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DD̄∗ scattering and χc1(3872) in nuclear matter
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We study the behavior of the χc1(3872), also known as X (3872), in dense nuclear matter. We begin from a
picture in vacuum of the X (3872) as a purely molecular (DD̄∗-c.c.) state, generated as a bound state from a
heavy-quark symmetry leading-order interaction between the charmed mesons, and analyze the DD̄∗ scattering
T matrix (TDD̄∗ ) inside of the medium. Next, we consider also mixed-molecular scenarios and, in all cases, we
determine the corresponding X (3872) spectral function and the DD̄∗ amplitude, with the mesons embedded in
the dense environment. We find important nuclear corrections for TDD̄∗ and the pole position of the resonance, and
discuss the dependence of these results on the DD̄∗ molecular component in the X (3872) wave function. These
predictions could be tested in the finite-density regime that can be accessed in the future CBM and PANDA
experiments at the Facility for Antiproton and Ion Research (FAIR).
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I. INTRODUCTION

The new quarkonium revolution started in 2003 with the
discovery of the X (3872) (recently renamed as χc1(3872)
[1]). It was first observed in B± → K±π+π−J/ψ decays by
Belle [2], and subsequently confirmed by BaBar [3], CDF
[4–6], D∅ [7], LHCb [8,9], and CMS [10] experiments. The
spin-parity quantum numbers JP = 1++ were extracted at the
8σ level in 2013 from the high-statistics measurements of the
two-pion mode performed in the LHCb experiment [11]. A
distinctive feature of the X (3872) is that the ρJ/ψ and ωJ/ψ
branching fractions are similar. This points to an isospin sym-
metry violation [12], which together with the large disparity
between ω and ρ meson widths provides a natural explanation
of the observed ρJ/ψ to ωJ/ψ decay ratio [13,14].

The X (3872) is one of the most studied exotic mesons
with a cc̄ content. This state lies extremely close to the
D0D̄∗0 threshold, and its (Breit-Wigner) width has been re-
cently measured as � = 1.39 (24)(10) MeV [15] or � =
0.96 (19)(21) MeV [16] in two different works by the LHCb
Collaboration. It can be produced via weak decays of B
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mesons, that include two- (referred to as ρJ/ψ as it orig-
inates from ρ) and three-pion (named ωJ/ψ as it comes
from ω) modes, or 	b baryons, as well as in charmonia
radiative decays and through lepto- or photoproduction. In
addition, exhaustive sensitivity studies for width and line-
shape measurements of the X (3872) have been carried out
for the reaction pp̄ → J/ψρ0 with the PANDA experiment
at the Facility for Antiproton and Ion Research (FAIR) [17],
and the possibilities of X (3872) photoproduction off the nu-
cleon have also been studied [18,19].

In spite of all this experimental progress, the nature of the
X (3872) is still elusive. From the point of view of constituent
quark models, the most natural possibility for the X (3872)
is a 2 3P1 cc̄ charmonium configuration,1 i.e., the χc1(2P)
state. However, the quark model calculations give a value for
the mass of this state higher than the experimental one (see,
for example, Refs. [20–22]). Moreover, the isospin symmetry
violation is difficult to explain using a simple cc̄ model. Thus,
new interpretations have been put forward and for example it
has been argued that the X (3872) might be a compact diquark
and antidiquark (tetraquark) state [23–25], or suggested it
could be an example of a loosely bound hadron molecule (see,
for example, Refs. [12–14,26–28]). The vicinity to the D0D̄∗0

threshold, its large decay rate to this channel, together with
a natural explanation of the isospin symmetry violation have

1A heavy quark-antiquark bound state, characterized by the radial
number n, the orbital angular momentum L, the spin s, and the total
angular momentum J , is denoted by n 2s+1LJ . Parity and charge con-
jugation are given by P = (−1)L+1 and C = (−1)L+s, respectively.
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made this X (3872) model quite popular. Also, other inter-
pretations include hadrocharmonium [29], a mixture between
charmonium and exotic molecular states [30–32]. or some
relation with a X atom, which is a D±D∗∓ composite system
with positive charge conjugation and a mass of ≈3880 MeV,
formed mainly due to the Coulomb force [33]. For a detailed
discussion of the current situation, we refer the reader to the
recent reviews [34–41] and references therein, where results
from several lattice QCD simulations [42–53] can be also
found.

Most of the X (3872) interpretations are based on the anal-
ysis of the charmonium spectrum and the comparison with the
branching ratios for two- and three-body decays. However, the
production of exotic charmonium in pp reactions or relativis-
tic heavy-ion collisions (HiCs) has become a matter of recent
interest as the production yield of these exotic hadrons could
reflect their internal structure.

The high prompt production cross section of the X (3872)
measured for pp at CDF [5] and by the CMS Collaboration
[10] has cast doubts on its possible interpretation as a D0D̄∗0

molecule, since it was argued that the production of a weakly
bound state should be strongly suppressed in high-energy
collisions [54] (see also Ref. [55]). However, this finding has
been put into question in Ref. [56], showing that the estimates
for the cross sections using the molecular approach are con-
sistent with the CDF and CMS measurements by an adequate
election of the ultraviolet (UV) cutoff [56], a statement that
has been in turn criticized in Ref. [57]. Also, Ref. [58] ques-
tioned the production mechanism of the X (3872) shown in
Ref. [54], while conjecturing a new mechanism. The contro-
versy has still continued in Ref. [59], where it was shown
that the prompt X (3872) cross section at hadron colliders is
consistent with those experimentally observed at CDF and
by CMS. This was concluded thanks to the derivation of a
relation between the prompt X (3872) cross section and that
of a charm-meson pair, taking into account the threshold en-
hancement from the X (3872) resonance. More recently, the
production rates of promptly produced X (3872) relative to
the ψ (2S) as a function of the final state particle multiplicity,
obtained recently at LHCb, are explained within a comover
interaction model if the X (3872) is a tetraquark [60]. How-
ever, this result is again questioned in Ref. [61], as it is argued
that the breakup cross sections are not well approximated
by a geometric cross section inversely proportional to the
binding energy of the X (3872), as assumed in Ref. [60]. As
a consequence, a simple modification of the comover model
will give excellent fits to the LHCb data using parameters
consistent with X (3872) being a loosely bound charm-meson
molecule. Thus, there is still an ongoing debate on the nature
of the X (3872) coming from the analysis of pp collisions.

Another possible way to gain some insight about the na-
ture of X (3872) is to analyze its behavior for the extreme
conditions present in HiCs at RHIC and LHC energies. The
ExHIC Collaboration [62–64] has shown that, within a co-
alescence model, the molecular structure for the X (3872)
implies a production yield much larger than for the tetraquark
configuration, in particular if one also takes into account the
evolution in the hadronic phase [65,66]. This is due to the
fact that molecules are bigger than tetraquarks and, hence, the

production and absorption cross sections in HiCs are expected
to be larger. This was actually shown in Ref. [66], where the
time evolution of the X (3872) abundance in the hot hadron gas
was obtained, based on all the possible hadronic reactions for
the production of X (3782) of Ref. [66,67]. More recently the
nature of X (3872) in HiCs has been studied not only within
instantaneous coalescence models [68,69], but also using a
statistical hadronization model [70] or by means of a thermal-
rate equation approach [71]. In those studies it is advocated
that the quantitative description for a series of standard HiC
observables, such as particle yields or the transverse spectra,
might shed some light on the nature of the X (3872).

The studies of the production of X (3872), however, do
not consider the possible in-medium modification of the hot
hadronic phase. Only recently, the behavior of the X (3872) in
a finite-temperature pion bath has been studied assuming this
resonance to be a molecular state generated by the interaction
of DD̄∗ + c.c. pairs and associated coupled channels [72].
The X (3872) develops a substantial width, of the order of a
few tens of MeV, within a hot pionic bath at temperatures
100–150 MeV, whereas its nominal mass moves above the
DD̄∗ threshold.

In the present work we address the behavior of X (3872)
in a nuclear environment, with the objective of analyzing the
finite-density regime that can be accessed in HiCs and the fu-
ture experiments at FAIR. An early study of the D∗

s0(2317) and
theorized X (3700) scalar mesons in a nuclear medium was
performed in Ref. [73], already showing that the experimental
analysis of the properties of those mesons is a valuable test
of the nature of the open and hidden charm scalar resonances.
More recently, the in-medium mass shift of the X (3872) was
obtained using QCD sum rules in Ref. [74], revealing that the
mass of the resonance is considerably affected by the nuclear
matter.

We begin here from a picture of the X (3872) as a molec-
ular DD̄∗ + c.c. state, generated as a bound state from the
leading-order interaction of the D and D̄∗ mesons, which is
constrained by heavy-quark spin symmetry (HQSS) [75–78].
HQSS predicts that all types of spin interactions vanish for
infinitely massive quarks, that is, the dynamics is unchanged
under arbitrary transformations in the spin of the heavy
quark. As a consequence, open charm pseudoscalar and vector
mesons become degenerate in the infinite mass limit. We
then implement the changes of the D and D̄∗ propagators in
nuclear matter and obtain the in-medium X (3872) scattering
amplitude and the corresponding X (3872) spectral function.
Later on, we consider generalizations of the DD̄∗ interaction,
allowing for scenarios in which the X (3872) is not a purely
molecular state, but instead a compact state, and we also study
mixed scenarios. In this way, we extract the modification of
the mass and the width of X (3872) in nuclear matter for
different situations, in view of the forthcoming results on
charmed particles in HiCs in the CBM experiment at FAIR
[79,80]. Moreover, the present study will be also of interest
for the PANDA experiment at FAIR, since it is expected that
the X (3872) will strongly couple to the p̄p channel [17], and
therefore this resonance can be also produced in p̄A collisions
[81]. Actually colliding antiprotons on nuclei with PANDA
would allow the A dependence of the production of ψ (2S)
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and X (3872) near threshold to be inferred. This may, after an
appropriate theoretical study, provide a good way to expose an
extended D∗D̄ component of the X (3872) state function [82].

This work is organized as follows. In Sec. II we present the
DD̄∗ scattering amplitude and the dynamical generation of
the X (3872) resonance (Sec. II A), discussing its structure in
the vacuum (Sec.. II B) and embedded in isospin-symmetric
nuclear matter (Sec.. II C). In Sec. II D, we show the in-
medium open-charm ground-state spectral functions, which
determine the density modifications of the DD̄∗ amplitudes.
We also introduce the X (3872) self-energy both in vacuum
and in nuclear matter (Sec. II E), and we discuss the type
of interaction kernels to be used in our work (Sec. II F),
and connect the X (3872) self-energy and the DD̄∗ scattering
amplitude formalisms. We present our results in Sec. III, and
conclusions and future outlook in Sec. IV. Finally in the
Appendix, we give some details on the approximation used
to extend the nuclear medium DD̄∗ T matrix to the complex
plane, allowing for the search of poles reported in Sec. III.

II. FORMALISM

A. DD̄∗ scattering amplitude and X (3872)

To study the X (3872) as a molecular state in the DD̄∗
IG(JPC ) = 0+(1++) channel, we start by considering the in-
teraction in the particle basis

{D0D̄∗0, D∗0D̄0, D+D̄∗−, D∗+D−}. (2.1)

The unitary T matrix for this basis is written as

T −1(s) = V−1(s) − G(s), (2.2)

where s is the invariant mass squared of the system, and
the V and G matrices are constructed out of the interaction
potential and the two-meson loop functions, respectively. The
V (s) matrix can be written as

V (s) = A−1Vd (s)A, (2.3)

where the matrix A (satisfying AT = A−1 = A) reads

A = 1

2

⎛⎜⎝+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎞⎟⎠, (2.4a)

and the diagonal matrix Vd (s) is

Vd (s) = diag(V0Z (s),V0X (s),V1Z (s),V1X (s)). (2.4b)

The subscripts of the matrix elements VIX (s) refer to the
isospin (I = 0 or I = 1) and the C-parity (X and Z for C = +
or C = −, respectively) quantum numbers of the DD̄ eigen-
states of the matrix V (s).

We now discuss the matrix G(s), using a notation useful for
the subsequent connection to the in-medium interactions. The
G(s) matrix is diagonal, and contains the loop function for the
different two-meson channels in the particle basis, Eq. (2.1):

Gi(s) = i
∫

d4q

(2π )4
DYi (P − q)DY ′

i
(q). (2.5)

where DYi and DY ′
i

are the propagators of the two mesons Yi

and Y ′
i in the particle basis, Eq. (2.1), and P2 = s. In terms of

the self-energies 
Y (q) of the latter, they can be written as

DY (q) = 1

(q0)2 − ω2
Y (�q 2) − 
Y (q0, �q )

=
∫ ∞

0
dω

(
SY (ω, | �q |)

q0 − ω + iε
− SȲ (ω, | �q |)

q0 + ω − iε

)
(2.6)

with ωY (�q 2) =
√

m2
Y + �q 2, and SY are spectral functions.

Note that we will be only interested in the nuclear medium
renormalization of the meson properties. Thus, mY is the
meson mass in the free space, while the self-energy 
Y ap-
proaches zero when the nuclear density ρ → 0. Inserting the
above representation into Eq. (2.5) and integrating over q0, we
obtain

Gi(P
0, �P ) = 1

2π2

∫ ∞

0
d�

(
fYi Y ′

i
(�, | �P|)

P0 − � + iε
−

fY i Y
′
i
(�, | �P|)

P0 + � − iε

)
,

(2.7a)

with

fUW (�, | �P |) = 1

4π

∫ 	

0
d3 �q

∫ �

0
dωSU (ω, | �P − �q |)

× SW (� − ω, | �q | ), (2.7b)

where U and W stand for Yi and Y ′
i or Y i and Y

′
i. In the

previous equations we have already introduced a sharp mo-
mentum cutoff 	 to regularize the ultraviolet behavior of
the integration over the modulus of �q. Specifically, we take
	 = 0.7 GeV.

B. Vacuum

In vacuum, assuming isospin symmetry, mD(∗)0 = mD(∗+) ,
the loop functions for the four channels are equal, G(s) =
0(s)I4. The function 0(s) reduces to a standard loop
function regulated via a hard cutoff 	, G(s, mD, mD∗ ), and
expressions for this can be found in Ref. [83]. The T -matrix
diagonalizes in the same way as the kernel matrix V (s), i.e.,

T −1(s) = A−1T −1
d (s)A, (2.8)

where

T −1
d (s) = diag

(
V −1

0Z (s) − 0(s),V −1
0X (s) − 0(s),V −1

1Z (s)

− 0(s),V −1
1X (s) − 0(s)

)
. (2.9)

The X (3872) appears as a JP = 1+, IC = 0+ state, which is
thus associated with the amplitude T0X ,

T −1
0X (s) = V −1

0X (s) − 0(s). (2.10)

Considering the X (3872) as a bound state pole in the physical
Riemann sheet of this amplitude, we would have

T0X (s) = g2
0

s − m2
0

+ · · · , (2.11a)

1

g2
0

= dT −1
0X (s)

ds

∣∣∣∣
s=m2

0

, (2.11b)
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where m0 and g0 are the mass and the coupling of the X (3872),
respectively. According to the Weinberg compositeness condi-
tion [84], the DD̄∗ component in the X (3872) wave function,
P0, can be calculated as

P0 = −g2
0 ′

0

(
m2

0

)
. (2.12)

Let us momentarily take a specific model as an input for the
kernels Vd (s). From a leading order HQSS-based Lagrangian,
these reduce to energy-independent contact interactions
[75–78], Vd (s) = diag(C̃0Z , C̃0X , C̃1Z , C̃1X ). In particular,

V0X (s) = C̃0X , (2.13a)

T −1
0X (s) = C̃−1

0X − 0(s), (2.13b)

and we can thus fix the constant C̃0X by requiring the presence
of a pole at the X (3872) mass m0,2

C̃0X = 1/0
(
m2

0

)
. (2.14)

In this particular case, from Eqs. (2.12) and (2.13), we have
P0 = 1 (independently of the pole position), i.e., the model
can only describe purely molecular bound states. Therefore
and for the sake of generality, below we shall explore more
general situations by allowing energy dependence in the con-
tact interaction kernels.3 We will introduce the self-energy
formalism for the X (3872) in Sec. II E, and we will delay the
discussion on energy-dependent contact kernels and their con-
nection to the previous scheme to the next section (Sec. II F).
Before that, however, we discuss in the following subsections
(Secs. II C and II D) the modifications of the T -matrix struc-
ture and the loop functions produced by the nuclear medium.

C. Isospin–symmetric nuclear matter

To consider the possible modification of the X (3872)
properties in a nuclear medium, we assume that the
DD̄∗ interaction kernels Vd (s) do not change in nuclear
matter, and that the T matrix is modified through the
loop functions because of the D(∗) and D̄(∗) self-energies.
We still assume isospin symmetry, mD(∗)0 = mD(∗)+ , and
SD(∗)+ = SD(∗)0 ≡ SD(∗) , SD(∗)− = SD̄(∗)0 ≡ SD̄(∗) . However, in
general we will have SD̄(∗) 
= SD(∗) in the nuclear environment,
since the charmed and anticharmed meson-nucleon

2Note that the C̃ low-energy constants here are dimensionless,
while those introduced in Ref. [75–78] have dimensions of fm2. This
is because here we adopt relativistic D(∗)-meson propagators and
nonrelativistic kinematics was used in the previous works. It should
also be noted that, due to the regularization procedure, we should
actually write C̃0X (	) = 0(m2

0; 	). For the sake of brevity, we omit
this dependence on the ultraviolet cutoff throughout the manuscript.

3Hidden-charm molecules were predicted a longtime ago on the
basis of meson exchanges between a D(∗) and a D̄(∗) state [85], and
the one-pion exchange was worked out in more detail in Ref. [86];
see also Ref. [37] for further discussions and references. In our
exploratory study, we will only consider contact interactions for DD̄∗

scattering, which correctly provide the most important features of the
X (3872) as a DD̄∗ bound, virtual, or resonant state close to threshold
[37].

interactions may be quite different.4 In addition, though
the DN and D∗N interactions are related by HQSS, the
in-medium (anti)charmed pseudoscalar a vector meson
spectral functions are in general different (see Refs. [87,88]),
i.e., SD 
= SD∗ and SD̄ 
= SD̄∗ , as we will see below
(Sec. II D). Consequently, the G matrix in a nuclear medium
of density ρ, G(s; ρ), is no longer proportional to the
identity, as opposed to the vacuum case. It reads G(s; ρ) =
diag(GDD̄∗ (s; ρ),GD∗D̄(s; ρ),GDD̄∗ (s; ρ),GD∗D̄(s; ρ)). Hence,
the T matrix in nuclear matter, T (s; ρ), cannot be fully
diagonalized, and it can only be put in block diagonal form,

T −1(s; ρ) = V−1(s) − G(s; ρ) = A
(
V−1

d (s) − AG(s; ρ)A
)
A,

(2.15)
with

AG(s; ρ)A =
(
G̃(s; ρ) 0

0 G̃(s; ρ)

)
. (2.16)

The 2 × 2 matrix G̃ can be written as

G̃(s; ρ) =
(

(s; ρ) δG (s; ρ)
δG (s; ρ) (s; ρ)

)
, (2.17)

with

(s; ρ) = GDD̄∗ (s; ρ) + GD∗D̄(s; ρ)

2
, (2.18)

δG (s; ρ) = GDD̄∗ (s; ρ) − GD∗D̄(s; ρ)

2
, (2.19)

and hence, defining the states |IC〉, we have the following
matrix elements:

〈I ′C ′|T̂ (s; ρ)|IC〉 = δI,I ′T (I )
C,C′ (s; ρ). (2.20)

The matrix elements of T (s; ρ), T (I )
C,C′ (s; ρ), can be compactly

expressed as[
T (I )

XX (s; ρ)
]−1 = [

T (I )
X (s; ρ)

]−1 − T (I )
Z (s; ρ)δ2

G (s; ρ), (2.21a)[
T (I )

ZZ (s; ρ)
]−1 = [

T (I )
Z (s; ρ)

]−1 − T (I )
X (s; ρ)δ2

G (s; ρ), (2.21b)[
T (I )

XZ (s; ρ)
]−1 = [

δG (s; ρ)T (I )
X (s; ρ)T (I )

Z (s; ρ)
]−1 − δG (s; ρ),

(2.21c)

where T (I )
X (s; ρ) and T (I )

Z (s; ρ) are written as in the diagonal
case, [

T (I )
X (s; ρ)

]−1 = V −1
IX (s) − (s; ρ), (2.22a)[

T (I )
Z (s; ρ)

]−1 = V −1
IZ (s) − (s; ρ). (2.22b)

Equation (2.20) may seem counterintuitive, due to the ab-
sence of the δC,C′ conservation factor. However, we must bear
in mind that, in the presence of nuclear matter, the scattering
processes are DD̄∗N → DD̄∗N ′. Due to the presence of the
nucleons, the DD̄∗ in the initial and final states do not need to
have the same C parity.

4Note for example that a D̄N resonance would imply a pentaquark-
like structure.
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We have checked that the term δG (s; ρ) is small, so we
consider throughout this paper the limit δG (s; ρ) → 0. In this
limit, T (I )

XZ (s; ρ) = 0 [Eq. (2.21c)], and Eq. (2.20) is further
diagonalized into DD̄∗ C-parity amplitudes, too. We thus find,
for the IC = 0+ channel,

T −1
0X (s; ρ) = V −1

0X (s) − (s; ρ). (2.23)

Note that, from its definition, (s; ρ) can be written more
compactly as

(P0, | �P|; ρ) = 1

4π2

∫ ∞

0
d�

(
1

P0 − �+ iε
− 1

P0 + �− iε

)
× ( fDD̄∗ (�, | �P |) + fD∗D̄(�, | �P |)), (2.24)

where the dependence on the density arises from that of the
spectral functions involved in the above equation. We recall
that the expressions for fDD̄∗ , fD∗D̄ are given in Eq. (2.7b). Fi-
nally, we note that in the ρ → 0 limit, the vacuum amplitudes
are recovered.

In principle, given the integral representation in Eq. (2.24),
the function (P0, | �P|; ρ) could be computed for complex
values of the energy P0. However, we can neither perform
its analytical continuation into the lower half of the complex
plane, nor define the second Riemann sheet for finite densities.
This is because it would require knowing the meson spectral
functions SU,W for complex values of its arguments, which
cannot be computed within the standard scheme that will be
presented below; see Sec. II D. Nevertheless, as discussed
below in Sec. III B, we will derive a reasonable approximation
for the in-medium loop function (P0, | �P|; ρ) of Eq. (2.18),
which will allow for a meaningful extension of the isoscalar
T matrix to the complex plane and the search for poles also in
nuclear matter.

D. SD(∗) and SD̄(∗) in nuclear matter

The spectral functions of D(∗) and D̄(∗) in symmetric nu-
clear matter are obtained following a unitarized self-consistent
procedure in coupled channels, as described in Refs. [87,89]
for the D(∗) meson and in Ref. [88] for D̄(∗) meson. In the
following we present the main features.

The s-wave transition charmed meson-nucleon kernel of
the Bethe-Salpeter equation (BSE) is derived from an effec-
tive Lagrangian that implements HQSS [90–92]. HQSS is
an approximate QCD symmetry that treats on equal foot-
ing heavy pseudoscalar and vector mesons, such as charmed
and bottom mesons [80,87–89,93–99]. The effective La-
grangian accounts for the lowest-lying pseudoscalar and

vector mesons as well as 1/2+ and 3/2+ baryons. It reduces
to the Weinberg-Tomozawa (WT) interaction term in the sec-
tor where Goldstone bosons are involved and incorporates
HQSS in the sector where heavy quarks participate. Thus,
it is a SU(6)×HQSS model, that is justified in view of the
reasonable semiqualitative outcome of the SU(6) extension
[100] and a formal plausibleness of how the WT interac-
tion in the heavy pseudoscalar meson-baryon sectors comes
out in the vector-meson exchange picture (see for instance
Refs. [101,102]).

This extended WT meson-baryon potential in the coupled
meson-baryon basis with total charm C, strangeness S, isospin
I , and spin J , is given by

vCSIJ
i j (

√
t ) = DCSIJ

i j

2
√

t − Mi − Mj

4 fi f j

√
Ei + Mi

2Mi

√
Ej + Mj

2Mj
,

(2.25)
where

√
t is the center-of-mass (c.m.) energy of the meson-

baryon system; Ei and Mi are, respectively, the c.m. on-shell
energy and mass of the baryon in the channel i; and fi is
the decay constant of the meson in the i channel. Symme-
try breaking effects are introduced by using physical masses
and decay constants, as done in Refs. [87,88] and explained
in more detail in Ref. [93]. The DCSIJ

i j are the matrix ele-
ments coming from the group structure of the extended WT
interaction.

The amplitudes in nuclear matter, tρ,CSIJ (R0, �R ) with R =
(R0, �R ) the total meson-baryon four-momentum (t = R2), are
obtained by solving the on-shell BSE using the previously
described potential, vCSIJ (

√
t ):

tρ,CSIJ (R) = [
1 − vCSIJ (

√
t ) gρ

CSIJ (R)
]−1

vCSIJ (
√

t ), (2.26)

where the diagonal gρ
CSIJ (R) loop matrix accounts for the

charmed meson-baryon loop in nuclear matter [87,88]. We fo-
cus in the nonstrange S = 0 and singly charmed C = 1 sector,
where DN and D∗N are embedded, as well as the C = −1 one,
with D̄N and D̄∗N .5

The D(D̄) and D∗(D̄∗) self-energies in symmetric nuclear
matter, 
(E , �q ; ρ), are obtained by summing the different
isospin transition amplitudes for D(D̄)N and D∗(D̄∗)N over
the nucleon Fermi distribution, pF . For the D(D̄) we have


D(D̄)(q
0, �q; ρ) =

∫
p�pF

d3 p

(2π )3

[
tρ,0,1/2
D(D̄)N

(R0, �R )

+ 3 tρ,1,1/2
D(D̄)N

(R0, �R )
]
, (2.27)

while for D∗(D̄∗)


D∗(D̄∗ )(q
0, �q ; ρ ) =

∫
p�pF

d3 p

(2π )3

[
1

3
tρ,0,1/2
D∗(D̄∗ )N

(R0, �R ) + tρ,1,1/2
D∗(D̄∗ )N

(R0, �R ) + 2

3
tρ,0,3/2
D∗(D̄∗ )N

(R0, �R ) + 2 tρ,1,3/2
D∗(D̄∗ )N

(R0, �R )

]
. (2.28)

In the above equations, R0 = q0 + EN ( �p ) and �R = (�q + �p ) are the total energy and momentum of the meson-nucleon pair in the
nuclear matter rest frame, and (q0, �q ) and (EN , �p ) stand for the energy and momentum of the meson and nucleon, respectively,
in that frame. Those self-energies are determined self-consistently since they are obtained from the in-medium amplitudes which
contain the meson-baryon loop functions, and those quantities themselves are functions of the self-energies.

5Note that D denotes D+ and D0, whereas D̄ indicates D− and D̄0.
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FIG. 1. The D (upper left-hand side), D̄ (lower left-hand side), D∗ (upper right-hand side), and D̄∗ (lower right-hand side) spectral functions
as function of the meson energy E and zero momentum �q = 0 for three densities: ρ = 0.1ρ0 (red lines), ρ = 0.5ρ0 (green lines), and ρ = ρ0

(blue lines).

The D(D̄) and D∗(D̄∗) spectral functions are then defined
from the in-medium D(D̄) and D∗(D̄∗) meson propagators:

Dρ

D(D̄),D∗(D̄∗ )
(q0, �q)

= ((q0)2 − �q 2 − m2 − 
D(D̄),D∗(D̄∗ )(q))−1,

SD(D̄),D∗(D̄∗ )(q
0, �q)

= − 1

π
Im Dρ

D(D̄),D∗(D̄∗ )
(q) (for q0 > 0). (2.29)

The D(D̄) and D∗(D̄∗) spectral functions are shown in
Fig. 1 as function of the meson energy E = q0 for zero mo-
mentum �q = 0 and two different densities, ρ = 0.5ρ0 and

ρ = ρ0. Apart from the quasiparticle peak, obtained from
E2

qp = �q 2 + m2 + Re 
(Eqp(�q ), �q ), with m the meson mass,
these spectral functions show a rich structure as a result
of the presence of several resonance-hole excitations. The
masses and widths of these resonances were obtained in
Refs. [93–95].

The D meson spectral function is depicted in the upper
left-hand side panel. As described in Ref. [87], the D meson
quasiparticle peak moves to lower energies with respect to
the free mass position as density increases. Moreover, sev-
eral resonant-hole excitations appear around the quasiparticle
peak. In the low-energy tail of the D spectral function,
we observe the 	c(2556)N−1 and 	c(2595)N−1 excitations,
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whereas ∗
c N−1 excitations appear on the right-hand side of

the quasiparticle peak.
With regards to the D∗ meson spectral function shown

in Ref. [87] and depicted here in the right-hand side panel,
the quasiparticle peak moves to higher energies with density
and fully mixes with the subthreshold J = 3/2 	c(2941)
state, while the mixing of J = 1/2 c(2868)N−1 and J =
3/2 c(2902)N−1 is seen on the left-hand side of the peak.
Other dynamically generated particle-hole states appear for
higher and lower energies.

Finally, the D̄ and D̄∗ spectral functions are shown in the
lower left-hand side panel and lower right-hand side one,
respectively. In both cases, the spectral functions show a rich
structure due to the presence of several resonance-hole states.
Note that those resonant states have a pentaquark-like content
and have to be taken with caution.

On the one hand, the spectral function for D̄ stems from
the self-energy of D̄ displayed in Ref. [88]. The position of the
quasiparticle peak of D̄ is located below the D̄ mass and below
the �c(2805)N−1 excitation. The C = −1 pentaquark-like
resonance �c(2805) was a theoretical prediction of Ref. [94].
This corresponds to a pole in the free space amplitude of the
sector I = 0, J = 1/2 (a weakly bound state) that strongly
couples to D̄N and D̄∗N , also found in Ref. [103], though it
has not been observed yet.

The upper energy tail of the D̄ spectral function shows
also the contribution of I = 1 resonant-hole states. On the
other hand, the D̄∗ spectral function depicts the contribution
of several I = 0 and I = 1 resonant-hole states close to the
quasiparticle peak, that is located slightly above 2 GeV. All
these pentaquark-like states are described in Ref. [94].

E. X (3872) self-energy in vacuum and in a nuclear medium

From this subsection on, and since we focus on the IC =
0+ channel where the X (3872) is located, for DD̄∗ we mean
the appropriate combination of states, (DD̄∗ − D∗D̄)

√
2, with

even C parity and coupled to zero isospin. Also, since the
focus will be exclusively on this channel, we will omit the
0X subindex where appropriate for simplicity.

We shall now discuss the self-energy formalism for the
X (3872). Let us consider a “preexisting” state with bare mass
m̂ and bare coupling squared to each of the four channels ĝ2/4.
(The isospin related factor 1/4 is included for convenience.)
The free-space bare propagator �̂(q2) is

�̂−1(q2) = q2 − m̂2 + iε. (2.30)

Upon resummation of the contributions in Fig. 2, the dressed
propagator reads

�−1(q2; ρ) = �̂−1(q2) − ĝ2(q2; ρ). (2.31)

This renormalizes the mass and coupling of the state in the
medium,

m2(ρ) = m̂2 + ĝ2[m2(ρ); ρ], (2.32a)

g2(ρ) = ĝ2

1 − ĝ2′[m2(ρ); ρ]
. (2.32b)

X X

D+

D∗−

X X

D−

D∗+

X X

D0

D̄∗0

X X

D̄0

D∗0

FIG. 2. Contributions to the X (3872) self-energy in nuclear mat-
ter. Circles represent the X (3872) couplings to the meson pairs, and
the squares the interaction of the charm mesons with nuclear matter.

with ρ the nuclear-matter density as in the previous sections,
and the derivative taken with respect to q2 = s. These equa-
tions are also true in particular for the ρ = 0 case, so that we
can relate the bare mass and coupling to the vacuum ones, m0

and g0:

m̂2 = m2
0 − g2

0

1 + g2
0

′
0

(
m2

0

)0
(
m2

0

)
, (2.33a)

ĝ2 = g2
0

1 + g2
0

′
0

(
m2

0

) . (2.33b)

This allows in turn to rewrite the in-medium mass and
coupling, m(ρ) and g(ρ), in terms of the physical ones in
vacuum:

m2(ρ) = m2
0 + g2

0

1 + g2
0

′
0

(
m2

0

) [
[m2(ρ); ρ] − 0

(
m2

0

)]
,

(2.34a)

g2(ρ) = g2
0

1 − g2
0

[
′[m2(ρ); ρ] − ′

0

(
m2

0

)] . (2.34b)

Note that m2(ρ) is in general a complex quantity, its imag-
inary part being originated by that of [m2(ρ); ρ].6 We can
also rewrite the in-medium X (3872) propagator as

�−1(q2; ρ) = q2 − m2
0 − g2

0

1+g2
0

′
0

(
m2

0

)(
(q2; ρ)−0

(
m2

0

))
≡ q2 − m2

0 − 
X (q2; ρ), (2.35)


X (q2; ρ) = g2
0

1 + g2
0

′
0

(
m2

0

)(
(q2; ρ) − 0

(
m2

0

))
, (2.36)

6Even assuming that in the free-space the X (3872) is bound, and
therefore 0(m2

0 ) is real, the in-medium self-energy might acquire
an imaginary part since new many-body decay modes, induced by
the quasielastic interactions of the D(∗) and D̄(∗) with nucleons, are
open.
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which defines the X (3872) self-energy in a nuclear medium, 
X (q2; ρ). We can now rewrite Eqs. (2.34) as

m2(ρ) = m2
0 + 
X [m2(ρ); ρ], (2.37a)

g2(ρ) = ĝ2

1 − 
′
X [m2(ρ); ρ]

= g2
0

1 − 
′
X (m2

0; ρ = 0)

1 − 
′
X [m2(ρ); ρ]

. (2.37b)

Once the X (3872) propagator or self-energy are known, one can also define the X (3872) spectral function, SX (q2; ρ),

SX (q2; ρ) = − 1

π
Im �(q2; ρ) = − 1

π

Im 
X (q2; ρ)

[q2 − m2
0 − Re 
X (q2; ρ)]2 + [Im 
X (q2; ρ)]2

. (2.38)

The quasiparticle peak energy, Eqp, is defined from the equa-
tion

E2
qp − m2

0 − Re 

(
E2

qp; ρ
) = 0. (2.39)

F. Energy-dependent contact interactions Vd (s) and relation
with the self-energy formalism

We now discuss the energy dependence of the contact inter-
actions, and seek for a relation between the T matrix and the
self-energy formalism introduced in the previous subsection.
There are two straightforward ways to incorporate energy
dependence in the potential, namely by a linear expansion on
V (s) or on its inverse V −1(s) [1]. For the first case, that we
denote as V (s) = VA(s), we have

VA(s) = 1

0
(
m2

0

) + ′
0

(
m2

0

)[
0

(
m2

0

)]2

1 − P0

P0

(
s − m2

0

)
(2.40a)

= ĝ2

m2
0 − m̂2

− ĝ2(
m2

0 − m̂2
)2

(
s − m2

0

)
. (2.40b)

In writing Eq. (2.40a) we have fixed the two coefficients
of the linear expansion in such a way that one has a pole at
s = m2

0 and that its molecular probability is P0, according to
Eq. (2.12). In particular, note that VA(m2

0 ) = 1/0(m2
0 ), which

is the same constant term considered in Eq. (2.14). On the
other hand, in the case of Eq. (2.40b) we have additionally
taken into account the definition of the bare coupling intro-
duced in the previous subsection. Hence, with this potential,
the free-space (ρ = 0) amplitude T0(s) has a pole at s = m2

0,
and the residue is g2

0 = −P0/
′(s0). Now, for finite density ρ,

if there is a pole of the amplitude T (s; ρ) at m2(ρ), we would
have

0 = T −1
A [m2(ρ); ρ] = V −1

A [m2(ρ)] − [m2(ρ); ρ]

= 0
(
m2

0

) − [m2(ρ); ρ]

+ g2
0

g2
00

(
m2

0

) + [m2
0 − m2(ρ)]

[
1 + g2

0
′
0

(
m2

0

)] , (2.41)

from which one obtains an implicit equation for m2(ρ):

m2(ρ) = m2
0 + g2

0

1 + g2
0

′
0

(
m2

0

) [
[m2(ρ); ρ] − 0

(
m2

0

)]
×

[
0

(
m2

0

)
[m2(ρ); ρ]

]
. (2.42a)

Analogously, the in medium coupling g(ρ) would be given by

1

g2(ρ)
= dT −1(s; ρ)

ds

∣∣∣∣
s=m2(ρ)

=
[
[m2(ρ); ρ]

0
(
m2

0

) ]2 1 + g2
0

′
0

(
m2

0

)
g2

0

− ′[m2(ρ); ρ].

(2.42b)

Now, Eqs. (2.42) are the same as those obtained in
the self-energy formalism, Eqs. (2.34), only if one takes
[m2(ρ); ρ] � 0(m2

0 ).
Alternatively, as discussed above, we could have made the

linear expansion in 1/V (s) instead of in V (s), thus getting

V −1(s) = 0
(
m2

0

) − ′
0

(
m2

0

)1 − P0

P0

(
s − m2

0

) ≡ V −1
B (s).

(2.43a)

Note that this alternate definition of V (s) can also be written
as

VB(s) = ĝ2

s − m̂2
. (2.43b)

i.e., the kernel has a “bare” pole at the “bare” mass squared
m̂2. Proceeding analogously as in the VA case, we find

0 = T −1
B [m2(ρ); ρ] = V −1

B [m2(ρ)] − [m2(ρ); ρ]

= 0
(
m2

0

) + 1 + g2
0

′
0

(
m2

0

)
g2

0

(
m2(ρ) − m2

0

) − [m2(ρ); ρ],

(2.44)

from which one solves m2(ρ):

m2(ρ) = m2
0 + g2

0

1 + g2
0

′
0

(
m2

0

)[
[m2(ρ); ρ) − 0

(
m2

0

)]
.

(2.45a)

We would also have

1

g2(ρ)
= dT −1(s; ρ)

ds

∣∣∣∣
s=m2(ρ)

= 1 + g2
0

′
0

(
m2

0

)
g2

0

− ′[m2(ρ); ρ], (2.45b)

and it can be seen that Eqs. (2.45) are exactly the same
ones as Eqs. (2.34). Hence, we find equivalence between the
self-energy formalism discussed in Sec. II E and the T -matrix
formalism for the energy-dependent kernel(s) V (s) presented
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here. Note also that, taking into account the relation P0 =
−g2

0
′
0(m2

0 ), Eqs. (2.45) can also be cast as

m2(ρ) = m2
0 − P0

1 − P0

[m2(ρ); ρ] − 0
(
m2

0

)
′

0

(
m2

0

) , (2.46a)

g2(ρ) = − 1

′[m2(ρ); ρ] + 1−P0
P0

′
0

(
m2

0

) . (2.46b)

G. Extreme cases: P0 → 0 and P0 → 1

Let us briefly discuss here the extreme molecular or com-
pact state scenarios, which correspond to P0 → 1 or P0 → 0,
respectively.7

We start by considering the case when P0 → 0. In this
case one has g0 = 0, i.e., the state does not couple to the
two-meson channel. Physically, one would say that the in-
teraction does not renormalize the bare state. Indeed, one
sees also that ĝ = g0 → 0, and that m̂ = m0, cf. Eqs. (2.33).
Because the state does not couple to the channel, the strict
limit cannot be described either with VA(s) or VB(s), since it
would require V ′(s = m0) ∼ 1/P0 → ∞. Regarding the in-
medium mass and coupling, we see that, from Eqs. (2.45),
g(ρ) → g0 and m(ρ) → m0, i.e., the state does not suffer
in-medium modifications. This is to be expected, because all
the in-medium modifications enter through the intermediate
meson loop, and in the limit P0 → 0 the state does not couple
to the channel.

Next we discuss the opposite case P0 → 1. This situa-
tion would correspond to the pure hadron-molecular case,
for which V (s) = 1/0(m2

0 ) is constant, independent of s.
Physically, taking P0 → 1 means that the state is a purely
molecular one. The “preexisting” component is null, and thus
one can think neither about the bare mass nor about the bare
coupling. Indeed, looking to Eqs. (2.34) for P0 → 1, the factor
1/(1 − P0) diverges and so does 1/[1 + g2

0
′
0(m2

0 )], and hence
ĝ2 → ∞ and m̂2 → ∞. (It should be noted that Z0 ĝ2 = g2

0
remains finite, with Z0 = 1 + g2

0
′
0(m2

0 ) = 1 − P0 the renor-
malization constant.) The in-medium T matrix in this limiting
case would be

T (s; ρ) = 1

0
(
m2

0

) − (s; ρ)
, (2.47)

and the search for a pole would lead to [m2(ρ); ρ] −
0(m2

0 ) = 0. The coupling from the residue will be given
by g2(ρ) = −1/′[m2(ρ); ρ]. These results would also make
sense of the first of the Eqs. (2.46): since the denominator
1 − P0 tends to zero, the numerator must also vanish, yielding
thus [m2(ρ); ρ] − 0(m2

0 ) = 0.
For simplicity, in the discussion above, we have not consid-

ered the pathological case in which the bound state in vacuum
is placed exactly at threshold. In that case ′

0(m2
0 ) diverges,

and this singular behavior needs to be taken into account.

7Strictly speaking, the exact cases P0 = 0 or P0 = 1 would not be
physical: the latter would require the state to be forbidden to couple
to other nearby channels, whereas the former would require the state
to be forbidden to decay to the channel under consideration.

III. RESULTS

A. In-medium modification of the amplitudes

We now discuss the results that we obtain in a nuclear
medium for the DD̄∗ amplitude8 |T (E ; ρ)|2 [Eq. (2.23)], the
X (3872) self-energy 
X (E ; ρ) [Eq. (2.36)] (or, equivalently,
the inverse of the propagator �−1(E ; ρ) [Eq. (2.35)]), and
its spectral function SX (E ; ρ) [Eq. (2.38)]. Note that we use
the energy, E , of the DD̄∗ pair in the c.m. frame, with
s = E2. In order to compute all these quantities, we use
the energy-dependent potential VA(s) [Eq. (2.40)] or VB(s)
[Eq. (2.43)], and the in-medium modified DD̄∗ loop function
(s; ρ) [Eq. (2.24)]. In the upper plot of Fig. 3 we show the
real (solid lines) and imaginary (dot-dashed lines) parts of the
loop function (s; ρ) computed for different densities ρ in
the range 0 � ρ � ρ0, where ρ0 is the normal nuclear density,
ρ0 = 0.17 fm−3. We see that the sharp DD̄∗ threshold ob-
served in the vacuum case (ρ = 0) is progressively smoothed
out for increasing densities, being almost inappreciable for
ρ = ρ0. This is due to the width acquired by the D, D̄, D∗,
and D̄∗ mesons in the nuclear medium. We also notice that
the real part of the loop function is smaller in magnitude for
increasing densities. Naively, this would imply that the effect
of the medium is to generate repulsion in the DD̄∗ interaction,
in the sense that a more attractive potential would be necessary
to compensate this change of the loop function. However, this
repulsive effect is not clear, because the imaginary part of
(E ; ρ) is also large, and, below threshold, it turns out that
| Im (E ; ρ)| � | Re((E ; ρ) − 0(E ))|.

Within the present approach, the DD̄∗ T matrix in the
nuclear environment is determined from the X (3872) mass
and its DD̄∗ probability (m0 and P0) in the vacuum (ρ = 0). As
we work on the isospin limit, mD(∗) = (mD(∗)+ + mD(∗)0 )/2, we
cannot consider the physical X (3872) mass. We instead take a
binding energy B = 2 MeV with respect to the DD̄∗ threshold,
m0 = mD + mD∗ − B. Throughout this paper, we will study
the in-medium effects for different molecular probabilities P0,
that enter into the calculation of the amplitude through the
potentials VA(s) or VB(s), Eqs. (2.40) and (2.43), respectively.
Indeed, in the lower plots of Fig. 3, we show these interaction
kernels computed for different values of P0. Both types of
interactions give the same pole position at m2

0 and probability
P0 (alternatively, the same coupling g0) for the vacuum T ma-
trix, although they have different analytical properties [VA(s)
has a zero, while VB(s) presents a bare pole] and, hence, they
might produce differences in the medium T matrix, as we will
discuss below. In the lower panels of Fig. 3 we observe, on the
one hand, that for values of P0 above P0 = 0.8 both kernels are
very similar in the energy region explored. This is due to the
fact that the zero of VA(s) and the bare pole of VB(s) are far
from the energies considered. On the other hand, for lower
values of P0, e.g., P0 = 0.2, both potentials are quite different,
because the zero of VA(s) and the bare pole VB(s) come closer

8We recall here again that we are working on the IC = 0+ channel,
where the X (3872) is located, and that for DD̄∗ we mean the appro-
priate combination of states, (DD̄∗ − D∗D̄)

√
2, with even C parity

and coupled to zero isospin.
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FIG. 3. Top panel: The loop function (E ; ρ ), with E 2 = s, for different densities ρ in the range 0 � ρ � ρ0 as a function of the center-
of-mass energy of the DD̄∗ pair. The solid (dashed) lines stand for the real (imaginary) parts. Bottom panels: Two different parametrizations
of the energy-dependent potential V (s). On the left [right] plot, VA(s) [VB(s)], as given in Eq. (2.40) [Eq. (2.43)].

to the energy region of interest. Therefore, one should expect
that they lead to significantly different in-medium T matrices.

Once discussed the in-medium modified DD̄∗ loop func-
tion and the energy-dependent potential, in Fig. 4 we show,
for different nuclear densities and molecular probabilities
P0 = 1, 0.9 and 0.8, the squared modulus of the amplitudes
T (E ; ρ), normalized to be 1 at the maximum Emax (top
panels), the inverse of the X (3872) propagator, �−1(E ; ρ)
(medium panels), and the spectral function, SX (E ; ρ) (bottom
panels), conveniently scaled by Z0 = (1 − P0) and Z−1

0 , re-
spectively. The calculations are performed using the potential
VA(s), introduced in Eqs. (2.40), though, as shown above,
for these high-molecular component scenarios the VB(s)-type
interaction, cf. Eqs. (2.43), leads to very similar predictions,
with differences that would be difficult to appreciate in the
plots.

Focusing first on the squared amplitudes, it can be seen
that the density behavior is qualitatively different for the three

examined probabilities. Thus, while for P0 = 0.8 the maxi-
mum of the squared modulus is shifted to the right when
the density grows (towards higher DD̄∗ c.m. energies), it
moves to the left in the purely molecular (P0 = 1) scenarios.
The results for P0 = 1 stem from the energy and density
behavior of the factor |0(m2

0 ) − (E ; ρ)| in Eq. (2.47), by
taking into account the in-medium two-meson loop function
(E ; ρ) depicted in Fig. 3. For the P0 = 0.8 case, the energy
dependence of the VA potential, shown in the left-bottom plot
of Fig. 3, leads to the mild shift towards higher energies of
the maximum as the density increases. The position of the
peak hardly changes in the intermediate P0 = 0.9 case, dis-
played in the second-column plot, but, as expected, the width
of the in-medium X (3872) peak significantly increases with
density.

Actually, in the second row of plots of Fig. 4, we see
that the energy dependence of Im 
X (E ; ρ) for finite density
clearly departs from the sharp step-function shape obtained
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FIG. 4. Top panels: Squared modulus of the amplitudes T (E ; ρ ), normalized to be 1 at the maximum, Emax as a function of the energy of
the DD̄∗ pair in the c.m. frame. The amplitudes are computed with Eq. (2.23), using the energy-dependent potential of Eq. (2.40) instead of
the constant C̃0X . Middle panels: Real (solid lines) and imaginary parts (dashed lines) of the inverse of the propagator �(E ; ρ ) [Eq. (2.35)]
multiplied by Z0 = (1 − P0), as a function of the energy of the DD̄∗ pair in the c.m. frame. Bottom panels: Spectral function of the X (3872)
[Eq. (2.38)] multiplied by Z−1

0 , as a function of the energy of the DD̄∗ pair in the c.m. frame. From left to right, the three columns show the
cases P0 = 1, 0.9, and 0.8. For these high molecular probabilities, the numerical differences due to the use of VA(s) or of VB(s) potentials [Eqs.
(2.40) and (2.43), respectively] are very small. The different colors in each figure represent calculations performed at different nuclear densities
0 � ρ � ρ0.

in vacuum, with Im 
X (E ; ρ) becoming an increasingly
smoother function of E , as the density grows. We moreover
observe nonvanishing values below the free-space threshold,
which increase with the density, due to the appearance of new
many-body decay channels, like DD̄∗N → DD̄∗N ′, driven
by the self-energies of the (anti)charmed mesons embed-
ded in the nuclear medium. Above the free-space threshold,
Im 
X (E ; ρ) decreases when the density grows. This behavior
can be inferred from the imaginary part of (E ; ρ) shown in
the top plot of Fig. 3.

We should also note that Im 
X (E ; ρ) strongly depends
on P0, and it behaves as g2

0/[1 + g2
0

′
0(m2

0 )] ∝ P0/(1 − P0),
as deduced from Eq. (2.36). Looking now at the real part of
�−1(E ; ρ), we observe that for P0 = 1 there is no quasipar-
ticle solution [Eq. (2.39)] for densities higher than about one
tenth of the normal nuclear matter density, with an increas-

ingly flatter E dependence of Re[�−1(E ; ρ)] as the density
grows. Hence, the behavior exhibited in the P0 = 1 case in
left-top plot for the modulus squared of the amplitude, with
the maximum displaced to the left with increasing densities,
can be correlated to the growth of Im 
X (E ; ρ), both with
the density and the c.m. energy. In contrast, for P0 = 0.8, we
find solutions for the quasiparticle equation for all densities, at
energies above threshold that move away from it as the density
increases.

The spectral function plotted in the bottom panels of Fig. 4
is determined by Im[�(E ; ρ)], and its dependence on E , ρ

and the molecular probability P0 can be deduced from the
discussion above on the real and imaginary parts of �−1(E ; ρ)
in the second-row panels of this figure. We should make here
two remarks. First, we observe that the typical delta-function
shape expected for the spectral function of a narrow state
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FIG. 5. Top plots: Squared modulus of the amplitude T (E ; ρ ), normalized to be 1 at the maximum, Emax, as a function of the center-of-mass
energy of the DD̄∗ pair, for a vacuum molecular probability P0 = 0.4. The amplitudes are computed using Eq. (2.23) and the potentials VA(s)
in Eq. (2.40) (left plot) or VB(s) in Eq. (2.43) (right plot). Bottom plots: Inverse of the propagator �(E ; ρ ) (left) and the spectral function
SX (E ; ρ ) (right) for P0 = 0.4, and multiplied by Z0 = (1 − P0) and Z−1

0 , respectively. Neither the propagator, nor the spectral function depend
on the kernel V (s), since they are determined by the vacuum X (3872) and the in-medium two-meson loop function (E ; ρ ).

in the free space gets diluted as the density grows. This is
due to the enhancement of the X (3872) width with density.
Second, we find that, for the purely molecular case (P0 = 1),
the features of the modulus squared of the T matrix (top-left
plot) cannot be inferred from the spectral function SX (E ; ρ).
This situation slowly changes as the molecular probability
decreases. Indeed, for P0 = 0.8, we observe already some
resemblances between |T (E ; ρ)|2 and SX (E ; ρ). Neverthe-
less, the squared amplitude |T (E ; ρ)|2 is the observable that
elucidates the properties of the X (3872) in the medium, es-
pecially in cases of high (dominant) molecular components
in its vacuum structure. Next, in Figs. 5 and 6 we consider
smaller molecular components, P0 = 0.4 and P0 = 0.2. As
we discussed in Fig. 3, for these probabilities, the VA(s) [Eq.
(2.40)] and VB(s) [Eq. (2.43)] potentials, despite leading to
the same mass (m0) and DD̄∗ coupling (g0) of the X (3872)
in free space, considerably differ in the region of interest for
the present study. Hence, the corresponding T matrices are
different, even in free space. Those deduced from VA show
the zero that this potential has below m0. As the molecular
probability decreases, this zero gets closer to the X (3872)
vacuum mass, since the slope of VA(s) grows (in absolute
value) as 1/P0. The position of the zero is independent of

the nuclear density; however, the dependence of the amplitude
on the density is clearly visible, for energies both below and
above the energy E0 for which the potential and scattering
amplitude vanish. Density effects for energies lower (higher)
than E0 become more (less) relevant for the P0 = 0.2 case than
for the P0 = 0.4 one.

In sharp contrast to the results stemming from VA(s), when
|T (E ; ρ)|2 is computed using the VB(s) interaction, we see lit-
tle structure beyond the peak induced by the bare pole present
in the potential. The effects due to the medium dressing are
small for P0 = 0.4 and already quite difficult to disentangle
for P0 = 0.2. Hence, experimental input on |T (E ; ρ)|2, espe-
cially for energies below E0, might shed light on the dynamics
of the interacting DD̄∗ pair that could be difficult to infer from
their scattering in free space.

In Figs. 5 and 6 we also show the inverse propagator
�−1(E ; ρ) and the spectral function SX (E ; ρ). These quan-
tities do not depend on the type of potential employed, VA(s)
or VB(s), since they are determined by the vacuum X (3872)
and the in-medium two-meson loop function (E ; ρ) given
in Fig. 3. Regarding Im[�−1(E ; ρ)], the results here are the
same as those discussed above in Fig 4, scaled down by the
corresponding factor P0/(1 − P0). On the other hand, the plots

035203-12



DD̄∗ SCATTERING AND … PHYSICAL REVIEW C 104, 035203 (2021)

3800 3825 3850 3875 3900 3925
0

0.2

0.4

0.6

0.8

1
[V (s) = VA(s)]

E (MeV)

|T
(E

;ρ
)/

T
(E

m
a
x
;ρ

)|2

3800 3825 3850 3875 3900 3925
0

0.2

0.4

0.6

0.8

1
[V (s) = VB(s)]

E (MeV)

|T
(E

;ρ
)/

T
(E

m
a
x
;ρ

)|2

3800 3825 3850 3875 3900 3925

−0.4

−0.2

0

0.2

0.4

E (MeV)

10
−

6
Z

0
Δ

−
1
(E

;ρ
)

(M
eV

2
)

3800 3825 3850 3875 3900 3925
0

200

400

600

E (MeV)

10
7
Z

−
1

0
S

X
(E

;ρ
)

(M
eV

−
2
) 0.10ρ0

0.30ρ0

0.50ρ0

0.75ρ0

1.00ρ0

P0 = 0.2

FIG. 6. Same as Fig. 5, but for P0 = 0.2.

for the real part of �−1(E ; ρ) show that, for small molecu-
lar components, there is always a quasiparticle solution very
close to m0 and very little affected by the nuclear matter
density. Finally, the spectral function SX (E ; ρ) embodies the
main features of |T (E ; ρ)|2 when the potential VB is used.
However, it does not account for the medium modifications
observed in the T matrix below E0 when VA is employed.

To conclude, in Figs. 7 and 8, we show the positions
Emax and Espe of the maxima of |T (E ; ρ)|2 and SX (E ; ρ),
respectively, for all molecular probabilities considered above
in Figs. 4–6. We also give the quasiparticle energies, Eqp,
obtained by solving Re[�−1(E ; ρ)] = 0 when they exist. For
low values of P0 (Fig. 8), we provide separately Emax obtained
from VA(s) or of VB(s) potentials. The results in these two fig-
ures reinforce the conclusions previously outlined. Indeed, we
graphically see for the highest values of P0 the appreciable dif-
ference between Emax and Espe, with even an opposite density
slope in the P0 = 1 case. In Fig. 7, we only observe for P0 =
0.8 some resemblances between the maxima of |T (E ; ρ)|2 and
SX (E ; ρ), with quasiparticle energies well separated from both
of them and exhibiting a significantly larger sensitivity with
density. Medium effects are much smaller in Fig. 8, where
results for P0 = 0.2 and P0 = 0.4 are collected. Some dif-
ferences between Emax obtained from VA or VB potentials are
visible, even for the lowest of the molecular probabilities, for
densities close to ρ0. The quasiparticle and spectral-function

energies are closer, and for P0 = 0.2 become indistinguishable
from Emax computed using VB. This supports that, in this
case, one is dealing with a compact state little affected by the
dressing of the meson loops in the medium.

B. Poles in the complex plane

As already mentioned, the integral representation of
Eq. (2.24) for the in-medium loop function (s; ρ) is not well
suited for its continuation into the whole complex plane. The
rich dynamical structure of the spectral functions SD(∗) and
SD̄(∗) shown in Fig. 1 is washed out by the � and ω integrations
implicit in Eq. (2.24) [see also Eq. (2.7)]. Thus, almost no
trace of the several peaks present in Fig. 1 can be distinctly
appreciated in the resulting loop functions (s, ρ) depicted in
Fig. 3 for several densities. Actually, the latter are essentially
equivalent to the loop function of a two-meson system regu-
lated via a hard cutoff 	, but evaluated with complex masses.
Hence, we make the following approximation:

(s; ρ) � G(eff)(s; ρ) ≡ G
(
s, m(eff)

D (ρ), m(eff)
D∗ (ρ)

)
, (3.1)

with m(eff)
D(∗) complex valued, and the superscript “(eff)” is in-

cluded to remark that these are density-dependent effective
masses, and do not correspond to the pole positions associated
with the D(∗) and D̄(∗) peaks in Fig. 1. Additional details,
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FIG. 7. Positions Emax and Espe of the maxima of |T (E ; ρ )| and SX (E ; ρ ), respectively, as a function of the nuclear matter density. From left
to right, the three plots show the cases P0 = 1, 0.9, and 0.8. In the latter case, we also give the quasiparticle energy, Eqp, obtained by solving
Re[�−1(E ; ρ )] = 0. For these high molecular probabilities, the numerical differences due to the use of VA(s) or of VB(s) potentials [Eqs. (2.40)
and (2.43), respectively] are very small. The thin gray line represents the vacuum DD̄∗ threshold, whereas the empty circle at ρ = 0 is the
X (3872) vacuum mass m0 of the X (3872).

including a discussion on the accuracy of the approximation,
can be found in the Appendix.

By means of the approximation in Eq. (3.1) we can now
compute the in-medium TDD̄∗ (s; ρ) in the whole complex
plane, for the different medium densities ρ and vacuum prob-
abilities P0, and search for poles in the complex plane. We
find a pole on the first Riemann sheet of the amplitude (as
defined in the Appendix), off the real axis. This does not
represent any violation of the analyticity properties of the
complete-system scattering T matrix, because of the effective
procedure used to take into account the many body channels
of the type DD̄∗N → DD̄∗N ′. In the present scheme, they are
not explicitly considered in the coupled-channel space and
only their effects on DD̄∗ → DD̄∗ are included through the
in-medium charmed-meson self-energies.

The pole position depends on the nuclear medium density
ρ and on the value chosen for the parameter P0, the X (3872)
molecular probability in the vacuum. The pole position is
represented in Fig. 9 for different values of P0 and ρ, with
each of the colors associated with a particular density, and
both VA(s) (left) and VB(s) (right) free-space DD̄∗ potentials
considered in this work. For each density, the zigzag lines
represent the loop function G(eff)(s; ρ) right-hand cut:

√
s ∈ C

/[
Im p2(s, m(eff)

D(∗) , m(eff)
D

) = 0
]

and[
Re p2

(
s, m(eff)

D(∗) , m(eff)
D

)
> 0

]
(3.2)

extending to the right and starting at the branch point,
√

s =
(m(eff)

D(∗) + m(eff)
D ), where p2(s) = 0. In addition, p(s) is de-

fined in the Appendix. The dotted lines extending to the left
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FIG. 8. Same as Fig. 7, but for small molecular components, P0 = 0.4 and 0.2. We show separately Emax obtained from V (s) = VA(s) or
V (s) = VB(s) [Eqs. (2.40) and (2.43), respectively].
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FIG. 9. Complex pole position of the X (3872) for different nuclear densities (ρ) and vacuum molecular probabilities (P0). Results in
the left and right plots have been obtained using amplitudes computed with V (s) = VA(s) [cf. Eq. (2.40)] and V (s) = VB(s) [cf. Eq. (2.43)],
respectively. The dashed curves show the continuous variation of the pole position with P0, and the points represent steps in the probability
�P0 = 0.1. At the endpoints of each curve either P0 = 0 or P0 = 1, and this is indicated in each curve by an arrow. Different colors correspond
to different nuclear densities, as detailed in the legend of the plots. The zigzag lines stand for the cut of the G(eff)(s; ρ ) function (see text and
Appendix for further details).

represent the segments in which Im p2(s) = 0 and Re p2(s) <

0, where the density-dependent loop functions are thus real,9

Im G(eff)(s; ρ) = 0. The dashed lines show the continuous
variation of the pole position with P0, where the points repre-
sent steps in the probability �P0 = 0.1. The endpoints of each
of the curves, where either P0 = 0 or P0 = 1, are indicated by
an arrow. When P0 → 0, i.e., when the X (3872) molecular
component tends to vanish, the coupling of the X (3872) to the
D∗D̄ channel tends to zero, and therefore, in this case, the pole
remains at the original position in vacuum, independently of
the nuclear density. On the other end, when P0 → 1, i.e., when
the X (3872) tends to be a purely molecular state, the pole
appears to the left of the effective complex threshold, exactly
in the segment where Im p2(s) = 0. This happens because,
in this limit, the derivative term of the kernel VA(s) [cf. Eq.
(2.40)] vanishes, and VA(s) is just a real constant.10 There-
fore the pole, solution of [1 − VA(s)G(eff)(s; ρ) = 0], should
also satisfy Im G(eff)(s; ρ) = 0. We also see in Fig. 9 that
the in-medium X (3872) pole position satisfies | Im

√
sP| �

| Im(m(eff)
D + m(eff)

D∗ )|, i.e., the X (3872) width is always smaller
than the sum of the D and D̄∗ effective widths. One can say
that the pole position is dragged by the effective threshold
(m(eff)

D + m(eff)
D∗ ), and that the effect is large or small depending

on whether the in-vacuum probability P0 is close to 1 or to

9Because of the limited range in Re
√

s explored in Fig. 9, the
curves in which Im p2(s) = 0 (the zigzag and dotted lines) look like
straight lines, parallel to the real axis, although in general they are
not, and have some curvature.

10Note that, as previously discussed, there is little difference be-
tween the results obtained with VA(s) or VB(s) when P0 is close to
1. Therefore, the argument presented here with VA(s) can be readily
applied to the case of VB(s).

0, respectively. We also observe some dependence of the pole
position, which as expected grows as the molecular content
P0 deviates from 1, on the used DD̄∗ interaction in free space,
namely VA(s) [Eq. (2.40), left plot of Fig. 9] or VB(s) [Eq.
(2.43), right plot of Fig. 9].

In our amplitudes, the vacuum molecular probability P0

is a free parameter that we have varied to explore different
scenarios. We can define the quantity P̃ρ ,

P̃ρ = −g2(ρ)
dG(eff)(s; ρ)

ds

∣∣∣∣
s=m2(ρ)

, (3.3)

which generalizes to the nuclear medium the formula for the
vacuum probability [cf. Eq. (2.12)]. Since the pole position
is in general complex, so will be this quantity. Therefore, in
general, it will not be possible to interpret it as a probability.
In Fig. 10, we show P̃ρ for different nuclear densities as a
function of the vacuum probability P0. This figure comple-
ments the results of Fig. 9. We observe for this magnitude
some quantitative differences between the results obtained
with VA(s) [Eq. (2.40), left plot of Fig. 10] or VB(s) [Eq. (2.43),
right plot of Fig. 10], but the qualitative behavior is very
similar. In the intermediate regions, far from the end points
P0 = 0 and P0 = 1, the imaginary part of P̃ρ can be sizable,
and for most of these values it increases with the density. In
general, the effect of the nuclear medium in this intermediate
P0 region is to decrease both the real part and the modulus of
P̃ρ with respect to its original value P0. However, we see that
for both ends P0 → 0 and P0 → 1 we have that Im P̃ρ � 0
and P̃ρ � P0. We thus see that in these cases the X (3872)
state can be said to conserve its original nature in the nuclear
medium.
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FIG. 10. Dependence of the quantity P̃ρ [ cf. Eq. (3.3)] with the vacuum molecular probability P0 for different densities. The solid (dashed)
lines represent the real (imaginary) part of P̃ρ . The left and right plots correspond to the cases V (s) = VA(s) and V (s) = VB(s), respectively.

IV. CONCLUSIONS

In this work we have studied the behavior of the χc1(3872),
also known as X (3872), in dense nuclear matter. The X (3872)
appears in the vacuum as a pole in the DD̄∗ scattering ampli-
tudes, which are parametrized in a quite general form. The
in-medium effects have been incorporated by dressing the
DD̄∗ loop functions with the corresponding spectral functions
of the charmed mesons. As a result, the DD̄∗ amplitudes,
when the charmed mesons are embedded in the nuclear
medium, have been determined for energies around the nom-
inal X (3872) mass. The X (3872) spectral function also has
been obtained for densities ranging up to that of nuclear matter
saturation.

For the kernel of the DD̄∗ scattering, we have used two
possible energy-dependent potentials, each of them depending
on two free parameters. Imposing that the vacuum amplitude
has a pole in the physical Riemann sheet, these two parameters
allow one to fix the nominal X (3872) mass and its coupling to
the DD̄∗ channel, or, alternatively, the mass and the molecular
probability P0. Therefore, both types of interactions allow for
the study of the X (3872) as either a pure hadron-molecule
state or a genuine quark state, as well as intermediate possibil-
ities, in terms of P0. However, both types of interactions have
different analytical properties, which can give rise to different
scattering amplitudes at finite density.

Using these two models for the interaction, we have ex-
plored the connection between the in-medium behavior of the
X (3872) and its nature. In the case of the X (3872) being
mostly a molecular state, both interaction potentials behave
similarly and lead to equivalent results for the in-medium am-
plitudes. In this case, we have found that the DD̄∗ amplitudes
strongly depend on the density. The width of the X (3872)
peak significantly grows when the density is increased, while
its position moves to higher energies, as the molecular com-
ponent is lowered. The X (3872) spectral function follows
the imaginary part of the X (3872) self-energy, that increases
with density due to the appearance of new many-body decay
channels in matter. On the other hand, when smaller molecu-
lar components are considered, the DD̄∗ amplitudes depend

on the choice of the energy-dependent potential, especially
for energies below the free-space X (3872) mass. Hence, the
experimental input on the amplitudes at finite density might
shed light on the dynamics of the DD̄∗ interaction in the case
of a state with a large genuine constituent quark component.
Moreover, in this case, the X (3872) spectral function, which
is independent of the kernel employed, is very little affected
by the density.

The in-medium DD̄∗ loop functions strongly depend on the
interaction of D, D∗, D̄, and D̄∗ with nuclear matter. However,
one can reasonably approximate them by a standard loop func-
tion evaluated with complex, effective masses of the D(∗) and
D̄(∗) mesons. This fact allows for an analytical continuation
of the loop function, and hence of the scattering amplitude, to
the whole complex plane and to the second Riemann sheet.
In turn, this allows for the search of the pole associated with
the X (3872) in the nuclear medium. For finite density, the
pole is found in the first Riemann sheet, but in the complex
energy plane. However, this does not represent any violation
of the analyticity properties of the T matrix, because, in the
present scheme, the DD̄∗N → DD̄∗N ′ many-body channels
are not explicitly considered in the coupled-channel space,
since their effects on DD̄∗ → DD̄∗ are included via the in-
medium charmed-meson self-energies. The behavior of the
X (3872) pole with density is moreover fully in line with the
change in matter of the squared modulus of the T matrix
amplitudes for real energies. Complex poles for the X (3872)
produced inside of a nuclear medium are collected in Fig. 9,
for different densities and free-space molecular probabilities.
In light of these results, we conclude that for the nuclear
matter saturation density and molecular components of the
order of 60% for the X (3872), the many-body modes con-
sidered in this work provide widths for this resonance of
around 30–40 MeV, and more modest mass shifts (repulsive)
with a maximum of 10 MeV. This latter outcome contradicts
the results obtained in the QCD-sum-rule calculation carried
out in Ref. [74] and based on a diquark-antidiquark picture
for the X (3872). Indeed, in the approach of Ref. [74], the
mass shift due to the nuclear matter is negative and is about
25% (≈ 800–900 MeV) when the saturation density is used.
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Therefore, any experimental analyses on the in-medium prop-
erties of X (3872) and comparison of those with the results of
the present study can increase our knowledge of the X (3872)
and help us gain useful information on the not-well-known
structure of this exotic state.

In this work we have studied the contribution of the domi-
nant DD̄∗ channel to the X (3872) dynamics. In the future, we
aim at extending our calculation to a more realistic situation
by incorporating also coupled channels involving hidden-
charm mesons, such as J/ψ ω. Also, the results presented in
this paper are based on a specific model for the D(∗)N and
D̄(∗)N interactions, which determine the in-medium modifica-
tions of the DD̄∗ loop functions. Different or more elaborate
models for these amplitudes could also be employed in the
formalism we have derived here. In our analysis we have
worked in the isospin limit, and thus we have considered the
X (3872) as a state with 2 MeV binding energy with respect to
the D∗D̄ threshold. It would be desirable to extend the work
considering the physical masses and coupled channels. In any
case, our results indicate a very different behavior with density
of the DD̄∗ amplitudes and the X (3872) spectral function
depending on the nature of the X (3872). Thus, experiments
that can access the nuclear finite-density regime, such as HiCs
like CBM or those with fixed nuclear targets such as p̄-nuclei
in PANDA, are necessary and complementary to the spectro-
scopic analyses so as to discern the nature of X (3872).
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APPENDIX: FURTHER DETAILS ON G(eff)(s; ρ)

In this Appendix we give further details on the approxima-
tion made in Sec. III B, and on the analytical properties of the
loop function employed. The approximation is

(s; ρ) � G(eff)(s; ρ) ≡ G
(
s, m(eff)

D (ρ), m(eff)
D∗ (ρ)

)
, (3.1)

where G(s, m1, m2) can be computed using the explicit for-
mulas given for instance in Ref. [83] (see in particular the
erratum), regulated with a momentum cutoff of 0.7 GeV. In
addition, we take for the density-dependent effective masses

m(eff)
D (ρ) = mD + �m(ρ) − i

�(ρ)

2
, (A1a)

m(eff)
D∗ (ρ) = mD∗ + �m(ρ) − i

�(ρ)

2
. (A1b)

with mD(∗) the vacuum masses, and �m(ρ) and �(ρ) real
quantities. We note that in the m(eff)

D and m(eff)
D∗ definitions we

have forced a common shift �m(ρ) − i �(ρ)
2 with respect to

the vacuum masses. This being an effective representation,
we find that this ansatz is enough to approximate the original
loop function, (s, ρ). In Fig. 11 we show in the left (right)
panel the imaginary (real) part of the loop function (s, ρ)
together with the approximation determined by Eq. (3.1),
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FIG. 11. The original loop function (s; ρ ) (solid lines), shown in Fig. 3, compared with the approximated one, G(eff)(s; ρ ), obtained from
Eq. (3.1) (dashed lines). The imaginary and real parts of both functions, as a function of the c.m. energy of the DD̄∗ pair are displayed in the
left and right plots, respectively.
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TABLE I. Parameter values used to determine the effective
masses m(eff)

D (ρ ) and m(eff)
D∗ (ρ ) [Eqs. (A1)] for different nuclear densi-

ties ρ.

ρ/ρ0 �m(ρ ) (MeV) −�(ρ )

2
(MeV)

0.10 +0.04 −2.5
0.30 +0.07 −7.1
0.50 −0.01 −11.6
0.75 −0.26 −17.0
1.00 −0.65 −22.3

computed with the parameters �m(ρ) and �(ρ) collected in
Table I. The latter are chosen so as to approximately match
the original loop functions (s; ρ) for the different densities
considered in this work. As can be seen, the approximation
works reasonably well.

The loop function G(eff)(s; ρ) can be continued analytically
to the whole complex plane, and the second (or nonphysical)
Riemann sheet is defined as

G(eff)
II (s; ρ) = G(eff)(s; ρ) + i

p
[
s, m(eff)

D (ρ), m(eff)
D∗ (ρ)

]
4π

√
s

,

p(s, m1, m2) = [s − (m1 + m2)2]
1
2 [s − (m1 − m2)2]

1
2

2
√

s
.

(A2)

In Fig. 12 and for ρ = ρ0/2, we show in blue (red) the phys-
ical (nonphysical) Riemann sheet of the function G(eff)(s; ρ)
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FIG. 12. The function G(eff)(s; ρ ) for the case ρ = ρ0/2 on the√
s complex plane. The first (second) Riemann sheet is shown in

blue (red).

in the
√

s complex plane. The cut of G(eff)(s; ρ) lies on a
curve for the variable

√
s, given in Eq. (3.2) of the main text,

which in the free space (ρ → 0) is the usual right-hand cut,√
s > (mD + mD∗ ) on the real axis, with

√
s = (mD + mD∗ )

the branch point. For finite density and therefore complex
masses, this branch point moves from the real axis into the
complex plane, and the cut does not lie in the real axis either.
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