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Abstract

The definition of optical flow is stated as a brightness pattern of apparent motion of

objects, through surfaces and edges in a visual scene. This technique is used in motion

detection and segmentation, video compression and robot navigation.

The Lucas-Kanade method uses information from the image structure to compose a gra-

dient based solution to estimate velocities, also known as movement of X- and Y-direction

in a scene. The goal is to obtain an accurate pixel motion from an image sequence

The objective of this thesis is to implement a post processing step with a weighted median

filter to a well known optical flow method; the Lucas-Kanade. The purpose is to use the

weighted median filter to remove outliers, vectors that are lost due to illumination changes

and partial occlusions.

The median filter will replace velocities that are under represented in neighbourhoods. A

moving object will have corners not just edges, and these vectors have to be preserved.

A weighted median filter is introduced to ensure that the under represented vectors is

preserved. Error is measured through angular and endpoint error, describing accuracy of

the vector field.

The iterative and hierarchical LK method have been studied. The iterative estimation

struggles less with single error. Because of this the weighted median filter did not improve

the iterative LK-method. The hierarchical estimation is improved by the weighted median

and reduced the average error of both angular and endpoint error.
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1. Introduction

The concept of Optical Flow was introduced by psychologist J.J.Gibson to describe the

visual perception of action in an environment [19]. Later this became a term in machine

vision to describe local image motion, and the vector field illustrating movement of pixels.

The real challenge of optical flow consists of the trade off between the time consuming

mathematical calculations versus the more effective, but less accurate methods [5].

D.Sun, S.Roth and M.J.Black [35] [36] published an alteration of the original Horn-Shunck

(HS) method, optimizing it by adding a weighted median filter to the computation. The

result was a significant improvement, but at the expense of its efficiency. A simplified

version of this altered method showed impressive improvement, with respect to the time.

Can this alteration be replicated with similar improvements to other methods?

The objective of this thesis is implementing a post processing step with a weighted median

filter to another original method, Lucas and Kanade (LK) [8]. How does the median filter

affect the accuracy of the method? How is the angular and endpoint error affected?

The objective will be to test the method on Dimetron, Hydrangea and RubberWhale

image sequences from the Middlebury Benchmark [5]. Ground truth from the image

sequences will provide an angular and endpoint measurement of the accuracy.

The weight function will be tested against the iterative LK-method. Outliers are more of

a problem in the coarse-to fine LK-method. The goal of this thesis is to reduce the outlier

source of error.
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2. Theory

2.1 Optical Flow

The definition of Optical flow is stated as a brightness pattern of apparent motion to the

object, through surfaces and edges in a visual scene [32].

This pattern is represented by a vector for each pixel in an image sequence, tracking the

motion of pixels and creating a vectorfield representing the motion scene. A single vector

represent a pixel that corresponds to the two dimensional projection of the motion.

This technique is used in motion detection and segmentation, frame interpolation, video

compression, robot navigation and three dimensional scene reconstruction.

Horn and Schunck [21] introduced in 1981 a pioneering method of computing optical flow.

Temporal changes of gray value structures contains three dimensional motion between

the sensor and the environment, as well as the spatial structure of this environment. The

idea was that extracting this information would provide a solution to detect motion, track

objects, correct for camera jitter, align images etc [28].

The quadratic formulation of Gaussian statistic did not account for reflection, occlusion,

motion boundaries and other form of noise causing outliers. Black and Anandan [9]

presented a robust estimation to deal with outliers first in 1996. [37]

Lucas and Kanade published also in 1981 their method of computing optical flow, taking

a different approach to the problem than Horn and Shunck. They stated that the use of

spatial intensity gradient from the image is used to find a good match through Newton-

Raphson iteration [8].

Since 1981 new methods have been developed, however HS and LK still remain popular

with endless extension and modifications. Barron, Fleet and Beauchemin [7] analysed a

number of techniques emphasizing the accuracy and density of measurement. Christmas

[11] introduced filtering for the computation of gradient based optical flow [32].
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Estimating optical flow is done by numerous methods, however they all share a common

procedure.[6]

1 Measure the spatial (∇I) and temporal (It) intensity derivatives.

2 Integrate normal velocities into full velocities.

2.2 The Motion Constraint Equation

Estimation of optical flow is based on two principles, brightness constancy and spatial

smoothness [37]. These are both methods of solving the motion constraint equation (2.4)

with 2 unknowns.

2.2.1 Brightness Constancy

Brightness constancy occurs in surfaces, which have no change in the image intensities

over time. This leads to small regions with constant image intensity, and the optical flow

equation (2.1) originate from this concept.

Pixels neighbouring a surface should have nearly the same motion as the surface. This

phenomenon is called Spatial Smoothness. To track pixels, look for nearby pixel of similar

image intensities.

Figure 2.1 is an illustration of the brightness constancy concept. The two images are

taken from the same position and capture the motion of an object. While the position

change, the image intensity of the object remain. The motion can then be defined by

equalizing the intensity equations.

Figure 2.1: Images of a moving object, illustrating equation (2.1). [6]
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I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.1)

I(x+ δx, y+ δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt+Higher Order Term (2.2)

Equation (2.1) is expanded by a first order Taylor series expansion to ultimately obtain

equation (2.4). The higher order term can be ignored, due to small insignificant size.

I(x, y, t) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt (2.3)

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t

δt

δt
= 0

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0

Ixvx + Iyvy + It = 0

(Ix, Iy) · (vx, vy) = −It

∇I · ~v = −It (2.4)

The image velocities ~v = (vx, vy), are the estimated optical flow. ∇I = (Ix, Iy) and It are

the image intensity derivatives, and these are computed from a gray scaled image.

The motion constraint equation (2.4) is limited by 2 unknowns and 1 equation. The

solution is obtaining as many equations as there are unknowns. Lucas-Kanade uses a

gradient based approach, see chapter 2.3

2.2.2 The Smoothness Condition

Instead of using the brightness constancy, a smoothness condition can be applied [17].

The conditions are then

A) Spatial Smoothness

B) Temporal Smoothness

C) By their combination

Spatial smoothness introduces an additional condition to minimize the square of the

magnitude in the gradient. Error is minimized to find the suitable value for the velocities
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(vx, vy), and these are used to calculate the gradient constraint equation:

I2xvx + IxIyvy = α2∇2vx − IxIt
IxIyvx + I2xvy = α2∇2vy − IyIt

The calculations are computational complex, and should be solved by an iterative method.

The HS method use spatial smoothness to solve the gradient constraint equation.

The temporal optimization method, smoothness is expressed as
(
∂vx
∂t

)2
and

(∂vy
∂t

)2
.

2.3 Gradient based estimation

The motion constraint equation have two solutions, a local and a global.

The local solution computes the intensity derivatives for a small window or area in an

image, which provides a robust computation under noise, but not a dense flow field.

The global solution attempt to minimize a global energy function. This method provides

a dense flow field but is more sensitive to noise.

Bruhn, Weickert and Schnörr [10] have explored if the global and local solutions can be

combined to achieve a technique that is robust under noise and produce 100% density

fields. This would make the post processing step, where sparse data is interpolated,

obsolete.

The LK-method, the focus of this thesis, uses an adaptive window. The HS-method on

the other hand optimizes the flow field using brightness constancy and flow smoothness

[30].

The motion constraint equation have several solutions, but the most common is increasing

the number of equations. Some requirements have to be evaluated [17].

A) The Spatial Local Optimization Method, assumes constant velocity over each spatial

neighbourhood. This method is among others used by Kearney, Thompson and

Boley [24] and Lucas and Kanade [8]

B) The Temporal Local Optimization Method. Assumes constant velocity over tempo-

ral neighbourhoods. This method was used by Kearney, Thompson and Boley [24]

and Nomura, Miike and Koga [29].

C) The Multispectral Constraint Method, uses three channels for each pixel. Markandey

and Flinchbaugh [27] and Woodham [40] used this method.
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D) The Second Order Derivative Method of each pixel. This method is used by among

other Bainbridge-Smith and Lane [3], Nagel [28], Tretiak and Pastor [38] or Uras,

Girosi et al [39].

E) A combination of the solutions above.

The focus of this thesis is to use the gradient based Lucas-Kanade (LK) method to

compute the velocity field. The Spatial Local Optimization method in the LK-method,

use information about regions. A region of pixels is considered to have the same velocity.

The motion constraint equation is then solved by obtaining information in a small spatial

neighbourhood.

Two equations are sufficient to obtain a unique solution for ~v = vx, vy. More than two

equations reduce the effect of error in the observed equations from figure 2.2. The spatial

neighbourhood Ω, is equal to n× n pixels, producing n2 equations.[17]

∇I =


I1x I1y

.. ..

Iix Iiy

.. ..

In2x In2y

 , b = −


I1t

..

Iit

..

In2t

 , ~v =

[
vx

vy

]

The gradient constraint equation can then be solved, as illustrated from the figure below.

Figure 2.2: Computed constraint line [32]
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2.3.1 Aperture problem

The 2 unknowns, 1 equation problem with the motion constraint equation (2.4) is a

consequence of the aperture problem.

The aperture problem is the limitation of insufficient local image intensity structures to

measure full image velocity. The component normal to the local intensity structure is

usually available. [6] [32]

Figure 2.3: The aperture problem [6]

The figure (2.3) shows a moving line through circular aperture. It is impossible to recover

full image velocity, however the image velocity normal to the line is available. The problem

is finding an additional constraint that yields a second equations with the same unknown

~v.

Figure 2.4: Finding the additional constraint with the same unknown as ~v [6]

The motion constraint yields a line in ~v space.
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vn =
−It
||∇I||2

n̂ =
(Ix, Iy)

||∇I||2

~vn = vnn̂ =
−It(Ix, Iy)
||∇I||22

(2.5)

The LK-method allows estimation of the normal velocity via a least square calculation,

and the motion constraint equation can be re-written :

~v · n̂ = vn (2.6)

The eigenvalues of the Hessian matrix [ATA] are of interest for both the Harris Corner

detection and to test if Aperture is a problem in the local window estimation. These

eigenvalues are tested against a defined threshold, often 1. Then certain precautions are

defined from this results. The figure (2.5) illustrates the information obtained from this

matrix.

Figure 2.5: The hessian marix and the result of its eigenvalues [16]

Given λ2 ≥ λ1 ≥ 0, the orhogonal eigenvectors ê1 and ê2 are obtained.

If the smallest eigenvalue λ1 ≥ τD, thus bigger than 1, then Aperture is still not a problem

in the local window. The velocity is calculated from the usual equation (2.20).

However Aperture is a problem if the biggest eigenvalue is larger than set threshold,

λ2 ≥ τD. The minimum eigenvalue is less than the threshold, λ1 < τD. The least square
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calculation can be estimated by projecting ~v in the direction of the large eigenvalue, as

shown in equation.

~vn = (~v · ê2)ê2 (2.7)

2.4 The Image Intensity Derivatives

The spatial Ix, Iy and temporal It intensity derivatives are obtained from the image by a

convolution between the grayscaled, gaussian filtered image and the filter mx,my and mt.

Ix = mx ∗ (I1 + I2) mx = 1
4

(
−1 1

−1 1

)
Iy = my ∗ (I1 + I2) my = 1

4

(
−1 −1

1 1

)
It = mt ∗ (I2 − I1) mt = 1

4

(
1 1

1 1

) (2.8)

Intensity changes occurs when there are changes in the image scene. Changes can be in

depth, surface color and texture. It can also be discontinuities in orientation and surface

color and texture. These occurrences all comes from geometric events in the scene.

Non-geometric events can be specularities, shadows or inter-reflections.

The intensity derivatives are also known as a gradient. With this name magnitude and

direction are important followers. The magnitude of the gradient inform of the change of

the image, while the direction tell of the direction of which the image changes most rapid.

∇I =

(
∂I

∂x
,
∂I

∂y

)
(2.9)

To differentiate, derivative filters are used. [-1 1] and [-1 0 1] are two well known filters

for this purpose. By using the former, the directional filters can be expressed by:

mx =
(
−1 1

)
,my =

(
−1 1

)T
,mt =

(
1 1

)
(2.10)

The equations can then be expressed as:

∂I

∂x
≈ I(x− 1, y)− I(x, y) (2.11)
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∂I

∂y
≈ I(x, y − 1)− I(x, y) (2.12)

This latter filter look at changes over a wider region, 2∆x and 2∆y, and can be expressed

by:

mx =
1

2

(
−1 0 1

)
,my =

1

2

(
−1 0 1

)T
,mt =

1

2

(
1 1 1

)
(2.13)

The filter derivatives over this area:

∂I

∂x
≈ I(x+ 1, y)− I(x− 1, y)

2
(2.14)

∂I

∂y
≈ I(x, y + 1)− I(x, y − 1)

2
(2.15)

2.5 The Lucas-Kanade Method

The LK method is a least square (LS) minimization of the 2D gradient constraint equation

(2.4) with a gaussian window g(x, y). The spatial intensity gradient information is used

to direct the search for the position that yields the best match. [32]

One of the conditions to the LK-method is brightness constancy. Spatial and temporal

intensity derivatives are obtained from an gray scaled intensity image. The LK-method

uses the spatial local optimization method, which assume constant velocities over a spatial

neighbourhood Ω = n×n. Gaining the gradient constraint equations, the velocities can be

calculated. A Least Square estimation is introduced to obtain the most accurate estimate.

Equation (2.16) is a least square calculation of the gradient constraint multiplied with a

gaussian window to minimize error [34].

ELK(vx, vy) =
∑
x

g(x, y)
(
Ixvx + Iyvy + It

)2
(2.16)

Where g(~x) is a gaussian function that determines the support of the centred estimator.

The partial derivative is calculated from the minimized error estimate, obtaining equation

(2.17).

[
∂E(vx,vy)

∂vx
∂E(vx,vy)

∂vy

]
=

[∑
x g(x, y)

(
vxI

2
x + vyIxIy + IxIt

)
= 0∑

x g(x, y)
(
vyI

2
y + vyIxIy + IyIt

)
= 0

]
(2.17)
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The partial derivative is the result of the smoothing constraint, where the additional

condition is to minimize the square of the magnitude in the gradient. With this in mind,

the gradient constraint equation can be rewritten as:

[ ∑
g(x, y)I2x

∑
g(x, y)IxIy∑

g(x, y)IxIy
∑
g(x, y)I2y

][
vx

vy

]
= −

[∑
g(x, y)IxIt∑
g(x, y)IyIt

]
(2.18)

ATA · ~v = AT~b (2.19)

~v = [ATA]−1AT~b (2.20)

A = [∇I(x1, y1), ...,∇I(xN , yN)]

~b = −(It(x1, y1), ..., It(xN , yN))

2.5.1 Iterative LucasKanade

Solving the iterative LK algorithm is done by repeating the process until the desired result

is obtained.

Iterative LS computation is using the metrics in the local window to find the velocities

vx and vy. From the gradient in the local window, the Hessian matrix H is found. The

Hessian matrix is defined as H = ATA, and contains information of the local window

region.

The LK-method estimates the motion of objects from a sequence of images. Velocity of

the image is generated from the transformation of one image into the next, like figure 2.6

illustrates.

LK is a local optimization problem that can not preform properly if the movement are

too large. The gradient information is obtained from neighbouring pixels and the real

motion can not extend beyond the local region. Local neighbourhoods are finite for the

LS approach and this limits the estimation of velocities in large movements. It is common

to use a pyramidal approach to this problem [32].
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Figure 2.6: The velocity, illustrating the transformation from one image to the next [8].

2.5.2 Coarse-to-Fine Lucas-Kanade

In the coarse to fine approach the input images are resized to a lower resolution. First

filtering with a LP filter, then subsampled by the coarse-to-fine approach.

The image gradients are first computed on the top level of the pyramid, then upsampled

and used to initialize the estimate at the next level, illustrated in figure 2.7.

In the image pyramid a generic image im1 of size nx×ny where the im10 is the zero level

of the image. This is the highest resolution image. The pyramid representation is then

built in a recursive fashion from im0 to im1, and from im1 to im2.

The input images are resized to a lower resolution, first by filtering with a low pass

filter and then subsampled by a factor of 2, technique called coarse-to-fine approach, as

shown in Figure 2.7. The computation of the optical flow is started with the lowest

resolution images, at the highest pyramidal level. The result is then passed on to the

higher resolution level as an initial estimate. Running the algorithm on higher resolutions

will cause higher accuracy of the flow field.



14 CHAPTER 2. THEORY

Figure 2.7: The coarse-to fine implementation[18].

2.6 The Goal

When D.Sun, S.Roth and M.J.Black published their improvement on the HS-method

[35], it ranked as number 1 on the Middlebury Benchmark evalution [1]. They published

another study in 2013 [36], on the results gained. The method was called non-local classic,

and at june 2015 it ranked as 33.3 on average angular error and 31.4 on average endpoint

error.

The non-local classic method was an implementation of the discovered improvement a

weighted median filter had on the method.

The Harris corner detector detects corners, edges and flat regions of an image. The goal

is to use this detector to implement weights to corners. Edges are more prone to error,

because of the aperture problem and should have zero weights.

Though their method is not still ranked at the top of the Middlebury evaluation, it is

still interesting to see what made these improvements. Can these improved results can

be reproduces with another established method.

The goal of this thesis is to see if the weighted median removes outliers and reduces error

on the LK-method.
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2.6.1 The improvement of HS 2013

The goal of D.Sun, S.Roth and M.J.Black publication was to see what made the leading

optical flow estimation successful [35] [36]. Results showed that applying a median filter

to intermediate flow values during incremental estimation and warping made the most

significant improvement. Both improved the accuracy of the recovered flow fields and

increased the energy of the objective function. By using Li and Oshers observations [26]

on the L1 energy function, a non local term was added. They stated that the new term

integrated information over large spatial smoothness. They also incorporated a weighted

median filter to prevent over smoothing across boundaries.

At the point of the first publication, it ranked 1st in Angular and Endpoint error on the

Middlebury evaluation.

The median filter used is a 5 × 5 window, that performed better than both 3 × 3 and

7× 7. The 5× 5 filter was applied on the window after every warping iteration.

2.7 Improving the LK-method

The LK-method is not known to produce accurate vector fields. Vectors representing

corners and edges are often under represented in a local areas, and overfiltration is a real

concern. These vector values are often lost during compilation filtering. By weighting

important pixels in the image, this can be prevented.

The Harris corner detector determine flat regions, edges and corners from eigenvalues of

the Hessian matrix H = ATA. Information about image structure distribute weights to

corners, which is more likely to contain a moving object.

The median filter have a reputation of being more sensitive to corners and edges than a

linear filter. This undocumented hypothesis is put to the test in this thesis.

2.7.1 Harris corner detector

Optical flow represent movement in an image sequence. The moving part of the image is

an object, defined by structures, edges and corners.

The Hessian matrix is defined as

H =
∑

(∇I)(∇I)T ≈
∑[

I2x IxIy

IxIy I2y

]
= ATA (2.21)
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This matrix is a vital part of the LK method and is already defined in equation (2.20).

The corner detector is used do distribute weights to corners to define higher weights of

pixels. Edges provide more pixels with weight, emphasizing more than the moving object.

Corners are more precise, because more objects have edges, but not all have corners. The

moving object will have corners. The Harris corner detector is given by:

det(H)− k(
trace(H)

2
)2 (2.22)

Where Det(H) is the determinant of the Hessian matrix H, and trace is the sum of the

eigenvalues of H. K is some constant.

The Harris corner detector looks for the local maxima of equation (2.22). The results are

then tested against a threshold, which check whether the eigenvalues is larger than the

square of the average.

Large local maxima values imply big eigenvalues. The eigenvalues are big at corners, edges

score some what lower on the scale, while flat regions should produce small values[20].

These values are normalized to a scale from 0 to 1, with the purpose of weighting the

median filter. By this definition, if a pixel is located in a neighbourhood with a corner,

these should be weighted. Edges return negative values from the Harris corner detector,

and the scaling sets these values to zero, and providing no weights to edges. Flat regions

should score low on the normalized scale.

2.7.2 Outliers

Outliers are lost pixels due to illumination changes or partial occlusion. Intensity changes

illustrates a moving object, and changes in illumination in a static object illustrate a false

movement. These point should be rejected in the process. [41] There are several methods

for outliers rejection, but the RANSAC method is the most common in optical flow.

The RANSAC method randomly select a subset of the data and determine the outliers

from dataset. The process is repeated trough a prescribed number of iteration. the

method is capable of interpreting data containing a significant error and is suitable for

automated image analysis [14].

Rejecting outliers creates holes in the flow field, and the denisty if no longer classified as

100%. However large inaccurate data is useless, and a minor decrease in the density is

preferred [2].
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By using a threshold, the density can be traded against accuracy. The measurement is

defined by the equation:

Density Measure =
Number Of Computed V elocity V ectors

Total Number of V elocity V ectors
× 100% (2.23)

2.7.3 Why Median filtration

Instead of using the RANSAC method, this thesis study how a weighted median filter

affect outliers. In theory, outliers will be replaced with the median neighbouring pixels,

as the pixel is under represented in the neighbourhood.

Median filtering finds the median over a sliding window of fixed size. In an iterative case,

median filtering would achieve noise reduction with smaller bias near edges.

Median filters, applied to an image, filter the pixel based on the median filter mask. To

a vector field, the decision on length and angle have to be made. Whether to filter on

length, angle or both.

2.8 AAE and AEE

The estimated performance of the vector field is measured through Average Angular Error

(AAE) and Average Endpoint Error (AEE).

Ground truth is used to estimate the accuracy of the method and is defined as the true

motion field. With this measurement available, it becomes possible to compare the esti-

mates to the ground truth. Image sequences from the middlebury benchmark [1] provides

ground truth.

AAE is a an accuracy determinant of the angle of the vector, defined by the equation

(2.24).

AAE = cos−1(ĉ · ê) (2.24)

Where ĉ is the ground truth and ê the vector estimates.

To get an accurate estimate on the length of the vector, AEE is defined by equation (2.25).

AEE =
√

(vx − vGTx)2 + (vy − vGTy)2 (2.25)

The need for ground truth limits the available test sequences. From the Middlebury

benchmark, Dimetron, Rubber Whale, Hydrangea from figure 2.8 are all image sequences
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with public available ground truth. These sequences are real images with hidden texture.

Figure 2.8: The test sequences: Dimetron, Rubber Whale and Hydrangea.



3. Implementation

The implementation of the Lucas Kanade method was done using Matlab R2012b.

Deqing Sun, from the Department of Computer Science at Brown University published his

implementation of weighted median filtration on the HS method, together with his article

[35]. The source code from the article is available, and made it possible to review both

his implementation and results. Several of his functions have been to great use during

the implementation in this thesis, among others compare the results to the ground truth

and a measurement of angular error.

Stefan Roth, from the Department of Computer Science at TU Darmstadt published a

function called plotflow(), effectively implementing the vectorfield by arrows. This made

it possible to review the flow field of the estimates, and discuss regions of error. He also

published several functions making it easier to review the results. E.g. flow to Color, a

more precise method of reviewing challenging areas of the estimates.

The University of Central Florida and author Sohaib Khan published lab material on the

Lucas-Kanade method [25], consisting of a basic LK-computation of the equation 2.20.

The implementation of Lucas-Kanade by Khan is used as a base for this thesis. Some

adjustments was however made to the original code. The derivative filter was changed

to a more suitable error reducing filter. To smooth the image and reduce computational

error, a pre processing step using a gaussian filter was added. These conditions had to

be implemented before the real goal of the thesis started; minimizing the outlier error by

using a weighted median filter.

3.1 Iterative Lucas-Kanade

The iterative approach of implementing Lucas-Kanade is based on iterating through every

element of the image, calculating the desired flow using a defined window. Algorithm 1
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shows a simple implementation of equation (2.20), with an added Harris detetor to com-

pute a weight matrix. The additional weight computation will be described in section 3.3.

Algorithm 1: LucasKanade

Input: image1 im1, image2 im2, windowSize
Output: velocity u, velocity v, weight matrix ω

Initialization
halfWindow = bwindowSize/2c
[fx, fy, ft] = ComputeDerivatives(im1, im2)

for element i in row do
for element j in column do

curFx = window centered around element in matrix Fx
curFy = window centered around element in matrix Fy
curF t = window centered around element in matrix Ft

curFx = curFxt

curFy = curFyt

curF t = curF tt

curFx = vec(curFx)
curFy = vec(curFy)
curF t = −vec(curF t)
A = [curFx, curFy]
H = A′A
U = H+A′curF t

w(i, j) = |H| − Constant ∗ ((tr(H))/(2))2

u(i, j) = U(1)
v(i, j) = U(2)

end

end
Replace all NaN in u and v with 0

The function ComputeDerivatives used in the algorithm computes the needed derivatives

for the given images. Fx describes the intensity change in the horizontal direction for

both images, and fy the intensity change in the vertical direction. While ft describes the

difference between the two images.

fx = im1 ∗ filterx + im2 ∗ filterx
fy = im1 ∗ filtery + im2 ∗ filtery
ft = im1 ∗ filtert − im2 ∗ filtert

This method iterates through the image pixel elements. Given a defined pixel in the image,

a corresponding window centered around the element is found for all three derivatives.
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All three windows are transposed and vectorized. The intensity derivate (A) are defined

as the matrix consisting of change in horizontal and veritcal direction. A Hessian matrix

is then created by using the intensity derivates. Flow is finally computed by taking

the pseudoinverse of the Hessian matrix multiplied with the transpose of the intensity

derivative and time derivative.

3.2 Hierarchical Lucas-Kanade

The Hierarchical approach of implementing Lucas-Kanade uses the known image pyramid.

Flow is first found by studying a reduced version of the original image, this flow is then

used as an initial value when calculating the flow for the next step in the pyramid. A

simple implementation of the method is shown in algorithm 2.

Algorithm 2: HierarchicalLK

Input: image im1, image im2, pyramid levels numLevels, smoothing window size
windowSize, iterations

Output: length matrix u, angle matrix v, cert

Build pyramid
Set pyramid1 = im1 and pyramid2 = im2
for i = 2 to numLevels do

Reduce im1 and im2 by LP-filter and subsample the image by a factor of 2
Insert im1 into a new layer in pyramid1 and im2 into a new layer in pyramid2

end

Base level computation
Set baseIm1 and baseIm2 as the smallest image in the corresponding pyramids
[u,v] = LucasKanade(baseIm1, baseIm2, windowSize)
for i < iterations do

[u, v] = LucasKanadeRefined(u, v, baseIm1, baseIm2);
end

Propagating flow to higher levels
for i = 2 to numLevels do

Expand u to uEx and v to vEx by scaling the matrixes with a factor of two.
Multiply uEx and vEx with a factor of two.

Set curIm1 and curIm2 as the pyramid images corresponding to the size of
uEx and vEx

[u, v] = LucasKanadeRefined(uEx, vEx, curIm1, curIm2)
for i < iterations do

[u, v, cert] = LucasKanadeRefined(u, v, curIm1, curIm2)
end

end
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In addition an initialization step should be implemented as this method has some limi-

tations on inputs. Both images has to be greyscale, have identical size and be dividable

by 2numLevels−1. These requirements can easily be implemented by modifying the input

images.

The method is divided into three distinct sections: building pyramid, base level compu-

tation and propagating flow to higher levels. The first section creates the image pyramid

from a bottom-up approach by lowpass filtering the image and subsampling with a fac-

tor of two. The second section calculates the base flow for the smallest image in the

pyramid, used for propagating flow in higher levels. The third section propagates the

previously calculated flow to the next level in the pyramid by scaling the estimates by a

factor of two, and using this flow as an estimate in the next calculation. As the method

LucasKanadeRefined computes flow given previous estimates, this method is run several

times. This is defined by setting the parameter iterations in algorithm 2.

3.3 Median Weight filter

Sun, Roth and Black suggest in their thesis [35] implementing a weighted median filter,

to allow defining the importance of individual pixels. The challenge is to determine which

pixels. A weight function should be used to determine pixels with higher importance, and

use this information when filtering the image.

If the computation struggles with single error outliers, adding a weighted median filter

should in theory improve the result. The filter will only improve single error velocities,

not affecting the global accuracy of the velocity estimation.

This thesis has chosen to compute weights based on the Harris corner detector. By

studying the eigenvalues from this detector, we can distinguish corners, edges and flat

regious in the image. The resulting matrix of eigenvalues can then be used for creating

weights based on the desired property. As the weights are directly based on the eigenvalues

from the detector, large values can appear in the weight matrix. To avoid this, we have

chosen to normalize the weights in the region 0 − 1. Where a weight of 1 means the

pixel element corresponding to the weight will be used directly, while a 0 means the pixel

element corresponding to the weight will be discarded.

The weight was applied as a post processing step, after the velocities were estimated.
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3.3.1 Weighted Filter

A simple algorithm of the developed weighted filter is shown in algorithm 3. The method

require an already computed weight matrix w. This thesis uses the Harris corner detector

as a base for the weight matrix, and the computation for this is done in the modified

LucasKanade, seen in algorithm 1.

Algorithm 3: Weighted median filter

Input: Matrix A, weight matrix ω, windowSize
Output: Weighted matrix B

Initialization
halfWindow = bwindowSize/2c
Define a sigmoid weight function, s

for element i in row do
for element j in column do

Extract window centered around element from ω as ω window
Find ω01 by normalizing ω window to values between zero and one
Find ω01s by applying s to the normalized window

Find window as the Hadamard product between ω 01s and the
corresponding window from A

Set B(i,j) as the median of window
end

end

To allow for non-linear weighting, a sigmoid function is chosen as a weight function. The

ideal weight curve is unknown and have to be tested. The sigmoid function is chosen as

it can easily represent a step, non-linear functions and linear functions.

The method iterates though the elements in the input matrix. For each element a window

centered around the element is extracted from both the weight matrix and the input

matrix. The weight window is then normalized in the region 0 − 1 before applying the

sigmoid function to calculate the final weights. The weights are then applied to the input

window by calculating the Hadamard product between the two matrices. The resulting

pixel element is then found as the median of the weighted window.

Weighting should be done by assigning small weights to regions of low importance, like

flat regions. The point of the weighting is to ensure corners or edges are not over filtrated.

These vectors are under represented in a local window and should be distributed weights

to ensure that their movement is preserved.

Edges can sometime struggle with the aperture problem, where one velocity can be mea-

sured, but there is insufficient image intensities to measure the other. The normal velocity
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of the other velocity is the solution to this problem, however this can sometime increase

error.

Because of this problem, the edges have been distributed zero weights. The print of the

cloth, in the Dimetron sequence from figure have edges, but there is no movement here.

Moving objects will however always have corners, and we have because of this chosen to

emphasize on this property.



4. Results

The main challenge of implementing the LK-method is its sensitivity to change. Which

is why it is important to define a starting point of the computation method.

Common problems with images are large motions, which the iterative LK-method strug-

gles with. The solution is using the hierarchical LK-method, unfortunately does this

method also struggle with the large motion of small objects.

Other problems in scenes are the degradation of camera such as sensor noise. Illumina-

tion change and atmospheric effects are also problems along with high specularities and

transparent materials.

The hidden texture data contains a number of moving shadows and other illumination

related effects. These problems are discussed in the following sections.

4.1 Dense flow field

Some velocities lack sufficient information to be estimated and in the ground truth these

flow values have been set to an abnormal high number, 1 × 109. This means that there

are holes in the flow field and the density is less than a 100%.

To calculate the density, a matrix of the same size as the images is created. If the ground

truth velocity is 1× 109 or higher, the matrix element is defined as 1. If the value is less,

the element is defined as 0. To calculate the number of holes in the density field, the sum

of the matrix elements are calculated

The process is defined as follows for the Dimetron sequence.

Holes in the flow field = 10 772

Total Number of pixels = 226 592

10772

226592
× 100% = 4.75% (4.1)
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Image Number of Unobtainable Density
Dimetron 10 772 95.25%
Hydrangea 14 880 93.43%
RubberWhale 3 622 98.40%

Table 4.1: The density of the hidden texture sequences.

4.2 Weight function

The Harris corner detector is used to weight the image pixels in a median filtration. The

weight is based on the retrieved information from the eigenvalues of the Hessian matrix

given in equation (2.21).

Scaling is done by creating a weighted window using the Harris output values in the

window surrounding each pixel element. The weight window is normalized with focus on

detected corners, letting these pixels weight extra under the median filtration.

The normalized values are plotted with several curves to test several weight functions.

The sigmoid function, a linear curve and a step function distribute weights differently.

The linear weight function was quickly discarded as a solution, when the error increased

under this condition. The step and the sigmoid function showed small improvements on

the median filter.

The iterative LK-method uses approximately 30 seconds to compute the velocities and

plot them into a vector field.

4.2.1 Linear

At first the linear weight function, shown in figure 4.1 was applied. This would apply

weights to corners, but also some to the flat regions of the scene.

AAE AAE Weighted AEE AEE weighted

Dimetron Image sequence:

11.1036 13.3178 0.5300 0.5939

Hydrangea Image sequence:

11.2121 11.7917 1.1031 1.1291

RubberWhale Image sequence:

15.8819 15.2370 0.4981 0.4653

Table 4.2: Measured error of a linear weight function.
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Figure 4.1: The weighted linear function.

The error table 4.2 represent the error of the iterative computation using a linear weight

function. This function does not work, because it distribute most weight to corners, but

also some weights to flat regions. Only the RubberWhale image sequence is improved

by this filter, which is due to the nature of the median filter and the underrepresented

outliers.

4.2.2 Sigmoid

Another weighting function taken into account is a step function and a sigmoid curve.

Both give large weights to corner, but varies in weights to the flat regions. The step

function is only a stricter version of the s-function. It distribute weights to only to

corners. Unlike the s-function which might distribute some depending on turning point.

Figure 4.2 shows the applied S-function to the median filter.
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Figure 4.2: The applied S-function to compute the weights of the image.

AAE AAE weighted AEE AEE weighted

Dimetron Image sequence:

11.1036 11.1986 0.5300 0.5239

Hydrangea Image sequence:

11.2121 11.4050 1.1291 1.0884

RubberWhale Image sequence:

15.8819 14.8946 0.49812 0.4553

Table 4.3: Measured error of a weighted S-function.

Figure 4.3 show the computed error using the computed median filter and the applied

S-function. The endpoint error is consistently improved, but the angular error is only

improved at the hydrangea sequence. The weight function still applies some weight to the

flat regions of the scene.

4.2.3 Step

The Harris detector distributes low values for flat regions, and higher for corners. To

compute weights, these values are normalized from 0 to 1. This scaling makes the new

values for the flat regions minimal.

The chosen turning point is illustrated in figure 4.3.
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Figure 4.3: The applied step function to compute the weights of the image.

AAE AAE weighted AEE AEE weighted

Dimetron Image sequence:

11.1036 10.0989 0.5300 0.4899

Hydrangea Image sequence:

11.2121 11.3818 1.1291 1.0884

RubberWhale Image sequence:

15.8819 14.5701 0.4981 0.4469

Table 4.4: Measured error of a weighted Step-function.

The median filter works on the endpoint error, however the improvement is small. The

angular error is improved in 2 out of 3 image sequences, when applying the weighted

median on the iterative LK-method.

The iterative computation does not struggle with anomalies the same way the hierarchy

computation does. This weighted median does not seem to have a big impact on the

iterative computation.
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4.3 Applying the weighted median filter

Information about the vector field is needed when deciding where to apply weights. The U

vector represent movement of the X-direction, while the V direction represent movement

of the Y-direction.

Logic tells of movement biggest at the U velocity. Both the camera and object are more

likely to move along this axis, unless the moving object is falling.

What will provide the better result when applying the filter? Filtering on one of the

velocities, perhaps the one with consistently larger movement? Or perhaps both?

Image AAE AEE

Applying weights on V:
Dimetron 10.0989 0.4899
Hydrangea 11.3818 1.0884
RubberWhale 14.5701 0.4469
Applying weights on U:
Dimetron 11.6019 0.5252
Hydrangea 14.4055 1.2074
RubberWhale 17.0707 0.5120
Applying weights on U and V:
Dimetron 10.3814 0.4800
Hydrangea 13.1699 1.1336
RubberWhale 15.5772 0.4570

Table 4.5: Table of the error change from weighting different velocities.

The table 4.5 display that just weighting the V velocity is a good idea. This means that

change in Y-direction should be filtered for optimal effect.

Figure 4.4 display the angular error of the computed Dimetron sequence. The different

images have been weighted accordingly, 4.4a on the U velocity. 4.4b on the V velocity

and 4.4c on both U and V velocities. Weighting on both the velocities seem to help the

surrounding area of the object. However the table 4.5 dispute this, and inform of an

increased average error.

The X-direction usually have the most movement as few object move along the Y-axis,

unless falling. The X-direction should have more movement, which is why it is harder

to filtrate in this direction. The Y-direction should have less movement, and a sudden

outlier is easily filtrated. This is probably why the median filter have more effect on this

velocity.
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(a) Weighted U.

(b) Weighted V. (c) Weighted U and V.

Figure 4.4: Displaying the Angular error of different weights on U, V and UV velocities.

(a) Weighted U.

(b) Weighted V. (c) Weighted U and V.

Figure 4.5: Displaying the endpoint error of different weights on U, V and UV velocities.

The endpoint is precise with the dimetron, however it struggles with the surrounding



32 CHAPTER 4. RESULTS

areas. The diffuse reflection point of the image is consistently wrong on all images.

Both the angular and endpoint in figure 4.4 and 4.5 struggles with the area surrounding

the tail and the diffuse reflection of the cloth.

The figures 4.4 and 4.5 display small differences between weighting on V velocity or UV

velocity. The table 4.5 is rendered credible, and the V velocity should be added median

filtrated weights.

4.4 Hierarchical LK-method

The three sequence used 75 seconds each to compute the velocities. The run time of

the iterative LK method was approximately 30 seconds. The first impression of the

computation warn us that the iterative is more precise. It does not struggle with outliers

and single point error to the same degree that the Hierarchical computation does. A

weighted median should perform better on the hierarchical method because of this.

The first weight function tested was the sigmoid function from figure (4.2). This function

deliver high weights to corners and some to flat regions.

AAE HLK AAE HLK weighted AEE HLK AEE HLK weighted

Dimetron Image sequence:
16.7625 14.5239 0.9203 0.7456
Hydrangea Image sequence:
14.9308 12.1603 1.4641 1.1297
RubberWhale Image sequence:
21.8339 17.1046 1.0141 0.7118

Table 4.6: The error of the weighted median filter applied on the Hierarchical LK-method

Brightness of pixels is determined by the response of the camera to light, the fraction

of light reflected from the surface to the camera and the amount of light falling on the

surface [13].

Table (4.6) and figure (4.10) both shows that the hierarchical computation is improved

by a weighted median filter.

4.4.1 Dimetron Image sequence

Figure 4.6 marks the most obvious problem areas of the Dimetron sequence. Figure

4.7a illustrates how these area change from the hierarchy computation to the hierarchy

computation with a weighted median filter (4.7b).
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Figure 4.6: The Original image.

(a) Hierarchical Dimetron. (b) weighted Hierarchical Dimetron

Figure 4.7: The troubled area of the Dimetron image sequence.

The Original image sequence from figure 4.6 show that these problem areas are in regions

of diffuse reflection. With a changing image these intensities are expected to vary more,

and error can easily occur here. Figure 4.8 illustrates the problem area of the Dimetron

sequence from figure 4.7 with diffuse reflection. The surface reflects light, and scatters

light evenly across the directions leaving a surface. The brightness does not depend on

the viewing direction.

Figure 4.7 and 4.8 illustrated how the weighted median affect the flowfield. The filter is

effective on the angle, however the error vectors still struggles with large endpoint values.

From these plots, the improvement on the endpoint is still unclear. The histogram from

figure 4.9 illustrates this better.
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(a) The area marked with red from figure
4.7a.

(b) The weighted plotted marked with red
in the original plot figure 4.7b.

(c) The area marked with black in figure
4.7a.

(d) The weighted plot of the area marked
with black in figure 4.7b.

Figure 4.8: The plotted troubled area of the Dimetron image sequence.

Figure 4.9: The histogram of the error in the Dimetron image sequence.

The x-axis on the AEE graph hints of improvements. A closer look on the data show

that the biggest singular endpoint error is 87.4 high on the original hierarchical compu-

tation. The highest outlier in the weighted median is located at 41.1, half of the original

computation.
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In table 4.6 the Average Endpoint error goes from 0.92 to 0.74. While the Average

Angular Error is changed from 16.7 degrees to 14.5 degrees. The density is 95.25%

The body of the Dimetron, in the image sequence is clear, but it struggles with the area

behind the Dimetron object head. The results from the error plot in figure 4.7 matches

the black white error image in figure 4.10.

(a) AAE. (b) AAE weighted.

(c) AEE. (d) AEE weighted.

Figure 4.10: The Angular and Endpoint error of the Dimetron image sequence.
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4.4.2 Hydrangea Image sequence

Hydrangea is part of the hidden texture sequence from the middlebury benchmark. The

petals on the flower is dominated by shadows and detailed texture. If the surface cannot

see the light source it is defined as a shadow. The surface is not dead black, because

the surface is interreflected from other surfaces. These parts are directed away from the

illumination direction.

The marked area is a very detailed area with some degree of shadow. Movement here

are harder to track, which is why the problem area are the petals of the surrounding

hydrangea. The pixels are harder to track because of the very detailed petals which are

prone to change. Optical flow is known to struggle with among other things, shadows.

This leads to outliers caused by lighting change and occlusions.

Figure 4.11: The Hydrangea image.

(a) (b)

Figure 4.12: The Hydrangea image sequence
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Figure 4.13 illustrates the same as the previous chapter showed on the Dimetron sequence.

The median filter changes the angle of the flow, but still struggle with large endpoint error.

(a) (b)

Figure 4.13: Plot of point X:100 Y:240

The hierarchical computation struggles with outliers. The vector in X:140 Y:325 from

figure 4.13 is an example of this. The weighted median filtrated removes this outlier and

is replaced with the weighted median of the neighbourhood.

The error is still high in the plotted area. The weighted median filtrates on the angle,

but the endpoint is to dominated by the neighbourhood and remains large.

This area in the left corner of figure 4.14d is still dominated by white regions, illustrating

region error.

In this image sequence, the endpoint error surrounding the hydrangea is more dominated

by error after applying a post processing step.

The histogram of the error in figure 4.15 represent the angular and endpoint error of

the estimates. Figure 4.15 is harder to interpret, because of the large X-axis. A closeup

informs of the largest single endpoint error is reduced from 121 to 110. The angular

error had a collection of error on around 2.9 degrees. The weighted median filter actually

increased this number of angular error from 30 to 42 vectors.

From table 4.6 the average error on the hydrangea is reduced from 14.9 to 12.1 on average

angular error, and 1.4 to 1.2 on the endpoint error. This seems more lika an improvement

than the figure 4.15 and 4.14 represents. The average might be improved but some regions

still struggles with error.
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(a) AAE. (b) AAE weighted.

(c) AEE. (d) AEE weighted.

Figure 4.14: The estimated angular and endpoint error of the Hierarchical LK-method

(a) Average angular error (b) Average angular error with weights

(c) Average endpoint error (d) Average endpoint error with weights

Figure 4.15: Histogram of error

4.4.3 RubberWhale

The RubberWhale sequence is dominated by small vectors. Movements are small and

large flow in this image scene is either an error or an outlier.
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Figure 4.16: The rubberwhale image sequence.

The details of the image sequences are many with individual moving objects, like letter

objects and a rubberwhale toy. There is also texture in the form of different cloths and

a fence like background. A sea shell also dominates the foreground of the image, and

judging from the error in figure 4.20, this is more easily computed than the rest.

(a) Hierarchical LK (b) Weighted hierarchical LK

Figure 4.17: Plot of the RW vector field

The plotted vector field in figure 4.17 illustrates a region of large movement around the

cardboard box.

Figure 4.18 illustrates an outlier and a small region of error. The outlier is removed in the

weighted computation, but the endpoint of the region remain large. This error centred

around the cardboard, making it possible the error is created from texture confusion.

Figure 4.19 is a close-up of the fence in the background, creating confusion when the

texture changed. The endpoint of the region remain large after the computation due to

weights.
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(a) Hierarchical LK (b) Weighted hierarchical LK

Figure 4.18: Outake of X:320 Y:50

(a) Hierarchical LK (b) Weighted hierarchical LK

Figure 4.19: Outake of X:100 Y:340

(a) AAE (b) AAE weighted

(c) AEE (d) AEE weighted

Figure 4.20: The Angular and Endpoint error of the RubberWhale image sequence



4.4. HIERARCHICAL LK-METHOD 41

The most pronounced error is centred around the card box from figure 4.20. The letter

objects D and O also struggles with small parts. Only the seashell is consistently accurate

in both computation. The error struggles more with the blue striped cloth, than the

detailed crotched fabric.

Figure 4.21: Histogram of angular and endpoint error.

The histogram in figure 4.21 illustrated the angular and endpoint error of the image

sequence. The angular error is increased from the original computation to the weighted

estimation. This is unfortunate.
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4.5 Discussion

The success of Sun, Roth and Black was linked to the relationship between median fil-

tering and the L1 penalty function of Li and Osher. The median filter de-noised during

optimization and it lead to higher energy solutions. In their thesis they explain this to a

deeper extent [35].

Instead of a penalty function, the LK-method uses a LS approach to minimization. This

method have no relationship to the L1 penalty function, and the median filter showed

no significant improvement of the iterative flow field of Lucas-Kanade. The iterative

struggled more with regions of error, in the background of scenes. The median filter mask

is overwhelmed and end up smoothing based on the regions.

The median filter was the key to remove outliers in the hierarchical LK-method. The

weights were distributed from the scene, making sure that the median did not over filtrate

on under represented vectors located at corners.

Surprisingly the LK-method struggled with flat regions and produced large angular and

endpoint error in all image sequences.

The weighted median filter did improve accuracy and reduce error, however this filter

is not the solution to optimization. If other optical flow estimation methods struggles

with singular error, the median will work just as fine of the flow field, as it did on the

LK-method.



5. Conclusion

The main challenge of the implementation was sensitivity. Adding a simple step, like

smoothing and changing the derivative filter to compute the gradient had a great impact

of the accuracy of the flow field. The goal was to remove outliers, vectors lost due to

illumination change of partial occlusions.

The nature of the median filter is to sort the values in a mask and find the median of

the neighbourhood. The center pixel of the mask is replaced with the new median of the

mask. Weights were introduced to ensure that under represented pixels in corners was

not over filtrated. To ensure this does not happen, several weight functions were tested.

A step function chosen to distribute weights to corners.

The results showed that the median filter removed outliers in all cases. A single misplaced

error in a the neighbourhood was replaced with the median of the mask.

The median filter struggled with regions of high error, caused by among others, illumi-

nation changes in the image. In most cases the angle of the vector was restored, but the

endpoint of the region vectors was still high.

The image scenes had challenges with illumination change such as diffuse reflection and

shadows, both sensitive to lighting change. The scenes also had transparent materials,

like the crotched cloth of the RubberWhale sequence, causing error. These materials was

often the cause of error.

The iterative LK-method struggled less with single point outliers and more with regions

of error. The median did little to improve this, because the median will work best on

single point error.

This was also the case for the hierarchical method, where the weights were applied to a

window mask, moving though the estimated flow. The weights were chosen to filtrate on

only the V vector, representing motion in Y-direction. The weights seemed to overfiltrate

when applied to both velocities. Further works would include trying to filtrate both

velocities, or filtrate on the angle and/or endpoint of the vector. The filter did improve
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on the angle. Filtering on the endpoint errror could reduce the error of regions.

The computational complexity was not a problem since a real time estimation was not

a goal. The iterative used approximately 20 seconds against the hierarchical time of 75

seconds. The gain of accuracy against computational complexity was not solved in this

thesis.

The median filter worked well on singular error such as an outlier, but struggled with

regions of error, making the error the median of the filter mask.

The weighted median is a simple solutions for optical flow method struggling with singular

error. The filter will work well for other methods, not just Horn-Schunck and Lucas-

Kanade.
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(a) The Dimetron Density

(b) The Hydrangea Density

(c) The RubberWhale density

Figure A.1: Density; Dimetron, Hydrangea and RubberWhale



B. Zip File

The files in the zip-file include the function:

� colormap

� colorTest

� computeColor

� Expand

� flow aae

� flowAngErr

� flowAngErrUV

� flowToColor

� HiarchicalLK

� LucasKanade

� LucasKanadeRefined

� LucasKanadeVektet

� main

� mainVektet

� plotError

� plotflow

� readFlowFile

� Reduce
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� vektet median

� writeFlowFile

The images:

� Dimetrodonflow10

� Dimetronframe11

� Hydrangeaframe10

� Hydrangeaframe11

� RubberWhaleframe10

� RubberWhaleframe11

�

�

The flo-files for ground truth:

� Dimetrodonflow10

� Hydrangeaflow10

� RubberWhaleflow10
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LucasKanade/colormap.fig
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LucasKanade/colorTest.m

function colorTest()

%   colorTest() creates a test image showing the color encoding scheme

%   According to the c++ source code of Daniel Scharstein 
%   Contact: schar@middlebury.edu

%   Author: Deqing Sun, Department of Computer Science, Brown University
%   Contact: dqsun@cs.brown.edu
%   $Date: 2007-10-31 20:22:10 (Wed, 31 Oct 2006) $

% Copyright 2007, Deqing Sun.
%
%                         All Rights Reserved
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 

%% test color pattern of Daniel's c++ code

truerange = 1;
height = 151;
width  = 151;
range = truerange * 1.04;

s2 = round(height/2);

[x y] = meshgrid(1:width, 1:height);

u = x*range/s2 - range;
v = y*range/s2 - range;

img = computeColor(u/truerange, v/truerange);

img(s2,:,:) = 0;
img(:,s2,:) = 0;

figure;
imshow(img);
title('test color pattern');
pause; close;

% test read and write flow
F(:,:,1) = u;
F(:,:,2) = v;
writeFlowFile(F, 'colorTest.flo');
F2 = readFlowFile('colorTest.flo');

u2 = F2(:,:,1);
v2 = F2(:,:,2);

img2 = computeColor(u2/truerange, v2/truerange);

img2(s2,:,:) = 0;
img2(:,s2,:) = 0;

figure; imshow(img2);
title('saved and reloaded test color pattern');
pause; close;

% color encoding scheme for optical flow
img = computeColor(u/range/sqrt(2), v/range/sqrt(2));

img(s2,:,:) = 0;
img(:,s2,:) = 0;

figure;
imshow(img);
title('optical flow color encoding scheme');
pause; close;







LucasKanade/computeColor.m

function img = computeColor(u,v)

%   computeColor color codes flow field U, V

%   According to the c++ source code of Daniel Scharstein 
%   Contact: schar@middlebury.edu

%   Author: Deqing Sun, Department of Computer Science, Brown University
%   Contact: dqsun@cs.brown.edu
%   $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $

% Copyright 2007, Deqing Sun.
%
%                         All Rights Reserved
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 

nanIdx = isnan(u) | isnan(v);
u(nanIdx) = 0;
v(nanIdx) = 0;

colorwheel = makeColorwheel();
ncols = size(colorwheel, 1);

rad = sqrt(u.^2+v.^2);          

a = atan2(-v, -u)/pi;

fk = (a+1) /2 * (ncols-1) + 1;  % -1~1 maped to 1~ncols
   
k0 = floor(fk);                 % 1, 2, ..., ncols

k1 = k0+1;
k1(k1==ncols+1) = 1;

f = fk - k0;

for i = 1:size(colorwheel,2)
    tmp = colorwheel(:,i);
    col0 = tmp(k0)/255;
    col1 = tmp(k1)/255;
    col = (1-f).*col0 + f.*col1;   
   
    idx = rad <= 1;   
    col(idx) = 1-rad(idx).*(1-col(idx));    % increase saturation with radius
    
    col(~idx) = col(~idx)*0.75;             % out of range
    
    img(:,:, i) = uint8(floor(255*col.*(1-nanIdx)));         
end;    

%%
function colorwheel = makeColorwheel()

%   color encoding scheme

%   adapted from the color circle idea described at
%   http://members.shaw.ca/quadibloc/other/colint.htm


RY = 15;
YG = 6;
GC = 4;
CB = 11;
BM = 13;
MR = 6;

ncols = RY + YG + GC + CB + BM + MR;

colorwheel = zeros(ncols, 3); % r g b

col = 0;
%RY
colorwheel(1:RY, 1) = 255;
colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)';
col = col+RY;

%YG
colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)';
colorwheel(col+(1:YG), 2) = 255;
col = col+YG;

%GC
colorwheel(col+(1:GC), 2) = 255;
colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)';
col = col+GC;

%CB
colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)';
colorwheel(col+(1:CB), 3) = 255;
col = col+CB;

%BM
colorwheel(col+(1:BM), 3) = 255;
colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)';
col = col+BM;

%MR
colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)';
colorwheel(col+(1:MR), 1) = 255;






LucasKanade/Expand.m

function largeIm = Expand(im);
%EXPAND Compute large layer of Gaussian pyramid

% Sohaib Khan, Feb 16, 2000

%Algo
%Gaussian mask = [0.05 0.25 0.4 0.25 0.05] 
% Insert zeros in every alternate row position and conv with mask
% insert zeros in every alternate clmn position in result and conv with mask'

mask = 2*[0.05 0.25 0.4 0.25 0.05]; %factor of 2 is there because each pixel gets contribution 
												% either from 0.05, 0.4, 0.05  or from 0.25, 0.25

% insert zeros in every alternate position in each row
rowZeros = [im; zeros(size(im))];
rowZeros = reshape(rowZeros, size(im,1), 2*size(im,2));

%conv with horiz mask
newIm = conv2(rowZeros, mask);
newIm = newIm(:,3:size(newIm,2)-2);

% insert zeros in every alternate position in each col
colZeros = newIm';
colZeros = [colZeros; zeros(size(colZeros))];
colZeros = reshape(colZeros, size(colZeros,1)/2, 2*size(colZeros,2));
colZeros = colZeros';

largeIm=conv2(colZeros, mask');
largeIm=largeIm(3:size(largeIm,1)-2,:);






LucasKanade/flowAngErr.m

function [mang, stdang, mepe]=flowAngErr(tu, tv, u, v, bord, varargin)

% return the Barron et al angular error.  bord is the pixel width of the

% border to be ingnored.

%

%   Author:  Stefan Roth, Department of Computer Science, TU Darmstadt

%   Contact: sroth@cs.tu-darmstadt.de

%   $Date: 2007-03-27 14:09:11 -0400 (Tue, 27 Mar 2007) $

%   $Revision: 252 $



% Copyright 2004-2007, Brown University, Providence, RI. USA

% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.

% 

%                          All Rights Reserved

% 

% All commercial use of this software, whether direct or indirect, is

% strictly prohibited including, without limitation, incorporation into in

% a commercial product, use in a commercial service, or production of other

% artifacts for commercial purposes.     

%

% Permission to use, copy, modify, and distribute this software and its

% documentation for research purposes is hereby granted without fee,

% provided that the above copyright notice appears in all copies and that

% both that copyright notice and this permission notice appear in

% supporting documentation, and that the name of the author and Brown

% University not be used in advertising or publicity pertaining to

% distribution of the software without specific, written prior permission.        

%

% For commercial uses contact the Technology Venture Office of Brown University

% 

% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO

% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR

% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL

% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

% THIS SOFTWARE.        



smallflow=0.0;



% if length(varargin) == 1

%     % mask

%     tu(~varargin{1}) = 0;

%     tv(~varargin{1}) = 0;

% end;

    

stu=tu(bord+1:end-bord,bord+1:end-bord);

stv=tv(bord+1:end-bord,bord+1:end-bord);

su=u(bord+1:end-bord,bord+1:end-bord);

sv=v(bord+1:end-bord,bord+1:end-bord);



% ignore a pixel if both u and v are zero 

%ind2=find((stu(:).*stv(:)|sv(:).*su(:))~=0);

ind2=find(abs(stu(:))>smallflow|abs(stv(:)>smallflow)); 

%length(ind2)

n=1.0./sqrt(su(ind2).^2+sv(ind2).^2+1);

un=su(ind2).*n;

vn=sv(ind2).*n;

tn=1./sqrt(stu(ind2).^2+stv(ind2).^2+1);

tun=stu(ind2).*tn;

tvn=stv(ind2).*tn;

ang=acos(un.*tun+vn.*tvn+(n.*tn));

mang=mean(ang);

mang=mang*180/pi;



if nargout >= 2

    stdang = std(ang*180/pi);

end;



if nargout == 3

    epe = sqrt((stu-su).^2 + (stv-sv).^2);

    epe = epe(ind2);

    mepe = mean(epe(:));

end;



% show which pixels were ignored

% tmp=zeros(size(su));

% tmp(ind2)=1;

% imagesc(tmp)






LucasKanade/flowAngErrUV.m

function [mang, stdang, mepe, stdepe]=flowAngErrUV(tuv, uv, bord, varargin)
%%
% return the Barron et al angular error.  bord is the pixel width of the
% border to be ingnored.
%
%   Author:  Stefan Roth, Department of Computer Science, TU Darmstadt
%   Contact: sroth@cs.tu-darmstadt.de
%   $Date: 2007-03-27 14:09:11 -0400 (Tue, 27 Mar 2007) $
%   $Revision: 252 $

% Copyright 2004-2007, Brown University, Providence, RI. USA
% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.
% 
%                          All Rights Reserved
% 
% All commercial use of this software, whether direct or indirect, is
% strictly prohibited including, without limitation, incorporation into in
% a commercial product, use in a commercial service, or production of other
% artifacts for commercial purposes.     
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for research purposes is hereby granted without fee,
% provided that the above copyright notice appears in all copies and that
% both that copyright notice and this permission notice appear in
% supporting documentation, and that the name of the author and Brown
% University not be used in advertising or publicity pertaining to
% distribution of the software without specific, written prior permission.        
%
% For commercial uses contact the Technology Venture Office of Brown University
% 
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO
% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR
% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
% THIS SOFTWARE.        

tu = tuv(:,:,1);
tv = tuv(:,:,2);

u = uv(:,:,1);
v = uv(:,:,2);

if nargin < 3
    bord = 0;
end

smallflow=0.0;

if length(varargin) == 1
    % mask
    tu(~varargin{1}) = 0;
    tv(~varargin{1}) = 0;
end;
    
stu=tu(bord+1:end-bord,bord+1:end-bord);
stv=tv(bord+1:end-bord,bord+1:end-bord);
su=u(bord+1:end-bord,bord+1:end-bord);
sv=v(bord+1:end-bord,bord+1:end-bord);

% ignore a pixel if both u and v are zero 
%ind2=find((stu(:).*stv(:)|sv(:).*su(:))~=0);
ind2=find(abs(stu(:))>smallflow|abs(stv(:)>smallflow)); 
%length(ind2)
n=1.0./sqrt(su(ind2).^2+sv(ind2).^2+1);
un=su(ind2).*n;
vn=sv(ind2).*n;
tn=1./sqrt(stu(ind2).^2+stv(ind2).^2+1);
tun=stu(ind2).*tn;
tvn=stv(ind2).*tn;
ang=acos(un.*tun+vn.*tvn+(n.*tn));
mang=mean(ang);
mang=mang*180/pi;

if nargout >= 2
    stdang = std(ang*180/pi);
end;

if nargout >= 3
    epe = sqrt((stu-su).^2 + (stv-sv).^2);
    epe = epe(ind2);
    mepe = mean(epe(:));
    stdepe = std(epe(:));
end;

% show which pixels were ignored
% tmp=zeros(size(su));
% tmp(ind2)=1;
% imagesc(tmp)






LucasKanade/flowToColor.m

function img = flowToColor(flow, varargin)

% flowToColor(flow, maxFlow) flowToColor color codes flow field, normalize

% based on specified value,

%

% flowToColor(flow) flowToColor color codes flow field, normalize

% based on maximum flow present otherwise

% According to the c++ source code of Daniel Scharstein

% Contact: schar@middlebury.edu

% Author: Deqing Sun, Department of Computer Science, Brown University

% Contact: dqsun@cs.brown.edu

% $Date: 2007-10-31 18:33:30 (Wed, 31 Oct 2006) $

% Copyright 2007, Deqing Sun.

%

% All Rights Reserved

%

% Permission to use, copy, modify, and distribute this software and its

% documentation for any purpose other than its incorporation into a

% commercial product is hereby granted without fee, provided that the

% above copyright notice appear in all copies and that both that

% copyright notice and this permission notice appear in supporting

% documentation, and that the name of the author and Brown University not be used in

% advertising or publicity pertaining to distribution of the software

% without specific, written prior permission.

%

% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,

% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY

% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR

% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

UNKNOWN_FLOW_THRESH = 1e9;

UNKNOWN_FLOW = 1e10; %

[height widht nBands] = size(flow);

if nBands ~= 2

error('flowToColor: image must have two bands');

end;

u = flow(:,:,1);

v = flow(:,:,2);

maxu = -999;

maxv = -999;

minu = 999;

minv = 999;

maxrad = -1;

% fix unknown flow

idxUnknown = (abs(u)> UNKNOWN_FLOW_THRESH) | (abs(v)> UNKNOWN_FLOW_THRESH) ;

u(idxUnknown) = 0;

v(idxUnknown) = 0;

maxu = max(maxu, max(u(:)));

minu = min(minu, min(u(:)));

maxv = max(maxv, max(v(:)));

minv = min(minv, min(v(:)));

rad = sqrt(u.^2+v.^2);

maxrad = max(maxrad, max(rad(:)));

fprintf('max flow: %.4f flow range: u = %.3f .. %.3f; v = %.3f .. %.3f\n', maxrad, minu, maxu, minv, maxv);

if isempty(varargin) ==0

maxFlow = varargin{1};

if maxFlow > 0

maxrad = maxFlow;

end;

end;

%maxrad=14;

u = u/(maxrad+eps);

v = v/(maxrad+eps);

% compute color

img = computeColor(u, v);

% unknown flow

IDX = repmat(idxUnknown, [1 1 3]);

img(IDX) = 0;






LucasKanade/flow_aae.m

function aae = flow_aae(f1, f2)
% function [aae, sae] = flow_aae(f1, f2, mask)
%FLOW_AAE   Average angular error in optical flow computation
%   AAE = FLOW_AAE(F1, F2[, MASK]) computes the average angular error in
%   degrees between the flow fields F1 and F2.  The optional argument
%   MASK can specify which of the pixels should be taken into account.
%  
%   [AAE, SAE] = FLOW_AAE(F1, F2[, MASK]) also returns the standard
%   deviation of the angular error.
%
%   Author:  Stefan Roth, Department of Computer Science, TU Darmstadt
%   Contact: sroth@cs.tu-darmstadt.de
%   $Date: 2007-03-27 14:09:11 -0400 (Tue, 27 Mar 2007) $
%   $Revision: 252 $

% Copyright 2004-2007, Brown University, Providence, RI. USA
% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.
% 
%                          All Rights Reserved
% 
% All commercial use of this software, whether direct or indirect, is
% strictly prohibited including, without limitation, incorporation into in
% a commercial product, use in a commercial service, or production of other
% artifacts for commercial purposes.     
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for research purposes is hereby granted without fee,
% provided that the above copyright notice appears in all copies and that
% both that copyright notice and this permission notice appear in
% supporting documentation, and that the name of the author and Brown
% University not be used in advertising or publicity pertaining to
% distribution of the software without specific, written prior permission.        
%
% For commercial uses contact the Technology Venture Office of Brown University
% 
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO
% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR
% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
% THIS SOFTWARE.        
  
  
  aae = acos((sum(f1 .* f2, 3) + 1) ./ ...
             sqrt((sum(f1 .^ 2, 3) + 1) .* (sum(f2 .^ 2, 3) + 1)));
%   if (nargin > 2)
%     aae = aae(mask);
%   end
% %     
%   sae = std(real(aae(:))) * (180 / pi);
%   aae = mean(real(aae(:))) * (180 / pi);








LucasKanade/GroundTruth.m

% img = readFlowFile('Dimetrodonflow10')

% img = readFlowFile('Grove2flow10.flo')

% img = readFlowFile('Grove3flow10.flo')

% img = readFlowFile('Hydrangeaflow10.flo')

% img = readFlowFile('RubberWhaleflow10.flo')

% img = readFlowFile('Urban2flow10.flo')

img = readFlowFile('Urban3flow10.flo')



figure

subplot(1,2,1); imshow(flowToColor(img)); title('Color Coding');

subplot(1,2,2); plotflow(img); title('Vector Plot');



figure

plotflow(img);






LucasKanade/HierarchicalLK.m

function [u,v,cert] = HierarchicalLK(im1, im2, numLevels, windowSize, iterations, display)

%HIERARCHICALLK 	Hierarchical Lucas Kanade (using pyramids)

%                   [u,v]=HierarchicalLK(im1, im2, numLevels, windowSize, iterations, display)

%                   Tested for pyramids of height 1, 2, 3 only... operation with

%                   pyramids of height 4 might be unreliable

%

%                  Use quiver(u, -v, 0) to view the results

%

%                  NUMLEVELS    Pyramid Levels (typical value 3)

%                  WINDOWSIZE   Size of smoothing window (typical value 1-4)

%                  ITERATIONS   number of iterations (typical value 1-5)

%                  DISPLAY      1 to display flow fields (1 or 0)

%

%Uses: Reduce, Expand

%

% Sohaib Khan

%   edited 05-15-03 (Yaser)

% yaser@cs.ucf.edu

% 

% [1]   B.D. Lucas and T. Kanade, "An Iterative Image Registration technique,

%       with an Application to Stero Vision," Int'l Joint Conference Artifical 

%       Intelligence, pp. 121-130, 1981. 



if (size(im1,1)~=size(im2,1)) | (size(im1,2)~=size(im2,2))

    error('images are not same size');

end;



if (size(im1,3) ~= 1) | (size(im2, 3) ~= 1)

    error('input should be gray level images');

end;





% check image sizes and crop if not divisible

if (rem(size(im1,1), 2^(numLevels - 1)) ~= 0)

    warning('image will be cropped in height, size of output will be smaller than input!');

    im1 = im1(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))), :);

    im2 = im2(1:(size(im1,1) - rem(size(im1,1), 2^(numLevels - 1))), :);

end;



if (rem(size(im1,2), 2^(numLevels - 1)) ~= 0)

    warning('image will be cropped in width, size of output will be smaller than input!');

    im1 = im1(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels - 1))));

    im2 = im2(:, 1:(size(im1,2) - rem(size(im1,2), 2^(numLevels - 1))));

end;



%Build Pyramids

pyramid1 = im1;

pyramid2 = im2;



for i=2:numLevels

    im1 = Reduce(im1);

    im2 = Reduce(im2);

    pyramid1(1:size(im1,1), 1:size(im1,2), i) = im1;

    pyramid2(1:size(im2,1), 1:size(im2,2), i) = im2;

end;



% base level computation

disp('Computing Level 1');

baseIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels-1))), 1:(size(pyramid1,2)/(2^(numLevels-1))), numLevels);

baseIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels-1))), 1:(size(pyramid2,2)/(2^(numLevels-1))), numLevels);

[u,v] = LucasKanade(baseIm1, baseIm2, windowSize);



for r = 1:iterations

    [u, v] = LucasKanadeRefined(u, v, baseIm1, baseIm2);

end



%propagating flow 2 higher levels

for i = 2:numLevels

    disp(['Computing Level ', num2str(i)]);

    uEx = 2 * imresize(u,size(u)*2);   % use appropriate expand function (gaussian, bilinear, cubic, etc).

    vEx = 2 * imresize(v,size(v)*2);

    

    curIm1 = pyramid1(1:(size(pyramid1,1)/(2^(numLevels - i))), 1:(size(pyramid1,2)/(2^(numLevels - i))), (numLevels - i)+1);

    curIm2 = pyramid2(1:(size(pyramid2,1)/(2^(numLevels - i))), 1:(size(pyramid2,2)/(2^(numLevels - i))), (numLevels - i)+1);

    

    [u, v] = LucasKanadeRefined(uEx, vEx, curIm1, curIm2);

    

    for r = 1:iterations

        [u, v, cert] = LucasKanadeRefined(u, v, curIm1, curIm2);

    end

end;



if (display==1)

    figure, quiver(Reduce((Reduce(medfilt2(flipud(u),[5 5])))), -Reduce((Reduce(medfilt2(flipud(v),[5 5])))), 0), axis equal

end






LucasKanade/LucasKanade.m

function [u, v, w01] = LucasKanade(im1, im2, windowSize);

%LucasKanade  lucas kanade algorithm, without pyramids (only 1 level);



%REVISION: NaN vals are replaced by zeros



[fx, fy, ft] = ComputeDerivatives(im1, im2);



u = zeros(size(im1));

v = zeros(size(im2));



halfWindow = floor(windowSize/2);

for i = halfWindow+1:size(fx,1)-halfWindow

   for j = halfWindow+1:size(fx,2)-halfWindow

      curFx = fx(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      curFy = fy(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      curFt = ft(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      

      curFx = (curFx');

      curFy = (curFy');

      curFt = (curFt');



      curFx = curFx(:);

      curFy = curFy(:);

      curFt = -curFt(:);

      A = [curFx curFy];

      H = A'*A;

      [V,E]=eig(H);

      U = pinv(H)*A'*curFt;

      thresh=50;

      if min(E(:))<thresh && max(E(:))>=thresh

        U=(U.*max(V(:)))*max(V(:));

      end

      w(i,j)=det(H)-((trace(H))/(2))^2;      

      u(i,j)=U(1);

      v(i,j)=U(2);

   end;

end;



w01 = w/min(w(:));

u(isnan(u))=0;

v(isnan(v))=0;



%u=u(2:size(u,1), 2:size(u,2));

%v=v(2:size(v,1), 2:size(v,2));

      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [fx, fy, ft] = ComputeDerivatives(im1, im2);

%ComputeDerivatives	Compute horizontal, vertical and time derivative

%							between two gray-level images.



if (size(im1,1) ~= size(im2,1)) | (size(im1,2) ~= size(im2,2))

   error('input images are not the same size');

end;



if (size(im1,3)~=1) | (size(im2,3)~=1)

   error('method only works for gray-level images');

end;



% % Enkelt Derivat

% fx = conv2(im1, [-1 1]) + conv2(im2, [-1 1]);

% fy = conv2(im1, [-1 1]') + conv2(im2, [-1 1]');

% ft = conv2(im1, [1 1]) + conv2(im2, -[1 1]);

% % MAKE SAME SIZE AS INPUT, 3X3 DERIVAT

% fx=fx(1:size(fx,1), 1:size(fx,2)-1);

% fy=fy(1:size(fy,1)-1, 1:size(fy,2));

% ft=ft(1:size(ft,1), 1:size(ft,2)-1);



% % SOBEL

fx = conv2(im1, [-1 0 1; -2 0 2; -1 0 1]) + conv2(im2, [-1 0 1; -2 0 2; -1 0 1]);

fy = conv2(im1,[1 2 1;0 0 0;-1 -2 -1]) + conv2(im2, [1 2 1;0 0 0;-1 -2 -1]);

ft = conv2(im1, ones(3)) + conv2(im2, -ones(3));

% MAKE SAME SIZE AS INPUT, 3X3 DERIVAT

fx=fx(2:size(fx,1)-1, 2:size(fx,2)-1);

fy=fy(2:size(fy,1)-1, 2:size(fy,2)-1);

ft=ft(2:size(ft,1)-1, 2:size(ft,2)-1);









% % SYMMETRISK DERIVAT

% fx = conv2(im1, [-1 0 1]) + conv2(im2, [-1 0 1]);

% fy = conv2(im1, [-1 0 1]') + conv2(im2, [-1 0 1]');

% ft = conv2(im1, [1 1 1]) + conv2(im2, -[1 1 1]);

% % MAKE SAME SIZE AS INPUT, 1X3 DERIVAT

% fx=fx(1:size(fx,1), 2:size(fx,2)-1);

% fy=fy(2:size(fy,1)-1, 1:size(fy,2));

% ft=ft(1:size(ft,1), 2:size(ft,2)-1);







% % PUNKT DERIVAT, ORGINALT

% fx = conv2(im1,0.25* [-1 1; -1 1]) + conv2(im2, 0.25*[-1 1; -1 1]);

% fy = conv2(im1, 0.25*[-1 -1; 1 1]) + conv2(im2, 0.25*[-1 -1; 1 1]);

% ft = conv2(im1, 0.25*ones(2)) + conv2(im2, -0.25*ones(2));

% % MAKE SAME SIZE AS INPUT, 2x2 matrise conv2

% fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1);

% fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1);

% ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1);








LucasKanade/LucasKanadeRefined.m

function [u,v,cert] = LucasKanadeRefined(uIn, vIn, im1, im2);
% Lucas Kanade Refined computes lucas kanade flow at the current level given previous estimates!
%current implementation is only for a 3x3 window


%[fx, fy, ft] = ComputeDerivatives(im1, im2);

uIn = round(uIn);
vIn = round(vIn);
%uIn = uIn(2:size(uIn,1), 2:size(uIn, 2)-1);
%vIn = vIn(2:size(vIn,1), 2:size(vIn, 2)-1);


u = zeros(size(im1));
v = zeros(size(im2));

%to compute derivatives, use a 5x5 block... the resulting derivative will be 5x5...
% take the middle 3x3 block as derivative
for i = 3:size(im1,1)-2
   for j = 3:size(im2,2)-2
    %  if uIn(i,j)~=0
    %     disp('ha');
    %  end;
      
      curIm1 = im1(i-2:i+2, j-2:j+2);
      lowRindex = i-2+vIn(i,j);
      highRindex = i+2+vIn(i,j);
      lowCindex = j-2+uIn(i,j);
      highCindex = j+2+uIn(i,j);
      
      if (lowRindex < 1) 
         lowRindex = 1;
         highRindex = 5;
      end;
      
      if (highRindex > size(im1,1))
         lowRindex = size(im1,1)-4;
         highRindex = size(im1,1);
      end;
      
      if (lowCindex < 1) 
         lowCindex = 1;
         highCindex = 5;
      end;
      
      if (highCindex > size(im1,2))
         lowCindex = size(im1,2)-4;
         highCindex = size(im1,2);
      end;
      
      if isnan(lowRindex)
         lowRindex = i-2;
         highRindex = i+2;
      end;
      
      if isnan(lowCindex)
         lowCindex = j-2;
         highCindex = j+2;
      end;
      

      
      curIm2 = im2(lowRindex:highRindex, lowCindex:highCindex);
      
      [curFx, curFy, curFt]=ComputeDerivatives(curIm1, curIm2);
      curFx = curFx(2:4, 2:4);
      curFy = curFy(2:4, 2:4);
      curFt = curFt(2:4, 2:4);
      
      curFx = curFx';
      curFy = curFy';
      curFt = curFt';


      curFx = curFx(:);
      curFy = curFy(:);
      curFt = -curFt(:);
      
      A = [curFx curFy];
      
      U = pinv(A'*A)*A'*curFt;
      
      u(i,j)=U(1);
      v(i,j)=U(2);
      
      cert(i,j) = rcond(A'*A);
      
   end;
end;

u = u+uIn;
v = v+vIn;





%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [fx, fy, ft] = ComputeDerivatives(im1, im2);

%ComputeDerivatives	Compute horizontal, vertical and time derivative

%							between two gray-level images.



if (size(im1,1) ~= size(im2,1)) | (size(im1,2) ~= size(im2,2))

   error('input images are not the same size');

end;



if (size(im1,3)~=1) | (size(im2,3)~=1)

   error('method only works for gray-level images');

end;





fx = conv2(im1,0.25* [-1 1; -1 1]) + conv2(im2, 0.25*[-1 1; -1 1]);

fy = conv2(im1, 0.25*[-1 -1; 1 1]) + conv2(im2, 0.25*[-1 -1; 1 1]);

ft = conv2(im1, 0.25*ones(2)) + conv2(im2, -0.25*ones(2));


% make same size as input

fx=fx(1:size(fx,1)-1, 1:size(fx,2)-1);
fy=fy(1:size(fy,1)-1, 1:size(fy,2)-1);
ft=ft(1:size(ft,1)-1, 1:size(ft,2)-1);







LucasKanade/LucasKanadeVektet.m

function [u, v, w] = LucasKanadeVektet(im1, im2, windowSize, img);

%LucasKanade  lucas kanade algorithm, without pyramids (only 1 level);



%REVISION: NaN vals are replaced by zeros



[fx, fy, ft] = ComputeDerivatives(im1, im2);



u = zeros(size(im1));

v = zeros(size(im2));



halfWindow = floor(windowSize/2);

for i = halfWindow+1:size(fx,1)-halfWindow

   for j = halfWindow+1:size(fx,2)-halfWindow

      curFx = fx(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      curFy = fy(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      curFt = ft(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);

      

      curFx = (curFx');

      curFy = (curFy');

      curFt = (curFt');



      curFx = curFx(:);

      curFy = curFy(:);

      curFt = -curFt(:);

      A = [curFx curFy];

      H = A'*A;

      [V,D]=eig(H);

      % V = eigenvector; D = eigenvalues

      U = pinv(H)*A'*curFt;         

      u(i,j)=U(1);

      v(i,j)=U(2);

      

      w(i,j)=det(H)-9.968*((trace(H))/(2))^2;

%       w(i,j)=det(H)-9.968*((trace(H))/(2))^2;

   end;

end;

w = padarray(w,[size(u,1)-size(w,1) size(u,2)-size(w,2)],'post');



%w01 = w/min(w(:));



u(isnan(u))=0;

v(isnan(v))=0;

%u=u(2:size(u,1), 2:size(u,2));

%v=v(2:size(v,1), 2:size(v,2));

      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [fx, fy, ft] = ComputeDerivatives(im1, im2);

%ComputeDerivatives	Compute horizontal, vertical and time derivative

%							between two gray-level images.



if (size(im1,1) ~= size(im2,1)) | (size(im1,2) ~= size(im2,2))

   error('input images are not the same size');

end;



if (size(im1,3)~=1) | (size(im2,3)~=1)

   error('method only works for gray-level images');

end;

% % Enkelt Derivat

fx = conv2(im1, [-1 1]) + conv2(im2, [-1 1]);

fy = conv2(im1, [-1 1]') + conv2(im2, [-1 1]');

ft = conv2(im1, [1 1]) + conv2(im2, -[1 1]);

% MAKE SAME SIZE AS INPUT, 3X3 DERIVAT

fx=fx(1:size(fx,1), 1:size(fx,2)-1);

fy=fy(1:size(fy,1)-1, 1:size(fy,2));

ft=ft(1:size(ft,1), 1:size(ft,2)-1);



% % SYMMETRISK DERIVAT

% fx = conv2(im1, (1/2)*[-1 0 1]) + conv2(im2, (1/2)*[-1 0 1]);

% fy = conv2(im1, (1/2)*[-1 0 1]') + conv2(im2, (1/2)*[-1 0 1]');

% ft = conv2(im1, (1/2)*[1 1 1]) + conv2(im2, -(1/2)*[1 1 1]);

% % MAKE SAME SIZE AS INPUT, 1X3 DERIVAT

% fx=fx(1:size(fx,1), 1:size(fx,2)-2);

% fy=fy(3:size(fy,1), 1:size(fy,2));

% ft=ft(1:size(ft,1), 1:size(ft,2)-2);








LucasKanade/main.m

tic

clear all





close all

addpath('LucasKanade');

H = fspecial('gaussian',3,3);



% % % % %Dimetron

% im01         = rgb2gray(imread('Dimetronframe10.png'));

% im02         = rgb2gray(imread('Dimetronframe11.png'));

% img         = readFlowFile('Dimetrodonflow10.flo');



% % % % % % Hydrangea

% im01         = rgb2gray(imread('Hydrangeaframe10.png'));

% im02         = rgb2gray(imread('Hydrangeaframe11.png'));

% img = readFlowFile('Hydrangeaflow10.flo');



% % % % % % RubberWhale

im01         = rgb2gray(imread('RubberWhaleframe10.png'));

im02         = rgb2gray(imread('RubberWhaleframe11.png'));

img = readFlowFile('RubberWhaleflow10.flo');





im1=imfilter(im01,H);

im2=imfilter(im02,H);



% FIX UNKNOWN FLOW

gtu=img(:,:,1);

gtv=img(:,:,2);

UNKNOWN_FLOW_THRESH = 1e9;



idxUnknown = (abs(gtu)> UNKNOWN_FLOW_THRESH) | (abs(gtv)> UNKNOWN_FLOW_THRESH) ;

count=sum(idxUnknown(:));

density=100-(count/(size(im1,1)*size(im1,2))*100);

img(:,:,1) = gtu;

img(:,:,2) = gtv;



% [u,v,w01]       = LucasKanade(im2double(im1),im2double(im2),7);

[u,v,cert] = HierarchicalLK(im1, im2, 3, 4, 1, 1)

u(idxUnknown) = 0;

v(idxUnknown) = 0;

% figure, imshow(idxUnknown)

f(:,:,1)    = u;

f(:,:,2)    = v;





figure,hist(u);title('Velocities in x-direction')

figure,hist(v);title('Velocities in y-direction')



       

       %%

% AVERAGE ANGULAR ERROR

aaef = flow_aae(f, img);

% AVERAGE ENDPOINT ERROR

aeef=sqrt((f(:,:,1)-img(:,:,1)).^2+(f(:,:,2)-img(:,:,2)).^2);

% AVERAGE ENDPOINT ERROR

MeanAeeF=mean(real(aeef(:)));

% AVERAGE ANGULAR ERROR

MeanAaeF=mean(real(aaef(:))) * (180 / pi);





%%

% % COMPARE GROUND TRUTH AND LK-METHOD

% figure,

% subplot(2,2,1); imshow(flowToColor(img)); title('GroundTruth');

% subplot(2,2,2); imshow(flowToColor(f)); title('LucasKanade');



% % COMPARE THE ERROR

% figure,

% subplot(1,2,1); imshow(aeef); title('AEE LucasKanade'); title('Endpoint Error');

% subplot(1,2,2); imshow(aaef); title('AAE LucasKanade'); title('Angular Error');



toc






LucasKanade/mainVektet.m

tic

clear all

close all

addpath('LucasKanade');

H = fspecial('gaussian',9,2);

%% IMPORTING THE IMAGES AND GROUND TRUTH

% % % % Dimetron

% im01         = rgb2gray(imread('Dimetronframe10.png'));

% im02         = rgb2gray(imread('Dimetronframe11.png'));

% img         = readFlowFile('Dimetrodonflow10.flo');

% load('uv_Dimetron_HiericalLK.mat');

% load('W__Dimetron_HiericalLK.mat');



% % % % % % % Hydrangea

% im01         = rgb2gray(imread('Hydrangeaframe10.png'));

% im02         = rgb2gray(imread('Hydrangeaframe11.png'));

% img = readFlowFile('Hydrangeaflow10.flo');

% load('uv_Hydrangea_HiericalLK.mat');

% load('W__Hydrangea_HiericalLK.mat');



% % % RubberWhale

im01         = rgb2gray(imread('RubberWhaleframe10.png'));

im02         = rgb2gray(imread('RubberWhaleframe11.png'));

img = readFlowFile('RubberWhaleflow10.flo');

load('uv_RW_HiericalLK.mat');

load('W__RW_HiericalLK.mat');



%% STARTING THE PROCESS



% SMOOTH WITH A GAUSSIAN PREFILTER, TO MINIMIZE ERROR

im1=imfilter(im2double(im01),H);

im2=imfilter(im2double(im02),H);



% FIX UNKNOWN FLOW

gtu=img(:,:,1);

gtv=img(:,:,2);

UNKNOWN_FLOW_THRESH = 1e9;

idxUnknown = (abs(gtu)> UNKNOWN_FLOW_THRESH) | (abs(gtv)> UNKNOWN_FLOW_THRESH) ;

gtu(idxUnknown) = 0;

gtv(idxUnknown) = 0;

% figure, imshow(idxUnknown)

img(:,:,1) = gtu;

img(:,:,2) = gtv;



% CALCULATING THE VELOCITIES WITH WEIGHTS ON THE IMAGES WITH WINDOWSIZE (IMAGE1,IMAGE2,WINSWSIZE)

[u, v, w]       = LucasKanadeVektet(im1,im2,15,img);

% [u,v,cert] = HierarchicalLK(im1, im2, 3, 4, 1, 1)

Hu(idxUnknown) = 0;

Hv(idxUnknown) = 0;

u(idxUnknown) = 0;

v(idxUnknown) = 0;



% % DEFINES THE LK-RESULTS 

f(:,:,1)    = u;

f(:,:,2)    = v;



% % % IMPLEMENTING WEIGHTS ON V, BUT NOT U

T(:,:,1)    = u;

T(:,:,2)    = vektet_median(v,w,20);

% % % % % % IMPLEMENTING WEIGHTS ON U, BUT NOT V

% T(:,:,1)    = vektet_median(u,w,15);

% T(:,:,2)    = v;

% % IMPLEMENTING WEIGHTS ON U AND V

% T(:,:,1)    = vektet_median(u,w,15);

% T(:,:,2)    = vektet_median(v,w,20);







HLK(:,:,1) = Hu;

HLK(:,:,2) = Hv;



% % WEIGHTS ON X-DIR

% HLKvektet(:,:,1) = vektet_median(Hu,w,20);

% HLKvektet(:,:,2) = Hv;

% WEIGHTS ON Y-DIR

HLKvektet(:,:,1) = Hu;

HLKvektet(:,:,2) = vektet_median(Hv,w,20);



figure, subplot(1,2,1);plotflow(f); title('The Iterative LK');

subplot(1,2,2);plotflow(T); title('The Weighted Iterative LK');



figure, subplot(1,2,2);plotflow(HLKvektet); title('The Weighted Hierical LK');

subplot(1,2,1);plotflow(HLK); title('The Hierical LK');

%% Pytagoras to calculate length and angle from velocities

% CALCULATING LENGTH AND ANGLE FROM THE VELOCITIES

% Length=sqrt((u).^2+(v).^2); % pytagoras

% Vinkel =(atan(v./u)); % (radianer*180)/pi 

% 

% Median filterer lengden til vektoren med vektingsfunksjonen w

% LengthMedian    = vektet_median(Length,w,15);

% VinkelMedian = Vinkel;





% T(:,:,1)=sqrt(((LengthMedian.^2))./((tan(VinkelMedian)).^2+1));

% T(:,:,2)=sqrt((LengthMedian.^2)-T(:,:,1));

% 

% T(:,:,1)=sqrt((LengthMedian.^2)./(1+(tan(VinkelMedian)).^2));

% T(:,:,2)=T(:,:,1).*tan((VinkelMedian)); 



%% Calculating Endpoint Error and Angular Error

 

% % AVERAGE ANGULAR ERROR

% aaeT = flow_aae(T, img)

aaef = flow_aae(f, img);

aaeHLK=flow_aae(HLK, img);

aaeHLKvektet=flow_aae(HLKvektet, img);

% % AVERAGE ENDPOINT ERROR

% aeeT=sqrt((T(:,:,1)-img(:,:,1)).^2+(T(:,:,2)-img(:,:,2)).^2);

aeef=sqrt((f(:,:,1)-img(:,:,1)).^2+(f(:,:,2)-img(:,:,2)).^2);

aeeHLK=sqrt((HLK(:,:,1)-img(:,:,1)).^2+(HLK(:,:,2)-img(:,:,2)).^2);

aeeHLKvektet=sqrt((HLKvektet(:,:,1)-img(:,:,1)).^2+(HLKvektet(:,:,2)-img(:,:,2)).^2);

% % MEAN ENDPOINT ERROR

% MeanAeeT=mean(real(aeeT(:)));

MeanAeeF=mean(real(aeef(:)));

MeanAeeHLK=mean(real(aeeHLK(:)));

MeanAeeHLKvektet=mean(real(aeeHLKvektet(:)));

% % MEAN ANGULAR ERROR

% MeanAaeT=mean(real(aaeT(:))) * (180 / pi);

MeanAaeF=mean(real(aaef(:))) * (180 / pi);

MeanAaeHLK=mean(real(aaeHLK(:))) * (180 / pi);

MeanAaeHLKvektet=mean(real(aaeHLKvektet(:))) * (180 / pi);



%%

% % COMPARE GROUND TRUTH, ITERATIVE LK-METHOD AND THE WEIGHTED MEDIAN FILTER

figure,

subplot(1,3,1); imshow(flowToColor(img)); title('GroundTruth');

subplot(1,3,2); imshow(flowToColor(HLK)); title('LucasKanade');

subplot(1,3,3); imshow(flowToColor(HLKvektet)); title('Egen vekting');



% % COMPARE THE ERROR OF ITERATIVE LK AND THE WEIGHTED MEDIAN

% figure,

% subplot(2,2,1); imshow(aeef); title('AEE LucasKanade Iterative');

% subplot(2,2,3); imshow(aeeT); title('AEE Iterative 5x5 median');

% subplot(2,2,2); imshow(aaef); title('AAE LucasKanade Iterative');

% subplot(2,2,4); imshow(aaeT); title('AAE Iterative 5x5 median');



% MAKE HISTOGRAM OF THE ERROR

figure,

subplot(2,2,1); hist(aaeHLK); title('AAE LucasKanade Hierical');

subplot(2,2,3); hist(aaeHLKvektet); title('AAE LucasKanade Hierical vektet');

subplot(2,2,2); hist(aeeHLK); title('AEE LucasKanade Hierical');

subplot(2,2,4); hist(aeeHLKvektet); title('AEE LucasKanade Hierical vektet');

% COMPARE THE ERROR OF HIERICAL LK AND THE WEIGHTED MEDIAN

figure,

subplot(2,2,1); imshow(aaeHLK); title('AAE LucasKanade Hierical');

subplot(2,2,3); imshow(aaeHLKvektet); title('AAE LucasKanade Hierical vektet');

subplot(2,2,2); imshow(aeeHLK); title('AEE LucasKanade Hierical');

subplot(2,2,4); imshow(aeeHLKvektet); title('AEE LucasKanade Hierical vektet');



% % PLOT THE ITERATIVE LK METHOD

% figure, subplot(1,2,1); plotflow(f);

% subplot(1,2,2); plotflow(T);



% % PLOT THE WEIGHTED MEDIAN FILTER ON ITERATIVE LK

% figure,

% subplot(1,2,1); imshow(flowToColor(T)); title('Color Coding- LK medfilt Dimetrodon');

% subplot(1,2,2); plotflow(T); title('Vector Plot- LK medfilt Dimetrodon');

toc






LucasKanade/plotflow.m

function [] = plotflow(f, kind)
%PLOTFLOW   Plot flow field
%   PLOTFLOW(F[, KIND]) plots an optical flow field F.  The optional
%   argument KIND specifies the kind of flow field plot:
%    - 'quiver', 'vector': needle-type plot (default)
%    - 'rgb': color plot (blue encodes U, green encodes V)
%    - 'hsv': color plot (hue encodes angle, value encodes velocity)
%    - 'bw': grayscale plot (U on the left, V on the right) 
%    - 'bwscale': also print out the flow scaling
%    - 'mag': grayscale plot of flow magnitude
%    - 'magscale': also print out the flow scaling
%
%   Author:  Stefan Roth, Department of Computer Science, TU Darmstadt
%   Contact: sroth@cs.tu-darmstadt.de
%   $Date: 2007-03-27 14:09:11 -0400 (Tue, 27 Mar 2007) $
%   $Revision: 252 $

% Copyright 2004-2007, Brown University, Providence, RI. USA
% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.
% 
%                          All Rights Reserved
% 
% All commercial use of this software, whether direct or indirect, is
% strictly prohibited including, without limitation, incorporation into in
% a commercial product, use in a commercial service, or production of other
% artifacts for commercial purposes.     
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for research purposes is hereby granted without fee,
% provided that the above copyright notice appears in all copies and that
% both that copyright notice and this permission notice appear in
% supporting documentation, and that the name of the author and Brown
% University not be used in advertising or publicity pertaining to
% distribution of the software without specific, written prior permission.        
%
% For commercial uses contact the Technology Venture Office of Brown University
% 
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO
% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR
% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
% THIS SOFTWARE.        
  
  if (nargin < 2)
    kind = 'vector';
  end
  
  switch (kind)
   case {'quiver', 'vector'}
    s = size(f);
    step = max(s / 120);
%     step = max(s / 60);
%     step = max(s / 40);
%     step = max(s / 20);
    
    [X, Y] = meshgrid(1:step:s(2), s(1):-step:1);
    u = interp2(f(:, :, 1), X, Y);
    v = interp2(f(:, :, 2), X, Y);
    
%     quiver(X, -Y, u, -v, 0.7);
    quiver(X, -Y, u, -v, 1, 'k', 'LineWidth', 1);
    axis image;
    
   case 'rgb'
    b = f(:, :, 1);
    b = b - min(b(:));
    b = b / max(b(:));
    
    g = f(:, :, 2);
    g = g - min(g(:));
    g = g / max(g(:));

    r = zeros(size(b));
    
    [ignore, rad] = cart2pol(f(:, :, 1), f(:, :, 2));
    
    nanidx  = isnan(f(:, :, 1)) & isnan(f(:, :, 2));
    zeroidx = (rad < 0.1);
    
    r(nanidx) = 0;
    g(nanidx) = 0;
    b(nanidx) = 0;
    r(zeroidx) = 1;
    g(zeroidx) = 1;
    b(zeroidx) = 1;
    
    im = cat(3, r, g, b);
    image(im);
    
   case 'hsv'
    [theta, rho] = cart2pol(f(:, :, 1), f(:, :, 2));
    
    theta = (theta + pi) / (2*pi);
    rho   = rho / max(rho(:));
    
    im = cat(3, theta, ones(size(theta)), rho);
    image(hsv2rgb(im));
    
   case {'bw', 'bwscale'}
    f1 = f(:, :, 1);
    f2 = f(:, :, 2);
    im = [f1, f2];
    
    m = max(abs(im(:)));
    imagesc(im, [-m m]);
    colormap gray(256);
    axis image
    axis off
    if (strcmp(kind, 'bwscale'))
      title(['[' num2str(min(im(:))) '; ' num2str(max(im(:))) ']'])
      colorbar
    end
    
   case {'mag', 'magscale'}
    m = sqrt(sum(f.^2, 3));
    imagesc(m);
    colormap gray(256);
    axis image
    axis off
    if (strcmp(kind, 'magscale'))
      title(['[' num2str(max(m(:))) ']'])
      colorbar
    end
    
   otherwise
    error('Invalid plot type');
    
  end






LucasKanade/readFlowFile.m

function img = readFlowFile(filename)

% readFlowFile read a flow file FILENAME into 2-band image IMG 

%   According to the c++ source code of Daniel Scharstein 
%   Contact: schar@middlebury.edu

%   Author: Deqing Sun, Department of Computer Science, Brown University
%   Contact: dqsun@cs.brown.edu
%   $Date: 2007-10-31 16:45:40 (Wed, 31 Oct 2006) $

% Copyright 2007, Deqing Sun.
%
%                         All Rights Reserved
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 

TAG_FLOAT = 202021.25;  % check for this when READING the file

% sanity check
if isempty(filename) == 1
    error('readFlowFile: empty filename');
end;

idx = findstr(filename, '.');
idx = idx(end);

if length(filename(idx:end)) == 1
    error('readFlowFile: extension required in filename %s', filename);
end;

if strcmp(filename(idx:end), '.flo') ~= 1    
    error('readFlowFile: filename %s should have extension ''.flo''', filename);
end;

fid = fopen(filename, 'r');
if (fid < 0)
    error('readFlowFile: could not open %s', filename);
end;

tag     = fread(fid, 1, 'float32');
width   = fread(fid, 1, 'int32');
height  = fread(fid, 1, 'int32');

% sanity check

if (tag ~= TAG_FLOAT)
    error('readFlowFile(%s): wrong tag (possibly due to big-endian machine?)', filename);
end;

if (width < 1 || width > 99999)
    error('readFlowFile(%s): illegal width %d', filename, width);
end;

if (height < 1 || height > 99999)
    error('readFlowFile(%s): illegal height %d', filename, height);
end;

nBands = 2;

% arrange into matrix form
tmp = fread(fid, inf, 'float32');
tmp = reshape(tmp, [width*nBands, height]);
tmp = tmp';
img(:,:,1) = tmp(:, (1:width)*nBands-1);
img(:,:,2) = tmp(:, (1:width)*nBands);
      
fclose(fid);








LucasKanade/Reduce.m

function smallIm = Reduce(im)
% REDUCE	Compute smaller layer of Gaussian Pyramid

% Sohaib Khan, Feb 16, 2000

%Algo
%Gaussian mask = [0.05 0.25 0.4 0.25 0.05] 
% Apply 1d mask to alternate pixels along each row of image
% apply 1d mask to each pixel along alternate columns of resulting image


mask = [0.05 0.25 0.4 0.25 0.05];

hResult = conv2(im, mask);
hResult = hResult(:,3:size(hResult,2)-2);
hResult = hResult(:, 1:2:size(hResult,2));

vResult = conv2(hResult, mask');
vResult = vResult(3:size(vResult,1)-2, :);
vResult = vResult(1:2:size(vResult,1),:);

smallIm = vResult;







LucasKanade/vektet_median.m

function B = vektet_median(A,w,windowSize)

% Input

%   A       Input matrix

%   w01     Matrix of weighted functions

%   Window  Size of window

%

% Output

%   B       Weighted result





halfWindow = floor(windowSize/2);



% INITIALIZING SIGMOID FUNCTION FOR WEIGHTS

b = 0.01;

x = 0:b:1;

% Sigmoid function

y = sigmf(x,[400 0.25]);

% % Step function

% y = sigmf(x,[400 0.05]);



figure, plot(x,y), title('weight function');



% ADD ROBUSTNESS BY INCREASING W, MAKING ITS SIZE EQUAL TO B

w_padded = padarray(w,[size(A,1)-size(w,1) size(A,2)-size(w,2)]); 



% PREALLOCATION OF B

B = zeros(size(A));



for i = halfWindow+1:size(A,1)-halfWindow

    % i PRINTS ROW NUMBER

    for j = halfWindow+1:size(A,2)-halfWindow

        w_window = w_padded(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow);    % Henter ut vindu fra w

        

        % ALL NUMBERS ARE CHANGED TO POSITIVE 

        if min(w_window(:)) < 0 && max(w_window(:)) <= 0

            w_window = (w_window+abs(min(w_window(:))));

            % LINEAR NORMALIZATION BETWEEN 0 AND 1

            w01_window = w_window/max(w_window(:));

        elseif min(w_window(:)) < 0 && max(w_window(:)) > 0

            w_window = (w_window+min(w_window(:)))/max(w_window(:));

            % LINEAR NORMALIZATION BETWEEN 0 og 1

            w01_window = w_window/max(w_window(:));

        elseif min(w_window(:)) == 0 && max(w_window(:)) == 0

            % NO NORMALIZATION. THE WINDOWVALUES ARE 0

            w01_window = w_window; 

        end

        % S-FUNCTION

        w01_window = y(floor(w01_window*1/b)+1);



        % THE WEIGHTFUNCTION

        window = w01_window.*double(A(i-halfWindow:i+halfWindow, j-halfWindow:j+halfWindow));

        

        % THE MEDIAN OF THE WEIGHTED WINDOW

        B(i,j) = median(window(:)); 

    end

end

end








LucasKanade/weighted_median.m

function uo = weighted_median(w, u)

%%

% compute the weighted median 

%   uo = \min_u \sum w(i)|uo - u(i)| 

% using the formula (3.13) in

%   Y. Li and Osher "A New Median Formula with Applications to PDE Based

%   Denoising"

% applied to every corresponding columns of w and u



% Authors: Deqing Sun, Department of Computer Science, Brown University 

% Contact: dqsun@cs.brown.edu

% $Date: $

% $Revision: $

%

% Copyright 2007-2010, Brown University, Providence, RI. USA

% 

%                          All Rights Reserved

% 

% All commercial use of this software, whether direct or indirect, is

% strictly prohibited including, without limitation, incorporation into in

% a commercial product, use in a commercial service, or production of other

% artifacts for commercial purposes.     

%

% Permission to use, copy, modify, and distribute this software and its

% documentation for research purposes is hereby granted without fee,

% provided that the above copyright notice appears in all copies and that

% both that copyright notice and this permission notice appear in

% supporting documentation, and that the name of the author and Brown

% University not be used in advertising or publicity pertaining to

% distribution of the software without specific, written prior permission.        

%

% For commercial uses contact the Technology Venture Office of Brown University

% 

% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO

% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR

% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL

% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

% THIS SOFTWARE.        



%



[H W] = size(u);

[sort_u ir] = sort(u);

ic       = repmat(1:W, [H, 1]);

ind      = sub2ind([H W], ir, ic);



w        = w(ind);



% number of negative infinites for each column

k = ones(1, W);

pp = -sum(w);

for i = H:-1:1;

    pc = pp + 2*w(i, :);

    % fixed by Dr. Cristina Garcia Cifuentes

    indx = (pc >= 0) & (pp <= 0);

    % Previous buggy version

    % indx = (pc > 0) & (pp < 0);

    k(indx) = H-i+1;

    pp = pc;

end



k   = H-k+1;

ind = sub2ind([H W], k, 1:W);



uo  = sort_u(ind);








LucasKanade/weighted_median_filter_slhf.m

function imo = weighted_median_filter_slhf(imin, imref, params)

%%

% Perform approximate weighted median filtering using local smoothed

% histogram filtering



sigmaHist = 0.06; %params.sigmaHist;

nBins     = 30; %params.nBins;

sigmaIm   = 5; %params.sigmaIm

antialiasWidth = 3; 

medianTarget = 0.5;





% create bin values

% 

% 	float minVal = imStats.minimum(0);

% 	float maxVal = imStats.maximum(0);

% 	bins.resize(nBins);

% 	

% 	float extraSpace = (maxVal-minVal)*0.01 - 1e-5;

% 	float minBin = minVal - extraSpace;

% 	float maxBin = maxVal + extraSpace;

% 	

% 	for (int i = 0; i < nBins; i++)

% 		bins[i] = minBin + (maxBin-minBin) * i / (double)(nBins-1);



%%%%% compute local lookup table and convert image integral image and 



% 		integral = new Image(im.width,im.height,1,nBins);

% 	

% 		#pragma omp parallel for

% 		for (int y = 0; y < im.height; y++)

% 		for (int x = 0; x < im.width; x++)

% 		for (int bin = 0; bin < nBins; bin++)

% 			(*integral)(x,y,0)[bin] = gaussianIntegral(bins[bin],im(x,y,0)[0],sigmaHist);

% 		

% 		FastBlur::apply(*integral, sigmaIm, sigmaIm, 0);



%%%%% 



% Image LocalHistograms::median(float target, int antialiasWidth) {

% 	Image result(im.width,im.height,1,1);

% 	

% 	for (int y = 0; y < im.height; y++)

% 	for (int x = 0; x < im.width; x++) result(x,y,0)[0] = 0;

% 	

% 	assert(integral);

% 	

% 	vector< pair<float,float> > displacements = getDisplacements(antialiasWidth);

% 	

% 	#pragma omp parallel for

% 	for (int y = 0; y < im.height; y++) {

% 		float *integralVals = new float[bins.size()];

% 		for (int x = 0; x < im.width; x++)

% 		for (unsigned int disp = 0; disp < displacements.size(); disp++) {

% 			integral->sample2DLinear(x+displacements[disp].first,y+displacements[disp].second,integralVals);

% 		

% 			float imValue;

% 			im.sample2DLinear(x+displacements[disp].first,y+displacements[disp].second,&imValue);

% 	

% 			float curResult = imValue;

% 			for (unsigned int bin = 0; bin < bins.size()-1; bin++) {

% 				float v1 = integralVals[bin];

% 				float v2 = integralVals[bin+1];

% 		

% 				if (v1 < target && v2 >= target) { // peak!

% 					float frac = (target-v1)/(v2-v1);

% 					curResult = bins[bin] + frac*(bins[bin+1]-bins[bin]);

% 					break;

% 				}

% 			}

% 		

% 			result(x,y,0)[0] += curResult / displacements.size(); // not numerically great...

% 		}

% 		delete [] integralVals;

% 	}

% 	

% 	return result;

% }

% 

% vector< pair<float,float> > LocalHistograms::getDisplacements(int antialiasWidth) {

% 	vector< pair<float,float> > result(antialiasWidth*antialiasWidth);

% 	

% 	// simple box filter centered within the pixel

% 	int pos = 0;

% 	for (int i = 1; i <= antialiasWidth; i++)

% 	for (int j = 1; j <= antialiasWidth; j++) {

% 		result[pos].first = (float)i / (float)(antialiasWidth+1) - .5;

% 		result[pos++].second = (float)j / (float)(antialiasWidth+1) - .5;

% 	}

% 	

% 	return result;

% }












LucasKanade/weighted_median_iter.m

function uo = weighted_median_iter(w, u)

% compute the weighted median 
%   uo = \min_u \sum w(i)|uo - u(i)| 
% using the formula (3.13) in
%   Y. Li and Osher "A New Median Formula with Applications to PDE Based
%   Denoising"
% applied to every corresponding columns of w and u
%
% Authors: Deqing Sun, Department of Computer Science, Brown University 
% Contact: dqsun@cs.brown.edu
% $Date: $
% $Revision: $
%
%
% Copyright 2007-2010, Brown University, Providence, RI. USA
% 
%                          All Rights Reserved
% 
% All commercial use of this software, whether direct or indirect, is
% strictly prohibited including, without limitation, incorporation into in
% a commercial product, use in a commercial service, or production of other
% artifacts for commercial purposes.     
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for research purposes is hereby granted without fee,
% provided that the above copyright notice appears in all copies and that
% both that copyright notice and this permission notice appear in
% supporting documentation, and that the name of the author and Brown
% University not be used in advertising or publicity pertaining to
% distribution of the software without specific, written prior permission.        
%
% For commercial uses contact the Technology Venture Office of Brown University
% 
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO
% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
% FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR
% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
% THIS SOFTWARE.        



% n_iter = 1;
lambda = 1e-3;

%%

[H W] = size(u);

u0 = u(round(H/2), :);
w0 = w(round(H/2), :);

u  = u([1:round(H/2)-1 round(H/2)+1:end], :);
w  = w([1:round(H/2)-1 round(H/2)+1:end], :);
[H W] = size(u);

w  = w./repmat(w0, [H 1]);

[sort_u ir] = sort(u);
ic       = repmat(1:W, [H, 1]);
ind      = sub2ind([H W], ir, ic);

% Rearrange weights according to the order of u
w        = w(ind);

p  = repmat(sum(w), [H+1, 1]);
for i = 2:H+1;
    p(i,:) = p(i-1, :) - 2*w(i-1, :);
end;
% k   = sum(p < 0);

p  = repmat(u0, [H+1 1]) + p/2/lambda;

uo = median([u;p]);






LucasKanade/writeFlowFile.m

function writeFlowFile(img, filename)

% writeFlowFile writes a 2-band image IMG into flow file FILENAME 

%   According to the c++ source code of Daniel Scharstein 
%   Contact: schar@middlebury.edu

%   Author: Deqing Sun, Department of Computer Science, Brown University
%   Contact: dqsun@cs.brown.edu
%   $Date: 2007-10-31 15:36:40 (Wed, 31 Oct 2006) $

% Copyright 2007-2010, Brown University, Providence, RI. USA
%
% 
%                         All Rights Reserved
% 
% Permission to use, copy, modify, and distribute this software and its
% documentation for any purpose other than its incorporation into a
% commercial product is hereby granted without fee, provided that the
% above copyright notice appear in all copies and that both that
% copyright notice and this permission notice appear in supporting
% documentation, and that the name of the author and Brown University not be used in
% advertising or publicity pertaining to distribution of the software
% without specific, written prior permission.
% 
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
% PARTICULAR PURPOSE.  IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR
% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.   

TAG_STRING = 'PIEH';    % use this when WRITING the file

% sanity check
if isempty(filename) == 1
    error('writeFlowFile: empty filename');
end;

idx = findstr(filename, '.');
idx = idx(end);             % in case './xxx/xxx.flo'

if length(filename(idx:end)) == 1
    error('writeFlowFile: extension required in filename %s', filename);
end;

if strcmp(filename(idx:end), '.flo') ~= 1    
    error('writeFlowFile: filename %s should have extension ''.flo''', filename);
end;

[height width nBands] = size(img);

if nBands ~= 2
    error('writeFlowFile: image must have two bands');    
end;    

fid = fopen(filename, 'w');
if (fid < 0)
    error('writeFlowFile: could not open %s', filename);
end;

% write the header
fwrite(fid, TAG_STRING); 
fwrite(fid, width, 'int32');
fwrite(fid, height, 'int32');

% arrange into matrix form
tmp = zeros(height, width*nBands);

tmp(:, (1:width)*nBands-1) = img(:,:,1);
tmp(:, (1:width)*nBands) = squeeze(img(:,:,2));
tmp = tmp';

fwrite(fid, tmp, 'float32');

fclose(fid);







LucasKanade/uv_Dimetron_HiericalLK.mat

Hu:[388x584  double array]


Hv:[388x584  double array]






LucasKanade/uv_HiericalLK.mat

u:[388x584  double array]


v:[388x584  double array]






LucasKanade/uv_Hydrangea_HiericalLK.mat

Hu:[388x584  double array]


Hv:[388x584  double array]






LucasKanade/uv_RW_HiericalLK.mat

Hu:[388x584  double array]


Hv:[388x584  double array]






LucasKanade/W__Dimetron_HiericalLK.mat

w:[388x584  double array]






LucasKanade/W__Hydrangea_HiericalLK.mat

w:[388x584  double array]






LucasKanade/W__RW_HiericalLK.mat

w:[388x584  double array]




