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Accurate knowledge of the thermodynamic properties of zero-temperature, high-density quark matter
plays an integral role in attempts to constrain the behavior of the dense QCD matter found inside neutron-
star cores, irrespective of the phase realized inside the stars. In this Letter, we consider the weak-coupling
expansion of the dense QCD equation of state and compute the next-to-next-to-next-to-leading-order
contribution arising from the non-Abelian interactions among long-wavelength, dynamically screened
gluonic fields. Accounting for these interactions requires an all-loop resummation, which can be performed
using hard-thermal-loop (HTL) kinematic approximations. Concretely, we perform a full two-loop
computation using the HTL effective theory, valid for the long-wavelength, or soft, modes. We find
that the soft sector is well behaved within cold quark matter, contrary to the case encountered at high
temperatures, and find that the new contribution decreases the renormalization-scale dependence of the
equation of state at high density.
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Introduction.—The equation of state (EOS) of dense
deconfined quark matter (QM) can be determined from the
theory of strong interactions, quantum chromodynamics
(QCD), in terms of a perturbative series in the strong
coupling constant αs [1–4]. This weak-coupling expansion
plays a significant role in constraining the EOS of neutron-
star (NS) matter [5–7] and, in particular, is a crucial
ingredient in attempts to determine the physical phase of
matter inside NS cores [8].
The last fully determined perturbative order for the EOS

of cold (i.e., zero-temperature), unpaired QM originates
from a next-to-next-to-leading order (N2LO) calculation
by Freedman and McLerran in the late 1970s [1,2] (see also
[9,10] for MS results), later supplemented by nonzero-
quark-mass [3,11] and nonzero-temperature effects [12]. To
extend this result to N3LO, orOðα3sÞ in the strong coupling,
several technical and conceptual challenges must be over-
come. Besides the self-evident complexity related to four-
loop Feynman graphs, the calculation is sensitive to the
dynamical screening of long-wavelength chromoelectric
and chromomagnetic fields, which requires going beyond a

fixed loop order in the perturbative calculation. Indeed,
starting at N2LO, each successive order in αs necessitates
the resummation of an infinite number of diagrams.
In stark contrast to the realm of high temperatures T [13–

15], the inability to formulate an effective-theory description
for the long-wavelength modes and perform the required
resummation has been one of the major hurdles preventing
an N3LO determination of the cold-QM EOS. Here, we
finally report the results from completing this resummation,
taking a significant step towards obtaining the full N3LO
pressure. We work in the limit of vanishing quark masses,
which is a very good approximation at the densities where
the weak-coupling expansion displays convergence [3].
In electromagnetic plasmas, dynamical screening leads,

e.g., to the well-known physics of Landau damping and to a
nonzero plasma frequency [16]. Analogous phenomena
also occur in strongly interacting matter (for a recent
review, see [17]). The crucial difference between quantum
electrodynamics (QED) and QCD is that the screened
modes self-interact only in the latter, leading to uniquely
non-Abelian physics. Interaction corrections for the
screened modes have been discussed using the hard-
thermal-loop (HTL) effective theory in the contexts of,
e.g., plasmon damping and frequency [18–21], heavy quark
diffusion [22,23], thermal photon production [24], and
transport [25,26] in a high-temperature quark-gluon plasma
(QGP), as well as for the neutrino interaction rate in an
electroweak plasma [27].
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Based on observations made at high temperatures, it has
been conjectured that soft modes exhibit particularly poor
convergence and drive the breakdown of the perturbative
series of quantities like the pressure in thermal field theory
[28–30]. Indeed, reorganizing the weak-coupling expan-
sion in the soft sector of QCD beyond a minimal resum-
mation has been seen to dramatically improve the
convergence of the QGP EOS [31–33]. This raises the
obvious question of whether a similar approach should be
taken also in studying high-density QM (see [34] for an
attempt in this direction).
In the context of cold QM, HTL (or hard dense loops

(HDL) [35,36]) methods were introduced already in the
1990s [37], and have since been used to study, e.g.,
thermodynamic quantities [38–40] and non-Fermi-liquid
behavior [35,41] at the one-loop level. More recently, it was
shown in Ref. [12] that the HTL effective theory can be
used to systematically resum soft contributions in the weak-
coupling expansion of the EOS also at vanishingly small
temperatures. In each of these cases, however, the calcu-
lations were performed at low enough order that they were
not yet sensitive to the interactions between the soft modes.
In this Letter, we present results from a two-loop HTL

calculation that fully accounts for the contributions of the
screened field modes and their interactions to the N3LO
EOS of high-density, zero-temperature QM. This consti-
tutes the first calculation fully accounting for the inter-
actions between soft gluons in QCD thermodynamics:
while multiple works exist discussing two- or three-loop
HTL thermodynamics at high temperatures [42–44], these
works all rely on expansions of the HTL diagrams in
powers of thermal masses and thus do not perform the full
resummation needed in our case. The details of the
calculation presented here are provided in a companion
paper [45]. Additionally there, we lay out a road map
showing how further improvements to the expansion can be
achieved based on our new quantitative understanding of
the interplay between the soft and hard field modes.
Structure of the weak-coupling expansion.—The field

modes affected by dynamical screening are soft, with wave
number k≲mE, where mE ∼ α1=2s μq stands for the related
Debye mass scale and μq for the quark-number chemical
potential. At N3LO, the EOS of cold QM possesses the
schematic structure

p ¼ pFD þ αsph
1 þ α2sph

2 þ α3sph
3

þ α2sps
2 þ α3sps

3

þ α3spm
3 ; ð1Þ

where pFD is the pressure of a free Fermi gas of quarks
while the other terms are interaction corrections arising
from modes of different scales. Terms on the first line arise
from hard modes with k ∼ μq and can be computed through
a naive loop expansion (contributing as ph

i ∼ μ4q); terms on

the second line arise from soft modes with k≲mE and their
interactions within the HTL theory (α2sps

i ∼m4
E); and the

sole term on the third line arises from interactions between
the soft and hard modes, requiring a partial HTL resum-
mation (α3spm

3 ∼ α2sm2
Eμ

2
q). How these contributions appear

from the perspective of full QCD four-loop diagrams is
summarized in Fig. 1 and the corresponding caption. The
complete N3LO diagrammatics associated with contribu-
tions arising from different momentum regions is also
discussed in considerable detail in Sec. I of [45].
The above division between soft and hard modes is not

unique, as there exists an ambiguity related to the region of
semisoft momenta, satisfying mE ≪ k ≪ μq. Technically,
this ambiguity manifests in ultraviolet (UV) divergences in
the computation of ps

i that cancel against corresponding
infrared (IR) divergences in ph

i (as well as mixed UV-IR
divergences in pm

3 at N3LO). This renders these coefficients
dependent on a factorization scale Λh, which will be
canceled in the sum of the different contributions. The
precise nature of the factorization scale Λh depends on the
regularization method employed, and it will not in general
be a simple cutoff. Combining the terms with logarithmic
dependence on Λh leads then to terms that are enhanced by
logarithms of the form lnðmE=μqÞ ∼ lnðα1=2s Þ. Each semi-
soft loop momentum can produce one such logarithm [4],
so that at the N3LO level we have the decomposition

FIG. 1. An example of how different kinematic regions con-
tribute to the cold-QM EOS at N3LO: (i) When the momentum
flowing through a gluon line in a four-loop Feynman graph
becomes soft, inserting additional self-energy corrections on the
said line does not affect the order of the diagram. (ii) The soft
gluon line can be resummed within the HTL theory, producing
the effective propagator denoted by a thick wavy line and leading
to a three-loop “mixed” contribution (part of pm

3 ) if the other
gluon momenta are hard. (iii) If the other independent gluon
momentum in the graph becomes soft, then the other gluon
propagators and interaction vertices need to be dressed with
additional loops as well, giving rise to (iv) the fully soft HTL
contribution ps

3, including resummed HTL vertices.
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ph
2 þ ps

2 ¼ pLL
2 ln αs þ pconst

2 ;

ph
3 þ ps

3 þ pm
3 ¼ pLL

3 ln2αs þ pNLL
3 ln αs þ pconst

3 ; ð2Þ

where the acronyms “LL” and “NLL” refer to the leading
and next-to-leading logarithms, respectively. Of these
coefficients, pLL

3 was originally determined in Ref. [4]
although note that due to a simple computational error the
sign of the coefficient reported there is incorrect [46].
In this Letter, we determine the coefficient ps

3 in the
above. This contribution is obtained by summing the three
HTL diagrams displayed in Fig. 2, and constitutes the only
term up to N3LO where the self-interactions of soft modes
appear. While α3sps

3 does not amount to a full order in the
weak coupling expansion of the EOS—for that one would
need both the α3sph

3 and α3spm
3 coefficients—it is a physi-

cally well-defined and distinct contribution to the quantity,
which at least at high temperatures plays an important role
in limiting the convergence of the perturbative series [29].
We leave the technical details of our calculation to a

companion paper [45]. In short, the computation starts by
analytically separating the divergent contributions of the
diagrams in Fig. 2 from their finite parts. The divergent
terms are found to be generally more amenable to analytic
treatment, while multidimensional numerics are required
mainly in the evaluation of the finite parts. The technical
details of several different parts of the calculation are quite
involved and necessitate the development of several new
methods, which are explained in full in Ref. [45], including
its extensive Appendixes. Here, however, we proceed
directly to analyzing the structure and properties of the
final result of the computation.
Results.—We work consistently in dimensional regulari-

zation in d ¼ 3 − 2ϵ dimensions, wherein the factorization
scale Λh mentioned above Eq. (2) appears through the
integration measure ½eγEΛ2

h=ð4πÞ�ϵd4−2ϵK, where γE is the
Euler-Mascheroni constant. The contributions ps

2 and p
s
3 in

Eq. (1) then obtain the forms

α2sps
2 ¼

dAm4
E

ð8πÞ2
�
mE

Λh

�
−2ϵ

�
pNNLO
−1
2ϵ

þ pNNLO
0

�
; ð3Þ

α3sps
3 ¼

αsNcdAm4
E

ð8πÞ2
�
mE

Λh

�
−4ϵ

�
p−2

ð2ϵÞ2 þ
p−1

2ϵ
þ p0

�
; ð4Þ

where the former term originates from the leading-order
HTL pressure and the latter from the graphs in Fig. 2. Here,
Nc stands for the number of colors and dA ¼ N2

c − 1 for the
number of gluons associated with SU(Nc). Finally, the
T ¼ 0 screening mass, reproduced here for the case of
multiple massless quark flavors with chemical potentials
μf, reads m2

E ¼ ð2αs=πÞ
P

f μ
2
f.

The values of all coefficients appearing in the above
results are given in Table I. The value of p−2 dictates the
value of the coefficient pLL

3 , first determined in Ref. [4]
using a different regularization scheme; this correspon-
dence is explained in detail in Appendix E of the
companion paper [45]. An interesting detail visible in
Eqs. (3) and (4) is that both the N2LO and N3LO
expressions depend on the quark chemical potentials only
through the parameter mE. This is a direct consequence of
the HTL kinematics wherein all the momenta k flowing in
the graphs are assumed parametrically smaller than the
chemical potentials μf. In applying the dimensional-regu-
larization scheme, however, we extend the integration
region to infinity, leading to the UV divergences 1=ϵ2

and 1=ϵ in the results. These terms are not true UV
divergences of the underlying quantum field theory, even-
tually canceled by renormalization but appear because of
the kinematic approximations made. They will, by con-
struction, cancel in the manner described above Eq. (2).
To extract the finite N3LO contribution to the pressure,

Eq. (4) can be expanded in powers of ϵ to yield

α3sps
3 ¼

αsNcdAm4
E

ð8πÞ2
�
p−2

4ϵ2
þ p−1 − 2p−2 lnðmE=ΛhÞ

2ϵ

þ p0 − 2p−1 lnðmE=ΛhÞ þ 2p−2ln2ðmE=ΛhÞ
�
:

ð5Þ

The terms on the second line constitute our final result, i.e.,
the soft Oðα3sÞ contribution to the EOS of cold and
dense QM.
The convergence properties of the perturbative series can

be analyzed by studying the relative magnitudes of the
finite Oðϵ0Þ coefficients in the weak-coupling expansion of
the pressure, including further splitting each loop order into

FIG. 2. The two-loop HTL diagrams contributing to the N3LO
pressure of cold and dense QM. Note that diagrams with
resummed fermionic lines are not needed at any finite order in
αs as long-wavelength fermionic modes are Pauli blocked at zero
temperature.

TABLE I. List of numerical values for the coefficients in
Eqs. (3) and (4). Note that our normalization conventions for
the constants here differ slightly from those used in the
companion paper [45].

pNNLO
−1 1

pNNLO
0

1.17201
p−2 11=ð6πÞ
p−1 1.50731(19)
p0 2.2125(9)
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the contributions from different momentum scales. For
simplicity, we restrict ourselves here to β-equilibrated
three-flavor QM, corresponding to equal chemical potentials
for the (here massless) up, down, and strange quark flavors,
μf ¼ μq ¼ μB=3, where μB is the baryon chemical potential.
In Fig. 3 (top), we show the different contributions as
functions of the coupling αs. To minimize the ambiguity in
the division of modes to the hard and soft sectors, we have
fixed the value of the factorization scale Λh using the
principle of minimal sensitivity (PMS) [47], dp=dΛh ¼ 0,
leading to ΛPMS

h ¼ exp½−p−1=ð2p−2Þ�mE. The hard contri-
butions also depend on the MS renormalization scale Λ̄,
which we vary over the range Λ̄ ¼ f1; 2; 4g × μq.

For moderate couplings αs ≲ 0.4, the dominant correc-
tion to the pressure is the NLO term αsph

1 arising from hard
modes. At larger couplings, the N2LO hard correction α2sph

2

begins to dominate, signaling the breakdown of the
perturbative series. At these values of the coupling, the
leading-order contribution from soft modes α2sps

2 is very
small, and while the soft interaction correction α3sps

3 is
significantly larger, it still remains subdominant to the hard
corrections. Therefore our results demonstrate that soft
contributions do not always drive the breakdown of the
weak-coupling expansion, contrary to the standard lore. In
fact, α3sps

3 is the first positive correction in the perturbative
series, thus somewhat improving the convergence of the
expansion.
It is very interesting to contrast these cold-QM results to

earlier hot-QGP results. As the lower panel of Fig. 3
demonstrates, the converge of the pressure expansion is
vastly inferior at high temperatures, which has in fact
driven the extensive development of resummation schemes
based on the HTL [50,51] and electrostatic-QCD [32]
effective theories. Another qualitative difference seen in
Fig. 3 is that the soft corrections at high-T are significantly
larger than the hard ones, in stark contrast to the high-
density results.
Using the two-loop running of the strong coupling

αsðΛ̄Þ, we finally present in Fig. 4 the full QM pressure
as a function of μB. This represents the state-of-the-art
perturbative result for the quantity, superseding earlier
works such as Refs. [1–4]. In addition to including scale
variation in Λ̄, we additionally display the variation of Λh,

FIG. 3. Relative sizes of different contributions to the pressures
of cold QM and hot QGP [14,48,49]. The bands around the α2sph

2 ,
α2spm

2 , α
5=2
s pm

5=2, and α3spm
3 terms arise from varying the renorm-

alization scale Λ̄ ¼ f1; 2; 4g × μq (for cold QM) and Λ̄ ¼
f1; 2; 4g × πT (for hot QGP). The mixed terms αispm

i in the
high-T expansion are defined as those originating from (hard)
corrections to the matching parameters appearing in the soft
terms. Note that the contributions associated with the ultrasoft
scale αsT present at nonzero T are not shown in the figure. The
factorization scale between the soft and hard sectors is fixed to the
cold-QM PMS value, ΛPMS

h ≈ 0.275mE, in both cases. On the
axes, we show the values of αs corresponding to where mE ¼ πT
and mE ¼ μq ¼ μB=3, marking the points at which the hierarchy
between the hard and soft scales becomes inverted.

FIG. 4. A comparison between the state-of-the-art N3LO EOS
of cold QM and the corresponding N2LO result, given as
functions of the baryon chemical potential μB, The three colors
correspond to the renormalization-scale variation in the hard
sector with Λ̄ ¼ XμB=3. The solid lines in the N3LO result
correspond to fixing the factorization scale Λh to the PMS scale,
while the filled bands result from varying Λh by a factor of two in
both directions about the PMS scale.
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to be canceled upon the determination of the α3spm
3 and

α3sph
3 terms, as filled bands representing the choices

Λh ¼ f1=2; 1; 2gΛPMS
h . The solid lower line corresponds

to the central value Λh ¼ ΛPMS
h . We note that for fixed μB,

the pressure is always somewhat higher and more tightly
constrained than the corresponding N2LO result. In this
context, it is important to note that a straightforward
analytical calculation shows that the PMS value for Λh

also maximizes the scale variation with Λ̄ of our new result.
Conclusions and discussion.—In this Letter, we have

reported results from a new state-of-the-art calculation of
the EOS of cold and dense QM that treats the soft screened
modes to N3LO accuracy. This places the zero-temperature
result nearly on par with its high-temperature counterpart,
which is known up to but not including the hard contri-
bution. From Fig. 4, we observe that in stark contrast to
the high-temperature case, the perturbative terms from
the soft sector appear to converge rather well for cold
QM. This can be attributed to two crucial differences
between dynamical screening in cold and hot matter. First,
due to the Bose enhancement of long-wavelength modes at
nonzero temperature, the soft sector is expanded in powers
of g ¼ ffiffiffiffiffiffiffiffiffiffi

4παs
p

, rather than in integer powers of αs.
Additionally, the coefficients of the expansion are seen
to take significantly smaller values in cold QM, perhaps
due to the more moderate screening effects. This suggests
that perturbation theory may be much more powerful for
extracting the properties of cold QM than it is for hot QGP.
We furthermore emphasize that our results are independent
of the many color-superconducting phases that may be
present in cold QM since only gluons with nonpertuba-
tively small energies and momenta ∼ expð−#=gÞ receive
corrections to their screening from quark pairing [52,53].
Hence, no changes to the EOS appear at any finite order
in αs.
As always in high-order loop calculations, one may

observe novel and interesting structures emerge. Here, one
such structure arises from the analytical computation of p−2
and pLL

3 , which we find to be closely related to the β
function of pure gauge theory. We speculate that this must
be so because the same semisoft gluonic modes give rise to
both the UV divergence of the (pure-glue) HTL theory and
to the leading-logarithmic contribution to the pressure [54].
It may be that this connection can be used to determine the
leading-logarithmic contributions at higher orders, but we
leave a detailed inspection of this issue for future work.
Lastly, we note that our new soft contribution α3sps

3

pushes the pressure to higher values at a given fixed μB,
thus reducing the scale-variation error and pushing the
result more towards the pressure of a gas of free quarks. We
note that this is consistent with the picture emerging from
an empirical determination of the EOS using astrophysical
observations together with perturbative-QCD and nuclear-
theory calculations [6,8]. In these works it has been
repeatedly seen that the EOS continues a trend set by

the perturbative calculation even at densities where this
computation displays large uncertainties related to the
truncation of the weak-coupling expansion. Whether
the increasing trend continues upon the determination of
the next unknown term in the expansion, α3spm

3 , will be very
interesting to investigate.
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