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Abstract— This paper looks into the feasibility of using neural 

networks to classify characters on electrical specification plates 

(ESP). This thesis is given by Verico AS (Verico). Verico performs 

large scale Asset Documentation, where photo documentation is 

one of their main tools. As such, they have large amounts of ESP 

imagery. Collecting data from the images is done manually, which 

is both time consuming and tedious work. This thesis seeks to 

further develop and utilize previous work done for Verico, such as 

background segmentation and vertical histogram analysis. The 

scope of the thesis is looking at the feasibility of using neural 

networks as a classifier for digits. MATLAB’s Neural Network 

Toolbox is used to train and classify data. The neural network is 

trained on 240318 images from the Street View House Numbers 

(SVHN) Dataset, and then tested on two different datasets. The 

first is on 26032 images from the SVHN test dataset, where the 

neural net achieved an overall accuracy of 84.1%. Through 

confidence thresholding 98% accuracy is reached at 52.8% 

coverage. The other dataset consists of 600 images gathered from 

several classes of ESP. The neural net achieves 94.1% overall 

accuracy, and with confidence thresholding 98% accuracy is 

reached at 85.3% coverage. 

Keywords-neural network; optical character recognition; 

electrical specification plates; pattern recognition; classification; 

I. INTRODUCTION 

A. Thesis Background 

This thesis means to explore the viability of using neural 
networks to classify characters on ESP. A solution would entail 
a high classification accuracy with an acceptably coverage. The 
work performed is done during the spring of 2015. A pilot 
project was performed the autumn of 2014 for a 10 ECTS 
weighted class.  

B. Principal Company 

Verico is a Stavanger based company that primarily work 
with Asset Data Management and Software Development. Their 
main customers are Transmission System Operators like Statnett 
SF (Norway) and TenneT BV (The Netherlands). They also 
perform Asset Documentation, which for this paper pertains to 
photo documentation. 

C. Motivation 

The motivation for this paper comes from the attempt to 
automate parts of the photo documentation process. As it stands, 
data from photos are entered manually. This is a time consuming 
and tedious job, which has great potential for improvement 
through automation, considering the amount of photos ranges in 
the tens of thousands. 

II. PROBLEM 

A. Background and Previous Work 

Recognizing characters from photos of ESP is a hard 
problem.  However, previous work for Verico has simplified the 
domain. They already have a working solution to crop and 
translate the ESP to a centered image. Further, they have solved 
cutting out the critical variables from the image. The thesis is 
mostly built upon a previous master’s thesis [1], which 
simplified the problem through a solution for character 
segmentation.  Remaining is a narrower domain, where instead 
of a natural photo you have the image of a single character. Fig. 

1 [2] shows the full process of photo documentation; where all 
but the character recognition stage is solved. 

 

 

Fig. 1. The final intended full process of photo documentation. 

Using neural networks for classification of digits has great 
potential, and good results for both handwritten characters [3], 
and more recently, recognizing address numbers from the 
SVHN Dataset. This is the context examined for a solution, 
especially considering Google’s findings in in the 2014 paper 
“Multi-digit Number Recognition from Street View Imagery 
using Deep Convolutional Neural Networks” [4]. They showed 
a 98% accuracy with a coverage 89% on the SVHN dataset. 
Accuracy is defined as the recognition rate of digits, and 
coverage is the percentage of the total dataset used.  

B. Outline 

The outline of the process is detailed in Fig. 2. Different 
minutiae of the steps in the process will be discussed in detail, 
as well as alternative methods, both tested and untested.  

 

Fig. 2. Outline of OCR process. 

  



III. PRE-PROCESSING 

A. Thresholding 

To create a useable input vector containing the 
characteristics of a digit, the specific colors of an image is 
irrelevant. Therefore, an image is first converted to grayscale, 
removing all color and hue while retaining the luminosity. 
MATLAB converts to grayscale values using a weighted sum of 
the R, G and B components as such: 0.2989 * R + 0.5870 * G + 
0.1140 * B [5]. This weighting may influence the final resulting 
accuracy and coverage, however alternative weights was not 
been tested. 

For the method of character segmentation used, converting 
to a binary image is necessary. For this process, Otsu’s method 
[6] is used. Otsu’s method searches for the threshold that 
minimizes the variance within the classes, i.e. black and white.  

 

Fig. 3. Thresholding using Otsu’s method. 

Not all images converted to binary have as good results as 
shown in Fig. 3. The results of different optimizations more 
specific to this domain are shown further in Fig. 4, 5, 6.  

B. Character Segmentation 

Segmenting characters in the image is necessary to reduce 
the number of possible classes to 10. To segment characters 
several methods are available, for this paper only vertical 
histograms are used. Vertical histogram segmentation counts the 
number of white pixels in each column of the picture. This 
method is modified some to account for characters that may be 
connected, i.e. there is no actual separating pixel columns 
between them [1].  

Another caveat to this type of segmentation is that all images 
need to have the same background and character color (black 
background and white characters). To ensure this property the 
ratio of white and black pixels is used. If the ratio exceeds a 
threshold, in this case 0.64 [1], the image is inverted.  

 

Fig. 4. Results of thresholding using Otsu’s method and vertical histogram to 
split characters. 

As seen from Fig. 4 sometimes thresholding removes all 
crucial information from the image. Some simple optimizations 
for this specific image domain were tested and the results are 
shown in Fig. 5 and 6.  

The location intensity method is to value pixel values more 
as they get closer to the center of the image, where an arbitrarily 
sized area will give ‘full score’. These new values will then be 
utilized to find the threshold between black and white with 
Otsu’s method.  

The other approach tested is to generate the threshold with 
Otsu’s method using only a horizontal slice, with arbitrary 
height, of the image. Considering these minor improvements, 
this affects the choice in datasets, which is discussed further in 
section IV.C.  

 

Fig. 5. Location intensity method and the resulting image splits (separated by 
white pixel columns). 

  



 

Fig. 6. Line thresholding method and the resulting image splits (separated by 

white pixel columns). 

Another problem with image splitting is that sometimes too 
many splits occur. This is partially solved while generating 
datasets, considering a priori information of how many 
characters there are supposed to be. Some simple rules allows 
cutting away trailing splits or disqualifying the entire image after 
the situation. The ramifications of this is further discussed in 
section IV.C. The training dataset chosen does not give many 
usable images with thresholding, similar to some ESP class 
images. This results in utilizing only the coordinates of the splits 
to cut out the characters from the original image as seen in Fig. 
7. 

 

Fig. 7. Coordinates from split used to generate split from original image. 

Other thresholding techniques such as Adaptive Document 
Image Binarization [19] were attempted, but showed no 
discernible improvement to Otsu’s method. 

 

 

 

 

C. Resizing 

The length of an input vector to a neural network is required 
to be uniform. One way to achieve this is by resizing the image 
to arbitrary dimensions. For this paper, the dimensions chosen 
are 16 pixels wide and 22 high. This is mostly due to 
computational limitations.  

Several different methods for resizing is possible. Those 
tested are nearest neighbor, bilinear, bicubic interpolation and 
box-shaped kernel [7]. The resulting overall accuracy of the ESP 
dataset was clearly best when using bilinear interpolation. The 
accuracy loss of the other methods compared to bilinear 
interpolation is detailed in Table I. 

TABLE I.  ACCURACY LOSS OF OTHER SCALING METHODS ON ESP 

DATASET. 

 

Other methods of maintaining image ‘correctness’ when 
resizing to arbitrary dimension, e.g. adding padding of 
background color for outlier width to height ratios, are possible 
but were not tested.  

IV. NEURAL NETWORKS 

A. General 

Simply put, a neuron works by giving an input p, multiplying 
it with the weight w and adding the bias b, as seen in Fig. 8 [8]. 
This gives the output a, and depending on the transfer function f 
may help classify the input. 

 

Fig. 8. Single input neuron. 

Neural networks are, for ease of explanation, many such 
neurons connected together in layers. This way the network 
takes in an input vector p, multiplying it with the weight matrix 
W and adding the bias vector b, as seen in Fig. 9 [9]. 

  

Method Linear Bicubic Box-shaped 

Loss in accuracy 9.8% 3.6% 6.1% 



 

Fig. 9. Multi input neural network 

The quintessential part of neural networks is that they may 
be trained from data. Training works by adjusting the weights 
and biases after, correctly or incorrectly, classifying inputs.  

The neural networks trained and tested for this paper were 
all two layer feedforward backpropagation neural nets. 
Achieving the highest possible accuracy of this type of neural 
net is generally through four non-excluding ways: Increasing 
sample size, raising input quality through pre-processing, 
number of hidden neurons and input vector size.  

Sample sizes are limited by available datasets and will be 
further discussed in section IV.C. Input quality has already been 
covered in section III. The number of hidden neurons is also 
limited by computational power and ties in with the input vector 
size. A ‘rule of thumb’ is to specify the number of hidden 
neurons between 70-90% of the input vector size [10]. However 
due to computational constraints, and no mentionable difference 
in performance for slightly larger sizes, 150 hidden neurons was 
chosen. This corresponds to 42% of the input vector size. Input 
vector size was arbitrarily set at 352 (16*22) as any larger was 
not possible due to lacking computational power. 

 

Fig. 10. Overview of the neural net used detailing input vector size, number of 

neurons in hidden layer and output layer.  

B. Training 

In MATLAB, input data is randomly divided into three sets: 
Training, validation and testing. When repeatedly fed the same 
data, a neural network will increasingly output correct 
classifications. However, overfitting may occur. This means the 
network will perform well on the training set, but not on 
generalized data. Therefore, when performance stops improving 
on the validation set for six training cycles (epochs), it will stop 
training. This is to ensure good generalization for new data. 

After that, performance is measured on the completely unused 
testing set. 

The training algorithm used is scaled conjugate gradient 
backpropagation [11]. Weights are initially randomized, this 
along with the random division of data makes results vary. This 
leads to several different resulting neural nets, where generalized 
performance is not always indicated by training graphs. The 
neural network ultimately chosen performed worse during 
training than others, yet showed higher performance for the 
testing datasets. This suggests better generalization.  

C. Datasets 

Verico supplied over 23000 images. However, after several 
attempts at pruning to remove ineligible images, those too 
similar in background and foreground color or in unusable 
formats with trailing or leading letters, another sample set had to 
be found. This is mainly due to bad imagery ‘poisoning the 
well’. The existence of such images was the motivation behind 
the efforts in section III.B. An example of such an image is 
found in Fig. 4, 5 and 6. Another motivation to utilize a different 
dataset for training is the sample size required. 

A large enough sample size is important in training models 
with high accuracy [12]. As seen in Fig. 11 [13], the 
performance of differing learning classifiers improves as sample 
sizes increase towards ~100 000. Other untested means of 
increasing accuracy of a model, such as boosting, also requires 
greater sample sizes [14].  When deciding upon neural networks 
as a classifier, it is also important to note that neural networks 
should outperform k-means in more noisy cases [15]. 

 

Fig. 11. Accuracy increase for different learning methods as training samples 
increase in magnitude. 

Therefore, the choice to utilize the SVHN extra dataset was 
made. Pre-processing for SVHN images only consists of 
converting to grayscale and resizing. The training dataset 
consists of 240318 images. The distribution of data is shown in 
Table II. This distribution is important because it will influence 
training, and may skew classification to some classes more than 
others.  

 

  



TABLE II.   DISTRIBUTION OF DIGITS PER CLASS IN THE SVHN TRAINING 

DATASET (CLASS 10 REPRESENTS THE DIGIT 0). 

 

TABLE III.   DISTRIBUTION OF DIGITS PER CLASS IN THE SVHN TEST 

DATASET (CLASS 10 REPRESENTS THE DIGIT 0). 

 

There are two sides to the argument about the distribution of 
the dataset. This is regarding the assumption of the a priori 
probability of classifying a digit. That if given an input image, 
the probability of simply guessing correctly is 10%. The other is 
considering if ESP imagery follow Benfords law. The law is an 
observation that in many naturally occurring collections that the 
leading digits are not uniformly distributed, but heavily skewed 
towards smaller digits [16]. Considering this distribution is of all 
trailing and leading digits, an argument may be made it follows 
the trend closely, as seen in Fig. 12 [17]. If this is the correct 
approach when considering real world data from ESP however, 
is up for discussion.  

 

Fig. 12. Distribution of leading digits according to Benfords law (left), and 

SVHN training set percentage distribution of digits 1 to 9 (right). 

The SVHN test dataset is used to measure generalized 
performance on similar data to the training set. This dataset 
consists of 26032 images. The distribution of this set is detailed 
in Fig. 13.  

 

Fig. 13. Distribution of digits in SVHN test dataset (10 represents the digit 0). 

 

 

 

 

 

 

 

 

 

This distribution follows closely to the SVHN training set. 
In Table III, the distribution clearly shows its similarities 
compared to Table II. Which impact this has on the results is 
undetermined, yet it should be a positive one.  

The other test set consists of 600 images of ESP digits. This 
dataset is distributed uniformly with 60 images per class. These 
images are gathered from some of the easier cases of ESP from 
[1].  

V. RESULTS 

A. Network Performance 

The network was trained with a data split of 80% for training, 
15% for validation and 5% for testing. Since other datasets were 
available for the evaluation of performance, the size of the 
original test dataset was set low. Fig. 13 shows the plot of cross 
entropy over epochs for each the training subsets.  

 
Fig. 14. Cross entropy during training of the neural network. 

Cross entropy is an error measure used to monitor progress, 
here it determines when to stop training to reduce overfitting. 
The reasoning behind this early exit strategy was explained in 
section IV.C. 

  

Class 1 2 3 4 5 6 7 8 9 10 

Amount 40920 33570 27306 22967 24273 18947 20090 15937 15692 20616 

Percentage 17.03% 13.97% 11.36% 9.56% 10.1% 7.88% 8.36% 6.63% 6.53% 8.58% 

Class 1 2 3 4 5 6 7 8 9 10 

Amount 5099 4149 2882 2523 2384 1977 2019 1660 1595 1744 

Percentage 19.59% 15.94% 11.07% 9.69% 9.16% 7.59% 7.76% 6.38% 6.13% 6.70% 



TABLE IV.  MISCLASSIFICATIONS BETWEEN THE MOST SIMILAR CLASSES 

IN THE SVHN TRAINING DATASET.  

 
Fig. 15. Confusions matrix of training dataset after training. 

Fig. 15 shows the confusion of the dataset used during 
training. Other neural networks tested had better performance 
during training than 6.7% error rate, which is on the high end of 
acceptable, but this neural net performed best on the other test 
sets. Fig. 15 clearly shows the network performing better on 
classes with a higher percentage of the data distribution, such as 
classes 1, 2 and 10 (class 10 represents the digit 0). This is partly 
because of the skew discussed in section IV.C. Fig. 16 shows 
this relationship a bit better, but it also tells that the data 
distribution is not the whole story. 

 

Fig. 16. The horizontal axis represents the classes and the vertical axis 

represents percentages. The red plot details the percentage distribution of the 
training dataset, also seen in Fig. 12. The blue plot is the accuracy of each class 

shifted by negative 0.8 (80%) in the vertical axis. 

 

 

 

 

 

Another relationship between the classes and accuracy to 
consider is the similarity between the classes. Similar digits are 
hard to differentiate, such as 1 and 4, 1 and 7, 5 and 6 or 6 and 
8. This is reflected in the error rates of for these specific 
classifications shown in Fig. 15. Table IV shows the worst 
offenders of these relationships. 

In all of these classes the misclassifications between those 
most similar to it in appearance represent the majority or errors. 
There may be some consideration to be had whether the 
distribution of data worsens this relationship, or even has a 
noticeable effect on the result.   

B. Classification Results 

The SVHN test dataset was classified with an accuracy of 
84.1%. This dataset also shows similar misclassification patterns 
as the SVHN training dataset. Possible reasons for this is 
detailed in the section V.A.  It is however less pronounced here 
because of the smaller sample size.  

 

 

 

 

 

 

 

 

 

 

Fig. 17. Confusion matrix of SVHN test dataset. 

The ESP dataset was classified with an accuracy of 94.2%. 
These same patterns of misclassifications may be seen here, 
however no conclusions regarding this may be made since the 
sample size is magnitudes smaller.  

  

Class 1 

misclassified 

as class 4. 

Class 4 

misclassified 

as class 1. 

Class 1 

misclassified 

as class 7. 

Class 7 

misclassified 

as class 1. 

Class 5 

misclassified 

as class 6. 

Class 6 

misclassified 

as class 5. 

Class 6 

misclassified 

as class 8. 

Class 8 

misclassified 

as class 6. 

422 544 538 658 403 356 384 421 



 

Fig. 18. Confusion matrix of ESP dataset. 

C. Improving Accuracy 

To improve the accuracy of a neural network it is possible to 
introduce a confidence threshold [18]. This is an output activator 
that either accepts or rejects a classification based on a threshold.  

Decide  {
   If Y > T, Accept  classification.

Else, Reject classification.  
, 

where Y is the highest value of the output vector and T the 
threshold value. This is a tool to improve the accuracy to an 
acceptable level. For this paper that is set at 98% accuracy, 
which was set as the rate of human performance in [13]. The 
tradeoff of this method is that you reduce the coverage, i.e. 
percentage of data classified.  

The SVHN test dataset achieved 98% accuracy at 52.8% 
coverage. The confidence threshold is set at 97.87. Fig. 19 shows 
the plot of accuracy and coverage as the confidence threshold 
increases on the SVHN test dataset. 

 

Fig. 19. Plot of accuracy and coverage as the confidence threshold increases on 

the SVHN test dataset. 

The ESP dataset achieved 98% accuracy with 85.3% 
coverage. The confidence threshold is set at 80.3. Fig. 20 shows 
the plot of accuracy and coverage as the confidence threshold 
increases on the ESP dataset. 

 

Fig. 20. Plot of accuracy and coverage as the confidence threshold increases on 

the ESP dataset. 

VI. CONCLUSION 

This paper has covered the process and results of classifying 
digits from ESP using neural networks. It is shown that OCR on 
ESP with high accuracy and acceptable coverage is possible. 
There are several limitations in its applicability to ESP. It is hard 
to achieve proper pre-processing of older ESP classes, however 
as companies switch to newer plates this will become a lesser 
issue. Another issue is if classifications for a series of digits has 
to be ‘correct’ for all digits, this will also reduce accuracy. An 
estimate for the overall accuracy on the ESP dataset is 86.1%, 
assuming a mean digit string length of 2.5. This will also reduce 
the coverage to an estimated 67.2%.  

Using neural networks without the limits of computational 
power mentioned in section III.C will most likely improve 
results. Several optimizations are possible: Reducing scaling, 
increasing hidden nodes, increasing layers and different network 
architectures. The most promising to look into is Deep 
Convolutional Neural Networks such as in [4], an architecture 
which closely resembles the process of biological visual 
mechanisms. Utilizing boosting [14] while training or increasing 
imagery available through translated copies are also possible 
avenues for improvement. 

Improving the pre-processing part of the process is also 
possible, such as making graphs of characters, improved 
character segmentation or taking several translated images of the 
original. All these offer improvements to the process as whole 
or will increase accuracy. 
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