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Abstract: In this study, we solve the challenge of predicting oil recovery factor (RF) in layered
heterogeneous reservoirs after 1.5 pore volumes of water-, gas- or water-alternating-gas (WAG)
injection. A dataset of ~2500 reservoir simulations is analyzed based on a Black Oil 2D Model with
different combinations of reservoir heterogeneity, WAG hysteresis, gravity influence, mobility ratios
and WAG ratios. In the first model MOD1, RF is correlated with one input (an effective WAG mobility
ratio M*). Good correlation (Pearson coefficient —0.94), but with scatter, motivated a second model
MOD?2 using eight input parameters: water—oil and gas—oil mobility ratios, water—oil and gas—oil
gravity numbers, a reservoir heterogeneity factor, two hysteresis parameters and water fraction. The
two mobility ratios exhibited the strongest correlation with RF (Pearson coefficient —0.57 for gas-oil
and —0.48 for water-oil). LSSVM was applied in MOD2 and trained using different optimizers: PSO,
GA, GWO and GSA. A physics-based adaptation of the dataset was proposed to properly handle
the single-phase injection. A total of 70% of the data was used for training, 15% for validation and
15% for testing. GWO and PSO optimized the model equally well (R? = 0.9965 on the validation set),
slightly better than GA and GSA (R? = 0.9963). The performance metrics for MOD1 in the total dataset
were: RMSE = 0.050 and R? = 0.889; MOD2: RMSE = 0.0080 and R? = 0.998. WAG outperformed
single-phase injection, in some cases with 0.3 units higher RF. The benefits of WAG increased with
stronger hysteresis. The LSSVM model could be trained to be less dependent on hysteresis and the
non-injected phase during single-phase injection.

Keywords: water-alternating-gas (WAG); physics-informed machine learning; least square support
vector machine (LSSVM); particle swarm optimization (PSO); dimensionless numbers; hysteresis;
genetic algorithm (GA); gravitational search algorithm (GSA); grey wolf optimization (GWO)

1. Introduction

Oil recovery through water or gas injection often lacks efficiency due to the unfavor-
able mobility ratio between the oil and the displacing phase. Viscous fingering, gravity
segregation and heterogeneity can also lead to poor sweep. Gas features low viscosity and
density and can achieve channeling and early breakthrough [1,2]. Water-alternating gas
injection (WAG) is an enhanced oil recovery (EOR) technique in which water and gas are
injected in cycles to displace the oil. This type of technique mitigates the exponential rate
decline seen in most fields after peak production [3]. The mobility of each injected fluid
is reduced by the presence of the other, producing a more favorable mobility ratio to oil.
Gravity segregation becomes less detrimental, since gas sweeps the top of the reservoir,
while water sweeps the bottom [2,4]. Gas usually results in lower residual oil saturation
than water, but this can be further lowered by WAG. Thus, WAG utilizes the advantages
of water and gas injection and minimizes their individual downsides. In several field
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implementations, it has been beneficial to use WAG; the oil recovery factor in 59 fields
increased when WAG was introduced, by 5% to 10 % of the oil originally in place [2].
Sanchez [5] reported that 80% of US WAG projects were beneficial. Micromodel studies
also demonstrate better oil recovery with WAG than with single-phase displacement [6].

WAG introduces more design and operational parameters compared to water or
gas injection, such as the WAG ratio (volume water to volume gas injected), number of
cycles, cycle volume, injection rates and pressures. This may further affect optimal well
placements. A 1:1 WAG ratio is considered common or even optimal [4]. Variation in WAG
ratio with project time (tapering) has been conducted, partly due to limited gas access,
for limiting gas production or for optimization. [7] used ensemble-based optimization of
injector and producer well controls at each WAG cycle to maximize the net present value
for a channeled reservoir model. Whether the reservoir pressure is above the system’s
minimum miscibility pressure (MMP) determines whether the gas is miscible or immiscible
with the oil [8]. During miscible displacement, the oil and gas become practically the same
phase and residual oil saturation can approach zero. Kulkarni [9] found that miscible gas
(COy) core flooding (continuous or WAG) outperformed immiscible injection. The choice
or modification of the injected fluids can also improve the outcome. Foam, surfactant,
polymer, low salinity brine and CO, are some alternatives [4].

Reservoir geology or heterogeneity is important during any field development. During
gas injection, heterogeneity in terms of thief zones, stratification or fractures can cause
gas channeling and early breakthrough, which can be mitigated by WAG [4]. Favorable
well placement relative to the dip angle can provide more stable frontal displacement of
oil. In heterogeneous reservoirs, gravity and capillary forces can divert flow from highly
permeable layers to less permeable layers. These effects are more important in naturally
fractured reservoirs, where advective forces are unable to mobilize oil [10,11].

The simultaneous flow of oil, water and gas requires the detailed measurement,
quantification and correlation of three-phase relative permeabilities [12-14]. Injecting
water and gas alternately causes gas and water saturations to rise and fall, resulting in
hysteresis [15-19]. During WAG, the relative permeability of gas is more affected by
hysteresis than oil and water [4] and hysteresis tends to decrease gas mobility. This
reduction delays gas breakthrough and reduces gravity segregation. The Land [12] and
Carlson [15] models are widely used to model relative permeability hysteresis.

Machine learning (ML) has gained increased popularity in the petroleum industry in
recent years. ML algorithms can be useful for understanding trends in complex datasets
and provide multivariate nonlinear regression or classification. Their applications include
lithology classification [20], selecting EOR methods [21], locating optimal drilling spots [22],
correlating asphaltene precipitation [23] or predicting CO; viscosity [24]. Important steps in
developing ML models include selecting appropriate input and output variables, acquiring
sufficient quality data, applying a suitable ML algorithm and tuning its metaparameters to
prevent over- or under-fitting, usually via optimization algorithms.

This study makes use of the least squares support vector machine (LSSVM) algorithm,
based on the works [25-27], for nonlinear regression. This algorithm has been applied in
many contexts, such as predicting drilling fluid density [28], gas solubility [29-32], water
availability [33], energy consumption [34,35], shale gas adsorption [36], wind power [37,38]
and even tourism flow [39]. LSSVM has been successfully combined with optimizers such
as particle swarm optimization (PSO), genetic algorithm (GA) and grey wolf Optimization
(GWO) and has, in many cases, outperformed regression algorithms such as artificial neural
networks, radial basis function, gene expression programming and adaptive neuro-fuzzy
interference system [29,30,40,41].

In recent studies, [42,43] simulated CO, WAG injection in a reservoir model and
developed machine learning proxy models with different algorithms to predict current
rates of oil, gas and water based on current time, gas and water injection rates, half cycle
time and operational constraints. The recovery factor and cumulative production were
calculated from the produced output. The calibrated proxy models were used to optimize
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the WAG process. [41] used LSSVM and other ML approaches to predict two-phase relative
permeabilities and combined them via correlations in previous research to estimate three-
phase relative permeabilities and the performance of a WAG core flood. [40] correlated the
oil recovery performance of EOR carbonated water injection using LSSVM. [44] used ML
to optimize well placement during WAG injection. [45,46] used ML to co-optimize CO,
injection for oil recovery and storage during WAG under different operational constraints.

In this study, our main contribution is to predict the reservoir oil recovery factor (RF)
in layered reservoirs during immiscible WAG and single-phase (gas or water) injection
for different fluid, reservoir, geometrical and operational conditions. This is a relatively
complex task given the number of parameters involved and their coupled nature. Based
on a comprehensive simulation database generated in both [47] and this work, we present
two predictive approaches. In the first (MOD1), a dimensionless number M*, derived from
Nygard and Andersen’s study [47], is applied as a single input parameter. The second
approach (MOD2) applies eight physics-motivated dimensionless input parameters to
improve predictive power compared to the first method: two mobility ratios, two grav-
ity numbers, injected water fraction, reservoir heterogeneity factor and two hysteresis
parameters. In both models, the input variables incorporate all the system information.
The latter approach, MOD2, utilizes the ML regression algorithm, LSSVM, with metapa-
rameters optimized by either PSO (Particle Swarm Optimization), GSA (Gravity Search
Algorithm), GA (Genetic Algorithm) or GWO (Grey Wolf Optimization). LSSVM has been
optimized successfully in other works using PSO [20,23,36], GSA [37,38], GA [28] and
GWO [29,32,33]. We propose a methodology to ensure the physical behavior of the machine
learning model MOD2. We then adapt the dataset to be independent of hysteresis and
the non-injected phase when single-phase injection is performed. Some of the research
questions we investigate are:

- How well do the models predict WAG performance?

- Which parameters affect RF the most?

- Do the parameters have a positive or negative effect on RF?

- Will the models properly account for WAG injection and single phase injection?

The paper is structured as follows. The model serving as the basis for the simulation
results is outlined in Section 2.1. The dimensionless number M* is outlined in Section 2.2.
This number is used in the single-input parameter model. The machine learning approach
and dataset follow in Section 2.3. The eight input parameters of the second approach are
also presented in those latter sections. The results from analyzing the data are shown in
Section 3 and the paper is concluded in Section 4.

2. Theory
2.1. Mathematical Model

We consider the same modeling approach for immiscible WAG injection as [47]: A
2D reservoir layered in a horizontal direction, with one injector and one producer, both
vertical and perforated along the full reservoir height. See Figure 1 for an illustration. A
black oil model is assumed with an incompressible and immiscible three-phase flow of oil,
water and gas and negligible capillary pressure. WAG is applied from the start, rather than
as a tertiary method. Relevant equations are presented below:

01 (950) = D (fottrs) + =(fortrz) + 0(Kegha folApwo) — 0z (KegAgfoldpog) (1)
0r(psw) = Ox(futtre) + 0= futtrz) — 9=(K=gho fuldpuo) — 9 (KegAg fubpug)  (2)
aqux + azuTz =0, (3)

ury = —KyA1dyp, ur; = —K;A10;p + K:8 (/\0100 + Awpw + /\gpg) )

where ¢ denotes porosity, s; saturation of phase i, f; fractional flow, K permeability, A;
mobility, p; density, ur total Darcy flux and p pressure. Corey correlation was applied for
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relative permeabilities, while gas relative permeability hysteresis was incorporated using
Land’s trapping model [12] (which reduces the mobile gas saturation interval based on the
parameter C) and Carlson’s hysteresis model [15] with parameter a (which reduces gas
relative permeability).

Nygard and Andersen [47] ran simulations systematically to investigate the role of
gravity segregation, the mobility ratios between the three phases, heterogeneity, hysteresis
and WAG ratio and how they affected RF after 1.5 pore volumes of fluid were injected.
The simulations were scaled using a combined dimensionless mobility ratio M* stating
how effectively the injected fluids displaced oil under the given conditions, summarized as
follows. In the design of this number, the mechanisms were incorporated one at a time. We
refer to Tables A1-A3 in Appendix A for several important simulation input parameters or
model configurations that were constant in the simulations. More details can be found in
the original paper. The fact that these parameters remained constant was mainly due to
prioritization. However, these input parameters were incorporated in the dimensionless
numbers presented in the following sections.

z=0
Injection Kx1, Kz1, 91 h U=1| production
well K2, K72, §2 f h; U =2) well
Water/:> = Oil / water
Gas Layer j / gas
z=1, L KxNL:KzNL»quL 1 hNL (j =Np)
x=0 x = L,

Figure 1. The geometrical configuration of the model (modified from [47]). is the distance from the
injector, while is the distance from the top of the reservoir.

Oil recovery factor (RF) is the output parameter of interest, defined as:

N: Ny
RE — _ volumeoil produced Y el 9(21)s0 (xk,2))
~ volume oil initially in place Z]N:Z1 Y ¢(2)) S0

©)

Every grid block features same dimension AxAz. RF is reported after 1.5 pore volumes
are injected.

2.2. WAG Efficiency Characterization Using Dimensionless Number

The characteristic mobility ratio M* defined by Nygard and Andersen [47] features
the following functional relation:

-1
Tw 1—ry

+
FuFg’ Mz, FuFg/

M* = (6)

M;) /0
1y is the volume fraction of water in each cycle. Larger M* is associated with lower
recovery factor. Characteristic two-phase mobilities A} for each phase i were found by
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averaging their mobility over their mobile saturation interval and used to define two-phase
mobility ratios M, Jor Mgf /0"

Swr

1— Swr 1 — Sorw
* _ A:{) AF = k%gx ( Sw,max AE = k%%{ Sow,max
w T 4 ow

T = 7

©o T Ak, Ho  (nw+1) Ho  (Mow+1) @
_ _Sgr _ _Sorg

* — Ljé )\* — k%ﬂx (1 Sg,max) /\* — k%agx (1 Sug/max) (8)
807 Ng' 8 g (ng 1) T po (nog+1)

si max denotes the saturation of phase i where end-point relative permeability k7"~
is obtained, n; is the Corey exponent and y; is viscosity. A heterogeneity factor Fy was
derived from the horizontal permeability K,; and layer height &; distribution over layers

j=1:Np:
“1 N, . N, N g -1
> hiKy Ky = Zhj Z - )
=1 j=1 j=1"%]

]

K [N
Fp= 0 Ko = (Zh,-
K =1

X J

Two-phase gravity numbers were defined using the ratio of two-phase segregation
time f5.¢ and the residence time t,s of the injected phase:

N 1.
Nwro = bes g BV O o HP (1 1 ) (10)
O e Qu M KEADg \ Ny A
Np o
Ng/o _ t‘gi 8 LxLyZ]':l (P]h] tg/o _ H¢ i 1 (11)
¢ g Qe % Kiap,g\Ap ' Agg )

It was found that the role of gravity depended on heterogeneity and two-phase gravity
factors F¥/°, F2/? accounting for this coupling were introduced:

a az
1 +aq (Ng/o) ’ /0 1+l711 (Né/o>

Fw/o — —
G a’ * G
1+ay(Fy —1) (Ng‘;/f') ? 1+ ay(Fy —1) (Ng/“)

(12)

az

Note the unitless tuning parameters a; = 3 and a4, = 0.5. Finally, hysteresis was

incorporated into the gas characteristic relative permeability. Land’s parameter C defines a

. . . hyst
hysteresis residual gas saturation séf :

hyst Sg,max — Sgr
Sgr = Ser + (13)
8" S +C (Sg,max - Sgr)
A further modification according to r, was made:
hyst
s;urag =sg(l—re) + rwngs (14)

Additionally, the gas relative permeability end point k’ﬂé”" in /\g, (see Equation (8)), was
reduced due to hysteresis. The reductions were performed individually for the gas—oil mobility
ratio and the gas—oil gravity number first based on the parameter & and heterogeneity factor
Fpy using unitless tuning parameters by = 1,b, = 0.5 and b3 = 10,by = 2:

kmax,hyst o k;réax max,hyst k%ﬂx

S S— S S (15)
M 1+ b F2a" NG 1 4 e
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Next, the fraction r,, was incorporated according to:

-1 -1
1—r T 1—r r
wag w w wag w w
krg,M - Jmax + kmax,hyst 7 "rg,Ng — fmax + kmax,hyst (16)
8 rg,M 8 rg,N

We then obtained the hysteresis-corrected characteristic gas mobilities A} ,, and A,
8 &NG

max
g
in the gas—oil gravity

by replacing s, with s;},” ¢ in (8), while the end-point relative permeability k/* in (8) was

wag

replaced by ki‘i;ﬁ/[ in the gas-oil mobility ratio M; /o In (8) and by krg, Ne

number Né/o in (11):

wag wag wag wag
* = i <1 B Sgr ) krg,M A N = i <1 _ Sgr > krg,NG (17)
& +17 "8Ne

Hg Sgmax | Mg Hg Sg,max ”g+1

Every input parameter is incorporated in the dimensionless number M*. Note that
during single-phase injection (r, = 0 or 1), the two-phase parameters involving the phase
not injected do not affect M*. Similarly, hysteresis does not affect M* during single-
phase injection.

2.3. Workflow
2.3.1. Model Input Parameters

In the first model, MOD1, we take
xo = log;y M* (18)

as the only input parameter to predict RF. We also consider a machine learning model
(MOD2) in which the following eight dimensionless numbers are used as input parameters:

X1 = ry, Xp = log,o Fu, x3 = &, x4 = log,,C,
19
x5 = log. . M*, , xg = log.« M* , , x7 = log.. N/, xg = log,, N&/° 19
5 810 Mg /or X6 810 Vw/or X7 810 NG/ 8 810 VG

These numbers reflect injected fluid fractions x;, heterogeneity xp, hysteresis x3, x4,
relative magnitude of fluid mobilities x5, x4 and gravity vs. advective forces x7, xg. They
incorporate all the input parameters used in the Eclipse model and the number M*. The
overall workflow is demonstrated in Figure 2, where the two modeling approaches after
the data collection step are indicated. In MOD1, a polynomial regression is performed,
while machine learning is used for MOD2. The data and the detailed steps for developing
MOD?2 are explained below.

2.3.2. Reservoir Simulation Dataset and Model Approaches

In addition to the 1648 WAG and 96 single phase injection simulations generated
by [47], 824 new WAG simulations were performed with new C and « values combined
with existing combinations of heterogeneity, density and mobility. In the previous study,
C and & were selected primarily to cover no or significant hysteresis. The values & = 0
and C = 1000 were assigned to points without hysteresis influence from the respective
parameters. For MOD1, each simulation allows the calculation of M*, which is input to
the corresponding output RF. The 1648 + 96 4 824 = 2568 data points were analyzed with
MODI1 and correlated using a polynomial expression between RF and xj.
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MOD1: 1 input variable

Polynomial
correlation

Gather data

(simulations)

Select MOD2: 8 input variables

model
Divide data
into 3 sets Testing set
Callbratlon and
\ validation sets

28886

Trained models
with optimal y
and o

Statistical performance

on the three sets

Statistical performance Sensitivity analyses
on the dataset { using the best model

Compare predictions

with 3D model

Figure 2. Workflow demonstrating the development, assessment and application of the models.

For the single-phase injection of water (7, = 1), values for Né/ and M} /o Arenot well

defined since gas is not injected. The case is similar regarding N /% and My, o atry =0
(gas injection). Further, hysteresis parameters C, « should not matter. The insensitivity
of M* to the mentioned parameters under single-phase injection was ensured during its
derivation. To properly define the input values under single-phase injection for MOD2 the
following approach was taken:

Each single-phase data point was duplicated to 16 data points, in which all combina-
tions of high and low values of the four missing parameters were assigned. Specifically, for
gas injection (points with r, = 0, indexed ‘g’), the following values were set for x3, x4, X, X7:

X3¢ = X3WwAG £ X03wac, X1,¢ = Xawac £ X0ywac, 0)
20

Xe,g = X6,WAG £ X0 wAG, X7, = X7,waG £ X07,wacG,

where X; wac (i = 3,4, 6,7) indicate the average of the data point values applied in the WAG
cases and o; wac (i = 3,4,6,7) the corresponding standard deviations. X is a multiplier.
Similarly, for water injection (indexed ‘w’) the following values were set for x3, x4, X5, xs:

X3w = X3,WwAG * X03,WwAG, Xaw = Xawac T X0ywac, \
1

X5, = X5,WAG = X05,WwaAG, X8w = X8 wAG = X0gwAG,

The 96 single-phase simulations resulted in 16 - 96 = 1536 points to the ML model. In
total, 1648 + 824 + 16 - 96 = 4008 data points were then applied in MOD2.
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2.3.3. Machine Learning Dataset Preparation

The 2472 WAG cases and 96 single-phase injection cases were both divided randomly
between three sets: 70% in the training set, 15% in the validation set and the remaining
15% in the testing set [48]. Single-phase data points within each set were further split into
16 points, as described previously. See Table 1 for an overview of points in the models
and datasets.

Table 1. Number and type of points in different datasets and models.

MOD1 Single Phase Cases WAG Cases Total

96 2472 2568

MOD2 Single phase cases WAG cases Total
Training (70%) 68 x 16 = 1088 1730 2818
Validation (15%) 14 x 16 =224 371 595
Testing (15%) 14 x 16 =224 371 595
Total 96 x 16 = 1536 2472 4008

2.3.4. Machine Learning Workflow

We apply LSSVM with radial basis kernel (RBK) function and either PSO, GWO, GA or
GSA as optimizers. Each of the optimizers features its own strengths and disadvantages in
finding global optima efficiently, as well as depending on its individual tuning parameters.
They are swarm-based algorithms, making use of many potential solutions simultaneously
and improving these solutions according to those performing best at a given iteration. The
result is the existence of differently optimized LSSVM models, as indicated in Figure 2.
Detailed explanations of the algorithms are provided in Appendices B and C, respectively.
Each input parameter x; was normalized (denoted xy) to a range between —1 and +1 based
on the maximum and minimum values of the total dataset.

X — Xmin

Xy =2 —1 (22)

Xmax — Xmin

Assuming predefined values of the metaparameters (¢, y), LSSVM provides the func-
tion y(x) and its coefficients ay, b that minimize the error between the model predictions
and observations of a given dataset (usually the training dataset) for those parameter

choices [27]:
th exp( HlexNH) +b (23)

For given metaparameters, the LSSVM algorithm is calibrated on the training set to
provide choices of ay, b. The optimizer algorithm is used to search for the metaparameters
o, v that minimize the model prediction error on the validation dataset (i.e., many LSSVM
models are calibrated on the training set and the one giving best prediction on the validation
set is taken as the best). This systematically determines the best choice of metaparameters
to avoid over- or under-fitting. The optimized LSSVM models were finally used to predict
the data in the testing set. The model performing best overall was selected for further
sensitivity analysis. For proper comparison, the optimizers were implemented with the
same random initial solutions guesses (and velocities if applicable), search space and
number of iterations. The optimizer parameters can be found in Table A4.

An advantage of LSSVM is its few (two) metaparameters and the automated opti-
mization of its internal tuning parameters [27]. In comparison, artificial neural networks
often need subjective selection of the number of nodes and layers and then comprehensive
tuning of a vast number of weights and biases to train the network [49].

The correlation between input variables x and output y (RF ) is quantified using Pearson

correlation rf, , Spearman rank rxy and distance correlation r2 xy coefficients. These indices,

Xy’
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respectively, indicate linear correlation, nonlinear monotonic correlation and nonlinear
nonmonotonic correlation. The former two range between —1 and 1, while the latter ranges
from 0 to 1. For all of them, 0 indicates no correlation. The goodness-of-fit between the
calculated RF from MOD1 or MOD2 and the data values of RF were quantified using the
coefficient of determination R? and the root mean square error RMSE. The definitions of
the mentioned quantities are in Appendix D.

3. Results and Discussion
3.1. Preliminary Dataset Analysis
The range and mean of the data points used in MOD1 and MOD2 (using X = 0.5) are

listed in Table 2. The use of logarithms made the range of the different variables span a few
units rather than orders of magnitude.

Table 2. Range of values for the total datasets used in MOD1 and MOD2 (using X = 0.5).

MOD1  Train Val Test Tot
Min Mean Max Min Mean Max Min Mean Max Min Mean Max
M* —-0.2 1.4 34 -0.1 1.5 3.2 -0.1 1.4 3.2 —0.2 1.4 3.4
y 0.14 0.49 0.88 0.20 0.49 0.84 0.19 0.50 0.85 0.14 0.49 0.88
MOD2  Train Val Test Tot
Min Mean Max Min Mean Max Min Mean Max Min Mean Max
X1 0 0.5 1 0 0.5 1 0 0.4 1 0 0.5 1
X2 0 0.5 1.1 0 0.5 1.1 0 0.4 1.1 0 0.5 1.1
X3 0 1.2 2.5 0 1.2 2.5 0 11 2.5 0 1.2 2.5
X4 0 1.3 3 0 1.3 3 0 1.4 3 0 1.3 3
X5 0.1 1.4 24 0.1 1.4 24 0.1 14 24 0.1 1.4 24
X6 0.0 1.4 2.3 0.0 14 2.3 0.0 1.3 2.3 0.0 1.4 2.3
X7 —4.6 —2.6 -0.9 —4.6 —-2.7 -0.9 —4.6 —2.7 -0.9 —4.6 —2.6 —-0.9
Xg —-79 -3.0 -0.8 —-7.9 -3.1 -0.8 -7.9 -3.0 -0.8 -7.9 -3.0 -0.8
y 0.14 0.45 0.88 0.20 0.44 0.84 0.19 0.48 0.85 0.14 0.45 0.88

The Pearson, Spearman and distance correlation coefficients evaluated between RF and
the input parameters were calculated for the two model datasets and are listed in Table 3.
For MODY1, the two former coefficients were ~ —0.94 and the latter 0.93. Their magnitude
being close to 1 indicates a strong linear correlation between RF and xy = log;, M* and the
negative sign indicates that a larger M* reduces RF.

For MOD2, Pearson correlation coefficients were reported for WAG cases only and
for all cases when X = 0.25, 0.5 and 1 in Table 3. Spearman rank and distance correlation
were calculated only for X = 0.5. Considering the WAG cases, several variables correlate
with RF, especially x5, x4 which are the log of gas/oil and water/oil mobility ratios. They
feature Pearson coefficients rfy ~ —0.5 to —0.6 indicating that when they increase (less
favorable mobility ratio towards the oil), RF is reduced. Heterogeneity, represented by x»,
also correlates with RF with a lower rgy ~ —0.27, indicating that RF generally reduces
when the heterogeneity factor increases. The hysteresis parameters x3, x4 correlate with
RF in opposite ways to each other, with rﬁy ~ 0.15 for x3 and —0.15 for x4. When x3 (i.e.,
) increases, gas relative permeability is reduced and should improve RF. Higher x4 (i.e.,
log C) leads to less gas trapping and RF therefore decreases. The gravity numbers feature
relatively poor Pearson correlation with RF, with rfy ~ 0.08 for water-oil and 0.0045 for gas-
oil. Similarly, the water volume fraction correlates little with RF, and rfy ~ —0.05is slightly
negative. These results could be related to their coupled nature, as is discussed below.
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Table 3. Pearson, Spearman and Distance correlation coefficients 7xy evaluated for the total dataset
between RF and the involved input parameters for MOD1 and MOD2.

MOD1 hy o o
X0 —0.94 —-0.95 0.93
MOD2 X1 X7 X3 X4 X5 Xg X7 Xg
‘c/\:secs —0.053 —0.34 0.16 —-0.15 —0.62 —-0.49 0.078 0.0045
rfy X =025 —0.055 —-0.27 0.11 —0.10 —0.58 —-0.49 0.059 0.0087
X =05 —0.055 —-0.27 0.10 —0.099 —0.57 —0.48 0.057 0.0085
X=1 —0.055 —-0.27 0.087 —0.083 —0.53 —0.45 0.053 0.0079
ri;’ X =05 —0.045 —-0.25 0.095 —0.095 —0.53 —0.47 0.056 0.017
r% X =05 0.19 0.25 0.15 0.15 0.54 0.47 0.092 0.077

When considering the MOD?2 datasets with single-phase data included for different
X, we note that the magnitude and sign of the different Pearson coefficients are similar to
when only the WAG cases were considered. The main difference is that the correlation is
somewhat lower, especially the parameters with unspecified information during single-
phase injection. This was expected, since we added points where RF does not vary with
changes in these parameters.

When evaluating the dataset with Pearson rank correlation for X = 0.5, we observe
similar, but slightly lower values as for the Pearson coefficient, except for xg, where the
correlation doubles, but remains very low. When considering the distance correlation
coefficient, however, several input parameters correlate more strongly with recovery, indi-
cating that their relation is nonmonotonic. In particular, the water fraction, x;, features a
higher distance correlation coefficient, of 0.19. WAG was expected to perform better than
single-phase injection, with RF not changing linearly with x;, but peaking. Gravity can be
a cause of both low and improved sweep and the gravity numbers x7, xg feature distance
correlation coefficients around 0.08, where more impact is attributed the gas—oil gravity
number in particular. Furthermore, the hysteresis parameters x3, x4 now seem to correlate
more strongly. The three correlation coefficients are similar for x;, indicating a relatively
linear and monotic relation, so if all other parameters are constant, increased heterogeneity
should reduce recovery.

Note that all the variables in MOD?2 feature less correlation than the variable x( in
MOD1, since they individually do not contain all the involved system parameters. The aim
is for them to provide better predictions when combined.

3.2. Development of MOD1

RF is plotted against xg in Figure 3 and demonstrates a clear correlation where higher
xo gives lower RE. There is also significant scatter, meaning a given x( can be associated
with a range of RF values. The data were fitted to a third-order polynomial function, given
by the blue curve in Figure 3 and Equation (24). A higher order polynomial did not further
reduce the RMSE, which means the remaining error was associated primarily with the
scatter in the data.

RE= Y pi(xo)*, (R*=0.889; RMSE = 0.0498)
i=1:4 (24)

p1 = 0.01645, p, = —0.06302, p3 = —0.1393, ps = 0.7676
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Figure 3. Datapoints plotted against corresponding values of xy for MOD], defined using a third-
order polynomial (blue line) of x.

The performance of the model is also shown by comparing the estimated RF and
the data RF in Figure 4a together with a histogram, Figure 4b, of the residual errors (the
difference between the estimated RF and the data point RF). The R? = 0.889 is relatively
high. As seen in the histogram, the residuals are symmetrically distributed around zero
and roughly 95% of the points estimate RF correctly within 0.1. The RMSE, which can be
considered a more typical error, is 0.050.
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Figure 4. Comparison of estimated RF with MOD1 and actual datapoints (a) and a histogram of the
residuals (b).
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3.3. Development of LSSVM Model MOD?2

The ML model MOD2 was developed using LSSVM and a dataset assuming X = 0.5.
The best LSSVM model was determined using different approaches. First, a random
choice of metaparameters (0, y) = (1,1) was used. Next, LSSVM was applied with the
different optimization algorithms, PSO, GA, GWO and GSA, to systematically find the best
metaparameters. As previously mentioned, for any combination of the metaparameters,
LSSVM models were fitted to the training set and used to forecast the validation set. The
metaparameters that resulted in the best performance in the validation set, after using a
given optimizer algorithm, determined the best model. The test set was then forecasted.

In Figure 5, the performance of the different algorithms is illustrated as a function
of the iterations performed. R?> and RMSE for the validation set are plotted for the best
solution at the given iteration, together with the corresponding values of logy and log o
in plots a to d, respectively. The same initial solutions and number of iterations were
applied in all the algorithms (different colors). Two different initializations were applied
for robustness (dashed and full lines).
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(a (b)
0906 [\ | \/ 0.013 |
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i \
]l. /| 0012
0.995 ( | "
& o\ = 0011 || ||
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!' - 0.01 il ||
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L
3 : : : 0 : : -
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GA-1 —— = — GA-2 GSA-1 GSA-2
GWo-1 — - —-- GWO0O-2 PSO-1 ——— - PS0O-2

Figure 5. Illustration of optimizer performance in terms of the best solution’s R? (a), RMSE (b) and
search parameter values log(7) (c) and log(c) (d), at a given iteration. In total, 20 solutions were
initiated and run for 30 iterations in each case. Two identical initializations (marked 1 and 2) were
run for each algorithm.
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In all cases, a high R? ~ 0.996 and low RMSE ~ 0.009 were obtained after 30 iterations
for all the algorithms and both starting points, although GSA deviated from initially good
solutions and converged slowly or to inferior solutions. Furthermore, GA seemed to not
produce as good results as PSO and GWO. The two algorithms, PSO and GWO, exhibited
very similar values of log ¥ ~ 5.5 and log ¢ ~ 0.3 and the lowest error indicating that they
were better able to find the global optima. Notably, the values of logy and log o varied
significantly during the iterations, but mostly exhibited very good performance. This may
have been due to the ability of LSSVM to tune its internal parameters «; and b for any
given v, 0.

The best metaparameters obtained during the 30 iterations are listed in Table 4, con-
sidering all four algorithms and both initializations. The corresponding metrics (R? and
RMSE) were calculated on the training, validation and testing sets. All the optimized
models performed better than the algorithm with the arbitrarily preset metaparameters,
although this choice also performed well, with R? greater than 0.969 on all three sets.
The optimized models exhibited very consistent performance in the three datasets, with
R? 22 0.999 in the training set, ~0.996 in the validation set and ~20.992 on the testing set.
The difference in R? was in the fourth digit for the first two sets and the third digit in the
latter set. The RMSE was around 0.006 on the training set, 0.009 on the validation set and
0.015 on the test set, with GSA standing out with the highest RMSE. As final metaparameter
values in the optimized model, we took an average of the four similar results from the PSO
and GWO runs with two significant digits. Calculating the RMSE and R? metrics on the
datasets confirmed that the performance with these values was still optimal (see Table 4).
The LSSVM model with these parameters is referred to as MOD?2 in what follows. Note
especially that MOD2 is capable of predicting unseen single-phase data and thus accounts
for the physics introduced during the modification of the dataset.

Table 4. Optimized LSSVM metaparameters using different optimizers and different initializations
(marked 1 and 2) and corresponding performance metrics on the training, validation and testing
datasets. The parameters used in the final model, MOD?2, are indicated.

RMSE R?
Seed log(7) log(c) Train Val Test Train Val Test
LSSVM (preset) 0 0 0.0220 0.0202 0.0279 0.9821 0.9817 0.9691
1 56106  0.32535  0.0056 0.0088 0.0142 0.9988 0.9965 0.9920
PSO-LSSVM
2 54335  0.30305  0.0055 0.0088 0.0142 0.9989 0.9965 0.9920
1 6.6812 0.42982 0.0058 0.0089 0.0150 0.9988 0.9964 0.9911
GSA-LSSVM
2 7.0506  0.49871  0.0064 0.0090 0.0156 0.9985 0.9963 0.9904
1 5.6564  0.32883  0.0056 0.0088 0.0142 0.9988 0.9965 0.9919
GWO-LSSVM
2 5.6698 0.32230 0.0055 0.0088 0.0144 0.9989 0.9965 0.9918
1 7.3404  0.49280  0.0059 0.0090 0.0155 0.9987 0.9963 0.9904
GA-LSSVM
2 49708 025298  0.0054 0.0089 0.0140 0.9989 0.9964 0.9922
Range (opt.) ~24 ~0.25 0.0010 0.0002 0.0016 0.0004 0.0002 0.0018
Final (MOD2) 5.6 0.32 0.0056 0.0088 0.0143 0.9988 0.9965 0.9919

The RMSE and R? were calculated with MOD2 for the total dataset as 0.0080 and 0.9976,
respectively. These metrics are greatly improved compared to MOD1, which featured a
corresponding RMSE of 0.0498 and an R? of 0.889. The calculated (with MOD2) and
observed RF data are plotted against each other for the three datasets in Figure 6. For all
three datasets, there is little scatter around the perfect match line. The residual errors were
calculated for each datapoint in the full dataset and the results are plotted as a histogram
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in Figure 7. Approximately 90% of the data feature errors in the estimated RF of less than
0.01, and 95% of the data feature errors less than 0.02.

Calibration Validation Test
a (c)
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Figure 6. Comparison of estimated RF and actual datapoints on (a) the training set, (b) validation set
and (c) test set. Estimated points are based on MOD2 (optimized LSSVM). The orange line represents
perfect match.
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Figure 7. Histogram of residual errors (estimated RF minus actual RF ) for the total dataset based on
MOD2 (optimized LSSVM model).
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Partial derivatives with respect to each normalized variable, %yi, were calculated for
each data point using MOD2 and histograms were created for each variable, as shown in
Figure 8. The derivatives were calculated numerically and two choices of Axy = 5- 1072
and 1073 were used. The two choices produced practically identical histograms, suggesting
that the optimized LSSVM function did not suffer from oscillations (a sign of over-fitting).
For each variable, a large fraction of the points featured positive and negative derivatives.
Hence, changing the variable can affect RF positively or negatively, indicating coupling
and room for finding optimal conditions.
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Figure 8. Histogram of partial derivatives for the total dataset based on MOD2 (the optimized LSSVM
model). Each partial derivative is evaluated numerically with a small or large difference Ax.
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For T

we see positive and negative values, which is reasonable, since RF should

be higher for WAG than single-phase injection. % and 8316 are both dominated by

negative values, since increasing the mobility ratio between gas and oil or between water
and oil, respectively, should reduce RF. Higher water—oil gravity segregation is considered

. . ay . . e . .
negative for RF, with ;== mainly negative. On the other hand, gas-oil graaV1ty segregation
is considered mainly positive for RF with a majority of points having ﬁ positive. This
could be attributed to the better sweep of low-permeable layers in heterogeneous cases.
Hysteresis appears to benefit recovery, as seen by a majority of positive %, although the

effect of 8%4

seems to be equally negative and positive.

3.4. Sensitivity Analyses with Optimized LSSVM Model MOD?2

The calibrated model, MOD2, was much better at predicting RF than MOD1 and was
therefore pursued in the sensitivity analysis. Below, we present contour plots showing RF
as a function of different input variables, while keeping the others constant. The parameters
are kept within the total dataset range (see Table 2) in order to ensure model validity.

3.4.1. Variation of Oil Viscosity

Oil viscosity can vary greatly from one reservoir to another. It proportionally impacts
mobility ratios M, ,, and M; /o in Equations (7) and (8), represented by x¢ and x5. For

low oil mobilities, the gravity numbers N& /% and N é/o (represented by x7 and xg) increase
proportionally with oil viscosity but are less dependent if water or gas feature mobility
that is similar to or lower than that of oil (see Equations (10) and (11)). For simplicity, we
assume they are proportional. We vary the oil viscosity by 2.0 orders of magnitude, which
is less than the smallest range of the four dimensionless numbers (2.3 for x4), as seen in
Table 2.

Four cases are defined in Table 5 with low or high heterogeneity (low or high x,), and
a low or high degree of hysteresis (low x3 and high x4 and opposite, respectively). For each
of these cases, RF is plotted as a function of x; (the water fraction) and x5 (representing the
gas—oil mobility ratio) representing different viscosities (see Figure 9).From the figure, we
observe that:

Table 5. Parameter selections for MOD2, where oil viscosity is varied and influences mobility ratios
and gravity numbers. Four cases are considered according to heterogeneity and hysteresis.

Low Het, High Het, Low Het, High Het,
Low Hyst Low Hyst High Hyst High Hyst

X1 0:1

Xy 0.25 1 0.25 1

X3 0 0 25 25

X4 3 3 0.5 0.5

X5 0.2:2.2

Xg 0.2:2.2

X7 —3:—1

Xs —3:—1
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Figure 9. Contour plots of recovery factor RF plotted against x; = 7, and x5 = log(Mgo). The

latter represents variation in oil viscosity, which affects all of x5, x4, x7, xg. The four cases are for low

heterogeneity and hysteresis (a), high heterogeneity and low hysteresis (b), low heterogeneity and

high hysteresis (c) and high heterogeneity and hysteresis (d). See all input values in Table 5.

Optimal RF values were mainly obtained at an intermediate water fraction 0 < x;
(consider any line parallel with the x-axis), suggesting that WAG gives higher RF than
single-phase injection. Cases with low hysteresis and favorable mobility ratios seem
to give similar RF for water injection and WAG (although WAG with a low water
fraction seems optimal) (see Figure 9a,b (low and high heterogeneity)).

The advantage of WAG over single-phase injection was most clear when hysteresis
was significant (see Figure 9¢,d). The best water fraction produced RF up to 0.3 units
higher than the worst fraction. This strong impact was mainly at low oil viscosity
(low xs5) with optimal water fraction around 0.5-0.6. For higher oil viscosity or lower
heterogeneity cases, WAG was in many cases only marginally better (~0.05 units) than
the best single-phase injection.
Increased oil viscosity reduced RF for a given water fraction (follow any line parallel
with the y-axis). This was dominant over the WAG fraction at high viscosities, except
for the highly heterogeneous cases with high hysteresis (Figure 9d). This demonstrates
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the benefit of WAG in heterogeneous formations and that hysteresis is an important
contributor.

For a given heterogeneity (low or high), increased hysteresis improved RF (compare
Figure 9¢,d (high hyst) with Figure 9a,b (low hyst)). This was related to the improved
gas—oil mobility ratio and reduced gravity segregation, which improves volumetric
sweep. The optimal water fraction shifted to more central values, since both phases
are needed for hysteresis.

For a given hysteresis state, increased heterogeneity reduced RF, especially for cases
with less viscous oil (compare Figure 9b,d (high het) with Figure 9a,c (low het)).
For high hysteresis cases, increased heterogeneity increased RF in cases with more
viscous oil.

To better understand the relation between viscosity, heterogeneity and hysteresis, we

plotted RF as a function of x, = logFy and x5 = log (M;o) for x; = 0.5 (WAG injection

with equal volume fractions of gas and water) for the two hysteresis cases in Figure 10.
Each value of x5 represents fixed oil viscosity and the curves cover the same viscosity range
as before. We observed that that:

(a) WAG inj [11 = 0.5) low hyst, [)t3 =0, X, = 3) (b} WAG inj [11 = 0.5) high hyst, (x3 =25, X, = 0.5)
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Figure 10. Contour plots of recovery factor RF plotted against x, = log(Fy) and x5 = log <M§0>.

The latter represents variation in oil viscosity, which affects all of x5, x¢, X7, x3. The cases are for WAG

injection with r;, = 0.5 and either low (a) or high (b) hysteresis. See all input values in Table 5.

For low hysteresis (Figure 10a), RF was very sensitive to heterogeneity for low oil
viscosities and increased heterogeneity reduced RE. For high viscosity, RF changed
little with heterogeneity.

With significant hysteresis (Figure 10b), low-viscosity cases produced reduced RF at
higher heterogeneity, while high-viscosity cases produced increased RF.

3.4.2. Variation of Well Distance, Injection Rate or Density Difference

The distance between wells can vary from a dense pattern of a few hundred meters

onshore to ~1000 m offshore. For fixed injection rates, a longer well distance L, proportion-
ally increases the residence time and, hence, the gravity numbers (see (10)), represented by
x7 and xg. Similarly, increasing the injection rates of water Q; and gas Q. equally reduces
the residence times and the gravity numbers. Increased density differences reduce the
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segregation time and increase the gravity numbers. If the height is varied but the injection
rate is the same, we note that both segregation time and residence time change equally and
there is no net change in the gravity numbers. Varying the aforementioned parameters does
not affect the variables x; to xs; we can thus investigate cases in which they are constant
and only the gravity numbers change.

We plotted RF as a function of injected water fraction x; and log gravity number (equal
values of x7 and xg). We investigated the role of mobility ratio, heterogeneity and hysteresis
one by one. The different cases are listed in Table 6. The gravity numbers varied equally by
2.5 orders of magnitude.

Table 6. Parameter selections for MOD2 with cases demonstrating influence of gravity numbers
according to heterogeneity, mobility ratio and hysteresis.

Lo Het Hi Het Fav Unfav Lo Hyst Hyst
bel 0:1
X2 0 1 0.8 0.3
X3 1 0 0 2.5
X4 3 3 3 0
X5 2 0.5 2 1.5
X6 2 0.5 2 1.5
X7 —4:-15
xg —4:—15

When low heterogeneity x, = 0 is considered (Figure 11a), RF stays fairly constant
at low Ng (when the impact from gravity is negligible) and decreases when Nj is large
due to gravity segregation and reduced vertical sweep. At high heterogeneity (x, = 1) in
Figure 11b, RF is generally lower, but increases significantly with increases in the gravity
number. Gravity therefore exerts a positive effect as more of the low-permeable layers are
swept by gravity drainage into the highly permeable layers [47].

A relatively heterogeneous case (x, = 0.8 ) is considered where either mobility ratio is
favorable, Figure 12a, or unfavorable, Figure 12b. In both cases, increased gravity number
improves RF, but the effect is more pronounced in the favorable mobility ratio case. In the
unfavorable mobility case, gravity exerts little impact until the gravity number exceeds
—3. RF is generally higher in favorable mobility ratio cases compared to corresponding
unfavorable mobility ratio cases.

In a relatively uniform case (x = 0.3) with intermediate mobility ratios x5 = x¢ = 1.5),
hysteresis is varied. At low hysteresis, Figure 13a, increased gravity numbers increase RF
moderately towards an optimal gravity number. At high hysteresis, Figure 13b, the optimal
gravity number occurs at a lower value (for a given injected fraction). The peak can be
related to improved sweep in low mobility layers, which becomes dominated by gravity
segregation at the highest gravity numbers.
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Figure 11. Contour plot of recovery factor RF plotted against x; = 7y and log gravity number with

equal values of x7 and xg. Low-heterogeneity (a) and high-heterogeneity (b) cases are shown (see all

input values in Table 6).
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Figure 12. Contour plot of recovery factor RF plotted against x; = 7y and log gravity number with

equal values of x7 and xg. Favorable (a) and unfavorable (b) mobility ratio cases are shown (see all

input values in Table 6).
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Figure 13. Contour plot of recovery factor RF plotted against x; = 7y and log gravity number with
equal values of xy and xg. Low- (a) and high- (b) hysteresis cases are presented (see all input values
in Table 6).

3.4.3. Handling Single Phase Data

The model MOD2 was trained to provide the same RF during single-phase injection
when varying input variables related to hysteresis and the phase not injected (for example,
gas during water injection). This was performed by generating points with different input
values for parameters that should not exert an influence, but with the same output. To
check how effectively this was captured by the calibrated model, we ran cases in which the
hysteresis parameters x3, x4 and mobility ratio parameters x5, xg were varied individually.
RF was plotted against the relevant variable and r,, ranging from gas to water injection.
The input parameters are listed in Table 7 and the results are shown in Figure 14.

Table 7. Parameter selections for MOD2 cases to check response in going from multiphase to single-

phase scenarios.

_ Vary Vary Vary
Vary xs=« x4=logC x5=10gZVI;/0 x6=logM*w/0
X1 0:1
X2 0.8
X3 0:2.5 1 1 1
X4 1 0:3 1 1
X5 15 1.5 0.1:24 1.5
X6 15 15 15 0.0:2.3
X7 -2
-2

X8
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Figure 14. Contour plots of recovery factor RF as function of varying water fraction (horizontal axis)
and the indicated parameter (x3 in (a), x4 in (b), x5 in (c) and x4 in (d)) on the vertical axis while
holding other parameters fixed. r, = 0 indicates gas injection and r,, = 1 water injection.

The variation of the hysteresis parameters x3 and x4, in Figure 14a,b, respectively,
produces relatively constant RF with gas injection 1, = 0 (RF~0.45) and water injection
tw = 1 (RF~0.30), although the variation of x3 during gas injection produces a wider range
(RF = 0.30-0.45). The levels of RF differ, as is expected, since gas and water injection
perform differently. Varying the gas-oil mobility ratio M; /o (via x5 in Figure 14c) produces
much less change in RF with water injection (RF~0.3) than gas or WAG injection. Similarly,

varying the water—oil mobility ratio M; , (via x¢ in Figure 14d) produces much less change
in RF with gas injection (RF~0.45) than with water or WAG injection.

3.5. Application to a 3D Model

The dataset used to train MOD1 and MOD2 was based on a 2D layered model. By ob-
taining effective parameters from 3D reservoir models, we can predict RF from MOD1 and
MOD2. An artificial 3D heterogeneous model was considered with curvature, faults and
three layers (see Figure 15). The average permeability, average porosity and layer thickness
are listed in Table 8. The vertical permeability was half of the horizontal permeability. An
injector and producer were placed at a distance of 1500 m and the pore volume was based
on a width of 750 m. The RF was calculated after the injection of 1.5 PV, assuming five
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injected fractions (r,, equal 0, 0.33, 0.5, 0.67 and 1), two oil viscosities (30 and 110 cP) and
low and high hysteresis (see values of x3 and x4).

1

Figure 15. Illustration of the 3D model, where permeability and well placements are indicated.

Table 8. Input and calculated parameters for the 3D model. ‘Low /hi” indicates degree of hysteresis
in parameters x3, x4, while for parameters x5 to xg, values are calculated from two oil viscosities.

Layer K, [mD] ¢ [-] h [m] x1 0,0.33,0.5,0.67, 1
1 2170 0.324 42 X 0.73
2 65.9 0.297 29 x3(low, hi) 0,25
3 589 0.323 33 x4(low, hi) 3,0
x5(30,110cP) 1.83,2.40
Apwo 250 kg/m3 v, 3.70 x 107 m®  x4(30,110cP) 1.50, 2.06
Apgo 450 kg/ m> T 20 years x7(30,110cP) —1.28, —1.84
L 1500 m Soi 0.84 xg(30,110cP) —0.96, —1.52
w 750 m Q 7600 m3/d

In Figure 16, we plotted RF as a function of x1 = ry, for the four cases, calculated with
the 3D model, MOD1 and MOD2. In these examples, RF with water injection (0.13 and 0.35
for high and low oil viscosity) is higher than with gas injection (0.09 and 0.22) and RF is
lower with more viscous oil. When hysteresis is high, WAG exhibits the best performance
out of all the models (the RF peaks at 0 < r;, < 1). When hysteresis is low, the 3D model
features similar RF for a high WAG fraction to water injection, while MOD1 indicates water
injection as optimal and MOD?2 still clearly supports WAG. MOD1 predicts a level of RF
and change in RF that are more similar to those seen in the 3D model than MOD2. MOD2
predicts the level of RF in low hysteresis relatively well, but appears very sensitive to
adding hysteresis. This is also seen through a difference in the single-phase injection RF
for the same oil viscosity: about 0.2 units for water injection and for gas injection with low
amounts of viscous oil, but, more reasonably, 0.03 units for gas injection with high amounts
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of viscous oil. This indicates that this region of the model could be better calibrated. The
water injection points in this case could be insufficiently near the single-phase points in
the dataset. Furthermore, we do not expect MOD1 and MOD2 to predict the 3D model
behavior identically as the geometries are not the same.

"
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Figure 16. RF after 1.5 PV calculated for different injected WAG fractions (r), low or high oil
viscosity and low or high degree of hysteresis, calculated based on a 3D Eclipse model (a), MOD1 (b)

or MOD2 (c).

4. Conclusions

In this study, we interpreted a dataset of ~2500 points generated from single-phase
and WAG injection reservoir model simulations to predict the recovery factor, RE. Two
modeling approaches were selected. In MOD1, a universal dimensionless number M*
derived from Nygard and Andersen [47] was selected as the single input variable and
correlated by a polynomial expression. In MOD?2, eight dimensionless numbers were used
as input variables. Both choices included all the relevant input parameters to run the
reservoir simulations. MOD2 was developed using LSSVM and optimized based on the

best results from PSO, GA, GWO and GSA. The overall conclusions to this work can be

summarized as follows:

- We demonstrated that it is possible to predict the recovery factor during single-phase

and WAG injection.

- The LSSVM model optimized by GWO or PSO performed better than when optimized

by GA or GSA.

- MOD2 with eight input variables clearly performed better than MOD1 with one input.

Based on the total dataset, the RMSE and R? were 0.0080 and 0.998 for MOD2 and
0.050 and 0.889 for MODY1, respectively.
- The physics-based training of MOD2 was applied successfully. Single-phase injection
data points were duplicated using different values in the input variables that should
not affect RF, while keeping the same values for the relevant input variables and the
output. The model correctly displayed little response to the irrelevant variables, but
not for all conditions. Improvements could be made by adding more of these points
or by training the model to include such constraints via an added penalty term in
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the objective function. MOD1 was analytically independent of these variables during
single-phase injection.

- Plotting histograms of partial derivatives of RF showed that for most input variables,
increasing them would increase RF for some conditions, but reduce RF under others,
demonstrating coupling in the data.

- The best model (MOD2) predicted that under identical conditions, an optimal in-
jected WAG fraction existed that outperformed single-phase injection (water or gas).
The benefit of WAG was much clearer when gas relative permeability hysteresis
was significant.

- The mobility ratios were important input variables. Increased values tended to re-
duce RE.

- The roles of gravity numbers, heterogeneity and hysteresis were coupled. Strong
gravity effects reduced RF in low-heterogeneity cases, but improved RF in heteroge-
neous cases.

Finally, some limitations of the study and recommendations should be mentioned.
Some parameters were not varied in the dataset and their role can therefore not be pre-
dicted by the model. This includes the reservoir dip angle, capillary forces, starting WAG in
tertiary mode (with some period of gas or water injection first), gas miscibility and tapering
(changing WAG ratio with time). Furthermore, the heterogeneity of the model was mainly
described by one parameter although porosity and vertical permeability appear in other
dimensionless numbers. It could also matter how the heterogeneity appears, i.e., perme-
ability increasing up or down. We note that several parameters that were not varied are
included in a physically meaningful manner into dimensionless numbers that were varied.
Thus, considering new values of Corey parameters, the vertical-to-horizontal permeability
ratio and reservoir layer configurations are accounted for. The proposed methodology
can be applied to predict the performance of other EOR techniques as well, but requires a
similar development of representative dimensionless numbers and parameters capturing
the EOR effect.

It is recommended to explore the potential of physics-based machine learning [50,51] in
combination with dimensionless numbers describing complex systems, as was considered
in this study. The methodology of modifying the dataset as described offers the advantage
of applying ML algorithms in their standard form. On the downside, the dataset is enlarged
and the physics are added around the specific datapoints, not as inherent part of the model.
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Abbreviations
EOR
LSSVM

PSO

RMSE

WAG

Layer height, m

Relative permeability

Relative permeability endpoints

Horizontal and vertical absolute permeability, m
Distance from injector to producer, m

Width of reservoir, m

Total height of reservoir, m

Mobility ratio

Effective mobility ratios between gas-oil and between water-oil
Effective three phase mobility ratio accounting for all mechanisms
Corey exponents,

Number of particles

Number of PSO iterations

Gravity number, -

Coefficient of determination, -

Pearson correlation coefficient between vectors x and y, -
Water volume fraction in a WAG cycle, -

Recovery factor, -

Phase saturation, -

Residual phase saturation, -

Time, seconds

Horizontal direction towards producer, m

Input vector, -

Standard deviance multiplier, -

LSSVM output / REF, -

Vertical direction downwards, m

Carlson hysteresis parameter
LSSVM coefficients
Regularization coefficient
Density difference, kg/m?
Phase mobility (Pa - )7t
Viscosity, Pa-s

Phase density, kg/m?
RBK width parameter
Porosity

Acceleration constants
Damping factor

characteristic value,
arithmetic

gas

gravity

harmonic

phase

layer

oil

residence

initial reservoir conditions
segregation

total

water

Enhanced oil recovery

Least squares support vector machine
Particle swarm optimization

Root mean square error

Water alternating gas
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Appendix A. Reservoir Model Parameters

Table Al. Rock/grid properties and operational parameters. N denotes number of cells in each
direction, L the respective lengths, Q the volumetric rate.

N, 100 Ly 1000 m ®; 0.30 Qu 1014.6 m3/d Half cycle duration 45d
Ny 1 Ly 100 m hj 3m Qg 1014.6 m3/d Total injection volume, PVs 1.5 PVs
N, 81 L, 81 m

Table A2. Reservoir flow properties in terms of relative permeability end points, Corey exponents,
initial and residual saturations.

Jemax 0.25 fow 2 Soi 0.842
ke 0.25 fog 2 Swi = Swr 0.158
Kmax 0.05 uw 2 Sgi = Ser 0.00
Jepax 0.005 ng 2 Sorw 0.20

Sorg 0.10

Table A3. Specification of model heterogeneities. Each model had 9 layers with permeability
distributed as specified. It was assumed that vertical and horizontal permeabilities were equal in
each layer: K, ; = K, ;.

Ky [mD]
Layer 1 (top) 300 300 500 1000
2 300 100 50 20
3 300 900 500 1000
4 300 300 50 20
5 300 100 500 1000
6 300 900 50 20
7 300 300 500 1000
8 300 100 50 20
9 (bottom) 300 900 500 1000
Fy 1.0 2.1 3.0 12.9

Appendix B. Least Squares Support Vector Machines (LSSVM)

The support vector machine (SVM) algorithm was developed by Vapnik [25] and used
to solve classification problems by building hyperplanes in multidimensional spaces that
separated data into classes. Its application was extended to regression. The least squares
support vector machine, or LSSVM, is a modification of SVM introduced by Suykens and
Vandewalle [26]. The LSSVM regression algorithm is outlined below.

Consider a finite dataset with n points D = {(x1,y1),.---.- , (Xn, yn)}, where the input
x; € RP, p being the number of input variables (in our case 1 or 8) and the output y; € R.
The regression function is expressed as [27]:

f(x)=wlp(x)+b, (A1)

where ¢ is a higher dimensional function and w is a weight vector that combines the
contributions of each element of ¢ to a scalar. Each output measurement y; is by definition
equal to the regression plus the error e;:

yi=f(xi) +ei (i=1...,n) (A2)
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The LSSVM algorithm aims to minimize the objective function | described as follows:

- _ 1 7 1 &
min] (w,e) = Sw W+§7;6i (A3)

7 is called the regularization coefficient and its magnitude determines which of the
two terms is minimized more. The error equations are treated as equality constraints:

yi=wlo(x;)+b+e,(i=1,...,n) (A4)

Solving (A3) and (A4) simultaneously can be transformed to the problem of finding the
saddle point of the Lagrange function L which incorporates | and the equality constraints:

n

L(w,b,e;a) = J(w,e) — 2 uc,-{wT(p(x,-) +b+e — yi} (A5)
k=1

with Lagrange multipliers &;. The conditions for optimality are found by setting partial
derivatives equal to zero:

dL n
ap W= L a;p(x;) (A6)
=0 ) a=0 (A7)
db i=1 b
dL .
d*ei:O%“i:’)’ei, (i=1,...,n) (A8)
dL T '
EZO_”U p(x;)+b+e—y; =0, (i=1,...,n) (A9)
1

We can eliminate ¢; and w from the above set of equations to obtain the remaining
linear equations for a; and b:

n
Y ;=0 (A10)
i=1
n T 1
b+ ) ap(xx) @(xi) + SN =i (A11)
k=1

By applying Mercer’s condition, the product go(xi)Tcp(xj) is replaced by a kernel
function K (x;, x;):
o(x) ¢(xj) = K(x;,x;),i,j =1,...,N(34) (A12)

We can then solve for «; and b by solving the matrix form of (A10) and (A11):

0 1 e 1 b 0
1 K(Xl,ﬁq) +% K(xl,xn) aq 1
. . = . (A13)
1 K(xy,x1) coo K(xp, xn) + % ay Yn

Combining (A4) with (A6) and (A12), the final form of the LSSVM regression function
is given by:
N
y(x) =) a;K(x;,x) +b (3.5) (A14)
i=1
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Different choices of kernel function can be made. The radial basis kernel (RBK)

function was selected:
Hxi _ x2| |
K(x;,x) = exp B (A15)

||x; — x|| denotes the Euclidian distance between vectors x; and x, while ¢ is the
width parameter.

The choice of the metaparameters ¢ and y determines the LSSVM algorithm perfor-
mance. ¢ controls how rapidly the function can vary around the training data points x;.
For very small 7, the function equals the constant b between the points x;, while it matches
yi at every x; of the training set. This results in the very poor prediction of new points.
Large o linearizes the function (a straight line for a scalar input variable). Intermediate ¢
are hence expected to capture non-linear trends. y controls how much weight is placed on
minimizing the mismatch compared to minimizing the magnitude of the nonlinear terms.
A very low ¢ minimizes the coefficients of the nonlinear terms to zero and provides a
constant function, equal to b. A very high ¢ minimizes the mismatch between the function
and the training set (between y(x;) and y;) but allows it to be more nonlinear.

Appendix C. Optimization Algorithms

Optimization algorithms are applied to find the optimal combination of LSSVM
metaparameters, as represented by the vector B = (log;,,log;,0) € R2. The applied
parameters common and specific to the algorithms are listed in Table A4.

Table A4. Optimization algorithm parameters. No algorithm specific parameters were required
for GWO.

Common PSO GA
# particles Acceleration ¢1, 1.5, .
/chromosomes/wolves Np 20 constants ¢ 1.5 Mutation rate Hr 0-15
# variables/genes Noar 2 Damping factor w 0.8 Mutation factor 1r 0.1
# iterations N; 30 GSA # elite Nt 2
chromosomes
min _
earch range variable nitial gravit 0
Search range variable 1 g},m' +§' Initial gravity G 2 GWO
1
. ; -3 Gravity reduction
min max 4 -
Search range variable 2 By, Bh 43 factor 5
Initial velocity range Small constant € 1074

Appendix C.1. Particle Swarm Optimization (PSO)
PSO was developed by Kennedy and Eberhart [52] and can be described as follows [53]:

a. Generate an initial set of N, ‘particles’, which are random solution vectors
ﬁ% (n =1,..., Np), all in R?. The entire set of particles is called the swarm.

e = Uns (B, B2, (r=1,2). (A16)

b.  The indices n and r refer, respectively, to the particle and the parameter in the
n and r vector while Uy, , refers to the uniform probability distribution over the
specified range.

The particles are assigned initial velocities o) € R?

ﬁmax o ﬁmin
), =0 B ,,(-1,1), (r=1,2). (A17)
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The initial velocity is set to be proportional to the search range and reduced by the
number of particles, as they each can cover a shorter interval with more of them.

c. At a given iteration, the solution estimate of particle n corresponds to its current
“position” in the search space, termed B%'?. The quality of each of the N, solution

estimates is evaluated by the coefficient of determination R? ( ,led) . The best solution

position (with highest R?) a particle obtains while it moves in the search space is saved
and updated if it improves. These N, solution vectors are called :Bz,opt (n=1,Np).
Similarly, the best solution of all the particles (the swarm) is termed ;. This position
updates if the particles find a better solution.

d.  New velocities v/*? are calculated for each particle n based on the old velocity v9
and how far the particle is from its historic best position ﬁz,opt and from the swarm’s

historic best position f; ,:

oY = ol + U(0, ) (5Z,opt - ﬁ%ld) +U(0, 472)( opt — ﬁ%ld) (A18)

¢1 and ¢» are acceleration constants, stating how quickly the particles steer towards
the two currently best positions. A sum ¢ + ¢» < 4 avoids unbounded oscillation [53]. w
is a velocity damping factor. A value w < 1 refines searches at late iterations.

e.  The position of each particle at the next iteration is updated by adding the velocity:

Bt = B +op (A19)
Any particles exceeding the search space limits ", ¥ are adjusted to travel no

farther than the limit.

f.  Finally, the ‘new’ parameters are set as ‘old” and a new iteration starts from point c.
The procedure stops when a set number Nj; of iterations is completed.

Appendix C.2. Gravitational Search Algorithm (GSA)
GSA was developed by Rashedi et al. [54] and considers each solution as a particle.
a.  Assign initial positions and velocities according to (A16) and (A17).

b.  The gravitational constant is reduced from an initial value Gy at iteration t = 1
according to a reduction factor @ down to Gg exp(—«) at the last iteration:

G(t) = Goexp (—oc Z\t[;l : ) . (A20)

Calculate the relative fitness 1, for each particle (here using R?) at the current state.

(R?), — min(R?)

— ) A21
i max(R2) — min(R2) (A21)
n n
The ‘mass’ M, of each particle is then calculated as:
My
M, = ———. (A22)
" Zn:l:Np My

c.  Fora given particle n, the force F,;; working on it from another particle j # n is given
by:

Mn M]

Fyj= Gl
|Bj — Bn| +¢

(ﬁj — Ban). (A23)
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where | Bi — Bn| is the Euclidian distance between the particle positions and ¢ is a small
constant (to avoid division by zero).

d.  The acceleration of particle 7 is then its net force divided by the mass, where random
weight components are introduced:

1
%l = v ‘Z U,,i(0,1)F,;. (A24)
]

=1l

e.  The velocities and new positions are calculated as:

e = U(O,l)vﬂld + a(;lld' (A25)
Zew — ﬁ%ld + vgew‘ (A26)

with coordinates limited by g", B**. The procedure is repeated between steps b and e.

Appendix C.3. Genetic Algorithm (GA)

In GA each solution, B, € R? is called a chromosome and the individual elements
By (r =1,2) are called the genes of the chromosome [55].

a. A first generation of chromosomes is initialized using (A16).

b.  In’Selection’, pairs of two chromosomes from the previous generation, called parents,
are combined to produce a new generation of chromosomes, ‘children’. The selection
of the parents is random with probability P, proportional to their relative fitness:

RMSE,, !

Pn - 1
Enzl:l\]p RMSEn

(A27)

c.  ‘Crossover’is then used to define the new generation chromosomes. In child 1 of a
parent pair, the first gene is from parent 1 and the second gene from parent 2. For
child 2 of that pair, the first gene is from parent 2 and the second from parent 1.

new __ pold new __ pold new __ pold new __ pold
a1 = Ppias Beia = Bpaor Bag = Bpais B = Bpia: (A28)

Generally, in problems with more than two genes, a crossover point must be defined
to distinguish which genes are taken from which parent.

d. ‘Mutation’ is the operation of randomly modifying one or both genes in a child. The
probability that a given gene is mutated is the mutation rate 0 < y, < 1. Thus, for the
fraction i, of new genes we perform the following modification (while the rest 1 — y;
are not modified):

e — B+ g (B = B ) Un(—1,1) (A29)
The factor iy is set to a low fraction so the mutation is low compared to the search

range of the variables. The coordinates are limited by g", g,

e.  ’Elitism’ involves keeping some of the best chromosomes from the previous generation
unmodified into the new generation.

Appendix C.4. Grey Wolf Optimization (GWO)
GWO was developed by Mirjalili et al. [56] and considers each solution g, € R?
a ‘wolf’.
a. Initialize the positions of the N, wolves according to (A16). In this algorithm, we call
the positions X instead of B.
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b.  Ata given iteration the best, second-best and third-best solutions are called the alpha
(«), beta (B) and delta (&) wolves, respectively. The others are grouped as omega (w)
wolves. The positions are denoted X,, Xp, X5 and X, or X for all the wolves.

c.  Assume the ‘prey’ is located at a position X,. A distance measure to the prey along
coordinate r is given by:

Dy = |G Xpr (1) — Xp (1)

, (r=1:2) (A30)

and the position at the next iteration is given as:
Xy (t+1) = X, (t) — A:Dy (A31)
where the coefficients C, and A, are determined as follows:

t—1

Ay = (ZUy(O, 1) — 1)&1, a = 2(1 — m

), Cr =2U,(0,1) (A32)
The magnitude of A, makes it possible to move farther from the prey at early iterations
(exploration) and closer at later iterations (exploitation). As the sign of A, can be positive
or negative the new position can pass the prey on the given axis.
For each wolf, the position of the prey is estimated by the position of the three top
wolves. The position at the next iteration is then the average of the three calculated new
positions based on the top three wolves. Mathematically, this is expressed as:

Duy = |CipXay — X,|, Dp, = |CosXp, — X|, Dy, =|Ca,Xsr — X, (A33)

X1, = Xayr — A1 Day, Xop = Xpr — A2yDpr, Xar = Xsr — A3rDs ) (A34)
1

Xr(t + 1) = E(Xl,r + XZ,r + XB,r)r (r = 112) (A35)

The best position at a given iteration is described by the position of the alpha wolf.
The coordinates are limited by g/"*", B;***.

Appendix D. Statistical Measures

Consider a dataset with n points, in which we have a model trying to predict the
observed output y?bs but actually producing the modelled value yf"f’d for point i. The
goodness-of-fit the model provides for the dataset is quantified by the coefficient of de-
termination R? between forecasted and true output values, also called the Nash-Sutcliffe

efficiency [57,58]:

2
n obs mod
i=1\Yi —Yi 1 &
R2—1_ (l i ) ) E‘Jbszﬁzy‘?bs (A36)
i=1

2 i
n —obs mod
i=1 (yi —Yi )

where values from 0 to 1 correspond to no and perfect correlation, respectively. We also use
the Root Mean Square Error (RMSE):

i=1

" 0.5
RMSE = <111 Y (y;?bs — y;’wd)z> (A37)

Linear correlation between two variables, x and y, is evaluated with the Pearson

correlation coefficient rgy:

P Y (xi —X)(yi — V)
Ty = no(e 2 fm g 2 (A38)
VI (= %22 (i — )
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A value close to +1 or —1 indicates strong positive or negative correlation, respectively.
Nonlinear correlation is calculated using Spearman rank correlation r,scf . This is calculated
by calculating the ranks of each value for the input variable x and the output variable
y, where the ranks R(x;), R(y;) denote the position they would have sorted from least to
largest. The rank correlation is then based on the covariance and standard deviations of
these rank sets:

s cov(R(x),R(y))
" = SR ())stAR (1)) (A39)

If none of the listed values are of equal rank, the above equation can be stated as

6 i1 (R(x;) — R(y:))*

Sp
=1-— A40
Nonmonotonic correlation can be detected using distance correlation [59]:
dCov?(x,
D _ oV (x y) (A41)

Ty = VaVar(x)dVar(y)

defined by the fraction of squared distance covariance between x and y over the root
mean of the distance variances of x and y, respectively. We refer to the original work for
more details.
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