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ABSTRACT 

Exploring the subsurface is today mostly done by researching seismic imaging 
thoroughly before attempting to bore exploration wells. By applying seismic 
attributes (imaging filters), we can highlight certain aspects of the seismic, which 
will help geoscientists to determine with better certainty potential reservoirs. Faults 
are an important feature in reservoir identification as oil is likely to emigrate via 
them. By highlighting faults with seismic attribute, it is possible to create three-
dimensional models and through advance simulations a better understanding is 
achieved. However, achieving a detailed image of a faulted area can be difficult as 
larger faults can overshadow minor faults, parallel or perpendicular. This is 
especially hard considering a static filter operator size that can be too large to pick 
up the smaller faults. 

In this work, we propose to adjust the filter operator size according to the frequency 
content of the seismic, by adapting the operator size according to the current filter 
position. We aim to achieve higher amounts of detail in fault detection using a 
method based on the Sobel method. We will also investigate the chaotic nature of 
the seismic to determine if the use of dip correction is needed. These are all novel 
methods in the approach to fault estimation in seismic. 

Our implementation is done in MATLAB and tested on a dataset in the North Sea 
offshore Netherlands, F3, which has a heavily faulted area due to salt tectonics. We 
perform a vertical frequency analysis using the discrete Fourier transform to 
determine an operator size that is used in a horizontal frequency analysis using 
variance. To avoid picking up stratigraphy, we use dip guiding that let us filter along 
the different layers of the earth. This helps avoid geological noise detection. 
However, in chaotic areas, such as salt domes, we avoid using dip guided filtering, 
as there are no layers to follow, leading to a possible false representation. With the 
use of linear interpolation, we want to capture small details that otherwise would be 
absent. To better represent the faults in our image, we apply a vertical mean 
smoothing filter with neighboring values. This works due to the vertical nature of 
fault features. Evaluating all the stages in our algorithm, we find that the 
computational complexity is bounded by O(N2). 

The approach of an adaptive operator size for a Sobel based edge detection to 
achieve a more detailed image proves to be successful as it surpasses the industry 
standard for fault detection.  Some of the larger faults are weaker in value than in 
Petrel. However, the noise in between the faults has been reduced substantially and 
smaller faults parallel and perpendicular have emerged. Ultimately giving a more 
realistic and complete representation of the fault networks present in the sub-surface.  
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CHAPTER 1 
1 INTRODUCTION 

In today’s oil and gas industry exploring subsurface areas is mostly done by 
researching seismic imaging thoroughly before attempting to bore. To achieve the 
most information from seismic imaging, different types of image filtering are 
applied; which are called seismic attributes (see Figure 1) in the industry. This will 
help geoscientists to determine with better certainty locate potential reservoirs. 
However, when applying seismic attributes of any kind, the operator size of the 
attribute is either predetermined or user selected in a static fashion. By doing this, 
important details can be lost in the process that can be decisive when drilling for oil. 
If the operator size is to large, details of the image will be lost, such as small faults 
or corrupt salt domes. However, if the operator size were too small, the attribute 
would render ineffective; the image would remain unchanged. Because the seismic 
structure is built from an array of fluctuating signals ranging from lower frequency 
in thinner rock layers, to higher frequency in thicker rock layers. It is natural to think 
that a static operator size would be less than ideal to keep thinner and thicker layers 
form merging. Over the years, when applying seismic attributes, users have decided 
parts of the seismic to focus on and made an educated guess on the operator size. 
Thus, resulting with a multitude of equal datasets that each has their selected sections 
filtered.  

Figure 1 Innovative illumination attributes for a new look at complex structural delineation 
[1]. 
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The frequency information in the image can be found by using the Fourier transform. 
We will use Fourier transform to translate the three dimensional space x, y and z 
into the occurrence of frequencies. We can then use the occurrence of frequencies 
to help determine the operator size of the seismic attribute.    

1.1 GOALS 

In this work, we want to adjust the operator size according to the frequency that is 
the most dominant around the filter operation site. The essence is to challenge the 
common approach in the oil and gas industry and do a comparison study with the 
leading edge detection attribute from the last decade. To achieve this, we have two 
main goals:  

x To develop an algorithm that analyses around the seismic attribute center to 
determine the right operator size. 

x Use directional filtering along derivative plane to minimize noise detection. 
x To implement edge detection that uses the algorithm mentioned above. 

1.2 OUR CONTRIBUTION 

The contribution of this thesis are as follows, it will change the way seismic 
attributes are applied throughout the industry. It will show that adaptive operator 
size for seismic attributes are the way forward. 

x Contributes are the mentioned in goals, and the results. 
x A more detailed image of edge detection. 
x Building upon our previous work in adaptive seismic attributes [2] [3] [4]. 

1.3 THESIS OUTLINE 

This thesis will be structured as follows: 

Chapter 2: Relevant background material is highlighted and explained for readers 
that have no prior knowledge in topics such as: seismic imaging, Petrel software and 
MATLAB. 

Chapter 3: Relevant background of the algorithms that we will build our work on. 
This include frequency analysis, as in Fourier transform, Noise removal with 
smoothing filters such as mean and Gaussian. Edge detection using Sobel operators. 
Enhanced attribute performance by using dip guiding. We will also look at Adaptive 
operator size by chaos analysis.  

Chapter 4: Description of the implementation in this thesis, how it was performed 
and why certain implementations decisions were made.  One will also find the 
different stages that we went through during the development of this algorithm. 
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Chapter 5: Presentation and discussion of the results from different algorithms. We 
will mainly focus on the implementation and the different results when adjusting the 
parameters of the algorithm. 

Chapter 6: In this chapter, we will present the conclusion of the thesis and some 
future work that can be done to further improve upon this thesis. 

Appendix A: An outline of the MATLAB source code that was developed during 
this thesis. 

Appendix B: Presentation poster that was held at the University of Stavanger on 
June 1. 

Appendix C: Paper on Adaptive Sobel Based Edge Detection for enhanced Fault 
Segmentation published in IPTC 2014 
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CHAPTER 2 
2 GENERAL BACKGROUND 

In this chapter, we will introduce background material in topics that are relevant to 
our work. The reader can skip this section that have prior knowledge. The chapter 
will be divided into four sections. 

In section 2.1, we will present Seismic Imaging and the connection to Image 
Processing. In addition to an explanation of the Seismic Structure and how the 
filtering process is applied, and what challenges this will introduce for further 
interpretation of the data. 

In section 2.2, we will talk about previous work that have been done in this field. 
Such as frequency analysis, Sobel based filters and adaptive operator size. 

In section 2.3, we will introduce the Petrel Software and its features as an integrated 
workflow tool that includes most of the reservoir modeling procedure. Some data 
used for this thesis (namely Dip guiding, see 3.4 Dip Guiding for more information) 
are preprocessed using Petrel. 

In the last section, section 2.4, we will introduce MATLAB, Image Processing 
toolkit, CREWES toolkit and our motivation to implement our algorithm there. 

2.1 SEISMIC IMAGING AND STRUCTURE 

In this section, we will explain the definition of seismic imaging and the connection 
to Image Processing. Then we will focus on our motivation in this work by 
explaining the function of applying filters on the seismic data and what challenges 
this introduce.  This is the main inspiration for our work. 

2.1.1 SEISMIC IMAGING 

Seismic images can show significant detailed picture of the earth’s subsurface 
geology [5]. These pictures can be used to uncover structural features at large depths 
giving a better understanding of how to proceed to identify locations of oil and gas 
repositories. Seismic Imaging sends a forceful sound source into the ground where 
each segment of the earth’s layer reflects some sound waves back “echoes”, which 
are received by geophones, analogous to microphones. The echoes intensity and 
time are used to estimate the subsurface conditions on computers. See Figure 2 and 
Figure 3. 
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Figure 2 Propagating sound sources [6] 

 

Figure 3 Processed data from acquisition from [6] 

 

The data before data processing is called pre-stack. This is raw data that are memory 
space costly. To save space and computational power, an operation called stacking 
is used to average the recorded traces along the appropriate range of the four spatial 
axes. To further reduce computational power for analytical procedure, an 
approximate full pre-stack migration procedure is done, which is often called post-
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stack imaging. Post-stack data provides a three-dimensional model of the sub-
surface structure witch can be used to identify preferential flow paths. It determines 
the placement and screening of wells, and it help selecting a remediation technology. 

Due to the depositional nature of the subsurface, the seismic images show patterns 
with a layered structure. In Figure 4, we can see seven different types of seismic 
textures [7] that can appear as a collection in a dataset. They may be easy to isolate 
in a two-dimensional seismic image. However, the move to the three-dimensional 
space makes it more difficult.  

Figure 4 Seismic texture [7] 

 

In Image Processing a texture is defined as a certain pattern regularity or structure. 
Textured layers can be split up in two parts in seismic imaging [8]. One part is the 
information of the signal perpendicular to the layered structure, which has a 
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characteristic frequency. It is determined by the change in the acoustic impedance 
of the subsurface rock combined with the seismic wavelet. This combined signal is 
described by using a time-frequency representation [9] [10]. The other part is 
geometrical information of the structure. In Figure 5, there is more focus on the 
chaotic nature of seismic data that can occur. If we point our attention on the four 
last samples, subparallel, wavy, dipping discontinuous and chaotic, it is important 
not to use a large operator size, as this will easily blend the different segments (blue 
and red) and create a misrepresentation of the data. 

Figure 5 Seismic texture [8] 

 

2.2 PREVIOUS WORK 

Fourier transform, in this case discrete Fourier transform, is used to calculate a 
signal’s frequency spectrum, and out of this the dominant frequency in signals. 
Another example is fast Fourier transformation convolution [9], an algorithm for 
convolving signals much faster than conventional methods. 

Sobel filter (Sobel operator) [10] is a well knows edge detection method. In 2011, a 
three-dimensional Sobel filter became an excellent way to determine faults in a 
seismic attribute [11].  

We have used adaptive operator before in seismic attributes with the use of chaos 
analysis and linear increase according to the depth. We have included a paper from 
the International Petroleum Technology Conference [2] in Appendix C. Other 
papers we have done are being withheld by Schlumberger at this time, and cannot 
be included in the Appendix [3] [4], which uses an adaptive operator size as a part 
of the algorithm. 
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2.3 PETREL 

Petrel is an exploration and production platform (see Figure 6) that includes most of 
the reservoir modeling procedures and allows seamless collaborations between 
geoscientists. Petrel is the industry standard when it comes to edge detection. This 
is important as we are going to compare our results with Petrel’s. 

In this section, we will present the Petrel Platform with focus on seismic 
interpretation, geophysics component and exploration geophysics. The goal is to 
present the Petrel platform for readers that are not familiar with the subject. This 
software is the leading platform of its field and will be used for comparison to the 
results of this thesis. All information related to this section is provided by 
Schlumberger Information Solutions [12], [13] and [14]. 

Figure 6 Overview of Petrel 2014 [16] 

 

2.3.1 PETREL GEOPHYSICS COMPONENT 

Petrel provides a full spectrum of geophysical workflows, including two 
dimensional and three dimensional interpretation, a full set of surface and volume 
attributes which are used to identify faults and fractures, volume interpretation, 
convert domains and modeling while interpreting to enforce interpreters to build a 
structural framework. Petrel Geophysics support seismic data from different 
coordinate systems, from regional exploration to reservoir development. 
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2.3.2 PETREL EXPLORATION GEOPHYSICS 

Petrel provides some key features for exploration geophysics; it can visualize and 
interpret regional two and three-dimensional seismic data manually or with advance 
auto-tracking techniques. Interactively create attribute maps of horizon or intervals. 
Petrel can interactively blend seismic volumes, isolates areas of interests, and 
instantaneously extract that is visualized into a three-dimensional object known as a 
Geobody.  By generating and analyzing seismic attributes, Petrel can enhance the 
information that might be too subtle in traditional seismic, leading to a better 
interpretation of the data. The Z-axis of the seismic data can be converted back and 
forward between time and depth domain, bridging the gap between the time and 
depth domain. Petrel can perform an automated structural interpretation by focusing 
on the structural geology rather than conventional segment picking. This reduces the 
standard interpretation time while increasing level of geological detail and structural 
awareness giving a better understanding of reservoirs. By using neural network 
technology, it can estimate well logs, surfaces, seismic volumes and three 
dimensional property models.  

2.3.3 PETREL SEISMIC INTERPRETATION 

Petrel seamlessly combine the workflow of two-dimensional interpretation with the 
visual and performance benefits of three-dimensional volume interpretation. With 
these tools, it is simple to view and analyze the seismic volume in three-dimensional 
space. By applying structural attributes, different geological features can be 
highlighted for more certain results. A common task during seismic interpretation is 
extraction of faults and horizons into a three dimensional body, which also can be 
seen in Figure 6. Before this can be applied to a survey, it is crucial to pre-work the 
dataset to avoid a wrong segment to be connected or loss of faults. 

2.4 MATLAB 

In this section, we will introduce MATLAB (see Figure 7) and some added 
function sets and toolboxes that will be used during this thesis. 
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Figure 7 MATLAB 2014b 

 

MATLAB [15], short for Matrix Laboratory, is a high-level and interactive 
environment used by millions of engineers and scientists worldwide. It is developed 
by MathWorks Inc. and containing an extensive documentation, tutorials and 
support. Another aspect with MATLAB is its analytical power for developing an 
algorithm that measures times of every function calls so that one can fine-tune every 
step of the algorithm. 

2.4.1 CREWES 

CREWES [16] (Consortium for Research in Elastic Wave Exploration Seismology) 
is an applied geophysical research group concentrating on the acquisition, analysis 
and interpretation of multicomponent seismic data. They have developed a set of 
MATLAB functions for seismic data operations. This is used to open and extract 
data from the industry standard SEG-Y files that is developed by the Society of 
Exploration Geophysicists (SEG) [17]. 

2.5 DATASET 

For this thesis, we will use the F3 block dataset received from Opendtect.org [18]. 
This is an offshore dataset from the Dutch sector of the North Sea outside of the 
Netherlands. The block is covered in three-dimensional seismic that was acquired in 
the late 1980s. The dataset contains many diverse geological features such as 
Channels, Glacial plow marks, pockmarks, flat spots, Zechstein salt dome, surface 
expression and faults. These features will be of great use when testing our attributes 
and its effects.  
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The dataset has 650 elements wide (inline), 950 elements long (crossline) and a 
depth of 1848 milliseconds covering 384 square kilometer. The elemental values 
goes from -32767 to 32767.  
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CHAPTER 3 
3 ALGORITHMIC BACKGROUND 

In this chapter, we will introduce different algorithms that we will build upon in our 
work. We will go into the mathematical background on original algorithms that we 
will modify to use in our work with an adjacent explanation. This chapter contains 
five main sections. 

In section 3.1, we will go through Fourier transform and its uses relevant to our 
work. Our focus will be on discrete Fourier transform. 

In section 3.2, we will explain what noise reduction is in terms of seismic data as 
seismic data is made of noise. 

In section 3.3, we will go through the operation of edge enhancement. In this case 
using the Sobel operator. Edge enhancement are used to highlight faults. 

In section 3.4, the use of dip guiding and its function will be explained and how this 
will improve the output of the seismic attribute. 

In the last section, section 3.5, we will show previous contributions related to our 
work. The first one is about adjusting the operator size according to chaos around the 
operator site and its depth [3] [4].  In this work, the goal of adapting the operator size 
fitting to the surroundings is the same as ours. However, we attend to use frequency 
in the seismic instead of looking at it as an image.  

3.1 FOURIER TRANSFORM 

The Fourier transform takes a function of time signal and decomposes it into 
frequencies, which it is built upon. All waveforms are the sum of sinusoids of 
different frequencies. The basic function of the Fourier transform can be seen in 
Equation 1. 

Equation 1 The Fourier transform (a) and the inverse Fourier transform (b) 

ℱ{𝑔(𝑡)} = 𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞
         (𝑎) 

ℱ−1{𝐺(𝑓)} = 𝑔(𝑡) = ∫ 𝐺(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞
      (𝑏) 
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There are different approaches of implementing the Fourier transform such as 
Discrete Fourier Transform (DFT) and Discrete-time Fourier Transform (DTFT) the 
former is the one that we are focusing on. 

3.1.1 FAST FOURIER TRANSFORM AND DISCRETE FOURIER 
TRANSFORM 

Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier 
Transform (DFT) and its inverse. In this thesis, we have used the FFT function 
incorporated in MATLAB [19] (see Equation 2).  

Equation 2 fast Fourier transform (a) and inverse fast Fourier transform (b) 

𝑋(k) = ∑ x(n)𝜔𝑁
(𝑛−1)(𝑘−1)

𝑁

𝑛=1
, 𝑘 = 1, … , 𝑁  (a) 

𝑥(n) = (1
𝑁

) ∑ X(k)𝜔𝑁
−(𝑛−1)(𝑘−1)

𝑁

𝑘=1
, 𝑛 = 1, … , 𝑁  (b) 

Where  
𝜔𝑁 = 𝑒(−2𝜋𝑖)/𝑁 

Discrete Fourier transform is one of the most important discrete transform to 
perform Fourier analysis in applications [20]. The Discrete Fourier transform takes 
a finite list of equally spaced samples and converts them to a list of coefficients of a 
finite combination of complex sinusoids ordered by their frequencies with same 
sample values. In short, it can convert a sampled function of time or space to the 
frequency domain. By doing this, we can find the dominant frequency in a sample 
set with dimension of order 2n, 𝑛 𝜖 𝑁. 

Because the input to DFT is expected to be of a periodic nature [21], likewise the 
output is expected to be periodic. However, this might not always be the case when 
the signal is either noisy or the signal length diverges from one period length. To 
bypass this potential problem, we can apply a window function: in our case the 
Hamming window. Hamming window is a bell shaped curve with the same number 
of samples as the DFT, where the first and last sample is close to zero.  

3.2 NOISE REMOVAL 

Because seismic data are retrieved signals from down to hundreds of meters below 
the earth’s surface, it contains unwanted noise. As a general definition, any recorded 
energy that interferes with the desired signal can be considered as noise [22]. A 
result of noise can cause misinterpretation of edges that can be of high importance. 

Unwanted signals (noise) can be produced in many different ways, likewise, there 
are many ways to remove or weaken its presence in an image. 
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3.2.1 IMAGE FILTERING 

Before going through different image filters, one must understand how an image is 
filtered. When applying an image filter, it will traverse each pixel in a digital image 
that we will call the operator site. The operator site will look at the neighboring 
pixels (in Figure 8 we can see the light blue around the operator site which are the 
neighboring pixels called the window), and analyze the values in this window 
according to an algorithm to get a pixel value. This pixel value is then stored in a 
new image in the same x and y position, which in the end is the filtered image. This 
is to avoid values from formerly filtered pixels to influence the filter process of the 
remaining pixels. 

Figure 8 Image filtering process 

 

3.2.2 MEAN FILTER 

Also known as box blur, a simple linear filter that uses a convolution matrix (kernel). 
A kernel represents the window of the filter, where one element overlap a single 
pixel in an image. In Equation 3 we can see a mean convolution matrix with size 
3x3, the blue area on the left side showed in Figure 8. 

Equation 3 Mean convolution matrix 

𝑀𝑒𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 =
1
9

[
1 1 1
1 1 1
1 1 1

] 

Each value in the convolution matrix represents a weight, how much each pixel in 
the window influences the final value represented in the new image. Usually, the 
sum of a convolution matrix equals one, in order to avoid over- or under saturation 
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of pixel values. In Figure 8 is an example of a mean value output, the eight light blue 
surrounding the darker blue are mixed making the output value a darker shade of 
blue. 

3.2.3 GAUSSIAN FILTER 

Named after the Gaussian curve, the two dimensional convolution matrix (see 
Equation 4) is weighted to form a three dimensional Gaussian bell (see Figure 9). 
Gaussian filtering has been studied in computer vision and image processing [23]. 

Equation 4 Two dimensional Gaussian convolution matrix 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 = [
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

] 

With Gaussian filter, the center pixel (operator site) has the most weight, which 
means it has the most influence on the end result preserving the structure of the 
image while smoothing. Even though it is used before edge detection to avoid 
finding unwanted edges because of noise [24], the use of Gaussian filter as 
preprocessing for edge detection may give displacement of edge position. In some 
cases edges vanish or phantom edges appear [25].  

Figure 9 Three-dimensional Gaussian bell plotted in MATLAB 
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3.2.4 MEDIAN FILTER 

A median filter is a non-linear filter that analyze the values contained in the image 
window, sorts them in numerical order from smallest to highest value, then returns 
the median value [26]. If the number of pixels results in an even number, the average 
of the two middle values would be returned. The median filter is optimal for 
removing impulsive noise (salt-and-pepper noise). On the other hand, fine details 
are also removed, as it does not see the difference between noise and fine details. 

3.3 EDGE DETECTION 

For structural analysis, using edge detection to highlight features of interest such as 
faults and salt dome borders.  

3.3.1 SOBEL FILTER  

Sobel filter, named after Irwin Sobel, who presented the idea of an isotropic 3x3 
image gradient operator in 1968, is one of the standard image processing edge 
detection techniques [27] to measure luminosity of the onset of the red green blue 
(RGB) color space. It computes the rate of change across an edge as it is a first 
derivative operator.  

 

Equation 5 Sobel convolution matrices in x and y axis (X and Y gradients) 

𝐺𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] ∗ 𝐴  𝑎𝑛𝑑  𝐺𝑥 = [

1 0 −1
2 0 −2
1 0 −1

] ∗ 𝐴 

In Equation 5 we can see two convolution matrices that convolves (denoted by *) 
over an image (denoted by A) which equals images in an x-axis and y-axis image 
that contains the horizontal and vertical derivative approximations. Gx and Gy 
denotes the gradient directions of the Sobel filter, by applying Equation 6, we get 
the value that defines the edges in an image. 

 

Equation 6 Gradients magnitude 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

In Figure 10 (a), we can see the image; cameraman, which is included in the 
MATLAB library. In (b) we have applied the Sobel filter and calculated the gradient 
magnitude for each pixel. 
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Figure 10 Image with and without Sobel filter 

 

3.4 DIP GUIDING 

In Schlumberger’s Petrel software, there is a seismic attribute that calculates the 
curvature of the earths’ layers [28]. In Figure 11, we can see a yellow box along the 
red squares (representation of pixels in an image) diagonally that is what we want to 
filter. If we apply an edge detection along the horizontal plane in (b), we would 
detect an edge along the red pixels. A way to solve this is to move the red pixels that 
are above and below the center, to make a straight line seen in (c) then apply a filter 
along the now straightened segment (d) and avoid unnecessary edge detections.  

Figure 11 Example of filtering across segments versus filtering along segments 

 

By applying the Dip guiding attribute in the inline and cross line, individual cubes 
are created in these directions showing the curvature with numbers usually between 
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1 and -1 (see Figure 12 (a) and (b) respectively). The value of one represents an 
angle of 45° either downwards (positive) or upwards (negative) in the filter direction 
which equal one pixel below or above respectively, hence, going against filter 
direction, results in an opposite angle (see Figure 12).  Then the dip-guided cube can 
be used together with the original seismic data cube to move pixel values in an 
isolated state to produce similar values on a straight line before applying an image 
filter as illustrated in Figure 11 (d). 

Figure 12 Segment angle according to pixel value 

 

3.5 ADAPTIVE OPERATOR SIZE BY CHAOS ANALYSIS 

In previous work that we have done, using adaptive operator size for seismic 
attributes, depth and chaos analysis is used to determine operator size [3]. In this 
work, a three-dimensional Sobel based edge detector is implemented (Amplitude 
Contrast [11]). By looking at the nature of seismic data, it commonly changes from 
short wavelength to longer wavelength signals according to the depth/time. We then 
incrementally adjust the operator size adjacent to the depth/time, (see Figure 13).  

However, seismic data is not that simple, Geological features such as dipping, salt 
and gas results in a chaotic and varying frequency regardless of which depth/time it 
occurs. Therefore, a textural analysis were introduced to take account for these 
changes in frequencies regardless of when it may occur, adapting the operator size 
on the fly. Changes to higher frequencies usually results in chaotic textures, 
therefore, chaos is used as seismic texture alteration indicator. 

Results from this work indicated a higher level of detail of edge detection, 
highlighting smaller amplitude discontinuities better than a static operator size 
approach. It also proves to increase fault continuity and reduce the detection of 
noise.  
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Another related work using an adaptive attribute, is for noise reduction with hybrid 
filtering [4]. This work also uses chaos as a measure to adapt the operator size as 
well as filter type. 

Figure 13 adjusting the operator size according to depth [2] 
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CHAPTER 4 
4 METHODOLOGY AND IMPLEMENTATION 

In this chapter, we will discuss the methodology in more detail than the previous 
chapter, and highlight certain implementation decisions. This chapter will be divided 
into seven sections. 

In section 4.1, we will have a short description of our method. The sections that will 
follow will include more information about our method. We will talk about the user 
interface and how this will help simplify the analytical process. However, that is 
something we will talk more about in the next chapter. 

In section 4.2, we will talk about discrete Fourier transform that we apply on the 
depth/time axis to choose an operator size for our next step.  

In section 4.3, we will talk about variance analysis and how we further determine 
the operator size to be applied over the interpolation procedure. 

In section 4.4, we will talk about how we use dip guiding in our model and the reason 
behind this. 

In section 4.5, we will talk about interpolation between values according to the 
operator size. 

In section 4.6, we will talk about the Sobel edge enhancement and why this is a good 
way to enrich visibility of faults. 

In the last section, section 4.7, we will talk about vertical smoothing of the data as a 
final enhancement. 

In the next chapter, we will discuss all the results related to these different methods.  

4.1 OVERALL VIEW 

In this section, we will have a short description of the process that our algorithms 
will cover (see Figure 14 for an overview). We will divide the process into six stages: 

1. Using Discrete Fourier transform in the depth direction for deciding operator 
size for each individual pixel in the dataset. For this process, eight samples 
are used with a Hamming window as overlay to achieve a periodic wave. 

2. Dip guiding (straightening) sub cube data. 
3. The ceiling value of each operator size value determines the radius of a 

variance analysis to determine a new operator size for the next step. The 
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variance result determines which data to use in next step, either the dip 
guided seismic data or the original seismic data. 

4. The new operator size used for interpolating values into a three by three 
matrix. 

5. The Sobel filter applied on the interpolated matrix, that is the value added to 
the output seismic cube. 

6. After the Sobel operation is complete, a vertical smoothing applied to 
strengthen fault visibility and reduce noise elsewhere. 

Figure 14 Algorithm flow chart 

 

4.1.1 THREE-DIMENSIONAL SEISMIC VIEWER 

To make it easier to view seismic data, we developed a three-dimensional seismic 
image viewer in MATLAB see Figure 15. It can show data slices in inline, cross line 
and depth/time. Three sliders on the bottom with corresponding buttons used to 
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activate intersection view and position in the seismic data, while the button on the 
left-hand side turns on the filter attribute on the time/depth-slice portion of the data. 
To get a better sense of position when viewing a single slice, the axis remains in all 
directions and not flattening as default. 

Figure 15 The graphical user interface of the three-dimensional seismic image viewer.  

 

4.2 FREQUENCY ANALYSIS 

As a starting point for this algorithm, we perform a frequency analysis for each data 
point (pixel) in the dataset. By sending the seismic dataset to the 
createOperatorSizeCube.m (see Code snippet 1), a new cube with the same size as 
the input is generated. This cube contains filter operator sizes to be used in the 
variance testing process later in the algorithm. Creating an operator size cube can be 
done in advance or it is created during the algorithm. 
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Code snippet 1: createOperatorSizeCube.m 

1 function opSizeCube = createOperatorSizeCube(input) 
2 opSizeCube = input; 
3  
4 for k = 439:458 
5     for i = 1:650 
6         for j = 1:950 
7             opSizeCube(k,i,j) = opSizeSelector(input(k-4:k+3,i,j)); 
8         end 
9     end 
10 end 

 

If we look at Figure 16, the yellow square is the current position of the frequency 
analysis process. We take three samples above and four samples below including 
the current position giving us eight samples fulfilling the requirements of fast 
Fourier transform dimension of 2n order (2, 4, 8, 16 etc.). These eight samples are 
sent to the opSizeSelector.m function (see Code snippet 2) for the operator size 
selection. 

Code snippet 2: opSizeSelector.m 

1 function opRadius = opSizeSelector(samples) 
2 opRadius = 1; 
3 d=length(samples); 
4 fftGraph = abs(fft(samples)).*hamming(d);%hann(d); 
5  
6 [val,idx] = max(fftGraph); 
7  
8 if idx == 1 
9 ... 

 

In the opSizeSelector function, the array of samples are used in a fast Fourier 
transform with a Hamming window overlay. The operator size is determined by 
finding the index of the max value. Each index represents a value by selection of 
operator size. 
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Figure 16 Frequency analysis illustration 

 

4.3 DIP STRAIGHTENING 

In the dipStraightning.m function (see Code snippet 3), we send a sub-cube of the 
original seismic data, in-line- cross-line-cube. These sub-cubes are either three or 
five pixels wide each in the three axis, where the middle plane along the time-slice 
is the attribute depth and is displayed as the result (see Figure 17 (d) along the line 
of the red, blue and green squares). Looking at the attribute plane (viewed from 
above) (a), the blue square is the centroid of the cube. The value of one shows the 
angle of the neighboring values get straight segment line is 45 degrees (see (c), red 
square is 45 degrees above and the green square is 45 degrees below the blue). 
However, the neighboring pixels in the y-axis does not equal one, but 0.8 and 0.5. 
This would indicate that the neighboring pixels should be moved 36 and 22.5 
degrees respectively to form a straight line. In our algorithm, we use the centroid 
value across the board to determine the angle of the neighboring pixel this makes 
the algorithm lighter and the neighboring dip values usually does not differ much 
from each other.  

  



4.3 Dip Straightening   | 

26 | P a g e  

 

Code snippet 3: dipStraightning.m 

1 function output = dipStraightning(subCube,subXDipCube,subInDipCube) 
2 output = subCube; 
3 r = floor(length(subCube)/2); 
4 k = r+1; 
5 for j = 1:k 
6     for i = 1:r 
7 %   Check dip in in-line direction 
8         if subInDipCube(k,k,k)<0 
9             output(k,k+i,j)=(subCube(k+i,k+i,j)-subCube(k+i-1,k+i,j))... 
10                *subInDipCube(k,k+i,j)+subCube(k,k+i,j); 
11 
12            output(k,k-i,j)=(subCube(k-i,k-i,j)-subCube(k-i+1,k-i,j))... 
13                *subInDipCube(k,k-i,j)+subCube(k,k-i,j); 
14        else  
15            output(k,k+i,j)=(subCube(k-i,k+i,j)-subCube(k-i+1,k+i,j))... 
16                *subInDipCube(k,k+i,j)+subCube(k,k-i,j); 
17 
18            output(k,k-i,j)=(subCube(k+i,k-i,j)-subCube(k+i-1,k-i,j))... 
19                *subInDipCube(k,k-i,j)+subCube(k,k+i,j); 
20        end 
21        % do the same for cross-line cube 
22      ... 
 

The code snippet of dipStraightning (see Code snippet 3) shows only the code for 
the in-line direction. However, the process is identical for the cross-line direction 
using the second input; subXDipCube. 

Figure 17 Equal dip straightening process 

 

The reason we want to straighten the data before an edge detection is to avoid 
unnecessary edges to appear on the results. If we look at Figure 18, in (a) we see a 
representation of layered segments that we can see in a seismic dataset. From the 
left, we can see the segments starts out relatively flat before bending downwards. At 
the bottom of the slope, we can see the segments are offset a little upwards creating 
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a diagonal line; this is a fault we want to highlight. At the end, the segments slope 
upwards before straightening out to a flat surface. 

Figure 18 Dip straightening to avoid unwanted edges, (a) input, (b) output 

 

Applying an edge detection along the filter direction, the results would look 
something like in Figure 18 (b), where the slopes along with the fault would be 
highlighted. If we were to use the edge detection results in further image analysis 
processes, the unwanted segments edges would pollute the end result when fault 
extraction is the goal.  

4.4 VARIANCE ANALYSIS 

With the newly dip-straightened sub cube form the previous operation, we send the 
data to the varianceTest.m function (see Code snippet 4). The test window in the 
time-slice plane is converted into an array (see Figure 19), as the variance function 
in MATLAB requires this, and normalized to achieve values between one and zero.  
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Figure 19 Time-slice plane converted into an array 

 

The outputs of varianceTest are noise and opSize. The noise variable is the variance 
result of the input, while the opSize is the noise subtracted from the set value of 1.9 
that we achieved best results. If the set value is more than two, the results becomes 
more blurry. If the set value is less than 1.9, the results becomes less detailed. The 
noise variable is used in the main algorithm to determine if the dip-guided data is to 
be used or discarded. 

Code snippet 4: varianceTest.m 

1 function [noise,opSize] = varianceTest(subcube,r) 
2 myVector = reshape(subcube(r+1,:,:),[],1); 
3 myVector = myVector./max(abs(myVector)); 
4  
5 noise = var(myVector); 
6  
7 opSize = 1.9-(noise); 
8 if isnan(opSize) 
9     opSize = 1; 
10 end  

With the normalized array, we find the variance according to Equation 7, and then 
we subtract this value from a set value to attain a new operator size for the next step. 
We also use the variance result to determine if the dip-straightened data not too 
noisy. If the noise is above a set threshold, we discard the dip-straightened data and 
use the original seismic data instead. This is because dip guiding does not perform 
well in chaotic areas such as salt domes. 

Equation 7 Variance 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] 

4.5 INTERPOLATION 

Before using the Sobel operation, we need to make sure that the sub-matrix is a 3x3 
matrix. If the operator size is more than one, then the decimal represents the 
percentage of the outer values used for interpolation (see Equation 8).  
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Equation 8 Interpolation  

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑥1 ∗ (1 − 𝑝) + 𝑥2 ∗ 𝑝 

Where 𝑥1 represents the value closest to the center, 𝑥2 is the neighboring value to 
𝑥1 that is further away from the center. While 𝑝 is the percentage of interpolation in 
the form of a decimal number between one and zero. 

Looking at Figure 20 (a), we can see that some values are not considered for the 
interpolation process and taking the values that seems most natural in their position. 
The outer and inner border is combined to a set of values shown in (b). 

Figure 20 Interpolation of a 5x5 sample to a 3x3 sample 

 

In Code snippet 5, we can see the process of interpolating the values of an input 
matrix. At line 12, we create an empty two-dimensional matrix that will contain 
the interpolated values. The int variable is the floored value of the operator size 
that determines interpolation indexes, while the dk variable is the percentage of 
interpolation. 
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Code snippet 5: interpolationCube.m 

1 function output = interpolationCube(subcube,opSize,center) 
2 int = floor(opSize); 
3 dk = opSize-int; 
4 d = length(subcube); 
5 center = ceil(d/2); 
6 try 
7     subC = reshape(subcube(center,:,:),[d,d]); 
8 catch 
9     subC = subcube; 
10 end 
11 
12 sobelCube = zeros(3,3); 
13 x1 = subC(center,center); 
14 if center-int < 0 
15    output = subC(:,:); 
16 else 
17     sobelCube(2,2) = x1; 
18     try 
19    sobelCube(1,1) = subC(center-int,center-int)*(1-dk)+... 
20        subC(center-int+1,center-int+1)*dk; 
21     catch 
22         sobelCube(1,1) = 5; 
23     end 
24    sobelCube(1,2) = subC(center,center-int)*(1-dk)+... 
25        (subC(center,center-int+1)*dk); 
26    sobelCube(1,3) = subC(center+int,center-int)*(1-dk)+... 
27        subC(center+int-1,center-int+1)*dk; 
28    sobelCube(2,1) = subC(center-int,center)*(1-dk)+... 
29        subC(center-int+1,center)*dk; 
30    sobelCube(2,3) = subC(center+int,center)*(1-dk)+... 
31        subC(center+int-1,center)*dk; 
32    sobelCube(3,1) = subC(center-int,center+int)*(1-dk)+... 
33        subC(center-int+1,center+int-1)*dk; 
34    sobelCube(3,2) = subC(center,center+int)*(1-dk)+... 
35        subC(center,center+int-1)*dk; 
36    sobelCube(3,3) = subC(center+int,center+int)*(1-dk)+... 
37        subC(center+int-1,center+int-1)*dk; 
38    output = sobelCube; 
39 end 
 

 

4.6 SOBEL EDGE ENHANCEMENT 

For this thesis, we are using a two dimensional Sobel filter on the time-slice plane 
and not three dimensional as used in [3]. Because complete straight lines is a rare 
occurrence in nature and it would seem that a three dimensional Sobel detriment 
more than it would benefit. In addition, a multitude of extra operations is avoided; 
such as dip straightening and Sobel filtering of multiple layers. 
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Figure 21 Sobel operators for x-axis (a) and y-axis (b) 

 

By taking the square root of sum (a) and (b) in the second degree, we also get a 
smoothing (blur) across the image. If we look at Code snippet 6, we ensure that the 
input is a 3x3 square. In line 10 we can see ‘*2’ has been commented out; however, 
this can be included to strengthened the output value. 

Code snippet 6: sobel.m 

1 function v = sobel(subcube) 
2 sx = [1 2 1; 0 0 0; -1 -2 -1]; 
3 sy = [1 0 -1; 2 0 -2; 1 0 -1]; 
4 r = floor(length(subcube)/2)+1; 
5  
6 tempSlice = reshape(subcube(r,r-1:r+1,r-1:r+1),3,3); 
7 gx=sum(sum(tempSlice.*sx)); 
8 gy=sum(sum(tempSlice.*sy)); 
9 mySqrt=sqrt(gx*gx + gy*gy); 
10v=mySqrt;%*2; 
 

4.7 VERTICAL SMOOTHING 

After the attribute is finished with the Sobel operation on the desired time slice, a 
mean smoothing operation is performed in the vertical direction. The smoothing has 
a length of seventeen pixel, eight pixels above and below the current position. This 
is done to give emphasis to faults in the dataset while removing noise and shadows. 
The larger the filter size then more calculations is needed, if it is too small, fault 
continuity can be lost and more noise will be visible.  In Figure 22, we illustrate how 
faults are highlighted with the use of vertical smoothing. 
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Figure 22 Vertical smoothing illustration 

 

In Figure 22 (a), the different segments of the seismic are represented with the red 
and blue squares (positive and negative values). The faults can be seen where the 
squares change from one color to another in the horizontal plane as highlighted in 
(a). After an edge enhancement, it would look something like illustration (b). In the 
final illustration (c), we have applied vertical smoothing to remove noise and 
shadows making the red and blue squares into purple, and the fault have been widen 
making an enhanced fault.  

Code snippet 7: verticalSmoothing.m 

1 function output = verticalSmoothing(input,timeslice,r) 
2 temp = input; 
3 
4 for i = 1:650 
5    for j = 1:950 
6        temp(timeslice,i,j) = mean(input(timeslice-r:timeslice+r,i,j)); 
7    end 
8 end 
9 output(timeslice,:,:) = temp(timeslice,:,:); 
 

The vertical smoothing method is quite simple (see Code snippet 7). For each point 
in the time-slice plane, we find the mean value. This is the reason why the previous 
steps are done on eight time-slices above and below the one that are presented in the 
viewer.  
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CHAPTER 5 
5 RESULTS AND ANALYSIS 

In this chapter, we will introduce results for each segment of the algorithm and do 
some analysis and comparison to see how much an improvement each individual 
part contributes to the final result. This chapter will be divided into five sections. 

In section 5.1, we will look at how the original seismic looks like and show how the 
Sobel operator preforms on the seismic data without any prior or following 
enhancements. 

In section 5.2, we will show Sobel performed on dip-straightened data and compare 
it with Sobel performed on the original seismic data. We will introduce two 
approaches of dip guiding; using the dip cube for all points, and an adaptive dip 
guiding if the point is too chaotic, the original seismic data are used instead of the 
dip straightened. 

In section 5.3, we introduce interpolation of the seismic before preforming Sobel 
filtering to see its effects on the results. 

In section 5.4, we will show the effects of vertical smoothing after Sobel filtering 
and interpolation. 

In section 5.5, we will compare our results with three-dimensional Sobel filtered 
output data from Petrel, which uses dip guiding and vertical smoothing. 

In Section 5.6, we will discuss the inclusion of Gaussian smoothing before running 
the algorithm. 

In section 5.7, we will look at the run time of the algorithm with the built-in feature 
in MATLAB. 

5.1 SOBEL ON PURE SEISMIC DATA 

Before looking at the Sobel results, let us get a view of the original seismic. We will 
focus on time-slice 1788 from the corresponding dataset F3 (447 in the seismic 
viewer). In Figure 23, we can see the seismic data unaltered, our main focus is the 
lower right area that are particularly faulty. After this section, we will focus on the 
area from 0 to 400 in the cross-line axis (denoted as xline) and 0 to 500 in the in-
line axis, and do a side-by-side comparison and point out other differences 
throughout the other sections. 
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Figure 23 Original seismic 

 

In Figure 24, we have applied a Sobel filter without any prior nor subsequent 
enhancement, and as one would expect; the Sobel operator picks up the stratigraphy 
(zebra stripes) easily, as illustrated with Figure 18. The F3 dataset is noisy and edges 
are present throughout the whole image, hence seeing the faults among the all the 
noise and stratigraphy are not easy.  

Figure 24 Original seismic with Sobel filter 
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5.2 SOBEL WITH DIP GUIDING 

In Figure 25 (a), we can see an improvement of the results of Sobel filtering with 
the help of dip guiding. These dip cubes (in-line and cross-line) were created with 
the Petrel software. The stratigraphy are reduced, and we are starting to see some 
faults appearing from the faded stripes. However, it is not easy to determine faults 
from stratigraphy and noise at this point, but it is still an impressive improvement. 

Figure 25 Sobel with dip guiding (a) and adaptive dip guiding and Sobel filter (b) 

 

In Figure 25 (b), we can see that the stratigraphy are more apparent (present) with 
the adaptive dip guiding then with regular dip guiding. The faults are a little stronger 
than the previous image, although more noisy. These two approaches takes equal 
amount of processing power as the data are straightened out with dip guiding before 
a variance analysis is done. If the dip guided data is above the noise threshold the 
regular seismic data for the current sub-cube is used in Sobel filtration. 

By doing a comparison of these two results, we get Figure 26. Here we can see 
clearly pink lines throughout the image, these pink lines represent what adaptive dip 
guiding has that regular dip guiding does not, while green represent what regular dip 
guiding has and adaptive does not. We have pointed out some faults that have been 
enhanced from using adaptive dip guiding with orange arrows and some less than 
ideal with red arrows. 
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Figure 26 Comparison of Comparison of results (regular dip guiding versus adaptive) 

 

5.3 SOBEL WITH DIP GUIDING AND INTERPOLATION 

After a variance test along the dip (after dip straightening), we determine a new 
operator size to use with interpolation including the noise variable. We continue to 
test on adaptive and non-adaptive dip guiding data. If we start looking at Figure 27 
(a) with dip guiding and linear interpolation there are some small changes when 
comparing it to Figure 25. In Figure 28 (brightness, contrast and saturation have 
been increased to make it easier to see), we have highlighted (in purple) a couple 
additions that are not present in Figure 25 (we have concentrated in at the lower part 
of the image); these additions pointed out are faults that gives a better continuity. 
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Figure 27 Dip guided Sobel with interpolation (a) and adaptive dip guided Sobel with 
interpolation (b) 

 

In Figure 27 (b), we can see the results of using adaptive dip guided Sobel with 
interpolation. With adaptive dip guiding, the interpolation results gives it a darker 
appearance with less sporadic noise, but also more of the stratigraphy is seen 
resembling Figure 27. This makes it difficult to distinguish faults from the crossing 
points of negative and positive values. This happens because of the use of original 
seismic data when deemed too noisy. This is also the reason the image gets overall 
darker, with dip guiding the interpolation happens with similar values (positive with 
positive and negative with negative), hence, without dip guiding, positive and 
negative values are interpolated giving less occurrences with values that 
differentiate; resulting in more lower values.   
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Figure 28 Difference between dip guided Sobel and dip guided Sobel with interpolation 

 

If we look Figure 29, the green shows what dip guided Sobel has that adaptive does 
not, and vice versa with the pink. Here we can see that some parts of the faults are 
highlighted stronger by the regular dip guiding while the adaptive dip guiding 
highlights some other parts of the same faults. However, the regular dip guided 
image has a little more noise between the faults and the adaptive dip guided has 
stratigraphy.  
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Figure 29 Comparison of dip guided Sobel with interpolation and adaptive dip with 
interpolation 

 

5.4 VERTICAL SMOOTHING 

Before performing the vertical smoothing on the seismic cube, we do the dip guided 
Sobel filtering with interpolation on time-slices above and below the selected time-
slice for viewing. Then by applying a vertical mean filter, we strengthen the fault 
visibility and weaken unwanted noise. In Figure 30, we can see the result of a 
vertical smoothing with a diameter of seventeen, eight above and eight below 
selected time-slice. We can now really see the faults pop out in the right part of the 
image. With the use of adaptive dip guiding, the image has a little darker tone. This 
is because of the combination of adaptive dip guiding and linear interpolation, where 
the use of original seismic instead of dip guided. The interpolation is likely to add a 
positive number with a negative one, hence, a low differentiation of the Sobel 
operator, giving close to zero as value.  

We have pointed out two differences between the images in Figure 30, the orange 
arrow shows how the adaptive dip guiding enhances this fault to a clear line, while 
in regular dip guiding, the line is a diffuse line that can be mistaken as noise. If we 
take our attention to the red arrows, we can see that this fault has higher value in 
regular dip guiding than in adaptive dip guiding 
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Figure 30 Dip guided Sobel with interpolation and vertical smoothing (a) and adaptive dip 
guided Sobel with interpolation and vertical smoothing (b) 

 

By doing a comparison of these two results seen in Figure 30, we get Figure 31, It 
might seem discouraging too all the faults in green as it indicates a higher values in 
(a) than in (b). However, we can see that regular dip guiding produces more noise 
around and in between the faults except up in the right area. We have marked two 
areas (orange arrows) where the adaptive dip guiding gives stronger results than with 
regular dip guiding. 
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Figure 31 Comparison of regular dip and adaptive dip with interpolation 

 

The mean smoothing operation in itself does not take a lot of time. However, it is 
time consuming to do the fast Fourier transform, dip straightening, variance 
analysis, linear interpolation and Sobel operation for all the time-slice layers needed. 
Nonetheless, comparing it with the results of Sobel filter with dip guiding on one 
time-slice layer (see Figure 25), the amount of details, noise removed and continuity 
achieved is staggering. The added complexity of the algorithm is worth the time in 
this case, as the code used can be optimized greatly.  

5.5 COMPARISON WITH PETREL RESULTS 

As mention in Chapter 2.3 Petrel, we want to do a comparison of our results with 
how Petrel on the same dataset. The Petrel attribute is a three-dimensional Sobel 
filter with dip guiding and vertical smoothing and one including a 5x5 median filter 
along the dip as well. For the comparison we have used the adaptive dip guided 
Sobel filtered with vertical smoothing results. We have also adjusted the brightness 
and contrast of our result to be more easily comparable with the Petrel results. 

In Figure 32, we have pointed out some of the differences between the Petrel results 
and our results. The orange arrows show that our approach does better to extract 
faults, the continuity are better for the most part and faults that are not visible in 
Petrel, pointed out by the two lowest arrows. The red arrow points out that our 
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approach does feature shadows produced by the stratigraphy captured by the 
adaptive dip guiding. However, inside this shadow, several faults are present that is 
not captured by the Petrel algorithm. After increasing the brightness and decreasing 
contrast on our result, we can see more of the Gaussian noise present in the dataset. 
On the other hand, the noise is stronger in (a) that makes it harder to determine the 
continuity of faults on a computer imaging basis.    

Figure 32 Dip guided three-dimensional Sobel filter (a) and our adaptive dip guided Sobel 
with interpolation (b) 

 

If we look at (a), a 5x5 median filter has been applied to reduce noise and it shows 
to be very effective. A lot of noise between faults has been removed and faults are 
more easily distinguishable. Nevertheless, our results show more information 
regarding faults and the noise present does not have high values that diminishes 
faults.  
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Figure 33 Dip guided three-dimensional Sobel filter with 5x5 median on top (a) and our 
adaptive dip guided Sobel with interpolation (b) 

 

In Figure 34, we can see a comparison between our and Petrels result, the green 
indicates where our values are higher and pink indicates higher values for Petrel. 
The faults in the middle of the image and downwards, Petrel has higher values on 
the faults. However, we want to remark that the noise in (a) overshadow weaker 
faults in (b).  
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Figure 34 Comparison between our results and Petrel results from Figure 33 

 

5.6 GAUSSIAN SMOOTHING PRE-PROCESSING 

We applied a 3x3 and 5x5 Gaussian-smoothing filter, to see if it would give an 
improvement of the Sobel operation. This however, proved to be fruitless, as it had 
no visual effect after running our algorithm. With the included expense in time added 
to the algorithm, it will not be included as a part of the final algorithm. 

5.7 MATLAB ALGORITHM RUN TIME 

MATLAB has a feature where we can time the algorithm and see how much time 
each process takes. In  

Table 1, we can see the procedures sorted after total time taken from highest to 
lowest. The algorithm traverses NxM where N ≤ M points and seventeen in the third 
dimension, this gives it a complexity of O(N2). 

The function on top, runTimeTest, is the function that calls the algorithm; 
timeSliceAttribute, which runs all the functions. We can see that 
createOperatorSizeCube function uses a two thirds of the total time, because it calls 
opSizeSelector and hamming. Because fast Fourier transform is in the signal toolbox 
of MATLAB, it calls all “signal/private/…” functions. After this the variance testing 
uses 443 second that includes the var function that lies beneath it.  
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The interpolation function uses 235 seconds and uses no extra calls, while Sobel 
filtering uses 136 seconds in total. 

The vertical smoothing with mean filter uses the least amount of time, clocking in 
close to eighteen seconds. 

Table 1 MATLAB algorithm run time 
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CHAPTER 6 
6 CONCLUSION AND FUTURE WORK 

Exploring the subsurface through seismic imaging has been, and will continue to be 
determined by educated guesses. However, with the increasing endeavors in image 
processing, these educated guesses become more accurate.    

We will conclude this thesis with two sections. In section 6.1, we will summarize 
our results and the impact on the dataset. Lastly, section 6.2, we will discuss possible 
future work that can be done within this field. 

6.1 CONCLUSION 

The approach of an adaptive operator size for a Sobel based edge detection to 
achieve a more detailed image proves to be successful as it surpasses the industry 
standard for fault detection set by the Petrel Platform.  Some of the larger faults in 
our test data are weaker in value than in Petrel, however, the noise in between the 
faults has been reduced substantially and smaller faults parallel and perpendicular 
have emerged. This in return gives a more complete and realistic fault network, 
which is a much better starting point for any interpretation workflow. This way risk 
is reduced and simulation models can be more complete. 

The discrete Fourier transform approach to determine an operator size is time 
consuming while its impact on the result is minimal. The key advantages are of 
course the more accurate estimation. However, through the use of other frequency 
or chaos measurements we are able to achieve similar results with a fraction of the 
computation cost. Hence, we conclude that the Fourier transform method in this case 
is not ideal. 

With the help of the dip cubes that were created using Petrel, significant 
improvements were made in applying the Sobel operator. It allows us to follow the 
curvature of the seismic layers for the most parts, avoiding zero crossings to make 
an impact on the fault detection process. Ultimately, this reduces the capture of 
geological noise. Using our conditional logic of using the dip guiding only when in 
less chaotic areas, we see a clear improvement in the continuity of the faults 
detected. This is due to the fact that most dip estimations are unstable in highly 
chaotic regions. We achieved this by using variance testing along the dip to check 
whether or not it is too chaotic. This has improved the detection of weaker faults 
that would otherwise be excluded in the dip guiding process. This also determines a 
new operator size to be used on the interpolation function, giving a seemingly higher 
resolution to the fault network 
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6.2 FUTURE WORK 

Here we present some suggestions for future work within the research field: 

Improved frequency analysis to determine starting operator size, explore new 
frequency detection methods. Because the chaotic nature sub-surface, frequency 
changes not only by depth, but also after what material the layers are made of. 
Hence, to focus on the dominant frequencies that surround the filter operation site 
would help finding the best matching operator size for the current situation. This 
would account for acquisition noise to correct frequency detection. 

Improved interpolation model: the interpolation model used is quite simple, it does 
not require a lot of processing. However, because seismic is received by sound it is 
natural to assume a cardinal sine (sinc) interpolation might be the better choice. This 
would however increase the algorithm cost. Another possibility is to limit the 
interpolation for values far from the center. When the operator size is small, 
interpolating values might not be needed and if the operator size is large, 
interpolating the outer values could be too simple of an approach.  

Try different edge detection methods: in this thesis Sobel was the only approach 
used because of its cost effectiveness. Other edge detections could be implemented, 
such as variance. With variance, edges caused by chaotic noise can be avoided [29].  
Other weighting than Sobel approach for Gaussian derivative could be implemented. 
Hough transform, a feature extraction technique that aims to find imperfect instances 
of objects within a certain class of shapes through a voting procedure. It could also 
be used to find faults in a three-dimensional planes directly.  
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APPENDIX 
APPENDIX A 

The MATLAB source code is included as attachment. The structure is as follows: 

x Analysis 
o opSizeSelector.m – FFT analysis 
o varianceTest.m – variance analysis 

x crewes – needed to read *.segy files, please download from crewes.org 
website [16] 

x cube_operations 
o convert2CubeForm.m – converts the loaded segy file into a three-

dimensional matrix that are used for further operations 
o createOperatorSizeCube.m – runs opSizeSelector for each point in 

cube to create an operator size that are used later 
o dipStraighting.m – takes a sub-cube and flattened it out 
o interpolationCube.m – takes a sub-square and interpolate values to 

form a 3x3 before the Sobel operation 
x filters 

o sobel.m – applies a Sobel operator and returns the value for a single 
point 

o timeSliceAttribute.m – this runs the algorithm on the selected time-
slice 

o verticalSmoothing.m – applies a vertical mean smoothing on the 
selected time-slice 

x myUI 
o drawSlice.m – takes the values of the cube and converts them into a 

RGB image 
o mySeismicUI.m – this makes the window with buttons and sliders 

for interactions 
o plotInLine.m – creates a surface with the dimensions of an in-line 

slice of the cube with the image produces by drawSlice.m 
o plotTimeLine.m – does the same as plotInLine.m for time-slice 
o plotXLine.m – does the same as plotInLine.m for cross-line 

x read_segy_file.m – contains the steps of reading a segy file, converting it to 
a matrix and opening the seismic viewer. The segy folder is needed 

APPENDIX B 
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We have included a presentation poster that was a part of the Master thesis; it is split 
into four presentation slides.  
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MATLAB_source_code/myUI/._drawSlice.m





MATLAB_source_code/filters/._gaussianSmoothing.m





MATLAB_source_code/myUI/._mySeismicUI.m





MATLAB_source_code/myUI/._plotInLine.m





MATLAB_source_code/myUI/._plotTimeLine.m





MATLAB_source_code/myUI/._plotXLine.m





MATLAB_source_code/filters/._sobel.m





MATLAB_source_code/filters/._timeSliceAttribute.m





MATLAB_source_code/filters/._verticalSmoothing.m





MATLAB_source_code/cube_operations/convert2CubeForm.m

% Making a 3D matrix of F3 Dataset which is in a 2D matrix
% inline = 650
% xline = 950
% z = 462
function [myseismic, maxVal, minVal] = convert2CubeForm(loadedSEGY)
myseismic = zeros(462,650,950);

for page = 1:650
    try
        myseismic(:,page,:) = loadedSEGY.tracedata.data(:,page+(950*(page-1)):page-1+950*page);
    catch err % This is expected because the dataset is not a full cube of data
        continue;
    end
end

maxVal = max(max(max(myseismic(:,:,:))));
minVal = min(min(min(myseismic(:,:,:))));






MATLAB_source_code/cube_operations/createOperatorSizeCube.m

function opSizeCube = createOperatorSizeCube(input)
opSizeCube = input;

for k = 439:458
    for i = 1:650
        for j = 1:950
            opSizeCube(k,i,j) = opSizeSelector(input(k-4:k+3,i,j));
        end
    end
end






MATLAB_source_code/cube_operations/dipStraightning.m

% dipcube contains values between -1 and 1 where 1 indicates segment dip
% degree of 45

function output = dipStraightning(subCube,subXDipCube,subInDipCube)
output = subCube;
r = floor(length(subCube)/2);
k = r+1;
for j = 1:k
    for i = 1:r
%   Check dip in in-line direction
        if subInDipCube(k,k,k)<0
            output(k,k+i,j)=(subCube(k+i,k+i,j)-subCube(k+i-1,k+i,j))...
                *subInDipCube(k,k+i,j)+subCube(k,k+i,j);

            output(k,k-i,j)=(subCube(k-i,k-i,j)-subCube(k-i+1,k-i,j))...
                *subInDipCube(k,k-i,j)+subCube(k,k-i,j);
        else 
            output(k,k+i,j)=(subCube(k-i,k+i,j)-subCube(k-i+1,k+i,j))...
                *subInDipCube(k,k+i,j)+subCube(k,k-i,j);

            output(k,k-i,j)=(subCube(k+i,k-i,j)-subCube(k+i-1,k-i,j))...
                *subInDipCube(k,k-i,j)+subCube(k,k+i,j);
        end
%   Check dip in cross-line direction
        if subXDipCube(k,k,k)>0
            output(k,j,k+i)=(subCube(k+i,j,k+i)-subCube(k+i-1,j,k+i))...
                *subXDipCube(k,j,k+i)+subCube(k,j,k+i);

            output(k,j,k-i)=(subCube(k-i,j,k-i)-subCube(k-i+1,j,k-i))...
                *subXDipCube(k,j,k-i)+subCube(k,j,k-i);
        else 
            output(k,j,k+i)=(subCube(k-i,j,k+i)-subCube(k-i+1,j,k+i))...
                *subXDipCube(k,j,k+i)+subCube(k,j,k-i);

            output(k,j,k-i)=(subCube(k+i,j,k-i)-subCube(k+i-1,j,k-i))...
                *subXDipCube(k,j,k-i)+subCube(k,j,k+i);
        end
    end
end







MATLAB_source_code/myUI/drawSlice.m

% To avoid binary imaging of the dataset, the values are converted
% to a RGB color space

function colorSlice = drawSlice(seis,maxVal,minVal,s)
seisRow = length(seis(:,1));
seisCol = length(seis(1,:));


% When the input is a depth slice, it is sent as a 3d matrix
if seisRow == 1
    seisRow = length(seis(1,:,1));
    seisCol = length(seis(1,1,:));
    
    %maxVal = max(max(max(seis)));
    %minVal = min(min(min(seis)));
    
    colorSeismic = zeros(seisRow,seisCol,3);
    for row = 1:seisRow
        for col = 1:seisCol
            if s>=1
                 myColor = seis(1,row,col)/maxVal;
                colorSeismic(row,col,3) = myColor;
                colorSeismic(row,col,2) = myColor;
                colorSeismic(row,col,1) = myColor;
            elseif seis(1,row,col)>=0
                myColor = seis(1,row,col)/maxVal;
                colorSeismic(row,col,3) = 0.5+myColor;
                colorSeismic(row,col,2) = 0.5+myColor;
                colorSeismic(row,col,1) = 0.5+myColor;
            elseif seis(1,row,col)<=0
                myColor = seis(1,row,col)/minVal;
                colorSeismic(row,col,3) = 0.5-myColor;
                colorSeismic(row,col,2) = 0.5-myColor;
                colorSeismic(row,col,1) = 0.5-myColor;
            end
        end
    end
else
    colorSeismic = zeros(seisRow,seisCol,3);
    for row = 1:seisRow
        for col = 1:seisCol
            if seis(row,col)>0
                myColor = seis(row,col)/maxVal;
                colorSeismic(row,col,3) = 0.5+myColor;
                colorSeismic(row,col,2) = 0.5+myColor;
                colorSeismic(row,col,1) = 0.5+myColor;
            elseif seis(row,col)<0
                myColor = seis(row,col)/minVal;
                colorSeismic(row,col,3) = 0.5-myColor;
                colorSeismic(row,col,2) = 0.5-myColor;
                colorSeismic(row,col,1) = 0.5-myColor;
            end
        end
    end
end
% myFilter = fspecial('gaussian');
% imtool(imfilter(colorSeismic,myFilter));
% imtool(colorSeismic);
% imwrite(colorSeismic,'mysobel.png');
colorSlice = colorSeismic;
% for i = 1:3
%     colorSlice(:,:,i) = medfilt2(colorSeismic(:,:,i)); 
% end
% colorSlice = medfilt2(colorSeismic);






MATLAB_source_code/cube_operations/interpolationCube.m

function output = interpolationCube(subsquare,opSize,center)
int = floor(opSize);
dk = opSize-int;
d = length(subsquare);
center = ceil(d/2);
try
    subC = reshape(subsquare(center,:,:),[d,d]);
catch
    subC = subsquare;
end

sobelSquare = zeros(3,3);
x1 = subC(center,center);
if center-int < 0
    output = subC(:,:);
else
     sobelSquare(2,2) = x1;
     try
    sobelSquare(1,1) = subC(center-int,center-int)*(1-dk)+...
        subC(center-int+1,center-int+1)*dk;
     catch
         sobelSquare(1,1) = 5;
     end
    sobelSquare(1,2) = subC(center,center-int)*(1-dk)+...
        (subC(center,center-int+1)*dk);
    sobelSquare(1,3) = subC(center+int,center-int)*(1-dk)+...
        subC(center+int-1,center-int+1)*dk;
    sobelSquare(2,1) = subC(center-int,center)*(1-dk)+...
        subC(center-int+1,center)*dk;
    sobelSquare(2,3) = subC(center+int,center)*(1-dk)+...
        subC(center+int-1,center)*dk;
    sobelSquare(3,1) = subC(center-int,center+int)*(1-dk)+...
        subC(center-int+1,center+int-1)*dk;
    sobelSquare(3,2) = subC(center,center+int)*(1-dk)+...
        subC(center,center+int-1)*dk;
    sobelSquare(3,3) = subC(center+int,center+int)*(1-dk)+...
        subC(center+int-1,center+int-1)*dk;
    output = sobelSquare;
end






MATLAB_source_code/myUI/mySeismicUI.m

% A 3D viewer user interface where one can show a data slice in
% either/including inline, crossline and/or depth. It also include
% interactive controls for changing slice position.
% 

function mySeismicUI(mySeismic,maxVal,minVal,opSizeCube,dipInLine,dipXLine)
% try
%     myseismic = gpuArray(mySeismic);
% catch err
%     disp('No cuda core found');
    myseismic = mySeismic;
% end
% Create a figure and axes
figure;
axisUpdate();
rotate3d on;

% Create togglebuttons
xbtn = uicontrol('Style', 'togglebutton',...
    'string', 'off',...
    'Position', [510 25 25 15],...
    'Callback', @plotAll);

inbtn = uicontrol('Style', 'togglebutton',...
    'string', 'off',...
    'Position', [330 25 25 15],...
    'Callback', @plotAll);

tbtn = uicontrol('Style', 'togglebutton',...
    'string', 'off',...
    'Position', [150 25 25 15],...
    'Callback', @plotAll);

attrbtn = uicontrol('Style', 'togglebutton',...
    'string', 'off',...
    'Position', [10 250 25 15],...
    'Callback', @setattribute);

attrtxt = uicontrol('Style','text',...
    'Position',[5 225 60 20],...
    'String','Attribute');

% Create slider
xSld = uicontrol('Style', 'slider',...
    'Min',1,'Max',950,'Value',475,...
    'SliderStep', [0.001 0.01],...
    'Position', [400 20 100 20],...
    'Callback', @plotAll);

% Add a text uicontrol to label the slider.
xtxt = uicontrol('Style','text',...
    'Position',[400 45 100 20],...
    'String','Xline Position');

xValue = uicontrol('Style','text',...
    'Position',[400 5 100 20],...
    'String','475');

% Create slider
inSld = uicontrol('Style', 'slider',...
    'Min',1,'Max',650,'Value',325,...
    'SliderStep', [0.0015 0.01],...
    'Position', [220 20 100 20],...
    'Callback', @plotAll);

% Add a text uicontrol to label the slider.
intxt = uicontrol('Style','text',...
    'Position',[220 45 100 20],...
    'String','Inline Position');

inValue = uicontrol('Style','text',...
    'Position',[220 5 100 20],...
    'String','325');

% Create slider
timeSld = uicontrol('Style', 'slider',...
    'Min',1,'Max',462,'Value',447,...
    'SliderStep', [0.002 0.01],...
    'Position', [40 20 100 20],...
    'Callback', @plotAll);

% Add a text uicontrol to label the slider.
timetxt = uicontrol('Style','text',...
    'Position',[40 45 100 20],...
    'String','Timeline Position');

timeValue = uicontrol('Style','text',...
    'Position',[40 5 100 20],...
    'String','447');

    function setattribute(source,callbackdata)
        if get(attrbtn,'value') == 1
            set(attrbtn,'string','on');
        else
            set(attrbtn,'string','off');
        end
        plotAll(source,callbackdata);
    end

    function plotAll(source,callbackdata)
        
        v = get(gca, 'view');
        if get(xbtn,'value') == 1
            xVal = round(get(xSld,'value'));
            plotXLine(xVal,myseismic,maxVal,minVal,0);
            set(xbtn,'string','on');
            set(xValue,'string', xVal);
            hold on;
        else
            set(xbtn,'string','off');
        end
        
        if get(inbtn,'value') == 1
            inVal = round(get(inSld, 'value'));
            plotInLine(inVal,myseismic,maxVal,minVal,0);
            set(inbtn,'string','on');
            set(inValue,'string', inVal);
            hold on;
        else
            set(inbtn,'string','off');
        end
        
        if get(tbtn,'value') == 1
            tVal = round(get(timeSld,'value'));
            if get(attrbtn,'value') == 1
                plotTimeLine(tVal,timeSliceAttribute(myseismic,tVal,3,...
                    opSizeCube,dipInLine,dipXLine),maxVal,minVal,1);
%                 plotTimeLine(tVal,myAttribute(tVal,myseismic,dipInLine,...
%                     dipXLine,opSizeCube),maxVal,minVal);
            else
                plotTimeLine(tVal,myseismic,maxVal,minVal,0)
            end
            set(tbtn,'string','on');
            set(timeValue,'string', tVal);
            hold on;
        else
            set(tbtn,'string','off');
        end
        hold off;
        set(gca,'view',v);
        axisUpdate();
%         if get(attrbtn,'value') == 1
%             runAttribute();
%         end
        
    end

    function axisUpdate()
        xlabel('inline');
        ylabel('xline');
        zlabel('time');
        axis equal;
        xlim([0 length(myseismic(1,:,1))]);
        ylim([0 length(myseismic(1,1,:))]);
        zlim([0 length(myseismic(:,1,1))]);
    end
end






MATLAB_source_code/Analysis/opSizeSelector.m

% determine the operator size according to frequency. Sizes are between 
% 1,3 and 5 in diameter.
function opRadius = opSizeSelector(samples)
opRadius = 1;
d=length(samples);
fftGraph = abs(fft(samples)).*hamming(d);%hann(d);

[val,idx] = max(fftGraph);

if idx == 1
    opRadius = 0.5; % third
elseif idx == 2
    opRadius = 0.8; % almost second
elseif idx == 3
    opRadius = 1; % most common
elseif idx == 4
    opRadius = 1.2; % second
elseif idx == 5
    opRadius =1.5; % almost none
elseif idx == 6
    opRadius = 2;
elseif idx == 7
    opRadius = 2;
elseif idx >= 8
    opRadius = 2;
end






MATLAB_source_code/myUI/plotInLine.m

% plots a surface with a texture of the coresponding values in the seismic
% cube in the inline direction

function plotInLine(inline, myseismic, maxVal, minVal,s)
mySlice = drawSlice(myseismic(:,inline,:), maxVal, minVal,s);
xImg = [inline inline; inline inline];
yImg = [0 950; 0 950];
zImg = [462 462; 0 0];
surf(xImg, yImg, zImg, 'CData', mySlice, 'FaceColor', 'texturemap');







MATLAB_source_code/myUI/plotTimeLine.m

% plots a surface with a texture of the coresponding values in the seismic
% cube in the depth/time direction

function plotTimeLine(timeline, myseismic, maxVal, minVal,s)
mySlice = drawSlice(myseismic(timeline,:,:), maxVal, minVal,s);
xImg = [0 0; 650 650];
yImg = [0 950; 0 950];
zImg = [462-timeline 462-timeline; 462-timeline 462-timeline];
surf(xImg, yImg, zImg, 'CData', mySlice, 'FaceColor', 'texturemap');







MATLAB_source_code/myUI/plotXLine.m

% plots a surface with a texture of the coresponding values in the seismic
% cube in the crossline direction

function plotXLine(xline, myseismic, maxVal, minVal,s)
mySlice = drawSlice(myseismic(:,:,xline), maxVal, minVal,s);
xImg = [0 650; 0 650];
yImg = [xline xline; xline xline];
zImg = [462 462; 0 0];
surf(xImg, yImg, zImg, 'CData', mySlice, 'FaceColor', 'texturemap');







MATLAB_source_code/read_segy_file.m

% Crewes seismic loading
mySEGY = SEGY_read('segy/F3.segy');
dipXSEGY = SEGY_read('segy/crosslinedip.segy');
dipInSEGY = SEGY_read('segy/inlinedip.segy');

% testSEGY = SEGY_read('mysegy2.sgy');
% Convert from 2D matrix 
[mySeismic,maxVal,minVal]=convert2CubeForm(mySEGY);
% mySeismicUI(mySeismic,maxVal,minVal,0,0,0); %%%% only view seismic

% Needed to run attribute
[myXDip,maxXVal,minXVal]=convert2CubeForm(dipXSEGY);
[myInDip,maxInVal,minInVal]=convert2CubeForm(dipInSEGY);

opSizeCube = createOperatorSizeCube(mySeismic);

mySeismicUI(mySeismic,maxVal,minVal,opSizeCube,myInDip,myXDip);






MATLAB_source_code/filters/sobel.m


function v = sobel(subcube)
sx = [1 2 1; 0 0 0; -1 -2 -1];
sy = [1 0 -1; 2 0 -2; 1 0 -1];
r = floor(length(subcube)/2)+1;

tempSlice = reshape(subcube(r,r-1:r+1,r-1:r+1),3,3);
gx=sum(sum(tempSlice.*sx));
gy=sum(sum(tempSlice.*sy));
mySqrt=sqrt(gx*gx + gy*gy);
v=mySqrt*4;






MATLAB_source_code/filters/timeSliceAttribute.m

function output = timeSliceAttribute(input,timeslice,d,opSizeCube,dipInCube,dipXCube)%dipCube
output = input;
r=5;%floor(d/2);
% noiseCube = opSizeCube;
d=8;

% 1. define opsize (opCube)
if length(opSizeCube)<2
   opSizeCube = createOperatorSizeCube(input);
end

smoothCube = input;
% smoothing
fR = 2;
myF = fspecial('gaussian',[5 5]);
for k = timeslice-d:timeslice+d
    smoothCube(k,fR:650-fR,fR:950-fR) = imfilter(smoothCube(k,fR:650-fR,fR:950-fR),myF);
end
input=smoothCube;
for k = timeslice-d:timeslice+d
    for i=r+1:650-r-1
        for j = r+1:950-r-1
            fR= ceil(opSizeCube(k,i,j));
             dip = dipStraightning(input(k-fR:k+fR,i-fR:i+fR,j-fR:j+fR),...
                    dipInCube(k-fR:k+fR,i-fR:i+fR,j-fR:j+fR),dipXCube(k-fR:k+fR,i-fR:i+fR,j-fR:j+fR));
            [myNoise, opSize] = varianceTest(dip,fR);
% % opSize = fR;
% % %             noiseCube(k,i,j)=myNoise;
%             % 3. dipStraightning surface 3x3 (opSize x opSize)
            if myNoise > 0.15 %&& myNoise>0.19
                dip = input(k-fR:k+fR,i-fR:i+fR,j-fR:j+fR);
            end
            c = floor(length(dip)/2+1);%ceil(opSize)+1;

            dip(c,c-1:c+1,c-1:c+1) = interpolationCube(dip,opSize,c);
            % 4. Soble 3x3

            output(k,i,j) = sobel(dip(c-1:c+1,c-1:c+1,c-1:c+1));
        end
    end
end
% save noiseCube.mat noiseCube -v7.3;
% hold;
output = verticalSmoothing(output,timeslice,d);








MATLAB_source_code/Analysis/varianceTest.m

function [noise,opSize] = varianceTest(subcube,r)
myVector = reshape(subcube(r+1,:,:),[],1);
myVector = myVector./max(abs(myVector));

noise = var(myVector);

opSize = 1.9-(noise);
if isnan(opSize)
    opSize = 1;
end








MATLAB_source_code/filters/verticalSmoothing.m

function output = verticalSmoothing(input,timeslice,r)
temp = input;

for i = 1:650
    for j = 1:950
        temp(timeslice,i,j) = mean(input(timeslice-r:timeslice+r,i,j));
    end
end
output(timeslice,:,:) = temp(timeslice,:,:);




