSTM
cells and network architectures. Neural Comput. 31, 1235–1270. http://dx.doi.org/
10.1162/neco_a_01199.

http://dx.doi.org/10.1016/j.petrol.2019.106332
http://dx.doi.org/10.1016/j.petrol.2019.106332
http://dx.doi.org/10.1016/j.petrol.2019.106332
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb2
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb2
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb2
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb3
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb3
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb3
http://dx.doi.org/10.1017/S0962492900002804
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb5
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb7
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb7
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb7
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb7
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb7
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
http://dx.doi.org/10.2118/195329-MS
http://dx.doi.org/10.1016/J.PETROL.2019.106485
http://dx.doi.org/10.1016/J.PETROL.2019.106485
http://dx.doi.org/10.1016/J.PETROL.2019.106485
http://dx.doi.org/10.1016/J.CAGEO.2021.104763
http://dx.doi.org/10.1016/J.CAGEO.2021.104763
http://dx.doi.org/10.1016/J.CAGEO.2021.104763
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb12
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb12
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb12
http://dx.doi.org/10.1115/OMAE2018-77510
http://dx.doi.org/10.1007/s13202-020-01024-x
https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
http://dx.doi.org/10.1016/J.IJRMMS.2019.104084
http://dx.doi.org/10.1016/J.IJRMMS.2019.104084
http://dx.doi.org/10.1016/J.IJRMMS.2019.104084
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/2020408.2020496
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb19
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb19
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb19
http://dx.doi.org/10.1190/INT-2018-0245.1
http://www.seg.org/interpretation
http://www.seg.org/interpretation
http://www.seg.org/interpretation
https://library.seg.org/doi/abs/10.1190/INT-2018-0245.1
http://arxiv.org/abs/1511.03677
http://dx.doi.org/10.1007/s11704-016-6903-6
http://dx.doi.org/10.1038/s41586-019-1582-8
https://www.nature.com/articles/s41586-019-1582-8
http://arxiv.org/abs/1610.09513
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb25
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb25
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb25
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb25
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb25
http://dx.doi.org/10.3978/j.issn.2072-1439.2015.04.61
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb28
http://dx.doi.org/10.1007/3-540-49430-8_3
https://link.springer.com/chapter/10.1007/3-540-49430-8_3
https://link.springer.com/chapter/10.1007/3-540-49430-8_3
https://link.springer.com/chapter/10.1007/3-540-49430-8_3
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb30
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb30
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb30
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb32
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb32
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb32
http://dx.doi.org/10.1016/j.cageo.2019.104313
http://dx.doi.org/10.1016/j.cageo.2019.104313
http://dx.doi.org/10.1016/j.cageo.2019.104313
http://dx.doi.org/10.1093/bioinformatics/btm069
http://dx.doi.org/10.1093/bioinformatics/btm069
http://dx.doi.org/10.1093/bioinformatics/btm069
http://dx.doi.org/10.1007/s11633-017-1068-9
http://link.springer.com/10.1007/s11633-017-1068-9
http://link.springer.com/10.1007/s11633-017-1068-9
http://link.springer.com/10.1007/s11633-017-1068-9
https://github.com/AndrzejTunkiel/Tape
https://github.com/AndrzejTunkiel/Tape
https://github.com/AndrzejTunkiel/Tape
http://dx.doi.org/10.1016/j.petrol.2020.107630
http://dx.doi.org/10.1016/j.petrol.2020.108069
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb39
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb39
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb39
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb39
http://refhub.elsevier.com/S0920-4105(21)01382-6/sb39
http://dx.doi.org/10.1115/OMAE2020-18154
http://dx.doi.org/10.1115/OMAE2020-18154
http://dx.doi.org/10.1115/OMAE2020-18154
http://dx.doi.org/10.1115/OMAE2020-18151
http://dx.doi.org/10.1115/OMAE2020-18151
http://dx.doi.org/10.1115/OMAE2020-18151
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/1706.03762v5
http://dx.doi.org/10.5281/ZENODO.4091345
https://zenodo.org/record/4091345
https://zenodo.org/record/4091345
https://zenodo.org/record/4091345
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1162/neco_a_01199

	Impact of data pre-processing techniques on recurrent neural network performance in context of real-time drilling logs in an automated prediction framework
	Introduction
	Background and state of art
	Motivation and contribution
	Paper structure

	Process framework
	Data selection
	Import raw dataset
	Drop unwanted columns
	Run gap statistics
	Identify and select longest stride
	Remove incomplete columns

	Pre-processing
	Split dataset into continuous train/test dataset
	Imputation
	Resample the dataset
	Scale dataset to (0,1)
	Select attributes, PCA
	Shape the dataset

	Applying ML model
	Dataset for validation
	Model training
	Stop when validation loss stops dropping
	Calculate error on test dataset

	Model evaluation and inspection
	Results analysis
	Sensitivity analysis

	Hyperparameter tuning

	Data pre-processing: Imputation
	Data pre-processing: Resampling
	Resampling importance and algorithms
	Resampling quality evaluation
	Known ground truth
	Unknown ground truth

	Resampling: Case study
	Resampling quality evaluation on drilling data
	Resampling method selection effect on prediction quality
	Sampling rate selection effect on prediction quality


	Attribute selection and PCA configuration 
	On neural network architectures 
	One to one, one to many, many to one, many to many 
	Transformers 
	Convolutional Neural Networks (CNN 
	Linear regression, decision trees, support vector machines 

	Conclusion
	Future work 

	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix
	References


