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Abstract

This study investigates the unsteady aerodynamics of attached flow on
a two-dimensional airfoil. The unsteady aerodynamics introduces aero-
dynamic damping of the offshore wind turbine structure and is thus im-
portant for the turbine structural integrity. This includes an impact on
the fatigue damage of the structure and, consequently, an effect on the
total cost of energy.

Unsteady aerodynamics can be studied using a variety of methods. In
this thesis, a panel vortex method was developed to estimate the aero-
dynamic forces. This method is based on potential theory, which can’t
account for the viscosity in the fluid. Consequently, dynamic stall, which
is an important unsteady aerodynamic effect, can not be modeled, and
we are limited to attached flow conditions.

Despite this limitation, the vortex method is in some situation the
preferred option when investigating unsteady aerodynamics. The vortex
method has the advantage of considering the wake history in the estima-
tion of the aerodynamic forces. Using the panel vortex method developed
in this study, one is not dependent on look-up tables since the aerody-
namic loads are calculated by direct modelling of flow conditions on an
airfoil of a given geometry. However, the computational time of the vortex
method is long and is therefore often not used.

There is a possibility to reduce the computational time of the vortex
method. By using a graphic processing unit, it is demonstrated how the
computational time can be reduced for a two-dimensional panel vortex
code. A significant reduction in computational time can be achieved
for the simulation, depending on the number of vortex elements in the
analysis. For a low amount of vortex elements, the computation is faster
on a central processing unit, CPU.

The panel vortex method is used to investigate the motion induced
aerodynamic loads on an offshore wind turbine. Studying the flow con-
ditions on an airfoil oscillating in plunge motion at frequencies similar
to the eigenfrequencies for a floating spar type wind turbine, the aerody-
namic damping for eigenmodes represented is estimated. Including the
neighbouring airfoils and their wakes in the analysis has a relatively large
effect on the estimated aerodynamic damping. The aerodynamic damp-
ing is reduced when the period of the oscillating airfoil is equal to the time



it takes for one airfoil to travel from its original position to the neigh-
bouring airfoil’s original position. One example where this can occur is if
the eigenfrequency of the tower is equal to the blade passing frequency.
This effect has previously been studied by other researchers, but mostly
for helicopter rotors.

The change in the wind-structure interaction effects is studied with re-
gards to the fatigue damage of the tower using a single degree of freedom
model. Comparing the fatigue damage results using different computa-
tional methods to estimate the aerodynamic forces can be useful when
evaluating the effect of the aerodynamic model chosen on the cost. This
study only focuses on one unsteady plunging motion, and is therefore
limited. It is found that the unsteady aerodynamic models that are most
commonly used may overestimate the damping, and thus estimate a too
low fatigue damage. This will have a negative impact on the cost if the
wind turbine fails.
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Abbreviations

BEM Beam Element Momentum.

CENER National Renewable Energy Centre (Spain).

CFD Computational Fluid Dynamics.

COB Center of Buoyancy.

COG Center of Gravity.

CPU Central Processing Unit.

DLL Dynamic Link Library.

DNV Det Norske Veritas.

DOF Degree of Freedom.

DONG Danish Oil and Natural Gas Energy (Denmark).

DS Dynamic Stall.

FEM Finite Element Method.

GDW Generalized Dynamic Wake.

GH Garrard Hassan & Partners Limited.

GPU Graphics Processor Unit.

IWES Frauenhofer Institute for Wind Energy and Energy System Tech-
nology.

MBS Multibody Simulation.

ME Morison Equation.

MEXICO Measurements and Experiments in Controlled Conditions.

NORCOWE Norwegian Centre for Offshore Wind Energy.
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NOWITECH Norwegian Research Center for Offshore Wind Technol-
ogy.

NREL National Renewable Energy Laboratory (USA).

OC3 Offshore Code Comparison collaborative.

OC4 Offshore Code Comparison Collaborative Continuation.

RHS Right Hand Side.

RPM Rotations per Minute.

SWE Endowes Chair of Wind Energy of Universität Stuttgart (Ger-
many).

SWL Still Water Level.

TSR Tip Speed Ratio.

UD User Defined.

Nomenclature

Term Description Units

Latin letters

Ad Rotor disc area [m2]

Aw Area in the wake [m2]

Ain Area in the inlet [m2]

Bk,j Influence from source elements at
panel k at the collocation point
(xj, yj)

C Curve around the surface S

C ′(k) Loewy’s transfer function

C(k) Theodorsen’s transfer function
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Term Description Units

CD Aerodynamic drag coefficient

CL Aerodynamic lift coefficient

CM Aerodynamic moment coefficient

Ca Aerodynamic damping [kg/s]

Cp Power coefficient

CL0 Lift coefficient for the mean angle of
attack, α0

CLC Circulatory part of the lift coefficient

Cε Curve around the surface, Sε

Ca,2D Two dimensional aerodynamic
damping at an airfoil section

[kg/ms]

Ck,j Influence from doublet element at
panel k at collocation point (xj , yj)

Csdof Damping of a SDOF [kg/s]

D Aerodynamic drag force [N]

F (k) Real part of Theodorsen’s transfer
function, C(k)

FN The force normal to a given surface [N]

FT Tangential force [N]

Fp Prandtl’s tip loss correction factor

G Green’s function

G(k) Imaginary part of Theodorsen’s
transfer function, C(k)

H(ω) Frequency response function

KE Kinetic energy [Nm]

Ka Aerodynamic stiffness [kg/s2]

Ka,2D Two dimensional aerodynamic stiff-
ness

[kg/m2]
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Term Description Units

Ksdof Stiffness of a single degree of freedom
system

[kg/s2]

L Aerodynamic lift force [N]

LC Circulatory lift force [N]

LNC Non-circulatory component of the
lift force

[N]

L∞ Steady state aerodynamic lift [N]

M Aerodynamic moment [Nm]

M0 Aerodynamic moment about the
leading edge of the airfoil

[Nm]

M1 Mass moment of inertia in pitch [kgm]

Ma Aerodynamic added mass [kg]

Mi Modal mass, or mass moment of in-
ertia

[kg]/[kg m2]

Ma,2D Two dimensional aerodynamic
added mass at an airfoil section

[kg/m]

Msdof Mass of a single degree of freedom
system

[kg]

Mva Virtual aerodynamic mass [kg]

MyNC Non-circulatory aerodynamic mo-
ment

[Nm]

Ni Expected number of cycles to fatigue
failure at a given stress range, Δσi,
see Eq 6.46

P Mechanical power [W]

Pavail Available aerodynamic power [W]

Q∞ Total free flow velocity [m/s]

R Radius of the rotor [m]

S Surface area, bounded by the curve
C

[m2]
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Term Description Units

Sc Distance between airfoils in a cas-
cade

[m]

Sf Responsen spectra [m2/Hz]

Sj Ocean wave spectra [m2/Hz]

Su Wind spectra [m2/s2/Hz]

Sε Small suface with singularity,
bounded by the curve Cε

[m2]

T Thrust force [N]

Tcas Time it takes to travel one cascade
spacing, Tcas = UxSc

[s]

Tosc Osciallating period of the rotor [s]

UX Velocity along the X-axis [m/s]

UY Velocity along the Y-axis [m/s]

Ud Wind velocity at rotor disc [m/s]

Uw Wind velocity in the far wake [m/s]

U∞ Free stream wind speed [m/s]

Ui,b Induced velocity of the vortex ele-
ment at the airfoil surfcae

[m/s]

Ui,w Induced velocity of the vortex ele-
ment in the wake

[m/s]

Urot Rotational velocity of the wind tur-
bine airfoil

[m/s]

W Relative wind velocity [m/s]

W∞ Free flow in y-direction [m/s]

h̄ Amplitude of the oscillating plung-
ing motion

[m]

ḧ1/2 Acceleration of the plunge at midfoil [m/s2]

a Axial induction factor

a′ Rotational induction factor
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Term Description Units

an The nth element in Cauchy’s conver-
gence test, see Eq 4.89

at Location of rotational center for
Theodorsen’s function

ai,k The element in linear cascade, where
i is the blade or wake, and kc is the
element number in the series

c Chord length of an airfoil [m]

fp Prandtl’s tip loss function

h Translation, or plunges, of the thin
airfoil

[m]

k Reduced frequency

kc Cascade number, related to number
of airfoils in a cascade, kc = nbl/2−1

kp Peak number, used in cascade simu-
lation. See Eq 4.101

lw Number of wake elements shed from
the trailing edge

lca Slope of the trend line used ot com-
pute the aerodynamic damping

[kg/ms]

mnac Mass of the nacelle [kg]

msub Mass of the substructure [kg]

mtow Mass of tower [kg]

nbl Number of airfoils in cascade

p Aerodynamic pressure [N/m2]

p∞ Pressure in the free flow [N/m2]

qr Radial velocity in polar coordinates [m/s]

qθ Azimuthal velocity in polar coordi-
nates

[rad/s]

r Resultant displacement [m]
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Term Description Units

sdt Dimensionless time-step, see Eq 5.38

tcm Cascade spacing between vortices in
z-plane

[m]

ud Induced velocity, due to a doublet el-
ement, in x-direction

[m/s]

us Induced velocity, due to a source el-
ement, in x-direction

[m/s]

va Velocity normal to the surface of a
thin plate

[m/s]

vd Induced velocity, due to a doublet el-
ement, in y-direction

[m/s]

vg Gust velocity [m/s]

vi Axial induced velocity [m/s]

vs Induced velocity, due to a source el-
ement, in y-direction

[m/s]

v∞ Velocity of a vertical uniform stream [m/s]

w Tangential induced velocity [m/s]

w3/4 Downwash at 3/4 chord [m/s]

xg Distance to vortex element from col-
location point, xcp, in x-direction

[m]

xcp Collocation point

ya Instantaneous small displacement of
the chord line

[m]

yg Distance to vortex element from col-
location point, xcp, in y-direction

[m]

znac Distance from pitch rotational center
to nacelle

[m]

Greek letters

Γ Circulation [m2/s]
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Term Description Units

Γb Strength of a point vortex element
located on a blade

[m2/s]

ΓWn Strength of a point vortex element in
wake element n

[m2/s]

Γw,l Circulation strength of wake particle
l

[m2/s]

Ω Rotational speed of the wind turbine
rotor

[rad/s]

Ψ Stream function

α Angle of attack [rad]

α0 Mean angle of attack [rad]

αr Angle of rotation about a point [rad]

β̇f Velocity of the blade flapping angle [rad/s]

η̇xp The predifined values used to de-
scribe the velocity of the rotor as in-
put to AeroDyn

[m/s]

εw Convergence limit for wake elements
in the cascade

εbl Convergence limit for the airfoils in
the cascade

η Surface of the airfoil [m]

ηx Axial motion of the wind turbine ro-
tor, see Eq 6.6

[m]

γ Strength of distributed vortex ele-
ments

λR Tip speed ratio

λr Local tip speed ratio

μ Strength of a doublet element

μcm Radial coordinate in cascade Z plane

ω Angular frequency [rad/s]
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Term Description Units

ωe Angular eigenfrequency [rad/s]

ωx Angular velocity about x [rad/s]

ωy Angular velocity about y [rad/s]

ωz Angular velocity about z [rad/s]

φ Flow angle [rad]

φ∗ Velocity potential of the flow field [m2/s]

φ∗

i The inner velocity potential, see Eq
5.12

[m2/s]

φC Phase of Theodorsen’s transfer func-
tion, C(k)

φd Velocity due to a doublet element [m2/s]

φi Inidicial function

φm Mode shape

φs Velocity potential due to a source el-
ement

[m2/s]

φw Wagner’s function

φ∞ Velocity potential of the free flow [m2/s]

φcm Azimuth coordinate in cascade Z
plane

[rad]

ψk Küssner’s function

ρ Air density [kg/m3]

σ Strength of source element

θ Angle from vortex element to a
point, see Figure 5.2

[rad]

θ Twist of the airfoil [rad]

ζ Aerodynamic damping ratio

Vectors

�V Velocity vector [m/s]
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Term Description Units

�ζ Vorticity vector

�dS A unit vector normal to the surface,
S

�q Flow field [m/s]

�qφ Solenoidal component of the flow
field

[m/s]

�qξ Rotational component of the flow
field

[m/s]

�x Evaluated point

�x0 Singular vortex element
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Chapter 1

Introduction

1.1 Background

For thousands of years, humans have taken advantage of the energy in
offshore wind. One of the oldest examples are the sailboats constructed
by the people of Mesopotamia five thousand years ago. These simple
sailboats have since been replaced in modern times with boats designed
with a better understanding of hydro- and aerodynamics. Nowadays,
however, the term offshore wind energy is mostly related to the wind
turbines located offshore. By locating the wind turbine offshore, far from
populated areas, the visual and noise impacts are reduced.

The first offshore wind turbine farm was erected in 1991, in sheltered
and shallow waters outside Denmark. The park was named Vindeby, and
consisted of 11 Bonus 450 kW wind turbines [1]. In the beginning, most
wind farms were installed near the shoreline and in shallow waters, but
current trends place wind turbines further from the coast and in deeper
waters [2]. Figure 1.1 illustrates the average distance to shore and water
depth of the offshore wind farms. The London Array Phase One, which
was installed in 2013, consists of 175 wind turbines and has a production
capacity of 630 MW. It is located more than 20 km off the British coast,
in water depths of 25 m [3].

As wind turbines increase in size to harvest more energy, and at the
same time are located further from the coast in areas with more wind, the
wind turbine operators are faced with increasing costs [5]. To make the
offshore wind industry viable these costs will need to be reduced. Some of
the challenges wind farm operators face are installation methods, logistics
issues and new foundations structures. Some of these issues are being
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Figure 1.1: Average distance to shore and water depth of offshore wind
farms [4] where the area of the circles are proportional to the total ca-
pacity of the wind farm.

investigated by the Offshore Wind Accelerator [6].
The challenges related to new foundations relate to the soil condition,

water depth and installation method. The monopile, which is currently
the most common foundation for offshore wind turbines, is piled into the
ground. The tower is connected to the pile via a transition piece. As
the water depth increases, more steel is required to maintain the stiffness
of the structure. Other types of fixed foundations, such as jackets, may
prove to be more cost efficient in deeper water.

Innovative concepts, such as the floating wind turbine Hywind [7], may
also be a cost effective solution for the deeper waters. These solutions
involve increasingly complex structures and a need for load analyses. Such
analyses are needed to study the structural response and to certify the
structure. It is also necessary to make an estimate of the loads on the wind
turbine during the design phase of a new wind turbine. This requires a
fully integrated analysis of the offshore wind turbine structure, including
the hydrodynamic loads, aerodynamic loads, the control system, the soil
model and the structural model. If the analysis tool overestimates fatigue
damage, or extreme loads, the price of the structure may be too high
for the wind turbine operator to invest in it. The consequence of an
underestimated load is however even larger, and can lead to fracture of
the wind turbines or other failures that may reduce their operational life
times.

Aerodynamic damping is among the parameters governing the struc-
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tural response, which are most properly assessed during an integrated
analysis of an offshore wind turbine. For example, for an offshore wind
turbine the wave loads can excite tower top response. When the wind
turbine tower top is moving into the wind, this is felt as an increase in
windspeed at the rotor. The aerodynamic forces will then act as a damper
and reduce the response of the tower top motion. This is referred to as
aerodynamic damping. It is of interest for fatigue calculations to estimate
the magnitude of the aerodynamic damping for the key eigen-modes of the
wind turbine tower, as well as how accurately the aerodynamic damping
is estimated in the commonly used analysis tools.

Different methods can be used to calculate the aerodynamic forces
on a wind turbine. The Beam Element Momentum (BEM) method is
commonly used for integrated analyses of offshore wind turbines due to
its low computational time. The downside is that the method is based
on stationary conditions and two-dimensional airfoil data. Correctional
functions are applied to include three dimensional effects and unsteady
aerodynamics. These corrections have been developed combining both
flow measurement and analytical functions.

However, the BEM method is not an optimal solution for estimating
the aerodynamic forces on a wind turbine accurately. Other methods
such as fully resolved Computational Fluid Dynamics (CFD) will give a
more correct estimate of the loads. However, the time spent finding the
aerodynamic forces is too long for it to be commonly used in integrated
analyses of wind turbines.

As mentioned previously, another issue with BEM is that it is based on
steady momentum theory. Thus, the BEM method must be corrected for
the often unsteady aerodynamic conditions that a wind turbine operate
in. Unsteady aerodynamics occurs when the change in flow velocity is
too fast to establish a steady condition. The unsteady aerodynamics can
be a result of blade motion, a turbulent wind field, or the blade passing
the tower. The unsteadiness is normally measured using the reduced
frequency, k, which is the ratio between the frequency of the flow and a
characteristic length relative to the flow velocity. The relationship for a
wind turbine airfoil is defined as:

k = ωc/2V

where ω is the angular frequency of the disturbance in the flow, c is the
chord length of the airfoil and V is the average flow velocity. Leishman
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[8] claims that only if k < 0.01, can the flow be assumed steady or quasi-
steady.

One unsteady aerodynamic phenomena is dynamic stall. At dynamic
stall the flow separates, and one get large increase in aerodynamic loads.
Modern wind turbines are normally designed to avoid this situation. How-
ever, there is unsteady aerodynamics in attached flow conditions, which
has an effect on the dynamic response of the wind turbine.

In BEM methods, the unsteady aerodynamics are normally corrected
for. A variety of models can be applied, e.g. Stig Øye’s method or
Beddoes-Leishman model. Little research has been done to investigate
the performance of the unsteady aerodynamic models that are included
in the BEM codes on the response of a wind turbine. This is especially
interesting for offshore wind turbines, where the hydrodynamic loads will
increase the response of the tower top. There is a need to investigate
the semi-empirical correction models implemented in BEM codes, and
compare them to aerodynamic methods that include the unsteadiness in
the solution, such as vortex methods.

1.2 Previous Research

In a review of wind turbine aerodynamics from 1993, Hansen & But-
terfield [9] claim that the area of dynamic load analysis is probably the
analytical discipline with the greatest potential for turbine reliability im-
provement and cost reduction. Over the next 20 years, a lot of work was
put into improving the simulation codes.

One approach chosen to improve and verify wind turbine aerodynamic
codes was to conduct experiments, and compare the predicted values to
the measured values. In May 2000, one of the largest experiments con-
ducted on wind turbines in a wind tunnel was completed in the NASA-
Ames wind tunnel [10]. The wind turbine itself measured 10 m in di-
ameter, and the working section of the wind tunnel is 24.3 m x 36.6 m.
A blind comparison between the code predictions and the measurements
showed a large scatter. Even at conditions that were assumed easy to pre-
dict, the power predictions ranged from 25 % to 175 % of the measured
turbine power [10].

In Europe, a successor of the NASA-Ames wind tunnel test was per-
formed in the German-Dutch wind tunnel. The diameter of the wind tur-
bine was 4.5 m, and the test section in the wind tunnel was 9.5 m x 9.5 m.
The measurements were performed as a part of the EU project Measure-
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ments and Experiments in Controlled Conditions (MEXICO), and the
testing programme was completed in 2006 [11]. The difference between
the two projects was that MEXICO measured the flow field around the
rotor plane and the blade loads simultaneously, while the NASA exper-
iment concentrated on loads. Over a period of three years, the results
from the MEXICO measurements were evaluated and compared to val-
ues predicted by various simulations tools in the project MexNext. One
of the major achievements from the MEXICO project was an improved
understanding of the 3D flow field around a wind turbine and in the near
wake [11]. Work is still ongoing to investigate the large amount of data
retrieved in both the NASA-Ames tunnel and the MEXICO project. An
ongoing project, Mexnext-II, also includes some new measurements on
the MEXICO rotor [12].

The interest in wake modelling and power prediction was also trig-
gered in Norway. As a part of the joint research programs Norwegian
Centre for Offshore Wind Energy (NORCOWE) and Norwegian Research
Center for Offshore Wind Technology (NOWITECH), wind tunnel exper-
iments investigating the performance and wake development for a model
wind turbine were conducted in 2011. The rotor diameter of the test
turbine was 0.9 m and the wind tunnel had a cross-section of 1.8 m x 2.7
m. The blind comparison following the experiments again illustrated the
large spread in prediction of the measured power output. The eight par-
ticipants in the comparison used in total 11 different simulation methods,
and uncertainty in the power production was ±10% [13].

Several aerodynamic tools are utilized to estimate the forces in wind
tunnel experiments. The methods used to estimate the aerodynamic loads
in the wind tunnels includes the BEM method, the vortex method and
CFD method [13, 11, 10].

For the design of wind turbines, standards recommend a fully inte-
grated analysis of the wind turbine [14, 15]. Especially for fatigue, an
extensive amount of analysis is required. Thus, an important factor for
analysing the aerodynamic forces is computational time. A fully resolved
CFD computation has a very long computational time, compared to the
BEM and vortex method [8]. Consequently, the BEM and vortex methods
are commonly used for estimating the aerodynamic loads on an offshore
wind turbine design.

Due to the low computational time of BEM method, it is the most
common to be implemented in the integrated analysis softwares for off-
shore wind turbines. A few examples of softwares using BEM as the
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aerodynamic model are FAST, HAWC2, Bladed and Flex5 [16]. The
BEM method uses the momentum balance of neighbouring annuli of the
rotor disc and a blade element representation of the sectional aerodynam-
ics [17]. However, this method has some drawbacks and limitations. It is
based on a two-dimensional representation of the airfoils, although three
dimensional effects must be accounted for [8]. In addition, the method
is based on steady momentum theory, thus the unsteady aerodynamics
must be corrected for.

The vortical wake system behind the wind turbine, which is a major
source of the three-dimensional nature of the airloads over the disc, cannot
be modelled correctly by the BEM codes [8]. This is not an issue in the
vortex models because the vortical wake is included as an inherent part
of the solution. By including the vortical wake, a better estimate of the
unsteady aerodynamics is achieved. Thus a three dimensional vortex
model includes both three dimensional effects, unsteady aerodynamics
and yawed conditions.

The vortex codes are not as commonly used as the BEM codes. The
main drawback for vortex codes is the long computational time, even
though it is faster than CFD methods. A few softwares use the vortex
methods to predict the aerodynamic loads on a wind turbine, among these
are GENUVP (NTUA) [18], AWSM (ECN) [19] and RotorFlow (ECN)
[20]. These are all developed at different research institutions specified in
the brackets behind their names.

The vortex code can estimate the aerodynamic load in various ways.
The blades in AWSM are modelled using a vortex lifting line model [19],
while in GENUVP the blades are modelled as thin lifting surfaces [18].
In RotorFlow the flow field along a wind turbine blade is modelled using
a panel method flow solver [20]. The lifting line in AWSM is fastest
of the three, but the disadvantage is that stall modelling is available.
In GENUVP a double wake concept, where the vorticity is shed not only
from the trailing edge of the airfoil, but also from the leading edge, enables
a simplified stall model. A more advanced technique is used in RotorFlow
to model the stall. The flow field in the thin boundary layer near the
surface of the wind turbine blade is solved using an integral boundary
layer solver.

Other codes often used to study aerodynamic loads, which are not
specifically developed for wind turbine simulations, are XFOIL [21] and
AVL [22]. XFOIL is a two-dimensional panel vortex code for simulation
of steady aerodynamic loads, while AVL is a three dimensional code,
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specialized for aerodynamic and flight dynamic analysis of rigid aircraft
[22]. Both AVL and XFOIL are developed by Marc Drela and are open
source programs.

The main reason for the long computational time is solving the ve-
locities, which is a highly parallel problem. The velocities are estimated
using the vortex strengths, which is known for all vortex elements prior
to the velocity calculations. Consequently, the different velocities can be
computed at once, without waiting for the other velocities to be com-
puted, and is therefore a highly parallel problem. On a computer with
more than one core processor, computation of the velocities at the dif-
ferent points can thus be computed in parallel. However, the number
of cores in a laptop is limited, and the reduction in computational time
is not sufficient to make it comparable with the computational speed of
BEM method.

In general, new computational tools will reduce the computational
time in the future. More specific, the Graphics Processor Unit (GPU),
which is used to accelerate the creation of images and are commonly
found in personal computers and workstations, can be used to reduce the
computational time of vortex codes. The highly parallel structure of a
GPU make it more effective than a general-purpose Central Processing
Unit (CPU).

Even though it may be possible to reduce the long computational for
vortex codes, another issue is that it is based on potential flow theory.
As a consequence, the separation of flow on the airfoil, which gives the
dynamic stall effect, can’t be modeled. However, there are methods to
include this in the vortex codes, but these require more computational
time and are often based on empirical theory.

With the vortex code the unsteady aerodynamics is a part of the
solution, since the vortical wake is included in the estimation of the aero-
dynamic loads. The unsteady aerodynamics is due to the induced velocity
from the vorticity contained in the shed wake and the induced velocity
from the trailing wake. Thus, in BEM codes the unsteady aerodynamics
is normally implemented in two steps, one that solves the shed wake and
one that solves the trailing wake [8]. The shed wake is the wake shed from
the trailing edge, and the trailing wake is shed at the tip of the blade.
The shed wake can thus be referred to as the inner problem, while the
trailing edge is the outer problem.

The outer problem, in BEM codes, can be modeled using a dynamic
inflow model. The inner problem relates to unsteady airfoil dynamics,
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which is often related to the dynamic stall of an airfoil. Dynamic stall
is related to the detachment of the flow. Previously, especially for stall
controlled wind turbines, the dynamic stall received a lot of attention.
For example, Øye developed a dynamic stall model, which takes into
account the separation at the trailing edge [23]. Currently, large wind
turbines currently pitch the blade to control the flow through the rotor
and avoid stall conditions. Thus, modern wind turbines operate often in
attached flow conditions, which is well predicted by potential theory that
the vortex method is based on. A vortex code can therefore be valuable
for estimating the aerodynamic loads on modern wind turbines.

The Beddoes-Leishman model is implemented in BEM codes to cor-
rect for the unsteady aerodynamics [24]. It corrects for both leading and
trailing edge separation, as well as incompressibility effects and unsteady
effects for attached flow [25]. For the unsteady attached flow at the air-
foil, the method applied in the Beddoes-Leishman model is based on the
classic theories for unsteady aerodynamics for attached flow. The most
known results are developed by Theodorsen [26], Wagner [27] and Küssner
[28]. They are all based on a thin two-dimensional airfoil, incompressible
flow and potential flow theory.

The unsteady aerodynamics will influence the dynamics of the wind
turbine. For the edgewise vibrations of the blade, the unsteady aero-
dynamic effects increase the damping [29]. This is however not true for
the aerodynamic damping of the modes in the fore-aft direction. A low
aerodynamic damping will to a lesser degree limit the response, and in-
crease fatigue damage. Differences in the unsteady aerodynamic model
can therefore give differences in the estimated response of a wind turbine.

1.3 Motivation

To improve the cost effectiveness of offshore wind turbines, an accurate
dynamic analysis should be performed. Currently, the most common
method used in estimating the aerodynamic loads for a wind turbine is
the BEM method. This is a method based on a steady momentum condi-
tion, and the unsteadiness is included through semi-empirical functions.
This study aims to investigate how the time-dependent aerodynamic loads
affect a wind turbine structure using both a numerical fluid solver, based
on potential flow theory, and an aero-elastic wind turbine code using the
BEM method.
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1.4 Objective

There are several methods to compute the aerodynamic loads on a wind
turbine rotor. As mentioned earlier, the most common method is the
BEM method. The advantage of the BEM method is that it has a short
computational time. The disadvantage is that BEM is based on steady
momentum theory combined with a quasi-static model of two-dimensional
airfoils. Since a wind turbine rotor is subjected to unsteady flow, and
the flow is three-dimensional, these assumptions are wrong and must be
corrected for. Adjustments are normally made to the BEM method to
include the effects of unsteady aerodynamics and 3D flow by including
semi-empirical functions. Direct numerical simulation methods, such as
CFD and vortex methods, can model the unsteady and three dimen-
sional effect. However, these methods are normally not used for engi-
neering analysis due to the long computational time. With the advance
of new computational techniques that can reduce their computational
time, direct numerical simulation methods, such as the vortex method,
to compute the aerodynamic forces should be revisited.

The vortex-based simulations have the advantage of being more closely
related to physical laws compared to the BEM method. The vorticity in
the wake is taken into consideration when computing the aerodynamic
forces on the blade, which will give accurate predictions of unsteady aero-
dynamic forces. The downside of the vortex method has always been the
long computational time of the simulations. As the computational tools
have evolved, the speed of computational tools has increased. One of
these advances, the GPU, originally developed for the computer gaming
industry, can be utilized to reduce the computational cost for highly par-
allel methods. This study demonstrates that the GPU can significantly
reduce the computational cost for high number of panel elements for a
panel vortex method.

Furthermore, a two-dimensional vortex code based on potential flow
theory can be used to investigate the wind-structure interaction of an off-
shore wind turbine structure. The excited motion of the wind turbine can
be reduced by aerodynamic damping, especially the fore-aft motion of the
wind turbine tower can be highly damped. With a decrease in the excited
motion, the fatigue life of a wind turbine increases. A correct estimation
of response and fatigue therefore requires a good understanding of the
aerodynamic damping. One additional effect not taken into account by
the current BEM calculations is the effect of the wakes from other blades.
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A wind turbine blade is affected by the wake shed by the neighbouring
blades, and its own returning wake due to the rotational motion of the
rotor. It is shown how this can reduce the aerodynamic damping and
have an impact on the fatigue of the wind turbine substructure.

1.5 Thesis Outline

This thesis is an investigation of the analysis tools used for calculating
the aerodynamics of an offshore wind turbine. A panel vortex method is
developed and application is shown using the structural characteristics of
a floating wind turbine. This section gives an outline of the chapters in
the thesis.

A general background for the basics of wind turbines is given in Chap-
ter 2, and a more detailed description of the rotor aerodynamics is pre-
sented in Chapter 3. This study focuses especially on the analysis tool
and aerodynamic loads, thus the state-of-the-art of the present analysis
tool for wind turbines is presented here as well.

The background of the vortex theory is explained in Chapter 4. Re-
sults indicate that a GPU can be used to reduce the computational speed
of the vortex method. A direct numerical simulation tool, based on vor-
tex theory, is developed as a part of the study. Chapter 4 describes the
details of the numerical code. It is limited to potential, two dimensional
flow theory.

The method is used to study the wind-structure interaction in Chapter
6. Results from the analysis are compared to current BEM models, and
are used to investigate the aerodynamical behaviour of the loads for a
floating wind turbine in platform pitch mode and the first elastic bending
mode of the tower. A simple estimate of fatigue damage of the first elastic
tower bending mode illustrates that the fatigue damage can be twice as
large as estimated when the neighbouring wakes are not included in the
model. However, this is only during specific operational conditions.

Chapter 7 summarizes the conclusions and gives an outlook on the
further development of offshore wind turbine analysis codes and offshore
wind turbine standards.
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Chapter 2

Basics of Offshore Wind

Turbine Design

2.1 Introduction

A study of offshore wind turbines is highly multidisciplinary. Aerody-
namic loads will act on the wind turbine blade and create torque on the
shaft of the wind turbine that creates mechanical energy. A generator
is used to turn the mechanical energy into electrical energy. A control
system is used to control the energy output and the loads on the wind tur-
bine. Some other factors that contribute to the loads are gravity, waves,
current and more. All these elements should be included to give a correct
simulation result.

The present study focuses on horizontal axis wind turbines with three
blades, as these are the most common wind turbines [30]. The study
concentrates on aerodynamics, turbulence and fatigue, and this chapter
will give a broader overview of the offshore wind turbine; first some history
about the offshore wind industry, then aerodynamics, some basic control
theory, offshore wind turbine foundations and basic mechanics.

2.2 History

The offshore wind energy is growing from demonstration projects, and
maturing into a modern industry. In the 1970’s, during the economic
crisis, one was looking at offshore wind as a new way to produce energy.
People didn’t want to be dependent on the oil harvested by other countries

11



CHAPTER 2. BASICS OF OFFSHORE WIND TURBINE DESIGN

anymore and wanted to create the energy by themselves [31].
It took 20 years before the first offshore wind farm was constructed.

In 1991 the first offshore wind farm, Vindeby, was commissioned [31].
Vindeby is located in sheltered waters off the coast of Denmark, and in
the years that followed more wind farms were erected in the sea outside
Denmark, Sweden and Netherlands.

Vindeby is located close to shore, only 1.8 km from shore, and at
relatively shallow water depth, 2 m - 4 m. The foundations used are
gravity based, and the turbine capacity is 0.45 MW. The rotor diameter
is 35 m, and a total of 11 wind turbines is installed. The first modern
wind farm was Horns Rev. Horns Rev 1 is located 18 km from the western
Danish coast, which is not very sheltered. It has a total capacity of 160
MW, and consists of 80 wind turbines. The foundations are monopiles,
and the rotor diameter is 80 m.

At the start of 2013, there are more than 1600 offshore wind turbines,
with a capacity of almost 5 GW in Europe. Europe has 90 % of the
capacity world-wide. In 2012 the capacity was increased with 33 %, 1.2
GW was installed [2]. By 2020 it is projected that 10 000 structures will
be installed, producing 40 GW installed power. The oil and gas industry
built 700 structures world wide in the last 80 years, so 10 000 structures
for the wind energy industry in less than 10 years is a challenge. The
wind turbine structures must be based on mass production.

2.3 General Terminology

A wind turbine consists of a topside structure, which is the machinery,
and a support structure. The topside structure consists of blades, hub and
nacelle, and the support structure consists of a tower, substructure and
foundation. The wind turbine nacelle can be rotated around the tower
axis, this is referred to as yawing of the rotor. The blades can also be
rotated, this is called pitching of the blades. The terminology may vary
in the literature, but this is the terminology as used by Germanischer
Lloyd [32] and is illustrated in Figure 2.1.

When designing a structure it is important to investigate that its
eigenmodes are excited by external forces only to a limiting degree. The
elastic eigenmodes of a wind turbine will vary according to the design.
For bottom fixed wind turbines, the fore-aft and side-to-side elastic tower
bending modes have typically the two lowest eigenfrequencies. The flap
motion of the blades will generally follow. However, the drivetrain tor-
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Figure 2.1: Definition of offshore wind turbine sections from Germanis-
cher Lloyd [32].

sion may be somewhere in between the tower and blade-flapping modes.
This is very dependent on the drivetrain used. Eigenfrequencies for the
first four elastic modes are shown in Table 2.1 for a monopile with a 5
MW wind turbine. A floating wind turbine has six additional rigid body
Degree of Freedom (DOF) shown in Figure 2.2. The translational DOFs
are surge, sway and heave and the rotational DOFs are roll, pitch and
yaw.

2.4 Aerodynamics

A more detailed study of the aerodynamics will be given later, the fol-
lowing section is an introduction only. The wind turbine blades have
similarities to the wings of an airplane. The shape of the cross-section
is similar, and the pressure difference on the upper relative to the lower
surface will create a lift force. The lift force will lift the airplane off the
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Figure 2.2: Illustration of the OC3 Hywind and its extra rigid degrees of
freedom.

14



CHAPTER 2. BASICS OF OFFSHORE WIND TURBINE DESIGN
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Figure 2.3: The resulting forces on a wind turbine airfoil. 3D effects and
induced velocities are not included in this illustration.

ground, and it is primarily the lift component in the rotor plane that
make the blades rotate on a wind turbine.

The lift force, L, is perpendicular to the direction of the relative ve-
locity of the incoming wind. The force in the direction of the wind is the
drag force, D. The forces are illustrated in Figure 2.3. As seen in the
illustration, the lift and the drag force can be decomposed into a normal
and a tangential force, FN and FT . The tangential force is the force that
rotate the blades so that power is produced by the wind turbine.

The angles of the relative wind velocity, shown in Figure 2.3, are
important for the loads on the wind turbine. The angle of attack, α, is
the angle between the relative wind speed and the chord line of the airfoil.
The twist of the airfoil, θ, is the angle between the chord line of the airfoil
and the rotor plane. The angle between the relative wind speed and the
rotor plane is the flow angle, φ. The angles may be changed by actively
pitching the blade. This will help controlling the lift force on the blade.

The relative wind velocity, W , consists of the apparent tangential air
velocity, Ωr, and the incoming wind speed, U∞. The tangential velocity
is directed opposite of the rotational direction of the wind turbine and
Ω is the rotational speed of the wind turbine. Since the rotational speed
increases along the span of the blade, the tangential air velocity will vary
accordingly. The tangential velocity speed will increase along the blade
from the root to the tip. The direction and strength of the relative air
velocity, W , will also vary, and the flow angle, φ, is decreased from root
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to tip if the free stream wind velocity, U∞ is constant. In order to keep
a preferred angle of attack, α, the twist of the blade is often reduced as
one moves from root to tip.

Figure 2.4: An illustration of
the lift coefficient for an airfoil
at different angles of attack.

Figure 2.5: An illustration of
the drag coefficient for an air-
foil at different angles of at-
tack.

The coefficients for lift, drag and moment forces, for two dimensional
wing profiles, can be found as tabulated information. The value of the
coefficients will vary with the angle of attack. The lift coefficient will
typically show an increase with increasing angle of attack for low values
of angles of attack, as shown in Figure 2.4. The lift will typically reach a
peak, and after this the lift will decrease. This is referred to as the stall
limit. The reason for this drop is that the suction at the upper surface of
the airfoil drops, as a result of flow separation at higher angles of attack.
The flow around an airfoil during attached flow condition and at stall
conditions is illustrated in Figure 2.6.

The graphs in Figure 2.4 and 2.5 are valid for stationary flow. The
dynamic of the lift and drag forces will be investigated in more details
in a later chapter. The drag coefficient is almost zero at low angles of
attack, and will have a slow increase as the angle of attack increases, until
stall occurs.

2.5 Wind Turbine Control

The objective of the wind turbine control is to optimize the lifetime cost
of energy. The lifetime cost of energy is dependent on the investment
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(1) (2)

(3)

Figure 2.6: A sketch of an airfoil and flowlines during attached flow (1),
as the stall limit is been reached (2) and a fully stalled blade (3)

in the wind turbine, the operational cost and the energy captured by
the wind turbine. The wind turbine control can reduce the loads, which
results in a longer lifetime and less maintenance. This will reduce the
investment and operational cost. The power output can be optimized
by using the controller to harvest more of the wind energy. However,
one can’t optimize for both maximizing power output and reducing loads
at the same time, so different strategies have to be used for different
scenarios.

The strategies for the power control will vary according to the wind
speed, and this is illustrated in Figure 2.7. The bold line is the power
curve. At wind speeds below a cut-in wind speed and above cut-out wind
speed, there is no power production, and these are not shown in the figure.
When the measured wind speed is above the cut-in wind speed, the aim
of the control system is to maximize the power production until the rated
wind speed of the wind turbine is reached. This can be done by having a
optimum tip-speed ratio (TSR). Tip speed ratio is the ratio between the
velocity at the tip of the blade and the free wind velocity.

At rated wind speed the power output has reached the rated power
output of the wind turbine. In situations where the wind speed is above
the rated level, lowering the forces on the wind turbine is required. The
aim for the control system for these higher wind speeds, is to keep the
power production at the rated power output and minimize the loads on
the wind turbine.

On a modern wind turbine there are several control systems. The main
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Figure 2.7: A sketched power curve relative to the measured wind speed,
which maximizes the power output below rated and reduces the loads on
the wind turbine at above rated wind speeds. The effect of the various
pitch angles is shown in the region above rated, and the pitch angle is
also shown on the lower graph.

control systems are the yaw control, the pitch control and the generator
torque control. The yaw control ensures that the rotor plane of the wind
turbine is normal to the wind. The speed of the yaw controller is slow
compared the the pitch controller. The pitch control changes the pitch of
the blades and the generator torque controller regulates the rotor speed.
Typical maximum pitch rates for a 5 MW wind turbine is 8 deg/s (0.14
rad/s), which is lower than the first tower bending mode [33].

In Figure 2.2 an overview of the lowest eigenfrequencies of a monopile
and a floating wind turbine is shown. Floating wind turbines have fre-
quencies that are lower than the pitch rate, and this needs to be considered
when designing the control system.

As mentioned, one can divide the wind turbine control strategy into
two main stages for power production, above and below rated wind speed.
Below the rated wind speed, the strategy is to maximize the power pro-
duction. One method to obtain this is to have a constant tip speed ratio
(λR). The tip speed ratio is defined as the ratio between the rotational
speed of the outer tip of the blade and the wind speed:
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λR =
ΩR

U∞

(2.1)

where Ω is the rotational speed in rad/s, R is the radius of the wind
turbine and U∞ is the free stream wind speed. The tip speed ratio is kept
constant by increasing the rotational speed of the wind turbine as the
wind speed increases. The rotational speed is adjusted by the generator
torque controller.

Each wind turbine has an optimum tip speed ratio for power produc-
tion. Figure 2.8 illustrates the power coefficient relative to the tip speed
ratio for a wind turbine with optimal power production at λR ≈ 6. Cp

is the power coefficient and is defined as the relationship between the
produced power, P , over the power in the wind:

Cp =
P

1/2ρAdU3
∞

(2.2)

where Ad is the rotor disc area and ρ is the density of the air.
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Figure 2.8: The power coefficient as a function of the tip speed ratio, λR,
for a typical horizontal wind turbine.

Rated wind speed is the wind speed where the power extracted has
reached the rated power for the wind turbine design. The aim is to keep
the power output at the rated level and alleviate the loads. The rotational
speed is kept constant, and the pitch controller is used to alleviate the
loads. When the pitch controller changes the angle of the blades, the angle
of attack, α is changed to reduce or increase the forces on the blade.
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Figure 2.9: Wind turbines with different substructures and at different
water depths

2.6 Offshore Wind Turbines

The sub-structures are the area where the offshore wind turbine differs
most from the onshore wind turbines. The first offshore wind farm Vin-
deby in 1991, had concrete foundations, and the remaining part of the
wind turbines used were the same as used onshore. These wind turbines
were located close to the shore, and in very shallow water [31]. The trend
is that the wind turbine are installed in deeper water, and further away
from shore. Some of the most common sub-structures and foundations
are shown in Figure 2.9.

2.6.1 Fixed Foundations

74 % of the offshore wind turbines today have monopile as foundation
[2]. A monopile is basically a steel pipe that is hammered into the sea
bed, and the wind turbine is mounted on the top. As the sea depth is
increased, the monopile needs to be longer. To maintain the stiffness of
the structure, more steel is often added to the structure. There will be
a limit where this is economically feaseble. The largest water depth, at
which a monopile has been installed is 35 m. Other foundations used for
fixed water turbines are gravity based foundations (16 %), jacket (5 %),
tripile (3 %) and tripods (2 %). The jacket may provide more stiffness at
a lower cost of steel compared to the monopile.
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2.6.2 Floating Foundations

OC3 OC3

monopile Hywind

Mode [Hz] [Hz]

Surge 0.008

Sway 0.008

Heave 0.032

Roll 0.034

Pitch 0.034

Yaw 0.12

1st tower fore-aft 0.25 0.47

2nd tower fore aft 0.25 0.46

1st drivetrain torsion 0.61 0.65

1st blade collective flap 0.70 0.68

Table 2.1: Typical eigenfrequencies of offshore floating wind turbines.
The first four elastic modes and the extra rigid degrees of freedom are
examplified here using results from the OC3 comparison project [34].

There are very few floating wind turbines in the world. The first
floating wind turbine connected to the grid is Hywind. Hywind is a
floating wind turbine with a spar buoy type foundation, as illustrated to
the right in Figure 2.9. A floating wind turbine will have additional rigid
degrees of freedom. For a floating wind turbine similar to Hywind, the
additional degrees of freedom will have very low eigenfrequencies. The
eigenfrequencies estimated in the code comparison project OC3 are listed
in Table 2.1 for a bottom fixed monopile and the floating substructure.
Figure 2.2 illustrates the additional floating degrees of freedom for the
OC3 Hywind model.
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2.7 Mechanics and Dynamics

2.7.1 Introduction

The sources of loads on a wind turbine are several: aerodynamic, grav-
ity, gyroscopic and mechanical control. For an offshore wind turbine, the
hydrodynamic loads must also be included. Loads that may arise from
these sources are steady, cyclic, transient and stochastic loads. The most
important dynamic effect is the resonance response, which is large am-
plifications of the effects when the the force frequency, ω, is close to the
eigenfrequency of the structure, ωe.

2.7.2 Loads

The wind turbine is subjected to a large variety of loads. It is useful
to categorize the forces according to their nature. The variation due to
misalignment of the rotor, wind shear and tower interference can be spec-
ified as deterministic functions of time, whereas the temporal variation
caused by the wind turbulence or wave loadings are introduced in terms
of a stochastic model.

2.7.3 Dynamics

The wind turbine can be characterised by stiffness, damping and inertia.
The stiffness is from material and soil properties, and the load carrying
static system. If it is a floating structure, the buoyancy contributes as a
restoring stiffness parameter.

There are several sources of damping; material, soil and aerodynamic
damping are together with the control system the most important sources.
Viscosity of water, wave radiation and radiation in soil may effect the
damping as well. Elements that contributes to the inertia of the wind
turbine are the structural mass, the added mass in water and the en-
trained water mass.

The dynamic effects are important, as it is the structural response to
the loading and not the loading itself that drives the design. The natural
frequencies of a wind turbine are close to several excitation frequencies,
and one must be aware of the danger of resonance response. Resonance
happens when the excitation frequency is close to the natural frequency
and can give large oscillations. This can lead to fatigue damage, due to
the severe cyclic response.
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Especially the frequency regions related to the blade rotations, 1P and
3P, should be avoided. 1P is the frequency related to one specific blade
passing the tower and 3P is each passing of the tower for one of the three
blades. The wind turbines can be classified according to which region
relative to 1P and 3P area the eigenfrequency of the first tower bending
mode belongs to, this is illustrated in Figure 2.10. If the frequency is
lower than 1P it is classified as a soft-soft structure, while a wind turbine
with a frequency higher than 3P is stiff-stiff [35].

Figure 2.10: Frequency intervals for soft to stiff response of a wind turbine
with varying rotational speed. Rotational speed varies from 6.9 to 12.1
rpm and is based on the 5MW reference wind turbine [36].

Others excitation forces that may harm the wind turbine are the wave
and wind forces. The turbulent wind has frequencies often lower than the
1P, in the region of the soft-soft structure. The wave spectrum is also
mainly in the same region.

2.8 Wind Turbine Analysis Codes

Codes that predict wind turbine structural response and power produc-
tion need to take a wide variety of elements into consideration. For land-
based wind turbines, aero-servo-elastic codes are used, where aero is the
part modeling the wind flow and aerodynamics, servo covers the control
system and elastic is for the structural-dynamics. As the offshore wind
technology is emerging, several of the wind turbine codes includes models
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of hydrodynamic forces. If the hydrodynamical models are included, the
codes are aero-hydro-servo-elastic. A big effort has been made to com-
pare the newly developed aero-hydro-servo-elastic codes in the Offshore
Code Comparison collaborative (OC3) project which was established un-
der IEA (International Energy Agency) Wind Task 23 Subtask 2 [34].

In the final report from the OC3 project, a comparison of the aero-
hydro-servo-elastic codes is done, see Table 2.3. In general the results
from the load cases run in the OC3 project compared well, but there
were some differences. For the aerodynamic loads, it was found that if
the wind field was read in polar coordinates, instead of rectangular grid,
smoother loads (the peak loads were reduced) were predicted. The dis-
cretization of the aerodynamic and hydrodynamic loads gave differences
for the calculated loads. Especially the substructure loads were sensitive
to the discretization of hydrodynamic loads near the free surface. Another
finding was that the shear deflection has a large effect on the distribution
of loads for multi-member structures, even for thin and slender struc-
tures. This was a finding from the analysis of the structure modelled
in Phase III, which is a tripod. Shear deflection is modeled when using
Timoschenko beam element, but not with Bernoulli-Euler beam elements.

The OC3 project was divided into four phases, each containing a dif-
ferent support structure for the wind turbine. All phases were run with
the 5 MW reference wind turbine developed at NREL [36]. In Phase I
and II a monopile in 20 m water was investigated, in Phase I the monopile
was modeled as rigid, and in Phase II the monopile was modeled as elas-
tic and soil stiffness was included. The support structure in phase III
was a tripod, and the last support structure modeled in Phase IV was
a floating wind turbine. The floating structure is similar to the Hywind
wind turbine.

As a continuation of the OC3 project the OC4 project is currently
ongoing. Phase I with a jacket structure is finished, but there is an
ongoing study of another floating wind turbine. The floating wind turbine
is similar to Wind Float, and it is expected to have higher contribution
of radiation effects (in hydrodynamic loads) relative to the OC3-Hywind
wind turbine.

From Table 2.3, it can be seen that the aerodynamic loads are typically
predicted by the BEM or Generalized Dynamic Wake (GDW) method by
the aero-hydro-servo-elastic codes. Both BEM and GDW will be pre-
sented in the following chapter (Chapter 3). The hydrodynamic loads are
estimated by the Morison’s equation.
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Country OC3 participant

NREL USA National Renewable Energy Laboratory

CENER Spain National Renewable Energy Centre

DONG Denmark Danish Oil and Natural Gas Energy

SWE Germany Endowed Chair of Wind Energy

of Universität Stuttgart

GH United Kingdom Garrard Hassan & Partners Limited

DNV Denmark Det Norske Veritas

IWES Germany Frauenhofer Institute for Wind Energy

and Energy System Technology

Risø Denmark Risø national Labratory

Vestas Denmark Vestas Wind Systems

Siemens Denmark Siemens Windpower

Table 2.2: Full name and country of the OC3 participants
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ADC Aero Dynamic Consult Ingenieurgesellschaft mbH

DS Dynamic Stall

ME Morison’s Equation

GDW Generalized Dynamic Wake

MSC MSC Software Corporation

(Airy+ Airy wave theory; (+) with free surface connections

FEMP Finite-Element Method; (P) for mode preprocessing only

SM interface to Simulink �with Matlab �

BEM blade-element momentum

MBS Multibody-dynamics formulation

UD implementation through user-defined subroutine available

DLL external dynamic link library

Table 2.4: A list of the abbreviations used in Table 2.3
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Chapter 3

Rotor Aerodynamics

3.1 Introduction

Aerodynamics is the study of motion of air when interacting with a solid
object. The aerodynamic forces acting on the wind turbine blades de-
termine both the power output and the loads on the wind turbine rotor.
It is therefore important to have an accurate modelling of the aerody-
namic loads. A good model for engineering purposes provides accurate
information about expected loads and power output, using a reasonable
computational time. Reasonable is a relative term, and it varies according
to the application of the program. For fatigue analysis the computational
time of the analysis should be far less than the real time period analysed.
As an example, a structural analysis of a wind turbine over a simulation
time of 10 min, should take less than ten minutes. However, a detailed
design analysis is expected to take much more than ten minutes. Reduced
accuracy in results is sometimes accepted when the aim is to reduce the
computational time.

There are several methods to estimate the aerodynamic forces on the
wind turbine rotor. The most common methods used are the Beam El-
ement Momentum (BEM) method and the Generalized Dynamic Wake
(GDW) method. Other methods that are important are the vortex method
and computational fluid dynamics (CFD). CFD will not be presented in
details as this is not a common tool for engineers and is used mainly by
blade designers, who need to do more specific studies. The main reason
that CFD is not used more extensively is that the computational time is
very long.

In this chapter, the main focus is on the BEM method and how it
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�

�

�

Figure 3.1: One dimensional flow model
used for the momentum analysis of a wind
turbine rotor.

Figure 3.2: Cross sec-
tional view of the an-
nulus of the rotor
disc.

is used in wind turbine rotor analysis. First, a linear one dimensional
momentum analysis of the wind turbine rotor is presented, thereafter the
circulation theory of lift is explained. The basics of the BEM method,
with main results such as the Betz limit, are explained. The wind turbine
operates in an unsteady environment, while BEM is developed for steady
conditions. The unsteadiness is normally included in the BEM code using
a semi-empirical function that is based on thin-airfoil theory, and a small
discussion of this is included at the end of the cahpter.

3.2 Momentum Analysis

The linear momentum (or translational momentum) is defined as mass
times velocity in classical mechanics. The linear momentum is a conserved
quantity, and from this it follows that the total linear momentum of a
closed system does not change if it is not subjected to any external forces.

A simple flow model that illustrates the momentum analysis of a wind
turbine in one dimension is shown in Figure 3.1. The stream tube shown
in the figure illustrates the stream line that is tangential to the instanta-
neous velocity direction. The flow velocity decreases from the start at the
inlet and towards the wake while the pressure increases from the inlet to-
wards the disc, where it has a large drop in magnitude. The pressure level
at the outlet in the wake and at inlet, is the same atmospheric pressure.

The momentum analysis of a wind turbine rotor is similar to the mo-
mentum method used for a helicopter in descent [17]. The main difference
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is that for a helicopter the rotor thrust is an input to the analysis. The
thrust force is the force normal to the rotor, and for the helicopter in
descend it should be equal to the weight of the helicopter. For a wind
turbine the thrust load will give a large overturning moment of the tower
base.

The thrust force on a wind turbine rotor, can be calculated using a
combination of inputs from airfoil data, wind speed, rotor speed (rpm)
and the pitch of the blades. One can’t estimate the thrust force by only
applying the momentum analysis, it needs to be combined with other the-
ories as well. A common approach is to combine the momentum analysis
with a blade element theory and predefined aerodynamic airfoil charac-
teristics. This is known as the BEM method, and will be presented later,
in section 3.4.

However, using the momentum analysis one can establish relations
for mass flow, thrust and power. These are all explained in the following
sections, together with the Betz limit for the power and the limitations
of the momentum theory.

3.2.1 Mass Flow

By the conservation of mass within the stream tube, the mass flow rate
must be the same at the inlet, at the rotor disc and at the outlet;

ρAinU∞ = ρAdUd = ρAwUw (3.1)

At the rotor disc the velocity of the incoming wind is lower than the
free stream velocity. The reduction in velocity at the rotor disc is the
induced velocity, a. The velocity at the rotor disc, Ud, is written as
U∞ − a. If one only considers the shaded area of the cross sectional area,
with width dr in Figure 3.2, the mass differential flow rate is:

dṁ = ρUddA (3.2)

where dA is the shaded area of the cross sectional area, dA = 2πdr.

3.2.2 Thrust

The thrust is the force normal to the wind turbine rotor. According to
the conservation of fluid momentum:
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�F =

∫∫
S
pd�S +

∫∫
s
(ρ�V · d�S)�V (3.3)

where d�S is a unit vector normal to the surface surrounding the wind
turbine rotor and �V is the velocity vector of the fluid. The stream tube
and the inlet and outlet areas together make a surface surrounding the
wind turbine rotor (see Figure 3.1). In an unconstrained flow the net
pressure is zero, so the first term of the equation is zero. It is assumed
that there is a uniform pressure drop across the rotor disk, which is true
for quasi-static one-dimensional flow. As a result the velocity distribution
across any vertical cross section within the control surface is uniform,
e.g. the velocity across the inlet disc area is uniform. The force in axial
direction, the thrust force, can now be calculated based on the change in
momentum of the flow across the disc. Assuming that the velocities in
the wake and in the free stream are known, the thrust force is:

T = ṁU∞ − ṁUw = ṁw (3.4)

where w is the velocity deficit in the wake.

3.2.3 Power

The main task of a wind turbine rotor is to capture the energy in the
wind, and convert it to electrical energy. The total kinetic energy in the
wind, with velocity U∞ is:

KE =
1

2
mU2

∞
(3.5)

Power is defined as the energy per unit time, and the available power,
Pavail, in the wind is thus:

Pavail =
KE

dt
=

1

2
ṁU2

∞

=
1

2
ρAdU

3
∞

(3.6)

The wind turbine will extract less than half of the total energy in the
wind. An energy balance of the system in Figure 3.1 shows that the work
done on the wind per unit time by the turbine rotor is:
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P =
1

2
ṁU2

∞
− 1

2
ṁU2

w

=
1

2
ṁU2

∞
− 1

2
ṁ(U∞ − w)2

=
1

2
ṁw(2U∞ − w) (3.7)

This approach assumes no viscous or other ”non-ideal” losses at this
stage, and that all work done on the flow to change the kinetic energy is
extracted by the wind turbine.

3.2.4 Betz limit

The power can also be expressed as the thrust multiplied with the velocity
of the wind at the rotor disc. As shown in Equation 3.4, the thrust can
be expressed as a function of the wake velocity deficit. By combining the
equations established for power and thrust, a relation between the wake
deficit, w, and the induced velocity at the rotor disc, vi is found:

P = TUd =
1

2
ṁw(2U∞ − w)

ṁw(U∞ − vi) =
1

2
ṁw(2U∞ − w)

U∞ − vi = −1

2
w + U∞

w = 2vi (3.8)

The induced velocity of the rotor is thus half the deficit of the wake.
Using this relation together with the mass flow definition, the thrust can
be written, using the induced velocity at the rotor:

T = 2ρA(U∞ − vi)vi (3.9)

and the power:

P = 2ρA(U∞ − vi)
2vi (3.10)

The induction factor, a, is the relationship between the induced ve-
locity and the wind velocity: a = vi/U∞. The thrust coefficient, Ct and
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Figure 3.3: The power and thrust coefficient plotted as a function of the
induction factor. Glauert correction is used for a > 0.5.

the power coefficient Cp, will vary relative to the induction factor. The
power coefficient, defined in Eq 2.2, becomes:

Cp =
2ρA(U∞ − vi)

2vi

1/2ρAdU3
∞

= 4(1 − a)2a (3.11)

The thrust coefficient is similarly defined as:

Ct =
2ρA(U∞ − vi)vi

1/2ρAdU2
∞

= 4(1 − a)a (3.12)

The power coefficient, Cp, and the thrust coefficient, Ct, relative to the
induction factor, a, are plotted with circles in Figure 3.3 for illustration.
The simple momentum method is not valid for induction factor above 0.5
and Glauert’s correction is used for higher values of the induction factor.
The dotted line is plotted using Glauert’s correction for the thrust force,
which is presented in section 3.4.2.

The maximum power is extracted from the wind when the induction
factor is one third, a = 1/3. This gives a power coefficient of 0.59. This
limit for the power coefficient is known as the Betz limit, and is a value
based on no viscous or other losses. The values are in practice much
lower, and a maximal Cp between 0.4 and 0.5 are typical for a modern
wind turbine [17].
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3.2.5 Effects of rotation

So far, an ideal rotor with no rotation in the wake has been assumed. In
reality the wind turbine rotor will cause the air to rotate in the opposite
direction of the rotor. In Figure 3.4, it is illustrated how the tangential
velocity grows across the rotor disc. The change in velocity takes place
across the rotor disc, and it assumed that the rotation remains constant as
the air is moving down in the wake. A tangential component in opposite
direction of the rotor motion is shown, where a′ is the tangential induction
factor. The flow angle, φ, is now defined as:

tan(φ) =
(1− a)U∞

(1 + a′)Ωr
(3.13)

The aim of the wind turbine is to produce power. It can be shown
that the aerodynamic conditions for the maximum power production is:

a′ =
1− 3a

4a− 1
(3.14)

Far upstream U∞

Far downstream U∞(1− 2a)

2Ωra′

Ωra′

Ωr

U∞(1− a)

Figure 3.4: An illustration of velocities at a radial distance r from the
center of the hub. The tangential velocity at the rotor disc, which is
the sum of apparent velocity due to the rotational velocity, Ωr, and the
induced tangential velocity, a′, will grow across the rotor disc.
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3.2.6 Limitations

The momentum analysis is only valid when the induction factor is lower
than 0.5. If the induction factor exceeds 0.5, the wake would have negative
velocity since Uw = U∞(1−2a). For higher induction factors, empirically
fitted values must be used, these are not shown here.

The momentum theory assumes that linear momentum is balanced in
a plane parallel to the rotor. Large deflections of the plane may lead to
errors in the aerodynamic modelling. Such deflections may occur due to
misalignment of the wind turbine rotor relative to the wind direction. If
the misalignment is in the horizontal plane, it is referred to as yaw error.

3.3 Aerodynamic Forces

The aerodynamic forces on the wind turbine airfoils can either be modeled
directly or found in predefined tabulated values. The tabulated values
have the obvious advantage of being fast to utilize, the downside is that
these are values based on steady aerodynamics and are measured without
the three dimensional effects in the spanwise direction that are typical for
the wind turbine blades at the tip and the root sections. The tabulated
values are therefore considered to be two-dimensional.
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Figure 3.5: Pressure distribution around a NACA 0012 airfoil at 5o angle
of attack.

One method for estimating the aerodynamic loads, without using tab-
ulated values, is the vortex theory, the method will be presented briefly
here to illustrate how the lift is generated on the airfoil. The theory of
the vortex theory is presented in Chapter 4. The lift can be computed
by using other methods such as CFD, but this is not included here. In
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Figure 3.5 the pressure distribution around an airfoil is shown. The pres-
sure distribution in Figure 3.5 is calculated for a NACA 0012 airfoil with
an angle of attack of 5o.The difference in the pressure on the lower side
relative to the upper side of the airfoil, is creating the lift force on the
airfoil.

3.3.1 Blade Element Theory

Rotor plane

Ωr(1 + a′)

U∞(1− a) W

θ
α

φ

Figure 3.6: An illustration of the velocities at an airfoil. The airfoil is
twisted with and angle θ relative to the rotor plane.

The tabulated lift, drag and pitching moment coefficients; CL, CD

and CM , can be used to calculate the forces on a blade element. It is
assumed that there is no flow in the span-wise direction, and other three
dimensional effects are ignored. The lift, drag and pitching moment forces
per unit length are associated with the aerodynamic coefficients as:

L = 1/2ρW 2cCL (3.15)

D = 1/2ρW 2cCD (3.16)

M = 1/2ρW 2c2CM (3.17)

where c is the chord length, W is the wind speed relative to the blade
illustrated in Figure 3.6, and for the wind turbine blade it is combination
of the free wind speed, U∞, and the apparent rotational speed, Ωr, at the
blade section. The lift drag and momentum acts is normally defined to
act at a point c/4 from the leading edge. This is the aerodynamic center
for a flat plate, which is defined as the point where the pitch moment
coefficient does not vary with the angle of attack.
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3.4 Blade Element Momentum Theory

The blade element momentum theory (BEM) is the most common aero-
dynamic analysis approach. It is based on the assumption that the force
of the blades are the only contributor to the change in momentum over the
rotor. The thrust on an annulus of the rotor disc can be expressed by the
momentum theory, see Figure 3.2 and Equation 3.9. For an incremental
section of the rotor, with the area 2πrdr, this is written as:

dT = 2ρ2πrdr(U∞ − vi)vi

= 4πρU2
∞
a(1− a)rdr (3.18)

where a is the induction factor defined as the relationship between the
induced velocity and the free stream velocity, and is a function of r. The
induction factor, a, can be estimated by using the information from the
airfoil characteristics and the velocities; wind speed and rotational speed.
The force in axial direction due to the aerodynamic loads on the blades
is:

dFx = dL cosφ+ dD sinφ

= 1/2ρW 2Nbc(CL cosφ+ CD sinφ)dr (3.19)

where dL and dD are the aerodynamic forces on the incremental area,
using Equations 3.15 and 3.16. The incremental area is here an incremen-
tal radial length, dr, multiplied by the number of blades, Nb. φ is the
flow angle and W is the relative wind velocity, as shown in Figure 2.3.

W =

√
(U∞ · (1− a))2 + (Ωr · (1 + a))2 (3.20)

As mentioned earlier, the BEM theory assumes that the aerodynamic
forces are the only contributors to the change in momentum. The force
in the axial direction, dFx, due to aerodynamic loads (Eq. 3.19), is equiv-
alent to the thrust force, dT (Eq. 3.18). By using this relation one can
establish the induction factor along the blade:
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4πρU2
∞
a(a− 1)rδr = 1/2ρW 2Nbc(CL cosφ+ CD sinφ)δr

4a(a− 1) =
Nbc

2πr

(
U2
∞
(1− a)2 +Ω2r2

U2
∞

)
Cx

4a(a− 1) = σr

(
(1− a)2 +

(1− a)2

tan2 φ

)
Cx

4a

(a− 1)
=

σrCX

sin2 φ
(3.21)

where Cx = (CL cosφ+CD sinφ) and σr is the chord solidity defined
as σr =

Nbc
2πr .

In the BEM method shown here, the rotational induction factor a′ is
not included, and only considered the axial induction factor. In modern
version of the BEM methods, both the axial and rotational induction
factors are included.

3.4.1 Tip-Loss Factor

At the tip region of the blades, trailing vortices will be present. These are
also known as wing-tip vortices. The same trailing vortex can be found
at the end of the airplane wings, where winglets are sometimes used to
reduce the kinetic energy in the circular airflow leaving the tip of the wing.
An illustration of trailing vortices are shown in Figure 3.7, showing the
pressure difference which is the driving force of the generation of vortices.
The trailing vortices will create high local inflow at the tip region and this
is normally referred to as the tip loss. The trailing vortex at the end of a
wing with winglets, has a velocity from the lower surface, but will strike
the winglet instead of the upper surface of the wing. For an airplane this
will give a beneficial increase of thrust force.

The tip loss can be defined as the high local inflow that is produced
at the tip region of the blade due to the trailing vortices at the tip. The
lifting capacity at the tip region is reduced due to the local inflow from
the vortices. One method commonly used in both helicopter and wind
turbine analysis to include the tip-loss effect was developed by Prandtl.
Prandtl’s tip loss function, Fp(r), has a unit value at the inner parts of the
blade, and in the tip region it tends to zero. The function is illustrated
in Figure 3.8 for a 5 MW reference wind turbine [36].

The tip loss is included in the momentum analysis be multipling the
thrust force with the Prandtl function. Equation 3.12 now becomes:

39



CHAPTER 3. ROTOR AERODYNAMICS

+ + + + + + + + + + +

Figure 3.7: The pressure distribution along the full span of a wing (top
wing) creates high local inflow at the tip (bottom wing).

Ct(r) = 4Fp(r)(1 − a)a (3.22)

Prandtl’s tip loss function, as a function of the distance along the
blade is [17]:

Fp(r) =
2

π
cos−1 e−fp(r) (3.23)

where fp(r) = Nb/2[(1 − r)/(rφ)], where Nb is the number of blades
and φ is the flow angle. The induced velocity over the tip region is reduced
when the Prandtl’s tip-loss function is implemented. The force in along-
wind direction along the blade will be reduced as shown in Figure 3.9 for
a 5 MW reference wind turbine blade [36] and 10 m/s wind speed.

The Prandtl’s tip-loss correction function, fp(r), increases with the
number of blades. If the number of blades tends to infinity, then the tip
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Figure 3.8: The Prandtl’s tip loss function (see Eq 3.23) along the span
of a wind turbine blade. The wind turbine blade of the 5 MW reference
wind turbine [36].

loss correction factor, Fp(r), approaches one at all points along the blade.
This corresponds to no tip loss.

3.4.2 Glauert Correction

The simple momentum equation breaks down when the axial induction
factor becomes large. This is often a problem at low wind speeds. An
empirical relation between the thrust coefficient and the induced velocity
is made to fit experimental data.

Ct =

⎧⎨
⎩ 4a (1− a)Fp a ≤ 1/3

4a (1− 0.25(5 − 3a)a)Fp a ≥ 1/3
(3.24)

This correction is shown in Figure 3.3.

3.4.3 Unsteady Aerodynamic Models

The BEM method is based on steady aerodynamics, but the wind tur-
bine can be subjected to unsteady aerodynamics. The shear in the in-
coming wind, the effect of yaw misalignment of the turbine, ambient
turbulence, blade flapping, tower shadow are some of the sources that
may contribute to unsteady aerodynamic conditions for the wind turbine
rotor [8]. Most BEM codes include the unsteady aerodynamics by adding
a semi-empirical function to the aerodynamic calculations. Modelling the
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Figure 3.9: The lift force along the blade calculated with Prandtl tip-loss.
The wind turbine blade of the 5 MW reference wind turbine [36] is used
for illustration and with a wind speed of 11 m/s.

unsteady effects is important due to the presence of turbulence, transient
load situations and high effective reduced frequencies that wind turbines
may be exposed to. A more detailed description of the theory of unsteady
aerodynamics is given in Section 3.6 and in Section 4.4.3.

3.5 Generalized Dynamic Wake

The Generalized Dynamic Wake (GDW) model is often referred to as the
acceleration potential method. It is based on the work by Carpenter and
Fridoich [37] from 1953. They developed a dynamic inflow model, where
the unsteady aerodynamic of the inflow is considered relative to the blade
pitch and the change in rotor thrust [8]. The principle of the method can
be shown using an appearent mass, ma [37]:

T = mav̇i + ρAdvi

(
vi − w +

2

3
β̇fR

)
where T is the thrust force, vi is the axial induced velocity, w is the

tangential induced velocity, Ad is the area of the rotor disc, ρ is the air
density, β̇f is the velocity of the blade flapping angle and R is the radius
of the rotor. The flap angle, βf , is the angle between the blade and the
rotor plane. The apparent mass analogy assumes that the apparent force
on a solid disc is equal to the force on a fluid accelerating through a
permeable actuator disc [8].
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This method allows a more general distribution of the pressure across
the rotor plane compared to the uniform pressure drop of the momentum
theory. The method is based on a potential flow solution of the Laplace
equation and was developed for lightly loaded rotors and it is assumed
that the induced velocity is small compared to the mean flow. Kinner
[38] developed an expression for the pressure field in the vicinity of an
actuator disc. Peters and others have done much work to develop this
method further [39] [40] [41]. The most commonly used GDW model for
helicopter and wind turbine aerodynamics is the model by Pitt & Peters
[8].

The advantage of the GDW method is the inherent modelling of dy-
namic wake effect, the tip loss and the skewed wake aerodynamics. The
computational time is relatively low, and can be faster than the momen-
tum theory [42]. Similarly to the momentum theory, the GDW is often
coupled with the beam element method to estimate the aerodynamic loads
of the rotor.

The GDW is limited to lightly loaded rotors, and assumes small in-
duced velocities relative to the mean flow. At low wind speeds the induced
velocities are larger relative to the mean flow, and the GDW method
should therefore be used with care [42].

3.6 Unsteady Aerodynamics

The wind turbines are subjected to unsteady aerodynamics as mentioned
in section 3.4.3. At the blade element level the term unsteady aerodynam-
ics is often considered to be synonymous with dynamic stall. Dynamic
stall is an unsteady effect of the aerodynamic stall, which is shown in
Figure 2.6. Dynamic stall typically exhibits a higher force than the stall
in a stationary flow. In addition to dynamic stall, there are unsteady
aerodynamics effects related to the attached flow conditions.

The unsteady aerodynamics, for attached flow, is characterised by the
nearby shed wake and the apparent mass. For the steady aerodynamics
the nearby shed wake is constant and does not influence the aerodynamic
forces. In this section the focus will be on the challenges related to mod-
elling the attached flow conditions in time domain computation.
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3.6.1 Thin airfoil theory

A solution to the unsteady aerodynamic force for a thin plate provided
by Theodorsen in 1935, and a detailed description to the approach is
presented in Section 4.4.3. Theodorsen introduced a transfer function,
C(k), between the imposed motion (angle of attack) and the induced
forces (lift and pitch moments). The solution was based on an airfoil
in harmonic oscillating motion. The unsteady loads were divided into
circulatory loads and non-circulatory loads, where only the circulatory
loads are dependent on the frequency of the motion.

In this chapter we will concentrate on a solution that can be used in
time-domain, which is useful for aeroelasticians investigating phenomena
such as rapid maneuvers and gusts. By taking the inverse Fourier trans-
form of the circulatory loads from Theodorsen, one can get a solution in
time-domain. The analytical solution is complex, so approximations are
often applied. An approximation that can be Laplace transformed, can
easily be used in linear time domain analysis.

3.6.2 Time domain

The Duhamel’s integral is often used as a tool to describe the circulatory
lift contribution of the attached flow unsteady aerodynamics. In the
multi-body aeroelastic simulation tool HAWC2, the unsteady lift from
attached flow is described as [43]:

L = πρ
c2

4

(
Uα̇+ U̇α+ ḧ1/2

)
+πρcU

(
w3/4(0)φi(s) +

∫ s

0

dw3/4

dσ
φi(s− σ)dσ

)
(3.25)

where the first term of the equation is related to the non-circulatory
loads and the second term is the circulatory loads, U is a time-varying free
stream velocity, (̇) ≡ ∂/∂t, w3/4 is the downwash, which is the induced
velocity in vertical direction at 3/4 chord from the leading edge, c is the
chord length, ḧ1/2 is the plunge acceleration at the mid-chord, φi is the
indicial function, and is presented in more detail in the following section,
and s is a dimensionless time-scale:

s =
2

c

∫ t

0
Udt (3.26)
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Equation 3.25 is similar to the Theodorsen’s equation (see Eq 4.78),
only the acceleration term of the α is different. The acceleration is here
replaced with U̇α. The acceleration term of both α and h is however
regarded as an order lower in magnitude compared to the velocity term,
Uα̇ for moderate frequencies, and is ignored in the HAWC2 computation.

The second term of Equation 3.25 is the circulatory lift. This is ex-
pressed using the Duhamel’s integral:

y(t) = f(0)φi(t) +

∫ t

0

df

dt
φi(t− σ)dσ (3.27)

This approach, with using the Duhamel’s integral function to include
the unsteady circulatory loads is a common approach both for helicopter
rotors and for wind turbine rotors. A detailed description of the approach
is given by Leishman [17]. The missing factor is now the indicial function,
φi. To save computational time, these can be approximated by:

φi(s) = 1−A1e
−b1s −A2e

−b2s (3.28)

3.6.3 Indicial solutions

The unsteady aerodynamic of a wind turbine is highly complex, and the
main sources are the blade motion and the flow field. The blade motion
consists of both flapping and pitching. The flapping is due to bending of
the blade, and the pitching is mainly due to the control system.

V

ḣ

=

w(x) = −ḣ

=

Cl = 2παeq

αeq = ḣ/V

Figure 3.10: The plunge motion of the airfoil

As mentioned previously, the unsteady aerodynamic forces are motion
dependent. This can be illustrated by showing the plunging motion in
Figure 3.10, the vertical velocity and the lift coefficient, and comparing
this to the angular velocity motion in Figure 3.11. Therefore, different
indicial functions are developed for different motions. Two of the most
commonly used indicial functions will be presented in the following, the
Wagner function and the Küssner function.

Wagner’s problem is described as:
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V

α̇

=

w(x) = −α̇(x− ab)
b b

a

=

Cl = 2παeq

αeq = b
(
1
2 − a

)
α̇
V

Figure 3.11: Angular pitch velocity of a thin plate

w3/4 =

⎧⎨
⎩ 0, t < 0,

−Uα, t > 0.
(3.29)

This is often referred to as the step change in angle of attack, and
can be solved analytically. However, as mentioned before, a solution that
can easily be Laplace transformed and included in a linear analysis is
normally used. An approximation given by R.T. Jones in 1940 for the
Wagner function is [44]:

φw(s) ≈ 1.0− 0.165e(−0.041s) − 0.335e(−0.32s) (3.30)

The circulatory lift, Lc, due to the step angle of attack is:

LC(s) = 2πρU2bα0φw(s) (3.31)

Using this approach, the Wagner function describes the change in lift
as a thin-airfoil undergoes a transient step change in angle of attack in
an incompressible flow.

If the airfoil is entering into a sharp-edged vertical gust, the Küssner
function should be applied. This is different from the change in angle of
attack that was solved by Wagner, which will describe both pitching and
plunging motion of a wind turbine blade well. In Küssner problem the
quasi-steady angle of attack changes progressively as the airfoil enters the
change of the vertical velocity, and this can for example be used to model
the blade passing the tower or wind gusts.

Küssner function, ψk(s), can be approximated as:

ψk(s) = 1− 0.5e(−0.13s) − 0.5e(−1.0s) (3.32)
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Figure 3.12: Wagner’s function, φw(s), for indicial lift due to a step change
in angle of attack and Küssner’s function ψk(s) for lift due to a sharp
edged gust, plotted as functions of distance traveled in semichordlengths.

And using a similar approach as above the circulatory lift, LC , is
described:

LC(s) = 2πρUbv0ψ(s) (3.33)

Both approximations of the Wagner and the Küssner function are
shown in Figure 3.12.

3.6.4 Application to the BEM method

The approached described above, is used in both HAWC2 (developed at
DTU) and AeroDyn (developed at NREL). HAWC2 has also other op-
tions, i.e. Stig Øye model, which is developed for dynamic stall. The
model described above is developed for attached flow and infinitely thin
airfoils. It is assumed that the thickness effect can be neglected for the
unsteady aerodynamic loads on a wind turbine airfoils. A study, com-
paring the unsteady aerodynamic lift of a typical wind turbine airfoil,
estimated with an inviscid incompressible vortex panel code, to the Wag-
ner function, shows that there is a difference [43]. Results for a 24 %
thick airfoil are shown in Figure 3.13 and 3.14.

The response from pitching oscillations in Figure 3.14 shows that both
the gradient and the width of the hysteresis loop is influenced by the thick-
ness of the airfoil. The gradient is slightly larger for the flat plate, and
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Figure 3.13: Inviscid response of
the lift to a step change. The red
curve is hidden behind the blue
line. Figure from [43]

Figure 3.14: Lift coefficient during
pitching oscillations α = 4.2o±1.5o

with k=0.092 for the RISØ A1-24
airfoil. Figure from [43]

the hysteresis loop is slightly narrower. These differences will influence
the dynamic response of the airfoil, since there a larger part of the lift
is in phase with the pitch velocity. Similar responses are also found us-
ing the vortex panel code presented in Chapter 5 and comparing to the
aerodynamic code AeroDyn [45].
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Vortex Methods

4.1 Introduction

Vortex methods can be used to evaluate the aerodynamic loads on a wind
turbine structure. It is a direct flow simulation approach which dates back
to the start of the 20th century. The 4 articles by Joukowsky on Vortex
theory of screw propellors published between 1912 and 1918 [46, 47, 48, 49]
are often regarded as the foundation of the vortex method.

Even though it has been known for more than 100 years, the vortex
method has not been a great success in rotor aerodynamics due to:

• its high computational cost.

• the complexity of the underlying theory and the programming.

• the difficulties in including viscosity and compressibility

The severity of these disadvantages are however being reduced by sci-
entific developments. The high computational cost can be reduced by
utilizing the parallelization capabilities of the graphical processor unit
(GPU). It will be shown later in this chapter (Section 4.5) how the com-
putational cost can be reduced by implementing the vortex calculation
on a GPU.

The complexity of the theory is no longer considered a challenge with
modern programming tools. There has also been large improvements in
how to include the viscosity and the incompressibility over the last years.
Viscosity and incompressibility will not be investigated further in this
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thesis, and the reader is recommended to read Cottet’s book on vortex
theory [50] for more information on these topics.

Before looking at the challenges and applications of the vortex method,
a short presentation of the underlying potential theory and the elementary
flow fields are necessary. Applications to the airfoil, using two dimensional
flow, are presented in detail.

4.2 Potential Flow

In this section the potential flow theory is explained. First, a definition
of the potential flow, and how the Laplace equation describes the velocity
potential, is given. The vortex theory is developed from the potential the-
ory using Green’s theorem, and together with the kinematics this rounds
off this section about the potential flow. Much of the classical aerody-
namic theory, such as Theodorsen theory, is based on potential theory
applied to fluid mechanics.

4.2.1 Definitions and Governing Equations

u

v

x

y

Δx

Δy +ωz

v + ∂u
∂xΔx

u+ ∂v
∂yΔy

t = t0

t = t0 +Δt

∂u
∂yΔy

∂v
∂xΔx

Figure 4.1: The angular velocity of a rectangular fluid element

The vortex method is based on a Langrangian description of the kine-
matics, this means that the fluid is seen as a group of fluid elements. The
motion of a fluid element can be described by its translation, rotation and
deformation. A simplified illustration of the motion of a fluid element is
shown in Figure 4.1. The element corner number 1 is translated in one
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plane (z = 0) at a velocity (u, v). Due to velocity variations in within the
fluid, the fluid elements may deform and rotate.

The vorticity of the fluid element is two times the angular velocity.
The angular velocity can be estimated as the average of the angular ve-
locity for the side segments. For the angular velocity, ωz, as shown in
Figure 4.1:

ωz =
1

2

(
∂v

∂x
− ∂u

∂y

)
(4.1)

The two other angular velocities, (ωx and ωy), can be found in a
similar manner. The angular velocity can be written as:

�ω =
1

2
∇× �q (4.2)

where �q is the velocity vector, �q = [u, v, w]. The vorticity, �ζ is defined
as two times the angular velocity:

�ζ = ∇× �q (4.3)

4.2.2 Helmholtz theorems

The vorticity is closely related to the circulation, Γ. The circulation is
defined as the amount of fluid rotation within a closed contour.

Γ ≡
∮
C
�qd�l (4.4)

The relation is found by using the Kelvin-Stokes theorem, which re-
lates a surface integral to a line integral. Using Kelvin-Stokes theorem,
the relation between vorticity and circulation is:

Γ =

∮
C
�q · d�l =

∫∫
S
∇× �q · �ndA

Γ =

∫∫
S

�ζ · �ndA (4.5)

The rotational motion of the fluid element is shown in Figure 4.2. For
a fluid with very large viscous forces the fluid will rotate, but it is common
to assume that the shear forces are negligible in air flow. The air flow has
zero rotation at the start, it will have zero rotation at all time steps of
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Rotational motion Irrotational motion

Figure 4.2: Rotational and irrotational motion of a fluid element

the simulation, since shear forces are neglected (i.e. zero viscosity). Since
the flow has zero rotational motion at start, and both the vorticity and
the circulation will be zero for irrotational fluid elements, only the forces
normal to the fluid element will contribute to the changes in velocity.

The velocity is a vector field in three dimensions. The divergence of
the curl of any vector field in three dimensions, is equal to zero. The
vorticity itself is therefore divergence free:

∇ · �ζ = 0 (4.6)

From this it follows that the vortex lines can’t start or end in the fluid.
A vortex line is defined as a line which is tangent to the vorticity vector,
and a set of vortex lines forming a vortex tube is shown in Figure 4.3.
The vortex lines must therefore form closed paths, end at a boundary, a
solid or a free surface, or another alternative is that the vortex line goes
to infinity.

Using the divergence theorem, one can show that the circulation
around a given vortex line, is constant along its length:

∫∫∫
V
∇ · �ζdV =

∫∫
S

�ζ · �ndA = 0∫∫
A1

�ζ · �n1dA+

∫∫
A2

�ζ · �n2dA = 0

−Γ1 + Γ2 = 0 (4.7)

Γ1 = Γ2 (4.8)

This can be related to the vortex tube in Figure 4.3, where A1 is
the surface at the bottom end and A2 is the top surface. The average
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vortex lines

�n1

�n2

A2

Figure 4.3: A vortex tube with surrounding vortex lines

vorticity at the circular ends are defined as ζ1 and ζ2. The cross sectional
area changes of the tube can then be related to the vorticity as:

ζ1A1 = ζ2A2 = Γ (4.9)

where Γ is the circulation of the vortex tube. It can be shown that
the circulation around a material loop of particles changes only if the net
viscous force on the particles gives a non-zeros integral. If the fluid is
inviscid or irrotational, then:

DΓ

Dt
= 0 (4.10)

This is often referred to as Kelvins Circulation Theorem. For an
inviscid and incompressible fluid the circulation is constant about any
material contour moving with the fluid.

From the above results, several vortex theorems for inviscid incom-
pressible flow follow. These theorems were first developed by Hermann
von Helmholtz in 1858[51]. The three Helmholtz’s theorems are [52]:

1. The strength of a vortex filament is constant along its length.

2. A vortex filament can’t start or end in a fluid. It must form a closed
path or extend to infinity.
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3. In absence of rotational external forces, a fluid that is initially irro-
tational remains irrotational.

As a consequence of the third theorem, the fluid that forms a vortex
tube and the strength of the vortex tube remains constant. Similarly,
vortex elements such as vortex lines, vortex tubes, vortex surfaces, will
remain vortex elements with time. The vortex elements are singularities
in the flow described by a velocity potential.

4.2.3 Vortex Dynamics

Potential flow is inviscid, irrotational and incompressible. These proper-
ties will be applied to the continuity equation (conservation of mass) and
the momentum equation. The differential form of the continuity equation
in Lagrangian terms is [50]:

Dρ

Dt
= −ρ∇ · �q (4.11)

where Dρ/Dt is the rate of change of the density of a fluid element,
and the term ∇ · �q is the particle volume rate.

The Lagrangian description of the conservation of momentum is [50]:

ρ
D�q

Dt
= −∇P + μΔ�q (4.12)

where ρD	q
Dt is the acceleration of a fluid particle, ∇P is the net pressure

force and μΔ�q is the net viscous force (μ is the dynamic viscosity). The
viscosity of air is relatively low, and this term will be assumed negligible
(inviscid and irrotational flow). The momentum equation can be used to
relate the velocity to the pressure.

For an incompressible fluid element, the volume is constant. This
simplifies the continuity equation (Eq 4.11), since the change in density
is zero. Since the density is constant, it can be removed from the equation,
and the continuity equation is now:

∇ · �q = 0 (4.13)

�q = ∇φ (4.14)

By including the velocity potential in the continuity equation, Eq 4.13,
the continuity equation is reformulated into Laplace equation:
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Figure 4.4: The relation between the surface and line integrals

∇2φ = 0 (4.15)

4.2.4 Green’s theorem

The Laplace equation can be solved by a method of singularity distribu-
tion, and the Green’s theorem can here be used to find a solution. The
theorem is first defined and thereafter applied to the Laplace’s equation.
Proper solutions of the Green function and the boundary conditions sug-
gested are presented at the end.

The Green’s divergence theorem is a special case of the Kelvin-Stokes
theorem, and creates a relation between the surface and line integrals.
A surface, S, is bounded by the contour line C in Figure 4.4 in 2D. The
theory presented here will be limited to 2D. The integral relation is:

∫
S
(∇ · �r)dS =

∮
C
�r · �ndl (4.16)

where �r is a vector along the contour line C. Thus the divergence of
the vector, �r, over a surface is equal to the flux of the normal vector along
the contour line C. Let �r = φ∇G−G∇φ, where G is the Green’s function
and φ is the velocity potential. The Green’s identity is established as:

∫
S
φ∇2G−G∇2φdS =

∮
C
(φ∇G−G∇φ) · �ndl (4.17)
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The Green’s function is chosen such that:∫
S
φ∇2GdS = φ (4.18)

Combining the above definition, with the Laplace function (Eq 4.15),
one gets the following representation of the velocity potential φ:

φ =

∮
C
(φ∇G · �n−G∇φ · �n)dl (4.19)

It is a requirement that the Green’s function is a solution of Laplace’s
equation. A good definition of the Green’s function for the 2D potential
flow is:

G(r) =
1

2π
ln (r) (4.20)

where r is the radial distance from the evaluated point, �x, to the
singularity, �x0. The Green’s function is singular as r approaches zero,
and limits to infinity as r goes to infinity.

Since the Green’s function in Equation 4.20 does not exist when the
evaluated point, �x, approaches the singularity �x0, the area around the
singularity is extracted from the bounded area considered. By considering
a small area, Sε, around the singularity at �x0, there will be no singularity
in the area S − Sε. The curve has the length C + Cε. By doing this,
the singularity is extracted from the area considered in the integral. The
velocity potential at �x due to the singularity at �x0 can now be written as:

a(�x)φ(�x) =

∮
C

(
∂φ(�x0)

∂�n
G(�x− �x0)− φ(�x0)

∂G

∂�n
(�x− �x0)

)
dl (4.21)

where the value of a depends on whether the singularity is on the
contour line C and ∇�n is exchanged with ∂

∂	n . If the singularity is on the
contour, a = 1/2, if the singularity is within the contained surface of the
contour, a = 1. This relation relates the field values with the boundary
data. Depending on the boundary conditions, the solution of ∇2φ = 0
is obtained. Before moving to the boundary conditions, the theory is
extended to include unbounded domains.

4.2.5 Unbounded Domains

The theory is extended to unbounded domains to include both an exterior
domain, Se and an interior domain, Si, see Figure 4.5. The Laplace
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Si

Se�n

C

Figure 4.5: Extention of the theory to unbounded domains

equation (Eq 4.15) is valid in both domains Si and Se. At the contour
line, C, there will be a singularity. This singularity can be described by
doublets, μ, and sources, σ:

−μ = φi − φe (4.22)

σ =
∂φi

∂�n
− ∂φe

∂�n
(4.23)

where φe is the external velocity potential to the fluid and φi is the
internal velocity potential to the fluid. There are now three different
domains; the exterior domain to the fluid (internal to the body), Se, the
interior fluid domain (exterior to the surface), Si, and the contour line,
C. The potential can be calculated for each of these three domains using
Eq 4.21. Using the definitions for sources and doublets, the equations can
be written as:

�x ∈ Si, φi(�x)

�x ∈ Se, φe(�x)

�x ∈ C, 1/2(φec + φic)(�x)

⎫⎪⎪⎬
⎪⎪⎭ =

∮
C

(
σ(�x0)G(�x − �x0) + μ(�x0)

∂G

∂n
(�x− �x0)

)
dS

(4.24)

4.2.6 Boundary Equations

So far no boundary conditions are applied. We are interested in inves-
tigating the flow around an airfoil, and a condition preventing the fluid
from flowing through the airfoil is needed. The vortex singularities can be
placed on a boundary, and a no-through flow boundary condition is ap-
plied to the integral equation to solve the strength of these singularities.
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There are two different approaches to defining the boundary condition;
the Neumann condition and the Dirichlet condition.

The Neumann condition is a direct approach to the problem, and the
velocity is specified to zero normal to the solid boundary. In this approach
the velocity potential is continous across the boundary. The boundary
equation is:

∇φb · �n = 0 (4.25)

where φb is a velocity potential on the boundary. The Neumann con-
dition is also called the source formulation, since requiring that the po-
tential is continuous across the interface, implies μ = 0. In order to use
the Neumann condition, the velocity potential needs to be differentiated.

The Dirichlet approach uses an indirect approach, where the potential
is specified on the boundary. The advantage of using this method is its
straightforward applicability to numerical methods. In this boundary
condition, the stream functions are used. The stream function, Ψ, for an
incompressible fluid is defined as:

�q = ∇×Ψ (4.26)

An enclosed streamline will follow the geometry of the bounded sur-
face, and the potential inside the bounded surface will be constant.

There is also the option of mixing the two boundary conditions, but
this will not be the focus here. The Dirichlet boundary condition will be
the preferred option in the panel vortex method calculations presented
later in chapter 5.

4.2.7 Biot-Savart Law

The Biot-Savart law represents a method to relate the velocity to the
vorticity. Using the Helmholtz decomposition of the flow field �q, one has
a rotational component, �qξ, and a solenoidal component, , �qφ:

�q = �qξ + �qφ (4.27)

The rotational component contains the vortical part of the flow, and
is related to the vorticity as:

�ξ = ∇× �q = ∇× �qξ (4.28)
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As previously stated, the flow is assumed incompressible. Adding the
restriction from Eq 4.13, the following relation is found:

∇2 · �qξ = −∇× �ξ (4.29)

The solution to the above equation is given by the Biot-Savart law:

qξ(�x) =

∫
Si

K(�x− �y)ξ(�y)d�y (4.30)

where K(�x) is the Biot-Savart kernel, which is the rotational counter-
part to G(�x) (Eq 4.20). In two dimensions K is:

K(�x) = (2π|�x|2)−1(−x2, x1) (4.31)

The velocity field can be expressed as:

q(�x) =

∫
Si

K(�x− �y)ξ(�y)d�y + �qφ (4.32)

The solendial velocity component, �qφ, is given by the free stream
potential ∇φ∞.

4.3 Elementary Flows

The Laplace equation is valid for potential flow. The Laplace equation is
linear, and a toolbox of elementary flows can therefore be used to describe
almost any kind of flow. Two types of elementary flow were identified in
Section 4.2.5 as source and doublets. The elementary flows can be due
to a point, line, surface or volume singularities. We will only present the
2D elementary flows, points and line. Integration in closed form is only
possible in special cases such as straight line segments or planar surfaces
due to the singularity of the Green’s function.

4.3.1 Principle of Superposition

The Laplace equation is linear, and superposition can be used:

∇2φ =

n∑
k=1

ck∇2φk = 0 (4.33)
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where ck is an arbitary constant and φk is a solution to the Laplace
equation. Using the principle of superposition, one can obtain a solution
of the flowfield.

4.3.2 Point

The source, doublet and vortex point elements are presented in this sec-
tion. For the source and doublet elements, the velocity potentials can be
found by introducing the Green’s function in Eq 4.20 in the velocity po-
tential as given in Eq 4.24. For the source element the velocity potential
is:

φ(r, θ) =
σ

2π
ln (r) (4.34)

where σ is the source strength. Similarly for the doublet potential:

φ(r, θ) = − μ

2πr
cos (θ) (4.35)

where μ is the strength of the doublet.

y

x

φ = const.ψ = const.

Figure 4.6: Streamlines and equipoten-
tial lines due to a source element located
at the origin.

qr =
σ

2πr

qr

r

Figure 4.7: Radial ve-
locity due to a source

For the source element the potential is constant at each position, and
does not vary with the azimuthal position. The azimuthal velocity will
therefore be zero, while the radial velocity for a point source is:
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qr =
σ

2πr
(4.36)

The equipotential lines and streamlines, due to a source element, are
illustrated in Figure 4.6. The outgoing surface flux of the point source is
equal to its intensity.

1

2

−1

−2

1 2−1−2
x

y

Figure 4.8: Equipotential lines (dotted lines) and stream lines (solid lines)
due to a point doublet (μ > 0) at origin pointing in the direction of the
x axis

The velocity potential of the doublet element is dependent on both
radial and azimuthal position. The velocity components due to a doublet
point element, in polar coordinates, are:

qr = μ cos (θ)/
(
2πr2

)
, qθ = μ sin (θ)/

(
2πr2

)
(4.37)

The equipotential lines are plotted together with the streamlines in
Figure 4.8. There is no net flux for the point doublet element. The
doublet element is associated with the derivative of the Greens function,
see Eq 4.22.

The last 2D point element is the point vortex. The general solution to
the Laplace solution previously described, consists of doublet and source
elements only, but the vortex element represents another possible solution
of the Laplace equation that is often used. The velocity potential of the
2D point vortex element is:
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Figure 4.9: The equipotential lines
and streamlines for a 2D point vor-
tex element

qθ = − Γ
2π r

qθ

r

Figure 4.10: Radial variation
of the tangential velocity due
to a 2D vortex element

φ(r, θ) = − Γ

2π
θ (4.38)

The equipotential lines and the stream lines are illustrated in Figure
4.9. The radial velocity is zero, and the tangential velocity is:

qθ = − Γ

2πr
(4.39)

4.3.3 Surface Distribution

x

y

x1 x2

σ(x)

Figure 4.11: Source distribution
along the x-axis

x

y

x1 x2

μ(x)

Figure 4.12: Doublet distribu-
tion along the x-axis

By distributing the 2D point elements along a line, we can investigate
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some of the main features of the elements. The two dimensional elements
are located from x1 to x2. First we will look at the distribution of source
elements, which are shown in Figure 4.11. The source distribution be-
tween point x1 and x2 will give the following integral for the velocity
potential and its derivatives:

φ(x, y) =
1

2π

∫ x2

x1

σ(x0) ln
√

(x− x0)2 + y2dx0 (4.40)

∂φ

∂x
=

1

2π

∫ x2

x1

σ(x0)
(x− x0)

(x− x0)2 + y2
dx0 (4.41)

∂φ

∂y
=

1

2π

∫ x2

x1

σ(x0)
y

(x− x0)2 + y2
dx0 (4.42)

It is clear from the illustration in Figure 4.11 that there is a jump in
velocity across the surface. The jump in vertical velocity is equal to the
source strength:

v(x, 0±) =
∂φ

∂y
(x, 0±) = ±σ(x)

2
(4.43)

v+ − v− = σ(x)

The source element is therefore suitable to model flows that are sym-
metric about y=0 (the x-axis). The next element that is shown is the
doublet element. The velocity potential and its derivative due to a dou-
blet distribution, μ(x), is:

φ(x, y) = − 1

2π

∫ x2

x1

μ(x0)
y

(x− x0)2 + y2
dx0 (4.44)

∂φ

∂x
=

1

π

∫ x2

x1

μ(x0)
(x− x0)y

[(x− x0)2 + y2]2
dx0 (4.45)

∂φ

∂y
= − 1

2π

∫ x2

x1

μ(x0)
(x− x0)

2 − y2

[(x− x0)2 + y2]2
dx0 (4.46)

The doublet velocity potential is similar to the normal velocity for a
source distribution in Eq 4.42. Approaching the surface at y = ±0, it
follows that the velocity potential is:

φ(x, 0±) = ∓μ(x)

2
(4.47)
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The tangential velocity at the surface of the doublet element is there-
fore discontinuous:

u(x, 0±) =
∂φ

∂x
(x, 0±) = ∓1

2

dμ

dx
(4.48)

The normal velocity is continuous across the doublet element. The
strength of the doublet distribution can be related to the jump in velocity
potential as:

−μ(x) = φi(x)− φe(x) = Δφ (4.49)

where φi is the velocity potential on the inside and φe is the exterior
velocity potential. It is also important to note the relation between the
doublet strength and the circulation:

Γ(x) = −μ(x) = Δφ(x) (4.50)

The last and third surface distribution is the vortex elements. It
can be shown that there are similarities between the doublet and vortex
distribution, where the relation is;

γ(x) = −dμ(x)

dx
(4.51)

where γ(x) is the distributed vortex elements along the surface. The
integral of the strength of the distributed vortex elements, γ, is equal
to the circulation strength of elements, Γ. The velocity potential and
velocity at a point P (x, y) due to the vortex distribution γ(x0) is;

φ(x, y) = − 1

2π

∫ c

0
γ(x0) tan

−1

(
y

x− x0

)
(4.52)

u(x, y) =
∂φ

∂x
=

1

2π

∫ c

0
γ(x0)

y

(x− x0)2 + y2
dx0 (4.53)

v(x, y) = −∂φ

∂y
=

1

2π

∫ c

0
γ(x0)

x− x0
(x− x0)2 + y2

dx0 (4.54)

4.4 Thin Airfoil

Airfoils are shapes with small relative thickness, smooth leading edges
and a sharp trailing edge. Wind turbine blades do seldom fit with this
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0

0.1

0.2

−0.1
1

x

y

Leading Edge

Trailing Edge

Figure 4.13: A NACA 0012 airfoil with leading edge and trailing edge

description since the trailing edge are normally blunt, and the leading
edge may not be completely smooth due to insects and ice accumulations.
The NACA 0012 is illustrated in Figure 4.13. However, to simplify the
problem it is common to assume that the wind turbine blade have an
airfoil shape. Linear theory can be applied for small relative thickness,
small angles of attack and high Reynolds number to predict the lift of the
airfoil.
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Figure 4.14: Streamlines due to
a surface distribution of sources
elements
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Figure 4.15: Streamlines due to
a surface distribution of vortex
elements

The effect of thickness of the airfoil on the flowfield can be modeled by
using sources as shown in Figure 4.14, and the circulation of the flowfield
can be modeled by doublet or vortex elements. The thickness has no effect
on the lifting properties in steady potential flow. The singular elements
can be placed along the center line of the airfoil, or along the boundary
of the airfoil. In the following sections the singularities are placed along
the center line. In Chapter 5, the singular elements are placed along the
boundary to model the thickness.
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In this section the focus is on the thin airfoil (with no thickness)
to illustrate some typical aerodynamic behaviour of the airfoil in steady
flow. A new boundary condition is needed for airfoil analysis to ensure a
smooth flow at the trailing edge of the airfoil, this is provided by the Kutta
condition. Using the vortex theory, we can use potential flow modelling
to predict the aerodynamic performance of a thin airfoil. A qualitative
analysis of a thin airfoil, combined with an analysis of the aerodynamic
performance is shown. The next step is to investigate the unsteady case.
A few modifications are needed to include the time-varying aerodynamic
loads. This is also the basis of the classical unsteady aerodynamic theory
by Theodorsen, Küssner and Wagner, which was also presented in Section
3.6.

4.4.1 Vortex Wake

In previous sections, elementary solutions of Laplace equation have been
presented together with the zero normal flow boundary condition. In
smooth flow, and with the viscous effect of the airfoil confined to a thin
layer, the vorticity of the wake is assumed to be shed smoothly from the
trailing edge. The Kutta condition (or the Kutta-Joukowski condition)
states that the proper circulation of the airfoil is the circulation that
causes the flow to leave smoothly, along the centre line, at the trailing
edge.

The Kutta condition, together with the Dirichlet or Neumann condi-
tion, provides a unique solution to the circulation of the airfoil. Requiring
that the flow should leave the sharp trailing edge of the airfoil smoothly
is equivalent to stating the velocity at the trailing edge should be finite.
The normal component for the velocity at the trailing edge, both at upper
surface and the lower surface are zero, and for a continuous velocity this
is only possible if there is a stagnation point at the trailing edge. At the
stagnation point at the trailing edge, one can assume that the pressure
difference is zero. This indicates zero circulation at the trailing edge, see
Figure 4.16.

The next step is to include the Helmholtz condition. For steady con-
ditions, the starting vortex of the wake should be located infinitely far
downstream the airfoil. The strength of the starting vortex should be
equal to the circulation of the airfoil, but the influence tends to zero since
it is infinitely far away. For an unsteady analysis any change in the circu-
lation at the blade should be balanced by an equal and opposite change
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μW

μU

μL γTE = −∂μ/∂s = 0

s

Figure 4.16: Implementation of the Kutta condition when using surface
doublet distribution, [52]. The vorticity at trailing edge, γTE , is zero

in the vorticity of the wake.
The last restriction of the wake is that it should not create loads. By

defining the pressure difference across the vortex sheet of the wake as
zero, one can get the following relation:

Δp = ρ�q × �γ = 0 or �q × �γ = 0 (4.55)

From this it follows that the velocity vector, �q, is parallel to the panel
element in the wake.

4.4.2 Steady Flow

The aerodynamic performance of a two dimensional thin plate at a small
angle of attack in free flow is investigated. A surface distribution of
vortex elements along the thin plate is used to model the circulation.
Doublet elements could also have been used, but vortex elements are
used here. The first step is to establish the no-through flow boundary
condition, where the thin plate surface is described as y = η(x). The
potential of the flow field, φ∗, consists of the free flow potential, φ∞, and
a perturbation potential φ. This is the Helmholtz decomposition of the
velocity potential, as described in Section 4.2.7. The free flow potential
is related to the solendial velocity component, �qφ and is defined as:

φ∞ = U∞x+W∞y (4.56)

The perturbation potential φ, represents the velocity induced by the
circulation from the airfoil and its wake in a stationary frame of reference.
The no flow through the thin plate boundary condition (Eq 4.25) requires:

∇φ∗ · �n =

(
∂φ

∂x
+ U∞,

∂φ

∂y
+W∞

)
· (−dηc/dx, 1)√

(dηc/dx)2 + 1
= 0

∂φ

∂y
= −Q∞α on y = ηc (4.57)
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where Qinf is the total free flow velocity (Q∞ =
√
U2
∞

+W 2
∞
). The

free stream velocity in the y-direction is approximated as W∞ ≈ Q∞α
for small values of α.

The velocity potential at a point P (x, y) due to a vortex element
distribution with the strength γ(x0) per unit length at x0 is given in
section 4.3.3, Eq 4.52. The velocities are given in Eqs 4.53 and 4.54.
Combining the velocity distribution normal to the plate at the surface(y =
0), with the boundary condition in Eq 4.57, results in:

− 1

2π

∫ c

0
γ(x0)

1

x− x0
dx0 = −Q∞α, 0 < x < c (4.58)

The Kutta condition provides a second bondary condition. The flow
should leave the trailing edge (x = c) smoothly, and the velocity should
be finite. One approach to fulfill this requirement, is to limit the pressure
difference to be zero at the trailing edge. From this it follows that the
vortex element at the trailing edge should be zero:

γ(x = c) = 0 (4.59)

The vortex distribution on the flat plate surface can be solved using
the above equations. A transformation into trigonometric variables will
enable us to use the Glauert integral to solve the problem:∫ π

0

cosnθ

cos θ0 − cos θ
dθ0 =

π sinnθ

sin θ
, n = 0, 1, 2, ... (4.60)

The transformation from x to θ is:

x = c
2 (1− cos θ) dx = c

2 sin θdθ (4.61)

The vortex distribution is:

γ(θ) = 2Q∞α
1 + cos θ

sin θ
(4.62)

γ(x) = 2Q∞α

√
c− x

x
(4.63)

The vortex distribution is established, and the aerodynamic perfor-
mance of a thin plate at an angle of attack can now be evaluated. The
steady-state Bernoulli equation for small-disturbance flow over an airfoil:
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Chord
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α = 5o

Figure 4.17: Pressure differ-
ence on a thin plate

c
Q∞

L

α

Figure 4.18: Aerodynamic lift force on
a flat plate. The lift force is marked
at x=0.25 c, where the pitch moment is
zero.

p− p∞ = −ρQ∞

∂φ

∂x
(4.64)

where p is the pressure, and p∞ is the reference pressure in the free
flow. It can be shown that the tangential velocity on the surface of the
thin airfoil is:

u(x, 0±) =
∂φ

∂x
(x, 0±) = ±γ(x)

2
(4.65)

The pressure difference is therefore:

Δp = ρQ∞γ(x) (4.66)

In Figure 4.17 the pressure distribution is shown for a flat plate with
5o angle of attack. The lift force , L, perpendicular to the free stream
Q∞ is:

L =

∫ c

0
Δp(x)dx =

∫ c

0
ρQ∞γ(x)dx = ρQ∞Γ (4.67)

where the circulation of the thin plate, Γ, is connected to the vortex
distribution, γ, as:

Γ =

∫ c

0
γ(x)dx = Q∞cπα (4.68)

The aerodynamic moment relative to the leading edge, M0, is calcu-
lated positive around the y axis in clockwise direction:
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Figure 4.19: A thin plate where h(t) is downward translation of the flat
plate, and αr(t) is the rotation about the axis of rotation at 1

2ac relative
to the midchord.

M0 = −
∫ c

0
Δp(x)xdx = −ρQ2

∞
π
c2

4
α (4.69)

The aerodynamic coefficients for a flat plate are:

CL =
L

(1/2)ρQ2
∞
c
= 2πα (4.70)

CM0 =
M0

(1/2)ρQ2
∞
c2

= −πα

2
(4.71)

The aerodynamic pressure center is located at the quarter chord dis-
tance from the leading edge, as for a thin plate. The aerodynamic forces
acting on the the flat plate are illustrated in Figure 4.18.

4.4.3 Unsteady Flow

The application of unsteady aerodynamics to wind turbines were dis-
cussed in the previous chapter, in section 3.4.3. In this section some of
the theory is explained.

The problem of unsteady attached flow was first tackled by Glauert
[53] and was solved by Theodorsen [26]. The problem was based on a
thin airfoil and it was assumed that it had small transversal oscillations.
An illustration of the thin plate and the nomenclature used is shown in
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Figure 4.19. Both the translational motion of the flat plate, h(t), and
the rotation of the flat plate about a point 1

2atc relative to the mid-chord
was studied by Theodorsen. at is a coefficient used to define the center
of rotation relative to the chord length, where at = 0 corresponds to
rotation about the mid-chord and at = 1 has rotation about the trailing
edge (see Figure 4.19). The motions were restricted to simple harmonic
motions. The Laplace equation is still valid, but the boundary conditions
need to be re-evaluated relative to the previous section with steady flow.
In addition, a model of the wake must be included.

A detailed description of the method applied by Glauert and Theodorsen
is given in [54]. The methodology will be presented briefly, before a discus-
sion on the relevance of Theodorsen’s results. The result by Theodorsen
is given in the frequency domain, and the transformation to time domain
is discussed in a previous section (see Sec 3.6).

The no flow boundary condition can be written as:

va(x, t) =
∂ya
∂t

+ U
∂ya
∂x

; for y = 0; 0 ≤ x ≤ c (4.72)

where va is the velocity in y-direction at the surface of the thin plate.
Kutta’s condition with a finite and continuous velocity and pressure at
the trailing edge is still valid.

Theodorsen divided the unsteady problem into two parts, a circu-
latory part and a non-circulatory part. The two different approaches
are used separately to solve for the above boundary conditions. The non-
circulatory part solves the no-flow boundary equation by applying sources
and sinks point elements along the lower and upper surface of the thin
plate. The circulatory part of the problem is solved by applying vortices
along the thin plate and in the wake. The Kutta condition is fulfilled
by locating vortices along the same line and vortices along the wake to
infinity. In Theodorsen’s analysis it is assumed that the wake does not
deform but moves with the speed of the flow, U . The vortices in the wake
are counter-vortices to the vortices on the airfoil such that the circulation
of the system remains constant:

DΓ

dt
= 0 (4.73)

By doing this division of the problem, one can discuss the influence of
the solutions separately. The resulting aerodynamic loads based on the
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sources and sink elements for the no-flow through boundary condition,
are referred to as non-circulatory loads. The circulatory loads are due to
the distribution of vortices.

The instantaneous small displacement of the chord line, ya(x, t), is:

ya(x, t) = −h− αr

[
x− c

2 (1 + a)
]
, for 0 ≤ x ≤ c (4.74)

c is the chord length, h is the translation, αr is the angle of rotation
about the point located at 0.5ac relative to the mid-chord, as shown in
Figure 4.19. Inserting the small displacements, ya(x, t) into the no flow
through the surface condition in Eq 4.72:

va(x, t) = −ḣ− α̇r

[
x− c

2 (1 + a)
]
, for 0 ≤ x ≤ c (4.75)

The non-circulatory lift and moment are [54]:

LNC =
πρc2

4

[
ḧ+ Uα̇r − 1

2
caα̈r

]
(4.76)

MyNC =
πρc2

4

[
Uḣ+

1

2
caḧ+ U2αr − 1

4
c2(1/8 + a2)α̈r

]
(4.77)

From the estimation of non-circulatory loads, one can see that the
motions described by the plunging motion, h(t), and the pitch motion,
Uαr(t), are analogous to one another. Both motions have a constant
vertical velocity over the airfoil at any point in time, see Figure 3.10.
The virtual mass associated with vertical acceleration ḧ is ρπ

4 c2, which
is equal to the mass of a circle of liquid with the same diameter as the
chord. The lift due to the angular velocity, α̇r, is of a different nature. The
vertical velocity is not constant along the chord as shown in Figure 3.11.
The angular velocity contributes if the rotational axis is displaced from
the mid-chord. The contribution of the angular velocity to the moment
is a virtual moment of inertia, ρ

[
π
16c

4(1/8 + a2)
]
.

The non-circulatory solution presented above does not fulfill the Kutta
condition, for this we need the circulatory part of the solution. Combin-
ing the non-circulatory solution with the circulatory solution, the aero-
dynamic lift and moment from Theodorsen analysis is:
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L =
πρc2

4

[
ḧ+ Uα̇r − ca

2
α̈r

]
+πρUcC(k)

[
ḣ+ Uαr +

1

2
c(1/2 − a)α̇r

]
(4.78)

My =
πρ

4
c2
[
1

2
caḧ− U

1

2
c(1/2 − a)α̇r − 1

4
c2(1/8 + a2)α̈r

]

+
πρUc2

2
(a+ 1/2)C(k)

[
ḣ+ Uαr +

c(1/2 − a)

2
α̇r

]
(4.79)
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Figure 4.20: The Theodorsen function, C(k), plotted as a complex vector

The reduced frequency is often used as a measure of the unsteadiness
of a flow and is a governing variable of the circulatory function, C(k).
Theodorsen’s function can be expressed in terms of Hankel functions:

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(4.80)

where C(k) is Theodorsen’s function, and k is the reduced frequency,
k = ωc

2U . The amplitude, |C(k)|, and phase, φC is defined as:

|C(k)| = √
F 2 +G2 φC = tan−1(G/F ) (4.81)

The function is plotted in Figure 4.20. The function the largest phase
at k = 0.2. For k = 0, the flow is steady, and steady-state lift is obtained.
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4.4.4 Circulation and non-circulation effect

The first term of the lift and moment equations based on Theodorsen’s
analysis (Eq 4.78 and Eq 4.79) are the non-circulatory term, which is also
called the apparent mass term. The second term, which is related to the
Theodorsen function, C(k), is the circulatory term. The non-circulatory
term arises from the time-variant term of the unsteady Bernoulli equation,
∂φ/∂t, where φ(t) is the velocity potential of the flow [17]. The pressure
forces required to accelerate the fluid in the vicinity of the airfoil are
accounted for by the non-circulatory term.

The lift coefficient, due to the circulation term, is dependent on the
type of oscillating motion. The unsteady lift response, only considering
the circulatory lift coefficient for a flat plate in pure pitch oscillations, is
shown in Figure 4.21.
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Figure 4.21: The circulatory lift component part of the unsteady lift
response, CLC(t), for a harmonic pitch motion, α(t). The direction of the
elliptic curves are counterclockwise

The thin plate is oscillating between ±5o, and for quasi-static val-
ues this corresponds to a quasi-static lift coefficient, CL, linearly varying
between ±0.55. The quasi-static lift coefficient corresponds to the line
plotted with a reduced frequency, k, equal to zero. For higher values of k,
the amplitude of the lift coefficient is lower, and the loads are partly out
of phase with the oscillating motions. For larger values of the reduced
frequency, k > 0.2, the phase shift is reduced. It is shown in Figure 4.21
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that at k = 10, the load and forcing motion are almost in phase, but the
amplitude of the load is half the quasi-static values.

The total lift coefficient, for pure angle of attack oscillations, is esti-
mated as [17]:

CL = [2π(F (k) + iG(k)) + iπk]αeiωt (4.82)

where α(t) = αeiωt. The contribution of the non-circulatory load rela-
tive to the circulatory load is studied using the normalized lift amplitude
shown in Figure 4.22. For reduced frequencies, k, lower than 1, the cir-
culatory part of the lift is dominating. At higher reduced frequencies,
the non-circulatory contribution is more important. The circulatory lift
coefficient stabilizes at a normalized lift amplitude of 0.5 for high values
of k, while the total circulatory lift increases linearly together with the
non-circulatory lift.
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Figure 4.22: The normalized lift coefficient for unsteady response of a flat
plate in pure pitching motion

It is also interesting to look at the phase of the unsteady lift, see
Figure 4.23. The circulatory lift are most out of phase when k = 0.2.
The phase is negative at the low frequencies, and this indicate that there
will be negative added mass in the dynamic system. However, the total
lift is following the phase of the circulatory lift only for very low reduced
frequencies. As the reduced frequencies are increased, the total phase lag
increases towards the circulatory lead lag of 90o, and the phase is positive.
This indicates a positive added mass.

For a pure plunging motion, the nature of the circulatory lift coeffi-
cient for a thin plate, is illustrated in Figure 4.24. The plunging motion
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Figure 4.23: The phase angle, φC(t), for unsteady response of a flat plate
in pure angle of attack motion.
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Figure 4.24: The circulatory lift component part, CLC , of the unsteady
lift response for a pure plunging oscillation.

is described as h(t) = heiωt, and combining this with Eq 4.78, the lift
coefficient is established:

Cl =
[
2πk (iF (k)−G(k)) − k2π

] h̄

0.5c
eiωt (4.83)

The first term of the lift coefficient is related to the circulatory loads,
and it is these unsteady loads that are shown in Figure 4.24. The quasi-
static lift coefficient is zero. For increasing values of k, the amplitude
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of the lift coefficient is increasing, which differs from the pure oscillat-
ing motion, where there was a decrease in lift amplitude with increasing
reduced frequencies.

0

20

40

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

× × × × × × × × × × × × ×
×

×
×

×
×

×
×

×
×

×
×

×

�� �� ��

× × ×

Total lift
Circulatory lift

Non-Circulatory lift

k

N
or
m
al
iz
ed

L
if
t
A
m
p
li
tu
d
e

Figure 4.25: The normalized lift coefficient for unsteady response of a flat
plate in pure plunging motion

From Figure 4.24, it was seen that the lift amplitude was increasing
with increasing k. If the normalized lift amplitude is plotted, see Figure
4.25, it is seen that this trend continues. The lift is normalized by dividing
the lift coefficient with 2h/c. The non-circulatory lift will dominate the
total lift for k > 1.

The phase of the lift is for lower frequencies governed by the circula-
tory effects, but the non-circulatory effects are governing as the reduced
frequency increases. This is shown in Figure 4.26.

There are similarities between the plunging motion and the pitching
motion, that are evident in the plot of the phase angle for the two motions.
The plunge oscillating phase has a 90o lead to the pitch oscillating phase,
ref Figure 4.23. This is a reasonable results, since the velocity due to
the plunge oscillations will give the same change in angle of attack as the
pitch oscillation motion.
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Figure 4.26: The phase angle for unsteady response of a flat plate in
plunging motion

4.5 Implementation on a Graphical Processing

Unit

One of the main issues with a vortex method is the time-consuming com-
putation. The velocities at points have to be computed, considering all
the singular elements in the flow. The influence matrix also needs to be
solved with each time step, but this is less computationally demanding
compared to the velocity calculation. This is illustrated later, in Figure
5.15. Using a direct sum approach, the order is O(n2), where n is the
number of particles. The cost of computational time can be reduced using
a tree-algorithm, and the reduction depends on the type of tree-algorithm.
In [55] the order is reduced to O(n log n). The tree-code algorithm reduces
the number of computed interactions by dividing the space into cells, and
evaluating the interaction between the vortex elements, depending on if
the are far apart or close. Readers interested in more details regarding
tree-code algorithm, is referred to [56].

In this section we will investigate how the implementation of the panel
vortex method on a graphical processor unit (GPU) will reduce the com-
putational cost. A two dimensional time-stepping vortex code is used to
illustrate the reduction in time.
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Figure 4.27: Simplified illustrattion of a Central Processing Unit (left)
compared to a Graphical Processing Unit (right).

4.5.1 Basics of GPUs

The Graphical Processing Unit (GPU) was originally made for graphics
acceleration, but can now also be used in scientific calculations. The GPU
consists of a large number of cores, and an illustration of the GPU relative
to the CPU is shown in Figure 4.27. A modern CPU has typically 4 or
more cores that can run processes in parallel, while a GPU has a massively
parallel array of integer and floating point processors. In addition to its
processors, the GPU also has a dedicated high-speed memory. The CPU
is often referred to as the host, and the GPU is the device.

Due to its many processors, the GPU is ideal for highly parallel prob-
lems. The GPU has typically hundreds of processors per card, and GPU
cores that compliment the CPU cores. A common used parallel comput-
ing technology is CUDA, that is developed by NVIDIA, a company which
has specialized in GPUs. This can be used to create kernels, which are
codes written for execution on the GPUs processors. Kernels are written
as functions that can run on large number of threads. The parallelism
is achieved by each thread running independently the same program on
different data.

Characteristics that indicate that a program is well suited for a GPU
are that they are massively parallel and computationally expensive. One
should be able to break down the program into hundreds or thousands of
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independent units of work, the GPU shows best performance when the
many cores are busy.

The main motivation for using the GPU is to reduce the computa-
tional time. The computational time should exceed the time spent on
transferring data from, and back to, the CPU. The NVIDIA GPUs have
a double precision floating point [57].

4.5.2 A vortex code implemented on the GPU

The step that takes the most time on vortex method computation is the
velocity computation of the wake particles. This process can be paral-
lelised since the strength of the singular elements are known prior to the
velocity calculation in the wake.

It has become increasingly easier to compute on a GPU, and it is now
possible to use matlab for GPU programming. Here, a comparison of
the computational time of a vortex method time-stepping simulation on
a GPU, relative to a CPU, is performed.

For shorter simulations it is expected that the CPU will run faster
than the GPU. This is because of the slow data transfer between the GPU
and the CPU, and also due to the fact that the computing in general
is slower on a GPU. The advantage is only if the computation can be
massively parallelized and this is true for the calculations of the induced
velocities of singular elements. This will be illustrated using a simplified
two dimensional time stepping simulation for a thin plate at an angle of
attack.

A model of the simulation is shown in Figure 4.28. A flat plate is
modeled using a single vortex element located at a quarter of the chord
length from the leading edge. The boundary condition requiring no-flow
through the surface is fulfilled at a quarter chord from the trailing edge.
This point is referred to as the collocation point. The wake is modelled
as a prescribed wake, where the vortex elements shed from the trailing
edge follow the incident wind field (no wake deformation). The velocity
at the collocation point due to the vortex element on the airfoil and the
vortex elements in the wake, were calculated on the GPU and the CPU
in two separate simulations, both using Matlab.

A comparison of the computational time for the time-stepping vortex
code using a GPU version and a CPU version is shown in Figure 4.29.
The computational time using a CPU relative to the computational time
using a GPU is shown along the y-axis, and the number of computational
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Figure 4.28: A thin plate modeled using a single vortex element Γb, and
the wake vortex elements shed from the trailing edge, after 5 time-steps
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Figure 4.29: The increase in computational time using the CPU relative
to the GPU for different number of time-steps.

steps along the x-axis. The dotted line is drawn to illustrate where the
GPU and the CPU have equal computational time.

The CPU is an Intel Core i7-3610QM running at 2.3 GHz, and the
GPU is a Quadro K1000M which has 192 cores running at 850 MHz.
Both are installed on an EliteBook 8570w, which is a regular laptop.

The results indicate that there is a break-even around 2000 number of
time-steps. For lower number of time-steps, the CPU will have the lowest
computational time. If the number of time-steps is higher than 2000,
using the GPU to do the simulations will give the results faster. Similar
results for the number of time-steps where concluded in [58], where a
panel code was implemented on a GPU.

In a simulation with a time-step of 0.01 seconds, 2000 time-steps are
equal to 20 seconds. For a wind turbine, operating with a rotational speed
of 12.3 rpm, the rotor will have rotated 4 times within this time period.

4.6 Cascade

So far, only individual blades have been discussed, and we are interested
in investigating the aerodynamic loads for the whole rotor. The step from
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modeling a single flat plate and calculating the lift force, to modelling a
rotor and estimating the thrust force on a rotor, can be done by using a
linear cascade. The linear cascade consists of an infinite number of vortex
points located along the x-axis resembling an annular section in the rotor
plane. The circulation from the neighbouring blades and wakes are now
included in the calculation of the aerodynamic forces on the thin foil. The
challenge of cascade modeling is to ensure that the method converges.

A stationary version, using conformal mapping, is presented first.
This has been widely used in the design of turbo-machines. For the
transient analysis, a method using sums is applied. Using the two differ-
ent approaches, the effect of spacing between the blades and the velocity
ratio, are discussed.

It is shown how the distance between the foil influences the result-
ing thrust force. A discussion with regards to the ratio between axial and
tangential velocity influence the thrust force is also presented. This is rel-
evant for wind turbines which will have different 2D spacing and velocity
ratio along the blade. The velocity ratio is also wind speed dependent.

4.6.1 Conformal Mapping

Conformal mapping is a mathematical technique that is used to convert
a mathematical problem in a particular space into another problem by
transforming it via a conformal map to another space. Here we will use
the technique to model an infinite sum of vortex points which are located
along a line with a constant distance in the z plane, and transform it to
the Z plane. Complex notations are applied when using this technique.
This is illustrated in Figure 4.30.

In the z plane, a point p is described as z = x+ iy, and in the Z plane
as μcmeiφcm . A straight line p′p′ parallel to the y-axis at a distance lnμcm

from the y-axis in the z plane is transformed to a circle P ′P ′ of radius
μcm in the Z plane. The following relations can be used:

x =
2π

tcm
lnμcm (4.84)

y =
2π

tcm
φcm (4.85)

where tcm is the distance in the vortex array in the z plane. The
method is illustrated using an array of point vortices in the z plane, and
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a vertical uniform stream v∞. The array of point vortices in the z-plane
is a single point vortex in the Z plane.

x

y

p′

p

p′

�

�

�

�

�

�

� Γ

t

z = x+ iy

v
+
∞

=
−

Γ2
t

x = lnμcm

X

Y

Z = μcmeiφcm

−Γ
2

Γ

� �

φcm

1

μcm

Figure 4.30: Transformation of vortex array in z plane to vortex pair in
Z plane, based on figure in [59].

For a wind turbine rotor, t is the separation between the blade sections
at a distance r from the hub (t = 2πr/3). The velocity, v∞, which
for a wind turbine is the combination of both incoming wind speed and
rotational speed, is represented by a vortex element of strength −Γ/2 in
the Z plane. The array of vortex elements are represented by a vortex
element located at μcm = 1. The velocity potential for a point vortex is
given in Eq 4.38. Using complex notation, the velocity potential is [59]:

F (Z) =
iΓ

2π
ln(Z − 1)− iΓ

4π
ln(Z)

The velocities in the Z plane are:

U − iV =
dF (Z)

dX
=

iΓ

4πZ
· (Z + 1)

(Z − 1)

This result is transformed into the z plane. The velocity due to an
infinite array of point vortices located along the y axis is:
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u− iv =
dF (z)

dz
=

dF (z)

dZ

dZ

dz

=
iΓ

4π
· (Z + 1)

(Z − 1)

=
iΓ

4π
· (e

z + 1)

(ez − 1)
(4.86)

Traupel established the relation above for the velocities, using cascade
theory in 1945 [60]. The formula can be rewritten into [59]:

u− iv =
iΓ

2tcm

[
sinh(2πx/tcm)− i sin(2πy/tcm)

cosh(2πx/tcm)− cos(2πy/tcm)

]
(4.87)

We will not pursue this method further, but rather concentrate on
cascade methods which are based on summing up the neighbouring air-
foils.

4.6.2 Linear Cascade

The linear cascade method consists of several foils along a straight line.
The induced velocity due to the vortex elements on the foils and in their
wakes are considered. The vortices are modelled with equal strength for
all foils in the linear cascade. However, in reality, the foils at the edges
will have a different vortex strength, but this is assumed to have little
influence on the flowfield around the foil in the middle of the cascade.

The advantage with the linear cascade compared to the conformal
mapping described above, is that the unsteady aerodynamics will be in-
cluded. In an ideal cascade, an infinite number of flat foils with chord
length c are modeled, but we will have to use a finite amount of blades.
A linear cascade with 7 airfoils is illustrated in Figure 4.31.

It is expected that as the distance between the foils, Sc, become larger,
the influence of the neighbouring vortex elements is negligible. However,
when the distance between the airfoils is small, the influence from neigh-
boring foils may no longer be negligible. A vortex element of strength
Γb is located at c/4 from the leading edge of each element. The normal
velocity at the collocation point, xcp, located at 3c/4 is defined as zero.
The induced velocity of the vortex element at the blades, Ui,b, and in
the wake, Ui,w , is summed up and added to the wind and the rotational
velocity. At the collocation point, the sum of these velocities is zero:

84



CHAPTER 4. VORTEX METHODS

+∞∑
i=−∞

ubl,i +

+∞∑
i=−∞

uw,i + UY · cos(θ) + UX sin(θ) = 0 at xcp (4.88)

where UX is the velocity in the rotational direction, UY is the velocity
normal to the rotor plane, and θ is the twist of the foil relative to the
rotational direction. This is illustrated in Figure 4.31. There are two
different coordinate systems in the illustration. A global system, X and
Y , and a local coordinate system, x and y. The local velocities are cal-
culated using the local coordinate system, which is tilted with the same
angle as the foil, θ. The velocity normal to the foil due to a vortex point
element is v = Γxg/2π(x

2
g + y2g), where xg and yg are the distances to the

vortex element from the collocation point, xcp, in x and y direction.

An infinite number of airfoils is not feasible to compute, and the
number will need to be restricted. If the sum of the influenced velocities
from the wake and the blade are converging a limited amount of airfoils
can represent an infinite number of airfoils. It is investigated whether the
sum of the influenced velocities is converging. There is a large amount of
different convergence tests, and we have restricted ourselves to the ratio
test and Cauchy’s convergence test. The ratio test assumes that for all n,
an > 0, where an is the nth element. The series converge if r < 1, where
r is defined as:

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ (4.89)

However, the ratio test is an inconclusive test for convergence. An-
other convergence test, the Cauchy condensation test, is a better test.
According to Cauchy condensation test, if {an} is a monotone decreasing
sequence then

∑
∞

n=1 an converges if and only if
∑

∞

k=1 2
ka2k converges.

We will start with examining the convergence of the first sum in Eq
4.88. The velocity at the collocation point, xcp, due to the vortex point
element located at the blades of the system, is:
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Figure 4.31: A sketch of the linear cascade. The dashed line is the rotor
plane.

+∞∑
i=−∞

ubl,i = ubl,0 +

∞∑
kc=1

ubl,kc +

−∞∑
kc=−1

ubl,kc (4.90)

= − Γbl

2πr2bl
xbl −

∞∑
k1=1

Γbl

2πr2bl,k1
xbl,k1

−
∞∑

k2=1

Γbl

2πr2bl,k2
xbl,k2 (4.91)

where the origin of the coordinate system is at the collocation point,
the x-axis is along the chord and r is the radial distance. The subscript
bl is used for the blade vortex, and kc for the summation. The element,
abl,k, in the series is defined as:

abl,kc = −
(

xbl,k1
2πr2bl,k1

+
xbl,k2
2πr2bl,k2

)

= −
( −c/2 + kcSc cos(θ)

2π
[
(−c/2 + kSc cos(θ))

2 + (−kcSc sin(θ))
2
]

+
−c/2 − kcSc cos(θ)

2π
[
(−c/2− kcSc cos(θ))

2 + (+kcSc sin(θ))
2
]) (4.92)

where Sc is the spacing between the airfoils, kc is the element number,
and is equal to k1 and k2. In Figure 4.32, the normalized values of the
sums are plotted for increasing kc. The sums are normalized by the
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influence of the vortex element located on the same foil as the collocation
point, xcp:

abl,0 =
1

πc
(4.93)

Different values of spacing, Sc, are investigated. The spacing is equal
to a third of the circumference at the given radii, r. At the inner radii,
the spacing between the airfoils is small, and a the sum will need a larger
number of sequences to converge relative to the sections at the outer radii.
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Figure 4.32: The elements of the series in Equation 4.90 for four different
radial locations along the blade. The elements are plotted against the
number of elements, kc, in the series. A convergence limit, ε = 10−5 is
included in the graph.

The series,
∑

∞

kc
abl,kc , is converging according to the ratio test and

the Cauchy condensation test. The convergence is faster for the foils
with a large spacing relative to those with a small spacing. A limit, εbl
is included to illustrate this, this will be referred to as the convergence
limit. If εbl = 10−5, the section located at the outer radii, at r = 70m,
requires only k = 2 (5 foils), while the inner most foil at r = 10 requires
k = 11 (23 foils). This is illustrated in Figure 4.32.
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For the summation of wake elements, the amount of wake particles
will increase with time since each airfoil in the cascade will produce a new
wake element at each time step. We define lw to be the number of wake
elements shed from the trailing edge of one blade and l is the counter of
wake elements. The induced velocity, due the wake elements in the linear
cascade, at the collocation point is:

+∞∑
i=−∞

uw,i =

lw∑
l=0

uw,0 +

lw∑
l=1

∞∑
k1=1

uw,k1,l +

lw∑
l=0

∞∑
k2=1

uw,k2,l (4.94)

=

lw∑
l=1

Γw,l

2πr2w,l,0

xw,l,0 +

∞∑
k1=1

lw∑
l=0

Γw,l

2πr2w,l,k1

xw,l,k1

+
∞∑

k2=1

lw∑
l=0

Γw,l

2πr2w,l,k2

xw,l,k2 (4.95)

where rw,l is the distance to the wake particle with strength Γw,l shed
at time-step l. The subscript 0 indicates that it is shed from the airfoil
with the collocation point, xcp, and k1 and k2 is the counter for the
remaining foils in the linear cascade, see Figure 4.31. The distances given
in Equation 4.95 are calculated as:

r2w,l,0 = [c/4 + cos(θ) · (dxw + l · Ux · dt)− sin(θ) · l · Uy · dt]2

+ [sin(θ) · (dxw + l · Ux · dt) + cos(θ) · l · Uy · dt]2 (4.96)

r2w,l,k1 = [c/4 + cos(θ) · (dxw + kc · Sc + l · Ux · dt)− sin(θ) · l · Uy · dt]2

+ [sin(θ) · (dxw + kc · Sc + l · Ux · dt) + cos(θ) · l · Uy · dt]2 (4.97)
r2w,l,k2 = [c/4 + cos(θ) · (dxw − kc · Sc + l · Ux · dt)− sin(θ) · l · Uy · dt]2

+ [sin(θ) · (dxw − kc · Sc + l · Urot · dt) + cos(θ) · l · Uy · dt]2(4.98)
where dt is the timestep and dxw is the length of the wake element.

kc is replacing k1 and k2, such that for kc = 1 there is one airfoil in both
negative and positive x-direction. The distance to the wake particles, that
is shed from the blades in positive x-direction, will have a monotonly in-
creasing distance as the number of particles is increasing. The influence
from the wake particles shed from the foils located in negative X-direction,
will not have monotone decreasing elements in the series. Neither the sim-
ple ratio test, nor the Cauchy’s condensation test, is therefore applicable.
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The normalized elements in the series are plotted in Figure 4.33 and are
defined as:

aw,kc =
lw∑
l=1

xw,l,k1

2πr2w,l,k1

+
lw∑
l=1

xw,l,k2

2πr2w,l,k2

(4.99)

aw,0 =

lw∑
l=1

xw,l,0

2πr2w,l,0

(4.100)

To investigate the convergence of the wake particles, the distance to
the first wake particle is set to c/4 from the trailing edge. The wake
particles will be translated in the direction of the wind at each time-
step. The wind speed applied in the following example is 14 m/s. The
rotational speed is set to 1.1 rad/sec, which corresponds to 10.5 rpm, and
the investigated radii is 50 m.

The sum of the series are plotted in Figure 4.33 for four different
simulation lengths, using varying number of foils in the linear cascade. It
is only the shortest simulation that displays a monotonously decreasing
curve. The remaining lines show an increase in value, a sudden drop
in value, and then a short increase, prior to a monotonously decreasing
curve. The dip is related to the time it takes for the mid-foil (kc =
0) to travel to the initial position of the outer-most foil. The time it
takes for the mid-foil to travel to its nearest neighbour is t = Sc/UX .
For the shortest simulation, the mid-foil has not yet reached the original
position of the neighbouring foil (kc = 1). However, in the three remaining
simulations the mid-foil has traveled past the original position of the first
2, 5 and 20 foils in the cascade. As seen in Figure 4.33, the dip in the
sums is also found at kc = 2, kc = 5, and kc = 20 for the three simulation
lengths.

The number of foils in the cascade must be such that k is past the dip,
and where the sum of series in the linear cascade monotonously decreases
for increasing number of elements. A limiting number of elements in the
series for the sum to converge, kp, is defined as:

kp ≥ lw · dt
Sc

[Ux + Uy] (4.101)

This number is referred to as the peak number. In Figure 4.33, the
kp values are 3 (t=390 s), 6 (960 s) and 24 (t=3810 s). The elements
after this peak, are monotonously decreasing. This means that it fulfills
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Figure 4.33: The sum of elements in Equation 4.99 considering four dif-
ferent simulation times. The sums are plotted relative to the number of
foil elements in the cascade, and is monotonically decreasing for k < kp.

the ratio requirement for convergence. Even though kc > kp does not
mean that it is sufficient number of foils to represent an infinite series of
foils. In this study we suggest the additional requirement of a convergence
limit εw. We will apply a convergence limit εw, for kc > kp, to limit the
number of panels in the linear cascade. This is illustrated in Figure 4.33
with εw = 100. The shortest simulation does not require many foils, but
for the longer simulations the number of foils are increasing fast. For an
unsteady linear cascade simulation, the simulation time must therefore
be included when choosing the number of foils in the linear cascade.

4.6.3 Application

The linear cascade can be used to evaluate the dynamics of a wind tur-
bine rotor. The motivation is to investigate wether the wake of the neigh-
bouring blades has an influence on the unsteady aerodynamic forces. A
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reference case is presented, and the number of elements in the cascade
kc is evaluated. Following this a short discussion with regards to spacing
and velocity ratio is presented. At the end, a varying velocity in the y-
direction is investigated. This can represent a variation in wind velocity
or oscillations of a wind turbine.

4.6.3.1 Reference case

A reference case, which is similar to a typical airfoil section located along
a wind turbine blade, is used to study the sensitivity. Typical values for
the dimensions and velocities of a section located 45 m from the hub will
be applied. The foil has an initial twist of 3.2o and a chord length of 3
m. The rotational velocity of the rotor is 12.3 rpm, and the wind speed
is 12 m/s. Using an axial induction factor, a, of 0.3, the velocity in the
y-direction, UY = 8.4 m/s. For a fully three dimensional vortex method
the axial induction factor would be part of the solution, but this is not
true for a two dimensional analysis. The velocity in the x-direction is
due to rotation, UX = 58 m/s. The flow angle between the two velocity
components is 8.2o, which gives an angle of attack at the section of 5o.
The stationary lift for the flat foil is:

L∞ = παρc
(
U2
X + U2

Y

)
(4.102)

Using the values for the reference case, the stationary lift is 2.5 kN/m.
The velocity of the free stream U∞, is 58.6 m/s.

4.6.3.2 Number of Airfoils

The total number of airfoils used in the cascade is nbl = 2 · kc + 1, where
kc is the number of elements used in the summations. As shown in the
previous section, see Figure 4.33, the number of airfoils needed to achieve
convergence of the cascade will vary with the velocities used and the
length of the simulation. A cascade simulation is run for a time equal
to six rotations of the wind turbine, tmax = 30 s. The number of blade
vortices in the cascade should exceed nbl ≥ 2 · kp + 1, where kp is peak
value for the influences from the wake vortices defined in Equation 4.101.

7 different linear cascade analysis, with varying numbers of airfoils in
the cascade, are simulated. The number of airfoils in the linear cascade
are varied from 1 to 177 airfoils, and the length of the simulation is 30 s.
The graph showing the results is in Figure 4.34. The x-axis is normalized
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Figure 4.34: The transient loads using different number of airfoils in the
cascade. The x-axis is normalized relative to the spacing between the
airfoils

with regards to the spacing of the airfoils, and the y-axis is normalized
with regards to the infinite reference lift, see Equation 4.102. The peak
value, kp, of the simulation is 22.

The number of airfoils are listed in Table 4.1 together with two con-
vergence parameters, L(t = tmax)/L∞ and |ε|. The last parameter, ε, is
referred to as the convergence limit in this study, and is defined as the
ratio between last element in the series relative to the induced velocity
for the mid-foil. The convergence parameter is divided into one for the
blade, εbl and one for the wake, εw.

The simulations which has kc < kp, the simulation with 1 airfoil and 23
airfoils, does not predict the unsteady aerodynamics well. The simulation
with one blade has converged to the steady lift, but does not have the
oscillating motion at the start of the simulation. The oscillation of the
lift is due to the passing of vortices from neighbouring blades. This trend
is shown for the simulation with 23 airfoils, but the a decrease in the lift
at U∞t/Sc = 11 is due to the limited number of airfoils in the cascade. It
is important to have a number of airfoils above the limit, kp, if a dynamic
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kc nbl
L(t=tmax)

L∞

|εbl| |εw|
single airfoil 0 1 0.998 - -

kc = 0.5 · kp 11 23 0.978 4.21 · 10−6 4.50 · 10−1

kc = kp 22 45 0.966 1.05 · 10−6 3.31 · 10−1

kc = 1.5 · kp 33 67 0.983 4.68 · 10−7 2.69 · 10−1

kc = 2 · kp 44 89 0.988 2.63 · 10−7 2.30 · 10−1

kc = 3 · kp 66 133 0.993 1.17 · 10−7 1.80 · 10−1

kc = 4 · kp 88 177 0.996 6.58 · 10−8 1.51 · 10−1

Table 4.1: Number of blade vortices in the cascade

solution is sought, in addition to requiring a convergence of the lift. These
are values depending on the length of the simulation.

4.6.3.3 Spacing

To investigate the effect of the spacing between the blades, the numbers
of blades are well above the limiting kp. For this simulation, kp is 24
elements in the series, and the number of blades in the linear cascade is
169 (kc = 84). As specified previously, the foil investigated has a chord
of 3 m and is located at a radial distance 45 m from the hub. It is
interesting to investigate the effect of the spacing since this will effect the
distance that the wake vortices travel between the blades. The spacing
investigated is similar to a rotor with 1, 2, 3, 4 or 5 blades. The ratio
between the chord length and the spacing between the airfoils, c/Sc, is
a better non-dimensional measurement for the spacing than the number
of blades. The details are given in Table 4.2, together with the specific
solidity values.

In the simulation, the foils were initially at rest. The wind velocity
is applied at the first timestep, this is equivalent to instantaneous pitch
in angle of attack from 0o. Here the angle of attack is 5o. Since the
time is non-dimensional, with regards to the spacing, the length of the
simulations will differ. The simulation time is listed in Table 4.2 for the
different simulations. The simulation with only one blade in the rotor
has thus have a simulation time five times the simulation time of the
simulation for a five bladed rotor.
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Figure 4.35: The transient loads using different spacing between the air-
foils in the cascade. The x-axis is normalized relative to the spacing
between the airfoils

no of c
Sc

σ tmax |εbl| |εw| L
L∞

Lmax
L∞

blades

1 c
Sc

≈ 0.0106 0.01 88 8.02 · 10−9 0.133 1.00 1.03

2 c
Sc

≈ 0.0212 0.02 44 3.21 · 10−8 0.145 1.00 1.05

3 c
Sc

≈ 0.0318 0.03 29 7.22 · 10−8 0.153 1.00 1.08

4 c
Sc

≈ 0.0424 0.04 22 1.28 · 10−7 0.160 0.99 1.10

5 c
Sc

≈ 0.0513 0.05 18 2.00 · 10−7 0.165 0.99 1.12

Table 4.2: A description of the five simulations with different spacing
between the airfoils. The spacing distances are similar to a rotor with 1,
2, 3, 4 and 5 blades.

Figure 4.35 shows that all the resulting lift values are converging to
the steady lift, and a sufficient number of foils is used in the simulation.
The difference in the simulation is the unsteady behaviour at the start
of the simulation. A shorter spacing gives an increase in the dynamic
maximum lift.

94



CHAPTER 4. VORTEX METHODS

4.6.3.4 Plunging oscillations of a linear cascade

As a result of the cascade modelling, the lift force will oscillate at a
period equal to the time to travel the distance of one spacing, Tcas =
UxSc. This will be referred to as the cascade oscillations. If the cascade
oscillations have the same frequency as the eigenfrequency of the wind
turbine structure, there may be an unsteady aerodynamic effect that
is not captured by the unsteady aerodynamics of a single airfoil. An
eigenfrequency that may be close to that of the cascade oscillations is the
first tower bending mode. This is a mode that will give translations of
the blades in the fore-aft direction.

In this study the incoming velocity, Uy, is varied to illustrate the
transient load due to an oscillating cascade. Three blades are used in the
rotor, and the radial distance from the hub is 45 m. A comparison is
made to a single foil to compare the unsteady aerodynamics of a linear
cascade and a single airfoil. The results are illustrated in Figure 4.36
for three different oscillation frequencies. The reduced frequency, k, is a
common measurement of unsteadiness.

Cascade: k=0.03 k=0.10 k=0.16
Single airfoil: k=0.03 k=0.10 k=0.16

0.7

0.8

0.9

1.0

1.1

1.2

1.3

15 15.5 16.0 16.5 17.0 17.5 18.0

t·Uref
S

L(t)
L∞

Figure 4.36: Illustration of the normalised lift for a single airfoil relative
to a cascade airfoil using different oscillating periods to the wind field.

The single airfoil has a dashed line, while the cascade has a solid
line in the graph. The variation seen in the simulation with a single
airfoil is related to the unsteady aerodynamics that has been evaluated
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by Theodorsen, see Section 4.4.3. The reduced frequency, k, is often
used as an indicator of unsteadiness and is defined as ωc

2U∞

, where ω is
the angular frequency, c is the chord length and U∞ is the relative wind
velocity. Here, ω = 2π/Tosc is shown in Table 4.3. It is expected that the
amplitude of the lift will be reduced at increasing reduced frequencies.
This is the trend for the unsteady aerodynamics using a single foil, but
not for the linear cascade of airfoil, which is dependent on the oscillating
frequency of the cascade in addition to the reduced frequency of the flow.

The linear cascade has the lowest value for the reduced frequency,
k = 0.1. This is the value at which the period of the oscillations of the
velocity, Uy, is the same as the time it takes for the airfoil to travel one
spacing, Tcas

Tosc
= 1. This will be discussed in more detail in Section 4.6.4.

ωosc
Tcas
Tosc

k = ωc
2U∞

L(t)
L∞

L(t)
L∞

[rad/s] single cascade

1.29 1/3 0.03 1.18 1.19

2.58 2/3 0.07 1.17 1.18

3.86 1 0.10 1.17 1.12

5.15 4/3 0.13 1.16 1.18

6.44 5/3 0.16 1.16 1.17

Table 4.3: Spacing between the airfoils was 94 m and the cascade oscil-
lation was 3.86 rad/s

Here, the oscillations modelled was a velocity change in the wind,
from 7.4 m/s to 9.4 m/s. Another type of oscillation is the motion of a
wind turbine. If the wind turbine is moving in the fore-aft direction, the
velocity of the translation will induce an oscillating velocity felt by the
wind turbine blades similarly to the oscillating velocity modelled here.

The unsteady aerodynamics is important for the dynamic load of the
airfoil. For a wind turbine it is normally assumed that this can be mod-
elled using approximation based on a single flat airfoil. In Table 4.3 the
amplitudes are listed based on a single airfoil and a cascade of airfoils.
The value is the lowest when the oscillation of the wind velocity is coin-
ciding with the cascade oscillations.
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4.6.4 Loewy’s problem

In the linear cascade, the shed wake elements from neighbouring blades
are included in the simulation. This can also be considered as returning
wakes, which is a phenomena occurring for helicopters as well as wind
turbines. The effect of the returning wake on helicopter rotors has been
investigated by Loewy [61]. Loewy developed a function that can re-
place Theodorsen function, Loewy’s function, C ′(k), when estimating the
unsteady aerodynamic forces on a rotor.

The problem of returning wakes that Loewy solved, is shown in Figure
4.37. The schematic illustrates the problem for a helicopter rotor, where
the incoming wind speed is opposite relative to a wind turbine. A series
of 2D vortex sheets are modelled with a separation h. h is dependent
on both the mean velocity through the rotor disc and on the number of
blades, and for a wind turbine rotor the separation distance between the
vortex sheets is:

h =
2π

NbΩrotUY
(4.103)

If h → ∞, Loewy function, C ′(k), will approach Theodorsen function,
C(k).

m=2

m=1

n=1, m=0h

m=2

m=1

∞

n=0, m=0
x,ξ

γwγb

V
α = eiωt

Figure 4.37: Illustration of Loewvys problem and the returning wake in
his model. Based on illustration in [17].
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Loewy’s function is:

C ′(k) =
H

(2)
1 (k) + 2J1(k)W

H2
1 (k) + iH

(2)
0 + (J1(k) + iJ0(k))W

, (4.104)

where k is the reduced frequency, H is the Hankel functions (H
(2)
v =

Jv − iYv), where Jv and Yv are Bessel functions, and W is a complex
function which for a rotor with Nb blades can be written as [17]:

W

(
kh

b
,
ωosc

Ωrot
,Δψ,Nb

)
=
(
e2kh/cei2π(ω/NbΩrot)e

i(Δψ)ωosc/Ωrot − 1
)
−1

(4.105)
where Δψ is the phase shift between the blades. In this study the

phase shift between the blades is zero, and the only phase shift in the
wake vorticity results from the spacing between the blades.

�
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�

�

�
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*
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� Linear cascade

* Single airfoil

Loewy’s function

Theodorsen’s function
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∣∣∣Lmax(t)L∞
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Figure 4.38: The normalized lift amplitude from Loewy’s function having
no phase shift between the trailing wake and the returning wake compared
to Theodorsen’s function.

Figure 4.38 shows a comparison between the normalized lift ampli-
tude using Loewy’s function and Theodorsen’s function. It also includes
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5 simulation results with a single point vortex method, and 5 simulation
results with the linear cascade point vortex method. The single point vor-
tex simulation results have the same trend as the results estimated using
Theodorsen’s function. These are both without the effect of the returning
wakes. The linear cascade and Loewy’s function, both include the effect
of returning wake, and have a similar behaviour. It is evident that not
including the returning wake when estimating the unsteady aerodynamic
lift force for a rotor can give erroneous results.

The rotor speed, Ω, is 1.29 rad/s, which is equivalent to 12.3 rpm. For
a three bladed rotor, the reduced frequency, where the rotor oscillations
are in phase with the blade frequency is, NbΩc/2Uref ≈ 0.1. In Figure
4.38, it is seen that Loewy’s function, C ′(k), has a dip when the ratio
between blade frequency, ωosc and the blade passing frequency NbΩrot

is an integer. The simulation results are from the simulations presented
in Figure 4.36. The real part of the lift is estimated using the lift force
moving in phase with the velocity.

For a wind turbine, the blade passing frequency is often referred to as
3P. The eigenfrequencies of modern wind turbines are designed to avoid
this frequency, this was discussed in Section 2.7.3. There are large exci-
tation loads at the 3P frequency due to the tower passing and turbulence
in the wind field. However, the 3P is not a constant frequency but will
vary with the rotor speed and the wind turbine is likely to operate with
a 3P frequency close to a structural eigenfrequency of the wind turbine
structure.

Both the linear cascade method and Loewy’s function predict a low
unsteady aerodynamic lift, compared to the single airfoil method and
Theodorsen’s function, when the blade frequency is coinciding with the
blade passing frequency, ωosc

Nb·Ωrot
= 1. For blade frequency not close to the

blade passing frequency it is opposite, and Theodorsen’s function and the
single airfoil method predicts the lower unsteady aerodynamic lift. The
difference is largest for the low reduced frequencies, and when there is
little spacing between the wakes relative to the chord length [17].

A discussion of Loewy’s function and the effect on damping of the
blade in flapwise direction for helicopters is found in [17]. In hover, there
are similarities between the flow around wind turbines and helicopters.
The effect described by Loewy’s function has indirectly been studied by
Daughaday [62] on helicopter blades. Based on the measurement it was
concluded that the damping was reduced for frequencies that were multi-
ples of the rotor rotational frequency. This is similar to what is observed
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in Figure 4.38. If these effects are related to the wind turbine, the spacing
between the wakes would be lowest for wind speeds at rated or lower. The
rotational frequency of the blades, Ωrot, is reduced as the wind turbine ro-
tors are getting larger, the trend is therefore that one are moving towards
the lower frequencies. For lower values of reduced frequency, the damping
of the blade flapping is reduced and the vibratory response of the blade
to the harmonic airloads is increased. The risk may be, that this lead to
lower damping of both the blade flapping and the elastic tower bending
modes in the fore-aft direction. Several other studies have measured the
effect of Loewy’s function [63, 64, 65].

The Loewy’s function approaches the Theodorsen solution as the re-
lation h/c increases. Since h increases if the wind speed increase, or the
rotational speed of the wind turbine decrease, the ratio between these
velocities are important for the observed cascade effect. Both the wake
geometry and the phasing is important for the unsteady aerodynamics
acting on a wind turbine.

4.6.5 Conclusion

Based on a simplified vortex analysis using a single vortex to model the
airfoil, an approach using the linear cascade to model a wind turbine
rotor is shown. The method must be used with care since too few foils
in the cascade may lead to inaccurate estimates of the transient loads.
The number of foil elements required is dependent on the length of the
simulation. As a minimum, the cascade should consist of 2 · kp + 1 foils,
where kp is varying with the simulation length, spacing between foils and
the velocities (see Eq 4.101).

The minimum kp number above does not guarantee a robust simula-
tion of the unsteady aerodynamic lift. In addition a ratio between the
velocity influence from the mid-foil wake, relative to induced velocity from
the outer cascade foil wake, εw, should be evaluated. In Table 4.1, εw, of
0.15, gave relatively good results.

The unsteady aerodynamic loads, when considering a cascade of air-
foils, will differ from the unsteady aerodynamic loads from a single airfoil.
The largest difference was found when the external oscillation frequency
was equal, or a multiple, to the cascade oscillation frequency. It was
found that the results from the linear cascade simulation were similar to
the theoretical results given by Loewy’s function, which is an analytic
solution for the returning wake problem.
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Chapter 5

Numerical Panel Vortex

Code

5.1 Introduction

In the previous chapter, the vortex theory is presented together with some
basic application of modelling the lift of a simple airfoil. The airfoils
are getting increasingly complex in order to get an optimized design of
the wind turbine. The potential vortex theory can also be applied to
more complex shapes. In 1975, Hess used boundary element techniques
to compute the potential flow past airplane hulls. This method, where
the governing integral equations of the vortex method are discretized, is
commonly known as the panel methods [50].

Even though the panel vortex method is inviscid, which means that
the stall limit will not be captured, the method can still provide useful
insight when it comes to unsteady aerodynamics for attached flow. The
unsteady aerodynamics for attached flow included in most BEM codes
is based on thin airfoils. One example is the Küssner function (Section
3.6.3). The vortex panel code presented in this chapter accounts for the
thickness of the airfoil.

In this chapter a specific panel vortex code is described. This code is
implemented in a cascade analysis and the aerodynamic damping for a
floating 5 MW wind turbine is established. The code is also implemented
in a GPU to show the reduced computational time that can be achieved.
The structure of the code is essential to the case studies performed later,
and is presented in detail in this chapter. The panel elements are first in-
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Figure 5.1: A NACA 0012 descretized into 20 linear elements illustrating
the implementation of the Kutta condition.

(x1, 0) (x2, 0)

P (x, y)y

x

r1 r2

�

θ1 θ2

Figure 5.2: A linear panel element, and an influence point, P(x,y)

troduced, followed by the boundary condition applied and the modelling
of the wake. This is sufficient information to construct a vortex panel
code, and this is the code implemented into Matlab. The difference be-
tween the code implemented on a CPU compared to a GPU is outlined.
For validation of the code both the pressure distribution at a steady state
and the unsteady aerodynamic behaviour is investigated. Finally, the
results of implementing the code in a cascade analysis is shown.

5.2 Singular elements

This work uses two dimensional linear panel elements, with constant
strength, on the surface of the airfoil. The discretization of the airfoil
surface into panels is shown in Figure 5.1. Two different singular ele-
ments are used for the airfoil surface; doublet and source. The wake is
modeled using the vortex point elements, which is briefly described in
Section 4.3.2, and in more details in this section.

The nomenclature in Figure 5.2 will be used in this section. These
are easily converted into cartesian coordinates used in the panel vortex
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code:

θk = tan−1 y
x−xk

, rk =
√

(x− xk)2 + y2, k = 1, 2 (5.1)

5.2.1 Constant Source Element

From Section 4.3.3, the velocities and velocity potential due to a surface
distribution of source elements is given in Equations 4.40, 4.41 and 4.42.
The source distribution over each element is constant. Using the nomen-
clature shown in Figure 5.2 the velocity potential and its derivatives are:

φs(x, y) =
σ

4π

[
(x− x1) ln r

2
1 − (x− x2) ln r

2
2 + 2y(θ2 − θ1)

]
(5.2)

us(x, y) =
σ

2π
ln

r1
r2

(5.3)

vs(x, y) =
σ

2π
(θ2 − θ1) (5.4)

5.2.2 Constant Doublet Element

The integral of the influence of a two-dimensional doublet distribution at
a point in space was presented in Eq 4.44, 4.45 and 4.46. For a constant
strength doublet element, with the orientation of the doublet as illustrated
in Figure 4.12, the velocity potential and derivatives are:

φd(x, y) = − μ

2π

[
tan−1 y

x− x2
− tan−1 y

x− x1

]
(5.5)

ud(x, y) = − μ

2π

[
y

(x− x1)2 + y2
− y

(x− x2)2 + y2

]
(5.6)

vd(x, y) =
μ

2π

[
x− x1

(x− x1)2 + y2
− x− x2

(x− x2)2 + y2

]
(5.7)

The potential distribution is not continuous across the surface as com-
mented in Section 4.3.3. If the point, P (x, y), is on the surface element
the velocity potential is:

φ(x, 0±) = ∓μ

2
(5.8)

and similarly for the velocity components:
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x
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Γ = −μ Γ = μ

Figure 5.3: The constant doublet element is similar to two point vortices,
and will give the same velocities in the far-field.

u(x, 0±) = 0 v(x, 0) = μ
2π

[
1

(x−x1)
− 1

(x−x2)

]
(5.9)

5.2.3 Vortex point element

The vortex point element has a very useful relation to the constant dou-
blet element. A constant doublet element with strength μ, is similar to
two vortex point elements with strength μ and −μ [52]. The relation is
illustrated in Figure 5.3. The strength of the wake shed from the trailing
edge can thus easily be transformed from a doublet panel element with
constant strength to a vortex point element.

The vortex point element is used to model the wake. The velocities
in the cartesian coordinate system due to the vortex point element at
(x0, y0) are:

uv =
Γ

2π

y − y0
(x− x0)2 + (y − y0)2

(5.10)

vv = − Γ

2π

y − y0
(x− x0)2 + (y − y0)2

(5.11)

5.3 Boundary Conditions

5.3.1 No flow through surface

Section 4.2.6 gives a general introduction to the two different boundary
conditions normally applied to a surface for no flow through the surface.
For the numerical panel code developed here, the Dirichlet boundary
condition is used, where the potential inside the surface of the airfoil is
constant. This potential can be chosen as equal to the free-stream velocity
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potential, φ∞. The velocity potential inside the surface of the airfoil, φ∗

i ,
is therefore:

φ∗

i = (φ+ φ∞)i = φ∞ (5.12)

The inner potential could be chosen as any constant values, but the
advantage of using the free stream velocity potential is that the velocity
potential due to the singularities distributed along the boundary is now
zero:

φi = φ∗

i − φ∞i = 0 (5.13)

It follows from the no-flow requirement that ∂φ∗

∂n = 0 (where φ∗ is
the total velocity potential) on the outer surface of the airfoil. The drop
in velocity potential across the boundary, due to the singularities at the
boundary, is thus

∂φ∗

∂n
=

∂φ

∂n
+

∂φ∞

∂n
∂φ

∂n
= −∂φ∞

∂n
= −�n · �Q∞ (5.14)

The sources are associated with the velocity potential normal to the
boundary across the boundary, ref Eq 4.23. They are therefore used
to model the thickness of the airfoil, and the no-flow through boundary
condition.

σ =
∂φ∗

∂n
− ∂φ∗

i

∂n
=

∂φ

∂n
− ∂φi

∂n

σ =
∂φ

∂n
= −�n · �Q∞ (5.15)

The potential inside the airfoil due to the singularity distribution was
shown to be zero in Eq 5.13, and therefore ∂φi

∂n is also zero. The distribu-
tion of sources on the boundary of the airfoil are now known. This can
be used to define the doublet distribution around the airfoil.

Applying only source elements will also provide a solution of the flow
field. However, the Kutta condition will not be satisfied when there are
only source elements used. By including doublet elements in the solution,
the Kutta condition can be satisfied.
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5.3.2 Wake Strength

The solution of the doublet strengths using the no-flow boundary con-
dition is not unique. A boundary condition needs to be applied at the
trailing edge to ensure that the flow leaves the trailing edge in a smooth
manner. This is typically done by applying the two dimensional Kutta
condition, which states that the proper circulation is the value that causes
the flow to leave smoothly at the trailing edge of the airfoil. The require-
ment of zero vorticity at the trailing edge gives a smooth flow at the
trailing edge, γT.E. = 0. The strength of the vortex can be related to the
doublet strength as:

∂μ(x)

∂x
= −γ(x) (5.16)

From this it follows that there should be no difference in the doublet
strength elements at the trailing edge:

μU − μL = μW (5.17)

where μL and μU are doublet strength for the lower panel and upper
panel element at the trailing edge as shown in Figure 5.1. The wake shape
will be discussed in more detail in Section 5.5.1.

5.4 Linear Algebraic Equations

5.4.1 Surface Discretisation

The surface of the airfoil is discretized into linear elements. A NACA
0012 is discretized into 20 panels in Figure 5.1. The number of panels and
location of panels have an influence on the solution of the aerodynamic
loads. Especially at the trailing edge and at the leading edge the panel
elements should be chosen carefully.

The influence of the singular elements were given relative to a local
coordinate system. For each element a local coordinate system is therefore
needed, and a point P (x, y) is given in the local coordinate system of the
panel element.

The first element on the airfoil is the lower panel element on the
trailing edge, and the last is the upper element on the trailing edge. If
there is a gap between the lower and upper element at the trailing edge,
the gap is closed by adding two additional panel elements at the trailing
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Figure 5.4: The NACA 64 airfoil divided into 228 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.

edge. An example of a gap closed by additional panels is given in Figure
5.5.
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Figure 5.5: A gap between the panels at the trailing edge is closed by
additional panels. The airfoil illustrated here is the DU21 profile.
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5.4.2 Collocation Point

A collocation point is located at the middle of each panel. For the Dirich-
let boundary condition, it is important that the collocation is inside the
airfoil boundary. The linear algebraic equation to be solved for at each
of the N collocation points is now:

N∑
k=1

1

4π

∫
airfoil

σ

(
1

r

)
− 1

4π

∫
airfoil

μ�n · ∇
(
1

r

)
dS −

NW∑
l=1

1

4π

∫
wake

μ�n · ∇
(
1

r

)
dS = 0 (5.18)

The influence of constant strength source element at panel k at the
collocation point (xj , yj) is Bk,j, and the influence from a constant doublet
element is Ck,j. Equation 5.18 can be written as:

N∑
k=1

Ck,jμk +

NW∑
l=1

Cl,jμl +

N∑
k=1

Bk,jσk = 0, at (xj , yj) (5.19)

where:

Bk,j = φs,k(xj , yj) (5.20)

Ck,j = φd,k(xj, yj) (5.21)

Cl,j = φd,l(xj , yj) (5.22)

where the velocity potentials are defined in Equations 5.2 and 5.5, and
the strength of the singular elements are one. These are the difference in
velocity potential at a point (xj , yj) due to a panel element coefficients
for the panel element k at the airfoil or element l in the wake. Bk,j, Ck,j

and Cl,j are often referred to as the influence coefficients.

5.5 Vortex Panel Code

The vortex panel code is coded in Matlab. An overview of the program
is shown in Figure 5.6. For each timestep, there are N + 1 unknowns to
be solved, where N is the number of panel elements on the airfoil surface.
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1
+
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Figure 5.6: A flowchart for the Vortex Panel Code
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The Kutta condition (Eq 5.17) reduces the amount of unknowns to N .
The doublet influence is rewritten such that:

Ak,j = Ck,j, j = 1, N (5.23)

Ak,j = Ck,j − Ck,N+1, j = 1 (5.24)

Ak,j = Ck,j + Ck,N+1, j = N (5.25)

where the wake panel shed at time-step t, is included in the doublet
matrix, Ak,j at time t. The strength of the wake elements are known, but
their position needs to be updated for every time-step.

The source influence coefficients and source strengths are moved to
the right hand side of the equation, and solved. This is only needed to be
done once, and can be used for all time-steps as long as the shape of the
body is constant. This is the RHSs. For each time-steps a RHSw vector
containing the influence vector of the wake and the doublet strengths
needs to be calculated. The RHS vector is established by adding RHSs

and RHSw together.

RHSs = −
N∑
j=1

Bk,jσk (5.26)

RHSw = −
NW∑
l=1

Cl,jμl (5.27)

RHS = RHSs +RHSw (5.28)

Following the steps above, one has the following matrix equation to
be solved:

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 ... A1N

A21 A22 ... A2N

... ... ...

AN1 AN2 ... ANN

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2

...

μN

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

...

RHSN

⎞
⎟⎟⎟⎟⎟⎠ (5.29)

The strength of the doublets, μk can now be calculated. Based on this
the circulation can be calculated, which is used when calculating pressure
and velocity.
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5.5.1 Modelling the wake

The near wake has an influence on the unsteady aerodynamic load. A
good model of the wake is not limited to calculating the strength of the
panel elements, the positions of the panel elements are also important.
The wake will move due to the influence of the wind speed and the panel
elements in the wake and along the surface of the airfoil.

The wake panel elements are shed from the trailing edge at an angle
that is half the angle between the upper panel and the lower panel. The
length of the first panel, dw, element is given as a relation between the
velocity and the time-step of the simulation:

dw = 0.3Urefdt

The velocity at the panel elements due to the influence of the source
elements is calculated using Equations 5.3 and 5.4. Similarly, Equations
5.6 and 5.7 are used to estimate the velocity due to the influence of the
constant strength doublet elements along the airfoil. The velocity due to
the wake itself is estimated using the influence from vortex panel element,
see Equations 5.10 and 5.11.

x

y

U∞(1− a)

Ωr

�
�

�

�

� �

�

�

�
�������������

Figure 5.7: Wake roll-up behind an airfoil

The displacement is estimated using the wind speed and the velocity
due to the influence of the singular elements at the vortex element in
the wake. Figure 5.7 illustrates a typical roll-up behind the blade. This
roll-up is a due to the relatively large vortex strength at the start of the
simulation.
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5.5.2 Load Calculation

The pressure around the airfoil is computed using the strength of the
doublet elements. The doublet was defined as the difference in potential
between the external and internal fluid potential in Eq 4.22. The potential
inside the airfoil surface is constant, and is specified to be equal to the
velocity potential of the free stream (see Eq 5.12). Using these limitations,
the velocity potential at the outer surface of the airfoil is:

φi = φe − μ (5.30)

The tangential velocity of the flow at the airfoil surface is calculated
from the derivative of the velocity potential along the surface:

qt =
∂φi

∂l
(5.31)

φe = φ∞

φi

μk
μk+1

μk+2

qt

+ + +
Collocation points

Figure 5.8: Doublet elements along the surface of an airfoil

An illustration of the doublets elements along the airfoil is shown in
Figure 5.8. In the vortex code a simple numerical approach to finding the
velocity is applied:

φi(xcp, ycp)k = U∞xcp,k + V∞ycp,k − μk (5.32)

qt,k =
φk+1 − φk

Δlk
(5.33)

where l is the length of the panel elements, and cp specifies that these
are values at collocation points. The pressure coefficient between the
panel elements, in steady state conditions, are estimated using the above
result relative to the free wind speed:
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Cp,k = 1− q2t,k
Q2

∞

(5.34)

The pressure field around a NACA 0012 airfoil, using this approach,
is shown in Figure 3.5. For a time-stepping approach, the unsteady
Bernoulli equation should be used to estimate the pressure distribution.
In addition to the tangential velocity, the change in velocity potential
with time, is included in the pressure calculation:

pref − p

ρ
=

Q2

2
− v2ref

2
+

∂φ

∂t
(5.35)

The nature of this unsteady aerodynamic force term is discussed ear-
lier in Section 3.6 and in Section 4.4.3. The lift force of the blade section
can be estimated from:

L = ρU(t)Γ(t) + ρ

∫ c

0

∂

∂t
Γ(x, t)dx (5.36)

where ρ is the air density and Γ is the circulation. The circulation
is calculated from the constant strength doublet panels. The constant
doublet distribution is equivalent to two point vortices with opposite sign
at the panel edges with opposite sign at the panel edges such that Γ = −μ.

5.6 Cascade Approach

The aim of this study is to investigate the wind turbine rotor using
the panel vortex code. So far, a solution for the lift on a single two-
dimensional airfoil of arbitrary shape is established. The step from airfoil
analysis to rotor analysis is done using a cascade approach. The method-
ology used is similar to what was presented in Section 4.6.

A constant wind speed, U∞, in the global axial direction, Y , is applied
normal to the wind turbine rotor. The rotational velocity at the blade
segment at r is Ωr m/s. The dotted lines illustrates the wind turbine
tower and the path that the segment is moving along. In the analysis,
the airfoil is accelerated from 0 m/s to a rotational velocity of Ωr m/s.

For a wind turbine rotor, the wake shed from the trailing edge of
the airfoil is forming a spiral shape, after a full rotation of the rotor, at
t = 2π/Ω,. The wake that was shed at the initial time-step, has moved
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x
y

2πr/3

U∞(1− a)

ΩrΩr Ωr Ωr

Figure 5.9: Cascade of airfoils

in the axial direction due to the wind speed, U∞. Since there are three
airfoils, there will also be three wakes that are shed.

The linear cascade is an infinite row of airfoils, located at equal in-
tervals parallel to the y-axis, as illustrated in Figure 5.9. Applying the
cascade method directly into the panel vortex code would imply that the
singularities used to model the aerodynamic forces along the airfoil would
be repeated an infinite number of times as well. Limiting the number to
50 airfoil elements may yield adequate representation for the center airfoil,
and this would require more computational time.

Before presenting the methodology used in the study, a short pre-
sentation of the method using conformal mapping is discussed. This is
the method that has typically been used for cascade analysis of turbo-
machineries. The conformal mapping technique has been used to analyse
the efficiency of turbo-machineries for decades. The approach is however
limited to steady flow conditions, and in this study we are focusing on
the unsteady flow.

5.6.1 Conformal Mapping

Conformal mapping takes advantage of the periodicity in the y-direction.
Each airfoil will have the same singularity distribution along the surface
and in the wake. The kth panel element on each airfoil will therefore
have the same strength, σk and μk. The influence on the collocation
point located at the mth panel element can be included in coupled influ-
ence coefficients. For the singular element panel with a constant doublet
strength, which has a velocity potential as given in Equation 5.5, the
influence on the element m due to the kth element is:
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φd,m(x, y) =

∞∑
k=1

−μk

2π

[
tan−1 y

x− x2,k
− tan−1 y

x− x1,k

]
(5.37)

This can be done similar for the constant source element in Equation
5.2. In the conformal mapping, the cascade of airfoils located in a z-
plane is transformed into a Z plane as shown in Figure 4.30. The relation
between the z-plane and the Z-plane is Z = e

2π
t
z. t is the distance between

the vortex elements in the z-plane. In a wind turbine rotor the distance
is t = 2πr/3, where r is the radius where the airfoil is located.

The advantage of using the conformal mapping approach is evident.
One can use the same linear equations as used for the single vortex, the
only essential change is the modified influence coefficient.

5.6.2 Linear Cascade

The focus in this study is the unsteady aerodynamics. The conformal
mapping approach is used for steady aerodynamics, thus another ap-
proach is needed to estimate the unsteady aerodynamic forces on the
rotor. A method with airfoils located along a straight path, as illustrated
in Figure 5.9, is applied. The method was also applied to a cascade of
thin airfoils in Section 4.6. The difference between the two cascades is
that previously a single vortex point was used to model the airfoil. In
this section the vortex panel code will be applied.

A high number of airfoils in the linear cascade will increase the com-
putational time, and a low number is therefore wanted for computational
efficiency. However, using too few airfoils in the linear cascade introduces
errors in the estimated unsteady aerodynamics. In Section 5.6, the num-
ber of airfoils in the linear cascade was discussed. The number of airfoils
needed was dependent on the simulation time of the analysis, the velocity
applied and the spacing between the airfoils. The airfoils in the cascade
was numbered using kc, so that the number of airfoils, nbl was;

nbl = 2 · kc + 1

The critical number that the linear cascade was related to kp, as de-
fined in Eq 4.101. For the number of blades this is:

nobl,p =
2T

S
(UX + UY ) + 1
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where T is the simulation time, S is the spacing, UX is the velocity in
global X direction and UY is the velocity in the global Y direction. This
is not sufficient to ensure that the solution has converged, and a study
of the ratio between the influenced velocity from the midfoil, relative to
the two foils located at the start and at end of the cascade should be
evaluated. The number required for different simulation lengths will be
investigated in the following sections.

5.7 Validation

In order to validate the vortex panel code, the validation process is di-
vided into smaller steps. First a convergence test for the number of panel
elements on the airfoil surface for a stationary conditions is performed.
The next step is to validate the unsteady aerodynamic behaviour of the
panel code. The unsteady aerodynamic lift for an airfoil in a straight path
will be compared to the Wagner function. This function was developed
for the circulatory lift for a flat plate and it is expected that there will
be a small difference due to the thickness of the airfoil. The last step is
to investigate how the airfoils will behave in the linear cascade.

5.7.1 Stationary values

In this study, the 5 MW reference wind turbine is used to estimate the
aerodynamic loads for a wind turbine [36]. The wind turbine wing of this
rotor consists of six different different types of airfoils. These are listed
in Table 5.1. The cross section of the airfoils are illustrated in Appendix
A in Figure A.1. A convergence test to estimate the number of panel
elements needed along the airfoil surface is shown in Figure 5.10.

The DU airfoils do not have a sharp trailing edge. The panel vortex
code used here is made for sharp trailing edges, and this is therefore
manually set for each airfoil. The shape of the trailing edges are shown
in Appendix A, in Figures A.2, A.3, A.4, A.5 and A.6.

In the convergence test the angle of attack for all airfoils is 5o. The fi-
nal values are compared to lift tabulated coefficients [36]. Unfortunately,
these coefficients includes three dimensional correction for the inner air-
foils. The tabulated values will also include viscous effects, such as stall.
Therefore, it is expected that the lift values will not have an exact match.
The comparison between the tabulated lift coefficient and the lift coeffi-
cient estimated form the panel vortex code is shown in Table 5.1.
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Figure 5.10: A convergence study for the lift coefficient relative to the
number of panels. The solid lines are the vortex panel code, and the
asterisk dots are the inviscid lift coefficient values from Xfoil using 205
panels.

Airfoil Cl Cl Cl Cl Cl

(200 panels) (400 panels) tabulated XFOILi XFOILv

NACA 64 1.196 1.220 1.01 1.2054 1.0762

DU 21 1.190 1.194 1.10 1.2013 1.1316

DU 25 1.134 1.137 1.06 1.1450 1.0798

DU 30 1.067 1.068 0.94 1.0638 0.9602

DU 35 1.064 1.065 0.88 1.0508 0.9011

DU 40 1.151 1.523 0.84 1.1467 0.9185

Table 5.1: Comparison of the calculated lift coefficient with tabulated
lift coefficients in [36] and XFOIL (subscript i indicate inviscid and v is
viscous).
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The results were also compared to estimations of the lift coefficient
by XFOIL. XFOIL is a well established panel vortex code, using linearly
varying doublet element and constant source elements [21]. The advan-
tage of XFOIL is that it gives the option of computing viscous forces. The
computation using inviscid flow is listed in Table 5.1 in column XFOILi.
The results are similar to the lift coefficient computed by the vortex panel
code developed for this study. The lift coefficient using a viscous formu-
lation estimates values similar to the tabulated lift coefficient. This is
included in the table in the column listed XFOILv. Reynolds number
5.36 · 106 is applied for the lift coefficient listed.

The results indicate that a large number of panel elements are needed
to get an accurate estimate of the stationary lift coefficient. As seen in
Figure 5.10, the results seem to converge at 200 panel elements. Within
this study, the DU airfoils have 200 panels, and the NACA airfoil has 140
panels.

5.7.2 One Blade in a Straight Path

The unsteady aerodynamic lift computed using the panel code is sensitive
to the size of both the time step and the wake panel. TheWagner function
describes the change in the circulatory part of the lift as a thin-airfoil
undergoes a transient step in angle of attack in incompressible flow. The
time step, dt, used here is:

dt =
sdt · c
2W

(5.38)

where sdt is related to the dimensionless timestep, s. Different values
for sdt are tested for the NACA 64 airfoil, and shown in Figure 5.11. The
size of the wake panel, dw, is fixed, with xwp = 0.3. The size of the wake
panel is:

dw = xwpWdt

The size of the wake panel is dependent on the time-step, dt and the
flow velocity W .

In Figure 5.11, different length of the time step is investigated. Based
on the sensitivity study with the time step, a time step using sdt = 0.4, is
chosen. An investigation of the size of the wake panels is also performed,
and shown in Figure 5.12. A good wake panel size is xwp = 0.3, for the
chosen time step. It may look as though a shorter wake panel may give
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Figure 5.11: Sensitivity study of the size time step. Airfoil section NACA
64 is used and the size of the wake panel, xwp is 0.3.

more accurate solution at lower values of s. However, when plotting the
shorter wake panels with different time-steps, one get a wide spread in
the results. A wake panel size of xwp = 0.3 will give a robust solution.
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Figure 5.12: Sensitivity study of the size of the first wake panel. The
airfoil section NACA 64 is used, and the time step, sdt, is 0.4.

Assuming that Wagner describes the circulatory part of the unsteady
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aerodynamic lift of an airfoil that accelerates from zero to W , the panel
vortex code is sufficiently accurate in estimating the aerodynamic forces.
At the start, the non-circulatory part of the lift will have an influence
on the aerodynamic forces. This is an effect that should be added to the
circulatory part of lift.
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Figure 5.13: Nondimensionalized unsteady lift for airfoil sections in a
straight path, starting from still at t=0, accelerated to 10 m/s, all with
an angle of attack, α = 5o

For the above simulation the thinnest airfoil section of the 5 MW
reference wind turbine was used. Comparing the Wagner function to all
the airfoil sections along the blade of the 5 MW reference wind turbine,
it is evident that the thickness of the airfoil has an effect on the dynamic
response. In Figure 5.13 the unsteady aerodynamic lift for all airfoil
sections along the wind turbine blade is shown. An angle of attack of
5 degrees is studied for all airfoils. The trend for the airfoil sections
analysed here is that for the thicker airfoils, longer time to build up the
lift force will be needed.
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5.7.3 Linear Cascade of blades

The single airfoil is now put into a linear cascade of airfoils. The method
is described in Section 5.6.2. There is a radial variation along the blade of
the flow characterisation that will influence the behaviour of the cascade.
A local tip-speed ratio, λr = Ux/Uy, and the spacing of the airfoils relative
to the chord length, Sc, is used when discussing the radial variation. The
total number of airfoils in the cascade is nbl, which is related to the
cascade number, kc as nbl = 2 · kc + 1. For kc = 0, the results will yield
the results for one single airfoil.

The inner airfoil sections show the largest differences when applying
the cascade approach. The trend is that there is an increase in aerody-
namic thrust force normal to the rotor plane. The thrust force is esti-
mated based on the lift due to circulation and applying the flow angle.
The effect of the number of blades on the thrust force is illustrated in
Figure 5.14. The wind speed here is 8 m/s, and the node illustrated is
node 4.

The linear cascade modeled here, with the panel elements along the
airfoil surface, will have a similar behaviour to the linear cascade modeled
with point vortex elements in Section 4.6.3. Figure 4.34 shows the effect
of having different number of airfoils in the linear cascade, with single
vortex elements. This figure has the same decrease in lift as Figure 5.14,
however it also illustrates the increase in lift for a number of airfoils in
the cascade lower than the cascade number, kc.

In both figures there is an increase in lift force, which is higher than
the stationary value at the start of the simulation. The peak occur after
a time equal to the time it takes for a an airfoil to travel Sc, which is the
spacing between the airfoils. The spacing in Figure 5.14 is 24.6 m, and it
takes 2.2 s for the airfoil to travel this length. The chord length is 4.6 m,
and the ratio c/Sc is 0.19. The local velocity ratio, λr, is relatively low
due to the low rotational velocity at the inner section of the blade. An
increase in the local velocity ratio would increase the cascade effect since
the wake would travel slower in the direction of the wind.

By increasing the number of airfoils in the cascade, the negative slope
of the thrust force in Figure 5.14 is decreasing. For an infinite number of
airfoils, the thrust force will be an horizontal line for steady flow. Thus,
it is evident that the number of airfoils in the cascade is of importance
for the unsteady aerodynamics. The number of airfoils applied in the
cascade should be evaluated with regards to simulation length and fre-
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Figure 5.14: The normal force on an airfoil (DU 40) is computed with
different number of airfoils in the cascade. The wind speed here is 8 m/s,
the rotational speed is 9.16 rpm and the airfoil is located 11.75 m from
the hub.

quency studied. Comparing the period of an oscillation to the time it
takes an airfoil to travel to the initial position of the neighbouring blade,
will give an indication whether it is necessary with a cascade analysis. If
the oscillation period of the blade is the same as the time to travel a blade
length, or it is an integer of the time, the linear cascade effects the un-
steady aerodynamic loads. But if the oscillating period is not close to the
time it takes to travel to the initial position of the neighbouring blade, a
single airfoil simulation is sufficient. The number of airfoils needed in the
linear cascade, is again depending on spacing, but now also the local ve-
locity ratio. It should be able to model the unsteadiness of the frequency
studied.

In this specific situation, kc = 144, is a sufficient number to model

122



CHAPTER 5. NUMERICAL PANEL VORTEX CODE

frequencies up to 1/8 Hz. However, it is also seen that above this fre-
quency it is mostly steady aerodynamics. The linear cascade requires a
significant increase in computational power, and it is therefore important
to evaluate this before the simulations.

5.8 Implementation in a Graphical Processor Unit

The code described above was implemented on a GPU. This was presented
in ref [58]. The CPU is faster for few time-steps, and the break-even is
at around 1500 time-steps. At 2000 time-steps the GPU is already two
times as fast.

The GPU-simulation in [58] are implemented on a NVIDIA Tesla
C2050 GPU (448 processor elements running at 1.15 Hz). A single work-
station was used, with an Intel Xeon quad-core CPU (running at 2.39
GHz) for comparison. From these simulations it was concluded that it
is the calculation of the velocities that are time consuming. Solving the
linear equation takes almost no-time, but setting up the linear equation
seems to increase in computational time for the CPU with increasing
number of time-steps. The computational speed can be increased even
further using a tree-algorithm.
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Figure 5.15: The computational time running the vortex panel code on a
CPU and on a GPU for different timesteps [58].
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Chapter 6

Wind Structure Interaction

6.1 Introduction

The unsteady aerodynamic forces on a wind turbine are dependent on
both the wind, the rotational speed of the rotor and the relative motion
of the rotor. In this chapter the unsteady aerodynamics using different
simulation tools will be investigated. A wind field with constant velocity
across the rotor is applied, and the unsteady aerodynamic loads due to
an oscillating motion of the rotor are estimated. Two frequencies, similar
to the eigenfrequencies of the first fore-aft elastic bending mode and the
platform pitch mode, will be investigated. First, we will investigate the
motion-induced aerodynamic loads using a quasi-static approach, before
using two approaches defined in frequency domain; Theodorsen’s function
and Loewy’s function. The results are then compared to those obtained
running AeroDyn, which is a part of the wind turbine simulation code
FAST. Finally, the vortex code is applied to the problem, both a single
airfoil and a linear cascade.

Computational speed is always important when discussing simulation
tools. Among the unsteady methods used here, the frequency domain
methods, Theodorsen’s function and Loewy’s function, are by far the
fastest methods. The AeroDyn tool features both the Dynamic Inflow
and BEM and is relatively fast. The Dynamic Inflow is based on the
Generalized Dynamic Wake method (GDW) and will be slightly faster
than BEM since it does not require the iterations to find the influence
coefficients, which is required in BEM. The panel vortex method has the
longest computational time.

Both frequency methods, and the unsteady aerodynamics in AeroDyn
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are based on the assumption that the unsteady response of the airfoil is
independent of the thickness of the airfoil. Loewy’s function will include
the effect of the returning wake, while the Theodorsen function and the
BEM method will assume this effect to be negligible. Comparing these
methods to the vortex panel method, one can study the effects of thickness
of the airfoil on unsteady aerodynamics. The comparison is done for both
a single airfoil, and also looking at a cascade of airfoils, which includes
the effect of a returning wake in the simulation. Since the panel vortex
code is based on potential theory, the effect of flow separation (stall) is
not included.

In this study, the fluid structure interaction of a floating wind turbine
is investigated. The focus is on the first fore-aft elastic bending motion
of the tower and the pitch motion of the rigid platform. The aim of the
study is to investigate the aerodynamic damping and the added mass
effects.

6.2 Properties investigated

The dynamic equilibrium of the rotor in axial oscillations can be expressed
by the following equation of motion:

Miẍ+ Ciẋ+Kix = Faero(t) (6.1)

where Mi is the modal mass, Ci is the damping, Ki is the modal
stiffness of the structure and x(t) is the modal displacement. The modal
displacement is a function of time, and together with the mode shape,
φm(z), it can describe the resultant displacement, r(t, z):

r(t, z) = x(t)φm(z) (6.2)

The mode shape, φm(z), gives the deformation along the span. In case
of smooth uniform flow, the time-varying aerodynamic force, Faero(t), is
due to the motion of the structure. In general the harmonic oscillation
may generate aerodynamic forces in phase with acceleration, velocity or
displacement. Similarly to the structural dynamic properties, the pa-
rameters linking the aerodynamic loads to the underlying acceleration,
velocity and displacement are termed aerodynamic added mass, aerody-
namic damping and aerodynamic stiffness. The loading can then all be
grouped at the left hand side of Eq 6.1.
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Here, a harmonic axial motion of a rigid rotor, ηx(t), is studied. The
motion is defined positive in the down wind direction. This is equivalent
to the nacelle motion of the tower top, in the along wind direction. The
equation of motion, using the axial motion and axial force is:

(Mi +Ma)η̈x + (Ci + Ca)η̇x + (Ki +Ka)ηx = 0 (6.3)

where η̈x is the acceleration, η̇x is the velocity and ηx is the translation
of the wind turbine tower top. The subscript a indicates that it is an
aerodynamic property. The motion of the rotor ηx, can be related to the
plunging motion, h(t), in the Theodorsen function as ηx = −h(t).

ηx(t)

T2d

chord line
L2d φ

Ωr(1 + a′)

U∞(1− a)
W

Rotor plane

γ
φ α

Figure 6.1: Illustration of the velocities due to wind speed, U∞, and a
plunging motion, ηx, of the airfoil relative to the axial motion of the wind
turbine rotor.

For the time-domain simulation, it is difficult to separate the aerody-
namic stiffness and the added mass. Instead a virtual aerodynamic added
mass, Mva, can be used as a common term for the aerodynamic stiffness
and the aerodynamic mass. This term is related to the aerodynamic
stiffness and added mass as:

Mva = Ma −Ka/ω
2
n (6.4)

where n is the angular eigenfrequency. The dynamic aerodynamic
force, Faero(t), investigated in this study is the the force normal to the
rotor plane. At the two dimensional blade section, this is equivalent to
the thrust force, T , which is related to the lift force, L, as:

T2D ≈ L2D · cos(φ) (6.5)
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where φ is the flow angle between the flow and the rotor plane. This re-
lation is illustrated in Figure 6.1. The drag force is assumed much smaller
than the lift force on the blade, and only the lift force is therefore consid-
ered in these calculations. The local two dimensional unsteady aerody-
namic forces are investigated, and separated into inertia force, damping
force and elastic restoring force. The inertia force is in phase with the
acceleration, the damping force will be in phase with the velocity and
the elastic restoring force will be in phase with the displacement. In the
present case the aerodynamic added mass, damping and stiffness, due to
a harmonic rotor motion, will be estimated based on the two-dimensional
unsteady aerodynamic force. By integrating the two dimensional aero-
dynamic forces from the hub to the tip, the aerodynamic added mass,
damping and stiffness for the wind turbine rotor can be obtained.

For the platform pitch, the structural properties are related to the
angular displacement, ωx, angular velocity, ω̇x, and angular acceleration,
ω̈x, calculated in Section 6.3.2. The angular motion, ωx, is related to the
translational motion, ηx, as:

ηx = ωx · znac (6.6)

where znac is the distance from the nacelle to the pitch rotational
center. The two-dimensional aerodynamic response is estimated relative
to the translational motion. The rotational center is located 74.6 m below
Still Water Level (SWL), as calculated in Appendix D.

The wind-structure interaction is studied in terms of the overturning
moment about the mass center. In Eq 6.7 to 6.9 the distance from the
rotational center to the nacelle, znac, appears squared. The distance is
multiplied once when relating the angular pitch motion to the displace-
ment at the nacelle height, and once for translating the thrust modal
force into the moment about the center:

Mp,a ≈ Nb ·
∫ R

0
Ma,2Ddr · z2nac (6.7)

Cp,a ≈ Nb ·
∫ R

0
Ca,2Ddr · z2nac (6.8)

Kp,a ≈ Nb ·
∫ R

0
Ka,2Ddr · z2nac (6.9)

where Nb is the number of blades, R is the length of the blade, znac
is the distance from the rotational center to the nacelle and subscript p

128



CHAPTER 6. WIND STRUCTURE INTERACTION

indicates pitch motion. Using the above equation, it is assumed that the
rotor radius is much less than the distance between the nacelle and the
rotational center.

When considering the dynamic equilibrium in relation to the first
tower bending mode, the aerodynamic forces are multiplied with the mode
shape at the nacelle:

Mt,a = Nb ·
∫ R

0
Ma2Ddr · φ2

m(z = znac) (6.10)

Ct,a = Nb ·
∫ R

0
Ca2Ddr · φ2

m(z = znac) (6.11)

Kt,a = Nb ·
∫ R

0
Ka2Ddr · φ2

m(z = znac) (6.12)

where φm(z) is the mode shape and z is the distance from the tower
bottom. For the first tower mode the mode shape is normalized to value
1 at the nacelle. Comparing the dynamic aerodynamic properties to the
pure structural dynamic properties of the structure, will show the relative
significance of the aerodynamic forces. Here, the motion-dependent forces
will be quantified in term of the aerodynamic damping ratio and the
change in the natural frequency. The aerodynamic damping ratio for the
wind turbine is calculated as;

ξa =
Ca

Ccr
=

Ca

2ωnMi
(6.13)

where Mi is the mass moment of inertia or the modal mass, and Ccr

is the critical damping, which is defined as:

Ccr = 2ωnMi (6.14)

The change in mass and stiffness will influence the eigenfrequency,
ωn, of the wind turbine. An increase in the mass will give a decrease
in the eigenfrequency. The virtual aerodynamic added mass is defined
in Equation 6.4, and includes both the change in aerodynamic stiffness
and in aerodynamic added mass. Taking the virtual mass into account,
the eigenfrequency, ωn, of the mode can be computed. The ratio be-
tween the eigenfrequency, which includes the aerodynamic effects, and
the undamped natural eigenfrequency of the structure, is defined as:
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ωn

ω
=

√
1

1 +Mva/Mi
(6.15)

From the relation above, it is seen that the relationship between the
modal mass and the virtual aerodynamic mass and the damping ratio can
therefore tell us the importance of the aerodynamic mass and stiffness on
the structural response.

6.3 5 MW reference wind turbine

znacDraft

Tower
height

Elevation to
tower base

Figure 6.2: Sketch of the OC3 Hywind.

130



CHAPTER 6. WIND STRUCTURE INTERACTION

The wind-structure interaction for the 5 MW reference wind turbine
rotor used in the OC3 and OC4 code comparison project is investigated.
The presentation here is limited the floating Hywind structure used in
the OC3 project. This will be referred to the as the OC3 Hywind wind
turbine and is sketched in Figure 6.2. The rotor is modeled as a stiff
structure, with no elasticity in the blades, in the aerodynamic analysis.
The calculated dynamic aerodynamic forces are compared to a structural
properties of the OC3 Hywind. The rotor section properties and the
structural configuration used in the analysis, are presented in the follow-
ing sections.

6.3.1 Rotor Properties

The rotor blade is divided into 17 blade sections, from the hub to the
root. Close to the root, the blade sections have circular cross sections,
which are not included in the study. The main properties of the blade
section distributed along the rotor blade are given in Table 6.1.

The tabulated two dimensional airfoil coefficients used in this study
were intended for a code comparison study. To reduce the amount of
scatter among the participants in the code comparison, the three dimen-
sional correction of the two dimensional aerodynamic coefficients were
integrated into the aerodynamic coefficients distributed to the code com-
parison participants [36]. Some of the tables of aerodynamic lift coeffi-
cients distributed for the comparison project have an inclination of the
lift curve that is larger than the theoretical maximum of 2π, and this is
due to the implemented three dimensional correction. The lift coefficient
curves are shown in Appendix B.

6.3.2 Structural Properties

The 5 MW reference wind turbine is a three bladed upwind wind turbine,
with a variable speed and collective pitch controller. The rated wind speed
is 12 m/s, and below this wind speed the power output is maximized by
varying the rotor speed. At wind speeds above rated wind speed, the
blades are pitched to reduce the aerodynamic loading, and the power
output is constant. In this study, the rotational speed and blade pitch
angle is kept constant for each simulation, but varying for the different
wind speeds. The applied rotor speed and pitch angle for three different
wind speeds are listed in Table 6.2. These are estimated using a simple
steady BEM code, as described in Chapter 3.

131



CHAPTER 6. WIND STRUCTURE INTERACTION

Table 6.1: Aerodynamic properties for the 17 airfoil sections along the 5
MW reference wind turbine

Section Radius Twist Chord Airfoil

[m] [deg] [m]

1 2.87 13.308 3.542 Cylinder1

2 5.6000 13.308 3.854 Cylinder1

3 8.33 13.308 4.167 Cylinder2

4 11.75 13.308 4.557 DU40

5 15.85 11.480 4.652 DU35

6 19.95 10.162 4.458 DU35

7 24.05 9.011 4.249 DU30

8 28.15 7.795 4.007 DU25

9 32.25 6.544 3.748 DU25

10 36.35 5.361 3.502 DU21

11 40.45 4.188 3.256 DU21

12 44.55 3.125 3.010 NACA64

13 48.65 2.319 2.764 NACA64

14 52.75 1.526 2.518 NACA64

15 56.17 0.863 2.313 NACA64

16 58.90 0.370 2.086 NACA64

17 61.63 0.106 1.419 NACA64

In this study, the blade pitch angle and rotational speed is assumed
constant, for each wind speed. This is however a simplification of a real
controller, since the controller will pitch the blades for low frequency oscil-
lations of the wind. Motions in the fore-aft direction will be interpreted
by the controller as a change in the wind. The controller pitches the
blades to maintain a constant thrust at wind speeds above rated wind
speed. When the wind turbine moves towards the wind, the controller
registers an increase in wind speed, and pitches the blades to reduce the
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Table 6.2: The rotor speed and blade pitch angle at three different wind
speeds.

Wind Pitch Rotor

speed angle speed

U∞ γ Ωrot

8 m/s 0o 9.16 rpm

14 m/s 8.4o 12.3 rpm

20 m/s 16.5o 12.3 rpm

torque on the rotor. Consequently, the thrust force is reduced when the
wind turbine moves forward toward the wind. This may give a negative
aerodynamic damping of the fore-aft motion of the wind turbine.

The tower is 77.6 m high, and is connected to the foundation 10 m
above SWL. The main properties of the wind turbine structure, needed
for the estimation of the mass moment of inertia, are listed in Table 6.3.
More details with regards to the rotor and control system can be found
in [36], and the substructure is described in detail in [66].

Table 6.3: The mass distribution and center of gravity for the wind tur-
bine structural parts relative to the SWL [66] [36] [67].

Mass Lcog

[Te] [m]

Tower 250 43.4

Nacelle 240 90

Rotor 110 90

Platform 7 466 -88.46

The hydrodynamic damping is less than 107 kgm/s for the pitch mo-
tion [66], which is 0.04 % of the critical damping of the platform pitch
motion. Since the hydrodynamic damping is very low for the platform
pitch it is assumed negligible.
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6.3.3 Wind-structure Interaction Properties

A simple modal analysis of the pitch and the first tower bending mode is
defined here, specific for the OC3 Hywind wind turbine. The modal anal-
ysis is used to relate the dynamic aerodynamic forces to the response of
the wind turbine structure. In this study the focus is on the aerodynamic
damping and the aerodynamic added mass. The relative importance of
these two properties with regards to the specific structure is discussed in
terms of aerodynamic damping ratio, ξa, and the natural frequency, ωn.

The mass moment of inertia for the platform pitch motion and the
modal mass for the first tower mode, together with the eigenfrequency,
are needed to estimate these properties. The general formula for the mass
moment of inertia of a slender structure is:

M1 =

∫
m(z) · z2dz (6.16)

where m(z) is the for the mass distribution at a distance z. For the
platform pitch, M1 is estimated as:

M1 =

∫
mtow(z) · z2dz +

∫
msub(z) · z2dz

+(mrot +mnac) · z2nac + Irot (6.17)

where the subscript, 1 indicates the pitch mode, tow tower, sub is
the supportstructure (here: floating platform), nac is the nacelle and rot
is the rotor (blade and hub). znac is the distance from the nacelle to
the rotational center. The inertia of the rotor, Irot, the hydrodynamic
added mass for the pitch component, Ap, and the mass distributions,
m(z), for each structural part are listed in Appendix C. The location of
the platform pitch rotational center is calculated in Appendix D, and is
located 69.3 m below SWL.

The modal mass of the first tower bending mode is:

M2 =

∫ htow

0
mtow(z)φ

2
m(z)dz + (mrot +mnac) · φ2

m(ht) (6.18)

where φm(z) is the mode shape and htow is the height of the tower.
The mode shape, illustrated in Figure 6.3, is estimated using the software
Modes [68].
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Figure 6.3: The mode shape of the first elastic tower bending mode

The modal mass and mass moment of inertia for the OC3 Hywind
structure are listed in Table 6.4 together with the angular eigenfrequencies
and the critical damping.

Mode Angular
fre-
quency

Period Mass mo-
ment of
intertia

Critical Damp-
ing

Platform
pitch

0.21 rad/s 30 s 5.6 ·1010 kg m 2 2.38 · 1010kgm2/s

1st elas-
tic tower
bending
mode

2.95 rad/s 2.14 s 3.9 · 105 kg 2.31 · 106kg/s

Table 6.4: The structural properties for the two analysed eigenmodes of
the OC3 Hywind

6.4 Method

The aim of this study is to investigate the wind-structure interaction us-
ing different methods. These methods include a quasi-static approach,
Theodorsen’s function, AeroDyn (a commercial aerodynamic code, with
BEM and dynamic inflow implemented), a vortex panel code and Loewy’s
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Method Unsteady aerodynamics Neighbouring

Thin foil Thickness wakes

and curvature

Quasi-Static flat - - -

Time-domain engineering tool, AeroDyn:

BEM Steady - - -

BEM Unsteady
√

- -

GDW Unsteady
√

- -

Time-domain vortex panel code:

Single airfoil -
√

-

Cascade of airfoils -
√ √

Frequency-domain method :

Theodorsen’s theory
√

- -

Loewry’s theory
√

-
√

Table 6.5: An overview of the different aerodynamic methods discussed
in this chapter, and their main unsteady aerodynamic properties.

function, which are listed in Table 6.5. As shown in the table, the quasi-
static approach does not account for any unsteady aerodynamics, which
the other methods do. Theodorsen’s function and Loewy’s function are
both analytical frequency domain methods, but the Loewy’s function
takes the returning wake into the consideration. The returning wake
problem in Loewy’s function was presented in Section 4.6.4. The compu-
tational efficiency of these three methods are high.

The aerodynamic force on the blade sections along the 5 MW wind
turbine blade is estimated. The local two dimensional forces at the blade
sections are related to the acceleration and velocity of the axial plunge
motion of the wind turbine rotor. The variation along the radial length
of the blade is investigated, as well as the full rotor properties. The
wind structure interaction of the two frequencies, first tower bending and
platform pitch, at three different wind speeds, 8 m/s, 14 m/s and 20 m/s,
are studied. The corresponding rotational speed and blade pitch angle
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are listed in Table 6.2.

6.4.1 Wind Velocities

The wind speed relative to the blade, W , is a combination of the axial
wind flow at the rotor disc, U∞, the apparent wind speed due to the
rotation, Ωr, and the tangential and axial induction factors, a and a′ (see
Eq 3.20 and Figure 6.1). A simple BEM analysis (see Section 3.4), is used
to estimate the axial and tangential induced velocities. The relative wind
speed varying along the blade is shown in Figure 6.4.
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Figure 6.4: The relative wind speed, W , relative to the radial position
along the blade of the 5 MW reference wind turbine. 0 is at the root of
the blade and 1 is at the tip of the blade.

The wind speed, U∞, is assumed to be constant with height, and no
turbulence is accounted for. In reality, the free wind velocity, U∞, is
varying across the rotor disc due to the shear profile of the mean wind
speed and turbulence in the wind field.

6.5 Quasi steady wind-structure interaction

6.5.1 Method

The quasi-steady wind structure interaction is investigated using wind
turbine aerodynamics as presented in Chapter 3. The thrust force is
approximated using the lift force and the flow angle, see Equation 6.5.
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Both the lift force and the flow angle are dependent on the oscillating
motion. The time varying aerodynamic lift force can be expressed as:

L(t) =
1

2
ρCL(t)W

2(t)c (6.19)

where ρ is the air density, CL(t) is the two dimensional lift coefficient,
W (t) is the relative velocity and c is the chord length. Both the rela-
tive wind speed and the lift coefficient will vary with time. The relative
velocity, W (t), is expressed as:

W 2(t) = (U∞(1− a)− η̇x)
2 +
(
Urot(1 + a′)

)2
= U2

∞
(1− a)2 − 2U∞(1− a)η̇x + η̇2x +

(
Urot(1 + a′)

)2
(6.20)

where the translation of the rotor in the along wind direction is defined
as ηx, and η̇x is the velocity in the axial direction. The axial and tangential
induction factors are assumed constant. It is also assumed that all motion
is in the same plane, i.e. the platform pitch motion is studied using
translation in the axial direction, and no rotation about the center of
mass. The flow angle, φ(t), is:

φ(t) = tan−1

(
U∞(1− a)− η̇x
Urot(1 + a′)

)
(6.21)

If the flow angle is small, the expression can be simplified to:

φ(t) ≈ U∞(1− a)− η̇x
Urot(1 + a′)

(6.22)

Using the above expression, the angle of attack is:

α(t) ≈ U∞(1− a)− η̇x
Urot(1 + a′)

− (γ + θ) (6.23)

where γ is the twist of the blade section and θ is the pitch of the
blade. In order to find a time varying lift coefficient, the angle of attack
is linearized about its mean value, α0:

α(t) = α0 − η̇x
Urot(1 + a′)

(6.24)

Using the above linearized α, the time varying lift coefficient, CL(t),
can be expressed as:
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CL(t) = CL0 −
(
∂CL

∂α

)
α0

η̇x
Urot(1 + a′)

(6.25)

where CL0 is the lift coefficient for the mean angle of attack, α0, and(
∂CL
∂α

)
α0

is the derivative of the lift at α0. Inserting Equations 6.20 and

6.25 in the relation for the time varying lift force in Equation 6.19, the
time varying lift is expressed using 8 terms:

L(t) =
1

2
ρCL0U

2
∞
(1− a)2c︸ ︷︷ ︸

1

+
1

2
ρCL0U

2
rot(1 + a′)2c︸ ︷︷ ︸
2

− 1

2
ρ

(
∂CL

∂α

)
α0

η̇xU
2
∞
(1− a)2c

Urot(1 + a′)︸ ︷︷ ︸
3

− 1

2
ρ

(
∂CL

∂α

)
α0

η̇xU
2
rot(1 + a′)2c

Urot(1 + a′)︸ ︷︷ ︸
4

+ ρCL0U∞(1− a)η̇xc︸ ︷︷ ︸
5

+ ρ

(
∂CL

∂α

)
α0

η̇x
Urot

U∞(1− a)η̇xc︸ ︷︷ ︸
6

+
1

2
ρCL0η̇

2
xc︸ ︷︷ ︸

7

+
1

2
ρ

(
∂CL

∂α

)
α0

η̇x
Urot(1 + a′)

η̇2xc︸ ︷︷ ︸
8

(6.26)

The two first terms are mean forces, and do not contribute to the
dynamic wind-structure interaction. These two terms are equivalent to
the mean value of the lift force, L0. The velocity of the structure η̇x is
assumed to be small compared to the rotational velocity. The three last
terms, (6), (7) and (8), contain the term η̇2x, and are therefore assumed
negligible compared to the other terms. The remaining three terms, (3),
(4) and (5), are used in evaluating the quasi steady aerodynamic damping:

L(t) ≈ L0 +

(
ρCL0U∞(1− a)c− 1

2
ρ

(
∂CL

∂α

)
α0

W 2
0

Urot(1 + a′)
c

)
η̇x

= L0 +
Ca,2D · η̇x
cos (φ)

(6.27)

where W0 is the mean relative wind;

W0 =
√

U2
∞
(1− a)2 + U2

rot(1 + a′)2 (6.28)
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The aerodynamic damping is divided by cos (φ), since it is related
to the thrust force, and not the lift force. The thrust force is out of
phase with the structural velocity corresponds to an aerodynamic damp-
ing force; with the aerodynamic coefficient, Ca,2D, as a connecting pa-
rameter:

Ca,2D ≈ −
(
ρCL0U∞(1− a)c− 1

2
ρ

(
∂CL

∂α

)
α0

W 2
0

Urot(1 + a′)
c

)
· cos(φ)

(6.29)

The quasi-steady aerodynamic damping is positive if:

1

2

(
∂CL

∂α

)
α0

W 2
0

Urot(1 + a′)
> CL0U∞(1− a) (6.30)

This is generally true, since the wind speed relative to the blade, W0,
is much larger than the free wind speed, U∞. The fore-aft damping is
therefore normally assumed positive. This is illustrated in Figure 6.6.

6.5.2 Results

The aerodynamic damping coefficient for the rotor is estimated by in-
tegrating the two dimensional blade section coefficients along the blade.
The lift coefficient is found using tabulated values for each airfoil. A sim-
plified estimate of the steady aerodynamic damping, using the properties
flat plate with ∂CL

∂α = 2π, is compared to the results based on the data
for the blades. The aerodynamic damping coefficient and damping ratio
are shown in Table 6.6 and 6.7.

Figure 6.5 shows the aerodynamic damping coefficient along the blade,
using both a flat plate assumption and tabulated lift coefficients. The
difference between assuming a flat plate, and using the tabulated values
for the aerodynamic lift coefficient is relative small. The trend, for both
methods, is that the aerodynamic damping increases with the wind speed.

The quasi-steady aerodynamic damping Ca,2D, Equation 6.29, con-
sists of two terms, and the contribution from these two terms are inves-
tigated in Figure 6.6 for the wind speed of 20 m/s. It is obvious that
the dominating term of the aerodynamic damping is the second term. It
is therefore the slope of the lift curve, and not the mean load, which is
important for the quasi-static aerodynamic damping.
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Aerodynamic damping coefficient

Wind Speed, U∞ 8 m/s 14 m/s 20 m/s

Flat plate 6.0 · 104 8.2 · 104 8.7 · 104
Airfoil 6.0 · 104 8.6 · 104 8.8 · 104

Aerodynamic damping ratio [%]

Flat plate 2.6 3.6 3.7

Airfoil 2.6 3.7 3.8

Table 6.6: Aerodynamic damping properties for the elastic tower bending
motion using the quasi-static approach in Equation 6.29.

Aerodynamic damping coefficient

Wind Speed, U∞ 8 m/s 14 m/s 20 m/s

Flat plate 1.9 · 109 2.7 · 109 2.8 · 109
Airfoil 2.0 · 109 2.8 · 109 2.8 · 109

Aerodynamic damping ratio [%]

Flat plate 6.17 8.51 8.95

Airfoil 6.25 8.88 9.10

Table 6.7: Aerodynamic damping properties for the platform pitch motion
using the quasi-static approach in Equation 6.29.

A similar expression for aerodynamic damping coefficient was derived
by Garrad [69]:

Ca,G =
1

2
ρUrotc

(
∂CL

∂α

)
α0

(6.31)

Garrad’s expression assumes a small flow angle (cos φ ≈ 1) and a high
tip speed ratio. Using the flat plate approximation, Garrad’s aerodynamic
damping expression is included in Figure 6.6. This expression gives results
similar to the 2nd term in Equation 6.29. Garrard’s expression gives a
reasonable estimation of the steady aerodynamic damping.

In the following chapter, the importance of unsteadiness in the esti-
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Figure 6.5: The two-dimensional aerodynamic damping coefficient, Ca,2D,
estimated using Equation 6.29. The assumption of flat plate is compared
to using tabulated aerodynamic properties for the 5 MW reference wind
turbine.

mation of aerodynamic damping will be investigated. The methods are
based on various assumptions; some are using the thin plate aerodynam-
ics, some uses tabulated values and the panel method uses sources to
model the thickness.

6.6 Theodorsen’s Theory

Theodorsen’s solution for unsteady lift force due to harmonic variations in
the plunging and pitching motion was presented and discussed in Section
4.4.3. In this study we will use the theory presented previously to study
the unsteady aerodynamic response of a wind turbine rotor.
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6.6.1 Method

The aerodynamic lift coefficient, using Theodorsen’s theory, for a thin foil
in oscillating plunge motion is given in Equation 4.83. The thrust force
for a 2D section is then:

T2D = 0.5ρcW 2
[
2πk(iF (k) −G(k)) − πk2

] h̄

0.5c
eiωt cos(φ)

= − [2ρW 2πkiF (k) − 2ρW 2πkG(k) − ρW 2πk2
]
η̄xe

iωt cosφ

= −
[
ρcWπωiF (k)− ρcWπωG(k) + ρc2π(

iω

2
)2
]
η̄xe

iωt cosφ

= −ρcπ
[ c
4
(iω)2 +WF (k)(iω)−WωG(k)

]
η̄xe

iωt cosφ (6.32)

where k is the reduced frequency along the blade, k = ωc
2W . The

reduced frequencies along the span of the blade for a high frequency os-
cillation (ω=0.21 rad/s) and a high frequency oscillation (ω=2.95 rad/s),
for the three wind speeds studied here, are shown in Figure 6.7.

The motion dependent part of the Theodorsen’s theory may be split
into aerodynamic added mass, Ma, damping, Ca, and stiffness, Ka, see
Equation 6.3. This is done by defining the aerodynamic added mass
as a parameter defining the force in phase with the acceleration, the
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Figure 6.7: The reduced frequency, k, for a low and a high frequency
oscillating motion of the rotor at positions along the blade, where 0 is at
the root of the blade and 1 is at the tip of the blade.
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aerodynamic damping for the force in phase with the velocity and the
aerodynamic stiffness for the force in phase with the translation. Relating
this to the thrust force, T , and the axial motion of the rotor, h(t):

T = − [Ma(iω)
2 + Caiω +Ka

]
T = Nb ·

∫ R

ri

[
πρc2

4
(iω2) + πρWcF (k)iω

−2kW 2πρG(k)]η̄xe
iωt cos(φ)dr (6.33)

This leads to the following relationships for the dynamic aerodynamic
properties for a wind turbine moving in and out of the wind:

Ma,2D =
ρc2π

4
cosφ (6.34)

Ca,2D = ρcWπF (k) cosφ (6.35)

Ka,2D = −2kW 2πρG(k) cos φ (6.36)

6.6.2 Results

The aerodynamic added mass is shown in Figure 6.8. This property is
not dependent on the frequency of the motion. The variation in added
mass at different wind speeds is due to the change in flow angle, φ. As
the wind speed increases, the flow angle will increase if the rotor speed is
constant. Since the added mass is linearly dependent on the cosine of the
flow angle, an increase in wind speed will give a decrease in the added
mass. The lowest wind speed, U∞ = 8m/s, will therefore give the largest
added mass contribution.

The aerodynamic damping is related to the real part of the Theodorsen
function, F (k), and is therefore dependent on the reduced frequency. For
the low frequency oscillation, the aerodynamic loading can be considered
quasi steady, while the high frequency oscillation will include unsteady
aerodynamics. For quasi-steady loads, F (k) = 1, and for unsteady loads,
0.5 < F (k) < 1. It is therefore expected that the aerodynamic damp-
ing of the low frequency oscillation is larger than for the high frequency
oscillation. This is shown in Figure 6.9, where the damping of the low fre-
quency oscillation is plotted with thin lines and high frequency oscillation
is plotted with thick lines.
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Figure 6.9: Aerodynamic damping along the blade of a 5 MW turbine
for a low frequency oscillation and a high frequency oscillation at three
different wind speeds.

The wind speed is another important factor. The aerodynamic damp-
ing is proportional to the relative wind speed, W , and the cosine to the
flow angle. As with the added mass, the cosine of the flow angle gives a
decrease with increasing wind speeds, but there is a linear relation with
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the relative wind speed. The aerodynamic damping is therefore expected
to increase with the rotational velocity of the rotor. Figure 6.9 shows
that the rotor motion at wind speeds above rated wind speed, U∞ = 14
m/s and U∞ = 20 m/s, has the highest damping.
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Figure 6.10: Aerodynamic stiffness along the blade of a 5 MW turbine
for a low and a high frequency oscillating motion at three different wind
speeds.

The aerodynamic stiffness is dependent on the imaginary part of
Theodorsen function, G(k). For quasi-steady loads, G(k) ≈ 0, and the
low frequency oscillation has therefore very little aerodynamic stiffness.
The high frequency oscillation is subjected to more unsteady aerodynamic
load, which include have an aerodynamic stiffness effect. The lowest value
for G(k) is at k = 0.2, where it is approximately −0.2. Similarly to the
aerodynamic damping, the aerodynamic stiffness has the highest value at
wind speeds above rated wind speed, U∞ = 14 m/s and U∞ = 20 m/s.
This is shown in Figure 6.10.

Using Eq 6.7-6.12, the results in Figure 6.8, 6.9 and 6.10 are translated
into modal parameters for the platform pitch and the first tower elastic
bending mode. The results are presented in Table 6.8. Comparing these
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Platform Pitch

U∞ [m/s] 8 14 20

Mia [kg m2] 4.26 · 107 4.09 · 107 3.81 · 107
Cia [kg m2/s] 1.46 · 109 1.97 · 109 1.97 · 109
Kia [kg m2/s2] 1.60 · 107 1.69 · 107 1.61 · 107

ξia 6.12 % 8.25 % 8.28 %

Miva [kg m2] −3.08 · 108 −3.29 · 108 −3.15 · 108
Miva/Mi -0.55 % -0.59% -0.56%

1st tower bending mode

U∞ [m/s] 8 14 20

Mia [kg] 1.73 · 103 1.66 · 103 1.55 · 103

Cia [kg/s] 4.71 · 104 6.65 · 104 6.72 · 104
Kia [kg/s2] 3.08 · 104 3.94 · 104 3.93 · 104

ξia 2.04 % 2.88 % 2.91 %

Miva [kg] −1.80 · 103 −2.85 · 103 −2.95 · 103
Miva/Mi -0.46 % -0.73% -0.76 %

Table 6.8: The integrated aerodynamic virtual mass, damping and stiff-
ness for the platform pitch mode and the first elastic tower bending using
Theodorsen’s function.

values to the structural mass, damping and stiffness characteristics of the
wind turbine, the significance of the unsteady aerodynamic contribution
can be discussed.

The platform pitch motion has, for all wind speeds, a higher aerody-
namic damping than the first tower bending mode. The highest damping
ratio, ξ = 8.08%, occurs at U∞ = 14 m/s. The frequency for the first
tower bending mode is increasing due to the decrease in virtual aerody-
namic mass. The increase in natural frequency is approximately 0.4%
from stand still to rated wind speed and is illustrated in Figure 6.39.
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6.7 Loewy’s theory

The method using Loewy’s theory to estimate the wind-structure inter-
action is very similar to the method from Theodorsen’s theory. They
are both frequency domain theories, and can be used to find the un-
steady aerodynamic lift of a thin airfoil with an harmonic plunging mo-
tion. Loewy’s theory is presented in more detail in Section 4.6.4, and
includes the returning wake as shown in Figure 4.37.

6.7.1 Method

The returning shed wake may influence the dynamic aerodynamic prop-
erties investigated, and the wind-structure interaction properties is es-
timated using Loewy’s theory. Replacing Theodorsen’s function, C(k),
with Loewy’s function to estimate the thrust in Equation 6.33, will give
the aerodynamic added mass, damping and stiffness. The Loewy’s func-
tion, C ′(k), is shown in Equation 4.104, and can be divided into a real
part, F ′(k), and imaginary part, G′(k).

Ma,2D =
ρc2π

4
cosφ (6.37)

Ca,2D = ρcWπF ′(k) cos φ (6.38)

Ka,2D = −2kW 2πρG′(k) cos φ (6.39)

The aerodynamic added mass is the same, since this does not include
the circulatory function. The difference between the two methods will be
in the aerodynamic damping or the aerodynamic stiffness.

6.7.2 Results

The two-dimensional local aerodynamic stiffness along the blade is plotted
in Figure 6.11 for the low frequency oscillation. The estimates using both
Theodorsen’s function and Loewy’s function are included in the graph.
Theodorsen’s function predicts a negative aerodynamic stiffness, while
Loewy’s function predicts a positive aerodynamic stiffness.

The damping of the high frequency oscillation is significantly changed
compared to the results using Theodorsen’s funcion, especially for the
low wind speed. This is because the ωt/NbΩ is close to an integer for this
simulation. The rotational velocity of the wind turbine at 8 m/s is 9.16
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Figure 6.11: Aerodynamic stiffness for the two-dimensional airfoils along
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rpm, or 0.96 rad/s. As seen in Figure 4.38, the value of Loewy’s function

0
50
100
150
200
250
300
350
400
450
500
550

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

r/R

Ca,2D [kg/ms]

+
+

+
+

+
+ + + + + + + +

×

×

×

×

×
×

×
×

× × × ×
×

��

��

��

��

��

��

��

��

��
�� �� ��

��

��

��

��

��

��

��

��

��

��
�� �� ��

��

×

×

×

×

×
×

×
×

× × × ×
×

+
+

+
+

+
+

+
+ + + + + +

Loewry:
+ + + U∞=8 m/s
× × × U∞=14 m/s
�� �� �� U∞=20 m/s

Theodorsen:
+ + + U∞=8 m/s
× × × U∞=14 m/s
�� �� �� U∞=20 m/s
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shown.

150



CHAPTER 6. WIND STRUCTURE INTERACTION

drops when ωt/NbΩ is an integer.

Platform pitch mode

V∞ [m/s] 8 14 20

Mia [kg m2] 4.26 · 107 4.09 · 107 3.81 · 107

Cia [kg m2/s] 1.46 · 109 1.95 · 109 1.95 · 109
Kia [kg m2/s2] −0.69 · 107 −1.14 · 107 −0.83 · 107

ξia 6.14 % 8.18 % 8.17 %

Miva [kg m2/s] 1.94 · 108 2.91 · 108 2.19 · 108
Miva/Mi 0.35 % 0.52% 0.39%

1st tower bending mode

V∞ [m/s] 8 14 20

Mia [kg] 1.73 · 103 1.66 · 103 1.55 · 103
Cia [kg/s] 4.09 · 104 6.55 · 104 6.65 · 104
Kia [kg/s2] 1.87 · 104 5.22 · 104 4.65 · 104

ξia 1.77 % 2.83 % 2.88 %

Miva [kg] −0.41 · 103 −4.33 · 103 −3.78 · 103
Miva/Mi -0.10 % -1.11% -0.97%

Table 6.9: The integrated aerodynamic virtual mass, damping and stiff-
ness for the platform pitch mode and the first elastic tower bending using
Loewy’s function.

Relating the two-dimensional aerodynamic results for the two oscilla-
tion frequencies, one can get the modal aerodynamic properties. These
are presented in Table 6.9. The wind structure interaction properties are
Comparing the result for the wind structure interaction properties for the
platform pitch mode to the results presented in Table 6.8 for Theodorsen,
the difference is small. The difference is mainly in the damping of the
first elastic tower bending mode. Using Theodorsen’s function, the esti-
mated aerodynamic damping was 2.04 %. This has been reduced to 1.77
% when using Loewy’s function, which is a 13 % decrease in damping.
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6.8 AeroDyn

AeroDyn is an aerodynamic simulation tool developed at the National
Renewable Energy Laboratory, NREL. It is an inherent part of the servo-
hydro-aero-elastic analysis tool FAST [70]. For the aerodynamic analysis,
one can choose either the BEM method or the Dynamic Inflow method,
which is based on Generalized Dynamic Wake theory (see Section 3.5).
Both methods will be used in this study. There is also an option to do the
simulation where the unsteady aerodynamics is not taken into account.

6.8.1 Method

The 5 MW reference wind turbine is modeled in FAST, with no tilt of
the nacelle and no cone angle of the blades. The structural components
of the wind turbine are modeled as stiff, only the rotor is free to rotate.
The rotational speed and the pitch angle is set as fixed values as listed in
Table 6.2. This is to ensure that the simulations have the same input as
the results presented in previous sections.

Instead of moving the structure in and out of the wind, the velocity
of the wind is varied. The applied wind field is constant across the rotor,
and is only varying in time. The applied velocity, Uη,x, across the rotor
is described as:

Uη,x(t) = U∞ − η̇xp(t) (6.40)

where η̇xp(t) is an predefined oscillation of the axial rotor velocity.
This is illustrated in Figure 6.13 for a wind speed of 8 m/s. The oscillating
velocity for both the low frequency and the high frequency oscillation
are drawn in the graph. The low frequency oscillation has the same
frequency as the platform pitch motion, and the velocity change is equal
to a displacement with amplitude of 3 m. Similarly, the eigenfrequency
first elastic bending mode for the tower is equal to the high frequency
motion and the velocity corresponds to an amplitude of 0.25 m for the
motion.

The velocity change felt at each blade section will not be the same
as the predefined velocity, shown in Figure 6.13, since there will be a
calculation of the induced velocity at each time step. Previously, the
induced velocities were set as fixed throughout the simulation. Therefore
the velocity of the rotor is estimated as:
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Figure 6.13: The applied wind field for low and high frequency oscillations
for a wind speed of 8 m/s. The solid line illustrates high frequency motion
(ω=2.95 rad/s), and the dashed line is low frequency motion (ω=0.21
rad/s).

η̇x(t) = U∞(1− ā)− Uη,x(t) · (1− a(t)) (6.41)

where ā is the mean value of the axial induction factor, a(t). The first
term is the mean value of the axial velocity felt at the rotor disc, while
the second term is the time dependent axial velocity.

The difference between the velocity at the rotor, η̇x, and the predefined
values for the velocity, η̇xp, is shown in Appendix C in Figure C.3 for
a wind speed of 8 m/s and an applied tower bending frequency. The
same is shown acceleration is shown in Figure C.4 for four blade sections,
relative to the preliminary defined acceleration. The acceleration curve
is not smooth, but experiences a discontinuity close to its maximum and
minimum acceleration values.

Similarly to the other methods, the thrust force is evaluated using
only the lift at each blade section, using Equation 6.5. A graph with the
thrust force at a blade section plotted relative to the axial motion of the
rotor, ηx, is shown in Figure 6.15. The slope of the linear trendline is
used to compute the damping coefficient for the blade section. This is
similarly done for the acceleration.

The reduced frequency, k, is used as a measure of the unsteadiness
in the simulations. In Figure 6.7, the reduced frequencies along the span
for all simulations are shown. It is seen that it is the blade sections close
to the root have the most unsteadiness. The most unsteady simulation
is the one with lowest wind speed, 8 m/s, and the highest frequency, the
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Figure 6.14: The slope of the lin-
ear trendline is used to estimate
the damping coefficient. This is
the high frequency motion with,
U∞=8 m/s, ω=2.95 rad/s.
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Figure 6.15: The slope of the lin-
ear trendline is used to estimate
the aerodynamic added mass co-
efficient, U∞=8 m/s, ω=2.95
rad/s.

tower bending frequency. Since we are now doing time domain analysis,
it is important to have time steps that capture the unsteadiness of these
situations correctly.

A convergence test of the time steps in AeroDyn was performed to
check that the time steps were small enough to get the correct aerody-
namic loads. The convergence test, investigating different timesteps, is
shown in Appendix C, Figure C.5. A timestep of dt = 0.05 s, i.e. 600
points for the high frequency oscillation cycle (ω = 2.95 rad/s), shows a
very good convergence.

6.8.2 Results

The wind structure interaction using two different inflow conditions is
evaluated. The aim of the study shown here is to investigate the wind
structure interaction locally at an airfoil, and the effect of the time-
varying induced velocity is therefore removed from the main results, see
Equation 6.41. This is to be able to compare the motion-induced aerody-
namic loads estimated by AeroDyn relative to the other methods, where
the induced velocity is kept constant.

The aerodynamic damping for the BEM simulation, including the
unsteady aerodynamic, is shown in Figure 6.16. Both results for the low
frequency and the high frequency oscillations of the airfoil are included
in the graph. The dynamic inflow method produced similar results, and
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are included in Appendix C, Figure C.8.

For the low frequency oscillations, the aerodynamic damping is almost
equal to the one calculated with steady aerodynamic simulation. The
radial distribution of the steady results, using BEM inflow, are included
in Appendix C, Figure C.9. The results show that the damping is reduced
for high frequency oscillations, where the aerodynamics is more unsteady.
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Figure 6.16: The local aerodynamic damping at each blade section along
the radial distance of the blade for three different wind speeds. BEM
method is applied here.

Even though the study here is on local two dimensional unsteady
aerodynamic, a comment should be made on the difference between the
two different inflow models, BEM and DYNIN in AeroDyn. DYNIN is
the dynamic inflow model based on a Generalized Dynamic Wake model.
This dynamic inflow model includes tip losses and skewed wake dynamics.
However it is only valid for lightly loaded rotors and assumes that the
induced velocities are small relative the the mean flow, i.e. the GDW
model is not valid at low wind speeds.

A comparison between the results based on the BEM inflow model and
the Dynamic Inflow model, where the time-varying influence coefficient is
included, is shown in Figure 6.17. The aerodynamic damping coefficients
are estimated for the high frequency oscillations, using the applied wind
field as shown in Figure 6.13 for U∞ = 8 m/s, and assuming constant
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induction coefficients. The results indicate that the damping in general is
slightly higher when applying the dynamic inflow model compared to the
BEM method, except for the low wind speed. For this specific condition
with a wind speed of 8 m/s, the damping is reduced when applying the
dynamic inflow condition. This is due to the low wind speed, and the
GDW model is not valid for this low wind speed.

The estimated virtual aerodynamic mass is included in Appendix C,
Figure C.7. The aerodynamic added mass here includes the aerodynamic
stiffness component, which is defined as the virtual aerodynamic mass,
see Eq 6.4.

6.8.3 Discussion

The integrated modal properties for the virtual aerodynamic mass and
the aerodynamic damping are shown in Table 6.11 for the first tower
bending mode (ω=2.95 rad/s) and in Table 6.10 for the platform pitch
mode (ω=0.21 rad/s). An overview of the what is the differences between
the three methods are listed in Table 6.5. Even though the aerodynamic
damping coefficient is the same for both frequencies using steady aero-
dynamics, the integrated aerodynamic properties will differ since it is
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8m/s 14 m/s 20 m/s

Ca [kg m2/s]

Unsteady 1.39 · 109 1.97 · 109 1.94 · 109
GDW 1.36 · 109 1.96 · 109 1.93 · 109
Steady 1.36 · 109 1.92 · 109 1.90 · 109

ξ [%]

Unsteady 5.83 8.25 8.15

GDW 5.70 8.21 8.09

Steady 5.70 8.08 7.97

Mva [kg m2]

Unsteady −1.78 · 108 −1.99 · 108 −1.76 · 108
GDW −7.74 · 107 −7.03 · 107 −4.11 · 107
Steady −1.75 · 105 −1.43 · 105 −1.50 · 105

Mva
Mi

[%]

Unsteady −0.32 −0.36 −0.32

GDW −0.14 −0.13 −0.07

Steady −0.00 −0.00 −0.00

Table 6.10: Integrated aerodynamic properties for the platform pitch
mode, estimated using AeroDyn. Three different options are used for
the aerodynamics; BEM with unsteady aerodynamics , General Dynamic
Wake and BEM with steady aerodynamics.

related to different modes of the wind turbine structure. For the higher
wind speeds, the BEM and GDW method both give similar results.

The low aerodynamic damping result for the low wind speed (U∞= 8
m/s), using the GDW model, is not due to returning wake effects. The
GDW model was developed assuming that the induced velocities are small
relative to the mean flow, and this is not true for the low wind speed.
The GDW model should therefore not be used at this wind speed.

In the results from AeroDyn, the induced velocities are removed. This
is the reason why the results from GDW and BEM method are similar
for most simulations, since they use the same unsteady aerodynamic cal-
culations, the Beddoes-Leishman function. The difference between these
approaches are how they compute the induced velocities of the inflow,
and not the local two dimensional unsteady aerodynamics. In order to
show this effect, the damping calculated using the targeted velocity, η̇xp,
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8m/s 14 m/s 20 m/s

Ca [kg/s]

Unsteady 4.56 · 104 6.73 · 104 6.73 · 104
GDW 4.56 · 104 6.89 · 104 7.00 · 104
Steady 5.49 · 104 7.82 · 104 7.71 · 104

ξ [%]

Unsteady 1.97 2.91 2.94

GDW 1.97 2.98 3.03

Steady 2.38 3.38 3.34

Mva [kg]

Unsteady −3.02 · 103 −5.06 · 103 −5.31 · 103
GDW −2.83 · 103 −5.07 · 103 −5.18 · 103
Steady 8.98 · 10−2 −5.66 · 10−2 −6.06 · 10−2

Mva
Mi

[%]

Unsteady −0.77 −1.30 −1.36

GDW −0.72 −1.30 −1.33

Steady 0.00 −0.00 −0.00

Table 6.11: Integrated aerodynamic properties for the first elastic bending
mode, estimated using AeroDyn. Three different options are used for
the aerodynamics; BEM with unsteady aerodynamics, General Dynamic
Wake and BEM with steady aerodynamics.

is shown in Figure 6.17.

There are some small differences between the AeroDyn calculations
and the estimates using Theodorsen’s theory. This can be related to that
the unsteady aerodynamics computed by AeroDyn is not limited to only
attached flow and potential flow. The unsteady aerodynamics corrections
also includes the dynamic stall. In the unsteady results presented earlier,
the effect of dynamic stall is expected to be small. If the velocity of the
axial motion is increased, the angle of attack will increase, and there will
be stall effects at the blade sections. The largest and smallest angles of
attack along the blade are shown for two wind speeds, U∞=8 m/s and
U∞=20 m/s in Figure 6.18.

The stall angle will be dependent on the aerodynamic characteristics
of the airfoil. The airfoil sections used close to the root of the blade will
have a larger stall angle, then the airfoils section located towards the tip

158



CHAPTER 6. WIND STRUCTURE INTERACTION

8m/s 14 m/s 20 m/s

Ca [kg/s]
BEM 4.32 · 104 5.81 · 104 6.03 · 104
GDW 3.88 · 104 6.44 · 104 6.68 · 104

ξ [%]
BEM 1.87 2.52 2.61

GDW 1.68 2.79 2.89

Mva [kg]
BEM −2.94 · 103 −4.31 · 103 −4.65 · 103
GDW −9.34 · 102 −4.57 · 103 −4.18 · 103

Mva
Mi

[%]
BEM −0.75 −1.11 −1.19

GDW −0.24 −1.17 −1.07

Table 6.12: Integrated aerodynamic properties for the first elastic bending
mode, estimated using AeroDyn. These values include the outer unsteady
aerodynamics effects.
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Figure 6.18: Variation of angle of attack, α, along the blade

of the blade. In Appendix A, the lift curve of each of the airfoil sections
used are plotted. The maximum angle of attack occurring in the AeroDyn
simulations are also plotted. All angle of attack within this simulation
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have a value lower than the static stall value.

6.9 Vortex Panel Code

A momentum analysis, as described in Section 3.4 will be used to estimate
the induced velocity at the rotor disc for the single airfoil. This is the
same approach as used when estimating the induced velocity used as
input to the Theodorsen’s function (Section 6.6) and Loewy’s function
(Section 6.7). The comparison is made for 13 airfoil sections along the
wind turbine blade. The effect of using a linear cascade approach, as
described in Section 5.6, compared to a single airfoil is also investigated.

The airfoils have 200 panel elements to ensure a good quality of the
results. Using the single airfoil vortex code is more time consuming than
applying the Theodorsen function. Adding more airfoils in the cascade
simulation increases the computational time further. However, it is ex-
pected that these results will yield more accurate unsteady aerodynamic
forces, relative to the previous methods.

6.9.1 Single airfoil

As shown in Figure 5.13 the dynamic lift of an airfoil depends on the
shape of the airfoil and will not behave exactly as for a thin airfoil. It is
therefore expected that the dynamic response of a wind turbine will be
dependent on the airfoil shape. In this section an analysis using the vortex
panel code will be compared to results using Theodorsen’s function, which
is using a flat foil with no thickness.

In the analysis a single airfoil is moved along a path, as shown in
Figure 6.19. The velocity which the airfoil moves at in the x direction is
equal to the velocity of an airfoil located at radii, r, rotating with speed Ω.
The motion in the axial direction, ηx, is due to the platform pitch motion
or the elastic tower bending, depending on the mode that is studied.
The airfoil oscillates with a period 2π/ω and an amplitude of 0.2 m. As
before, two different frequencies of the oscillations are investigated, one
high frequency (ω = 2.95 rad/s) and one low frequency (ω=0.21 rad/s).
These are corresponding to the first elastic bending tower eigenfrequency
and the platform pitch eigenfrequency respectively.

To avoid start-up effects, the simulation is run for 120s, where s is a
non-dimensional timestep, s = 2Wt/c. W is the resulting flow velocity,
which is a combination of the velocity of the wind and the velocity of the
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⎩ x = −Ωrt,
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t=0t = 2π/ωi

Wind

Figure 6.19: An airfoil is illustrated at different time steps as it moves
along a path illustrated by a dashed line. The velocity along the rotor
plane is equal to the rotational speed (Ωr). An incoming wind speed,
U∞, and the normal and tangential induced velocities, a and a′, are also
included in the method.

airfoil. The resulting velocity, W , at each airfoil are illustrated in Figure
6.1. The time used for start-up effects is therefor dependent on chord
length and resulting velocity. The lowest velocity and largest chord is at
the root of the blade, and we will apply the simulation time estimated
for the inner airfoil to all airfoils along the blade.

The aerodynamic damping is estimated by finding a linear trend be-
tween the thrust and the velocity of airfoil in the axial direction. When
the airfoil moves in the direction of the free wind, it reduces the relative
fluid velocity in axial direction. The relative fluid velocity is increased
when the airfoil moves towards the wind direction.

To estimate the aerodynamic damping, the thrust force is plotted
against the velocity of the airfoil in the y-direction (see Figure 6.19).
This is illustrated for the first elastic tower motion in Figure 6.20 for
the airfoil segment located at node 11. The solid line illustrates the
aerodynamic load due to the load at the high frequency oscillation, and
the dashed line is the trendline. There is a strong correlation between
the thrust force and the velocity. Similar result is presented done for the
low frequency oscillation in Figure 6.22. The slope of the trend-lines are
used to compute the damping coefficients of the airfoil section at the two
different frequencies.

The damping coefficients for all 13 nodes along the blade are shown
in Figure 6.25 for the high frequency oscillation. The results from the
vortex panel code is shown with a solid line, while the Theodorsen results
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Figure 6.20: The thrust force
plotted against the velocity of
the wind turbine rotor for the air-
foil at node 11 with a wind speed
U∞ = 8 m/s.
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Figure 6.21: The thrust force
plotted against the acceleration
of the wind turbine rotor for the
airfoil at node 11 with a wind
speed U∞ = 8m/s.
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Figure 6.22: The thrust force
plotted against the velocity of
the wind turbine rotor for the air-
foil at node 11 with a wind speed
U∞ = 8m/s.
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Figure 6.23: The thrust force
plotted against the acceleration
of the wind turbine rotor for the
airfoil at node 11 with a wind
speed U∞ = 8m/s.
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are plotted with dashed lines. The trend is that the damping is generally
higher when evaluated with the vortex panel code.

A similar approach is used to investigate the aerodynamic virtual
added mass. The thrust force is plotted against the acceleration of the
airfoil in y-direction. Figure 6.21 and Figure 6.23 illustrate this for the
airfoil segment at node 11 for high frequency oscillation and the low fre-
quency oscillation respectively. The linear trend-line is the dashed line.
It is evident that the correlation between the thrust force and the accel-
eration is weak. Since it is a weak correlation, this is an effect that is not
easily measured.
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Figure 6.24: The estimated aerodynamic damping along the blade for
high frequency oscillation. The solid lines are based on the vortex panel
code, and the dashed line is based on Theodorsen theory.

Similarly to the aerodynamic damping, the virtual added mass is cal-
culated using the inclination of the linear trendline for thrust force and
the acceleration. The results are presented in Figures 6.26 and 6.27 to-
gether with results from Theodorsen.

The results from the first tower bending moment are similar to the
results estimated using Theodorsen’s theory. They are generally lower,
which means a negative added mass. This implies that there is a higher
aerodynamic stiffness than predicted by Theodorsen.

The first elastic bending tower mode has an eigenfrequency of 2.95
rad/s similar to the high frequency oscillation studied, and similarly for
the platform pitch mode and the low frequency studied. The integrated
values of the aerodynamic added mass and damping coefficients can there-
fore be used to estimate modal quantities for the two modes, as shown in
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Figure 6.25: The estimated aerodynamic damping for the low frequency
oscillation, along the blade. The solid lines are based on the vortex panel
code, and the dashed line is based on Theodorsen theory.
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Figure 6.26: The aerodynamic added mass calculated for high frequency
motion using the vortex panel code, compared to estimation based on
Theodorsen theory

Table 6.14 and Table 6.13 for all wind speeds.
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Figure 6.27: The aerodynamic added mass calculated for the low fre-
quency motion using the vortex panel code, compared to estimation based
on Theodorsen theory

8m/s 14 m/s 20 m/s

Ca [kg m2/s] 1.67 · 109 2.22 · 109 2.14 · 109

ξ [%] 7.01 9.31 9.00

Mva [kg m2] −4.46 · 108 −4.88 · 108 −4.61 · 108
Mva
Mi

[%] −0.80 −0.88 −0.83

Table 6.13: Integrated aerodynamic properties for the platform pitch
mode, estimated using panel vortex code

8m/s 14 m/s 20 m/s

Ca [kg/s] 5.17 · 104 7.21 · 104 7.01 · 104
ξ [%] 2.24 3.12 3.04

Mva [kg] −4.38 · 103 −5.88 · 103 −5.74 · 103
Mva
Mi

[%] −1.12 −1.51 −1.47

Table 6.14: Integrated aerodynamic properties for the first elastic bending
mode for the tower, estimated using panel vortex code

6.9.2 Linear Cascade

Previous investigation of the linear cascade using a thin plate model in-
dicates that the behaviour of the linear cascade is dependent on the local
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velocity ratio, λr = Ωr(1+a′)/U∞(1−a), the spacing between the airfoils,
Sc, and the frequency of the oscillation. These properties are all listed in
Table 6.15 for the simulation cases. The spacing between the airfoils will
be constant for all wind speeds, while the velocity ratio will vary.

wind R Sc 8 m/s 14 m/s 20 m/s

node [m] [m] λr λr λr

4 11.9 24.61 3.9 2.5 1.7

5 14.7 33.20 4.7 2.9 1.9

6 18.0 41.78 5.4 3.3 2.2

7 21.7 50.37 6.4 3.7 2.4

8 26.0 58.96 7.3 4.1 2.7

9 31.0 67.54 7.8 4.5 3.0

10 36.9 76.13 8.7 4.9 3.2

11 43.9 84.72 9.6 5.3 3.5

12 50.9 93.31 10.6 5.7 3.7

13 59.1 101.89 11.8 6.1 3.9

Table 6.15: The local velocity ratio, λr, and spacing between the airfoils,
Sc, for three different wind speeds.

The unsteady aerodynamics for a section with reduced spacing value,
Sc, will have more influence of the neighbouring wake. Similarly, an
increase in the λr would also increase the influence from the neighbouring
wakes. Based on these observations, it is the simulation with U∞ = 8 m/s
which will have most influence from the wakes, and the simulation with
U∞ = 20 m/s which will have the lowest.

Using the limiting number of airfoils as defined in Equation 4.101, one
can estimate the number of airfoils needed in the cascade to compute the
unsteady loads. This limiting number is not sufficient for convergence,
but a too high number of airfoils will also reduce the computational speed
severely. In this study, the number of airfoils required has been multiplied
by four. For the high frequency oscillation, this give good convergence
with a reasonable computational time, but for the low frequency oscilla-
tion the computational time is too large. The reason is that the simulation
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High frequency, ω=2.95 rad/s Low frequency, ω=0.21 rad/s

node kc = 4 · kp kc = 4 · kp
U∞ 8 m/s 14 m/s 20 m/s 8 m/s 14 m/s 20 m/s

Time 17.8 s 13 s 12.7 s 45.7 s 40.9 s 40.6 s

4 56 64 76 144 196 232

5 52 56 64 128 172 200

6 48 52 56 120 156 180

7 44 48 52 116 148 168

8 44 48 52 112 140 156

9 44 44 48 108 136 148

10 44 44 48 104 132 144

11 40 44 44 104 128 140

12 40 40 44 100 128 136

13 40 40 44 100 124 132

14 40 40 44 100 124 132

15 40 40 40 100 124 128

16 40 40 40 96 120 128

Table 6.16: The applied number of panels is estimated for each simulation.
kp is the limiting number, and the number of airfoils is nobl = 2 · kc + 1 .

length needs to be longer since the eigenperiod is longer.

The cascade number, kc, and the length of the simulations are listed in
Table 6.16 both for the high frequency oscillation and the low frequency
oscillation. The number of airfoils in the cascade is multiplied four times
the critical number kp, but there is still an effect due to the limited number
of airfoils. For an ideal case this number should be infinite. In Figure 6.28,
the unsteady aerodynamic lift for the low wind speed, U∞ = 8 m/s, is
investigated for node 4, close to the root of the blade. When investigating
the aerodynamic damping of the wind turbine structure, this decreasing
slope will give an artificial increase the estimated damping. However, the
lift force have a linear decreasing trend for t > 5.
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Figure 6.28: The unsteady aerodynamic lift force using different number
of airfoils in the linear cascade for a wind speed 8 m/s for the first 45
seconds. The cascade number, kc, is related to the number of airfoils in
the cascade as: nobl = 2 · kc + 1

The low frequency oscillation has a period of 30 sec. The results
using a cascade number four times the limiting is shown with a dashed
line in Figure 6.29. The aerodynamic damping estimated based on this
simulation would be wrong. In order to correct for this, the analysis with
no amplitude shown in Figure 6.28 can be used. The thrust force from
the analysis with no oscillating amplitude is subtracted from the thrust
force with the low frequency oscillations. This is the corrected line in
Figure 6.29.

For the short period of the high frequency oscillation, the decreasing
slope due to the cascade is not as dominating. Figure 6.30 illustrates both
the original and the corrected solution. The motion-dependent forces
estimated using the corrected and the original values are approximately
the same. The correction is therefore only performed for the low frequency
oscillations.

The linear cascade results will be compared to Loewy’s function,
which is a frequency domain solution which includes the returning wake,
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Figure 6.29: The aerodynamic
thrust force estimated for the low
frequency motion, and corrected
for the limited number of airfoils,
relative to the velocity of the ro-
tor.
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Figure 6.30: The unsteady aero-
dynamic thrust force during the
high frequency motion.

see Chapter 4.6.4 for more details.
At the lowest wind speed the linear cascade shows a significant re-

duction in the aerodynamic damping for the high frequency oscillations.
This effect is not seen for the two higher wind speeds. The reason is a
low rotational velocity, which has a cascade frequency close to the high
frequency (ω=2.95 rad/s). The rotational speed is 9.16 rpm at the low
wind speed, which gives rotational frequency of 0.96 rad/s. Since it is
a three bladed rotor, the blade passing frequency is 2.88 rad/s, which is
relatively close to the high frequency oscillation used in these studies.

The two higher wind speeds have a lower velocity ratio and a ro-
tational frequency that is higher than eigenfrequency of the tower mode
investigated. The rotational frequency due to the rotational speed of 12.3
RPM is 1.29 rad/s, which gives a blade passing frequency of 3.86 rad/s.
The effect of the returning wake is therefore not dominant at the other
wind speeds.
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Figure 6.31: Aerodynamic damping along the blade for the high frequency
oscillation estimated with the linear cascade method compared to a single
airfoil method. Both methods uses the panel vortex code to estimate the
loads.
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Figure 6.32: Aerodynamic damping along the blade for the low frequency
oscillation estimated with the linear cascade method compared to a single
airfoil method. Both methods uses the panel vortex code to estimate the
loads.

6.10 Discussion

Three approaches has been used to estimate the aerodynamic added mass
and the aerodynamic damping. These are the engineering tool AeroDyn,a
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vortex panel code and two frequency-domain approaches. An overview of
the different aerodynamic methods are shown in Table 6.5. Using these
methods, the motion-induced aerodynamic loads on a wind turbine rotor
has been investigated, focusing on the platform pitch mode (ωn=0.21
rad/s) and the first elastic tower bending mode (ωn=2.95 rad/s).

6.10.1 Aerodynamic damping

An overview of the estimated aerodynamic damping for first tower bend-
ing moment is given in Table 6.17. The quasi-static approach, which does
not include any unsteady aerodynamics, is estimating a higher aerody-
namic damping relative to the unsteady aerodynamic approaches.

U∞ = 8 m/s U∞ = 14 m/s U∞ = 20 m/s

Quasi-Static flat 2.62 % 3.72 % 3.81 %

Garrad 2.58 % 3.47 % 3.47 %

BEM U 1.97 % 2.91 % 2.94 %

BEM inflow 1.87 % 2.52 % 2.61 %

GDW inflow 1.68 % 2.79 % 2.89 %

Theodorsen 2.04 % 2.88 % 2.91 %

Loewy 1.77 % 2.83 % 2.88 %

Vortex - Single 2.24 % 3.12 % 3.04 %

Vortex - Cascade 1.85 % 3.18 % 3.11 %

Table 6.17: Aerodynamic damping ratio estimated using the 1st tower
bending eigenfrequency.

The quasi-static approach and the frequency domain methods are
both very fast. The aerodynamic damping for all wind speeds are es-
timated for the first elastic tower bending mode. The results are shown
in Figure 6.33. The results of the other methods discussed in this chapter
is included at the wind speeds 8 m/s, 14 m/s and 20 m/s. The steady
aerodynamic method of Garrad is overestimating the aerodynamic damp-
ing for all the wind speeds considered.

The quasi-steady estimate of the aerodynamic damping based on Gar-
rad’s equation are the simplest. This is only based on the rotational speed
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Figure 6.33: The quasi-static aerodynamic damping of first elastic bend-
ing mode for the tower for all wind speed. Point values for other simula-
tions.

of the wind turbine. The method overpredicts the aerodynamic damp-
ing, but gives a good indication of the aerodynamic damping. Using
Theodorsen’s theory gives a much better prediction of the aerodynamic
damping.

The largest difference in aerodynamic damping between the methods
applied is found for the low wind speed, U∞ = 8 m/s. The two dimen-
sional aerodynamic damping coefficient along the blade is shown in Figure
6.34 for this low wind speed. The reason for the large spread in results at
this wind speed is that high frequency oscillation (ω=2.95 rad/s) is close
to the blade-passing frequency (ω=2.88 rad/s). When the blade-passing
frequency is an integer of the frequency that the blades are oscillating at,
the aerodynamic damping is reduced. This effect is due to the neighbour-
ing blades, and are modelled by Loewy’s theory and the linear cascade of
airfoils.

The trend is that the lowest values of aerodynamic damping are es-
timated by the methods which include the returning wake effect. It is
evident that this effect is most profound towards the tip of the blade.
This is where the spacing between the blade is largest, and we would
expect that this would reduce the effect. But the local velocity ratio, λr,
is high at the tip and low at the root. It is therefore assumed that the
velocity ratio is more important than the blade spacing when discussing
the neighbouring wake effects in this simulation.

However, GDW also predicted reduced aerodynamic damping for the
low wind speed and the high frequency oscillation. This is because the
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Figure 6.34: The estimated aerodynamic damping for the high frequency
oscillation (ω=2.95 rad/s) and wind speed 8 m/s

assumption of small induced velocities relative to the mean wind flow is
validated. The GDW results are therefore erroneous. GDW is the only
method which includes tip-loss in the comparison, and this explains the
differences in the aerodynamic damping towards the tip of the blade.

The two wind speeds above rated have less spread in the results. The
radial distribution of the aerodynamic damping coefficient is shown in
Figure 6.35 for U∞ = 14 m/s and in Figure 6.36 for U∞ = 20 m/s for
the high frequency oscillations. Both graphs show similar trends with
the frequency domain methods Theodorsen’s theory and Loewy’s theory
giving similar estimates of the coefficient. There is a relatively small
difference between the aerodynamic coefficient estimated using a single
airfoil relative to a cascade of airfoils when applying the vortex panel
code.

The aerodynamic damping ratio of the platform pitch motion is larger
than the aerodynamic damping of the first elastic tower bending in the
fore-aft direction. The results are listed in Table 6.18. The lowest aero-
dynamic damping is predicted at 8 m/s, and the highest at 14 m/s.

The platform pitch mode has a very low eigenfrequency, and should
be well described by the steady aerodynamic tools. Surprisingly, the
aerodynamic damping estimated by the panel vortex code is higher than
the other methods for all wind speeds. Both the simulation using a single
airfoil, and the simulation using a cascade of airfoils are estimating up to
20% higher damping relative to the other methods.
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Figure 6.35: The estimated aerodynamic damping for the high frequency
motion (ω=2.95 rad/s) and wind speed 14 m/s
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Figure 6.36: The estimated aerodynamic damping for the high frequency
motion (ω=2.95 rad/s) and wind speed 20 m/s

The two dimensional local damping estimated, using the different
aerodynamic methods, at the radial position of the blade is shown in
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U∞ = 8 U∞ = 14 U∞ = 20

Quasi-Static flat 6.25 % 8.88 % 9.10 %

Garrad 6.16 % 8.27 % 8.27 %

BEM U 5.83 % 8.25 % 8.15 %

Theodorsen 6.12 % 8.25 % 8.28 %

Loewy 6.14 % 8.18 % 8.17 %

Vortex - Single 7.01 % 9.31 % 9.00 %

Vortex - Cascade 7.17 % 9.35 % 8.93 %

Table 6.18: Aerodynamic damping ratio estimated using the platform
pitch eigenfrequency.
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Figure 6.37: The quasi-static aerodynamic damping of the platform pitch
mode for the tower for all wind speed. Point values for other simulations.

Figure 6.38 for the low frequency oscillation. The wind speed is here 20
m/s. The results based on the vortex panel code has a similar shape to
the results based on Theodorsen’s function, Loewy’s function and Garrad,
but it has a higher value compared to the others.

6.10.2 Aerodynamic added mass

The virtual aerodynamic added mass does not have a large impact on
the dynamic properties of the modes investigated, and the change in the
eigenfrequency of the structure is very small. This is illustrated in Figure
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Figure 6.38: The estimated aerodynamic damping for the low frequency
(ω=0.21 rad/s) oscillation and wind speed 20 m/s

6.39 where eigenfrequency is estimated considering the change in added
mass as shown in Equation 6.15. The results from the simulations have
also shown that it is not an easy property to estimate correctly, since the
dependency is weak.
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Figure 6.39: The natural frequencies for the platform pitch and the
first tower bending mode for a floating wind turbine estimated using
Theodorsen’s theory.

6.10.3 Fatigue

One consequence of applying the wrong unsteady aerodynamic models in
fatigue analysis is an overestimate, or underestimate, of the damage to
the structure. An underestimate of fatigue damage may lead to an earlier
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failure than predicted of the wind turbine structure. A too high estimate
of fatigue damage will give a design requiring higher material cost than
necessary, and thus an increase in the cost of energy.

In this section the aim is to discuss the aerodynamic properties from
the different unsteady aerodynamic models and their effect on the esti-
mated wind turbine fatigue damage. For simplicity, it is assumed that the
damage is due to a single narrow-banded response, and that the loading
is Gaussian white noise. This is not true for an offshore wind turbine,
which will have a much more complex excitation and response spectra.

Examples of some excitation spectra are shown in Figure 6.40, which
illustrates Kaimal wind spectra, Su, at three different wind speeds; 8 m/s,
14 m/s and 20 m/s, and a JONSWAP wave spectra Sj for Tp =4 s and
Hs= 1 m. The excitation spectra from the wind is shown as it would be
seen by a fixed observer, e.g. a meteorologic measurement mast. Since the
wind turbine is rotating, the wind spectra seen by the rotating observer
on the blade will be dependent on the rotational speed. The frequency
of one rotation of the blade is 1P, and the blade passing frequency is 3P
for a three bladed rotor. The 3P excitation is included in Figure 6.41,
which illustrates the tower top response spectra, in the horizontal fore-aft
direction, for three wind speeds at one sea state.

The tower top response is modeled using the OC3 Hywind aero-elastic
structure in FAST [70]. The wind turbine is set to operate at a fixed
speed, and with a fixed blade pitch angle. For all three wind speeds
there are two main regions where the tower top response is excited, and
these two fall in to the regions around the platform pitch and the first
elastic tower bending mode. The wave spectra is the same for all three
simulations, and a small peak in response is seen around the peak period,
at 4 seconds. This is a rigid body wave induced response.

The excitation of the tower top around the eigenfrequency of the plat-
form pitch, which is at 0.034 Hz, is largest for the highest wind speeds.
The dynamic response of the first tower mode is concentrated at 0.47 Hz,
and is largest for the low wind speed, U∞ = 8 m/s. This is due to the
blade passing frequency at 3P, which in this case is close to the first tower
bending mode, and the response is amplified. At above rated, the blade
passing frequency is higher than the eigenfrequency, and the response at
the first tower bending mode is mainly due to the wave loading.

In the following discussion, the focus will be on the response of the
first elastic tower bending mode, which is narrow banded. For simplicity,
no other modal responses of the wind turbine structure are considered
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for three wind speeds.
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Figure 6.41: The tower top re-
sponse spectra for Hywind OC3
with three different wind speeds.

in the following fatigue damage calculation. The excitation force is as-
sumed broad banded. The fatigue damage discussed here is therefore not
applicable to the total damage of a realistic offshore wind turbine, but it
illustrates the effect that the unsteady aerodynamics has on the fatigue
damage due to the resonant part of the first tower bending mode. The
model assumed here is a single-degree-of-freedom (SDOF) system with a
mass Msdof , a damping coefficient, Csdof , and a stiffness Ksdof . The sys-
tem properties consists of the structural, hydrodynamic and aerodynamic
properties.

Let x(t) be the input variable, which has a Gaussian white spectra
with intensity S0. The response, y(t), will have a spectra Sy(ω):

Sy = |H(ω)|2S0 (6.42)

where H(ω) is the complex frequency response function:

H(ω) =
1

−Msdofω2 + iCsdofω +Ksdof
(6.43)
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The squared complex response function is shown in Figure 6.42. Here,
the motion-induced aerodynamic loads, with a wind speed of 8 m/s and
estimated using Theodorsen’s theory is shown. The frequency investi-
gated is that of the first tower bending mode.
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Figure 6.42: The squared com-
plex response function, |H(ω)|2
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Figure 6.43: The probability
that any peak of y(t), chosen at
random, lays in the range a to
a+ da.

The area of the squared response function, |H(ω)|2, can be approxi-
mated by the squared box shown in Figure 6.42. The width of the box
is πξωN and is often referred to as mean square bandwidth. The height
of the box is 1/C2

sdofω
2
N . An increased damping ratio will therefore give

a wider bandwidth and a reduced peak of the response function. This
simplification is useful when estimating the standard deviation of the
response which is defined as [71]:

σ2
y = 2 · S0

∫ +∞

−∞

|H(ω)|2 dω
≈ S0 · π/ (KsdofCsdof ) (6.44)

The variance of the response is inversely proportional to the damping
and stiffness of the model. Since the variance in the response is reduced
with increasing damping and stiffness, it follows that the fatigue damage
will be reduced. The fatigue damage is a result of a weakening of the
material due to repeatedly applied loads.
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To quantify the effect, it is necessary to estimate the distribution of
peaks of the response. The distribution of peaks in the response spectra
can be described as Rayleigh distribution for a narrow banded single
response with a Gaussian white noise excitation [71]:

pp(a) =
a

σ2
y

e−a2/2σ2
y , 0 ≤ a ≤ ∞ (6.45)

where pp(a)da is the probability that any peak of y(t) lays in the range
a to a + da, and σ2

y is the variance of the response, y(t). The response
here is the displacement of the tower top. The probability distribution
of the peaks of a narrow banded process, in this case the tower bending,
is shown in Figure 6.43 using the wind-structure interaction properties
estimated based on Theodorsen’s theory.

The distribution of the response can thus be found, and in order
to calculate the fatigue damage, one also needs information about the
material behaviour. A Wöhler curve, or S-N curve, is used to describe
the fatigue properties of a material in high-cycle fatigue situations, such
as an offshore wind turbine. The Wöhler curve gives the number of cycles
that a material can sustain at different stress ranges [72]:

logNi = log ā−m log Δσi (6.46)

where ni is the number of stress cycles with stress range Δσi and
Ni is the allowable number of cycles at this level of stress range. For
offshore steel structures, the DNV-RP-C203 Fatigue Design of Offshore
Steel Structures [72], gives guidance on which Wöhler curve to use.

The fatigue damage in a stochastic, narrow banded loading is esti-
mated using Palmgren-Miner summation:

D =

j∑
i=1

ni

Ni
(6.47)

The failure is expected when the accumulated damage, D is 1.
The average damage resulting from the load spectra, using the prob-

ability function pp(a) in Eq 6.45, can now be estimated as:

D =
(
v+o T

) ∫ ∞

0

1

N(Δσ)
pp(Δσ/2)dΔσ (6.48)

where N(Δσ) is the number of stress cycles until failure at the given
stress range Δσ, pp(Δσ/2) is the probability distribution of peaks (see
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Eq 6.45) and v+o is the frequency of zero crossings with positive slope.
For a Gaussian white noise excitation, this is given by:

v+o =
ωN

2π
(6.49)

The damage associated with aerodynamic loads estimated by the dif-
ferent methods are shown in Table 6.19 for the first elastic tower bending,
using m=3. The numbers are relative to the fatigue damage estimated
using the results from Theodorsen’s theory and are illustrated in Figure
6.44.

Table 6.19: The fatigue damage relative to fatigue damage estimated
using Theodorsen’s theory.

Method U∞ = 8 m/s U∞ = 14 m/s U∞ = 20 m/s

Garrad 0.70 0.76 0.77

BEM U 1.05 0.98 0.99

BEM inflow 1.14 1.22 1.18

GDW inflow 1.34 1.05 1.01

Theodorsen 1.00 1.00 1.00

Loewy 1.23 1.02 1.02

Vortex - single 0.87 0.89 0.94

Vortex - cascade 1.15 0.86 0.90

The fatigue damage is sensitive to the slope of the Wöhler curve,
which is represented by m in Equation 6.46. Here, we have used m=3
and in Appendix E we have applied m=5. It is found that an increased
value of m will increase the relative difference in fatigue damage.

Garrad’s method, which contains no unsteady aerodynamics, over-
estimates the aerodynamic damping of the first elastic tower bending.
Consequently, the fatigue damage is underestimated at all the three wind
speeds. The predicted fatigue is around 30% less compared to the fatigue
damage predicted using the Theodorsen’s theory. This is for the dynamic
response of the first tower bending mode.

The other methods align reasonably well at wind speeds above rated
wind speeds. The largest spread in fatigue damage is for the low wind
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Figure 6.44: The fatigue damage listed in Table 6.19. All values are
relative to the fatigue damage estimated using Theodorsen’s theory.

speed, where the blade passing frequency is close to the eigenfrequency
of the first tower bending mode. The models which include the returning
wake, i.e. Loewy’s theory and cascade vortex, all predict a fatigue damage
relative to Theodorsen’s theory. The three methods predict a 15-34 %
increase in fatigue damage relative to the fatigue damage predicted by
Theodorsen’s theory.

The erroneous results of the GDW method is also included in the
calculation of the fatigue damage in Figure 6.44. The fatigue damage
estimated with the modal characteristics of the GDWmodel is the highest
of all simulation models for the low wind speed.

Van der Tempel [73] studied the aerodynamic damping ratio using
Garrads method and comparing it to aerodynamic damping estimated
based on a simulation using aero-hydro-servo-elastic analysis tool. The
results are shown in Figure 6.45. All the wind turbines were bottom-fixed
wind turbines and it is the first elastic bending mode of the substructure
which is shown. Similar to the results presented in Figure 6.33, Garrad’s
theory overestimates the aerodynamic damping, compared to unsteady
aerodynamic simulation. In Figure 6.45 unsteady aerodynamics is in-
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cluded in the non-linear simulation. However, the aerodynamic damping
in van der Tempel’s results have a significant dip at above rated. This
may be related to the control system of the wind turbine.

Figure 6.45: Aerodynamic Damping of a NEG-Micon 92 NM92 turbine
estimated by van der Tempel [73]. A fixed engineering estimate, results
based on Garrad’s theory and the aerodynamic damping from non-linear
simulations are shown.

Van der Tempel [73] compared a frequency domain approach to a
time-domain approach and compared the fatigue damage using different
aerodynamic damping estimates as shown in Figure 6.46. The advan-
tage of a frequency domain simulation is that it has lower computational
time compared to a time domain simulation, however it is not easy to
include non-linearities in the frequency domain simulation. The biggest
differences in the damage calculated are not due to the unsteady aerody-
namics, but are related to the control system operating the wind turbine.

6.11 Summary and Conclusions

The aim of the wind-structure investigation was to study the effect of the
unsteady aerodynamics and the effect of thick airfoils. It is seen that the
effect of thick airfoils seems to be negligible. However, the importance of
including the returning wake, i.e. the wake due to neighbouring airfoils
and the wake returning due to rotation of the rotor, is large, especially
if the wind turbine operate with a blade passing frequency that can be a
multiple of the eigenfrequency. The unsteady aerodynamics of returning
wakes has been modeled using the Loewy’s theory and a linear cascade
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Figure 6.46: Fatigue damage estimated using Garrad’s theory compared
to fatigue damage of a time-domain simulation [73].

of airfoils modeled with the panel method.

These methods all predicted a reduced aerodynamic damping when
the oscillation period was equal to the time it takes for an airfoil to travel
the spacing distance between the airfoils, compared to the methods not
including the effect of neighbouring wakes. Comparing the aerodynamic
damping estimated using Theodorsen’s theory and Loewy’s theory, the
difference is 13 % for the high frequency oscillation and the wind speed,
U∞, is 8 m/s. In this simulation the oscillation period is close to the
time to travel one airfoil spacing. For the other simulations, the differ-
ence between the aerodynamic damping estimated using Theodorsen’s
theory and Loewy’s theory is less than 2 %. Both Theodorsen’s theory
and Loewy’s theory are frequency domain theories, using thin airfoil as-
sumption. The only difference between the two methods is that Loewy’s
theory includes the effect of returning wake.

Similarly, the single airfoil and cascade method using the panel vortex
code, also have the largest difference in aerodynamic damping for the low
wind speed (U∞ = 8 m/s) and high frequency oscillation (ω=2.95 rad/s).
The difference between the aerodynamic damping estimated using the two
panel vortex methods is 17 %, while for the other wind speeds it is 2%
or less. Since the panel vortex code includes a free wake and thickness
of the airfoil, the aerodynamic damping estimated will differ from the
results using Theodorsen’s and Loewy’s theory.

Both the frequency domain methods and the panel vortex methods
are not commonly used by engineers when doing structural analysis. The
most commonly used method is the BEM method. However, retrieving
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the local unsteady aerodynamic loads from a wind turbine simulation
program is not an easy task, since they also include dynamic inflow and
other corrections to the aerodynamic model. Two different aerodynamic
methods have been compared, the BEM method and the GDW method,
in the wind turbine simulation tool FAST. The BEM method, which is
often used by engineers for fatigue load analysis, often uses an unsteady
aerodynamic model where the wake from neighbouring airfoils and the
returning wake due to rotation are not included.

The motion-induced aerodynamic loads estimated using the panel vor-
tex code in a linear cascade configuration, is the method that probably is
giving the most accurate two dimensional loads in this comparison. The
panel vortex code includes both the thickness and the curvature of the
airfoil, as well as the wake, and in a cascade configuration the wake of
neighbouring airfoils is included. However, this is also the most time-
consuming simulation method, and the advantage over using the cascade
configuration relative to a single airfoil, is only present for simulations
where the oscillation period is close to the time it takes to travel an
airfoil spacing.

Comparing the fatigue damage results based on the panel vortex code,
the single airfoil simulation estimates 24 % lower fatigue damage com-
pared to the linear cascade simulation. Similarly, the aerodynamic loads
using Theodorsen’s theory estimates 19 % lower fatigue compared to
Loewy’s theory.

Using a wind turbine simulation tool, which estimates a too high
aerodynamic damping, will result in a calculated fatigue damage which
is too low. Since most engineers are using a BEM methods with an
unsteady aerodynamic model, which does not include neighbouring wake,
the estimated aerodynamic damping is too high for certain conditions.
Comparing the difference in fatigue damage due to the dynamic response
of the first bending mode of the tower, estimated using GDW and BEM
model in FAST, the BEM model predicts 15 % lower fatigue damage
compared to the GDW model. This result is based on the low wind
speed, U∞ = 8 m/s. The difference is most likely due to the low wind
speed, in which the GDW model is not valid.

Another unsteady aerodynamic effect not discussed here is dynamic
stall, which is not included in neither the frequency domain methods nor
in the panel vortex code. This is included in the wind turbine simulation
tool, AeroDyn. None of the methods have included the dynamics of the
control system. A static pitch and rotational speed is chosen in all analy-
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sis. Further work is recommended to include the control system into the
models as this would greatly improve the quality of the estimated aerody-
namic damping. The control system could be implemented in AeroDyn
and the vortex panel code, both for the single airfoil and the cascade
method.
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Chapter 7

Conclusion and Further

Work

There is pressure on the wind turbine industry to improve cost effec-
tiveness of offshore wind turbines. One method to reduce the cost is to
optimize the wind turbine structure, but this requires an accurate anal-
ysis tool which is computationally efficient. An offshore wind turbine
is subjected various types of time-varying loads, e.g. aerodynamics, hy-
drodynamics, soil-mechanisms, gravitation, which the analysis program
needs to consider. The scope of the present study is limited to the analysis
of the aerodynamic loads, with focus on the motion-induced aerodynamic
loads.

7.1 Summary

A vortex panel code was developed and validated as a part of this study.
Even though there exist many validated vortex codes, a new code needed
to be developed, in order to reduce the computational time by implement-
ing it on a GPU. The aim of this thesis was to investigate the unsteady
aerodynamics and the wind structure interaction of an offshore wind tur-
bine. Using the vortex code, a set of numerical tools was developed and
used to study the motion dependent aerodynamic loads of a floating wind
turbine. The result showed that the traditional approach using BEM has
its limitations if the unsteady aerodynamics is based upon a single wake
approximation, i.e. that the wake from the neighbouring airfoils, and the
wake returning after a rotation, are not considered. In this summary an
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overview of the developed panel vortex code is given, followed with some
details on the cascade method used in the panel vortex code and a short
summary of the characteristics of the wind-structure interaction.

7.1.1 Vortex code

A detailed presentation of a two-dimensional vortex panel code is given
in this thesis. The code is based on constant source and doublet elements
located on linear elements. The unsteady version of the code has a free
vortex wake and has been implemented both on a CPU and a GPU. It
has been demonstrated how a parallelized version can reduce the compu-
tational time. The reason for the speed-up is that the time consuming
part of the calculation which consists of estimating the velocities at all the
points, can be parallelized. Since the strength of all the vortex elements
is known a-priori to the velocity calculations, the velocities at each point
can be computed simultaneously, independent of the other velocities in
the analysis domain.

A GPU has thousands of threads, and the more threads used, the
more the computational time is reduced. For a low number of vortex
elements, computation may be faster on a CPU. It was shown in Section
4.5 that for a single vortex element, shedding one wake particle for each
time-step, the GPU is faster only after around 2000 time-steps. Similar
results was found for using a panel vortex code [58].

Both the CPU and the GPU code presented here is not fully opti-
mized and can be further developed for speed-ups. Applying a tree-code
algorithm to the vortex panel code and including a far-wake model will
lower the computational time even more. It should also be noted that the
time for the transfer of data back and forth to the GPU can be reduced.

The panel vortex code itself is based on a potential flow theory. This
is the same theory as Wagner, Küssner and several other analytical func-
tions for unsteady aerodynamic loads are based upon. The advantage of
the panel vortex code is however that it can consider any general motions,
e.g. pitch and plunge, while Wagner and Küssner are limited to a specific
motion. Two further limitations of the vortex panel code is that it is not
three dimensional, and does not include stall.

7.1.2 Cascade effects

The developed panel vortex code is two dimensional, and will therefore
not include any flow along the span of the wind turbine blade, or induced
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velocities due to the tip and hub vortices. However, one can include
the effect of the wakes from the other blades on the wind turbine and
the returning wakes due to rotation of the rotor using a linear cascade of
airfoils. It is found that if the oscillating frequency has an integer relation
to the blade passing frequency, it is important to consider the wake from
neighbouring airfoils and the returning wake after each rotation of the
rotor. A linear cascade simulation, with several airfoils, is much more
time-consuming than a simulation with a single airfoil, and it is therefore
not recommended to use this approach. However, it is an effect that
should be taken into consideration.

The Loewy’s function includes the effect of the neighbouring wake in
frequency domain. Another method is the GDW approach for modelling
the aerodynamic loads. These two methods will use much less compu-
tational time than the panel vortex code. The GDW method is already
implemented in some wind turbine simulation codes, e.g. FAST.

7.1.3 Aerodynamic damping

The panel vortex code is valuable because it is a more direct method of
modelling the unsteady aerodynamics compared to other methods such
as the BEM method where unsteadiness is included from semi-emprical
functions, e.g. Beddoes-Leishman function. To illustrate the importance,
the oscillating aerodynamic forces have been studied on a floating wind
turbine structure. The aerodynamic damping associated with the fore-
aft motion, both for the platform pitch mode and the first elastic tower
bending mode, is an important part of the dynamics for this structure.

There was no significant difference found when comparing the results
using different numerical tools to estimate the aerodynamic damping for
the platform pitch mode. The aerodynamic damping ratio of the platform
pitch mode is 8-9 % for situations above rated wind speeds. For the
first tower bending mode the results are very similar for wind speeds
above rated, with an aerodynamic damping ratio around 3 %. At wind
speed of 8 m/s, where the blade passing frequency is the same as the
eigenfrequency of the tower, the aerodynamic damping drops when the
neighbouring wake is considered. In the wind-structure interaction study
presented in Chapter 6, the aerodynamic damping ratio is reduced by 17
%, comparing the results based on a single airfoil analysis to the results
based on a linear cascade analysis with multiple wakes using the panel
vortex code.
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The largest limitation of this study was that the control system was
neglected. This plays an important role, especially for the simulations
where the wind speed is at rated or above, and the frequency of the os-
cillation is low, such as for the platform pitch motion. If the oscillations
have a high frequency (e.g. the eigenfrequency of the first bending mode
of the tower), the control system may not respond to the change in aero-
dynamic load, and the control system will not have a large influence on
the motion induced aerodynamic load.

7.2 Conclusion

In this study a vortex panel code is developed, and is verified using XFoil
and the analytical unsteady aerodynamic solutions. The panel vortex
code is useful for analysis of dynamic loads, and has been implemented in
a wind-structure analysis of a floating offshore wind turbine. The main
advantage of the vortex panel code is that the airfoil wake, both vortic-
ity strength and position, is included in the estimation of the unsteady
aerodynamic loads.

However, the panel vortex code has a relatively long computational
time, but the code can be speeded up. Implementing the code on a GPU,
reduces the computational time, relative to a CPU implemented version,
if there is a large number of vortex particles in the simulation.

Comparisons of the panel vortex code with analytical solutions of the
unsteady aerodynamics, such as the Wagner function, show that the un-
steady aerodynamics of a single airfoil is accurately modeled. Using a
linear cascade of multiple airfoils will include the effect of neighbouring
airfoils and their wakes, as well as the effect of the returning wake, due to
rotation of the wind turbine blades around the rotor axis. The unsteady
aerodynamic analysis using a linear cascade has been compared to results
using Loewy’s theory, which is an analytical solution that includes return-
ing wake effects. Similarly to results using Loewy’s theory, the unsteady
aerodynamic force was sensitive to situations where the oscillation period
of the airfoil was close to the time for an airfoil traveling the distance
between neighbouring airfoils.

In the wind-structure analysis a low frequency and a high frequency
oscillating motion were investigated. The frequencies were chosen to cor-
respond with the eigenfrequencies of a platform pitch mode (low fre-
quency) and the first elastic bending mode (high frequency) of a 5 MW
floating wind turbine. Several methods of estimating the unsteady aero-
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dynamics were used, and for the low-oscillating frequency they all gave
similar results. The motion induced loads due to the high-frequency oscil-
lation have a larger variation and the largest variation occurred when the
blade passing frequency was equal to the high-frequency oscillation of the
blades. For this specific situation, Loewy’s theory and the linear cascade
with panel vortex code, all predicted a lower aerodynamic damping of the
first elastic tower mode. These methods both include wakes from neigh-
bouring airfoils and the returning wakes after a rotation of the rotor. The
remaining methods; Theodorsen’s theory, single airfoil with panel vortex
code and the unsteady BEM model in AeroDyn, all predicted a too high
aerodynamic damping. As a consequence, the methods with a single air-
foil approximation, will underestimate the fatigue damage in this specific
situation.

A recommendation based on the study is to consider the unsteady
aerodynamics for attached flow included in a BEM model with care. This
is often based on an unsteady aerodynamic model with a single wake. If
the wind turbine blades have an oscillating frequency close to the blade
passing frequency, it should be investigated whether the motion-induced
aerodynamic forces are correct. This can be done using the tools such as
a vortex code or CFD.

7.3 Further Work

Much work has been put into verification of the two dimensional vortex
panel code. The limited time available for a PhD has also limited the
work that has been performed using the code. It is a very versatile code
that can be used in many applications.

7.3.1 Aerodynamics of a blade passing the tower

The change in flow around a wind turbine blade as it passes the tower has
not been considered in this work and is expected to have a different un-
steady behaviour compared to the results for the studied plunge motions
in the present work. Including this in a cascade model, and comparing
to the current model in BEM programs can give information whether or
not this is modelled correctly in the present codes.
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7.3.2 Flow control

To improve flow control, deformable blades are suggested. This means
that the shape of the airfoil will change during the operation. Since the
shape will change, the aerodynamic coefficients such as lift coefficient and
drag coefficients will change as well. The vortex code is a very interesting
option to study these kinds of situations since the method is fast relative
to CFD. Using a panel code the surface of the airfoil is included as a part
of the solution, and this gives a very flexible option for the deformable
blades.

7.3.3 Three dimensional vortex panel code

The developed vortex panel code should be extended to a three dimen-
sional vortex panel code with a free wake. This would decouple it from
the BEM totally, which is currently used for the inflow conditions.

The panel vortex code developed has not been optimized to reduce
the computational time of the simulation. One major issue is the large
number of vortex particle in the wake. A variety of methods have been
developed to reduce the computational time, and one common method
is to use a tree algorithm. This is demonstrated by Willis et al for a 3D
unsteady panel method with vortex particle wakes [55].

7.3.4 Aerodynamic damping

In this study it is shown how the aerodynamic damping, of the rotor fore-
aft motion, can be estimated. However, the method is restricted to rigid
translational motion. The platform pitch mode will have a rotational mo-
tion, and this may influence the estimated aerodynamic damping. With
a three-dimensional vortex code, the aerodynamic damping of all modes,
including elasticity, can be investigated.

Van der Tempel [73] also investigated the aerodynamic damping of
offshore wind turbines, these were however bottom fixed wind turbines.
He compared the simple quasi-steady aerodynamic damping model (see
Eq 6.31) with results from a nonlinear time-domain simulation, which
includes the control system in its calculations. The results show that the
aerodynamic damping is overestimated around rated wind speed using
the simple quasi-steady method, as illustrated in Figure 6.45. Since the
large dip is at around rated wind speed of the controller, the reason for
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the dip is likely the control system of the wind turbine. This should be
investigated further.
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[27] H. Wagner, “Über die entstehung des dynamischen auftriebes von
tragflügeln,” Zeitschrift für Angewandte Mathematik und MEchan-
ick, vol. 5, no. 1, 1925.

[28] H. G. Küssner, DVL-Jahrbuch, ch. Scwingungen von
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Appendix A

Airfoil Sections

This appendix illustrates the different airfoil sections of the NREL 5 MW
reference wind as they are modeled in the thesis and Figure A.1 shows
a comparison of all the airfoil sections. Figure A.2 illustrates the dis-
cretization of the DU 21 airfoil into panel elements. Similarly, Figure
A.3, Figure A.4, Figure A.5 and Figure A.6 shows the panel elements of
the DU 25, DU 30, DU 35 ans DU 40. The last airfoil, NACA 64, is
shown in Figure 5.4 in Chapter 5.
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Figure A.1: The airfoil sections used for the 5 MW reference wind turbine
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Figure A.2: The DU 21 airfoil divided into 101 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.
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Figure A.3: The DU 25 airfoil divided into 101 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.
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Figure A.4: The DU 30 airfoil divided into 101 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.

A-4



APPENDIX A. AIRFOIL SECTIONS

||||||||||
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|||||

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
| | | | | | | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

| | | | | |
|0

0.05

0.10

0.15

−0.05

−0.10

−0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

y

+

+

+

+

+

+
|

|

|

|
|

||

|
|||

Figure A.5: The DU 35 airfoil divided into 101 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.
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Figure A.6: The DU 40 airfoil divided into 101 panel elements. The
circled areas around the leading and trailing edge are enlarged three times.
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Appendix B

Lift Coefficients

The lift coefficient for the different airfoils as provided in the reference
document [36] for the NREL 5 MW reference wind turbine are illustrated
in the appendix.
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Figure B.1: Aerodynamic lift co-
efficient for DU40, used at airfoil
section no 4.
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Figure B.2: Aerodynamic lift co-
efficient for DU35, used at airfoil
sections no 5 and 6.
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Figure B.3: Aerodynamic lift co-
efficient for DU30, used at airfoil
section no 7.
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Figure B.4: Aerodynamic lift co-
efficient for DU25, used at airfoil
sections no 8 and 9.

B-2



APPENDIX B. LIFT COEFFICIENTS

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 5 10 15

Cl

α [deg]
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� �� ��

��
��
�� �� �� �� �� �� �� �� �� �� �� ��

��

Figure B.5: Aerodynamic lift co-
efficient for DU21, used at airfoil
section no 10.
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Figure B.6: Aerodynamic lift co-
efficient for DU25, used at airfoil
sections no 11 to 17.
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Appendix C

Wind-Structure Interaction

This appendix contains some of the results not presented in Chapter 6.
This was done to reduce the amount of results presented. In this way it
is hopefully more clear to the which results are important.

C.1 Loewy’s theory
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Figure C.1: Aerodynamic damping along the blade estimated Loewry
function and compared to Theodorsen function for the platform pitch
motion.
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Figure C.2: Aerodynamic damping along the blade estimated Loewry
function and compared to Theodorsen function for the first tower bending
frequency.

C.2 Aerodyn

The velocities and accelerations used to estimate the damping and added
mass coefficients from AeroDyn is η̇x and ¨etax.
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Figure C.3: The velocity of the blade section, η̇x, for different blade
sections compared to the preliminary velocity, η̇xp, for a wind speed of 8
m/s and the tower bending frequency.
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Figure C.4: The acceleration of the blade section, η̈x, at different blade
sections compared to the preliminary acceleration, η̈xp, for a wind speed
of 8 m/s and the tower bending frequency.

C-4



APPENDIX C. WIND-STRUCTURE INTERACTION

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50 55 60

Ca,2D [kg/ms]

time [s]
�� �� ��

��

��

��

��

��

��

��

�� ��
�� ��

��

��

��

� � �

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�� �� ��

��

��

��

��

��

��

��

��
��

��
��

��

��

��

+ + +

+

+

+

+
+

+
+

+ +
+ +

+
+

+

�� �� ��

��

��

��

��

��

��

��

��
��

��
��

��

��

��

× × ×

×

×

×

×
×

×
×

× ×
× ×

×
×

×

�� �� �� dt=0.5
+ + + dt=0.1
� � � dt=0.05
�� �� �� dt=0.01

× × × dt=0.005
�� �� �� dt=0.001

Figure C.5: Different timesteps for the computation of aerodynamic
damping in AeroDyn for a wind speed of 8 m/s.
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Figure C.6: The linear relation between the thrust force and the acceler-
ation of the rotor for steady aerodynamic conditions.
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Figure C.7: The linear relation between the thrust force and the acceler-
ation of the rotor for steady aerodynamic conditions.
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Figure C.8: The local aerodynamic damping at each blade section along
the radial distance of the blade for three different wind speeds. GDW
method is applied here.
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Figure C.9: The linear relation between the thrust force and the velocity
of the rotor for steady aerodynamic conditions.
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Table C.1: Integrated Aerodynamic Properties

Platform pitch 8 m/s 14 m/s 20 m/s

BEM: Ca 1.30e+09 1.69e+09 1.72e+09

GDW: Ca 1.34e+09 1.71e+09 1.69e+09

BEM: ξ 5.47 7.10 7.22

GDW: ξ 5.64 7.18 7.09

BEM: Mva -1.56e+08 -1.64e+08 -1.48e+08

GDW: Mva 4.65e+06 3.45e+08 2.06e+08

BEM: M% -0.28 -0.29 -0.27

GDW: M% 0.01 0.62 0.37
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Appendix D

Platform pitch motion

The aim of this appendix is to estimate the rotational center of the plat-
form pitch motion that is used in Chapter 6. We will consider a 2 DOF
system with surge and pitch. This is a simplified calculation of a very
complex system. The calculations in this chapter will be performed using
the OC3 Hywind structure as described in [66] and the 5 MW rotor as
described in [36].

[M+A] �̈x+C�x = �f (D.1)

where M is the mass matrix, A is the added mass matrix, C is the
restoring matrix and �f is the excitation forces.

First we will present the model, then estimate the mass matrix and
the hydrodynamic matrices, finally we will estimate the platform pitch
eigenfrequency and rotational center.

D.1 Model description

D.1.1 Tower

The mass distribution along the tower is shown in Table D.1. This gives
a center of gravity 43.4 m above SWL. The total mass of the tower is 250
Te.

D.1.2 Rotor and nacelle

The nacelle weighs 240 Te and the rotor weighs 110 Te [36]. The hub
height is 90 m above SWL, and this is used as the distance for the center
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Length Elevation Mass density

fraction [m] [kg/m]

0 10 4667.00

0.1 17.76 4345.28

0.2 25.52 4034.76

0.3 33.28 3735.44

0.4 41.04 3447.32

0.5 48.80 3170.40

0.6 56.56 2904.69

0.7 64.32 2650.18

0.8 72.08 2406.88

0.9 79.84 2174.77

1 87.60 1953.87

Table D.1: Distributed tower properties [66]

of mass for both rotor and nacelle.

D.1.3 Floating platform

The floating platform has a cylindrical shape and a draft of 120 m, and is
connected to the tower at 10 m above SWL. Thus, the total length of the
platform is 130 m and the total mass is 7466 Te, which consists of steel,
wet ballast and dry ballast. The specific weights of these components
are not given in the reference documentation [66], but they were later
estimated by Myhr et al [67]. Table D.2 shows the estimated weights,
and also typical densities for concrete as dry ballast, and water as wet
ballast. Using these parameters the length of each section is calculated,
with the dry ballast at the bottom and the wet ballast on top. The steel
part of the platform encapsulates the ballast, and the weight of the steel
is assumed uniformly distributed along the platform.

The cylindrical platform has not a constant diameter, but has a small
diameter (6.5 m) at the top and a larger diameter at the bottom (9.4 m).
The two sections are connected by a tapered section, which starts at 4 m
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Mass Length Density

[Te] [m] [kg/m3]

Steel 1 666.3 130 7 850

Wet ballast 2 700 38.0 1 025

Dry ballast 3 100 17.9 2 500

Table D.2: Mass and lengths of the ballast in the OC3 Hywind platform

below SWL and ends at 12 m below SWL.

D.2 Mass matrix

The mass matrix, M, is:

M =

⎛
⎝ M M · zcog

M · zcog Iswl

⎞
⎠ (D.2)

where M is the mass, zg is the location of the Center of Gravity
(COG) and Ip is inertia about COG. The mass, distance to COG and
inertia about SWL are shown in Table D.3.

Component Mass zcog Iswl

Te [m] [kg m2]

Tower 250 43.4 5.89 · 108
Nacelle & Rotor 350 90 2.84 · 109
Platform, steel 1 666 -55 7.39 · 109
Platform, wet ballast 2.7 -83.2 1.90 · 1010
Platform, dry ballast 3.1 -111.1 3.83 · 1010

Table D.3: The parameters used to estimate the mass matrix for the OC3
Hywind
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The mass matrix for the OC3 Hywind:

M =

⎛
⎝ 8.07 · 106 −6.18 · 108

−6.18 · 108 6.81 · 1010

⎞
⎠ (D.3)

D.3 Hydrodynamic properties

D.3.0.1 Added mass matrix

The added mass matrix, A consist of the following elements:

A =

⎛
⎝ A11 A15

A51 A55

⎞
⎠ (D.4)

which is estimated as:

A11 �
∑

A2Di(zti − ztb) (D.5)

A55 �
∑

A2Di

[
1

3
(z3ti + z3tb)

]
(D.6)

A15 = A51 � 1

2

∑
A2Di(z

2
ti − z2tb) (D.7)

where subscript i is the section number, Li is the section length, zti is
the section top and zbi is the section bottom. The two dimensional added
mass for section i, A2Di, for a cylinder is:

A2Di = πρ(Di/2)
2 (D.8)

where ρ is the sea water density and Di is the diameter of the section.

The added mass matrix for the OC3 Hywind platform is:

A =

⎛
⎝ 8.22 · 106 −5.11 · 108

−5.11 · 108 4.10 · 1010

⎞
⎠ (D.9)

D.3.0.2 Restoring matrix

It is only the pitch motion that has a hydrostatic part in this case:

D-4



APPENDIX D. PLATFORM PITCH MOTION

C =

⎛
⎝ 0 0

0 C55

⎞
⎠ (D.10)

where

C55 = ρgIwl + ρgVbzB −Mgzg

where g is the gravitation, Vb is the displaced volume (8 352 m3), zB
is the distance to the center of buoyancy (-54.2 m), Iwl is the inertia at
the water line area given by Iwl = π(D/2)4/4 = 87.6 m4. The hydrostatic
stiffness for the OC3 Hywind is C55 = 1.51 kg m2/s2

D.4 Eigen-values

It is assumed that there is no damping of the system in this simplified
calculation.

K = [M+A]−1[C] (D.11)[
�V m �Dm

]
= eig (K) (D.12)

ωn =
√
Dm (D.13)

zrot = −V m(1, :)

V m(2, :)
(D.14)

D.5 Results

The resulting eigenfrequency for the pitch is estimated as 0.22 rad/s,
which is an eigenperiod of 28.4 s. This is similar to the platform pitch
eigenfrequency used in Chapter 6, which is 0.21 rad/s.

The rotational center is located at -69.3 m from the SWL. The global
cog of the structure is at -76.6 m below SWL.
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Appendix E

Sensitivity of fatigue

The fatigue calculation in Section 6.10.3 is based on m=3 for the Wöhler
curve. In this appendix the results are shown for m=5, to illustrate the
sensitivity to the material used.

Table E.1: The fatigue damage relative to fatigue damage estimated using
Theodorsen’s theory.

Method U∞ = 8 m/s U∞ = 14 m/s U∞ = 20 m/s

Garrad 0.55 0.63 0.64

BEM U 1.08 0.97 0.98

BEM inflow 1.24 1.40 1.31

GDW inflow 1.62 1.08 1.02

Theodorsen 1.00 1.00 1.00

Loewy 1.42 1.04 1.03

Vortex - single 0.79 0.82 0.90

Vortex - cascade 1.27 0.78 0.85
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Figure E.1: The fatigue damage listed in Table E.1. All values are relative
to the fatigue damage estimated using Theodorsen’s theory.
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