


Acknowledgements

We would like to express our utmost gratitude to our faculty supervisor Assoc.Prof. Damiano
Rotondo for his guidance throughout this project. He has been incredibly helpful, always available
and very patient with us. We are very lucky to have had such a good supervisor.

Unë do të doja të shprehja mirënjohjen time të sinqertë për familjen time për dashurinë dhe
mbështetjen e tyre të pakushtëzuar. Jam i mirënjohës motrës time qe ishte gjithmonë aty për mua
dhe më brohoriti. Jam i mirënjohës vëllait tim qe më dha mësime të vlefshme për jetë. Jam i
mirënjohës prindërve të mi qe më dhanë mua dhe vëllaut dhe motres time një jetë të mirë, edhe
pse kjo nënkuptonte sakrifica të panumërta. Unë do të jem përgjithmonë mirënjohës.

- Gent Luta

Jeg ønsker å dedikere denne oppgaven til mine nieser og nevøer. Takk til alle mine nærmeste for
enorm støtte. En spesiell takk til Ida Marita og Mons, for gode arbeidsforhold under arbeidet med
oppgaven.

- John H̊avard Aarv̊ag



Abstract

This thesis presents control design of an approximated dynamical model, which is derived by using
the Carleman embedding technique. To perform the Carleman embedding, the nonlinear dynamical
model should be expressed in a polynomial form. By using the higher order Taylor approximation,
a nonlinear system, if analytical, can be expressed in such a form. Carleman embedding of the
cubic two-tank model proves to give a compromise between accuracy and computational labour.
However, Carleman linearization of this model results in an uncontrollable system. Therefore,
controller design for the quadratic Carleman approximation is considered. This controller is a
state feedback controller. The process of finding the controller gain K, can be expressed as an
optimization problem in terms of linear matrix inequalities. A quadratic controller has to fulfil
some necessary constraints to be operational. The main benefit of this type of controller design,
is that it ensures stability in the given region that the controller was designed for. However, this
controller design leads to poor feasibility, which limits its usefulness in a practical setting.

Sammendrag

Denne avhandlingen presenterer kontroller design av en estimert dynamisk modell, hvor modellen
er utledet ved bruk av teknikken Carleman embedding. For å utføre denne teknikken, burde den
ikkelineære dynamiske modellen være uttrykt p̊a polynom form. Hvis et ikkelineært system er
analytisk, kan det uttrykkes som et polynom ved hjelp av Taylor approksimasjon av høyere orden.
Taylor approksimasjonen av orden tre, ogs̊a kalt cubic modell, viser seg å være den best egnede
modellen for utføringen av Carleman embedding teknikken. Carleman linearisering av denne cubic
modellen resulterer i et ukontrollerbart system. Derfor vil kontroller design for quadratic Carle-
man approksimasjonen bli vurdert. Kontrolleren for dette systemet er basert p̊a tilbakekobling.
Prosessen i å finne kontroller forsterkningen K kan utrykkes som et optimaliseringsproblem i form
av linear matrix inequalities. En slik kontroller er nødt til å tilfredsstille visse kriterier for å
være operasjonell. Hovedfordelen i en slik kontroller er at den garanterer stabilitet i den regionen
som kontrolleren ble designet for. Ulempen med denne typen kontroller design er at numeriske
problemer oppst̊ar, som begrenser dens praktiske nytte.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

I Introduction 1

1 Motivation 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The history of Carleman embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The two-tank system 5

2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Nonlinear model of tank 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Nonlinear model of tank 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Modelling using Taylor and Carleman approximations 14

3 Taylor approximations 15

3.1 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Taylor series in several variables . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Taylor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Quadratic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Partially quadratic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Cubic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.5 Higher order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Taylor model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I



4 Modelling using the Carleman embedding 33

4.1 Carleman embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Carleman embedding technique . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Carleman approximation of the cubic tank model . . . . . . . . . . . . . . . . . . . 36

4.3 Carleman approximation comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III Control 43

5 State feedback control using the linear Carleman approximation 44

5.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Controllability of the linear Carleman approximation . . . . . . . . . . . . . . . . . 46

6 State feedback control using the quadratic Carleman approximation 48

6.1 Supplemental theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.2 Lyapunov stability criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.3 State feedback control of nonlinear quadratic systems . . . . . . . . . . . . 52

6.2 Controller for the quadratic Carleman approximation . . . . . . . . . . . . . . . . . 54

6.3 Controller for the quadratic Carleman approximation using two input variables . . 58

7 Experimental results 62

7.1 Application of the quadratic controller on to the two-tank system . . . . . . . . . . 62

7.2 Analysis of the experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV Conclusions and future work 65

8 Conclusions 66

9 Future work 67

Bibliography 69

V Appendices 71

A Taylor model comparison for Scenario 2 72

II



B Carleman approximation comparison for Scenario 2 77

C Controller of the quadratic Carleman approximation for Scenario 2 80

D Experimental results for Scenario 2 85

E Simulation of the controller designed with a reduced polytope 87

F MATLAB code and Simulink schemes 89

F.1 totank main.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

F.2 Carleman lin ss.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

F.3 Carleman Linearized func.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

F.4 Carleman NonLinearized func 2V ar.m . . . . . . . . . . . . . . . . . . . . . . . 117

F.5 Carleman NonLinearized func.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

F.6 carleman statespace 2V ar.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

F.7 carleman statespace.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.8 example file solver.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.9 Quadratic controller.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.10 Quadratic system.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

F.11 Polytope figures.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

F.12 vert2con.m [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

F.13 EKSEMPEL CARLEMAN.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

F.14 Simulink schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

III



List of Figures

2.1 This is a schematic sketch of the two-tank processing plant [7]. . . . . . . . . . . . 6

2.2 Simplified version of the schematic sketch with limited functionality [7]. . . . . . . 7

2.3 The relation between the control signal and the relative flow through the valve with
respect to the maximum capacity [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 The relation between the control signal and the flow through the pump [7]. . . . . 9

2.5 Schematic sketch of tank 2 for area calculation [7]. . . . . . . . . . . . . . . . . . . 11

2.6 Triangle similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Calculating δf1
δuLV 001

in Simulink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 3-D plot of the nonlinear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Level curve representing the operating points of the nonlinear model. . . . . . . . . 25

3.4 Comparisons between the nonlinear and the Taylor approximation models. . . . . . 26

3.5 Contour plots of the Taylor models and the nonlinear model, where ζ is given by
(3.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Color maps comparing the different Taylor models. . . . . . . . . . . . . . . . . . . 29

3.7 Model comparison in Simulink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Carleman approximations of (4.4) compared to the nonlinear system. . . . . . . . . 35

4.2 Utilising the State-Space block in Simulink. . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Step response with an increment in uLV 001(t) of 0.02 at 10 seconds. . . . . . . . . 39

4.4 δ = 0.05m gives a starting point of 0.3m. . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 δ = 0.2m gives a initial condition of 0.45m. . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Simulation of the quadratic Carleman approximations. . . . . . . . . . . . . . . . . 42

4.7 Simulation of the quadratic Carleman approximations with a larger step. . . . . . 42

5.1 Feedback control system [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Polytope P is contained by the blue half-spaces, and represented by the green region. 50

IV



6.2 Polytope for the 2nd order quadratic Carleman approximation. . . . . . . . . . . . 55

6.3 Simulation of Eq. (6.29), with initial condition equal to 0.05m. . . . . . . . . . . . 57

6.4 Signal δuLV 001(t), calculated by Kz(t). . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.5 4th order quadratic Carleman approximation with two actuator. . . . . . . . . . . 59

6.6 Signal u(t), calculated by Kz(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7 4th order quadratic Carleman approximation with two actuator and implemented
convergence rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.8 Signal u(t), calculated by Kz(t) with implemented convergence rate. . . . . . . . . 61

7.1 Experimental results from the quadratic controller. . . . . . . . . . . . . . . . . . . 63

7.2 Experimental results from the quadratic controller. . . . . . . . . . . . . . . . . . . 64

9.1 Modified polytope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 3-D plots of the Taylor models and the nonlinear model as reference. . . . . . . . . 73

A.2 Contour plots of the Taylor models and the nonlinear model, where ζ is given by
(3.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.3 Color maps comparing the different Taylor models. . . . . . . . . . . . . . . . . . . 75

A.4 Model comparison in Simulink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Step response with an increment in uLV 001(t) of 0.02 at 10 seconds. . . . . . . . . 77

B.2 δ = 0.05m gives a starting point of 0.8m. . . . . . . . . . . . . . . . . . . . . . . . . 78

B.3 δ = 0.2m gives a starting point of 0.95m. . . . . . . . . . . . . . . . . . . . . . . . . 78

B.4 Simulation of the quadratic Carleman approximations. . . . . . . . . . . . . . . . . 79

B.5 Simulation of the quadratic Carleman approximations with a larger step. . . . . . 79

C.1 Simulation of Eq. (6.29), with initial condition equal to 0.05m. . . . . . . . . . . . 80

C.2 Signal δuLV 001(t), calculated by Kz(t). . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.3 4th order quadratic Carleman approximation with two actuator. . . . . . . . . . . 82

C.4 Signal u(t), calculated by Kz(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.5 4th order quadratic Carleman approximation with two actuator and implemented
convergence rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.6 Signal u(t), calculated by Kz(t) with implemented convergence rate. . . . . . . . . 84

D.1 Experimental results from the quadratic controller. . . . . . . . . . . . . . . . . . . 85

D.2 Experimental results from the quadratic controller. . . . . . . . . . . . . . . . . . . 86

V



E.1 Simulation of the state z1(t) for the reduced polytope. . . . . . . . . . . . . . . . . 87

E.2 Simulation of the input variables δuLV 001(t) and δuPA001(t) for the reduced polytope. 88

VI



List of Tables

2.1 System instrumentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Variables regarding tank 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Variables regarding tank 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The dimensions of tank 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Table presenting the 2nd order partial derivatives of the nonlinear function. . . . . 19

3.2 Table presenting the 3rd order partial derivatives of the nonlinear function. . . . . 21

3.3 Operating values for Scenario 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Labels for the different values of ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Definition of not applicable points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Numerical interpretation of the area within the hollow rectangles in Figure 3.6. . . 30

3.7 Integral performance criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Integral performance criteria of the linearized Carleman approximations, with δ =
0.05m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Integral performance criteria of the linearized Carleman approximations, with δ =
0.2m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Experiment procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Numerical interpretation of the area within the hollow rectangles in Figure A.3 . . 75

A.2 Integral performance criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

VII



Part I

Introduction

1



Chapter 1

Motivation

1.1 Introduction

A mathematical model for a system is the equation or the equations that describes the system’s
behaviour. Based on a mathematical model for a given system, it becomes possible to predict
how the system will behave at a given state. A mathematical model that describes the system’s
dynamics is the basis for development of simulations, analysis of the system’s stability properties,
and the design of processes such as signal filtering and regulatory systems.

Unfortunately, a mathematical model, though very useful, can never describe a physical sys-
tem with absolute certainty. There will always be aspects of a physical system which cannot be
modelled. However, a model that only describes parts of the physical system is still useful, if those
parts are the dominant parts of the system’s dynamical properties [10].

If a physical system is to be described as accurately as possible by mathematical equations,
it is highly probable that one or more of these equations will be nonlinear (differential) equations.
Linearizing these nonlinear (differential) equations is a key concept in engineering. This is often
done by performing the Taylor linearization on the nonlinear equations.

Transforming a nonlinear system into a linear system enables the applications of simple yet
effective design techniques for fulfilling a wide number of tasks. One of these tasks includes control-
ling the system about an equilibrium point. It is also known, and often stressed, that the quality
of the approximation fades the more the nonlinear system steers away from the equilibrium point.
The reason for this is that the higher order terms in the Taylor series stop being negligible.

Including higher order terms in the approximated model would provide more precision, in the
sense of achieving a better approximation of the nonlinear dynamics. However, this increases the
complexity of the control design approach, i.e. Laplace transform and frequency response stop
being useful tools. Hence, whether there is any practical advantage in using a nonlinear model,
although less nonlinear than the original model, is dubious. The advantages, if any, would probably
depend on the system under consideration and the nonlinearities therein included.

A way of mimicking the higher order terms, while still keeping linearity, is to utilize the
Carleman linearization. This may allow for linear design approaches for the controller design
of the system including higher order terms. Whether this method of controller design proves
advantageous or not, will be explored in this thesis.

2



CHAPTER 1. MOTIVATION

1.2 The history of Carleman embedding

In 1932 Torsten Carleman showed that a finite dimensional system of nonlinear differential equa-
tions can be embedded into an infinite system of linear differential equations, an embedding tech-
nique known as Carleman embedding. Since then it has been applied to several fields in the last
89 years. The most notable works are mentioned:

• In 1963 Bellman and Richardson [6] discussed the use of Carleman embedding for ap-
proximate solutions of nonlinear differential equations.

• In 1980 Steeb and Wilhelm [18] explored approximate solutions of Lotka-Volterra models
using Carleman embedding.

• In 1989 Steeb [17] discussed the correspondence between solutions of nonlinear systems and
the infinite linear system resulting from the Carleman embedding.

• In 1991 Steeb and Kowalski [12] wrote the book Nonlinear Dynamical Systems And
Carleman Linearization, discussing several methods of using the Carleman embedding on
nonlinear systems.

• In 2008 Mozyrska and Bartosiewicz [14] talked about the Carleman embedding of linearly
observable polynomial systems.

• In 2009 Rauh and Minisini and Aschemann [16] discussed the use of Carleman em-
bedding in Carleman Linearization for Control and for State and Disturbance Estimation of
Nonlinear Dynamical Processes.

• In 2019 Amini, Sun and Motee [5] discussed another approach for optimizing a controller
for a nonlinear system approximated with use of the truncated Carleman embedding.

1.3 Objective

The main objectives in this thesis can be segmented into the following parts:

• Develop a mathematical model that describes the two-tank system’s dynamics.

• Develop multiple Taylor approximations of the mathematical model. The Taylor approxima-
tions differ in the sense of including a different amount of higher order terms.

• Compare the different Taylor approximations, and select the model that is best suited for
the Carleman embedding.

• Perform the Carleman embedding on the best suited Taylor approximation, which results in
a infinite dimensional nonlinear system. Approximating this system as a finite dimensional
nonlinear system is deemed as the quadratic Carleman approximation.

• Linearize the quadratic Carleman approximation, resulting in the linearized Carleman ap-
proximation.

• Design a controller for the linearized Carleman approximation.

• Design a controller for the quadratic Carleman approximation.

The above-mentioned objectives will be reached by using the model of the two-tank process
available in the room KE E-459, and some results will be obtained using extensive simulations in
MATLAB and, possibly, experimental validation.

The learning objectives related to this thesis are:

Page 3



CHAPTER 1. MOTIVATION

• Learn how to perform the Carleman linearization of a nonlinear system.

• Get a first contact with design approaches for nonlinear systems.

• Learn how available toolboxes/solvers for linear matrix inequalities can be applied to control
problems.

Page 4



Chapter 2

The two-tank system

The theoretical results described in this report are applied to the two-tank process plant located at
the University of Stavanger in the room KE E-459. In Section 2.1, the two-tank processing plant
is described in detail. Section 2.2 and 2.3 derive the mathematical expressions of the dynamical
models for tank 1 and tank 2.

2.1 Description

The process plant consists of two containers, tank 1 and tank 2. Tank 1 has a rectangular shape,
whereas tank 2 has a conical shape. Tank 1 has two inlets, one from the pump PA001, and one
from the mixer tap LV003, and two outlets, one which goes to the valve FV001 via a hose coil, and
one which goes to tank 2 via the valve LV001. There is also a 2kW heating flask HE001 mounted
in tank 1, in order to heat up the liquid.

Tank 2 has only one inlet, which is the one that comes from tank 1 via valve LV001. Tank 2
has two outlets, one via the valve FV002, and one via the valve LV002. Both of these outlets lead
to the same collection vessel. The liquid in this vessel is the same liquid that gets pumped back
into tank 1 by the pump PA001.

The plant is equipped with a variety of instrumentation. Table 2.1 describes the type of
instrument, its name code, and purpose. Figure 2.1 shows a schematic sketch of the processing
plant.

Type Code Purpose
Pressure gauge PT001 Measures the pressure in the tap water
Temperature meter TT003 Measures the temperature of the tap water
Temperature meter TT001 Measures the temperature of tank 1
Level meter LT001 Measures the level of tank 1

Temperature meter TT002
Measures the temperature of the water from tank 1
which is delayed through the hose coil

Level meter LT002 Measures the level of tank 2
Flow meter FT001 Measures the water flow from the pump PA001

Table 2.1: System instrumentation.

5



CHAPTER 2. THE TWO-TANK SYSTEM

Figure 2.1: This is a schematic sketch of the two-tank processing plant [7].

The processing plant can be used to simulate a number of different industrial scenarios, but
this report will use only a setting with limited functions. This means that some of the available
functionalities will not be taken into account. This is done such that the complexity of the system is
reduced, while the integrity of the verifiability and testing performed on the system is maintained.

The system that is taken into account when calculating a dynamical model, contains tank 1
and 2, the pump PA001, valve LV001, valve LV002 and the collection vessel. The instruments that
will be used are FT001, LT001 and LT002. Figure 2.2 shows a simplified version of the schematic
sketch that only includes the parts and instruments that are relevant.

With this configuration, one is able to control the water level of tank 1 via the LV001-valve,
and the water level of tank 2 via the LV002-valve. The water pumped into tank 1 via the pump
PA001 can also be regulated.

With a defined system and its boundaries, it becomes possible to create a mathematical model
of the system. In order to make this mathematical model as accurate as possible, the characteristics
of the valves and the pump must be considered. (2.1) is the mathematical model of the valves, it

describes the volume flow q [m3/h] through the valves as a function of the valve constant Kv[
m3/h√
bar

],

valve opening x and the pressure drop across the valve ∆p[bar].

q(t) = Kv x(t)
√

∆p(t) (2.1)

As evident from (2.1), the results have the unit [m3/h] instead of [m3/s] for the volume flow.
The results from (2.1) will be used later in other calculations, therefore, it is more convenient to
have the units in SI format. This means dividing equation (2.1) by 3600.

Page 6



CHAPTER 2. THE TWO-TANK SYSTEM

Figure 2.2: Simplified version of the schematic sketch with limited functionality [7].

In the processing plant, the pressure that will occur upstream of a valve will consist of the
atmospheric pressure p0 plus the water pressure pw. The pressure downstream of the valve is only
the atmospheric pressure, since the water flows out to an open tank. Thus, the differential pressure
∆p is given by:

∆p(t) = pupstream − pdownstream = (pw(t) + p0)− p0 = pw(t) (2.2)

The pressure caused by the water is given by:

pw(t) = ρ g h(t) (2.3)

where ρ is the density of the liquid, g is the gravitational constant and h(t) is the height that
the liquid holds above the valve.

(2.3) is known as Pascal’s law, and it could be inserted into (2.1) after converting from Pa to
bar through a division by 100000.

q(t) =
Kv x(t)

3600

√
ρ g h(t)

100000
(2.4)

Due to the flow characteristics of valve LV001 and LV002, it becomes necessary to take into
account the nonlinearities between the actual flow through the valve, and the valve opening. This
relation is nonlinear, which means that a certain percentage of the maximum opening of the valves
does not necessarily correspond to the same percentage of the maximum flow through the valves.
The relation between the valve opening z(t) and the flow f(·) can be approximated by:

f(z) =
ez(t)

1.2 − 1

e− 1
(2.5)

Page 7



CHAPTER 2. THE TWO-TANK SYSTEM

The system uses compressed air in order to make the valves move. The compressed air enters
the lower side of the diaphragm, which opens the valve as the control signal u(t) is increased. This
applies for valve LV001 and LV002, and they are therefore regarded as normally closed valves.
However,

In other words, these valves will close if the compressed air disappears. This type of actuator
usually has 1st order dynamics. However, this can be neglected due to the slower dynamic of the
processing plant. The control signal will be the same as the actual valve opening, hence (2.5) can
be rewritten as (2.6). The relation between f(u(t)) and u(t) is shown in Figure 2.3.

f(u(t)) =
eu(t)1.2 − 1

e− 1
(2.6)

Figure 2.3: The relation between the control signal and the relative flow through the valve with
respect to the maximum capacity [7].

With this relation defined, (2.4) can be rewritten as follows:

q =
Kv fn

(
uLV 00n(t)

)
3600

√
ρ g h(t)

100000
(2.7)

where n ∈ {1, 2}, depending on which valve is considered.

As with the valves, the pump also has nonlinearities between the control signal uPA001(t)
and the volume flow through the pump qPA001(t). The characteristics are usually provided by
the supplier, but may vary depending on where and how the pump functions under operation.
Variables such as pipe resistance and lifting height may affect the characteristics of the pump.
Therefore, after the pump is installed, it is required to find the characteristics that apply for the
pump in the processing plant. This is done by increasing the control signal incrementally, while
also measuring the flow through the pump. Figure 2.4 presents the results of such a work process.
The flow through the pump, with respect to the control signal, will be denoted as f3(uPA001(t)).

Page 8



CHAPTER 2. THE TWO-TANK SYSTEM

Figure 2.4: The relation between the control signal and the flow through the pump [7].

2.2 Nonlinear model of tank 1

With a restricted system, and the assumptions concerning the dynamics for the valves and the
pump, it becomes fairly straightforward to create a dynamical model for the processing plant. The
first step in achieving this is to use the balance law, which states the following:

A change in the amount per time in any system is equal to the net amount flow of the system.

The amount can be regarded as energy, mass, momentum, charge and also population. Net
flow means the sum of all the inflows minus the sum of all the outflows plus the generated amount
within the system:

d(amount)

dt
=
∑

In−
∑

Out+
∑

Generated (2.8)

(2.8) results in one or more differential equations. In this case, the amount in the balance
law is regarded as mass. The following part will derive the dynamical model for tank 1. Table 2.2
provides the relevant information regarding tank 1.

Since the amount in this case is mass, (2.8) can be written as (2.9), where m [kg] is the mass,
wi [kgs ] is the mass flow, i denotes the different mass flows and t [s] is the time.

dm(t)

dt
=
∑

wi(t) (2.9)

where m(t) = ρ V (t) = ρAh(t). The mass flows are expressed as:

wIN (t) = ρ qPA001(t) = ρ f3(uPA001(t)) (2.10)

wOUT (t) = ρ qLV 001(t) (2.11)

Page 9



CHAPTER 2. THE TWO-TANK SYSTEM

By substituting (2.7) into (2.11), we obtain the following equation:

wOUT (t) = ρ
Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000
(2.12)

where the actual height h(t) in (2.7) is the sum of hLV 001 and h1(t).

Given this information the differential equation for the height of tank 1 can be expressed as:

dh1(t)

dt
=

1

A1

(
f3(uPA001(t))−

Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000

)
(2.13)

The reason why the term wOUT is subtracted, is because it represents the mass flow out of
the system. With (2.13), it becomes possible to describe the behaviour of the system. A mathe-
matical model of any dynamical system is the basis for developing simulations and for analysing
the characteristics of the system.

Name Description Unit Value
h1(t) Water level in tank 1 measured with LT001 m 0-1
A1 Area for tank 1 m2 0.0096

ρ Density of water kg
m3 1000

qPA001(t) Volume flow from pump PA001 l
min 0 -12

uPA001(t) Control signal to pump PA001 - 0 - 1

qLV 001(t) Volume flow through LV001 l
min 0 - 17

uLV 001(t) Control signal to valve LV001 - 0 - 1

Kv,LV 001 Valve constant for valve LV001 m3

time
√
bar

11.25

hLV 001 Height from the bottom of tank 1 down to LV001 m 0.05
h1,utlop Height from the bottom of tank 1 up to the tank outlet m 0.14
g Acceleration of gravity m

s2 9.81

Table 2.2: Variables regarding tank 1.

2.3 Nonlinear model of tank 2

This section will show how to obtain the mathematical model for tank 2. As for tank 1, Table 2.3
is a helpful tool which explains the variables seen in Figure 2.2. Since the procedure is more or
less the same as for tank 1, this section will mostly present the mathematical expressions which
leads to the differential equation.

Name Description Unit Value
h2(t) Water level in tank 2 measured with LT002 m 0-0.4
A2(h2(t)) Area for tank 2 (function of h2(t)) m2 0.025 - 0.07

qLV 002(t) Volume flow through LV002 l
min 0 - 17

uLV 002(t) Control signal to valve LV002 - 0 - 1

Kv,LV 002 Valve constant for valve LV002 m3

time
√
bar

11.25

hLV 002 Height from the bottom of tank 2 down to LV002 m 0.25
h2,utlop Height from the bottom of tank 2 up to the tank outlet m 0.03

Table 2.3: Variables regarding tank 2.

As before, the first step is to set up the balance law, with mass as the amount. The structure
is still identical to equation (2.9). As seen in Figure 2.2, the inflow comes from the valve LV001,
and the outflow goes to the valve LV002. Recall that these in and outflows need to be regarded as

Page 10



CHAPTER 2. THE TWO-TANK SYSTEM

mass flows in order to fit in (2.9). Equation (2.14) and (2.15) shows the corresponding mass flows
to and from the system.

wIN (t) = ρ qLV 001(t) = ρ
Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000
(2.14)

wOUT (t) = ρ qLV 002(t) = ρ
Kv f2

(
uLV 002(t)

)
3600

√
ρ g (h2(t) + hLV 002)

100000
(2.15)

Before inserting (2.14) and (2.15) into (2.9), recall also that the mass can be rewritten as a
product between the density of the liquid, the area of the tank at a certain height, and the height
of the liquid. Doing this results in the following equation:

dh2(t)

dt
=

1

A2(h2(t))

(
Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000

−
Kv f2

(
uLV 002(t)

)
3600

√
ρ g (h2(t) + hLV 002)

100000

) (2.16)

Note that the area, A2(h2(t)), is a function of the height h2(t) due to the conical shape of
tank 2. In order to find this function, it is helpful to use the information presented in Figure 2.5
and Table 2.4.

Figure 2.5: Schematic sketch of tank 2 for area calculation [7].

Page 11



CHAPTER 2. THE TWO-TANK SYSTEM

A2,0 The area at the bottom of tank 2 0.004 m2

d2 Depth of tank 2 0.08 m
b2,max Upper width of tank 2 0.4 m
b2,min Lower width of tank 2 0.05 m
h2,max The height of tank 2 0.4 m

Table 2.4: The dimensions of tank 2.

As shown in Figure 2.5, the conical tank can be segmented into three parts, which consists of
two identical right angled prisms and one rectangle shaped prism. The area of the conical tank is
given by summing the area of these three segmented parts.

The area of the rectangle shaped prism is already stated in Table 2.3, and it is calculated by
multiplying the lower width b2,min and the depth d2. This area is always constant and independent
of the water level.

The area of the two right angled prisms can be calculated by using the triangle similarity
theorem. This theorem entails that if two triangles of different sizes have the same shape, then the
ratio between two sides of triangle A is equal to the ratio between the same two sides of triangle
B. This is illustrated in Figure 2.6.

Figure 2.6: Triangle similarity.

In the case of the conical tank, Wa is h2,max, Wb is h2(t) and Ha is given by:

Ha =
b2,max − b2,min

2
(2.17)

In order to calculate the area of the right angled prisms, it is desired to multiply the current
width Hb with the tanks depth d2. However, it is evident from Figure 2.5 that Hb is a function of
the height h2(t). By using the triangular similarities, Hb can be expressed as:

Hb(t) =
HaWb

Wa
=

( b2,max−b2,min

2

)
h2(t)

h2,max
(2.18)

which leads to:

Ap(t) =

( b2,max−b2,min

2

)
h2(t)

h2,max
d2 (2.19)

The total area for the conical tank is finally given by:

Page 12



CHAPTER 2. THE TWO-TANK SYSTEM

A2(t) = 2Ap +A2,0

= 2

( b2,max−b2,min

2

)
h2(t)

h2,max
d2 +A2,0

=

(
b2,max − b2,min

)
h2(t)

h2,max
d2 +A2,0

= 0.07h2(t) + 0.004

(2.20)

Inserting (2.20) into (2.16) gives the final differential equation for tank 2:

dh2(t)

dt
=

1

0.07h2(t) + 0.004

(
Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000

−
Kv f2

(
uLV 002(t)

)
3600

√
ρ g (h2(t) + hLV 002)

100000

) (2.21)

This report will focus on the dynamical model for tank 1, see (2.13). Tank 2 will not be
considered, however, the dynamical model (2.21) is included as an example and for possible use in
future work.

Page 13



Part II

Modelling using Taylor and
Carleman approximations

14



Chapter 3

Taylor approximations

In this chapter, the nonlinear model:

ḣ1(t) = f
(
h1(t), uLV 001(t), uPA001(t)

)

=
1

A1

(
f3(uPA001(t))−

Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000

) (3.1)

is used as a starting point to obtain approximated models using the truncated Taylor series.
This chapter is structured as follows. Section 3.1 summarises the key theoretical concepts related
to the Taylor series and its use in approximating nonlinear differential equations. Section 3.2
derives and presents the Taylor approximations of the nonlinear tank model. Section 3.3 compares
the obtained models so that a model can be chosen as a starting point for Chapter 4.

3.1 Taylor series

A mathematical pattern of summations can be expressed as a series. For instance 1 + 2 + ... + n
can be expressed in the form of the summation

∑n
i=1 i. The Taylor series is indeed based upon

the same principles, however, it is an infinite sum of the derivatives of a function at a single point.
The definition of a single variable Taylor series is as follows:

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) + ... (3.2)

given that f(x) is infinitely differentiable at a [24].

The Taylor series of an analytic function1 will be equal to the function itself in the defined
area around the point a.

As calculating the infinite sum of a series is not always feasible, an approximation using the
finite partial sum is commonly utilised instead. The partial sum of the n + 1 first terms of the
Taylor series forms the nth Taylor polynomial of the function, hereafter referred to as the nth order
Taylor approximation. It is an approximation which will generally become better as n increases.

1A function where its Taylor series converges to the function itself at every point in a defined area around the
working point.

15



CHAPTER 3. TAYLOR APPROXIMATIONS

The Taylor series has several uses in mathematics, with the most relevant to this report being
the approximation of the nonlinear differential equation (3.1). Using an approximation can make
an otherwise unsolvable, or hard to solve problem, solvable ”near” a working point2. The nth order
Taylor approximation of a n-times differentiable function allows for an approximation, which can
be used to compute the functions value numerically. For the Taylor series, the function has to be
infinitely differentiable at a, while the truncated version at n only requires that the function is
n-times differentiable.

3.1.1 Taylor series in several variables

As we step into multivariable calculus, the Taylor series still applies and is described by:

f(x1, x2, ..., xd) =

f(a1, ..., ad) +

d∑
j=1

∂f(a1, ..., ad)

∂xj
(xj − aj)

+
1

2!

d∑
j=1

d∑
k=1

∂2f(a1, ..., ad)

∂xj∂xk
(xj − aj)(xk − ak)

+
1

3!

d∑
j=1

d∑
k=1

d∑
l=1

∂3f(a1, ..., ad)

∂xj∂xk∂xl
(xj − aj)(xk − ak)(xl − al) + ...

(3.3)

Consider the following nonlinear differential equation:

dx

dt
= ex

√
y

Calculate the 2nd order Taylor approximation around (0, 1).

Compute all the necessary partial derivatives:

fx = ex
√
y

fy = ex

2
√
y

fxx = ex
√
y

fyy = − ex

4y3/2

fxy = ex

2
√
y

Evaluate the partial derivatives at (0,1):

fx(0, 1) = 1

fy(0, 1) = 1
2

fxx(0, 1) = 1

fyy(0, 1) = − 1
4

fxy(0, 1) = 1
2

2In this context ”near a working point” means the operating range around the approximated function where
the approximation is adequate.

Page 16



CHAPTER 3. TAYLOR APPROXIMATIONS

Inserting the partial derivatives into (3.3) truncated at the 2nd order gives:

T (0, 1) =
1

2
x2 − 1

8
y2 +

1

2
xy +

1

2
x+

3

4
y +

3

8

3.2 Taylor models

The dynamical model (3.1) will be the starting point for developing the following models. It is
easier to perform the Carleman linearization, discussed in the next chapter, if the function under
consideration is a polynomial. It is evident that (3.1) is not a polynomial. However, by means of
the Taylor series, (3.1) can be rewritten as an infinite amount of terms which are polynomials as
explained in Section 3.1.

This leads to an intermediate step where (3.1) must be transformed, via the Taylor series, into
an equation involving polynomials.

Since the Taylor series describes a function with an infinite amount of terms, it becomes
impossible to compute this in any numerical way. A practical solution is to truncate terms at a
certain point. This truncation will lead to a numerically computable approximation at the expense
of precision.

This section will focus on using the Taylor approximation on (3.1), and develop a variety of
models where the amount of terms that get truncated will differ. In Section 3.3, these models will
be compared to each other, and the most successful 3 approximation will become the starting point
for the Carleman linearization.

3.2.1 Linear model

As described in Chapter 1, the 1st order Taylor approximation is the most common method used
to linearize a system. By applying the concepts presented in Section 3.1, the linearized model can
be written as:

δḣ1(t) ≈ ∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t) (3.4)

where O indicates the partial derivatives in the operating point.

(3.4) is a general equation, where the values of the partial derivatives are yet to be determined.
Their values will differ depending on which operating point is selected. Therefore, they will be
presented as symbolic functions.

Note that uLV 001 and uPA001 are both independent variables in the functions f1 and f3. Due
to this fact, in order to find the partial derivatives ∂f

∂uLV 001
and ∂f

∂uPA001
, one must take into account

the chain rule for derivatives, as follows:

∂f

∂uLV 001
=

∂f

∂f1

∂f1

∂uLV 001
(3.5)

∂f

∂uPA001
=

∂f

∂f3

∂f3

∂uPA001
(3.6)

3This report will define a ’successful approximation’ as a trade-off between precision and computational labour.
If a model is slightly more accurate, but it requires substantially more calculations, then it will be discarded.

Page 17



CHAPTER 3. TAYLOR APPROXIMATIONS

The partial derivatives ∂f
∂f1

and ∂f
∂f3

are found by straight forward differentiation of the non-

linear function (3.1) at the operating point:

∂f

∂f1

∣∣∣∣
O

=
−Kv,LV 001

√
g ρ (h1,O+hLV 001)

105

3600A1
(3.7)

∂f

∂f3
=

1

A1
(3.8)

The next step is finding the partial derivatives ∂f1
∂uLV 001

and ∂f3
∂uPA001

. These can be found by
using the definition of the derivative on the valve and pump characteristics. Note that these will
also vary depending on the selected operating point:

∂f1

∂uLV 001

∣∣∣∣
O

= lim
∆→0

f1(uLV 001,O + ∆)− f1(uLV 001,O)

∆
≈ ∆f1

∆uLV 001
(3.9)

∂f3

∂uPA001

∣∣∣∣
O

= lim
∆→0

f3(uPA001,O + ∆)− f3(uPA001,O)

∆
≈ ∆f3

∆uPA001
(3.10)

Figure 3.1 shows a schematic sketch on how (3.9) is calculated manually, using the valve
characteristics in Simulink. The exact same concept applies for (3.10), but the pump characteristics
and the input variable uPA001 are used instead. In a practical setting, ∆→ 0.01, instead of ∆→ 0.

Figure 3.1: Calculating δf1
δuLV 001

in Simulink.

Inserting (3.7)-(3.10) into (3.5)-(3.6) results in the final expressions for the partial derivatives
regarding the inputs uLV 001(t) and uPA001(t):

∂f

∂uLV 001

∣∣∣∣
O

=
−Kv,LV 001

√
g ρ (h1,O+hLV 001)

105

3600A1

δf1

δuLV 001
(3.11)

∂f

∂uPA001

∣∣∣∣
O

=
1

A1

δf3

δuPA001
(3.12)

Page 18



CHAPTER 3. TAYLOR APPROXIMATIONS

while the partial derivative ∂f
∂h1

is given by:

∂f

∂h1

∣∣∣∣
O

= − Kv,LV 001 g ρ f1(uLV 001,O)

7.2 · 108A1

√
g ρ (h1,O+hLV 001)

105

(3.13)

3.2.2 Quadratic model

Performing the 2nd order Taylor approximation on the nonlinear function (3.1), results in another
approximated model which will be referred to as the quadratic model :

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

1

2

∂2f

∂u2
LV 001

∣∣∣∣∣
O

δu2
LV 001(t) +

1

2

∂2f

∂u2
PA001

∣∣∣∣∣
O

δu2
PA001(t)

+
∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t) +
∂2f

∂h1∂uPA001

∣∣∣∣∣
O

δh1(t) δuPA001(t)

+
∂2f

∂uLV 001∂uPA001

∣∣∣∣∣
O

δuLV 001(t) δuPA001(t)

(3.14)

As evident by (3.14), the number of partial derivatives in the nth order Taylor approximation
increases rapidly. Expanding beyond the quadratic model with a multivariable function results
in lengthy equations. Therefore, one can opt to present the same partial derivatives using tables.
This is simply done in order to have a more compact notation.

Table 3.1 illustrates this form of notation for the quadratic model. The f in each cell is the
function that is being derived. In this case, f represents the nonlinear function. The subscripts
represents what the nonlinear function f is being derived with respect to. In this case, x = h1,
y = uLV 001 and z = uPA001. Note that Table 3.1 only shows the 2nd order terms. For the complete
quadratic model, these terms comes as an addition to the terms found in the linear model.

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

Table 3.1: Table presenting the 2nd order partial derivatives of the nonlinear function.

The red cells in Table 3.1 represents the non-zero partial derivatives. The non-zero 2nd order
partial derivatives are as follows:

1

2!

(
∂2f

∂h2
1

∣∣∣∣
O

δh2
1(t) + 2

∂2f

∂h1∂uLV 001

∣∣∣∣
O

δh1(t) δuLV 001(t)

)
=

1

2

∂2f

∂h2
1

∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣
O

δh1(t) δuLV 001(t)

(3.15)

Note that fxy = fyx.

Page 19



CHAPTER 3. TAYLOR APPROXIMATIONS

Since the partial derivatives in (3.15) are only the 2nd order partials, these need to be added
to the linear model in order to complete the quadratic model:

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t)

(3.16)

As with the linear model, the following equations only shows the symbolic functions of the
2nd order partial derivatives:

∂2f

∂h2
1

∣∣∣∣
O

=
KvLV001 f1(uLV 001, O) g2 ρ2

1.44 · 1014A1

(
g ρ (h1, O+hLV001)

105

)3/2

∂2f

∂h1∂f1

∣∣∣∣
O

= − KvLV001 g ρ

7.2 · 108A1

√
g ρ (h1,O+hLV001)

105

∂2f

∂h1∂uLV 001

∣∣∣∣
O

=
∂2f

∂h1∂f1

δf1

δuLV 001
= − KvLV001 g ρ

7.2 · 108A1

√
g ρ (h1,O+hLV001)

105

δf1

δuLV 001

∂2f

∂f2
1

=
∂2f

∂f2
3

=
∂2f

∂h1∂f3
=

∂2f

∂f1∂f3
= 0

3.2.3 Partially quadratic models

Before performing the 3rd order Taylor approximation on the nonlinear function, it may be of
interest to inspect further the quadratic model. A question that arises is what are the consequences
of excluding certain 2nd order terms from the quadratic model. Doing this, will result in a so-called
Partially Quadratic (PQ) model. As evident by (3.16), there are only two 2nd order terms. This
gives the opportunity to create two different PQ models.

These two PQmodels will be referenced using subscripts throughout this report. The subscript

A means that the 2nd order term that was included is ∂2f
∂h2

1
. The subscript B implies that the 2nd

order term that was included is ∂2f
∂h1∂uLV 001

.

PQA:

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t)

(3.17)

Page 20



CHAPTER 3. TAYLOR APPROXIMATIONS

PQB :

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t)

(3.18)

3.2.4 Cubic model

Performing the 3rd order Taylor approximation on the nonlinear function (3.1), results in the
following model referred to as the cubic model :

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t)

+
1

6

∂3f

∂h3
1

∣∣∣∣∣
O

δh3
1(t) +

1

2

∂3f

∂h2
1 ∂uLV 001

∣∣∣∣∣
O

δh2
1(t) δuLV 001(t)

(3.19)

As stated earlier, the amount of partial derivatives in a multivariable nth order Taylor ap-
proximation increases rapidly as n increases. The amount of partial derivatives that are added to
a (n-1)th order Taylor approximation as the order increases to n, is given by dn, where d is the
amount of variables and n is the order of the Taylor approximation of f(x1, x2..., xd).

This implies that increasing the order of the Taylor approximation from 2 to 3 would require
dn = 33 = 27 partial derivatives, in addition to those calculated for the 2nd order Taylor approxi-
mation. This is the case for the nonlinear system, since the amount of variables are equal to three.
These additional partial derivatives are presented in Table 3.2.

fxxx fxxy fxxz fxyx fxyy fxyz fxzx fxzy fxzz
fyxx fyxy fyxz fyyx fyyy fyyz fyzx fyzy fyzz
fzxx fzxy fzxz fzyx fzyy fzyz fzzx fzzy fzzz

Table 3.2: Table presenting the 3rd order partial derivatives of the nonlinear function.

Note that Table 3.2 only shows the 3rd order partials. As with the quadratic model, the red
cells in Table 3.2 represent the non-zero partial derivatives, given by:

1

3!

(∂3f

∂h3
1

δh3
1(t) + 3

∂3f

∂h2
1∂uLV 001

δh2
1(t) δuLV 001(t)

)
=

1

6

∂3f

∂h3
1

δh3
1(t) +

1

2

∂3f

∂h2
1∂uLV 001

δh2
1(t) δuLV 001(t)

(3.20)

Note that fxxy = fxyx = fyxx.

Adding (3.20) to the quadratic model (3.16), results in the cubic model presented in (3.19).

Page 21



CHAPTER 3. TAYLOR APPROXIMATIONS

The following equations show the symbolic functions of the non-zero 3rd order partial deriva-
tives:

∂3f

∂h3
1

∣∣∣∣∣
O

= − KvLV001 f1(uLV 001,O) g3 ρ3

9.6 · 1018A1

(
g ρ (h1,O+hLV001)

100000

)5/2
(3.21)

∂3f

∂h2
1 ∂uLV 001

∣∣∣∣∣
O

=
∂3f

∂h2
1∂f1

∣∣∣∣∣
O

δf1

δuLV 001
=

KvLV001 g
2 ρ2

1.44 · 1014A1

(
g ρ (h1,O+hLV001)

100000

)3/2

δf1

δuLV 001
(3.22)

3.2.5 Higher order models

The 4th and 5th order Taylor approximations of the nonlinear function proves rather tedious to
calculate. For the 5th order approximation, it includes a total of 363 partial derivatives. Presenting
these in detail will add little to no value to this report. Therefore, only the final equation for the
4th and 5th order models are presented. The 4th order model is given by:

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t) +
1

6

∂3f

∂h3
1

∣∣∣∣∣
O

δh3
1(t)

+
1

2

∂3f

∂h2
1∂uLV 001

∣∣∣∣∣
O

δh2
1(t) δuLV 001(t) +

1

24

∂4f

∂h4
1

∣∣∣∣∣
O

δh4
1(t) +

1

6

∂4f

∂h3
1∂uLV 001

∣∣∣∣∣
O

δh3
1(t) δuLV 001(t)

(3.23)

The 5th order model is given by:

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t) +
1

6

∂3f

∂h3
1

∣∣∣∣∣
O

δh3
1(t)

+
1

2

∂3f

∂h2
1∂uLV 001

∣∣∣∣∣
O

δh2
1(t) δuLV 001(t) +

1

24

∂4f

∂h4
1

∣∣∣∣∣
O

δh4
1(t) +

1

6

∂4f

∂h3
1∂uLV 001

∣∣∣∣∣
O

δh3
1(t) δuLV 001(t)

+
1

120

∂5f

∂h5
1

∣∣∣∣∣
O

δh5
1(t) +

1

24

∂5f

∂h4
1∂uLV 001

∣∣∣∣∣
O

δh4
1(t) δuLV 001(t)

(3.24)

The reason why the 5th order model has a noticeably lower amount of terms than 363, is
because the majority of these partial derivatives result in zero. Whether it is appropriate to
consider this model in further research, will be discussed in the next section. The 4th order model
is presented for completeness, but will not be further considered.

Page 22



CHAPTER 3. TAYLOR APPROXIMATIONS

3.3 Taylor model comparison

This section will analyse the different models obtained in Section 3.2. The models will be compared
to each other, and the results of these comparisons will help determine which model is to be used
as a starting point for the Carleman linearization.

Before we can start the different comparisons, we have to make some general assumptions
regarding the different models. As stated in Section 3.2, the different models will vary depending
on the chosen operating point. The degree of nonlinearity of tank 1 will differ with the water level,
therefore, it makes sense to choose two operating points that are at the lower- and higher end of
the tank. By doing this, we can also see if the degree of nonlinearity will have an impact on the
results. The operating points for the height are set at 0.25m and 0.75 m. h1,O = 0.25m will be
referred to as Scenario 1, and h1,O = 0.75m as Scenario 2. In order to keep this section tidy, we
have decided to present only the results regarding Scenario 1. The corresponding results obtained
from Scenario 2 will be presented in Appendix A.

The next assumption is that the pump’s behaviour is constant. The control signal uPA001,O =
0.65 is therefore set for both Scenario 1 and 2. Reading Figure 2.4 at uPA001,O = 0.65 gives
f3,O = 0.0001783. It will be stated explicitly when this assumption is no longer true. Otherwise,
the reader can safely assume that the pump is constant at uPA001,O = 0.65.

To find the operating point for the valve LV001, we follow this four step process:

1. Set the nonlinear equation (3.1) equal to zero.

2. Insert the chosen operating points h1,O and f3,O.

3. Solve the equation with respect to f1,O.

4. Insert f1,O into Figure 2.3 in order to find uLV 001,O.

Obviously, since we are considering two different operating points for the height, this process
is done once for each scenario. These results are presented in Table 3.3.

Scenario 1 Scenario 2
f1,O 0.3326 0.2037
uLV 001,O 0.5159 0.3666
f3,O 0.0001783 0.0001783
uPA001,O 0.65 0.65
h1,O[m] 0.25 0.75

Table 3.3: Operating values for Scenario 1 and 2.

The equations and the methods for calculating the different partials are explained in Section
3.2. With these operating points, it becomes possible to write down the corresponding models. The
only modification to the nonlinear model (3.1) is that f3(uPA001(t)) is replaced by f3,O = 0.0001783:

ḣ1(t) =
1

A1

(
0.0001783−

Kv f1

(
uLV 001(t)

)
3600

√
ρ g (h1(t) + hLV 001)

100000

)
(3.25)

The Taylor models for Scenario 1 are as follows:

Linear model:

δḣ1(t) = −0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159) (3.26)

Page 23



CHAPTER 3. TAYLOR APPROXIMATIONS

Quadratic model:

δḣ1(t) =− 0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159)

+ 0.0248 (h1(t)− 0.25)2 − 0.0876 (h1(t)− 0.25) (uLV 001(t)− 0.5159)
(3.27)

PQA model:

δḣ1(t) =− 0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159)

+ 0.0248 (h1(t)− 0.25)2
(3.28)

PQB model:

δḣ1(t) =− 0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159)

− 0.0876 (h1(t)− 0.25) (uLV 001(t)− 0.5159)
(3.29)

Cubic model:

δḣ1(t) =− 0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159)

+ 0.0248 (h1(t)− 0.25)2 − 0.0876 (h1(t)− 0.25) (uLV 001(t)− 0.5159)

− 0.0413 (h1(t)− 0.25)3 + 0.0730 (h1(t)− 0.25)2 (uLV 001(t)− 0.5159)

(3.30)

5th order model:

δḣ1(t) =− 0.0297 (h1(t)− 0.25)− 0.0525 (uLV 001(t)− 0.5159)

+ 0.0248 (h1(t)− 0.25)2 − 0.0876 (h1(t)− 0.25) (uLV 001(t)− 0.5159)

− 0.0413 (h1(t)− 0.25)3 + 0.0730 (h1(t)− 0.25)2 (uLV 001(t)− 0.5159)

+ 0.0860 (h1(t)− 0.25)4 − 0.1216 (h1(t)− 0.25)3 (uLV 001(t)− 0.5159)

− 0.2006 (h1(t)− 0.25)5 + 0.2534 (h1(t)− 0.25)4 (uLV 001(t)− 0.5159)

(3.31)

Note that every term regarding the pump will result in zero, as uPA001(t) is constant at the
operating point. This is given by:

δuPA001(t) = uPA001(t)− uPA001,O = uPA001,O − uPA001,O = 0

Given that Eqs. (3.25)-(3.31) only depend on two variables, it becomes possible to create a 3-D
plot that shows combinations of h1(t) and uLV 001(t), and the resulting δḣ1(t). In order to create
a 2-D grid with uniformly spaced uLV 001-coordinates and h1-coordinates in the interval [0,1], we
use the meshgrid 4 MATLAB function. Using this 2-D grid as an input in the Eqs. (3.25)-(3.31)
results in the matrix ξ for each model. The elements in ξ represent δḣ1(t), while the indices of the
columns and rows represent uLV 001 and h1, respectively. Figure 3.2 shows such a 3-D plot for the
nonlinear model.

The intersection between the nonlinear model and the uLV 001-h1 plane forms a level curve
at δḣ1(t) = 0. It represents the operating points of the system. This level curve shows every
combination of h1(t) and uLV 001(t), where the system is at an equilibrium point (see Figure 3.3).

4Meshgrid

Page 24

https://www.mathworks.com/help/matlab/ref/meshgrid.html


CHAPTER 3. TAYLOR APPROXIMATIONS

Figure 3.2: 3-D plot of the nonlinear model.

Figure 3.3: Level curve representing the operating points of the nonlinear model.

Page 25



CHAPTER 3. TAYLOR APPROXIMATIONS

Figure 3.4 shows 3-D plots of the obtained Taylor models, with the nonlinear model as refer-
ence.

(a) Linear and nonlinear model. (b) Quadratic and nonlinear model.

(c) PQA and nonlinear model. (d) PQB and nonlinear model.

(e) Cubic and nonlinear model. (f) 5th order and nonlinear model.

Figure 3.4: Comparisons between the nonlinear and the Taylor approximation models.

Page 26



CHAPTER 3. TAYLOR APPROXIMATIONS

The series of Figures 3.4a through 3.4f shows that the Taylor models become more similar to
the nonlinear model as the order n of the Taylor approximation increases.

The 3-D plots gives a general idea of how well the models are performing. To be able to
quantify the performance of the Taylor models, we use contour plots 5, where the height values on
the uLV 001 − h1 plane are given by:

ζ =
∣∣ξNonlinear model − ξTaylor model∣∣ (3.32)

Contour plotting ζ provides an intuitive comparison between the nonlinear model and the
Taylor model in question. Whether the Taylor models approximates a higher or lower value for
δḣ1(t) than the nonlinear model may be useful information in some cases. However, in this case,
we are only interested in the magnitude of the error between our approximations and the nonlinear
model. Figure 3.5 presents the contour plots for the different Taylor models.

Figures 3.5a- 3.5f show that the region where ζ is close to zero, which means that the Taylor
approximation and the nonlinear model are similar, increases as we consider higher order Taylor
approximations.

The presented 3-D and contour plot gives the general notion on how a Taylor series approxi-
mation represents its original function more accurately as the order of the approximation increases.
However, the definition of a successful model in this report was not based on accuracy alone. It
is also of interest to know the degree of improvement as the Taylor model goes from an nth order
to an (n + 1)th order approximation. If this degree of improvement is not considered significant
enough, then it leads to selecting the final truncation to happen at n.

In order to see how well the models compare, we calculate the difference in the obtained
ζ-value for each model, given by:

ψ = ζA − ζB (3.33)

where the subscripts A and B are used to separate the ζ-value for the models in question. The
sign and magnitude of ψ will indicate which model provides a better approximation. Table 3.4
shows how the values of ψ have been considered.

ψ value Result Color code
ψ >0.005 B >> Green
0.005 >ψ >0 B > Light green
0 >ψ >-0.005 A > Light Blue
-0.005 >ψ A>> Blue

Table 3.4: Labels for the different values of ψ.

Certain points where both models approximate the nonlinear model poorly are considered
non-relevant for the comparison. These occurrences are identified as shown in Table 3.5.

Criteria Result Color code
|ζA| > 0.005 & |ζB | > 0.005 Not applicable (N/A) Red

Table 3.5: Definition of not applicable points.

Figure 3.6 shows color maps which uses the color codes given in Table 3.4 and 3.5.

5In order to make these plots, the MATLAB function contourf is utilised: Contourf

Page 27

https://www.mathworks.com/help/matlab/ref/contourf.html


CHAPTER 3. TAYLOR APPROXIMATIONS

(a) Linear and nonlinear model. (b) Quadratic and nonlinear model.

(c) PQA and nonlinear model. (d) PQB and nonlinear model.

(e) Cubic and nonlinear model. (f) 5th order and nonlinear model.

Figure 3.5: Contour plots of the Taylor models and the nonlinear model, where ζ is given by (3.32).

Page 28



CHAPTER 3. TAYLOR APPROXIMATIONS

(a) ψ = ζLinear − ζQuadratic. (b) ψ = ζQuadratic − ζCubic.

(c) ψ = ζCubic − ζ5th Order.

Figure 3.6: Color maps comparing the different Taylor models.

It is important to note that the Taylor models only approximates the nonlinear model around
the operating point. Therefore, to test the degree of improvement from an nth order to an (n+1)th
order approximation, only the intervals [0.2m, 0.3m] for h1 and [0.41, 0.61] for uLV 001 will be
considered. These intervals are represented by the hollow rectangle. The large cross indicates the
operating point, where h1 = 0.25m and uLV 001 = 0.5159.

By extracting a sub matrix from the matrix ψ, which corresponds to the data points within
the hollow rectangle, we can find the amount of data points representing the different color codes
in that interval. This gives a numerical interpretation of how the area within the hollow rectangle
for the figures in Figure 3.6 is divided. These results are presented in Table 3.6.

Page 29



CHAPTER 3. TAYLOR APPROXIMATIONS

Case Data points
Quadratic >> 0
Quadratic > 579
Linear > 241
Linear >> 0
N/A 0

(a) Data points in sub matrix of
ψ from Figure 3.6a.

Case Data points
Cubic >> 0
Cubic> 509
Quadratic> 311
Quadratic>> 0
N/A 0

(b) Data points in sub matrix of
ψ from Figure 3.6b.

Case Data points
5th order >> 0
5th order> 388
Cubic> 432
Cubic>> 0
N/A 0

(c) Data points in sub matrix of
ψ from Figure 3.6c.

Table 3.6: Numerical interpretation of the area within the hollow rectangles in Figure 3.6.

Table 3.6a shows that the quadratic model approximates the nonlinear model slightly better
than the linear model at 579 different data points, which is 338 points more than the other way
around. The entire hollow rectangle under consideration consists of 820 individual data points.
This means that the quadratic model covers a total of 579·100%

820 = 70.61% of the area around the
operating point. Given the fact that it requires an additional 32 = 9 partial derivatives to obtain
the 2nd order approximation from the 1st order approximation, it makes sense to discard the linear
model for the more improved quadratic model.

Following the same logic, the cubic model is slightly better than the quadratic model at 198
different data points more that the other way around. This can be calculated by the information
in Table 3.6b. The cubic model covers a total of 509·100%

820 = 62.07% of the area within the hollow
rectangle. This improvement is significant enough to discard the quadratic model for the cubic
model, even tough it requires an additional 33 = 27 partial derivatives to obtain.

From Table 3.6c we see that, in contrast to the previous comparisons, the accuracy of the
higher order Taylor approximation was not improved. The cubic model is actually slightly better
than the 5th order approximation at 44 different data points more than the other way around.
In this case, the cubic model covers 432·100%

820 = 52.68% of the area within the hollow rectangle.
Given this information, it does not make sense to discard the cubic model for the higher order
approximation.

Note that none of the models were significantly better or worse in the immediate surroundings
of the operating point. Every single data point within the hollow rectangle was either slightly
in favour or slightly in disfavour of the models. There were also no cases where both models
approximated the nonlinear model poorly in the set area around the operating point. Given these
results, we can temporarily conclude that the cubic model is the best suited approximation of the
nonlinear model.

It is possible to simulate the different Taylor models, and see how they respond to different
input signals. In order to perform the simulations, the software Simulink and MATLAB are used.
These simulations will be based on a step response, where the control signal uLV 001(t) changes
stepwisely. The control signal uPA001(t) will be constant at the operating point 0.65.

Figure 3.7 shows the step response of the different Taylor models together with the nonlinear
model. The simulation lasted for a total of 250 seconds, and the step in uLV 001(t) happened at 10
seconds. The control signal uLV 001(t) went from its operating point of 0.5159 to 0.5359, which is
an increment of 0.02.

Page 30



CHAPTER 3. TAYLOR APPROXIMATIONS

(a) Step response with an increment in uLV 001 of 0.02 at 10 seconds.

(b) Close up of 3.7a.

Figure 3.7: Model comparison in Simulink.

A standardised method to compare the performance of models and controllers is integrating
the error over a time period. The Integral performance criteria is a set of commonly used integrals
which quantify the error in a model or controller. The different integrals emphasise on different
aspects of the error, for instance ITAE penalises errors more as time passes.

IAE - Integral Absolute Error: IAE is a commonly used error integral to compare errors
over an interval.

IAE =

∫ t

0

∣∣e(t)∣∣ dt
It integrates the absolute value of the error to make sure that positive and negative error do

not cancel out. IAE does not add weight to any of the errors, it penalises small and large errors
equally.

Page 31



CHAPTER 3. TAYLOR APPROXIMATIONS

ISE - Integral Square Error:

ISE =

∫ t

0

e(t)2dt

The ISE penalises larger errors more than small errors.

ITAE- Integral Time Absolute Error:

ITAE =

∫ t

0

t
∣∣e(t)∣∣ dt

The ITAE penalises errors occurring at a later time more than at the start.

ITSE - Integral Time Square Error:

ITSE =

∫ t

0

te(t)2dt

The ITSE penalises large errors more than small, it also penalises errors at a later time more
than at the start.

ISTE- Integral Square Time Error:

ISTE =

∫ t

0

t2e(t)2dt

The ISTE penalises large errors more than small, it also penalises errors at a later time more than
at the start and it penalises more as time passes.

Table 3.7 quantifies the performance of the different models in the step response.

IAE ISE ITAE ITSE ISTE
Linear 0.54638 0.001469 85.6911 0.24681 45.4302
PQA 0.39043 0.00073252 60.1709 0.12058 21.9437
PQB 0.20247 0.00020149 31.7901 0.034027 6.2837
Quadratic 0.066824 2.001e-05 9.7707 0.0031159 0.5532
Cubic 0.052571 1.2066e-05 7.4364 0.0017891 0.30999
5th order 0.051707 1.1652e-05 7.2912 0.0017189 0.29703

Table 3.7: Integral performance criteria.

It is evident that the cubic model, alongside with the 5th order model, are the approximations
describing the nonlinear function the best. This agrees with previous results. Applying the same
comparisons to Scenario 2 leads to the same conclusion, for which reason the cubic model is chosen
as the starting point for the Carleman linearization, which is described in the following chapter.

An important remark regarding the two scenarios, is that the approximations behave more
similarly among them for Scenario 2 than for Scenario 1. From Figure 3.3, we can see that the
degree of nonlinearity for the nonlinear model is bigger at 0.25m than at 0.75m. This means that
the nonlinear properties arising as the order of the approximation increases have a smaller impact
on the results.

Page 32



Chapter 4

Modelling using the Carleman
embedding

In the previous chapter, it was shown that the following model:

δḣ1(t) =
∂f

∂h1

∣∣∣∣∣
O

δh1(t) +
∂f

∂uLV 001

∣∣∣∣∣
O

δuLV 001(t) +
∂f

∂uPA001

∣∣∣∣∣
O

δuPA001(t)

+
1

2

∂2f

∂h2
1

∣∣∣∣∣
O

δh2
1(t) +

∂2f

∂h1∂uLV 001

∣∣∣∣∣
O

δh1(t) δuLV 001(t)

+
1

6

∂3f

∂h3
1

∣∣∣∣∣
O

δh3
1(t) +

1

2

∂3f

∂h2
1 ∂uLV 001

∣∣∣∣∣
O

δh2
1(t) δuLV 001(t)

(4.1)

was the best approximation of the nonlinear tank model. This approximation will be the
starting point of the Carleman embedding presented in this chapter. Section 4.1 introduces the key
theoretical concepts related to the Carleman embedding and its practical use. Section 4.2 derives
a general expression for the Carleman approximation of the cubic model. Section 4.3 presents the
results of the Carleman approximation of the cubic model truncated at different n.

4.1 Carleman embedding

The general idea of Carleman embedding is that a finite dimensional set of nonlinear differential
equations, can be embedded into an infinite dimensional set of linear differential equations. More
specifically, a polynomial or analytical 1 model defined on a finite dimensional space, can be
transformed into a linear or bilinear model on an infinite dimensional space [12] [16].

The following finite dimensional nonlinear differential equation (4.2), with V consisting of
polynomials in x, can be embedded into the infinite dimensional linear differential equation (4.3):

ẋ(t) = V (x(t)) (4.2)

1By analytical model we mean a model where its Taylor series converges to the model itself at every point in a
defined area around the working point. This means that we can make a non-polynomial model into a polynomial
by means of Taylor approximation as seen in Section 3.2.

33



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

ż(t) = Az(t) (4.3)

by using an infinite vector of state variables: z(t) = (z1(t), z2(t), · · · )T .

(4.3) is the infinite linear model associated to the finite nonlinear model given in (4.2). This
is further explained in [14].

4.1.1 Carleman embedding technique

The Carleman embedding technique is introduced with an example.

Consider the following system:

ẋ(t) = x(t) + x2(t) + x3(t) (4.4)

The goal is to describe this system with a linear state-space representation, where the state
variables are defined as the infinite sequence of functions z = (z1, z2, · · · )T . This can be
achieved by expanding the state vector with the monomials corresponding to the state
variable z:

z1(t) = x(t)

z2(t) = x2(t)

z3(t) = x3(t)

...
zn(t) = xn(t)

...

By differentiating the expanded state variables, we obtain:

ż1(t) = ẋ(t) = x(t) + x2(t) + x3(t) = z1(t) + z2(t) + z3(t)

ż2(t) = 2x(t) ẋ(t) = 2x2(t) + 2x3(t) + 2x4(t) = 2 z2(t) + 2 z3(t) + 2 z4(t)

ż3(t) = 3x2(t) ẋ(t) = 3x3(t) + 3x4(t) + 3x5(t) = 3 z3(t) + 3 z4(t) + 3 z5(t)

...
żn(t) = nxn−1(t) ẋ(t) = nxn(t) + nxn+1(t) + nxn+2(t) = n zn(t) + n zn+1(t) + n zn+2(t)

which can be put into the compact form (4.3) with state matrix A given by:

A =



1 1 1 0 · · ·
0 2 2 2 0 · · ·
... 0 3 3 3 0 · · ·
...

... 0 4 4 4 0 · · ·
...

...
...

...
...

...
...

. . .


(4.5)

4.1.2 Truncation

As (4.3) is an infinite set of linear differential equations, numerical calculations using the result
become nontrivial. A common take on this problem is truncating the Carleman embedding at the

Page 34



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

nth state variable. This results in the Carleman approximation, which will become more accurate
as n increases, disregarding computational errors.

Truncating (4.5) at n = 3 results in:

A =

1 1 1
0 2 2
0 0 3


Truncating (4.5) at n = 5 results in:

A =


1 1 1 0 0
0 2 2 2 0
0 0 3 3 3
0 0 0 4 4
0 0 0 0 5


while truncating at a generic n results in the n× n-matrix:

A =



1 1 1 0 · · · 0

0 2 2 2 · · ·
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . n− 1 n− 1

...
...

. . .
. . . 0 n


The truncation leads to approximations that become more accurate as n increases. A com-
parison between the nonlinear system (4.4) and some Carleman approximations are pre-
sented in Figure 4.1. The comparison shows that in this case, the Carleman approximation
leads to an adequate approximation at n = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Carleman: n = 1

Carleman: n = 2

Carleman: n = 3

Nonlinear system (4.4)

Figure 4.1: Carleman approximations of (4.4) compared to the nonlinear system.

Page 35



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

4.2 Carleman approximation of the cubic tank model

The cubic tank model (4.1) is the starting point of the Carleman approximation. Applying the
Carleman embedding technique shown in the previous section to (4.1), results in a nonlinear
quadratic system. By means of the 1st order Taylor approximation, the nonlinear quadratic system
is linearized. The linearized Carleman approximation is the state-space representation truncated
at the nth state variable.

Let us introduce the following compact notation for the partial derivatives appearing in (4.1):

a =
∂f

∂h1

∣∣∣∣
O

b =
∂f

∂uLV 001

∣∣∣∣
O

c =
1

2

∂2f

∂h2
1

∣∣∣∣
O

d =
∂2f

∂h1 ∂uLV 001

∣∣∣∣
O

e =
1

6

∂3f

∂h3
1

∣∣∣∣
O

f =
1

2

∂3f

∂h2
1 ∂uLV 001

∣∣∣∣
O

(4.6)

The Carleman embedding of (4.1) is derived from the following steps:

• Expand the state vector with the monomials corresponding to the state variable

z(t) = (z1(t), z2(t), · · · )T :

z1(t) = δh1(t)

z2(t) = δh2
1(t)

z3(t) = δh3
1(t)

...

zn(t) = δhn1 (t)
...

• Differentiate the expanded state variables:

ż1(t) = δḣ1(t) = a δh1(t) + b δuLV 001(t) + c δh2
1(t) + d δh1(t) δuLV 001(t) + e δh3

1(t)

+ f δh2
1(t) δuLV 001(t) =

= a z1(t) + b δuLV 001(t) + c z2(t) + d z1(t) δuLV 001(t) + e z3(t) + f z2(t) δuLV 001(t)

ż2(t) = 2 δh1(t) δḣ1(t) = 2 a δh2
1(t) + 2 b δh1(t) δuLV 001(t) + 2 c δh3

1(t)

+ 2 d δh2
1(t) δuLV 001(t) + 2 e δh4

1(t) + 2 f δh3
1(t) δuLV 001(t) =

= 2 a z2(t) + 2 b z1(t) δuLV 001(t) + 2 c z3(t) + 2 d z2(t) δuLV 001(t) + 2 e z4(t)

+ 2 f z3(t) δuLV 001(t)

Page 36



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

ż3(t) = 3 δh2
1(t) δḣ1(t) =

= 3 a z3(t) + 3 b z2(t) δuLV 001(t) + 3 c z4(t) + 3 d z3(t)δuLV 001(t) + 3 e z5(t)

+ 3 f z4(t) δuLV 001(t)

...

żn(t) = n δhn−1
1 (t) δḣ1(t) =

= na zn(t) + n b zn−1(t) δuLV 001(t) + n c zn+1(t) + nd zn(t)δuLV 001(t) + n e zn+2(t)

+ n f zn+1(t) δuLV 001(t)

The Carleman embedding results in a nonlinear quadratic system in the form:

ż(t) = Az(t) +B δuLV 001(t) +


z(t)T E1

z(t)T E2

...

z(t)T En

 δuLV 001(t) (4.7)

where z(t) is the system state, δuLV 001(t) is the control input and:

A =



a c e 0 · · ·

0 2a 2c 2e 0
. . .

... 0 3a 3c 3e 0
. . .

...
... 0 4a 4c 4e 0

...
...

...
...

...
...

. . .



B =


b 0 · · ·
0 0 · · ·
...

... · · ·



E1 =


d
f
0
...

E2 =


2b
2d
2f
0
...

E3 =



0
3b
3d
3f
0
...


· · ·

The linearized version of the embedded cubic model can be found by neglecting the nonlinear
term [z(t)TE1, · · · , z(t)TEn]T δuLV 001(t). If the approximation is truncated at n = 1, then this
corresponds to the Taylor linearization about the equilibrium point. This leads to the Linear Time
Invariant(LTI) state-space representation:

ż(t) = Az(t) +B δuLV 001(t)

y(t) = C z(t)

where the output matrix is given by:

Page 37



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

C =


1 0 · · · · · ·
0 0 · · · · · ·
...

... · · ·
. . .


This representation is the infinite linear model associated to the finite nonlinear cubic model

(4.1).

The linearized Carleman approximation is the state-space representation truncated at the nth
state variable. Comparison between models truncated at different values of n will be discussed in
the next section.

4.3 Carleman approximation comparison

In Section 4.2, we derived a general expression for the nth order linearized Carleman approximation
of the cubic model. In this section, the goal is to determine the accuracy of this approximation and
to find a value of n at which the truncation can happen without losing relevant information about
the process’ dynamics. In order to do this, we will use Simulink as a tool to simulate different
linearized Carleman approximations of the cubic model, where n will differ. As with the previous
chapter, we consider the two operating points named Scenario 1 and Scenario 2. This section will
present and discuss the results related to Scenario 1. The reader is referred to Appendix B for the
results related to Scenario 2.

In the Simulink library browser, there is a block named State-Space, which will be used to
simulate the different linearized Carleman approximations. This block uses the state matrix A,
the input matrix B, the output matrix C and the feedthrough matrix D as parameters. How to
obtain these matrices was explained in Section 4.2. The input is δuLV 001(t) and the output is
δh1(t). Figure 4.2 shows how this block is used in Simulink.

Figure 4.2: Utilising the State-Space block in Simulink.

This first simulation will be based on a forced response, where the control signal uLV 001(t)
changes stepwisely, and the initial condition is set to zero. The signal uPA001(t) will be kept
constant at the value 0.65, which corresponds to the equilibrium point, as explained in Section
3.3. The total length of each simulation is 250 seconds. There will be a total of six different
linearized Carleman approximations, where n ∈ {1, 2, 3, 4, 5, 10}. Figure 4.3 presents the results of
this simulation.

Page 38



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

Figure 4.3: Step response with an increment in uLV 001(t) of 0.02 at 10 seconds.

Figure 4.3 shows that all of the linearized Carleman approximations are exactly the same,
and that they do not follow the cubic model. Upon further inspection, the linearized Carleman
approximations actually follow the 1st order Taylor approximation. This can be seen by comparing
the results from Figure 3.7a with the results from Figure 4.3. This comparison tells us that, when
considering the contribution of the input signal to the overall response, the linearized Carleman
approximations behave exactly as the linearized model obtained using a 1st order Taylor approxi-
mation, and that the order n is irrelevant. The cause for this behaviour will be further discussed
in the next chapter.

Another way to observe the linearized Carleman approximations, is by simulating the free
response of the models, where the input signal uLV 001(t) is constant and the initial conditions are
altered. If the initial condition is different from the operating point, the model will eventually
converge to the operating point because the system is open-loop stable, otherwise it would not.
By studying this convergence, it becomes possible to compare the cubic model with the linearized
Carleman approximations. Note that the operating point for the cubic model is h1,O = 0.25m for
Scenario 1. However, since the elements in the state vector z(t) for the Carleman approximations
is defined as δh1(t)n, the operating point is 0m when defined with respect to δh1(t) and its powers.
This means that if the cubic model and the linearized Carleman approximations are meant to
start from the same initial water level, they need to have an initial condition of 0.25m + δm
and δm, respectively, where δm is the offset from the equilibrium points. Since the Carleman
approximations consists of n states, it needs a n× 1 matrix which includes the initial condition for
each state:

δ matrix =


δ1

δ2

...
δn

 (4.8)

Defining the δ variable as 0.05m, means that the models will start at 0.25m+ 0.05m = 0.3m.

Page 39



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

Figure 4.4: δ = 0.05m gives a starting point of 0.3m.

From Figure 4.4, it is evident that the linearized Carleman approximations do indeed follow the
cubic model, and that they converge to the operating point at 0.25m. Section 3.3 introduced integral
performance criteria as a method to compare the different Taylor approximations. Applying that
same concept here, results in Table 4.12.

IAE ISE ITAE ITSE ISTE
Carleman 1 0.033946 1.1314e-05 1.7255 0.00042025 0.021141
Carleman 2 0.0010657 1.9028e-08 0.032067 4.1273e-07 1.2094e-05
Carleman 3 9.2014e-05 8.8891e-11 0.0047623 3.4878e-09 1.7297e-07
Carleman 4 1.6684e-06 2.1323e-14 0.00010913 1.143e-12 8.1992e-11
Carleman 5 1.8461e-07 -1.0709e-15 8.7203e-06 -1.0774e-14 -1.2033e-13
Carleman 10 3.0644e-12 -1.4964e-15 1.5481e-10 -2.6411e-14 -8.1151e-13

Table 4.1: Integral performance criteria of the linearized Carleman approximations, with δ =
0.05m.

Table 4.1 shows that around n = 2, the linearized Carleman approximation approximates
the cubic model with small discrepancies. However, since the starting point only has a 0.05m
deviation from the operating point, the behaviour required in order to follow the cubic model is
less nonlinear. This allows a low order linearized Carleman approximation to have a high accuracy.
Increasing the δ variable to 0.2m, gives a starting point of 0.45m.

2Due to the precision of numerical calculations in MATLAB, some values that are small appear as negative
values. These values can be regarded as zero.

Page 40



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

Figure 4.5: δ = 0.2m gives a initial condition of 0.45m.

From Figure 4.5 we see that the 1st order linearized Carleman approximation is not able to
follow the cubic model as well as the other models. Table 4.2 also expresses this notion.

IAE ISE ITAE ITSE ISTE
Carleman 1 0.47434 0.0021312 25.1139 0.084099 4.4267
Carleman 2 0.085848 0.00010673 3.0072 0.0026045 0.087056
Carleman 3 0.023531 5.6366e-06 1.2597 0.00023117 0.011911
Carleman 4 0.0015259 2.259e-08 0.089447 8.2185e-07 5.1763e-05
Carleman 5 0.00084781 8.4265e-09 0.0425 3.2894e-07 1.5478e-05
Carleman 10 2.9821e-07 -8.067e-15 1.5674e-05 -1.8252e-13 -5.7072e-12

Table 4.2: Integral performance criteria of the linearized Carleman approximations, with δ = 0.2m.

Table 4.2 shows that the linearized Carleman approximations of lower order, are significantly
less accurate. In this case, the preferred models are Carleman 4, 5 and 10. Obviously, increasing the
order above 10 will make the approximation more accurate. However, since the level of improvement
from n = 5 to n = 10 is so small, considering n > 10 is redundant with respect to this project.

It was shown that the linearized Carleman approximation only follows the 1st order Taylor
approximation when there is a change in the control signal uLV 001(t). This behaviour makes the
linearized Carleman approximation inadequate for the cubic model. Because of this, the quadratic
Carleman approximation (4.7), obtained in Section 4.2 will be considered.

To simulate the quadratic Carleman approximations, we use the same settings as in the previ-
ous step response shown in Figure 4.3. uLV 001(t) changes stepwisely with an increment of 0.02 at
10 seconds, uPA001(t) is kept constant at 0.65 and the total simulation length is 250 seconds. There
will be a total of six different quadratic Carleman approximations, where n ∈ {1, 2, 3, 4, 5, 10}.

Figure 4.6 shows that the quadratic Carleman approximations follow the cubic model to a
great extent, with an exception of the 1st order quadratic Carleman approximation. Given that
the change in uLV 001(t) is only 0.02 away from the operating point, it is expected that the order
n required to follow the cubic model is small. However, if the step in uLV 001(t) is bigger in

Page 41



CHAPTER 4. MODELLING USING THE CARLEMAN EMBEDDING

magnitude, it will be harder for the quadratic Carleman approximations of lower order to follow
the cubic model. Figure 4.7 shows an equivalent simulation, but the step in uLV 001(t) is now -0.1.

Figure 4.6: Simulation of the quadratic Carleman approximations.

Figure 4.7: Simulation of the quadratic Carleman approximations with a larger step.

From Figure 4.7, we see again that the preferred order for the quadratic Carleman approxi-
mations are n ∈ {4, 5, 10}. This shows that the Carleman embedding technique from Section 4.2
works as intended, and that the nonlinear quadratic system, truncated at n ∈ {4, 5, 10}, gives an
accurate representation of the cubic model.

Page 42



Part III

Control

43



Chapter 5

State feedback control using the
linear Carleman approximation

In the previous chapter, we saw that the linearized Carleman approximation did not follow the
cubic model when a forced response was applied. This behaviour will be further investigated in
this chapter. Section 5.1 gives a brief introduction to some relevant elements from control theory,
while Section 5.2 further investigates the controllability of the linearized Carleman approximation.

5.1 Control

Control of a dynamical system involves using the system inputs to drive it to a desired state with
some prescribed performance [20]. The controller for the Carleman approximations will be a state
feedback controller. This means that the control input is dependent on the current value of the
state, which is ”fed back” to the controller. The current state is compared to the reference as the
goal is to move the system back to the equilibrium point. This gives the measured error that the
controller has to correct.

Figure 5.1: Feedback control system [1].

Controllability is a key property of a system which describes its ability to reach any point in
the state-space by applying the correct sequence of control inputs.

44



CHAPTER 5. STATE FEEDBACK CONTROL USING THE LINEAR CARLEMAN
APPROXIMATION

Theorem 1 The LTI system:

ẋ(t) = Ax(t) +Bu(t) (5.1)

is controllable if and only if the controllability matrix:

C = [B,AB,A2B, · · · , An−1B] (5.2)

has full row rank.

The column rank of a matrix is determined by the number of linearly independent columns
of the matrix. Equivalently the row rank is the number of dimensions of the vector space spanned
by its rows. A fundamental result in linear algebra shows that the column rank and row rank
are always equal [23]. Therefore, either can be calculated to check the rank of the controllability
matrix.

Theorem 2 The n× nm matrix C has full row rank if and only if:

rank(C) = min(n, nm) = n (5.3)

Consider the following system:

A =

1 1 1
0 2 2
1 0 3

 , B =

1
1
0


then the controllability matrix is given by:

C =

1 2 5
0 2 6
0 1 5


To examine the rank of the controllability matrix, we first have to make sure that the
columns are linearly independent. Therefore, a common approach to finding the rank is to
perform Gaussian elimination on the matrix to get it in a simple row echelon form. This
way, all the dependent rows become 0 and the rank is equal to the number of non-zero rows
remaining.
The C matrix in row echelon form:

C =

1 0 0
0 1 0
0 0 1


clearly shows that there are 3 non-zero rows giving it rank = 3, revealing that the system
is controllable.

Page 45



CHAPTER 5. STATE FEEDBACK CONTROL USING THE LINEAR CARLEMAN
APPROXIMATION

5.2 Controllability of the linear Carleman approximation

In order to find the controllability property of the linearized Carleman approximation, the state
matrix A, and the input matrix B is required. The general expression for these matrices was
derived in Section 4.2, and are presented below:

A =



a c e 0 · · ·

0 2a 2c 2e 0
. . .

... 0 3a 3c 3e 0
. . .

...
... 0 4a 4c 4e 0

...
...

...
...

...
...

. . .


, B =


b 0 · · ·
0 0 · · ·
...

... · · ·

 (5.4)

With the equations (5.2) and (5.4), the controllability matrix for the linearized Carleman
approximation can be calculated. As an example, we can truncate the linearized Carleman ap-
proximation at n = 3, which gives the following A and B matrices:

A =

a c e
0 2a 2c
0 0 3a

 , B =

b0
0

 (5.5)

Inserting the A and B matrices from (5.5) into (5.2) yields:

C =


b0

0

 a c e
0 2a 2c
0 0 3a

b0
0

 a c e
0 2a 2c
0 0 3a

2 b0
0


 =

b ab a2b
0 0 0
0 0 0

 (5.6)

If the calculations are repeated for a higher order system, e.g., for n = 6, one gets:

A =


a c e 0 0 0
0 2a 2c 2e 0 0
0 0 3a 3c 3e 0
0 0 0 4a 4c 4e
0 0 0 0 5a 5c
0 0 0 0 0 6a

 , B =


b
0
0
0
0
0

 (5.7)

As in the previous example, the matrices in (5.7) are inserted into Eq. (5.2):

C =
[
B AB A2B A3B A4B A5B

]
=


b ab a2b a3b a4b a5b
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (5.8)

It is clear that for a generic nth order linearized Carleman approximation, the controllability

Page 46



CHAPTER 5. STATE FEEDBACK CONTROL USING THE LINEAR CARLEMAN
APPROXIMATION

matrix is given by:

C =


b ab a2b . . . an−1b
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . 0

 (5.9)

Note that all of the elements [A2,1, A3,1, . . . , An,1] in the An−1 matrix are all equal to zero,
with the exception of A1,1 which is equal an−1. Note also that the only non-zero element in the
B matrix is B1,1, which is equal to b. This explains why the multiplication An−1B always results
in a column vector, where the only non-zero element is the first entry. This is the reason why the
first row in (5.9) is the only non-zero row of the controllability matrix.

Given (5.9), it is evident that the order of the linearized Carleman approximation will not
affect the fact that the first row is the only non-zero row of the controllability matrix. In Section
5.1, it was stated that the rank of the controllability matrix needed to be equal to n, in order for
the system to be controllable. It is evident from (5.9) that the rank of the controllability matrix
will always be equal to 1, regardless of the order n of the linearized Carleman approximation.
This means that the linearized Carleman approximation will not be controllable unless the order
n = 1, which is equal to the 1st order Taylor approximation of the nonlinear system. The lack of
controllability means that the system’s eigenvalues can not be arbitrarily located in the complex
plane, which means that some eigenvalues can not be reached [26]. This explains the behaviour
observed in Figure 4.3, and why all of the linearized Carleman approximations follow the 1st order
Taylor approximation.

Page 47



Chapter 6

State feedback control using the
quadratic Carleman
approximation

In the previous chapter we saw that the linearized Carleman approximation was not controllable
and that the forced response followed the 1st order Taylor linearization, regardless of the order n.
In this chapter, we will consider the quadratic system arising from the Carleman approximation of
the cubic model. In Section 6.1, some introductory theory is presented to better grasp the process
of making a state feedback controller for a quadratic system. Section 6.2 describes the design
of the controller gain K for the quadratic Carleman approximation. In Section 6.3, necessary
modifications of LMIs are implemented to include the pump PA001 as an actuator, in addition to
the valve LV 001, resulting in a new controller gain K. The results presented in this chapter are
related to Scenario 1. For the results related to Scenario 2, the reader is referred to Appendix C.

6.1 Supplemental theory

6.1.1 Polytopes

A polytope is a geometric object, with flat surfaces and straight edges. Convex polytopes are the
simplest kind of polytopes, and they are defined as the intersection of a set of half-spaces [22]. The
actual points at which these half-spaces intersect and form the corners of the convex polytopes are
defined as the vertices of the polytope [25].

It is possible to create a convex polytope by applying the convex hull on a finite set of points.
A convex hull is defined as the minimal convex set that contains all of the points [21]. This hull
creates a convex polytope, where each extreme point of the hull is a vertex. It is also possible to
express the half-spaces, containing the polytope, if the vertices are known. In this project, this was
done by using the vert2con MATLAB function, which requires the vertices as an input argument,
and returns a set of constraints such that Ax ≤ b defines the region of space enclosing the convex
hull of the given points [11].

48



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

A convex polytope, in R2, in the shape of a box is given by: P = [−1, 2] × [−1, 3]. The
points at which these four half-spaces intersect are:

x(1) = (2,−1)T , x(2) = (2, 3)T , x(3) = (−1, 3)T , x(4) = (−1,−1)T (6.1)

which are the vertices of the convex polytope.

Using the vertices from (6.1) as an input argument in the vert2con function, gives the
following inequalities:

Ax ≤ b, A =


0 0.5000
0 −0.5000

0.6667 0
−0.6667 0

 , b =


1.5000
0.5000
1.3333
0.6667

 (6.2)

Usually, the constraints that expresses the region of the polytope are described as:

Ax ≤ 1 (6.3)

Therefore, we divide both sides of (6.2) by b. This results in a matrix denoted as Ak:

Ak = A� b=


0 0.3333
0 −1.0000

0.5000 0
−1.0000 0

→ Akx ≤ 1 (6.4)

where each row vector in Ak represents the transposed of the half-space vector that contains
the polytope. These vectors can be written as:

aT1 = (0,
1

3
) , aT2 = (0,−1) , aT3 = (

1

2
, 0) , aT4 = (−1, 0) (6.5)

Plotting these half-spaces shows the points at which they intersect, and the region in which
they cut off. This contained region is known as the polytope P. Figure 6.1 illustrates this
notion.
In fact, the inequality in (6.4) can be segmented into the following inequalities:

aT1 x ≤ 1→
[
0 1

3

] [x1

x2

]
≤ 1 (6.6)

aT2 x ≤ 1→
[
0 −1

] [x1

x2

]
≤ 1 (6.7)

aT3 x ≤ 1→
[

1
2 0

] [
x1

x2

]
≤ 1 (6.8)

aT4 x ≤ 1→
[
−1 0

] [x1

x2

]
≤ 1 (6.9)

In order for the inequalities (6.6) and (6.7) to be true, the variable x2 must be confined
within the range −1 ≤ x2 ≤ 3, regardless of what x1 is.
For the inequalities (6.8) and (6.9) to be true, the variable x1 must be confined within the
range −1 ≤ x2 ≤ 2, regardless of what x2 is.
This confirms the confined region that is contained by the half-spaces, defined as the poly-
tope P, is as shown in Figure 6.1.

Page 49



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

Figure 6.1: Polytope P is contained by the blue half-spaces, and represented by the green region.

6.1.2 Lyapunov stability criterion

To ensure stability of a dynamical system, stability theory is explored. We saw that the linear
Carleman approximation was uncontrollable, therefore, some of its eigenvalues could not be moved
to make it follow the cubic model. If an LTI-system is controllable, then the closed-loop eigenvalues
can be assigned at arbitrary desired locations of the complex plane. The stability of a nonlinear
dynamical system around an equilibrium point of the solution can be proven using the Lyapunov
stability criterion.

Theorem 3 An equilibrium is said to be locally asymptotically stable if the Lyapunov function is
locally positive definite for x 6= xequilibrium:

V (x) > 0 (6.10)

and its derivative is locally negative definite for x 6= xequilibrium:

V̇ (x) < 0 (6.11)

These criterions are often explained using V (x) as a general energy function. If a system V (x)
has positive definite energy and a negative definite derivative in some neighbourhood around the
equilibrium point, then this point is said to be locally asymptotically stable(L.A.S).

Page 50



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

Finding the Lyapunov function V (x) can be hard in some cases, but for a linear system
ẋ = Ax it can be done as follows [2]:

V (x) = xT P x (6.12)

where P = PT > 0 ensures that (6.12) is positive definite as required in (6.10).

From this, the derivative can also be found:

V̇ (x) =
∂V

x

dx

dt
= xT (ATP + PA)x (6.13)

where ATP + PA < 0 ensures that (6.13) is negative definite as required in (6.11).

The linear system is Lyapunov stable if there exists some positive definite symmetrical
matrix P with a negative definite derivative in some neighbourhood around the equilibrium
point.

Region of attraction

For any Lyapunov function satisfying the stability criterion, there exists a region of attraction(RA)1.
This is a firmly stated region which describes the renowned ”around the equilibrium”, however, it
is hard or even impossible to find the RA except for in some simple cases. An estimate of the RA
can be found by using linear matrix inequalities(LMI’s) as described in [4]. The idea is that given
the nonlinear system corresponding to the quadratic Carleman model (4.7):

ẋ(t) = Ax(t) +


xT (t)B1x
xT (t)B2x

...
xT (t)Bnx


a quadratic Lyapunov function satisfying the stability criterion over an invariant set2 is built

using an LMI-based optimization problem[27]. If solveable, these inequalities ensure that the
polytope P belongs to the RA.

1“...given an asymptotically stable system, the RA is defined as the largest connected set Ω containing the origin
and such that every solution starting in Ω converges to 0” [4].

2If, for all solutions of a system starting in a set remains in the set as t −→∞, then the set is said to be invariant.

Page 51



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

6.1.3 State feedback control of nonlinear quadratic systems

The goal of this section is to explore a method of finding a L.A.S state feedback controller in the
form:

u(t) = Kx(t) (6.14)

for the nonlinear system 3:

ẋ = Ax(t) +Bu(t) +


xT (t)E1

xT (t)E2

...
xT (t)En

u(t) (6.15)

which is L.A.S on the polytope P enclosed by the RA.

Theorem 4 Given system (6.15), with A ∈ n×n and B ∈ m×n and the polytope P, a controller
gain K can be found by solving:

0 <γ < 1 (6.16a)

P >0 (6.16b)[
1 γaTk P

Pakγ P

]
≥0, k = 1, 2, · · · , q (6.16c)

[
1 xT(i)
x(i) P

]
≥0, i = 1, 2, · · · , p (6.16d)

γ(AP + PAT ) + γ(BL+ LTBT ) +


xT(i)E1L

xT(i)E2L
...

xT(i)EnL

+
(

(LTET1 )x(i) · · · (LTETn )x(i)

)
(6.16e)

< 0 i = 1, 2, · · · , p

with a symmetric matrix P ∈ Rn×n and a matrix L ∈ Rm×n, where p is the amount of vertices
and q is the amount of constraints ak. Then, the controller gain in (6.14) can then be calculated
as K = LP−1.

In (6.16) we can see that (6.16b) is the positive definite Lyapunov function, V (x) shown in
(6.10) and (6.16e) is the negative definite V̇ (x) shown in (6.11) with a given polytope P. (6.16a) is
a scalar that can be set to a fixed value, an optimal value can be found through parameter searches
if necessary [3].

Condition (6.16c) ensures that the upscaled polytope 1
γP contains a level curve of the Lya-

punov function, 1
γP ⊃ E , which is a subset of the RA. The level curve is expressed by the ellipsoid:

3Corresponding to the quadratic Carleman model (4.7).

Page 52



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

E := {x ∈ Rn : xTP−1x ≤ 1}

(6.16c) ensures therefore that the ellipsoid E is invariant.

Condition (6.16d) ensures that the polytope P is a subset of the ellipsoid E , E ⊃ P. This,
alongside with (6.16c), ensures that P is in the RA.

Given the Lyapunov function:
V (x) = xTP−1x

with P > 0, find V̇ (x) < 0.

V̇ (x) = ẋTP−1x+ xTP−1ẋ

= xT {
[
(A+BK)T +

(
(E1K)Tx(i) · · · (EnK)Tx(i)

)]
P−1

+ P−1

[
A+BK +


xT(i)E1K

...
xT(i)EnK


]}

x

Pre- and post-multiply by P .

xT {
[
PAT + PKTBT +

(
PKTET1 x(i) · · ·PKTETn x(i)

)]

+

[
AP +BKP +


xT(i)E1KP

...
xT(i)EnKP


]}

x

Introduce L = KP .

xT {
[
PAT + LTBT +

(
LTET1 x(i) · · ·LTETn x(i)

)]

+

[
AP +BL+


xT(i)E1L

...
xT(i)EnL


]}

x

This results in the inequality:

PAT + LTBT +
(
LTET1 x(i) · · ·LTETn x(i)

)
+AP +BL+


xT(i)E1L

...
xT(i)EnL

 < 0 (6.17)

By introducing γ we get (6.16e).

Solvers

The LMIs presented are solved using the MATLAB LMI toolboxes YALMIP [13] and SEDUMI [19].
The steps for solving LMIs are:

• The A and B matrices must be available for the solvers.

Page 53



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

• Create symbolic decision variables4 for the symmetric matrix P and the full matrix L.

• Create a list of LMIs/constraints.

• Optimize the LMIs.

• If the problem has a feasible solution, then values for the matrices P and L are found.

• The controller gain is K = LP−1

6.2 Controller for the quadratic Carleman approximation

In Section 6.1, we introduced several concepts that are related to finding the controller gain K. In
this section, those concepts will be applied to the quadratic Carleman approximation. The goal is
to create a state feedback controller for this system.

Before applying the constraints introduced in 6.1.3, it is important to identify certain limi-
tations of the system. These limitations are included as additional constraints to those shown in
6.1.3, they ensure that the controller operates within its capabilities. The main limitation of our
system is the range at which the valve LV 001 can operate. It is not possible for the valve to open
more than its max capacity, and it is not possible to close the valve more than when it is shut
tight. For the signal uLV 001(t), these limitations are defined as:

0 ≤ uLV 001(t) ≤ 1 (6.18)

Recall that for the quadratic Carleman approximation, the state is defined as:

zn(t) = (h1(t)− h1,O)n (6.19)

which means that the input is calculated as:

δuLV 001(t) = uLV 001(t)− uLV 001,O (6.20)

For Scenario 1, this means that the signal δuLV 001(t) cannot exceed the following boundaries:

−0.5159 ≤ δuLV 001(t) ≤ 0.4841 (6.21)

Due to this, we define the upper and lower bound of δuLV 001(t) to ±0.45.

The constraints that ensures that the controller does not exceed these boundaries are defined
as:

[
P LT

L γ2
∗

]
> 0 (6.22)

where γ2
∗ = 0.45 is the boundary for the signal δuLV 001(t) [15].

In Chapter 4, Section 4.3, we concluded that the quadratic Carleman approximation of order
n ≥ 4 was an accurate approximation of the cubic model. Therefore, for the remaining part of
this project, the 4th order quadratic Carleman approximation will be considered. The state vector

4sdpvar in MATLAB.

Page 54



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

z(t), state matrix A, input matrix B and the matrices regarding the nonlinear parts E1, · · · , E4

for the 4th order quadratic Carleman approximation are reiterated below:

z(t) =


z1(t)
z2(t)
z3(t)
z4(t)

 , A =


a c e 0
0 2a 2c 2e
0 0 3a 3c
0 0 0 4a

 , B =


b
0
0
0

 , E1 =


d
f
0
0

 , E2 =


2b
2d
2f
0

 , E3 =


0
3b
3d
3f

 , E4 =


0
0
4b
4d


(6.23)

where a, b, · · · , f are defined as in Section 4.2, Eq.(4.6).

The vertices of the polytope P are yet to be defined. Since the order of the quadratic Carleman
approximation is n = 4, this means that the vertices will exist in the 4th dimensional space, where
the axes are [z1, z2, z3, z4]. Given equation (6.19), the value on the z1-axis for each vertex will
determine how far the polytope P reaches from the operating point. A desired range for the
controller is ±0.05m from the operating point. By defining the values for each state at which a
vertex lies, we can use the MATLAB function combvec5 to express the actual coordinates of the
vertices.

Consider the following example for a 2nd order quadratic Carleman approximation:

The desired range of our controller is ±0.05m. Recall that:

z1(t) = h1(t)− h1,O (6.24)

Thus, the two values for this state are [−0.05, 0.05]. Given equation (6.19), we can see that
the values for z2 are [(−0.05)2, (0.05)2]. However, this action looses the lower bound for z2,
due to the exponent being an even number. This is why the lower bound is manually set
to 0. If the exponent is odd, say for z3, then the lower bound is just −0.053. This gives
the actual values for z2 to be [0, 0.052]. Using the combvec function, with these values as
inputs, gives the following coordinates:

combvec([−0.05, 0.05], [0, 0.052]) =

[
−0.0500 0.0500 −0.0500 0.0500

0 0 0.0025 0.0025

]
(6.25)

where each column is the coordinates of a vertex. Inserting these vertices in the vert2con

function gives the half-spaces that contain the polytope. Figure 6.2 shows the plot of this
polytope.

Figure 6.2: Polytope for the 2nd order quadratic Carleman approximation.

5combvec.

Page 55

https://www.mathworks.com/help/deeplearning/ref/combvec.html;jsessionid=79c5196830d20f7843f422498996


CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

Following the same logic as in the example above, the values of the states for the 4th order
quadratic Carleman approximation are6:

z1,V = [−0.05, 0.05], z2,V = [≈ 0, 0.0025],

z3,V = [−0.000125, 0.000125], z4,V = [≈ 0, 0.00000625]
(6.26)

Inserting these values in the combvec function yields the following vertices:

x1 =


−0.0500
−0.0003
−0.0001
−0.0000

 , x2 =


0.0500
−0.0003
−0.0001
−0.0000

 , x3 =


−0.0500
0.0025
−0.0001
−0.0000

 , x4 =


0.0500
0.0025
−0.0001
−0.0000



x5 =


−0.0500
−0.0003
0.0001
−0.0000

 , x6 =


0.0500
−0.0003
0.0001
−0.0000

 , x7 =


−0.0500
0.0025
0.0001
−0.0000

 , x8 =


0.0500
0.0025
0.0001
−0.0000



x9 =


−0.0500
−0.0003
−0.0001
0.0000

 , x10 =


0.0500
−0.0003
−0.0001
0.0000

 , x11 =


−0.0500
0.0025
−0.0001
0.0000

 , x12 =


0.0500
0.0025
−0.0001
0.0000



x13 =


−0.0500
−0.0003
0.0001
0.0000

 , x14 =


0.0500
−0.0003
0.0001
0.0000

 , x15 =


−0.0500
0.0025
0.0001
0.0000

 , x16 =


0.0500
0.0025
0.0001
0.0000



(6.27)

The scalar γ is set to:
γ = 0.1

When solving the constraints shown in 6.1.3, Eq. (6.16c) will be excluded from these calcu-
lations. The reason for this will be further discussed in Chapter 9. This implies that the solved
controller can not guarantee that E is invariant.7 Since (6.16c) will not be included in this part,
this means that there is no need to present the half-spaces ak. With that, all of the variables that
are required in order to solve the constrains for K are now defined.

Solving the constrains (6.16a)-(6.16e), with the exclusion of (6.16c), together with the addi-
tional constraint (6.22), results in the following controller gain8:

K =
[
0.2345 0.0129 −0.0464 −0.0325

]
(6.28)

With the K matrix defined, it is now possible to rewrite the quadratic Carleman approxima-
tion, by replacing δuLV 001(t) with Kz(t):

ż(t) = Az(t) +BKz(t) +


zT (t)E1

zT (t)E2

zT (t)E3

zT (t)E4

Kz(t) (6.29)

6Due to numerical issues, the lower bound of the states zn(t) where n is an even number, are set to small
negative numbers that are approximately zero.

7The consequences of E not being invariant is that it cannot be guaranteed that a solution of the inequalities
starting inside E stays inside E as t −→∞, which can lead to instability/divergence.

8The procedure of how to solve the different constraints are explained in 6.1.3.

Page 56



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

To verify that the state feedback controller works, Equation (6.29) is simulated. The system
will start with an initial condition of 0.05m, which is the same as:

h1(t) = z1(t) + h1,O = 0.05m+ 0.25m = 0.3m (6.30)

Figure 6.3: Simulation of Eq. (6.29), with initial condition equal to 0.05m.

Figure 6.4: Signal δuLV 001(t), calculated by Kz(t).

Figure 6.3 shows that the state z1(t) converges to zero, which is equivalent to the water
level converging to its operating point of 0.25m. Figure 6.4 shows that the signal δuLV 001(t) also
converges to zero, which means that the signal uLV 001(t) converges to its operating point of 0.5159.

Page 57



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

6.3 Controller for the quadratic Carleman approximation
using two input variables

Up until now, this project has only considered the valve LV 001 as an actuator. However, the system
does have the option of regulating the contribution of the pump PA001 as well. Introducing the
pump into the quadratic Carleman approximation leads to small adjustments in the input vector
u(t), input matrixB and the matrices regarding the nonlinear parts E1, E2, · · · , En. These adjusted
variables are now defined as9:

u(t) =

[
uLV 001(t)
uPA001(t)

]
, B =


b g
0 0
0 0
0 0

 , E1 =


d 0
f 0
0 0
0 0

E2 =


2b 2g
2d 0
2f 0
0 0

E3 =


0 0
3b 3g
3d 0
3f 0

E4 =


0 0
0 0
4b 4g
4d 0


(6.31)

where:

g =
∂f

∂uPA001

∣∣∣∣
O

(6.32)

All of the other variables that were defined in Section 6.2 remain unchanged.

With this new actuator, it is again necessary to identify the limitation of the system. After
introducing the pump to the controller, it is now important to define certain constraints such
that the controller operates within its capability. It is not possible for the pump to supply the
tank with more than a certain amount of water. The least amount of water that the pump can
supply the tank with is zero. The pump cannot extract water from the tank. Given the pump
characteristics, shown in Figure 2.4, one can see that the pump stops adding water to the tank at
uPA001(t) = 0.4510. The maximum water that the pump can supply occurs at uPA001(t) = 1. This
gives the following constraint:

0.45 ≤ uPA001(t) ≤ 1 (6.33)

The quadratic Carleman approximation works with the signal:

δuPA001(t) = uPA001(t)− uPA001,O (6.34)

where uPA001,O = 0.65. For this reason, we define the upper and lower bound of δuPA001(t) to
±0.2 11. This gives another additional constraint, (6.22), where γ2

∗ = 0.2.

To find the controller gain K, we solve the same constraints as in Section 6.2, with the addition
of the saturation constraint for the pump. This results in the following:

K =

[
0.2345 −0.0076 −0.0446 −0.0227
−0.1029 −0.0223 0.0178 0.0177

]
(6.35)

Replacing the input vector u(t) with Kz(t), results in a quadratic system, as shown by (6.29).
Verification of the controller is done by simulating this system. The initial level is set to 0.05m.

9Note that these matrices only apply for the 4th order quadratic Carleman approximation, which is still being
regarded from the previous section.

10The pump needs a value of at least 0.45 to pump water up to the tank, any lower values and the pump will
not be able to pump water up to the intake of the tank.

11As (6.22) only works in symmetrical ranges.

Page 58



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

Figure 6.5: 4th order quadratic Carleman approximation with two actuator.

Figure 6.6: Signal u(t), calculated by Kz(t).

Note that the response in Figure 6.5 is slightly faster than the response in Figure 6.3. However,
the main benefit of creating the controller gain K with two actuators, is that the degree of freedom
is increased. This means that the probability of finding a solution to the constraints in (6.16) is
higher.

The rate of convergence can be added as an additional constraint. By introducing an α, we
can make the controller less conservative, leading in faster responses. In [3], it is introduced with:

2αP +AP + PAT +BL+ LTBT < 0

This implementation of α amplifies the linear part of the quadratic Carleman approximation,
which makes the quadratic parts of the system negligible. This is the equivalent to the linearized
Carleman approximation, which was proven to be uncontrollable in the previous chapter. There-
fore, we include α to the vertex that corresponds to the maximum positive deviation from the

Page 59



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

equilibrium point. This makes the linear part impact the system the least, allowing for a bigger α
and more feasible solutions.

γ(AP + PAT +BL+ LTBT ) +
(
LTGT1 x(i) · · ·LTGTnx(i)

)

+


xT(i)G1L

...
xT(i)GnL

+ 2 γ Pα < 0

i = 1, 2, · · · , p

(6.36)

Equation (6.36) shows the additional constraint that includes α for the maximum positive
vertex. By further inspecting the vertices in (6.27), it is possible to see that x16 is the vertex that
corresponds to the maximum positive deviation from the equilibrium point. The biggest α that
allows for a feasible solution is:

α = 0.096 (6.37)

The constraints are solved as usual, with the addition of (6.36), which results in the following
controller gain:

K =

[
1.3312 −0.3827 −1.4645 0.2560
−0.0861 −0.2364 −0.0611 0.5122

]
(6.38)

The input vector u(t) is replaced by Kz(t), which gives the quadratic Carleman approximation
the same form as (6.29). To verify the quadratic controller, the quadratic Carleman approximation
is simulated with an initial condition of 0.05m.

Figure 6.7: 4th order quadratic Carleman approximation with two actuator and implemented
convergence rate.

Page 60



CHAPTER 6. STATE FEEDBACK CONTROL USING THE QUADRATIC CARLEMAN
APPROXIMATION

Figure 6.8: Signal u(t), calculated by Kz(t) with implemented convergence rate.

Comparing the response of Figure 6.7 with the response of Figure 6.5, we see that the time it
takes for the system to converge to its operating point is greatly reduced. The signal δuLV 001(t) is
also less conservative with its contribution. These improvements makes for this final iteration of
the quadratic controller to be considered further in the next chapter.

Page 61



Chapter 7

Experimental results

In Chapter 6, a quadratic controller was calculated for the 4th order quadratic Carleman approx-
imation. There were presented several results, regarding different iterations of the controller. The
conclusion was that the controller that took into account two input variables and the convergence
rate α was the superior controller. This chapter will look to apply this controller to the two-tank
system, and observe how well the controller works in a practical setting. Section 7.1 will describe
the approach to implementing the controller to the system, and describe the procedure of how the
data was collected. Section 7.2 will analyze and discuss the obtained results from the experiments.
This chapter will only include results from Scenario 1. For the results regarding Scenario 2, see
Appendix D.

7.1 Application of the quadratic controller on to the two-
tank system

In this project, the Simulink file that connects to the system was made accessible by [8]. This file
is slightly modified, such that the input vector u(t) follows the quadratic controller. In Chapter 6,
the controller gain was calculated to be:

K =

[
1.3312 −0.3827 −1.4645 0.2560
−0.0861 −0.2364 −0.0611 0.5122

]
(7.1)

This gives the following δ input vector:

δu(t) =

[
δuLV 001(t)
δuPA001(t)

]
= Kz(t) = K


z1(t)
z2(t)
z3(t)
z4(t)

 = K


h1(t)− h1,O

(h1(t)− h1,O)2

(h1(t)− h1,O)3

(h1(t)− h1,O)4

 (7.2)

Note that the quadratic controller was made with respect to the quadratic Carleman approx-
imation, which works with δ-variables, i.e. δuLV 001(t) = uLV 001(t) − uLV 001,O and δuPA001(t) =
uPA001(t)− uPA001,O. Therefore, the input vector u(t) of the two-tank system, is calculated as:

u(t) = uO + δu(t) =

[
uLV 001,O

uPA001,O

]
+

[
−δuLV 001(t)
δuPA001(t)

]
(7.3)

Note that the variable δuLV 001(t) is inverted when calculating the input vector u(t). The
reason for this is that the signal uLV 001(t) has an inverse correlation with the water level h1(t). If

62



CHAPTER 7. EXPERIMENTAL RESULTS

the signal uLV 001(t) is increased, then the valve LV 001 will open more, which leads to a reduction
in the water level h1(t).

The procedure of the experiments is as shown in Table 7.11. The two first periods of the
procedure are used to drive the system to some desired initial condition before the quadratic
controller is implemented.

Period [s] uPA001(t) uLV 001(t) Description

0≤ t ≤10 0 1
Empty the tank by turning off PA001
and opening LV 001 to the max.

10≤ t≤ 30 0 ≤ λ ≤ 1 0
Fill up the tank manually by
closing LV 001 and turning PA001 on.

30≤ t
uPA001,O

+δuPA001(t)
uLV 001,O

−δuLV 001(t)
Introduce the quadratic controller
to the system.

Table 7.1: Experiment procedure.

7.2 Analysis of the experimental results

Following the procedure from Table 7.1, and introducing the controller when h1(t) ≈ 0.3m resulted
in the data presented in Figure 7.1.

Figure 7.1: Experimental results from the quadratic controller.

Figure 7.1 shows that the system, with the introduced controller, converges to the operating
point of 0.25m. The controller is introduced to the system when the water level is h1(t) ≈ 0.3m,
which is within the polytope P that the controller was designed for. It looks as if the signal
uPA001(t) is constant, however, this is not the case. The explanation to this can be found by
further analysing the controller gain (7.1). The 2nd row vector in (7.1), which is the gain for
δuPA001(t), consists mostly of values that are of the order 10−1 or smaller. This is why the
contribution of δuPA001(t) is so small when compared to δuLV 001(t), which explains why it looks
as if uPA001(t) is constant at uPA001,O.

1λ is an arbitrary value, depending on the desired water level before the quadratic controller is implemented.

Page 63



CHAPTER 7. EXPERIMENTAL RESULTS

An additional experiment is performed, where the goal is to test the controller when the water
level h1(t) is outside of the polytope P. In this case, the controller is introduced to the system
when h1(t) ≈ 0.5m, which is 0.2m outside of the reach of the polytope P that the controller was
designed for. This means that it is not possible to guarantee that the controller will work within its
capabilities and not saturate the input variables. Figure 7.2 shows the results of this experiment.

Figure 7.2: Experimental results from the quadratic controller.

Figure 7.2 shows that, even though the controller is working outside of its designed region, the
system still converges to its operating point. In this case, the controller does not saturate the input
variables. However, an equivalent experiment was performed for Scenario 2 2, where the controller
demanded that uLV 001(t) < 0, which is not possible.

Figure 7.1, together with Figure D.1, shows that the controller works symmetrically, and that
the desired output is achieved in both cases.

2See Figure D.2.

Page 64



Part IV

Conclusions and future work

65



Chapter 8

Conclusions

The main goal of this thesis was to design controllers for the two-tank process, using models derived
with the Carleman embedding technique. A hypothesis is that designing a controller based upon
the linearized Carleman approximation, derived from a higher order Taylor approximation, would
lead to a better controller than one based upon the Taylor linearization.
The conclusions obtained in this thesis are the following:

• Among the higher order Taylor approximations, the cubic model was concluded to be best
suited for the Carleman approximation when applied to the two-tank system.

• The Carleman embedding technique was applied to the cubic model, resulting in a quadratic
Carleman approximation. Linearizing this approximation resulted in an uncontrollable system.
Designing a controller for this system would be the equivalent of designing a controller for the Taylor
linearized model. Therefore, design of a controller for the quadratic Carleman approximation was
explored instead.

• The most successful controller design included two input variables, which resulted in a wider
feasibility of the linear matrix inequalities. The convergence rate α was also included in the control
design, which made the response of the system faster.

• The main drawback in this controller design was numerical issues related to solving the
LMIs. Therefore, an exclusion of the condition (6.16c) ensuring invariancy had to be considered.
However, this could lead to divergence in some cases. It is also worth mentioning that in order to
prevent saturation in the input variables, symmetrical ranges must be considered. This limits the
input variables, leading to a slower response.

• There is not necessarily a clear advantage in designing a controller for the quadratic Carleman
approximation, but this approach has some potential. A quadratic controller fulfilling the criterions
in (6.16), will ensure stability in a given region that the controller was designed for.

66



Chapter 9

Future work

Further improvements and interesting aspects to be pursued:

• Improvements on the design of the polytopes could be explored further in [9]. Better
constructed polytopes would lead to a more feasible controller design.

• The controller input limitations (6.22) on uPA001(t) and uLV 001(t) only work in symmetrical
ranges. This means that it does not use the whole range of the inputs available, leading to a
potentially slower response and less feasible controller design.

• Numerical issues lead to poor feasibility especially when including condition (6.16c). Scaling
the variables from meters to centimeters could have a positive effect on the feasibility of the
controller design, leading to less numerical issues.

• An interesting scenario for the controller design was briefly investigated, where the quadratic
Carleman approximation is truncated at n = 2. The polytope P is modified to be strictly positive.

Figure 9.1: Modified polytope.

α is introduced to the vertex with the maximum positive deviation from the equilibrium point.
This controller results in a faster response and a bigger controller gain, in addition to being feasible
when including constraint (6.16c)1. The drawbacks of this is that it only works for positive δh1.
A suggested workaround would be to introduce a type of switching which has one controller for
positive and one for negative δh1. This would require some modifications of the Lyapunov theory
to ensure that stability is preserved in spite of the switching.

1See Appendix E.

67



CHAPTER 9. FUTURE WORK

• The tank system is open-loop stable, therefore, the benefits of a quadratic controller become
unclear. Testing a quadratic Carleman approximation on a system that is not open-loop stable
could be explored. The benefit would be that the quadratic controller would ensure stability in a
given region around the equilibrium point.

• A parameter search for optimal γ could be conducted to more easily find feasible solutions
and a bigger α [3].

• The nonlinear dynamical model of tank 2 was derived in Chapter 2. However, this model
was not considered. It would be interesting to see if the linearized Carleman approximation of this
dynamical model is controllable.

Page 68



Bibliography

[1] Open-loop-and-closed-loop-feedback-control. Read: 27.04.2021, Available here.

[2] Quadratic Lyapunov function. Read: 02.05.2021, Available here.

[3] F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, and A. Merola. State feedback control of
nonlinear quadratic systems. In 2007 46th IEEE Conference on Decision and Control, pages
1699–1703, 2007.

[4] F. Amato, C. Cosentino, and A. Merola. On the region of attraction of nonlinear quadratic
systems. Automatica, 43(12):2119–2123, 2007.

[5] Arash Amini, Qiyu Sun, and Nader Motee. Carleman state feedback control design of a class
of nonlinear control systems. IFAC-PapersOnLine, 52(20):229–234, 2019. 8th IFAC Workshop
on Distributed Estimation and Control in Networked Systems NECSYS 2019.

[6] Bellman and Richardson. On some questions arising in the approximate solution of nonlinear
differential equations, 1963. Read: 11.05.2021, Available here.

[7] Tormod Drengstig. ELE320 totank1 motivasjon modellering, 2020.

[8] Tormod Drengstig. ELE320 Totankøving 4: Bestemmelse av regulatorparametre og regulering
av totankprosessen, 2020.

[9] Christoph Fünfzig, Dominique Michelucci, and Sebti Foufou. Polytope-based computation of
polynomial ranges. Computer Aided Geometric Design, 29:18–29, 01 2012.

[10] Finn Haugen. Dynamiske systemer, modellering, analyse og simulering. Vigmostad & Bjørke
AS, 2016.

[11] Michael Kleder. VERT2CON - vertices to constraints, 2021. Read: 06.05.2021, Available here.

[12] Willi-hans Kowalski, Krzysztof Steeb. Nonlinear Dynamical Systems And Carleman Lin-
earization. World Scientific, 1991.

[13] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[14] Dorota Mozyrska and Zbigniew Bartosiewicz. On carleman linearization of linearly observable
polynomial systems. Mathematical Control Theory and Finance, 01 2008.

[15] T Nguyen and Faryar Jabbari. Output feedback controllers for disturbance attenuation with
actuator amplitude and rate saturation. Automatica, 36(9):1339–1346, 2000.

[16] Andreas Rauh, Johanna Minisini, and Harald Aschemann. Carleman linearization for control
and for state and disturbance estimation of nonlinear dynamical processes. IFAC Proceedings
Volumes, 42(13):455–460, 2009. 14th IFAC Conference on Methods and Models in Automation
and Robotics.

[17] W.-H. Steeb. A note on carleman linearization. Physics Letters A, 140(6):336–338, 1989.

[18] W.-H Steeb and F Wilhelm. Non-linear autonomous systems of differential equations and car-
leman linearization procedure. Journal of Mathematical Analysis and Applications, 77(2):601–
611, 1980.

69

https://instrumentationforum.com/t/open-loop-and-closed-loop-feedback-control/4059
http://tsakalis.faculty.asu.edu/notes/sco.pdf
https://www.ams.org/journals/qam/1963-20-04/S0033-569X-1963-0144472-4/
https://www.mathworks.com/matlabcentral/fileexchange/7895-vert2con-vertices-to-constraints


BIBLIOGRAPHY

[19] Jos F. Sturm. SEDUMI-Coral lab, 2021. Read: 06.05.2021, Available here.

[20] Wikipedia. Control Theory. Read: 25.04.2021, Available here.

[21] Wikipedia. Convex hull. Read: 06.05.2021, Available here.

[22] Wikipedia. Polytope. Read: 06.05.2021, Available here.

[23] Wikipedia. Rank linear algebra. Read: 25.04.2021, Available here.

[24] Wikipedia. Taylor series. Read: 20.03.2021, Available here.

[25] Wikipedia. Vertex (geometry). Read: 06.05.2021, Available here.

[26] Wikipedia. Controllability and observability, 2021. Read: 07.05.2021, Available here.

[27] Wikipedia. Optimization problem, 2021. Read: 11.05.2021, Available here.

Page 70

https://sedumi.ie.lehigh.edu/
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Convex_hull
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Rank_(linear_algebra)#Proofs_that_column_rank_=_row_rank
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Vertex_(geometry)
https://www.ece.rutgers.edu/~gajic/psfiles/chap5.pdf
http://en.wikipedia.org/w/index.php?title=Optimization%20problem&oldid=1016282288


Part V

Appendices

71



Appendix A

Taylor model comparison for
Scenario 2

Intervals under consideration for Scenario 2 :

[0.70, 0.80] for h1(t) and [0.26, 0.46] for uLV 001(t)

The Taylor models for Scenario 2 are as follows:

Linear model:

δḣ1(t) = −0.0111 (h1(t)− 0.75)− 0.0683 (uLV 001(t)− 0.3666) (A.1)

Quadratic model:

δḣ1(t) =− 0.0111 (h1(t)− 0.75)− 0.0683 (uLV 001(t)− 0.3666)

+ 0.0035 (h1(t)− 0.75)2 − 0.0427 (h1(t)− 0.75) (uLV 001(t)− 0.3666)
(A.2)

PQA model:

δḣ1(t) =− 0.0111 (h1(t)− 0.75)− 0.0683 (uLV 001(t)− 0.3666)

+ 0.0035 (h1(t)− 0.75)2
(A.3)

PQB model:

δḣ1(t) =− 0.0111 (h1(t)− 0.75)− 0.0683 (uLV 001(t)− 0.3666)

− 0.0427 (h1(t)− 0.75) (uLV 001(t)− 0.3666)
(A.4)

Cubic model:

δḣ1(t) =− 0.0111 (h1(t)− 0.75)− 0.0683 (uLV 001(t)− 0.3666)

+ 0.0035 (h1(t)− 0.75)2 − 0.0427 (h1(t)− 0.75) (uLV 001(t)− 0.3666)

− 0.0022 (h1(t)− 0.75)3 + 0.0133 (h1(t)− 0.75)2 (uLV 001(t)− 0.3666)

(A.5)

5th order model:

δḣ1(t) =− 0.0111 (h1(t)− 0.75)− 0.0525 (uLV 001(t)− 0.3666)

+ 0.0035 (h1(t)− 0.75)2 − 0.0427 (h1(t)− 0.75) (uLV 001(t)− 0.3666)

− 0.0022 (h1(t)− 0.75)3 + 0.0133 (h1(t)− 0.75)2 (uLV 001(t)− 0.3666)

+ 0.0017 (h1(t)− 0.75)4 − 0.0083 (h1(t)− 0.75)3 (uLV 001(t)− 0.3666)

− 0.0015 (h1(t)− 0.75)5 + 0.0065 (h1(t)− 0.75)4 (uLV 001(t)− 0.3666)

(A.6)

72



APPENDIX A. TAYLOR MODEL COMPARISON FOR SCENARIO 2

(a) Linear and nonlinear model. (b) Quadratic and nonlinear model.

(c) PQA and nonlinear model. (d) PQB and nonlinear model.

(e) Cubic and nonlinear model. (f) 5th order and nonlinear model.

Figure A.1: 3-D plots of the Taylor models and the nonlinear model as reference.

Page 73



APPENDIX A. TAYLOR MODEL COMPARISON FOR SCENARIO 2

(a) Linear and nonlinear model. (b) Quadratic and nonlinear model.

(c) PQA and nonlinear model. (d) PQB and nonlinear model.

(e) Cubic and nonlinear model. (f) 5th order and nonlinear model.

Figure A.2: Contour plots of the Taylor models and the nonlinear model, where ζ is given by
(3.32).

Page 74



APPENDIX A. TAYLOR MODEL COMPARISON FOR SCENARIO 2

(a) ψ = ζLinear − ζQuadratic. (b) ψ = ζQuadratic − ζCubic.

(c) ψ = ζCubic − ζ5th Order.

Figure A.3: Color maps comparing the different Taylor models.

Case Data points
Quadratic >> 0
Quadratic > 458
Linear > 335
Linear >> 0
N/A 0

(a) Data points in sub matrix of
ψ from Figure A.3a.

Case Data points
Cubic >> 0
Cubic> 478
Quadratic> 342
Quadratic>> 0
N/A 0

(b) Data points in sub matrix of
ψ from Figure A.3b.

Case Data points
5th order >> 0
5th order> 437
Cubic> 383
Cubic>> 0
N/A 0

(c) Data points in sub matrix of
ψ from Figure A.3c.

Table A.1: Numerical interpretation of the area within the hollow rectangles in Figure A.3

Page 75



APPENDIX A. TAYLOR MODEL COMPARISON FOR SCENARIO 2

(a) Step response with an increment of 0.02 at 10 seconds.

(b) Close up of A.4a.

Figure A.4: Model comparison in Simulink.

IAE ISE ITAE ITSE ISTE
Linear 1.1293 0.0076354 198.3931 1.4769 299.2148
PQA 0.84907 0.0041538 146.6415 0.7893 157.9692
PQB 0.32071 0.00064944 57.5376 0.12877 26.5431
Quadratic 0.071009 2.6413e-05 11.7253 0.0049235 0.98053
Cubic 0.039517 6.9896e-06 5.8743 0.0011394 0.20972
5th order 0.03751 6.2086e-06 5.488 0.00098663 0.17856

Table A.2: Integral performance criteria.

Page 76



Appendix B

Carleman approximation
comparison for Scenario 2

Figure B.1: Step response with an increment in uLV 001(t) of 0.02 at 10 seconds.

77



APPENDIX B. CARLEMAN APPROXIMATION COMPARISON FOR SCENARIO 2

Figure B.2: δ = 0.05m gives a starting point of 0.8m.

Figure B.3: δ = 0.2m gives a starting point of 0.95m.

Page 78



APPENDIX B. CARLEMAN APPROXIMATION COMPARISON FOR SCENARIO 2

Figure B.4: Simulation of the quadratic Carleman approximations.

Note that the direction of the step is now positive, otherwise, the system would saturate.

Figure B.5: Simulation of the quadratic Carleman approximations with a larger step.

Page 79



Appendix C

Controller of the quadratic
Carleman approximation for
Scenario 2

Controller gain for the 4th order quadratic Carleman approximation with one input variable
(δuLV 001(t)):

K =
[
0.3321 −0.0131 0.0004 −0.0004

]
(C.1)

Figure C.1: Simulation of Eq. (6.29), with initial condition equal to 0.05m.

80



APPENDIX C. CONTROLLER OF THE QUADRATIC CARLEMAN APPROXIMATION
FOR SCENARIO 2

Figure C.2: Signal δuLV 001(t), calculated by Kz(t).

Controller gain for the 4th order quadratic Carleman approximation with two input variables
(δuLV 001(t), δuPA001(t)):

K =

[
0.3234 −0.0309 0.0004 0.0004
−0.1176 −0.0194 −0.0024 0.0011

]
(C.2)

Page 81



APPENDIX C. CONTROLLER OF THE QUADRATIC CARLEMAN APPROXIMATION
FOR SCENARIO 2

Figure C.3: 4th order quadratic Carleman approximation with two actuator.

Figure C.4: Signal u(t), calculated by Kz(t).

Page 82



APPENDIX C. CONTROLLER OF THE QUADRATIC CARLEMAN APPROXIMATION
FOR SCENARIO 2

Controller gain for the 4th order quadratic Carleman approximation with two input variables
(δuLV 001(t), δuPA001(t)), and the inclusion of the convergence rate α:

K =

[
1.9147 −1.6602 0.6684 1.6311
0.2835 0.0583 −0.4472 −0.4170

]
(C.3)

Figure C.5: 4th order quadratic Carleman approximation with two actuator and implemented
convergence rate.

Page 83



APPENDIX C. CONTROLLER OF THE QUADRATIC CARLEMAN APPROXIMATION
FOR SCENARIO 2

Figure C.6: Signal u(t), calculated by Kz(t) with implemented convergence rate.

Page 84



Appendix D

Experimental results for Scenario
2

Figure D.1: Experimental results from the quadratic controller.

85



APPENDIX D. EXPERIMENTAL RESULTS FOR SCENARIO 2

Figure D.2: Experimental results from the quadratic controller.

Page 86



Appendix E

Simulation of the controller
designed with a reduced polytope

Figure E.1: Simulation of the state z1(t) for the reduced polytope.

87



APPENDIX E. SIMULATION OF THE CONTROLLER DESIGNED WITH A REDUCED
POLYTOPE

Figure E.2: Simulation of the input variables δuLV 001(t) and δuPA001(t) for the reduced polytope.

Page 88



Appendix F

MATLAB code and Simulink
schemes

F.1 totank main.m

1 %% Variable definitions

2 clear all

3 close all

4

5 syms A1 f3 Kv_LV001 f1 rho g h1 h_LV001

6

7 %The dynamic model for tank 1

8 dynamic_model_tank1 = (1/A1)*(f3 - (( Kv_LV001*f1)/3600)*sqrt((rho*g*(h1+h_LV001))

/100000));

9

10 % Calculating the partial derivatives (symbolic)

11 par_der_h1 = diff(dynamic_model_tank1 , h1); % df/dh1

12 par_der_f1 = diff(dynamic_model_tank1 , f1); % df/df1

13 par_der_f3 = diff(dynamic_model_tank1 , f3); % df/df3

14 par_der_h1_h1 = diff(par_der_h1 , h1); % d^2f/dh1^2

15 par_der_f1_f1 = diff(par_der_f1 , f1); % d^2f/df1^2

16 par_der_f3_f3 = diff(par_der_f3 , f3); % d^2f/df3^2

17 par_der_h1_f1 = diff(par_der_h1 , f1); % d^2f/dh1df1

18 par_der_h1_f3 = diff(par_der_h1 , f3); % d^2f/dh1df3

19 par_der_f1_f3 = diff(par_der_f1 , f3); % d^2f/df1df3

20

21 par_der_h1_h1_h1 = diff(par_der_h1_h1 , h1); % d^3f/dh1^3

22 par_der_h1_h1_f1 = diff(par_der_h1_h1 , f1); % d^3f/dh1^2df1

23

24 par_der_h1_h1_h1_h1 = diff(par_der_h1_h1_h1 ,h1); % d^4f/dh1^4

25 par_der_h1_h1_h1_f1 = diff(par_der_h1_h1_h1 ,f1); % d^4f/dh1^3df1

26

27 par_der_h1_h1_h1_h1_h1 = diff(par_der_h1_h1_h1_h1 ,h1); % d^5f/dh1^5

28 par_der_h1_h1_h1_h1_f1 = diff(par_der_h1_h1_h1_h1 ,f1); % d^5f/dh1^4df1

29

30 scenario = 1;

31 if scenario == 1

32

33 % Setting the working point for h1 and f3

34 h1_arb = 0.25;

35 f3_arb = 0.0001783;

36

37 % Inserting every known variable in equation dynamic_model_tank1

38 a = subs(dynamic_model_tank1 , [A1 Kv_LV001 rho g h_LV001 h1 f3],...

39 [0.01 11.25 1000 9.81 0.05 h1_arb f3_arb ]);

40

41 % Solving equation ’a’ wrt f1. This gives f1_arb

42 f1_arb = double(solve(a,f1));

43

44 % Since f3_arb is chosen , we can find upa_arb from the pump -characteristics

89



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

45 upa_arb = 0.65;

46 % We have found f1_arb. Using this value in the valve -characteristics gives us

ulv_arb

47 ulv_arb = 0.5159;

48

49 df1_duLV001 = 0.98; % Manually calculated in simulink. delta_f1 /

delta_ulv

50 df3_dPA001 = 0.00052; % Manually calculated in simulink. delta_f3 /

delta_upa

51

52 elseif scenario == 2

53 % Setting the working point for h1 and f3

54 h1_arb = 0.75;

55 f3_arb = 0.0001783;

56

57 % Inserting every known variable in equation dynamic_model_tank1

58 a = subs(dynamic_model_tank1 , [A1 Kv_LV001 rho g h_LV001 h1 f3],...

59 [0.01 11.25 1000 9.81 0.05 h1_arb f3_arb ]);

60

61 % Solving equation ’a’ wrt f1. This gives f1_arb

62 f1_arb = double(solve(a,f1));

63

64 % Since f3_arb is chosen , we can find upa_arb from the pump -characteristics

65 upa_arb = 0.65;

66 % We have found f1_arb. Using this value in the valve -characteristics gives us

ulv_arb

67 ulv_arb = 0.3666;

68

69 df1_duLV001 = 0.78; % Manually calculated in simulink. delta_f1 /

delta_ulv

70 df3_dPA001 = 0.00052; % Manually calculated in simulink. delta_f3 /

delta_upa

71 end

72

73 % Calculating the partial derivatives used in the Taylor series expansion

74 % (Value at working point!)

75 par_der_h1_verdi = double ((subs(par_der_h1 ,...

76 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

77 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

78

79 par_der_uLV001_verdi = double(subs(par_der_f1 * df1_duLV001 ,...

80 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

81 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

82

83 par_der_uPA001_verdi = double(subs(par_der_f3 * df3_dPA001 ,...

84 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

85 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

86

87 par_der_h1_h1_verdi = double(subs(par_der_h1_h1 ,...

88 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

89 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

90

91 par_der_uLV001_uLV001_verdi = double(subs(par_der_f1_f1 * df1_duLV001 ^2,...

92 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

93 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

94

95 par_der_uPA001_uPA001_verdi = double(subs(par_der_f3_f3 * df3_dPA001 ^2,...

96 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

97 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

98

99 par_der_h1_uLV001_verdi = double(subs(par_der_h1_f1 * df1_duLV001 ,...

100 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

101 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

102

103 par_der_h1_uPa001_verdi = double(subs(par_der_h1_f3 * df3_dPA001 ,...

104 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

105 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

106

107 par_der_uLV001_uPA001_verdi = double(subs(par_der_f1_f3 * df1_duLV001 * df3_dPA001

,...

108 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

109 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

110

Page 90



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

111 par_der_h1_h1_h1_verdi = double ((subs(par_der_h1_h1_h1 ,...

112 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

113 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

114

115 par_der_h1_h1_uLV001_verdi = double ((subs(par_der_h1_h1_f1 * df1_duLV001 ,...

116 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

117 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

118

119 par_der_h1_h1_h1_h1_verdi = double ((subs(par_der_h1_h1_h1_h1 ,...

120 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

121 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

122

123 par_der_h1_h1_h1_uLV001_verdi = double ((subs(par_der_h1_h1_h1_f1 * df1_duLV001 ,...

124 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

125 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

126

127 par_der_h1_h1_h1_h1_h1_verdi = double ((subs(par_der_h1_h1_h1_h1_h1 ,...

128 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

129 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

130

131 par_der_h1_h1_h1_h1_uLV001_verdi = double ((subs(par_der_h1_h1_h1_h1_f1 *

df1_duLV001 ,...

132 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

133 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

134

135

136

137 % The following is a standard code that imports the characteristics of the

138 % pump and valve. This code also defines some constants. (From Reguleringsteknikk)

139

140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

141 % data om vann og tyngdekraft

142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

143 rho = 1000; % tetthet vann [kg/m^3]

144 g = 9.81; % tyngdens akselerasjon [m/s^2]

145 c_p = 4200; % varmekapasitet vann [j/kg*K]

146

147 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

148 % Tank 1

149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150 Kv_LV001 = 11.25; % ventilkonstant LV001 [m^3/h] ved 1 bar trykkfall

151 h_LV001 = 0.05; % h y d e til LV001 [m]

152 h1_max = 1; % maks h y d e tank 1 [m]

153 h1_min = 0.13; % min h y d e tank 1 [m]

154 A1 = 0.01; % areal tank 1 [m^2]

155

156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

157 % Tank 2

158 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

159 Kv_LV002 = 11.25; % ventilkonstant LV002 [m3/h]

160 h_LV002 = 0.25; % h y d e fra bunn av tank 2 til LV002

161 h2_max = 0.4; % maks h y d e tank 2 [m]

162 h2_min = 0.02; % min h y d e tank 2 [m]

163

164 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

165 % Last inn p d r a g og m l i n g e r

166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

167 load tankData_1 % det finnes o g s et datasett som heter tankData_2

168 load tankData_2

169

170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

171 % Pumpekarakteristikk

172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

173 u_PA001 = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

174 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

175 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

176 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

177

178 q_PA001 = q_PA001 /60000; % liter/time -> m3/s

179

180 close all

181 figure

182 plot(u_PA001 , q_PA001 ,’*-’)

Page 91



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

183 title(’Pump characteristic ’)

184 xlabel(’Control signal u_{PA001}(t) to pump PA001 ’)

185 ylabel(’Volume flow q_{PA001}(t) through PA001 [m^3/s]’)

186

187

188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

189 % Ventilkarakteristikk

190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

191 u_LV001 = 0:0.03:1;

192 f_LV001 = (exp(u_LV001 .^1.2) -1)/(exp(1) -1);

193 u_LV002 = u_LV001;

194 f_LV002 = f_LV001;

195

196 figure

197 plot(u_LV001 ,f_LV001 ,’*-’)

198 title(’Valve characteristic for LV001 og LV002 ’)

199 xlabel(’Control signal u_{LV001}(t)’)

200 ylabel(’f(u_{LV001 }(t))’)

201

202 %End of the standard code from Reguleringsteknikk

203

204 %% NonLinear Model 3d-Plot

205

206 close all

207 figure

208 [ulv ,h1]= meshgrid (0:0.005:1 ,[0:0.005:1]); %0.005

209

210 %We want to mesh ulv and h1 , but the nonlinear model uses f1 in it’s

211 %calculation. The folowing finds the corresponding values for f1.

212 resultat = sim(’f1_invers ’, 3000);

213 f1 = resultat.f1_sim.Data;

214

215 % Calculates the NonLinear model

216 ydot = 1/A1*( f3_arb - 1/3600 *Kv_LV001 .*f1.*sqrt(rho*g.*(h1 +0.05) /100000));

217

218 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

219 rotate3d

220 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

221 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

222 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

223 title(’NonLinear Model 3D-Plot’)

224 legend(NonLinear , [’NonLinear ’ newline ’Model’])

225 hold on

226

227 Zero_Plane = surf(ulv ,h1,-zeros(size(ulv)),’FaceColor ’,’black’);

228 legend ([ NonLinear Zero_Plane], {[’NonLinear ’ newline ’Model ’], [’h_{1}-u_{LV001}

plane’]})

229

230 %% Quadratic Model 3d-Plot

231

232 close all

233 figure

234

235 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

236 rotate3d

237 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

238 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

239 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

240 title(’Quadratic Model @0.25m 3D-Plot’)

241 hold on

242

243 y_quadratic = par_der_h1_verdi .*(h1 -h1_arb)...

244 + par_der_uLV001_verdi .*(ulv - ulv_arb) ...

245 + par_der_h1_h1_verdi .*0.5.*(h1-h1_arb).^2 ...

246 + par_der_h1_uLV001_verdi .*(h1 -h1_arb).*(ulv -ulv_arb); % Calculates the

Quadratic model

247

248 Quadratic = surf(ulv ,h1,y_quadratic , ’FaceColor ’, ’g’); % Draws the Quadratic

model

249 legend ([ Quadratic NonLinear], {[’Quadratic ’ newline ’Model’], [’NonLinear ’ newline

’Model’]})

250

251 %% Linear 3d-Plot

Page 92



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

252

253 close all

254 figure

255

256 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

257 rotate3d

258 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

259 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

260 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

261 title(’Linear Model @0.25m 3D-Plot’)

262 hold on

263

264 y_linear = par_der_h1_verdi .*(h1-h1_arb)...

265 + par_der_uLV001_verdi .*(ulv -ulv_arb); % Calculates the Linear model

266

267 Linear = surf(ulv ,h1,y_linear , ’FaceColor ’, ’b’); % Draws the Linear model

268 legend ([ Linear NonLinear], {[’Linear ’ newline ’Model’], [’NonLinear ’ newline ’

Model’]})

269

270 %% Partially Quadratic (h1xh1) Model 3d-Plot

271

272 close all

273 figure

274

275 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

276 rotate3d

277 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

278 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

279 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

280 title(’Partially Quadratic(h1xh1) Model @0.25m 3D-Plot’)

281 hold on

282

283 y_parQuad_h1xh1 = par_der_h1_verdi .*(h1 -h1_arb)...

284 + par_der_uLV001_verdi .*(ulv -ulv_arb)...

285 + par_der_h1_h1_verdi .*0.5.*(h1-h1_arb).^2; %Calculates the Partially Quadratic

(h1xh1) model

286

287 %Draws the Partially Quadratic (h1xh1) model

288 PartQuad_h1xh1 = surf(ulv ,h1 ,y_parQuad_h1xh1 , ’FaceColor ’, ’y’);

289 legend ([ PartQuad_h1xh1 NonLinear ],...

290 {[’Partially ’ newline ’Quadratic ’ newline ’(h1xh1) Model ’],...

291 [’NonLinear ’ newline ’Model’]})

292

293 %% Partially Quadratic (h1xulv) Model 3d-Plot

294

295 close all

296 figure

297

298 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

299 rotate3d

300 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

301 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

302 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

303 title(’Partially Quadratic (h1xuLV) Model @0.25m 3D-Plot’)

304 hold on

305

306 %Calculates the Partially Quadratic (h1xulv) model

307 y_parQuad_h1xulv = par_der_h1_verdi .*(h1-h1_arb)...

308 + par_der_uLV001_verdi .*(ulv -ulv_arb)...

309 + par_der_h1_uLV001_verdi .*(h1-h1_arb).*(ulv -ulv_arb);

310

311 %Draws the Partially Quadratic (h1xulv) model

312 PartQuad_h1xulv = surf(ulv ,h1,y_parQuad_h1xulv , ’FaceColor ’, ’m’);

313 legend ([ PartQuad_h1xulv NonLinear ],...

314 {[’Partially ’ newline ’Quadratic ’ newline ’(h1xuLV) Model ’],...

315 [’NonLinear ’ newline ’Model’]})

316

317 %% Cubic Model 3d-Plot

318

319 close all

320 figure

321

322 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

Page 93



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

323 rotate3d

324 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

325 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

326 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

327 title(’Cubic Model @0.25m 3D-Plot’)

328 hold on

329

330 y_cubic = par_der_h1_verdi .*(h1-h1_arb)...

331 + par_der_uLV001_verdi .*(ulv - ulv_arb) ...

332 + par_der_h1_h1_verdi .*0.5.*(h1-h1_arb).^2 ...

333 + par_der_h1_uLV001_verdi .*(h1 -h1_arb).*(ulv -ulv_arb)...

334 + (1/6) .* par_der_h1_h1_h1_verdi .*(h1-h1_arb).^3 ...

335 + (1/2) .* par_der_h1_h1_uLV001_verdi .*(h1-h1_arb).^2.*(ulv -ulv_arb); %

Calculates the Cubic model

336

337 Cubic = surf(ulv ,h1,y_cubic , ’FaceColor ’, ’cyan’); % Draws the Cubic model

338 legend ([Cubic NonLinear], {[’Cubic ’ newline ’Model ’], [’NonLinear ’ newline ’Model’

]})

339

340 %% 5th order T.S Model 3d-Plot

341

342 close all

343 figure

344

345 NonLinear = surf(ulv ,h1,ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

346 rotate3d

347 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

348 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

349 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

350 title(’5th Order Model @0.25m 3D-Plot’)

351 hold on

352

353 % Calculates the 5th order model

354 y_fifth_order = par_der_h1_verdi .*(h1-h1_arb)...

355 + par_der_uLV001_verdi .*(ulv - ulv_arb) ...

356 + par_der_h1_h1_verdi .*0.5.*(h1-h1_arb).^2 ...

357 + par_der_h1_uLV001_verdi .*(h1 -h1_arb).*(ulv -ulv_arb)...

358 + (1/6) .* par_der_h1_h1_h1_verdi .*(h1-h1_arb).^3 ...

359 + (1/2) .* par_der_h1_h1_uLV001_verdi .*(h1-h1_arb).^2.*(ulv -ulv_arb)...

360 + (1/24) .* par_der_h1_h1_h1_h1_verdi .*(h1-h1_arb).^4 ...

361 + (1/6) .* par_der_h1_h1_h1_uLV001_verdi .*(h1 -h1_arb).^3.*(ulv -ulv_arb) ...

362 + (1/120) .* par_der_h1_h1_h1_h1_h1_verdi .*(h1 -h1_arb).^5 ...

363 + (1/24) .* par_der_h1_h1_h1_h1_uLV001_verdi .*(h1-h1_arb).^4.*(ulv -ulv_arb);

364

365 fifth_Order = surf(ulv ,h1 ,y_fifth_order , ’FaceColor ’, ’k’); % Draws the 5th

order model

366 legend ([ fifth_Order NonLinear], {[’5th Order’ newline ’Model’], [’NonLinear ’

newline ’Model’]})

367

368 %% Mix 3d-Plot

369

370 close all

371 figure

372

373 NonLinear = surf(ulv ,h1,-ydot ,’FaceColor ’,’r’); % Draws the NonLinear model

374 rotate3d

375 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

376 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

377 zlabel(’$\dot{h}_1$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

378 title(’Mix @0.25m 3D-Plot’)

379 hold on

380

381 % Draws the Linear model

382 Linear = surf(ulv ,h1,-y_linear , ’FaceColor ’, ’b’);

383

384 % Draws the Quadratic model

385 Quadratic = surf(ulv ,h1,-y_quadratic , ’FaceColor ’, ’g’);

386

387 % Draws the Partially Quadratic (h1xh1) model

388 PartQuad_h1xh1 = surf(ulv ,h1 ,-y_parQuad_h1xh1 , ’FaceColor ’, ’y’);

389

390 % Draws the Partially Quadratic (h1xulv) model

391 PartQuad_h1xulv = surf(ulv ,h1,-y_parQuad_h1xulv , ’FaceColor ’, ’m’);

Page 94



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

392

393 % Draws the Cubic model

394 Cubic = surf(ulv ,h1,-y_cubic , ’FaceColor ’, ’cyan’);

395

396 % Draws the 5th order model

397 fifth_Order = surf(ulv ,h1 ,-y_fifth_order , ’FaceColor ’, ’k’);

398

399 legend ([ NonLinear Quadratic Linear PartQuad_h1xh1 PartQuad_h1xulv Cubic fifth_Order

],...

400 {[’NonLinear ’ newline ’Model’],...

401 [’Quadratic ’ newline ’Model’],...

402 [’Linear ’ newline ’Model’],...

403 [’Partially ’ newline ’Quadratic ’ newline ’(h1xh1) Model’],...

404 [’Partially ’ newline ’Quadratic ’ newline ’(h1xuLV) Model’],...

405 [’Cubic’ newline ’Model’], ...

406 [’5th Order’ newline ’Model’]})

407

408 %% Linear VS Other Models Contour -Plot

409

410 % This section plots the Contour -Plot of the comparison between our Linear

411 % Model , and all of the other models

412

413 close all

414

415 %Here , we can choose which section we want to plot.

416 h1_low = 1; %Minimum is 1

417 h1_hi = 201; %Maximum is 201

418 ulv_low = 1; %Minimum is 1

419 ulv_hi = 201; %Maximum is 201

420 colorbar_range_min = 0;

421 colorbar_range_max = 0.015;

422 if scenario == 1

423

424 H1_min = 20*2;

425 H1_max = 30*2;

426 ULV_min = 41*2;

427 ULV_max = 61*2;

428 elseif scenario == 2

429 H1_min = 70*2;

430 H1_max = 80*2;

431 ULV_min = 26*2;

432 ULV_max = 46*2;

433 end

434 %Makes a custum colormap

435 map = [ 0 0.7 0; %Green

436 0.359 1 0.402; %Light green

437 0.535 0.808 0.9375; %Light blue

438 0 0 1; %Blue

439 1 0 0]; %Red

440

441 % Calculates the error between the NonLinear system and our model

442 NL_Quad_error = abs((ydot - y_quadratic)); %Error between

NonLinear model and Quadratic model

443 NL_Lin_error = abs((ydot - y_linear)); %Error between

NonLinear model and Linear model

444 NL_ParQuad_h1xh1_error = abs((ydot - y_parQuad_h1xh1)); %Error between

NonLinear model and Partially Quadratic (h1xh1) model

445 NL_ParQuad_h1xulv_error = abs((ydot - y_parQuad_h1xulv)); %Error between

NonLinear model and Partially Quadratic (h1xulv) model

446 NL_Cubic_error = abs(ydot -y_cubic); %Error between

NonLinear model and Cubic model

447 NL_fifth_error = abs(ydot -y_fifth_order); %Error between

NonLinear model and 5th order model

448

449 % Calculates the error between the Linear model and our other models

450 Lin_Quad_diff= NL_Lin_error - NL_Quad_error; %Error between

Linear model and Quadratic model

451 Lin_ParQuad_h1xh1_diff = NL_Lin_error - NL_ParQuad_h1xh1_error; %Error between

Linear model and Partially Quadratic (h1xh1) model

452 Lin_ParQuad_h1xulv_diff = NL_Lin_error - NL_ParQuad_h1xulv_error; %Error between

Linear model and Partially Quadratic (h1xulv) model

453 Lin_Cubic_diff = NL_Lin_error - NL_Cubic_error; %Error between

Linear model and Cubic model

Page 95



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

454 Lin_fifth_diff = NL_Lin_error - NL_fifth_error; %Error between

Linear model and 5th order model

455 Cubic_fifth_diff = NL_Cubic_error - NL_fifth_error; %Error between

Cubic model and 5th order model

456 Cubic_quadratic_diff = NL_Quad_error - NL_Cubic_error;

457 figure

458 %Plots the contour of the difference between Linear and Quadratic model

459 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

460 Lin_Quad_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

461 hold on

462 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

463 c = colorbar;

464 c.Label.String = ’Delta’;

465 c.Label.FontSize = 16;

466 caxis([ colorbar_range_min , colorbar_range_max ])

467 title(’Linear VS Quadratic @0.25m Contour -Plot’)

468 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

469 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

470 colormap(jet (20))

471 xt = get(gca , ’XTick’);

472 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

473 yt = get(gca , ’YTick’);

474 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

475

476 figure

477 %Plots the contour of the difference between Linear and Partially Quadratic (h1xh1)

model

478 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

479 Lin_ParQuad_h1xh1_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

480 hold on

481 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

482 c = colorbar;

483 c.Label.String = ’Delta’;

484 c.Label.FontSize = 16;

485 caxis([ colorbar_range_min , colorbar_range_max ])

486 title(’Linear VS Partially Quadratic (h1xh1) @0.25m Contour -Plot’)

487 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

488 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

489 colormap(jet (20))

490 xt = get(gca , ’XTick’);

491 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

492 yt = get(gca , ’YTick’);

493 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

494

495 figure

496 %Plots the contour of the difference between Linear and Partially Quadratic (h1xulv

) model

497 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

498 Lin_ParQuad_h1xulv_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

499 hold on

500 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

501 c = colorbar;

502 c.Label.String = ’Delta’;

503 c.Label.FontSize = 16;

504 caxis([ colorbar_range_min , colorbar_range_max ])

505 title(’Linear VS Partially Quadratic (h1xuLV) @0.25m Contour -Plot’)

506 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

507 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

508 colormap(jet (20))

509 xt = get(gca , ’XTick’);

510 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

511 yt = get(gca , ’YTick’);

512 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

513

514 figure

515 %Plots the contour of the difference between Linear and Cubic model

516 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

517 Lin_Cubic_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

518 hold on

519 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

520 c = colorbar;

521 c.Label.String = ’Delta’;

522 c.Label.FontSize = 16;

Page 96



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

523 caxis([ colorbar_range_min , colorbar_range_max ])

524 title(’Linear VS Cubic @0.25m Contour -Plot’)

525 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

526 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

527 colormap(jet (20))

528 xt = get(gca , ’XTick’);

529 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

530 yt = get(gca , ’YTick’);

531 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

532

533 figure

534 %Plots the contour of the difference between Linear and 5th order model

535 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

536 Lin_fifth_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

537 hold on

538 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

539 c = colorbar;

540 c.Label.String = ’Delta’;

541 c.Label.FontSize = 16;

542 caxis([ colorbar_range_min , colorbar_range_max ])

543 title(’Linear VS 5th Order @0.25m Contour -Plot’)

544 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

545 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

546 colormap(jet (20))

547 xt = get(gca , ’XTick’);

548 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

549 yt = get(gca , ’YTick’);

550 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

551

552 figure

553 %Plots the contour of the difference between Cubic and 5th order model

554 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

555 Cubic_fifth_diff(h1_low:h1_hi , ulv_low:ulv_hi), 40)

556 hold on

557 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

558 c = colorbar;

559 c.Label.String = ’Delta’;

560 c.Label.FontSize = 16;

561 caxis([ colorbar_range_min , colorbar_range_max ])

562 title(’Cubic VS 5th Order @0.25m Contour -Plot’)

563 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

564 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

565 colormap(jet (20))

566 xt = get(gca , ’XTick’);

567 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

568 yt = get(gca , ’YTick’);

569 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

570

571 %% Non -Linear VS Other Models Contour -Plot

572

573 % This section plots the Contour -Plot of the comparison between the NonLinear

574 % Model , and all of the other models

575

576 close all

577 figure

578 %Plots the contour of the error for the Quadratic model

579 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

580 NL_Quad_error(h1_low:h1_hi , ulv_low:ulv_hi), 40)

581 hold on

582 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

583 c = colorbar;

584 c.Label.String = ’Delta’;

585 c.Label.FontSize = 16;

586 caxis([ colorbar_range_min , colorbar_range_max ])

587 title(’NonLinear VS Quadratic @0.25m Contour -Plot’)

588 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

589 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

590 colormap(jet (20))

591 xt = get(gca , ’XTick’);

592 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

593 yt = get(gca , ’YTick’);

594 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

595

Page 97



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

596 figure

597 %Plots the contour of the error for the Linear model

598 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

599 NL_Lin_error(h1_low:h1_hi , ulv_low:ulv_hi), 40)

600 hold on

601 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

602 c = colorbar;

603 c.Label.String = ’Delta’;

604 c.Label.FontSize = 16;

605 caxis([ colorbar_range_min , colorbar_range_max ])

606 title(’NonLinear VS Linear @0.25m Contour -Plot’)

607 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

608 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

609 colormap(jet (20))

610 xt = get(gca , ’XTick’);

611 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

612 yt = get(gca , ’YTick’);

613 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

614

615 figure

616 %Plots the contour of the error for the Partially Quadratic (h1xh1) model

617 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

618 NL_ParQuad_h1xh1_error(h1_low:h1_hi , ulv_low:ulv_hi), 40)

619 hold on

620 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

621 c = colorbar;

622 c.Label.String = ’Delta’;

623 c.Label.FontSize = 16;

624 caxis([ colorbar_range_min , colorbar_range_max ])

625 title(’NonLinear VS Partially Quadratic (h1xh1) @0.25m Contour -Plot’)

626 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

627 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

628 colormap(jet (20))

629 xt = get(gca , ’XTick’);

630 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

631 yt = get(gca , ’YTick’);

632 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

633

634 figure

635 %Plots the contour of the error for the Partially Quadratic (h1xulv) model

636 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

637 NL_ParQuad_h1xulv_error(h1_low:h1_hi , ulv_low:ulv_hi), 40)

638 hold on

639 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

640 c = colorbar;

641 c.Label.String = ’Delta’;

642 c.Label.FontSize = 16;

643 caxis([ colorbar_range_min , colorbar_range_max ])

644 title(’NonLinear VS Partially Quadratic (h1xuLV) @0.25m Contour -Plot’)

645 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

646 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

647 colormap(jet (20))

648 xt = get(gca , ’XTick’);

649 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

650 yt = get(gca , ’YTick’);

651 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

652

653 figure

654 %Plots the contour of the error for the Cubic model

655 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

656 NL_Cubic_error(h1_low:h1_hi , ulv_low:ulv_hi), 40)

657 hold on

658 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

659 c = colorbar;

660 c.Label.String = ’Delta’;

661 c.Label.FontSize = 16;

662 caxis([ colorbar_range_min , colorbar_range_max ])

663 title(’NonLinear VS Cubic @0.25m Contour -Plot’)

664 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

665 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

666 colormap(jet (20))

667 xt = get(gca , ’XTick’);

668 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

Page 98



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

669 yt = get(gca , ’YTick’);

670 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

671

672 figure

673 %Plots the contour of the error for the 5th order model

674 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

675 NL_fifth_error(h1_low:h1_hi , ulv_low:ulv_hi) ,40)

676 hold on

677 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

678 c = colorbar;

679 c.Label.String = ’Delta’;

680 c.Label.FontSize = 16;

681 caxis([ colorbar_range_min , colorbar_range_max ])

682 title(’NonLinear VS 5th Order @0.25m Contour -Plot’)

683 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

684 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

685 colormap(jet (20))

686 xt = get(gca , ’XTick’);

687 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

688 yt = get(gca , ’YTick’);

689 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

690

691 %% Linear VS Quadratic Colormap

692

693 close all

694

695 %We want to make a matrix that tells us where the models differ from each

696 %other. Call this h

697 h = ones (201);

698

699 %Sorting algorithm

700 %Here we define a arbitrary value that tells us if the models differ. In

701 %this example , we chose 0.0005

702 for i = 1:201

703 for j = 1:201

704 if Lin_Quad_diff(i,j) == 0

705 h(i,j) = 5; %Quad

== Lin

706 elseif Lin_Quad_diff(i,j) > 0 && Lin_Quad_diff(i,j) < 0.0005 %

Quad >

707 h(i,j) = 1;

708 elseif Lin_Quad_diff(i,j) > 0.0005 % Quad >>

709 h(i,j) = 0;

710 elseif Lin_Quad_diff(i,j) < 0 && Lin_Quad_diff(i,j) > -0.0005 % Lin >

711 h(i,j) = 2;

712 elseif Lin_Quad_diff(i,j) < -0.0005 % Lin >>

713 h(i,j) = 3;

714

715 end

716 end

717 end

718

719 %Now we have the marix h, which tells us where the models differ , but it

720 %does not tell us if the models are a good approximation to the NonLinear

721 %system.

722 %Sorting algorithm which gives us a ’red flag ’ if both models are a bad

723 %approximation at a certain point. Here , if both differ more than 0.0005

724 %from the NonLinear model , they are defined as a bad approximation.

725 for i = 1:201

726 for j = 1:201

727 if abs(NL_Lin_error(i,j)) > 0.005 && abs(NL_Quad_error(i,j)) > 0.005

728 h(i,j) = 4;

729 end

730 end

731 end

732

733

734 C = h(H1_min:H1_max , ULV_min:ULV_max);

735 [ii , jj] = find(C == 5)

736

737

738 figure

739 %Plots the contour of the data -matrix h

Page 99



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

740 contourf(h, 100, ’EdgeColor ’, ’None’)

741 hold on

742 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

743 hold on

744 plot([ ULV_min ULV_min], [H1_min H1_max],’k’,’LineWidth ’ ,2)

745 plot([ ULV_max ULV_max], [H1_min H1_max],’k’,’LineWidth ’ ,2)

746 plot([ ULV_min ULV_max], [H1_min H1_min],’k’,’LineWidth ’ ,2)

747 plot([ ULV_min ULV_max], [H1_max H1_max],’k’,’LineWidth ’ ,2)

748

749

750 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’Quad >>’, ’Quad >’,’Lin >’, ’Lin >>’

, ’N/A’})

751 colormap(map)

752 caxis([0, 4])

753 title(’Linear VS Quadratic @0.25m Contour -Plot’)

754 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

755 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

756 xt = get(gca , ’XTick’);

757 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

758 yt = get(gca , ’YTick’);

759 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

760

761 %% Linear VS Partially Quadratic (h1xh1) Colormap

762

763 close all

764

765 %Data -matrix

766 h = ones (201);

767

768 %Sorting algorithm

769 for i = 1:201

770 for j = 1:201

771 if Lin_ParQuad_h1xh1_diff(i,j) > 0 && Lin_ParQuad_h1xh1_diff(i,j) < 0.0005

%ParQuad_h1xh1 >

772 h(i,j) = 1;

773 elseif Lin_ParQuad_h1xh1_diff(i,j) > 0.0005 %ParQuad_h1xh1 >>

774 h(i,j) = 0;

775 elseif Lin_ParQuad_h1xh1_diff(i,j) < 0 && Lin_ParQuad_h1xh1_diff(i,j) >

-0.0005 %Lin >

776 h(i,j) = 2;

777 elseif Lin_ParQuad_h1xh1_diff(i,j) < -0.0005 %Lin >>

778 h(i,j) = 3;

779

780 end

781 end

782 end

783

784

785 %’red flag ’ algorithm

786 for i = 1:201

787 for j = 1:201

788 if abs(NL_Lin_error(i,j)) > 0.005 && abs(NL_ParQuad_h1xh1_error(i,j)) >

0.005

789 h(i,j) = 4;

790 end

791 end

792 end

793

794 figure

795 %Plots the contour of the data -matrix h

796 contourf(h, 100, ’EdgeColor ’, ’None’)

797 hold on

798 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

799 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’ParQuad >>’, ’ParQuad >’,’Lin >’, ’

Lin >>’, ’N/A’})

800 colormap(map)

801 caxis([0, 4])

802 title(’Linear VS Partially Quadratic (h1xh1) @0.25m Contour -Plot’)

803 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

804 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

805 xt = get(gca , ’XTick’);

806 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

807 yt = get(gca , ’YTick’);

Page 100



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

808 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

809

810 %% Linear VS Partially Quadratic (h1xuLV) Colormap

811

812 close all

813

814 %Data -matrix

815 h = ones (201);

816

817 %Sorting algorithm

818 for i = 1:201

819 for j = 1:201

820 if Lin_ParQuad_h1xulv_diff(i,j) > 0 && Lin_ParQuad_h1xulv_diff(i,j) <

0.0005 %ParQuad_h1xulv >

821 h(i,j) = 1;

822 elseif Lin_ParQuad_h1xulv_diff(i,j) > 0.0005 %ParQuad_h1xulv >>

823 h(i,j) = 0;

824 elseif Lin_ParQuad_h1xulv_diff(i,j) < 0 && Lin_ParQuad_h1xulv_diff(i,j) >

-0.0005 %Lin >

825 h(i,j) = 2;

826 elseif Lin_ParQuad_h1xulv_diff(i,j) < -0.0005 %Lin >>

827 h(i,j) = 3;

828

829 end

830 end

831 end

832

833 %’red flag ’ algorithm

834 for i = 1:201

835 for j = 1:201

836 if abs(NL_Lin_error(i,j)) > 0.005 && abs(NL_ParQuad_h1xulv_error(i,j)) >

0.005

837 h(i,j) = 4;

838 end

839 end

840 end

841

842 figure

843 contourf(h, 100, ’EdgeColor ’, ’None’) %Plots the contour of the data -matrix h

844 hold on

845 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

846 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’ParQuad >>’, ’ParQuad >’,’Lin >’, ’

Lin >>’, ’N/A’})

847 colormap(map)

848 caxis([0, 4])

849 title(’Linear VS Partially Quadratic (h1xulv) @0.25m Contour -Plot’)

850 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

851 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

852 xt = get(gca , ’XTick’);

853 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

854 yt = get(gca , ’YTick’);

855 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

856

857 %% Linear VS Cubic Colormap

858

859 close all

860

861 %Data -matrix

862 h = ones (201);

863

864 %Sorting algorithm

865 for i = 1:201

866 for j = 1:201

867 if Lin_Cubic_diff(i,j) > 0 && Lin_Cubic_diff(i,j) < 0.0005 %Cubic >

868 h(i,j) = 1;

869 elseif Lin_Cubic_diff(i,j) > 0.0005 %Cubic >>

870 h(i,j) = 0;

871 elseif Lin_Cubic_diff(i,j) < 0 && Lin_Cubic_diff(i,j) > -0.0005 %Lin >

872 h(i,j) = 2;

873 elseif Lin_Cubic_diff(i,j) < -0.0005 %Lin >>

874 h(i,j) = 3;

875

876 end

Page 101



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

877 end

878 end

879

880 %’red flag ’ algorithm

881 for i = 1:201

882 for j = 1:201

883 if abs(NL_Lin_error(i,j)) > 0.005 && abs(NL_Cubic_error(i,j)) > 0.005

884 h(i,j) = 4;

885 end

886 end

887 end

888

889 figure

890 %Plots the contour of the data -matrix h

891 contourf(h, 100, ’EdgeColor ’, ’None’)

892 hold on

893 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

894 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’Cubic >>’, ’Cubic >’,’Lin >’, ’Lin

>>’, ’N/A’})

895 colormap(map)

896 caxis([0, 4])

897 title(’Linear VS Cubic @0.25m Contour -Plot’)

898 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

899 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

900 xt = get(gca , ’XTick’);

901 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

902 yt = get(gca , ’YTick’);

903 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

904

905 %% Linear VS Fifth order Colormap

906

907 close all

908

909 %Data -matrix

910 h = ones (201);

911

912 %Sorting algorithm

913 for i = 1:201

914 for j = 1:201

915 if Lin_fifth_diff(i,j) > 0 && Lin_fifth_diff(i,j) < 0.0005 %Fifth >

916 h(i,j) = 1;

917 elseif Lin_fifth_diff(i,j) > 0.0005 %Fifth >>

918 h(i,j) = 0;

919 elseif Lin_fifth_diff(i,j) < 0 && Lin_fifth_diff(i,j) > -0.0005 %Linear >

920 h(i,j) = 2;

921 elseif Lin_fifth_diff(i,j) < -0.0005 %Linear >>

922 h(i,j) = 3;

923

924 end

925 end

926 end

927

928 %’red flag ’ algorithm

929 for i = 1:201

930 for j = 1:201

931 if abs(NL_Lin_error(i,j)) > 0.005 && abs(NL_fifth_error(i,j)) > 0.005

932 h(i,j) = 4;

933 end

934 end

935 end

936

937 figure

938 %Plots the contour of the data -matrix h

939 contourf(h, 100, ’EdgeColor ’, ’None’)

940 hold on

941 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

942 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’5th order >>’, ’5th order >’,’

Linear >’, ’Linear >>’, ’N/A’})

943 colormap(map)

944 caxis([0, 4])

945 title(’Linear VS 5th Order @0.25m Contour -Plot’)

946 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

947 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

Page 102



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

948 xt = get(gca , ’XTick’);

949 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

950 yt = get(gca , ’YTick’);

951 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

952

953 %% Cubic VS Fifth order Colormap

954

955 %close all

956

957 %Data -matrix

958 h = ones (201);

959

960 %Sorting algorithm

961 for i = 1:201

962 for j = 1:201

963 if Cubic_fifth_diff(i,j) == 0

964 h(i,j) = 5; %Cubic

== Fifth

965 elseif Cubic_fifth_diff(i,j) > 0 && Cubic_fifth_diff(i,j) < 0.0005 %

Fifth >

966 h(i,j) = 1;

967 elseif Cubic_fifth_diff(i,j) > 0.0005 %Fifth >>

968 h(i,j) = 0;

969 elseif Cubic_fifth_diff(i,j) < 0 && Cubic_fifth_diff(i,j) > -0.0005 %

Cubic >

970 h(i,j) = 2;

971 elseif Cubic_fifth_diff(i,j) < -0.0005 %Cubic >>

972 h(i,j) = 3;

973

974 end

975 end

976 end

977

978 %’red flag ’ algorithm

979 for i = 1:201

980 for j = 1:201

981 if abs(NL_Cubic_error(i,j)) > 0.005 && abs(NL_fifth_error(i,j)) > 0.005

982 h(i,j) = 4;

983 end

984 end

985 end

986

987 C = h(H1_min:H1_max , ULV_min:ULV_max);

988 [ii , jj] = find(C == 2)

989

990 figure

991 %Plots the contour of the data -matrix h

992 contourf(h, 100, ’EdgeColor ’, ’None’)

993 hold on

994 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

995 hold on

996 plot([ ULV_min ULV_min], [H1_min H1_max],’k’,’LineWidth ’ ,2)

997 plot([ ULV_max ULV_max], [H1_min H1_max],’k’,’LineWidth ’ ,2)

998 plot([ ULV_min ULV_max], [H1_min H1_min],’k’,’LineWidth ’ ,2)

999 plot([ ULV_min ULV_max], [H1_max H1_max],’k’,’LineWidth ’ ,2)

1000 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’5th order >>’, ’5th order >’,’

Cubic >’, ’Cubic >>’, ’N/A’})

1001 colormap(map)

1002 caxis([0, 4])

1003 title(’5th VS Cubic @0.25m Contour -Plot’)

1004 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

1005 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

1006 xt = get(gca , ’XTick’);

1007 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

1008 yt = get(gca , ’YTick’);

1009 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

1010

1011 %% Cubic VS Quadratic Colormap

1012 close all

1013

1014 %Data -matrix

1015 h = ones (201);

1016

Page 103



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1017 %Sorting algorithm

1018 for i = 1:201

1019 for j = 1:201

1020 if Cubic_quadratic_diff(i,j) == 0

1021 h(i,j) = 5; %Quad

== cubic

1022 elseif Cubic_quadratic_diff(i,j) > 0 && Cubic_quadratic_diff(i,j) < 0.0005

%Cubic >

1023 h(i,j) = 1;

1024 elseif Cubic_quadratic_diff(i,j) > 0.0005 %

Cubic >>

1025 h(i,j) = 0;

1026 elseif Cubic_quadratic_diff(i,j) < 0 && Cubic_quadratic_diff(i,j) > -0.0005

%Quad >

1027 h(i,j) = 2;

1028 elseif Cubic_quadratic_diff(i,j) < -0.0005 %

Quad >>

1029 h(i,j) = 3;

1030

1031 end

1032 end

1033 end

1034

1035 %’red flag ’ algorithm

1036 for i = 1:201

1037 for j = 1:201

1038 if abs(NL_Cubic_error(i,j)) > 0.005 && abs(NL_Quad_error(i,j)) > 0.005

1039 h(i,j) = 4;

1040 end

1041 end

1042 end

1043

1044 C = h(H1_min:H1_max , ULV_min:ULV_max);

1045 [ii , jj] = find(C == 2)

1046

1047 figure

1048 %Plots the contour of the data -matrix h

1049 contourf(ulv_low:ulv_hi , h1_low:h1_hi ,...

1050 h(h1_low:h1_hi , ulv_low:ulv_hi), 100, ’EdgeColor ’, ’None’)

1051 hold on

1052 plot (200* ulv_arb ,200* h1_arb ,’kx’,’MarkerSize ’ ,30)

1053 hold on

1054 plot([ ULV_min ULV_min], [H1_min H1_max],’k’,’LineWidth ’ ,2)

1055 plot([ ULV_max ULV_max], [H1_min H1_max],’k’,’LineWidth ’ ,2)

1056 plot([ ULV_min ULV_max], [H1_min H1_min],’k’,’LineWidth ’ ,2)

1057 plot([ ULV_min ULV_max], [H1_max H1_max],’k’,’LineWidth ’ ,2)

1058 colorbar(’Ticks ’, [0, 1, 2, 3, 4], ’TickLabels ’, {’Cubic >>’, ’Cubic >’,’Quadratic >’,

’Quadratic >>’, ’N/A’})

1059 colormap(map)

1060 caxis([0, 4])

1061 title(’Quadratic VS Cubic @0.25m Contour -Plot’)

1062 xlabel(’$u_{LV}$’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

1063 ylabel(’$h_1$ ’, ’Interpreter ’,’latex’,’fontsize ’ ,16)

1064 xt = get(gca , ’XTick’);

1065 set(gca , ’XTick ’, xt, ’XTickLabel ’, xt/200)

1066 yt = get(gca , ’YTick’);

1067 set(gca , ’YTick ’, yt, ’YTickLabel ’, yt/200)

1068 %% Carleman Linearization

1069 close all

1070

1071 n = 1;

1072 Initial_level = 0;

1073

1074 [A_matrix_1 , B_matrix_1 , C_matrix_1 , D_matrix_1 , Initial_vector_1] =

Carleman_Linearized_func (...

1075 par_der_h1_verdi ,...

1076 par_der_uLV001_verdi ,...

1077 par_der_uPA001_verdi ,...

1078 par_der_h1_uLV001_verdi ,...

1079 par_der_h1_h1_verdi ,...

1080 par_der_h1_h1_h1_verdi ,...

1081 par_der_h1_h1_uLV001_verdi ,...

1082 Initial_level ,...

Page 104



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1083 n);

1084 n = 2;

1085 [A_matrix_2 , B_matrix_2 , C_matrix_2 , D_matrix_2 , Initial_vector_2] =

Carleman_Linearized_func (...

1086 par_der_h1_verdi ,...

1087 par_der_uLV001_verdi ,...

1088 par_der_uPA001_verdi ,...

1089 par_der_h1_uLV001_verdi ,...

1090 par_der_h1_h1_verdi ,...

1091 par_der_h1_h1_h1_verdi ,...

1092 par_der_h1_h1_uLV001_verdi ,...

1093 Initial_level ,...

1094 n);

1095 n = 3;

1096 [A_matrix_3 , B_matrix_3 , C_matrix_3 , D_matrix_3 , Initial_vector_3] =

Carleman_Linearized_func (...

1097 par_der_h1_verdi ,...

1098 par_der_uLV001_verdi ,...

1099 par_der_uPA001_verdi ,...

1100 par_der_h1_uLV001_verdi ,...

1101 par_der_h1_h1_verdi ,...

1102 par_der_h1_h1_h1_verdi ,...

1103 par_der_h1_h1_uLV001_verdi ,...

1104 Initial_level ,...

1105 n);

1106 n = 4;

1107 [A_matrix_4 , B_matrix_4 , C_matrix_4 , D_matrix_4 , Initial_vector_4] =

Carleman_Linearized_func (...

1108 par_der_h1_verdi ,...

1109 par_der_uLV001_verdi ,...

1110 par_der_uPA001_verdi ,...

1111 par_der_h1_uLV001_verdi ,...

1112 par_der_h1_h1_verdi ,...

1113 par_der_h1_h1_h1_verdi ,...

1114 par_der_h1_h1_uLV001_verdi ,...

1115 Initial_level ,...

1116 n);

1117

1118 n = 5;

1119 [A_matrix_5 , B_matrix_5 , C_matrix_5 , D_matrix_5 , Initial_vector_5] =

Carleman_Linearized_func (...

1120 par_der_h1_verdi ,...

1121 par_der_uLV001_verdi ,...

1122 par_der_uPA001_verdi ,...

1123 par_der_h1_uLV001_verdi ,...

1124 par_der_h1_h1_verdi ,...

1125 par_der_h1_h1_h1_verdi ,...

1126 par_der_h1_h1_uLV001_verdi ,...

1127 Initial_level ,...

1128 n);

1129

1130 n = 10;

1131 [A_matrix_10 , B_matrix_10 , C_matrix_10 , D_matrix_10 , Initial_vector_10] =

Carleman_Linearized_func (...

1132 par_der_h1_verdi ,...

1133 par_der_uLV001_verdi ,...

1134 par_der_uPA001_verdi ,...

1135 par_der_h1_uLV001_verdi ,...

1136 par_der_h1_h1_verdi ,...

1137 par_der_h1_h1_h1_verdi ,...

1138 par_der_h1_h1_uLV001_verdi ,...

1139 Initial_level ,...

1140 n);

1141

1142 n = 6;

1143 [A_matrix_6 , B_matrix_6 , C_matrix_6 , D_matrix_6 , Initial_vector_6 , E_matrix_6] =...

1144 Carleman_NonLinearized_func (...

1145 par_der_h1_verdi ,...

1146 par_der_uLV001_verdi ,...

1147 par_der_uPA001_verdi ,...

1148 par_der_h1_uLV001_verdi ,...

1149 par_der_h1_h1_verdi ,...

1150 par_der_h1_h1_h1_verdi ,...

Page 105



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1151 par_der_h1_h1_uLV001_verdi ,...

1152 Initial_level ,...

1153 n);

1154

1155

1156 %Non linear Carleman approximations

1157 n = 1;

1158 [A_matrix_NL_1 , B_matrix_NL_1 , C_matrix_NL_1 , D_matrix_NL_1 , Initial_vector_NL_1 ,

E_matrix_NL_1] =...

1159 Carleman_NonLinearized_func (...

1160 par_der_h1_verdi ,...

1161 par_der_uLV001_verdi ,...

1162 par_der_uPA001_verdi ,...

1163 par_der_h1_uLV001_verdi ,...

1164 par_der_h1_h1_verdi ,...

1165 par_der_h1_h1_h1_verdi ,...

1166 par_der_h1_h1_uLV001_verdi ,...

1167 Initial_level ,...

1168 n);

1169

1170 E_matrix_matrix_1 = [];

1171

1172 for i = 1:n

1173 E_matrix_matrix_1 (:,i) = E_matrix_NL_1{i};

1174 end

1175

1176 n = 2;

1177 [A_matrix_NL_2 , B_matrix_NL_2 , C_matrix_NL_2 , D_matrix_NL_2 , Initial_vector_NL_2 ,

E_matrix_NL_2] =...

1178 Carleman_NonLinearized_func (...

1179 par_der_h1_verdi ,...

1180 par_der_uLV001_verdi ,...

1181 par_der_uPA001_verdi ,...

1182 par_der_h1_uLV001_verdi ,...

1183 par_der_h1_h1_verdi ,...

1184 par_der_h1_h1_h1_verdi ,...

1185 par_der_h1_h1_uLV001_verdi ,...

1186 Initial_level ,...

1187 n);

1188

1189 E_matrix_matrix_2 = [];

1190

1191 for i = 1:n

1192 E_matrix_matrix_2 (:,i) = E_matrix_NL_2{i};

1193 end

1194

1195 n = 3;

1196 [A_matrix_NL_3 , B_matrix_NL_3 , C_matrix_NL_3 , D_matrix_NL_3 , Initial_vector_NL_3 ,

E_matrix_NL_3] =...

1197 Carleman_NonLinearized_func (...

1198 par_der_h1_verdi ,...

1199 par_der_uLV001_verdi ,...

1200 par_der_uPA001_verdi ,...

1201 par_der_h1_uLV001_verdi ,...

1202 par_der_h1_h1_verdi ,...

1203 par_der_h1_h1_h1_verdi ,...

1204 par_der_h1_h1_uLV001_verdi ,...

1205 Initial_level ,...

1206 n);

1207 E_matrix_matrix_3 = [];

1208

1209 for i = 1:n

1210 E_matrix_matrix_3 (:,i) = E_matrix_NL_3{i};

1211 end

1212

1213

1214 n = 4;

1215 [A_matrix_NL_4 , B_matrix_NL_4 , C_matrix_NL_4 , D_matrix_NL_4 , Initial_vector_NL_4 ,

E_matrix_NL_4] =...

1216 Carleman_NonLinearized_func (...

1217 par_der_h1_verdi ,...

1218 par_der_uLV001_verdi ,...

1219 par_der_uPA001_verdi ,...

Page 106



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1220 par_der_h1_uLV001_verdi ,...

1221 par_der_h1_h1_verdi ,...

1222 par_der_h1_h1_h1_verdi ,...

1223 par_der_h1_h1_uLV001_verdi ,...

1224 Initial_level ,...

1225 n);

1226

1227 E_matrix_matrix_4 = [];

1228

1229 for i = 1:n

1230 E_matrix_matrix_4 (:,i) = E_matrix_NL_4{i};

1231 end

1232

1233 n = 5;

1234 [A_matrix_NL_5 , B_matrix_NL_5 , C_matrix_NL_5 , D_matrix_NL_5 , Initial_vector_NL_5 ,

E_matrix_NL_5] =...

1235 Carleman_NonLinearized_func (...

1236 par_der_h1_verdi ,...

1237 par_der_uLV001_verdi ,...

1238 par_der_uPA001_verdi ,...

1239 par_der_h1_uLV001_verdi ,...

1240 par_der_h1_h1_verdi ,...

1241 par_der_h1_h1_h1_verdi ,...

1242 par_der_h1_h1_uLV001_verdi ,...

1243 Initial_level ,...

1244 n);

1245 E_matrix_matrix_5 = [];

1246

1247 for i = 1:n

1248 E_matrix_matrix_5 (:,i) = E_matrix_NL_5{i};

1249 end

1250

1251 n = 10;

1252 [A_matrix_NL_10 , B_matrix_NL_10 , C_matrix_NL_10 , D_matrix_NL_10 ,

Initial_vector_NL_10 , E_matrix_NL_10] =...

1253 Carleman_NonLinearized_func (...

1254 par_der_h1_verdi ,...

1255 par_der_uLV001_verdi ,...

1256 par_der_uPA001_verdi ,...

1257 par_der_h1_uLV001_verdi ,...

1258 par_der_h1_h1_verdi ,...

1259 par_der_h1_h1_h1_verdi ,...

1260 par_der_h1_h1_uLV001_verdi ,...

1261 Initial_level ,...

1262 n);

1263 E_matrix_matrix_10 = [];

1264

1265 for i = 1:n

1266 E_matrix_matrix_10 (:,i) = E_matrix_NL_10{i};

1267 end

1268

1269

1270 [NUM ,DEN] = ss2tf(A_matrix_1 ,B_matrix_1 ,C_matrix_1 ,D_matrix_1 ,1);

1271 system = tf(NUM ,DEN);

1272 stability = isstable(system)

1273 figure

1274 pzmap(system)

1275 figure

1276 step(system)

1277

1278 %% Quadratic controller NY test

1279 n = 4;

1280 Initial_level = 0.05;

1281

1282 Alpha = 0.0; %Scenario 1: 0.096 Scenario 2: Grense 0.036

1283 %Scenario 1() :0.221 Scenario 2(): Grense 0.077

1284

1285 %Senario 1: Ivar = 0.094

1286

1287 gamma = 0.1; %7e-1

1288

1289 %ulv_arb = 0.5159 , dulv_max = 0.48

1290 %upa_arb = 0.65, dupa_max = 0.2

Page 107



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1291 dupa_max = 0.2; % var 0.2

1292 dulv_max = 0.45; %

1293 a = -0.05% -0.05; %delta_h1 min

1294 b = 0.05; %delta_h1 max

1295 x1 = [a b];

1296 Vertex = x1;

1297

1298 punkt_cell = cell(n,1);

1299

1300 if n >= 2

1301 for i = 2:n

1302 if mod(i,2) ~= 0

1303 punkt_cell{i} = x1.^i;

1304 end

1305 if mod(i,2) == 0

1306 punkt_cell{i} = [-max(a^i, b^i)/10,max(a^i, b^i)];

1307 end

1308 Vertex = combvec(Vertex , punkt_cell{i});

1309 end

1310 else

1311 Vertex = Vertex ’;

1312 end

1313

1314 %%%%%%%%%%%%%%%%%

1315 %Vertex_shifted = Vertex;

1316 [A_test ,B_test] = vert2con(Vertex ’);

1317 z = B_test; %

1318

1319 ak_T = A_test ./z;

1320 ak = ak_T ’;

1321

1322 %%%%%%%%%%

1323 [A_matrix_1var , B_matrix_1var , C_matrix_1var , D_matrix_1var , Initial_vector_1var ,

E_matrix_1var] = Carleman_NonLinearized_func (...

1324 par_der_h1_verdi ,...

1325 par_der_uLV001_verdi ,...

1326 par_der_uPA001_verdi ,...

1327 par_der_h1_uLV001_verdi ,...

1328 par_der_h1_h1_verdi ,...

1329 par_der_h1_h1_h1_verdi ,...

1330 par_der_h1_h1_uLV001_verdi ,...

1331 Initial_level ,...

1332 n);

1333 %dupa_max = 0.2, dulv_max = 0.48

1334 B_matrix_1var (:,2) = 0;

1335

1336 for i = 1:n

1337 E_matrix_1var{i}(:,2) = 0;

1338 end

1339

1340 [K_1var , P_1var] = Quadratic_controller(A_matrix_1var , B_matrix_1var , E_matrix_1var

, Vertex , Alpha , gamma ,dupa_max ,dulv_max ,ak);

1341

1342 strucK.A = A_matrix_1var;

1343 strucK.B = B_matrix_1var;

1344 strucK.K = K_1var;

1345 strucK.E = E_matrix_1var;

1346

1347 [T1 ,X] = ode45(@(t,x)Quadratic_system(t, x, strucK) ,0:0.001:160 , Initial_vector_1var

’);

1348

1349 close all

1350 figure (1)

1351 hold on

1352 for i = 1:n

1353 plot(T1 ,X(:,i))

1354 end

1355 xlabel (’Time [s]’)

1356 ylabel (’Delta height [m]’)

1357 grid on

1358 hold off

1359

1360 figure (2)

Page 108



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1361 plot(T1 ,X(:,1))

1362 xlabel (’Time [s]’)

1363 ylabel (’Delta height [m]’)

1364 grid on

1365

1366 E_matrix_matrix_1var = [];

1367 for i = 1:n

1368 [r,k] = size(E_matrix_matrix_1var);

1369 E_matrix_matrix_1var (:,k+1:k+2) = E_matrix_1var{i};

1370 end

1371 [r,k] = size(X);

1372 U = [];

1373 for i = 1:r

1374 U(i,:) = (K_1var*X(i,:) ’)’;

1375 end

1376

1377 figure (3)

1378 ulv = plot(T1 ,U(:,1))

1379 hold on

1380 %upa = plot(T1 ,U(:,2))

1381 xlabel (’Time [s]’)

1382 ylabel (’Delta upa/ulv’)

1383 grid on

1384 legend ([ulv],’ulv’)

1385

1386 %% Quadratic controller 2Var

1387 n = 4;

1388 Initial_level = 0.05;

1389

1390 Alpha = 0.096; %Scenario 1: 0.096 Scenario 2: 0.036

1391 %Scenario 1() :0.221 Scenario 2(): Grense 0.077

1392 gamma = 0.1; %7e-1

1393

1394 %ulv_arb = 0.5159 , dulv_max = 0.48

1395 %upa_arb = 0.65, dupa_max = 0.2

1396 dupa_max = 0.2; % var 0.2

1397 dulv_max = 0.45; %

1398 a = -0.05% -0.05; %delta_h1 min

1399 b = 0.05; %delta_h1 max

1400 x1 = [a b];

1401 Vertex = x1;

1402

1403 punkt_cell = cell(n,1);

1404

1405 if n >= 2

1406 for i = 2:n

1407 if mod(i,2) ~= 0

1408 punkt_cell{i} = x1.^i;

1409 end

1410 if mod(i,2) == 0

1411 punkt_cell{i} = [-max(a^i, b^i)/10,max(a^i, b^i)];

1412 end

1413 Vertex = combvec(Vertex , punkt_cell{i});

1414 end

1415 else

1416 Vertex = Vertex ’;

1417 end

1418

1419 %Vertex = [ -0.01 0.05 0.05;

1420 % -0.01 -0.01 (0.05^2) ]; %Dette er en test!! Fjern e t t e r p .

1421

1422 %%%%%%%%%%%%%%%%%

1423 %Vertex_shifted = Vertex;

1424 [A_test ,B_test] = vert2con(Vertex ’);

1425 z = B_test; %

1426

1427 ak_T = A_test ./z;

1428 ak = ak_T ’;

1429 %ak = [];

1430 %[r,k] = size(ak)

1431

1432 % for i = 1:r

1433 % for j = 1:k

Page 109



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1434 % tall = ak(i,j)

1435 % if tall < 1 && tall > -1

1436 % ak(i,j) = 0

1437 % end

1438 % end

1439 % end

1440 %

1441 % ak = [20,-20,0,0,0,0,0,0;

1442 % 0,0,0,0,0,0,400,-1000;

1443 % 0,0,0,0,1000,-1000,0,0;

1444 % 0,0,-1000,1000,0,0,0,0];

1445

1446 %%%%%%%%%%

1447 [A_matrix_2var , B_matrix_2var , C_matrix_2var , D_matrix_2var , Initial_vector_2var ,

E_matrix_2var] = Carleman_NonLinearized_func_2Var (...

1448 par_der_h1_verdi ,...

1449 par_der_uLV001_verdi ,...

1450 par_der_uPA001_verdi ,...

1451 par_der_h1_uLV001_verdi ,...

1452 par_der_h1_h1_verdi ,...

1453 par_der_h1_h1_h1_verdi ,...

1454 par_der_h1_h1_uLV001_verdi ,...

1455 Initial_level ,...

1456 n);

1457 %dupa_max = 0.2, dulv_max = 0.48

1458

1459 [K_2var , P_2var] = Quadratic_controller(A_matrix_2var , B_matrix_2var , E_matrix_2var

, Vertex , Alpha , gamma ,dupa_max ,dulv_max ,ak);

1460

1461 strucK.A = A_matrix_2var;

1462 strucK.B = B_matrix_2var;

1463 strucK.K = K_2var;

1464 strucK.E = E_matrix_2var;

1465

1466 [T1 ,X] = ode45(@(t,x)Quadratic_system(t, x, strucK) ,0:0.001:160 , Initial_vector_2var

’);

1467

1468 close all

1469 figure (1)

1470 hold on

1471 for i = 1:n

1472 plot(T1 ,X(:,i))

1473 end

1474 xlabel (’Time [s]’)

1475 ylabel (’Delta height [m]’)

1476 grid on

1477 hold off

1478

1479 figure (2)

1480 z1 = plot(T1,X(:,1))

1481 xlabel (’Time [s]’)

1482 ylabel (’Delta height [m]’)

1483 grid on

1484 legend ([z1],’z1’)

1485

1486 E_matrix_matrix_2var = [];

1487 for i = 1:n

1488 [r,k] = size(E_matrix_matrix_2var);

1489 E_matrix_matrix_2var (:,k+1:k+2) = E_matrix_2var{i};

1490 end

1491 [r,k] = size(X);

1492 U = [];

1493 for i = 1:r

1494 U(i,:) = (K_2var*X(i,:) ’)’;

1495 end

1496

1497 figure (3)

1498 ulv = plot(T1 ,U(:,1))

1499 hold on

1500 upa = plot(T1 ,U(:,2))

1501 xlabel (’Time [s]’)

1502 %ylabel (’Delta upa/ulv ’)

1503 grid on

Page 110



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1504 legend ([ulv , upa],’ulv’,’upa’)

1505 %% Error Values for Taylor

1506 clc

1507 %The Following code displays the Error Value for every model , wrt the

1508 %Nonlinear model.

1509 sim(’Taylor_Simulations ’, 250);

1510

1511 disp(’IAE Error: ’)

1512 disp([’Quadratic: ’ num2str(IAE_Quadratic.Data(end))])

1513 disp([’Linear: ’ num2str(IAE_Linear.Data(end))])

1514 disp([’ParQuad_h1xh1: ’ num2str(IAE_ParQuad_h1xh1.Data(end))])

1515 disp([’ParQuad_h1xulv: ’ num2str(IAE_ParQuad_h1xulv.Data(end))])

1516 disp([’Cubic: ’ num2str(IAE_Cubic.Data(end))])

1517 disp([’Fifth order: ’ num2str(IAE_Fifth.Data(end))])

1518

1519 fprintf(’\n’)

1520

1521 disp(’ISE Error: ’)

1522 disp([’Quadratic: ’ num2str(ISE_Quadratic.Data(end))])

1523 disp([’Linear: ’ num2str(ISE_Linear.Data(end))])

1524 disp([’ParQuad_h1xh1: ’ num2str(ISE_ParQuad_h1xh1.Data(end))])

1525 disp([’ParQuad_h1xulv: ’ num2str(ISE_ParQuad_h1xulv.Data(end))])

1526 disp([’Cubic: ’ num2str(ISE_Cubic.Data(end))])

1527 disp([’Fifth: ’ num2str(ISE_Fifth.Data(end))])

1528

1529 fprintf(’\n’)

1530

1531 disp(’ITAE Error: ’)

1532 disp([’Quadratic: ’ num2str(ITAE_Quadratic.Data(end))])

1533 disp([’Linear: ’ num2str(ITAE_Linear.Data(end))])

1534 disp([’ParQuad_h1xh1: ’ num2str(ITAE_ParQuad_h1xh1.Data(end))])

1535 disp([’ParQuad_h1xulv: ’ num2str(ITAE_ParQuad_h1xulv.Data(end))])

1536 disp([’Cubic: ’ num2str(ITAE_Cubic.Data(end))])

1537 disp([’Fifth order: ’ num2str(ITAE_Fifth.Data(end))])

1538

1539 fprintf(’\n’)

1540

1541 disp(’ITSE Error: ’)

1542 disp([’Quadratic: ’ num2str(ITSE_Quadratic.Data(end))])

1543 disp([’Linear: ’ num2str(ITSE_Linear.Data(end))])

1544 disp([’ParQuad_h1xh1: ’ num2str(ITSE_ParQuad_h1xh1.Data(end))])

1545 disp([’ParQuad_h1xulv: ’ num2str(ITSE_ParQuad_h1xulv.Data(end))])

1546 disp([’Cubic: ’ num2str(ITSE_Cubic.Data(end))])

1547 disp([’Fifth order: ’ num2str(ITSE_Fifth.Data(end))])

1548

1549 fprintf(’\n’)

1550

1551 disp(’ISTE Error: ’)

1552 disp([’Quadratic: ’ num2str(ISTE_Quadratic.Data(end))])

1553 disp([’Linear: ’ num2str(ISTE_Linear.Data(end))])

1554 disp([’ParQuad_h1xh1: ’ num2str(ISTE_ParQuad_h1xh1.Data(end))])

1555 disp([’ParQuad_h1xulv: ’ num2str(ISTE_ParQuad_h1xulv.Data(end))])

1556 disp([’Cubic: ’ num2str(ISTE_Cubic.Data(end))])

1557 disp([’Fifth order: ’ num2str(ISTE_Fifth.Data(end))])

1558 %% Error Values for Carleman

1559

1560 clc

1561 %The Following code displays the Error Value for every model , wrt the

1562 %Nonlinear model.

1563 sim(’Taylor_Simulations ’, 250);

1564

1565 disp(’IAE Error: ’)

1566 disp([’Carleman n = 1: ’ num2str(IAE_Carleman_n_1.Data(end))])

1567 disp([’Carleman n = 2: ’ num2str(IAE_Carleman_n_2.Data(end))])

1568 disp([’Carleman n = 3: ’ num2str(IAE_Carleman_n_3.Data(end))])

1569 disp([’Carleman n = 4: ’ num2str(IAE_Carleman_n_4.Data(end))])

1570 disp([’Carleman n = 5: ’ num2str(IAE_Carleman_n_5.Data(end))])

1571 disp([’Carleman n = 10: ’ num2str(IAE_Carleman_n_10.Data(end))])

1572

1573 fprintf(’\n’)

1574

1575 disp(’ISE Error: ’)

1576 disp([’Carleman n = 1: ’ num2str(ISE_Carleman_n_1.Data(end))])

Page 111



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1577 disp([’Carleman n = 2: ’ num2str(ISE_Carleman_n_2.Data(end))])

1578 disp([’Carleman n = 3: ’ num2str(ISE_Carleman_n_3.Data(end))])

1579 disp([’Carleman n = 4: ’ num2str(ISE_Carleman_n_4.Data(end))])

1580 disp([’Carleman n = 5: ’ num2str(ISE_Carleman_n_5.Data(end))])

1581 disp([’Carleman n = 10: ’ num2str(ISE_Carleman_n_10.Data(end))])

1582

1583 fprintf(’\n’)

1584

1585 disp(’ITAE Error: ’)

1586 disp([’Carleman n = 1: ’ num2str(ITAE_Carleman_n_1.Data(end))])

1587 disp([’Carleman n = 2: ’ num2str(ITAE_Carleman_n_2.Data(end))])

1588 disp([’Carleman n = 3: ’ num2str(ITAE_Carleman_n_3.Data(end))])

1589 disp([’Carleman n = 4: ’ num2str(ITAE_Carleman_n_4.Data(end))])

1590 disp([’Carleman n = 5: ’ num2str(ITAE_Carleman_n_5.Data(end))])

1591 disp([’Carleman n = 10: ’ num2str(ITAE_Carleman_n_10.Data(end))])

1592

1593 fprintf(’\n’)

1594

1595 disp(’ITSE Error: ’)

1596 disp([’Carleman n = 1: ’ num2str(ITSE_Carleman_n_1.Data(end))])

1597 disp([’Carleman n = 2: ’ num2str(ITSE_Carleman_n_2.Data(end))])

1598 disp([’Carleman n = 3: ’ num2str(ITSE_Carleman_n_3.Data(end))])

1599 disp([’Carleman n = 4: ’ num2str(ITSE_Carleman_n_4.Data(end))])

1600 disp([’Carleman n = 5: ’ num2str(ITSE_Carleman_n_5.Data(end))])

1601 disp([’Carleman n = 10: ’ num2str(ITSE_Carleman_n_10.Data(end))])

1602

1603 fprintf(’\n’)

1604

1605 disp(’ISTE Error: ’)

1606 disp([’Carleman n = 1: ’ num2str(ISTE_Carleman_n_1.Data(end))])

1607 disp([’Carleman n = 2: ’ num2str(ISTE_Carleman_n_2.Data(end))])

1608 disp([’Carleman n = 3: ’ num2str(ISTE_Carleman_n_3.Data(end))])

1609 disp([’Carleman n = 4: ’ num2str(ISTE_Carleman_n_4.Data(end))])

1610 disp([’Carleman n = 5: ’ num2str(ISTE_Carleman_n_5.Data(end))])

1611 disp([’Carleman n = 10: ’ num2str(ISTE_Carleman_n_10.Data(end))])

F.2 Carleman lin ss.m

1 % 19. Februar 2021

2 % John H v a r d A a r v g

3

4 %Carleman matrix

5

6 %%

7 close all

8

9 syms A1 f3 Kv_LV001 f1 rho g h1 h_LV001

10

11 dynamic_model_tank1 = (1/A1)*(f3 - (( Kv_LV001*f1)/3600)*sqrt((rho*g*(h1+h_LV001))

/100000)); %The dynamic model for tank 1

12

13 % Calculating the partial derivatives (symbolic)

14 par_der_h1 = diff(dynamic_model_tank1 , h1); % df/dh1

15 par_der_f1 = diff(dynamic_model_tank1 , f1); % df/df1

16 par_der_f3 = diff(dynamic_model_tank1 , f3); % df/df3

17 par_der_h1_h1 = diff(par_der_h1 , h1); % d^2f/dh1^2

18 par_der_f1_f1 = diff(par_der_f1 , f1); % d^2f/df1^2

19 par_der_f3_f3 = diff(par_der_f3 , f3); % d^2f/df3^2

20 par_der_h1_f1 = diff(par_der_h1 , f1); % d^2f/dh1df1

21 par_der_h1_f3 = diff(par_der_h1 , f3); % d^2f/dh1df3

22 par_der_f1_f3 = diff(par_der_f1 , f3); % d^2f/df1df3

23

24 par_der_h1_h1_h1 = diff(par_der_h1_h1 , h1); % d^3f/dh1^3

25 par_der_h1_h1_f1 = diff(par_der_h1_h1 , f1); % d^3f/dh1^2df1

26

27 par_der_h1_h1_h1_h1 = diff(par_der_h1_h1_h1 ,h1);% d^4f/dh1^4

28 par_der_h1_h1_h1_f1 = diff(par_der_h1_h1_h1 ,f1);% d^4f/dh1^3df1

29

30 par_der_h1_h1_h1_h1_h1 = diff(par_der_h1_h1_h1_h1 ,h1);% d^5f/dh1^5

31 par_der_h1_h1_h1_h1_f1 = diff(par_der_h1_h1_h1_h1 ,f1);% d^5f/dh1^4df1

32

33 % Setting the working point for h1 and f3

Page 112



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

34 h1_arb = 0.25;

35 f3_arb = 0.0001783;

36

37 % Inserting every known variable in equation dynamic_model_tank1

38 a = subs(dynamic_model_tank1 , [A1 Kv_LV001 rho g h_LV001 h1 f3], [0.01 11.25 1000

9.81 0.05 h1_arb f3_arb ]);

39 % Solving equation ’a’ wrt f1. This gives f1_arb

40 f1_arb = double(solve(a,f1));

41

42 % Since f3_arb is chosen , we can find upa_arb from the pump -characteristics

43 upa_arb = 0.65;

44 % We have found f1_arb. Using this value in the valve -characteristics gives us

ulv_arb

45 ulv_arb = 0.5159;

46

47

48

49 df1_duLV001 = 0.98; % Manually calculated in simulink. delta_f1 / delta_ulv

50 df3_dPA001 = 0.00052; % Manually calculated in simulink. delta_f3 / delta_upa

51

52 % Calculating the partial derivatives used in the Taylor series expansion

53 % (Value at working point!)

54 par_der_h1_verdi = double ((subs(par_der_h1 ,...

55 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

56 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

57

58 par_der_uLV001_verdi = double(subs(par_der_f1 * df1_duLV001 ,...

59 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

60 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

61

62 par_der_uPA001_verdi = double(subs(par_der_f3 * df3_dPA001 ,...

63 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

64 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

65

66 par_der_h1_h1_verdi = double(subs(par_der_h1_h1 ,...

67 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

68 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

69

70 par_der_uLV001_uLV001_verdi = double(subs(par_der_f1_f1 * df1_duLV001 ^2,...

71 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

72 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

73

74 par_der_uPA001_uPA001_verdi = double(subs(par_der_f3_f3 * df3_dPA001 ^2,...

75 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

76 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

77

78 par_der_h1_uLV001_verdi = double(subs(par_der_h1_f1 * df1_duLV001 ,...

79 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

80 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

81

82 par_der_h1_uPa001_verdi = double(subs(par_der_h1_f3 * df3_dPA001 ,...

83 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

84 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

85

86 par_der_uLV001_uPA001_verdi = double(subs(par_der_f1_f3 * df1_duLV001 * df3_dPA001

,...

87 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

88 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ]));

89

90 par_der_h1_h1_h1_verdi = double ((subs(par_der_h1_h1_h1 ,...

91 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

92 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

93

94 par_der_h1_h1_uLV001_verdi = double ((subs(par_der_h1_h1_f1 * df1_duLV001 ,...

95 [A1 Kv_LV001 rho g h_LV001 h1 f1 f3],...

96 [0.01 11.25 1000 9.81 0.05 h1_arb f1_arb f3_arb ])));

97

98 % The following is a standard code that imports the characteristics of the

99 % pump and valve. This code also defines some constants. (From Reguleringsteknikk)

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 % data om vann og tyngdekraft

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Page 113



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

104 rho = 1000; % tetthet vann [kg/m^3]

105 g = 9.81; % tyngdens akselerasjon [m/s^2]

106 c_p = 4200; % varmekapasitet vann [j/kg*K]

107

108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

109 % Tank 1

110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

111 Kv_LV001 = 11.25; % ventilkonstant LV001 [m^3/h] ved 1 bar trykkfall

112 h_LV001 = 0.05; % h y d e til LV001 [m]

113 h1_max = 1; % maks h y d e tank 1 [m]

114 h1_min = 0.13; % min h y d e tank 1 [m]

115 A1 = 0.01; % areal tank 1 [m^2]

116

117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118 % Tank 2

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

120 Kv_LV002 = 11.25; % ventilkonstant LV002 [m3/h]

121 h_LV002 = 0.25; % h y d e fra bunn av tank 2 til LV002

122 h2_max = 0.4; % maks h y d e tank 2 [m]

123 h2_min = 0.02; % min h y d e tank 2 [m]

124

125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

126 % Last inn p d r a g og m l i n g e r

127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

128 load tankData_1 % det finnes o g s et datasett som heter tankData_2

129 load tankData_2

130

131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

132 % Pumpekarakteristikk

133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

134 u_PA001 = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

135 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

136 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

137 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

138

139 q_PA001 = q_PA001 /60000; % liter/time -> m3/s

140

141 % figure

142 % plot(u_PA001 , q_PA001 ,’*-’)

143 % title(’Pumpekarakteristikk ’)

144 % xlabel(’ P d r a g u_{PA001}(t) til pumpe PA001 ’)

145 % ylabel(’ V o l u m s t r m q_{PA001}(t) gjennom PA001 [m^3/s]’)

146

147

148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

149 % Ventilkarakteristikk

150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

151 u_LV001 = 0:0.03:1;

152 f_LV001 = (exp(u_LV001 .^1.2) -1)/(exp(1) -1);

153 u_LV002 = u_LV001;

154 f_LV002 = f_LV001;

155

156 % figure

157 % plot(u_LV001 ,f_LV001 ,’*-’)

158 % title(’Ventilkarakteristikk for LV001 og LV002 ’)

159 % xlabel(’ V e n t i l p d r a g u_{LV001 }(t)’)

160 % ylabel(’f(u_{LV001}(t)) ’)

161

162 %End of the standard code from Reguleringsteknikk

163

164

165

166 % %%

167 % %carleman matrix

168 % %this section creates the A matrix in the eqn xdot = Ax + Bu, y = Cx + Du

169 % %This "linearization" removes all the mixed , nonlinear parts of the

170 % %carleman embedding.

171 %

172 % %simplified variable names

173 % a_c = par_der_h1_verdi;

174 % b_c = par_der_uLV001_verdi;

175 % c_c = par_der_uPA001_verdi;

176 % d_c = par_der_h1_uLV001_verdi;

Page 114



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

177 % e_c = par_der_h1_h1_verdi /2;

178 % f_c = par_der_h1_h1_h1_verdi /6;

179 % g_c = par_der_h1_h1_uLV001_verdi /2;

180 %

181 % % Truncate terms beyond n, small mismatches up till n = 18. beyond that it

182 % % gets worse

183 % n = 4;

184 %

185 % A_matrix = zeros(n+2);

186 % B_matrix = zeros(n,1);

187 % C_matrix = zeros(1,n);

188 % D_matrix = (0);

189 % C_matrix (1) = 1;

190 % B_matrix (1) = b_c;

191 %

192 % A_matrix (1,1) = a_c + d_c *0.01; %x1

193 % A_matrix (1,2)= e_c + g_c *0.01; %x2

194 % A_matrix (1,3) = f_c; %x3

195 % Initial_level = 0.1;

196 %

197 % Initial_vector = zeros(n,1);

198 % for i=1:n

199 % Initial_vector(i) = Initial_level^i;

200 % end

201 % %this pattern is clear after computing the first terms by hand.

202 % for i = 2:n

203 % A_matrix(i,i-1) = i*b_c *0.01;

204 % A_matrix(i,i) = i*a_c + i*d_c *0.01;

205 % A_matrix(i,i+1)= i*e_c + i*g_c *0.01;

206 % A_matrix(i,i+2) = i*f_c;

207 % end

208 %

209 % %Removes the truncated terms , that is for x = 10, all x 11, x12 etc are

210 % %removed.

211 % A_matrix(:,n+2) = [];

212 % A_matrix(:,n+1) = [];

213 % A_matrix(n+2,:) = [];

214 % A_matrix(n+1,:) = [];

215 %

216 % %Makes the statespace representation into a tf

217 % [NUM ,DEN] = ss2tf(A_matrix ,B_matrix ,C_matrix ,D_matrix ,1);

218 % syste = tf(NUM ,DEN)

219 % Gent = isstable(syste)

220 % pzmap(syste)

221

222

223 %%

224 %carleman matrix

225 %this section creates the A matrix in the eqn xdot = Ax + Bu , y = Cx + Du

226 %This "linearization" removes all the mixed , nonlinear parts of the

227 %carleman embedding.

228

229 %simplified variable names

230 a_c = par_der_h1_verdi;

231 b_c = par_der_uLV001_verdi;

232 c_c = par_der_uPA001_verdi;

233 d_c = par_der_h1_uLV001_verdi;

234 e_c = par_der_h1_h1_verdi /2;

235 f_c = par_der_h1_h1_h1_verdi /6;

236 g_c = par_der_h1_h1_uLV001_verdi /2;

237

238 % Truncate terms beyond n, small mismatches up till n = 18. beyond that it

239 % gets worse

240 n = 4;

241

242 A_matrix = zeros(n+2);

243 B_matrix = zeros(n,1);

244 C_matrix = zeros(1,n);

245 D_matrix = (0);

246 C_matrix (1) = 1;

247 B_matrix (1) = b_c;

248

249

Page 115



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

250 Initial_level = 0.4;

251 %this pattern is clear after computing the first terms by hand.

252 for i = 1:n

253 A_matrix(i,i) = i*a_c;

254 A_matrix(i,i+1)= i*e_c;

255 A_matrix(i,i+2) = i*f_c;

256 end

257

258 Initial_vector = zeros(n,1);

259 for i=1:n

260 Initial_vector(i) = Initial_level^i;

261 end

262

263 %Removes the truncated terms , that is for x = 10, all x 11, x12 etc are

264 %removed.

265 A_matrix(:,n+2) = [];

266 A_matrix(:,n+1) = [];

267 A_matrix(n+2,:) = [];

268 A_matrix(n+1,:) = [];

269

270

271

272 %Makes the statespace representation into a tf

273 [NUM ,DEN] = ss2tf(A_matrix ,B_matrix ,C_matrix ,D_matrix ,1);

274 syste = tf(NUM ,DEN)

275 Gent = isstable(syste)

276 pzmap(syste)

F.3 Carleman Linearized func.m

1 function [A_matrix , B_matrix , C_matrix , D_matrix , Initial_vector] =...

2 Carleman_Linearized_func(h1, ulv , upa , h1_ulv , h1_h1 , h1_h1_h1 , h1_h1_ulv ,

initC , n)

3

4 %Simplifies the notation of the partial derivatives

5 a_c = h1;

6 b_c = ulv;

7 c_c = upa;

8 d_c = h1_ulv;

9 e_c = h1_h1 /2;

10 f_c = h1_h1_h1 /6;

11 g_c = h1_h1_ulv /2;

12

13 %Defines the amount of terms to include in the Carleman linearization

14 n = n;

15

16 %Defines the initial condition of the water level

17 Initial_level = initC;

18

19 %Finds the initial condition for every x_dot

20 Initial_vector = zeros(n,1);

21 for i=1:n

22 Initial_vector(i) = Initial_level^i;

23 end

24

25 %

26 A_matrix = zeros(n+2);

27 B_matrix = zeros(n,1);

28 C_matrix = zeros(1,n);

29 D_matrix = (0);

30 C_matrix (1) = 1;

31 B_matrix (1) = b_c;

32

33 %Constructs the A_matrix.

34 %This pattern is clear after computing the first terms by hand.

35 for i = 1:n

36 A_matrix(i,i) = i*a_c;

37 A_matrix(i,i+1)= i*e_c;

38 A_matrix(i,i+2) = i*f_c;

39 end

40

41 %Removes the truncated terms

Page 116



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

42 A_matrix(:,n+2) = [];

43 A_matrix(:,n+1) = [];

44 A_matrix(n+2,:) = [];

45 A_matrix(n+1,:) = [];

46 end

F.4 Carleman NonLinearized func 2V ar.m

1 function [A_matrix , B_matrix , C_matrix , D_matrix , Initial_vector , E_matrix] =...

2 Carleman_NonLinearized_func_2Var(h1 , ulv , upa , h1_ulv , h1_h1 , h1_h1_h1 ,

h1_h1_ulv , initC , n)

3

4 %Simplifies the notation of the partial derivatives

5 a_c = h1;

6 b_c = ulv;

7 c_c = upa;

8 d_c = h1_ulv;

9 e_c = h1_h1 /2;

10 f_c = h1_h1_h1 /6;

11 g_c = h1_h1_ulv /2;

12

13 %Defines the amount of terms to include in the Carleman linearization

14 n = n;

15

16 %Defines the initial condition of the water level

17 Initial_level = initC;

18

19 %Finds the initial condition for every x_dot

20 Initial_vector = zeros(n,1);

21 for i=1:n

22 Initial_vector(i) = Initial_level^i;

23 end

24

25 %

26 A_matrix = zeros(n+2);

27 B_matrix = zeros(n,2);

28 C_matrix = zeros(1,n);

29 D_matrix = (0);

30 C_matrix (1) = 1;

31 B_matrix (1,1) = b_c;

32 B_matrix (1,2) = c_c;

33

34 %Constructs the A_matrix.

35 %This pattern is clear after computing the first terms by hand.

36 for i = 1:n

37 A_matrix(i,i) = i*a_c;

38 A_matrix(i,i+1)= i*e_c;

39 A_matrix(i,i+2) = i*f_c;

40 end

41

42 %Removes the truncated terms

43 A_matrix(:,n+2) = [];

44 A_matrix(:,n+1) = [];

45 A_matrix(n+2,:) = [];

46 A_matrix(n+1,:) = [];

47

48

49 E_matrix = cell(1,n);

50 E_matrix {1} = zeros(n,2);

51 E_matrix {1}(1 ,1) = d_c;

52 E_matrix {1}(2 ,1) = g_c;

53

54 for i = 2:n

55 E_matrix{i} = zeros(n,2);

56 E_matrix{i}(i-1,1) = i*b_c;

57 E_matrix{i}(i,1) = i*d_c;

58 E_matrix{i}(i+1,1) = i*g_c;

59 E_matrix{i}(i-1,2) = i*c_c;

60 end

61 E_matrix{n}(n+1,:) = [];

62

63 end

Page 117



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

F.5 Carleman NonLinearized func.m

1 function [A_matrix , B_matrix , C_matrix , D_matrix , Initial_vector , E_matrix] =...

2 Carleman_NonLinearized_func(h1, ulv , upa , h1_ulv , h1_h1 , h1_h1_h1 , h1_h1_ulv ,

initC , n)

3

4 %Simplifies the notation of the partial derivatives

5 a_c = h1;

6 b_c = ulv;

7 c_c = upa;

8 d_c = h1_ulv;

9 e_c = h1_h1 /2;

10 f_c = h1_h1_h1 /6;

11 g_c = h1_h1_ulv /2;

12

13 %Defines the amount of terms to include in the Carleman linearization

14 n = n;

15

16 %Defines the initial condition of the water level

17 Initial_level = initC;

18

19 %Finds the initial condition for every x_dot

20 Initial_vector = zeros(n,1);

21 for i=1:n

22 Initial_vector(i) = Initial_level^i;

23 end

24

25 %

26 A_matrix = zeros(n+2);

27 B_matrix = zeros(n,1);

28 C_matrix = zeros(1,n);

29 D_matrix = (0);

30 C_matrix (1) = 1;

31 B_matrix (1) = b_c;

32

33 %Constructs the A_matrix.

34 %This pattern is clear after computing the first terms by hand.

35 for i = 1:n

36 A_matrix(i,i) = i*a_c;

37 A_matrix(i,i+1)= i*e_c;

38 A_matrix(i,i+2) = i*f_c;

39 end

40

41 %Removes the truncated terms

42 A_matrix(:,n+2) = [];

43 A_matrix(:,n+1) = [];

44 A_matrix(n+2,:) = [];

45 A_matrix(n+1,:) = [];

46

47

48 E_matrix = cell(1,n);

49 E_matrix {1} = zeros(n,1);

50 E_matrix {1}(1) = d_c;

51 E_matrix {1}(2) = g_c;

52

53 for i = 2:n

54 E_matrix{i} = zeros(n,1);

55 E_matrix{i}(i-1) = i*b_c;

56 E_matrix{i}(i) = i*d_c;

57 E_matrix{i}(i+1) = i*g_c;

58 end

59 E_matrix{n}(n+1) = [];

60

61 end

F.6 carleman statespace 2V ar.m

1 %Carleman lin_part

2 clear

3 clc

4 n = 12;

Page 118



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

5 syms a b c d e f g dh dulv dupa

6 syms x [1 n+3]

7

8 dhdot = a.*dh^1 + b.*dulv + c.*dupa + d.*dh^1.* dulv + e.*dh^2 + f.*dh^3 + g.*dh^2.*

dulv;

9 %dhdot = a.*dh + e.*dh.^2 + f.*dh.^3;

10

11 C = cell(1,n);

12

13 %x2dot ->

14 for i = 2:n

15 C{i} = expand(i*dh^(i-1).* dhdot);

16 C{i} = subs(C{i},[dh^(i+3), dh^(i+2), dh^(i+1), dh^i, dh^(i-1), dh],{x(i+3), x(

i+2), x(i+1),x(i),x(i-1), x1})

17 end

F.7 carleman statespace.m

1 %Carleman lin_part

2 clear

3 clc

4 n = 12;

5 syms a b c d e f g dh dulv

6 syms x [1 n+3]

7

8 dhdot = a.*dh^1 + b.*dulv + d.*dh^1.* dulv + e.*dh^2 + f.*dh^3 + g.*dh^2.* dulv;

9 %dhdot = a.*dh + e.*dh.^2 + f.*dh.^3;

10

11 C = cell(1,n);

12

13 %x2dot ->

14 for i = 2:n

15 C{i} = expand(i*dh^(i-1).* dhdot);

16 C{i} = subs(C{i},[dh^(i+3), dh^(i+2), dh^(i+1), dh^i, dh^(i-1), dh],{x(i+3), x(

i+2), x(i+1),x(i),x(i-1), x1})

17 end

F.8 example file solver.m

1 A = [1 3 4 ; 0 2 1 ; 1 7 6];

2 B = [1 0 0]’;

3

4 eig(A)

5

6 % after installing YALMIP (toolbox) and SeDuMi (solver)

7

8 Q = sdpvar (3); %variable to find is a symmetric matrix 3x3

9 W = sdpvar(1,3,’full’); % variable to find a full (non -symmetric) matrix 1x3

10

11 alpha = 10;

12

13 inequality = Q >= 1e-9;

14 % inequality = [inequality ,A’*Q+W’*B’*Q+Q*A+Q*B*W <= -1e-9]; % NO!

15 % BILINEAR MATRIX INEQUALITY (BMI)

16 inequality = [inequality ,Q*A’+ W’*B’+ A*Q+ B*W+ 2* alpha*Q <= -1e-9]; %YES! LINEAR

MATRIX INEQUALITY (LMI)

17

18 optimize(inequality)

19

20 Q = double(Q) %transform symbolic into numbers

21 W = double(W)

22

23 P = inv(Q)

24 K = W*inv(Q)

F.9 Quadratic controller.m

Page 119



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

1 function [K,P] = Quadratic_controller(A_matrix , B_matrix , E_cell , Vertex , Alpha ,

gamma ,dupa_max , dulv_max ,ak)

2

3 [r, k] = size(B_matrix);

4

5 n = r;

6

7 Q = sdpvar(n); %variable to find is a symmetric matrix nxn

8 W = sdpvar(k,n,’full’); % variable to find a full (non -symmetric) matrix

9 inequality = [Q >= 1e-7*eye(n)]; %P>0

10 inequality = [inequality , [Q W(1,:) ’; W(1,:) eye(1)*dulv_max ^2]>=1e-9*eye(n+1)]; %

limits ux

11 inequality = [inequality , [Q W(2,:) ’; W(2,:) eye(1)*dupa_max ^2]>=1e-9*eye(n+1)]; %

limits ux2

12

13 % max_vertex = 0;

14 % for i = 1:2^n %finds the vertex furthest away from eq.

15 % agent = norm(Vertex (1:end ,i));

16 % if agent >= max_vertex

17 % max_vertex = agent;

18 % end

19 % end

20

21 for i = 1:2^n

22 Z = [];

23 Y = [];

24 for j = 1:n

25 Z(j,:) = Vertex (1:end ,i)’*E_cell{j}; %1xn Radvektor

26 Y(:,j) = E_cell{j}’*Vertex (1:end ,i); %nx1 Kolonnevektor

27 end

28

29 if i == 2^n %max_vertex == max(norm(Vertex (1:end ,i)))%if vertex number x is the

same size as max

30 inequality = [inequality , gamma *(Q*A_matrix ’ + W’*B_matrix ’ + A_matrix*Q +

B_matrix*W) + ...

31 W’*Y ...

32 + Z*W + gamma*Q*2* Alpha <= -1e-9*eye(n)];

33

34 else

35 inequality = [inequality , gamma *(Q*A_matrix ’ + W’*B_matrix ’ + A_matrix*Q +

B_matrix*W) + ...

36 W’*Y ...

37 + Z*W <= -1e-9* eye(n)];

38 end

39 inequality = [inequality , [1 Vertex (1:end ,i)’; Vertex (1:end ,i) Q] >= 1e-9*eye(n

+1)]; %6d

40 end

41

42 [ak_r ,ak_k] = size(ak);

43 for k_ = 1:ak_k

44 inequality = [inequality , [1 gamma*ak(1:end , k_)’*Q; Q*ak(1:end , k_)*gamma Q]

>= 1e-9*eye(n+1)];

45 disp(’Test’)

46 end

47

48 %[1 x’; x Q]% x = 6d

49 %[1 vertex (1:end ,i)’; vertex (1:end ,i) Q] >=1e-7 x(i) = vertex (1:end ,i)

50 %1x1 1xn nx1 nxn

51

52 optimize(inequality)

53

54 Q = double(Q); %transform symbolic into numbers

55 W = double(W);

56

57 P = Q;

58 K = W*inv(Q); %kxn

59 end

F.10 Quadratic system.m

1 function dx = Quadratic_system(t, x, strucK)

2

Page 120



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

3 A = strucK.A;

4 B = strucK.B;

5 E = strucK.E;

6 K = strucK.K;

7

8 SS = size(A);

9 n = SS(1);

10

11 resultat = [];

12 for i = 1:n

13 resultat(i,:) = x’*E{i}*K*x;

14 end

15

16 dx = (A+B*K)*x + resultat;

17 end

F.11 Polytope figures.m

1 P = [-0.05 0; 0.05 0; -0.05 0.025; 0.05 0.025]

2

3 %[A,b] = vert2con(P);

4

5

6 k = convhull(P)

7

8 %plot(P(:,1),P(:,2))

9 %hold on

10 plot(P(k,1),P(k,2), ’b’, ’LineWidth ’, 2, ’Marker ’, ’o’)

11 hold on

12 fill(P(k,1), P(k,2),’g’,’FaceAlpha ’ ,0.5)

13 xlabel(’z1’)

14 ylabel(’z2’)

15 grid on

16 xlim ([ -0.06 0.06])

17 ylim ([ -0.02 0.03])

F.12 vert2con.m [11]

1 function [A,b] = vert2con(V)

2 % VERT2CON - convert a set of points to the set of inequality constraints

3 % which most tightly contain the points; i.e., create

4 % constraints to bound the convex hull of the given points

5 %

6 % [A,b] = vert2con(V)

7 %

8 % V = a set of points , each ROW of which is one point

9 % A,b = a set of constraints such that A*x <= b defines

10 % the region of space enclosing the convex hull of

11 % the given points

12 %

13 % For n dimensions:

14 % V = p x n matrix (p vertices , n dimensions)

15 % A = m x n matrix (m constraints , n dimensions)

16 % b = m x 1 vector (m constraints)

17 %

18 % NOTES: (1) In higher dimensions , duplicate constraints can

19 % appear. This program detects duplicates at up to 6

20 % digits of precision , then returns the unique constraints.

21 % (2) See companion function CON2VERT.

22 % (3) ver 1.0: initial version , June 2005.

23 % (4) ver 1.1: enhanced redundancy checks , July 2005

24 % (5) Written by Michael Kleder

25 %

26 % EXAMPLE:

27 %

28 % V=rand (20,2)*6-2;

29 % [A,b]= vert2con(V)

30 % figure(’renderer ’,’zbuffer ’)

31 % hold on

Page 121



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

32 % plot(V(:,1),V(:,2) ,’r.’)

33 % [x,y]= ndgrid ( -3:.01:5);

34 % p=[x(:) y(:)]’;

35 % p=(A*p <= repmat(b,[1 length(p)]));

36 % p = double(all(p));

37 % p=reshape(p,size(x));

38 % h=pcolor(x,y,p);

39 % set(h,’edgecolor ’,’none ’)

40 % set(h,’zdata ’,get(h,’zdata ’) -1) % keep in back

41 % axis equal

42 % set(gca ,’color ’,’none ’)

43 % title(’A*x <= b (1=True , 0= False) ’)

44 % colorbar

45 k = convhulln(V);

46 c = mean(V(unique(k) ,:));

47 V=V-repmat(c,[size(V,1) 1]);

48 A = NaN*zeros(size(k,1),size(V,2));

49 rc=0;

50 for ix = 1:size(k,1)

51 F = V(k(ix ,:) ,:);

52 if rank(F,1e-5) == size(F,1)

53 rc=rc+1;

54 A(rc ,:)=F\ones(size(F,1) ,1);

55 end

56 end

57 A=A(1:rc ,:);

58 b=ones(size(A,1) ,1);

59 b=b+A*c’;

60 % eliminate dumplicate constraints:

61 [null ,I]= unique(num2str ([A b],6),’rows’);

62 A=A(I,:); % rounding is NOT done for actual returned results

63 b=b(I);

64 return

F.13 EKSEMPEL CARLEMAN.m

1 x = 0:0.01:1;

2

3 dx = x + x.^2+ x.^3

4

5 y = dx;

6

7 plt_nl = plot(x,y,’b-’,’Linewidth ’ ,3)

8 %%

9 n = 3;

10

11 A = zeros(n+2);

12 B = zeros(n,1);

13 C = zeros(1,n);

14 D = (0);

15 C(1) = 1;

16

17 for i = 1:n

18 A(i,i:i+2) = i;

19 end

20

21 %Removes the truncated terms

22 A(:,n+2) = [];

23 A(:,n+1) = [];

24 A(n+2,:) = [];

25 A(n+1,:) = [];

26

27 [r,k] = size(x);

28 z_mat = zeros(k,1);

29

30 for j = 1:k

31 z_mat (1:end ,j) = x.^j;

32 end

33

34 dz1 = zeros(1,k);

35 for l = 1:k

36 dz1(l,1:n) = A*z_mat(l,1:n,1) ’;

Page 122



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

37 end

38

39 y1 = x + dz1;

40

41 hold on

42

43 plt_3 = plot(x,y1(1:end ,1),’r--’,’Linewidth ’ ,2)

44

45 %%

46 n = 2;

47

48 A = zeros(n+2);

49 B = zeros(n,1);

50 C = zeros(1,n);

51 D = (0);

52 C(1) = 1;

53

54 for i = 1:n

55 A(i,i:i+2) = i;

56 end

57

58 %Removes the truncated terms

59 A(:,n+2) = [];

60 A(:,n+1) = [];

61 A(n+2,:) = [];

62 A(n+1,:) = [];

63

64 [r,k] = size(x);

65 z_mat = zeros(k,1);

66

67 for j = 1:k

68 z_mat (1:end ,j) = x.^j;

69 end

70

71 dz1 = zeros(1,k);

72 for l = 1:k

73 dz1(l,1:n) = A*z_mat(l,1:n,1) ’;

74 end

75

76 y2 = x + dz1;

77

78 hold on

79

80 plt_2 = plot(x,y2(1:end ,1),’y--’,’Linewidth ’ ,2)

81

82

83 %%

84 n = 1;

85

86 A = zeros(n+2);

87 B = zeros(n,1);

88 C = zeros(1,n);

89 D = (0);

90 C(1) = 1;

91

92 for i = 1:n

93 A(i,i:i+2) = i;

94 end

95

96 %Removes the truncated terms

97 A(:,n+2) = [];

98 A(:,n+1) = [];

99 A(n+2,:) = [];

100 A(n+1,:) = [];

101

102 [r,k] = size(x);

103 z_mat = zeros(k,1);

104

105 for j = 1:k

106 z_mat (1:end ,j) = x.^j;

107 end

108

109 dz1 = zeros(1,k);

Page 123



APPENDIX F. MATLAB CODE AND SIMULINK SCHEMES

110 for l = 1:k

111 dz1(l,1:n) = A*z_mat(l,1:n,1) ’;

112 end

113

114 y3 = x + dz1;

115

116 hold on

117

118 plt_1 = plot(x,y3(1:end ,1),’g--’,’Linewidth ’ ,2)

119

120 legend ([plt_1 , plt_2 , plt_3 , plt_nl],’Carleman: n = 1’, ’Carleman: n = 2’, ’

Carleman: n = 3’, ’Nonlinear system (4.4)’)

121 xlabel(’$z_1(t) = x(t)$’,’Interpreter ’,’latex ’)
122 ylabel(’$\dot{x(t)} = \dot{z(t)}$’,’Interpreter ’,’latex ’)
123 grid on

F.14 Simulink schemes

Page 124



Finds the inverse of the valve characteristics.



Step or operating values are set.

quadratic Carleman approximation simulation

Scopes for comparison between models.



Linearized Carleman approximation 
 for different n.



Integral performance criteria calculations
for:
Taylor models
Linearized Carleman approximations



Integral performance criteria calculations
for: The nonlinear model.



Integral performance criteria calculations
for: The cubic model.



Function calculating dx for the quadratic Carleman approximation using 2 variables.



Model simulations schemes: level 0.



Inside a model scheme: level 1.



Nonlinear dynamical model model tank1: level 2.



Nonlinear dynamical model tank 2: level2.



Linear model tank 1: Level 2



PQA: Level 2



Quadratic model: Level 2



PQB: Level 2



Cubic model: Level 2



Linearized Carleman model: Level 2



5th order model: Level 2



quadratic Carleman approximation 
models for different n.



Function calculating dx for the quadratic Carleman approximation using 1 variable.



Scheme of the implemented controller for the quadratic Carleman approximation. 



Function creating the z(t) state vector.  



Function calculating the delta variables uLV001 and UPA001 using the 
controller gain.



The calculated uPA001, uLV001 and uLV002 signals are sent to the 
actuators.

The measurements from the two-tank system feeding into
the controller.



Analog inputs.



Analog outputs.



  








	List of Figures
	List of Tables
	I Introduction
	Motivation
	Introduction
	The history of Carleman embedding
	Objective

	The two-tank system
	Description
	Nonlinear model of tank 1
	Nonlinear model of tank 2


	II Modelling using Taylor and Carleman approximations
	Taylor approximations
	Taylor series
	Taylor series in several variables

	Taylor models
	Linear model
	Quadratic model
	Partially quadratic models
	Cubic model
	Higher order models

	Taylor model comparison

	Modelling using the Carleman embedding
	Carleman embedding
	Carleman embedding technique
	Truncation

	Carleman approximation of the cubic tank model
	Carleman approximation comparison


	III Control
	State feedback control using the linear Carleman approximation
	Control
	Controllability of the linear Carleman approximation

	State feedback control using the quadratic Carleman approximation
	Supplemental theory
	Polytopes
	Lyapunov stability criterion
	State feedback control of nonlinear quadratic systems

	Controller for the quadratic Carleman approximation
	Controller for the quadratic Carleman approximation using two input variables

	Experimental results
	Application of the quadratic controller on to the two-tank system
	Analysis of the experimental results


	IV Conclusions and future work
	Conclusions
	Future work
	Bibliography

	V Appendices
	Taylor model comparison for Scenario 2
	Carleman approximation comparison for Scenario 2
	Controller of the quadratic Carleman approximation for Scenario 2
	Experimental results for Scenario 2
	Simulation of the controller designed with a reduced polytope
	MATLAB code and Simulink schemes
	totank_main.m
	Carleman_lin_ss.m
	Carleman_Linearized_func.m
	Carleman_NonLinearized_func_2Var.m
	Carleman_NonLinearized_func.m
	carleman_statespace_2Var.m
	carleman_statespace.m
	example_file_solver.m
	Quadratic_controller.m
	Quadratic_system.m
	Polytope_figures.m
	vert2con.m vert2con
	EKSEMPEL_CARLEMAN.m
	Simulink schemes



