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Abstract

Online shopping has shown a rapid growth in the last few years. Robust
search systems are arguably fundamental to e-commerce sites. Most impor-
tantly, sites should have smart retrieval systems to present optimized results
that could best satisfy customers purchase intent. To address the demand for
such systems we adapted retrieval approaches based on a generative language
modeling framework, representing products as semi-structured documents.
We present and experimentally compare three alternative ranking functions
which make use of different prior estimates. The first method is static field
weighting approach relying on field’s individual performance taking nDCG as
an effectiveness measure. Two other methods dynamically assign term-field
weights according to the distribution of terms in field’s collection. These
retrieval functions infers from user search keywords the most likely match-
ing product property probabilistically. The methods differ as one of them
considers a uniform field prior whereas the other utilizes performance based
prior. The methods were evaluated in relatively new evaluation methodology
that evaluated ranking systems when real customer were doing online shop-
ping at toy webshop ‘regiojatek.hu’ : Living labs. In the experiment the lab
present an interleaved result, based on Team draft interleaving, from pro-
duction site and our experimental rankings to customers. The Lab employ
an evaluation metric “outcome” and we applied outcome measure to com-
pare our methods and to interpret our results. Our results show that both
term-specific mapping methods outperformed the static weight assignment
approach. In addition results also suggest that estimating field mapping pri-
ors based on historical clicks does not outperform the setting where the priors
are uniformly distributed. Furthermore,we also discovered that a trec-style
evaluation carried out deeming historical clicks as relevance indicators had
ordered the methods inversely in relation to Living labs. This has possible
implication that Living labs evaluation platform are essential in IR tasks.

vii



1 INTRODUCTION

1 Introduction

Effective retrieval systems are indispensable in e-commerce sites. Online
shopping has become a popular phenomenon recently mainly due to its sim-
plicity,large selection of products, convenience , easy price comparisons to
mention some. Webshops need to tune their retrieval systems to enhance
customers shopping experience by making available products easy to find.
Product retrieval systems have to be able to present customers with prod-
ucts that match their needs precisely so that searching and finding a product
wouldn’t be time consuming. Apparently, there is no doubt that customer
satisfaction influences the revenue positively. Typically, products can be
searched using structured query language (SQL) statements from product
database. Nonetheless, users hardly know how to formulate such structured
queries to compose a well-formed information need neither do they have
knowledge of the background data.Therefore retrieval system that can infer
user information need from queries composed of handful keywords is vital.
Thus we shall be considering customary retrieval system built on a “single
box search” paradigm where users type in information need, product query,
and the retrieval system presents a ranked list of matching products.

In information retrieval task, a well-founded document modeling approach
has significant role in improving ranking of documents. General probabilis-
tic retrieval models have been adopted in various ad-hoc retrieval tasks and
have proven to be crucial owing to the flexibility to be adapted in various
tasks and the simplicity they provide to incorporate document and query
models into ranking system. Products data usually consists of some common
properties that expresses their behaviour such as product’s name, descrip-
tion about the product, product’s brand information and its category. These
inherent fielded organization in product data make them to qualify under
the group of structured/semi-structured data.Optimizing the ranking of re-
turned result in product search task hasn’t got focus and little is being done
to devise novel retrieval models. In [2] product retrieval model was pro-
posed which followed generative probabilistic models approach to improve
retrieval accuracy. Besides they have incorporated associated text such as
user product reviews to enhance effectiveness and pointed out significant im-
provement on retrieval accuracy when compared to baseline Language model
and variants. To address product search tasks, we propose retrieval functions
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1 INTRODUCTION

based on conducive retrieval models applied to search tasks involving similar
data organization. More specifically, we ask the question : Are term-specific
mapping approaches better than static field perfomance based weighting in
product search task ?

Fielded document representation allows to split document “bag of words”
representation, adopted in classic retrieval systems, conceptually to smaller
sections of a document that can be searched independently. For example,
when users pose a keyword query, qp, that reflects the desire of a product
item/s instead of searching the query over single document model, retrieval
can be performed in a product’s multiple property representations (e.g. brand
document model and product’s name document model). Decomposing the
problem into parts enables us to analyse the outcome of searching on prop-
erties and eliciting property’s importance level that may have an impact in
influencing the ranking systems. More specifically, for a given user query qp
query likelihood in each of those field document models is combined to form a
mixture document language model. The ranking of product item can then be
computed as a linear interpolation of query generation probabilities in mix-
ture language model where the importance level of each field is attached as
weight of each component in the interpolation. Our rationale in this thesis is
to develop, implement, and evaluate methods that establish a mapping from
individual query terms to specific product fields. We represent products as
semi-structured documents and employ the Probabilistic Retrieval Model for
Semistructured Data (PRMS) [3], a model that is known to perform well un-
der conditions where the collection is homogeneous and fields have distinctive
term distributions [4]. Given the inherent uncertainty, the term-field map-
ping is represented as probability distribution over fields. We decompose the
estimation into term-field probability and prior field probability components
and propose three specific instantiations of the PRMS model .

In addition to a robust retrieval system, evaluation in IR is highly sig-
nificant. Logically, evaluation of product search system has to reflect the
satisfaction of users with respect to the ranking of the products that gets
presented as a result of product query. In other words, assuming users pref-
erence to scan retrieved documents in top-down fashion, evaluation should
reproduce the simplicity to come across the needed product both in terms of
time and utility. Evaluation of retrieval quality can be done either from
experts relevance judgements or gathered historical implicit user interac-

2



1 INTRODUCTION

tions. Typical evaluation methodologies, Cranfield paradigm, rely on offline
evaluation of systems on test collections which are comprised of documents,
topic queries and experts relevance judgements.The outcome of such offline
evaluation methodology are standard evaluation metrics(MAP, nDCG and
MRR).The lack of user interaction in the retrieval evaluation process may
lead to tentativeness or may miss to measure other essential user behaviours.
Therefore, we will address the doubts by performing evaluation of our re-
trieval methods on real e-commerce site (’regiojatek.hu’) when real users
are engaged on online shopping i.e in live environment (living labs). Does
the evaluation of rankings when using the offline method, with judgements
built from historical user interaction, correlate with experiments done in live
settings?

The rest of the thesis paper is organized as follows: Section 2 discusses tra-
ditional evaluation methodologies, metrics and various information retrieval
methods. More specific generative probabilistic retrieval models employed
to product search task are explained meticulously in Section 3. The next
Section 4 provides an insight to relatively new evaluation platform :Living
labs and elucidates the evaluation procedure and data interaction among
experimental and commercial site. Furthermore, the structure of data in-
cluding queries, documents and historical feedbacks that form the dataset of
the experiment are illustrated in that section. Most importantly Section 5
explains the three methods we proposed for product search task. Just before
concluding the thesis paper with Section 8, we cover our experiment results
in Section 6 followed by deeper analysis in Section 7.
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2 RELATED WORK

2 Related Work

2.1 Evaluation Methodologies

Evaluation of retrieval systems has been playing a crucial role in the ad-
vancement and comparison of retrieval methods and models [5]. Cranfield
paradigm [6] an old but a very popular and systematic way of evaluating
information retrieval methods was introduced back(by Cleverdon) in 1952,
with main goal of comparing between library indexing techniques. Accord-
ing to Cranfield methodology assessing the effectiveness of a retrieval model
requires a test collection. A test collection is composed of a set of documents
to be searched , set of topics or information need and a relevance judgement.
A relevance judgement indicates whether a document is relevant to the topic
searched (information need) or not. In graded relevance judgement a label
that indicates the degree of relevance is assigned to document-query pairs.
When the volume of the collection is big, relevance judgments are not only
take up great deal of time but also are too expensive [7]. Consequently, a
pooling technique is adopted in TREC [8] to judge only selected relevant doc-
uments from retrieval systems taking part on TREC. Specifically, for each
topic a set of top k relevant documents(typically 100 documents) in the rank-
ing of every participating retrieval systems is put together and gets assessed
by human assessors.

Cranfield paradigm has some limitations in relation to the assumptions
taken [9]. There is assumption that documents don’t have any kind of in-
fluence to one another in terms of their relevance. Moreover, it not only as-
sumes a relevance judgements would appropriately represent the judgement
of generally of every user’s intent at the time of information need but also
the relevance assessments are complete that all the relevant documents to a
given information need is judged. These disadvantages have strengthen the
idea of devising better evaluation methodologies that better accommodate
users behaviour.

Back in time, in [10] desktop search engine named “Staff I’ve Seen” was
deployed at testing period with different interfaces to workers of an organiza-
tion arbitrarily.Their objective was to comprehend how employees used the
system based on logs of user interaction and also to observe the changes in
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user behaviour in relation to the interfaces.

Cooper [11] proposed a way of analyzing user behaviour by assigning users
to perform search tasks in an old and new systems,without their knowledge,
and investigate their activities live.Others have developed evaluation measure
that closely reflects different user models so that to better determine systems
utility to users [12].

Controlled experiments(A/B testing) ,that involve live users and studying
their interaction, has been conducted to evaluate significance of new ideas
in some popular commercial sites like Amazon ,Google and Microsoft [13].
During controlled experiments users are presented with two different versions:
Control which is the original one and Treatment which is implemented ap-
plying new ideas. Thus to evaluate the new system user interaction and
behaviours are observed and the difference among systems is determined sta-
tistically according to some metric of interest.
Recently, a relatively new evaluation methodology for information retrieval
systems, similar notion to A/B testing methodology, was proposed by [14]
that enables researchers to evaluate systems when real users (e.g customers in
ecommerce webshop) carrying out real activities on genuine applications.[15]
discussed thoroughly a practical living labs architecture design and associ-
ated evaluation platform ,that lays a groundwork for researchers and makes
available needed data to conduct experiments.

Unlike in A/B testing which presents separate systems to the user,in
[16] an interleaving technique was proposed to contrast different systems by
merging the results of the two systems to one ranking and examining relative
user inclination towards a system by the volume of clicks a system received.
Balanced interleaving(BI) technique tries to avoid user result position biases
by presenting an intermingled rank in balanced manner. Another method
named Team-Draft interleaving introduced by [17] creates a ranked list pick-
ing top documents in randomized way from two comparing ranking systems.
The method solves limitations of BI technique which is prone to bias on
similar rankings.

5
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2.2 Evaluation Metrics

Next we will discuss three standard evaluation metrics widely adopted in
information retreival.

2.2.1 Normalized Discounted Cumulative Gain (nDCG)

Normalized Discounted Cumulative Gain is one of the popular evaluation
metrics used in ranked retrieval [18]. nDCG manages a graded relevance
assessments of document which make it quite different from former relevance
metrics. For instance, document may be judged to be irrelevant , less relevant
or very relevant each with decreasing relevance levels. Further a gain value
is assigned to each relevance levels which of course reflects and agrees with
its relevance. In simplest cases gain value can be considered to be equal to
the relevance level value where relevance values start from 0(irrelevant) and
increases monotonically to the most relevant document.

Originally nDCG measure was what followed a CG measure that didn’t
take into account the ranking position of documents during evaluation of a
result-set. Formally CG is given by :

CGp =

p∑
i=1

gi

where gi is gain value for document at rank i.
The fact that query results may vary in size makes it illogical to use DCG
when making comparison among queries.Thus DCG has to be normalized
to accomplish effectiveness comparison of retrieval system. In nDCG this is
achieved by dividing the DCG measure at p by an ideal ranked list (scores
highest possible DCG) that is generated by ordering documents in decreasing
relevance level.

One way of calculating DCG according to [19] is :

DCGp = g1 +

p∑
i=2

gi
log2 i

6



2 RELATED WORK

where p is called document cut-off.
Apparently, given a ranked result list of documents , a change in rank se-
quence where highly relevant document shifted from top to bottom wouldn’t
alter CG value. Thus more exact measure a discounted CG(DCG) fixes the
problem by imposing penalties to very pertinent documents returned at bot-
tom.

nDCGp =
DCGp

IDCGp

2.2.2 Mean Average Precision

The mean average precision( MAP) is another common evaluation metrics
that is standard in TREC community. When compared relative to other ef-
fectiveness metrics MAP provides robust features such as good discrimination
and stability [20]. For a single topic q , the average precision AP is computed
by averaging precision measure at levels where a relevant document shows
up on the result set of top k documents. Following, MAP measure for sev-
eral topics in a run can be achieved by averaging the AP measures of each
particular topics in the run.

Let Ik be a binary relevance of document at level k such that its 0 when
document at k is non relevant and 1 if relevant. R be size of relevant doc-
uments of a topic q ∈ Q Pkbe precision at some level k- the number of
pertinent documents in top k divided to k

Pk =

∑k
r=1 Ir
k

AP =
1

R

R∑
k=1

IkPk

And MAP is given by:

MAP (Q) =
1

|Q|
∑
q∈Q

AP

7
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One of the advantages of MAP measure is that its delicacy to change of
ranking position to relevant documents at the top. As a relevant document
climbs some positions on result set (special at top) it contributes significantly
to AP in contrast to position change at the bottom. For instance , let a
document d was returned on 2 position in an updated system from 3rd place
in the result sequence. Owing to this AP measure gains 0.17 (0.5 - 0.33) i.e
from 0.33 when in third to 0.5 when in second.

Nevertheless , the absence of graded relevance in MAP metric leads to
inability to discriminate retrieval systems which can produce ranking where
highly relevant document returned before marginally relevant ones. The
previously described metric nDCG can handle graded relevance judgements.

2.2.3 Mean Reciprocal Rank(MRR)

The above discussed metrics quantify the relevance based on the stipulation
that users intent is to get sufficient relevant documents on the top of their
search results. But there are case where the purpose of search is to find
only one matching document as in known item search [19]. The Reciprocal
Rank(RR) is appropriate and straightforward metric to assess relevance in
such cases. Given a ranked list of documents , let r be the rank of needed
document in that list with respect to a topic. Then RR is calculated by:

RR =
1

r

The formula reflects the inverse proportionality of rank and the metric
RR. If no relevant document is returned RR = 0 Thus Mean Reciprocal Rank
averages RR measure over all the queries.

2.3 Information Retrieval Methods

The most important objective of information retrieval is : given an infor-
mation need to return list of documents ranked according to their relevances

8
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where the most relevant document gets ranked at the top. To achieve this tar-
get optimal retrieval models are extremely important. Up to date although
various retrieval methodologies has been adopted , but none has proved to
be a superior [21].

Vector Space Model

In vector space model, documents are visualized as vectors consisting of term
elements with corresponding weights that indicates the relevance of terms in
the document d = (wd,t1 , wd,t2 . . . wd,tV ) [22]. Equivalently, queries are rep-
resented as a vector of query terms and associated weights that shows im-
portance of terms in the query. Typically term weights in document/query
vector is determined by the product of term frequency(tf ) and Inverse doc-
ument frequency(idf). Inverse document frequency component serves as a
means of degrading abundant but irrelevant terms and is formally given by:

idft = log
N

dft
wd,t = tfd,t ∗ idft (1)

where N is number of documents in collection and dft number of term t
occurrences in all documents.

Now documents and queries being modelled as vector, a standard way of
computing the similarity between those vectors is cosine similarity. Cosine
similarity measure the angle difference among documents and the query when
drawn in V-dimensional space ( V is vocabulary size). Specifically,

sim(q, d) =

∑V
t wq,t ∗ wd,t√∑V

t w
2
q,t ∗

∑V
t w

2
d,t

(2)

where wq,t denotes weight of term t in query q. The denominator normalizes
the effect of document length in the scoring.

9
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BM25

The BM25 model, initials represent for Best Match, is one of the popular
classic retrieval models. The model is based on 2-Poisson model: we assume
that documents constructed by inserting words , where each word has some
probability of being selected from vocabulary (multinomial distributed) to
be placed on certain position. As a result each word in a document has term
frequency which is binomailly distributed [23]. The central idea the model
addresses is to produce preferable term weighting functions based on the
three important factors :(1) term frequency (2) Inverse document frequency
and (3) document length normalization.

The document normalization depends upon the assumption of verbosity
and scope. The former emphasizes documents may vary in word count even
though they convey same information. In the other hand scope defines the
depth to which extent documents explain contents. Based on these assump-
tions the normalization factor considers putting together the influences from
both sides.

The document length is given by Eq.3 and it is independent of how the
length is determined e.g instead of simply counting terms only the unique
terms may get considered.

|d| =
∑

n(t, d) avdl =

∑
d |d|
N

(3)

avdl - refers to average document length and a factor B is used to normalize
length given by :

B = (1− b) + b
|d|
avdl

, 0 ≤ b ≤ 1 (4)

then normalizing term frequency with length normalization factor B :

10
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n(t, d)′ =
n(t, d)

B

wBM25
t =

n(t, d)′

k1 + n(t, d)′
∗ wRSJ

t

wBM25
t =

n(t, d)

(1− b) + b |d|
avdl

+ n(t, d)
∗ wRSJ

t

(5)

The ultimate formula provides the term weighting for each of term t and
therefore the relevance score of each document is computed by adding the
term weights of component terms. The component wRSJ

i represents weight-
ing function based on the presence of relevance judgement ( equals idf oth-
erwise)and is given by the formula :

log
(rt + 0.5)(N −R− nt + rt + 0.5)

(nt − rt + 0.5)(R− ri + 0.5)
(6)

where
N : number of judged documents
nt - number of documents in N where term t occurs
R: relevant documents
rt: number of document in R where term i occurs

BM25f

The BM25F is weighted field variant of BM25 model. Analogous to field
document representation model in language models the BM25 model has
this field variant which reflect the concept that by applying ranking function
to individual streams (fields) and then join together in some weight linear
combination for computing the relevance of documents[23].

An easy form of BM25F takes into account a weighted variant of the
total count of terms. Likewise, an alternative to total length of documents

11
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, its weighted version is taken. The simple version can be viewed as if a
search using BM25 was performed on documents where each field data in the
document was replicated by a factor according to the weights assigned. The
basic formula for BM25 remains same but the components change slightly as
shown below:

Thus ,

n(t, d) =
∑
f∈F

αf · n(t, df )

|d| =
∑
f∈F

|df | avdl =

∑
|d|
N

(7)

Language Models

Probabilistic language models are different from previously explained re-
trieval methods because documents are ranked based on probabilistic com-
putations that depend on distribution of words on a document. Language
models were successfully applied to other fields other than retrieval in the
past such as speech recognition and machine translation systems[21]. A de-
tailed explaination on various approaches of language model in information
retrieval follows in the next section.

2.4 Product Retrieval

Lately [2] addressed the keyword queries search in product databases . They
proposed a general probabilistic model for product entity retrieval which
interprets the generative model as two step process . First a user interested in
a product would draw specification (field) according to specification selection
model p(s|d) and then delve into the particular field and sample attribute
related word based on conditional probability P (w|s). The proposed methods
were evaluated in two e-commerce related datasets.The model was taken
further to manipulate product associated text such as user review data and

12
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log data into the retrieval model. Our work does resemble to this research in
the sense that we employed probabilistic language models to product search
too. But we adopt term-specific mapping probabilities with different versions
instead of P (s|d) which is uniform distributed among product possessing the
specification. Besides we followed a different evaluation platform, Living
Lab platform, to compare our methods. Their model has shown significant
improvement over the baseline language model which gave us impetus to
research on other version that hypothetically can have good potential to
succeed.

13



3 RETRIEVAL FRAMEWORK & BASELINE METHODS

3 Retrieval Framework & Baseline Methods

Our main aim in information retrieval,ad-hoc retrieval in this case, is retriev-
ing relevant ranked documents that include the information need of users
represented by keyword query. Thus we need models that reflect this core
idea to satisfy information requests from users with best possible matching
documents. A probabilistic language modelling approach was proposed by
Ponte and Croft [24]. Their work brought to knowledge a novel idea of rank-
ing document based on language models often referred as query likelihood
method.The assumption taken is : the user searching has thought of archety-
pal document, is able to select terms which with a sound high degree of pre-
cision will be more probable to exist in that document and that query will
distinguish it from the rest documents in the collection[20]. The approach can
be described as process of generating a query from a previously constructed
document language model and then ranking the documents according to the
probability of the generation process. Document language model indicates
to probability distribution of terms in a document. Intuitively, the relevance
of document according to a given topic(query) is directly proportional to
frequency of the query keywords existing on the document . This can be
reasoned as : the probability of drawing a frequent query term as a sample
from a document would be naturally high.

Language models have been applied to tasks other than information re-
trieval such as speech recognition and spelling modification.But these tasks
employ bigram or trigram language models due to the importance of the order
of words to accomplish the desired results. In information retrieval though,
a unigram language model is most commonly adopted since the composition
of the particular document in a collection not necessarily reflected by certain
sequence of words.Generative language models provides flexibility to utilize
document internal form such that it can be intergrated into retrieval process.

3.1 Query Likelihood Model

The main rationale being ranking documents according to their relevance to
a query, the query likelihood model represents the problem in probabilistic
terms as - How likely a document is pertinent to a given information need or

14



3 RETRIEVAL FRAMEWORK & BASELINE METHODS

query. Formally, given a query q and a document d the score of a document
with regard to the query can be expressed as a conditional probability p(d|q).
Using Bayes’ theorem p(d|q) is formulated in Eq.8 below. Since the p(q) is
identical for all candidating documents, it doesn’t have any impact in the
ranking formula. Thus the probability p(d|q) is given by the product of
query generation probability and document prior probability p(d).

P (d|q) = P (q|d)P (d)
P (q)

≈ P (q|d)P (d) (8)

The document prior probability ,p(d), can be taken as constant through-
out whole collection and hence it hardly influences the calculation for p(d|q).
In other instances special characteristics such as the number of past visits
to a document, the length of a document , popularity are adopted to deter-
mine the value [25]. As a result the ranking problem basically boils down
to estimating p(q|d) using unigram language model. Therefore the retrieval
process is construed as a generative process of sampling a query from a docu-
ment model. Previously both bernoulli process and multinomial process were
adopted to generate a query from document model [24, 26].In our case, as
stated previously, we use multinomial unigram model which is widely consid-
ered as standard query generation process of language models in information
retrieval. In our subsequent discussions we will focus in estimating the con-
ditional probability p(q|d) using various document models.

3.2 Document Modeling

Based on the structure of documents , language models are tweaked to better
serve the purpose of ranking. In this section two types of document orienta-
tions and corresponding generative process are discussed. First being the flat
document representation which operates by ignoring the existence of struc-
ture while the second one considers structures in form of fields constructing
the document.
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3.2.1 Flat Document Representation

As the name self describes, flat document representation treats a document
only as group of terms without taking in to account the existence of orga-
nization of any type internally. Unigram language model of such documents
assign probability for each term based on how frequent they appear on a
document. Apparently the more the term occurs in the document model ,
the more the document would match to the query composed of that term.
The language model of this paper would for instance would get higher rel-
evance score for query “probabilistic language models” and relatively much
lower score to query “live sport events”. An important assumption made in
language models is the independence between distinct terms. This means
that any term occurring in a document doesn’t rely on any term appearing
before or following it.

We shall refer to document model with symbol θdand term probability
with respect to the model as P (t|θd). It can be inferred from our formula Eq.
8 that it is one of the most important components that has to be estimated.
According to maximum likelihood estimator P (t|θd) is a relative frequency
of term t in document d.

P (t|θd) =
n(t, θd)

|d|
(9)

where|d| is the total number of terms in document d and n(t, d) is the
count of term t in document d. The formula indicates terms get assigned
probabilities based on how frequent they occur in a document.

The unigram language model is the easiest way of estimating query prob-
ability. The model treats a query as group of independent terms(unigrams)
where each term contributes to the probability without influence from other
neighbouring ones. In other words the order of appearance of terms in the
query is not essential.Thus as long as queries have same composition the prob-
abilities would be equal.The probability of query constituted of sequence of
terms becomes the product of the probabilities of individual terms.

P (q|θd) =
∏
t∈Q

P (t|θd)n(t,q) (10)
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Product name Horse of the year

Category Dolls

Description Horse Of The Year : The Horse is a cross breed be-
tween Quarter Horse and Thoroughbred. Quarter horse
is strong and fast riding horse, can compete in horse
races, riding events, entertaining horse shows.

Table 1: A document :Horse toy

where n(t, q) indicates how frequent term t appears in query q.

Let see a product search example that applies the discussed formulas.
Assume a user searching for a horse doll in an online toyshop. The user type
in a query q="riding horse", and lets assume in our collection there exists
a product document that looks like Table 1. Note that even though the table
depicts a structure of the document , in flat document representation model
the textual content is treated as if belonging to a field.

Using Eq.9 and Eq. 10:

P (”horse”|θd) = 0.184

P (”riding”|θd) = 0.052

P (”riding horse”|θd) = 0.00968

Typically the term probabilities are small and their product fastly ap-
proaches to zero, thus multiplying both sides by logarithm is necessary.
Therefore, we apply log in both side of the Eq. 10 to get :

logP (q|θd) =
∑
t∈q

n(t, q)P (t|θd) (11)

This simple solution is susceptible to insufficient availability of text in
documents. What happens if a term doesn’t exist in a document or if term
appears seldom? For non-existent terms apparently the term probability
computed using Eq. 9 shall be zero. Consequently, the probability of query
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which holds a single nonexistent term gets a zero probability which shall
significantly limit the ranking approach. In other words , the model is stern
as a document must consist all the terms in the information need in order
to be treated relevant which makes the ranking of documents illogical.In our
example above if we search for "horse pony" then P (”horse pony”|θd) = 0
because term pony doesn’t occur in the document. Besides terms that appear
rarely and specially those that occurs only once, gets inflated probabilities.

We can come around this problem using smoothing.Smoothing is the ad-
justment of maximum likelihood estimator so that language modeling ap-
proach would be suitable and practical for retrieval purposes. Smoothing
deals with the problem by diminishing the probabilities of words seen and
compensating it by raising the probabilities of missing words, thus avoid-
ing zero probabilities. Moreover, smoothing serves as term weighting factor
that can enhance the precision of term probability. An easy but feasible
way of smoothing is computed by combining document-specific multinomial
distribution and a multinomial distribution estimated from entire collection.
So when a term does not occur in a document, the probability of the term
in the collection is taken as the term’s probability according to document
model.The method formulated below is called the Jelinek-Mercer method.

P (t|θd)Jelinek = (1− λ)P (t|d) + λP (t|C) (12)

where : 0 < λ < 1 and P(t|C) denotes the probability of term based on
entire collection’s language model. In same manner to Eq .9 with ML the
p(t|C) can be estimated by as. According [27] For keyword queries (short
queries), highest retrieval effectiveness is attained for λ = 0.1 , In the contrary
for longer queries favorable choice for λ is larger which is around 0.7 . Thus
more smoothing is applied to long queries than short ones.

P (t|C) =
∑

d n(t, d)

|C|
(13)

Another smoothing method known as Dirichlet smoothing [27] , unlike Jelinek-
Mercer it depends on the length of documents. As the value of µ decreases
the P (t|θd) is mainly influenced by number of matched keywords. :

λ =
µ

|d|+ µ
(14)
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where µ denotes smoothing parameter. Finally putting it all together with
Dirichlet smoothing we get :

P (t|θd)dirichlet =
1

|d|+ µ

(
n(t, d) +

µ ·
∑

d n(t, d)

|C|

)
(15)

3.2.2 Fielded Document Representation

A good candidate for representing documents can be based on the docu-
ment’s internal fields. This fielded document representation may seem sim-
ilar to database way of organizing data in to fields. But unlike in database
tables, the fields are not dictated by specified set of rules that define their
composition. Instead contents of same field not only can possess any type
of data but also may differ in their length. Besides fields don’t necessarily
hold data i.e they can be empty. Sections of a document data may also lack
any kind of structure e.g. an image. A big fraction of documents in the
web includes fields within them for instance research papers are composed of
abstract , title ,introduction ,references etc fields.

An extended language modeling approach would blend the fielded docu-
ment representations into one mixture language model that roughly calcu-
lates the query generation process, and then carry out retrieval using the
mixture language model [28].

The issue of combining document representation to the retrieval model
can be approached analogously to meta-search problem. In meta-search , the
target is to put together the retrieved outcomes from different search engines
in order to deliver a single ranked list that outperforms any single search
engine. Thus searching on each field document representations independently
and performing a meta-search would result final ranked list. Another option
to this technique would be leveraging document representation to weight
terms when searched inside the field representation. In our discussion we
shall adopt the latter , where mixture language model (MLM) is estimated
depending on the merge of language models emanating from the different
document fields.

19



3 RETRIEVAL FRAMEWORK & BASELINE METHODS

Thus, we need to define a formula that embraces the different field doc-
ument representations to estimate the mixture of various language models.
A simple technique of combining field language models would be a linear
interpolation:

P (t|θd) =
∑
f∈F

αfP (t|θdf ) (16)

Field Content

Product name Lego Vulture Droid
Main category Építőjáték, LEGO
Characters Star Wars
Category LEGO
Brand LEGO

Table 2: Product example from site regiojatek.hu

where P (t|θdf ) refers to field language model ,and F is the group of fields.
Since the probability distribution to be valid the coefficients have to sum up
to 1. ∑

f∈F

αf = 1

The estimation of P (t|θdf ) can be done much same way to P (t|θd) in Eq.
12. We should consider the existence of term t within the field f instead of the
whole document. Thus we replace p(t|d) in the first component of Eq.12 by
p(t|df ) and obviously the p(t|C) is substituted by p(t|Cf ) , where Cf denotes
a collection language model with respect to the field.

P (t|θdf ) = (1− λf )PML(t|df ) + λfPML(t|Cf ) (17)

where

PML(t|df ) =
n(t, df )

|df |
PML(t|Cf ) =

∑
d n(t, df )∑

d |df |
(18)
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Here |df | stands for length of the field and n(t, df ) represents the recur-
rence of t in field f .

Back to Eq.16 , a crucial component which we haven’t set yet is weight
(αf ) related to the fields in the document. One factor that influence the
value of weight factor is how terms in a document are distributed among the
fields. To be specific, in some cases the fielded document representations not
unrelated in sense that they basically describe a document similarly but may
vary in length.On the other hand, in semi structured data like XML each
element(field) may discretely express a document.In the next section we will
discuss each of the cases .

Disjoint field representation of Document

As stated above the assumption in disjoint field representation is that terms
in each fields describe various aspects of a document i.e each field has discrete
distribution of words. In XML retrieval According [3] a query may possess a
characteristics of implicitly mapping to each XML element. A simple search
for a movie in IMDB with query "denzel washington action" doesn’t re-
turn relevant results in the top. Instead, if the query terms where split and
searched through special advanced title search interface in corresponding
fields intended to be meant i.e "action" in genre and "Denzel Washington"
in cast , returns appropriate results with movie like "The Equalizer" [3]. This
implies that the intended information need can be inferred from the query
terms using flexible methods to map those terms to correlating fields.

Studying how terms are spread over several fields provides a good evidence
to map query terms to intended fields. In previous example of searching in
IMDB, the query term ’action’ shall occur repeatedly under the genre field,on
the other hand the terms ’Denzel’ and ’Washington’ appear mainly in the
cast field. But still the assumption stated at the beginning is important in the
sense that when query term match to different fields there is a possibility the
retrieval system will not retrieve the expected results because of ambiguity.

Most importantly, the mapping relationship signifies the robustness of
evidence each field gives for each query term. For instance in product search
a query "Horse doll" may match several fields like product name ,category,
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description etc.But intuitively the user must have more probably needed to
search for a product under category name "doll" and thus the category field
gets assigned higher weight when the term is searched on the field.

Formally, applying bayes’ theorem, the mapping probability of term to
a field denoted by p(f |t) can be estimated as a product of prior probability
p(f) and probability term field occurrence.This is given by:

P (f |t) = P (t|f)P (f)
P (t)

(19)

where

P (t) =
∑
f ′∈F

P (t|f ′)P (f ′) (20)

p(t) is substituted by applying the law of total probability. The value of
prior probability p(f) ,term field mapping before observing collection statis-
tics,could be either taken uniform or assigned based on background knowl-
edge. p(t|f) is computed by dividing the number of times the term t is found
in field f by total term count in the field f throughout the whole collection.
Particularly, this can be seen as the probability of generating term t from a
composition all terms appearing in the field f in the entire collection.

Subsequently, the estimated mapping probability is applied to weigh each
field’s contribution towards the score calculation in the probabilistic retrieval
model for semistructured data(PRMS). Hence

P (t|θd) =
∑
f∈F

P (f |t)P (t|θdf ) (21)
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Fields as alternative document representations

Some document’s internal structure might not be distinctly spanned by the
fields they are represented with. For instance document fields in may be
composed of fields title , abstract, subject or heading fields in which some
words occur both under title field and abstract, used with same interpreta-
tion. Therefore we need to have a sound way of field weighting in our retrieval
model due the presence of query terms matching potentially in various fields.
In presence of training data,the field weights(αf ) can be determined based
upon individual field retrieval performance that is measured when retrieval
is carried out on a field by itself [28]. Other relatively straightforward ap-
proaches are considering the field length across collection, total number of
terms occurring in same field in entire collection, to dictate the weights.
Much simpler technique can be to assign identical weight to each field i.e
αf = 1/|F | , where F is number of fields.
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4 Evaluation Methodology & Setup

Typical evaluation technique in information retrieval constitutes : a docu-
ment collection, information needs represented by queries(topics) and rele-
vance judgments which determines the presence or absence of relevance re-
lationship between a document and a query pair [20]. Various standard test
collections and evaluation methodologies such as CRANFIELD , TREC and
INEX have been developed for ad-hoc information retrieval tasks. Due to
access to common resources for performing retrieval evaluations, it is pos-
sible to set retrieval systems against each other and enhance retrieval al-
gorithms. Although these methodologies have been popular for their effec-
tiveness in evaluating retrieval system qualities , the process of collecting
relevance judgement takes considerable amount of time [29]. Not only that
its expensive but also presents some challenges to assessors to understand the
query related information need. According to [30] this evaluation methods
being laboratory experiments different choices for various variables are as-
sumed to make an abstraction of the real world. This engenders unavoidable
biases in what being examined. Another appealing and appropriate evalua-
tion method is to perform evaluation with real users performing tasks using
real-world applications [31].

4.1 Living Labs

“The basic idea of living labs for information retrieval is that rather than indi-
vidual research groups independently developing experimental search infras-
tructures and gathering their own groups of test searchers for IR evaluations,
a central and shared experimental environment is developed to facilitate the
sharing of resources” [31]. They proposed a living laboratory ,in relation to
challenge of Information-Seeking Support System(ISSS), which lays ground
for researchers in form of both infrastructure and evaluation means to con-
duct experiments on user context.Similarly at [15] the notion of living labs
is put as : Living labs have capability to supply a valuable user interaction
data for researchers together with data repository to conduct worthwhile
and appropriate research. Besides the lab serves as platform for conducting
evaluation tasks for different participating retrieval methods and models.
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4.2 Evaluation Platform

In this thesis a living labs evaluation platform that accommodate a bench-
marking platform for participants to evaluate the effectiveness of retrieval
systems where real users are engaged in search in a real world e-commerce site
(a webshop). The lab serves as an intermediary in between the e-commerce
site and our proposed retrieval methods. This means all the communications
are guided through the living lab API , which feeds usage and interaction
data from the commercial site to our retrieval model for training purposes.
In addition the lab also make comparison among several participating exper-
imental systems.

In order to accomplish a logical and acceptable comparisons among sys-
tems, systems are assigned similar set of queries and furthermore systems
ranking gets presented to users relatively same number of times. Since the
e-commerce site like an online toy shop attracts relatively fewer visitors than
web search engines, the magnitude of queries requests might tend to be bar-
rier as to how far the live environment would contribute to the research.
Ideally, a living lab would be expected to act as a bridge between commer-
cial site and experimental systems in the sense that all issued queries should
be forwarded to participant’s retrieval system in real time(during training
phase). This lab solves these stated constraints by considering only head
queries i.e queries which tend to be searched very often.

The decision of deliberately targeting head queries addresses most of the
challenges stated in the living labs environment. Besides the communication
between participant and living lab API is simplified because participating
systems can prepare their runs (on head queries)offline and upload them to
API. As a result these cuts the response time delay which the commercial
site could be incurred to. Another advantage of eliciting head queries is the
presence for a great deal of historical log data.
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Figure 1: Living labs architecture[1]

4.3 Architecture

As shown in Figure-1 the search system is composed of an experimental
system, a proxy API and commercial site. Initially, the commercial site
makes available set of head queries Q , nominated document list matching
each q in Q denoted by D|Q and respective document contents D. Users issue
request query q to the site and receives a response ranked result set r. In
the process the site saves the user interaction information c (click through
data) of users. In particular when user submits query q that lies in set of
head queries set Q, the site requests for ranking of experimental system r′

through the API. Finally before presenting the ranking r′ to the user, the
site combines the rank with result from commercial site itself. In general,the
API serves as data repository for previously upload runs from participants
and makes sure information including queries, feedback and runs are relayed
to and from experimental system to site.

4.4 Interleaving

Evaluation of retrieval quality of IR systems in living labs can be achieved
based on implicit users feedback. This evaluation approach enables to com-
pare systems against each other using relative or absolute metrics. Absolute
metrics take into account a sole or handful noticeable user behaviours such
as clicks ,time spent on examining result contents [32, 33] and session in-
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formations to estimate user satisfaction [34]. In living labs, user interaction
data is utilized to indicate relevances and standard IR metrics are computed
based on the relevances.
On the other hand, a paired preference method (relative) in living labs elicits
a superior system from two comparing system namely the commercial site
and experimental system based on user behaviours (the count of clicks on
system’s ranking). In the latter case, one of the important design decisions
living lab platform has taken is the interleaving method, that determines the
way of presenting search results.

A balanced interleaving approach presents results by combining rankings
of two system on an issued query and creates single ranking that represents
both ranking systems approximately equally [16]. Consequently, the blended
result would include top result from both systems on its top ranks. In special
cases where the two ranking methods are roughly similar, balanced interleav-
ing is susceptible to biased outcome as one method may get favored over the
other.

Thus another interleaving method that solves this problem proposed by
[17] is Team-Draft interleaving method based on the analogy of choosing
teams for a friendly match. Here a combined rank is produced by selecting
the best document ,which is not choosed before, from each ranking system
but instead of each rank contributing turnwise , in each round one of the
ranking system is given a chance randomly to pick a document. Due to
Team Draft(TD) ability to address the previously stated problem in balanced
interleaving its natural choice of interleaving method in living labs.

4.5 Evaluation Setup

The Lab arranged the evaluation in two phases namely the training and test
phases.

Training Phase

The prime goal of this phase is to improve retrieval systems effectiveness
through training data and user interaction data such as feedbacks. There
are two means of training systems: TREC-style collections and living labs
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evaluation. The living labs training phases after uploading runs and feedback
information can be retrieved from site so that to make modification on the
ranking when appropriate.

In this thesis we have done the training based on TREC-style in which
our collection is comprised of 50 frequent product queries, product documents
and relevance judgements. The relevance judgement is prepared from histor-
ical click information of the training queries,historical feedback, of products
i.e the fraction of clicks a product had when users search.

Test Phase

The Lab was setup as competing environment where different participant
submit their rankings on the specific task (Living Labs challenge for product
search under the name LL4IR CLEF 2015 Lab). Equivalent to training phase,
test phase is undertaken with 50 product test queries, nominated documents
and historical data (distribution of queries that led to a product). Unlike in
training phase though, the ranking of products is never revised throughout
the test phase period. We run the test phase for two weeks period.

4.6 Dataset & API

In this thesis we use the dataset from a toy store online ecommerce site in
Hungary ,regiojatek.hu .The data generally includes the head queries of the
site , list of document deemed to be relevant (i.e query and doclist pair)
and each documents content. In the site, the percentage of queries issued
by customers which lies under head queries make 25% of totally searched
queries.On daily basis on average 1500 queries are submitted to the site out
of which 380 of the queries are categorized under head queries.

All the communications between the ecommerce site and our client par-
ticipant(experimental) system passes through the web API in living-labs [1].
The client fetches the queries, doclist and documents by calling correspond-
ing API endpoints. Furthermore during training phase, after uploading runs
through API a feedback can be retrieved back. Following a json format of
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each these data is shown.

4.6.1 Queries

Queries are defined by group of attributes (fields) name such as qstr (i.e query
string) , qid - query identification , creation date and type that differentiate
train query from test ones. Figure-2 below presents the format of queries.

{ "queries": [
{

"creation_time": "Thu, 27 Nov 2014 13:40:50 -0000",
"qid": "R-q47",
"qstr": "vonat",
"type": "train"

},
{

"creation_time": "Thu, 27 Nov 2014 13:40:50 -0000",
"qid": "R-q1",
"qstr": "monster high",
"type": "test"

}
]

}

Figure 2: json queries

4.6.2 DocList

A doclist represents an enumeration of candidate documents associated with
a query. Below shows Figure-2 format (UTF-8 encoded) of a doclist. The
number of document list per query is not identical as it depends upon the
number of products that the query may match to. Documents in the doclist
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have an id and title attributes. Our main objective is to rank these potentially
matching product documents for each and every one of the query in test
phase.

{ "doclist": [
{"docid": "R-d903", "title": "Animagic \xfajsz\xfcl\xf6tt
kedvencek: barna kutya"},

{"docid": "R-d2217", "title": "YooHoo&Friens My YooHoo
interakt\xedv figura "},

{"docid": "R-d2136", "title": "Furreal Friends GoGo
s\xe9t\xe1l\xf3 interakt\xedv kutyus"}

....}

Figure 3: Doclist

Since we are dealing with real commercial site , the product list apparently
would be not static during the testing period. This means some product may
go out of stock while other new ones arrive so during system comparison the
commercial site may have an upper hand.

4.6.3 Documents

The API makes documents available by their unique identifier document ids.
A document consists of many fields that describe it thoroughly. For retrieval
purposes, we only discuss those fields that provide us rich textual content of
products in Figure-5.
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Field Description
brand Product’s brand
category Leaf level category
characters Characters linked to product (e.g Barbie)
description textual explanation of product
product_name Name of product
queries List of queries with probabilities through which

the product got clicked
main_category top level product category
short_description concise product description

Figure 4: Fields description

{
"content":

{
"category": "Bab\xe1k, Kellekek",
"description":"" ,
"main_category": "Baba, babakocsi",
"brand": "Mattel",
"queries": "barbie": "1.00000",
"product_name":"Barbie Mariposa \xe9s a ...",
"price": 4995.0,

... }
"docid": "R-d1408",
"creation_time": "Fri, 17 May 2015 04:55:54 -0000",
"title": "Barbie Mariposa \xe9s a ..."

}

Figure 5: Document fields json
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4.6.4 Runs & Feedbacks

Our client system uploads runs through living lab API . These contains a
ranking of documents associated with query (ranked doclist). During the
training phase, after uploading a run some amount of time is given for user
to submit the query corresponding to the our run live on the commercial site.
Then a feedback which indicates whether a document in the run was clicked
by user or not. The format of runs and feedbacks are very alike except that
feedback adds an indicator boolean attribute name clicked.

{
"qid": "R-q47",
"runid": "mlm"
"creation_time": "Thu, 27 Nov 2014 13:40:50 -0000",
"doclist": [

{
"docid": "R-d903"

},
{

"docid": "R-d2217"
}, ...

],
}

Figure 6: ranked documents : a run

4.6.5 Historical Feedback

Historical feedback data is related to each query and it provides a historical
information of that query. Specifically, this information comes in the form of
relevance between query and document pairs that is the fraction of clicks the
product received for a given query. Based upon these data we generated a
qrels file(relevance judgement) that enable us to train our system in TREC
style. Below Fig.7 shows the format of a historical feedback for a query
identified by the query id (qid).
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{
"feedback": [

{"qid": "R-q1",
"modified_time": "Sun, 27 Apr 2014 13:46:00 -0000",
"type": "ctr",
"doclist": [

{"docid": "R-d903"
"clicked": 0.6},
{"docid": "R-d2217"
"clicked": 0.3},
...

]},
...

}

Figure 7: Historical feedback
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5 Retrieval Methods for Product Search

In this section we will be discussing three different methods employed for our
product search task.The documents related to a product are fielded ones,
in which each field provides an explanation of product’s characterstics. For
these reason, these fielded manner of organization enables us to use fielded
document representations and take advantage of that to enhance the quality
of our IR system. The methods discussed below are inspired by previously
explained approaches in Sec.3 under disjoint field representation and alter-
native field representation , where the main difference among the methods
is the way the relevance of fields is determined and incorporated to retrieval
formulas.

As mentioned in previous section our client program retrieves queries,
doclist and documents through Living Labs Restful API. First our client
program requests for train queries using the appropriate API endpoints and
thereafter for each product query a list of candidate product items is loaded.
Then based on document ids (docid) , the contents of each site nominated
product item associated to a query are fetched. A search index is prepared
out of those documents to proceed with main task of searching. As part of
a product document we have crucial query historical information containing
distribution of query terms that led to that specific product item in the past.
We have merged this information to our index of documents creating sepa-
rate field by taking the proportion into account i.e mulitplying the relative
frequencies of each query by 100 and concatenating the resulting number of
terms.

The approaches adopted for product search are versions of mixture lan-
guage modeling retrieval technique. We used Jelinek Mercer (JM) smoothing
method to smooth our probabilistic estimations with a smoothing parameter
λ = 0.1 . Historical feedbacks are available for each query from which we cre-
ated a relevance judgments to assist train our retrieval system offline. Below
follows the explaination of the methods we proposed for product search.
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5.1 Method 1

As stated previously, our methods are founded in mixture language model
shown in Eq.22. This method assigns field weights on the basis of how
significant a particular field is in the retrieval process. We assume that
the performance of individual field is proportional to field’s significance and
thus our measure for importance is done by evaluating each field’s quality
when searched upon separately. Using TREC-style evaluation , since we have
relevance judgement derived from historical data, the relevance metric nDCG
is considered as a measure of each field’s individual effectiveness. Then the
weight of each field is taken as ratio of the field’s nDCG result to the sum of
all nDCG results from the other fields. This guarantees that all field weights
add up to 1 as stated in Eq.22 Here we are repeating those formulas discussed
in previous section for sake of simplicity.

P (t|θd) =
∑
f∈F

αfP (t|θdf )
∑
f∈F

αf = 1 (22)

where ,

αf =
nDCGf∑

f ′∈F nDCGf ′
(23)

The Figure-3 displays the list product fields that have rich textual con-
tent and are important for retrieval purposes. It also shows the nDCG per-
formance measure for every individual field together with the corresponding
relative weights computed as per Eq.23. Note that the Contents field a catch
all field, combination of all field contents, included while indexing. Note that
the "contents" field embeds more fields than those listed such as "queries"
field.
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Field Name nDCG Field weight (αf)

Brand 0.0684 0.024

Product Name 0.5632 0.1989

Characters 0.3792 0.1339

Category 0.4305 0.152

Description 0.3919 0.1384

Short description 0.2986 0.1054

Contents 0.6987 0.2468

Table 3: Performance based field weights

5.2 Method 2

The second method we considered treats field document representation as
an exclusive document model and aims in singling out fields matching to
the query components to enhances the robustness of IR system.The mapping
probability of a field to query term P(f |t) is computed as stated in Eq.19
and Eq.20. As such instead of using field weights derived from individual
field performance as in method 1, the mapping probabilities obtained are
used.Apparently, the computation of mapping probability depends on prior
field probabilities P(f) component. In this method we take those probabili-
ties to be uniform across fields, thus the mapping probability P(f |t) simplifies
to Eq.25 in which term mapping depends only on field collections. A field
collection can be seen as a virtual document made concatenating all the data
at that particular field from all documents in collection.

P (f |t) = P (t|f)P (f)
P (t)

P (t) =
∑
f ′∈F

P (t|f ′)P (f ′) (24)

P (f |t) = P (t|Cf )∑
f ′∈F P (t|Cf ′)

(25)

where F denotes set of all fields
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5.3 Method 3

Third and the last method proposed is mixture of those two methods ex-
plained above. In method 3, the prior field probabilities which were assumed
to be identical thoughout the fields, while calculating the mapping proba-
bility in method 2, are replaced by individual field performance results from
method 1.

thus method 2 can be rewritten as :

P (f |t) = P (t|Cf )× αf∑
f ′∈F P (t|Cf ′)× αf ′
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6 Experimental Results

This section describes the experimental results achieved for our proposed
retrieval functions. We explain those results in two parts. First part rep-
resents results obtained performing offline evaluation based on traditional
TREC-style on training queries. The second part elucidates online results
from Living Lab experiment on the test queries.

6.1 TREC-style offline evaluation

Table 4 shows evaluation results achieved by preparing historical relevance
judgement out of historical click distributions. In other words, graded rel-
evance of each query product-pairs is determined by the fraction of clicks
the products received (historical CTR) extracted from search log. For the
binary relevance metrics (MAP and MRR) we consider historical CTR above
0.001 as relevant. Important thing to point out is that the collected historical
CTR is probably biased by the site’s ranking system. The evaluation results
indicates effectiveness of the three methods based on retrieval metrics MAP,
MRR,nDCG , nDCG@5 ,nDCG@10.

We can clearly see from the table that method 1 is superior to method 2
and method 3 in all the evaluation metrics except in MRR where all meth-
ods achieved same outcome. In addition, method 3 follows to be a runner up
recording marginal difference from method 2 but still better in all measures.
The best measures obtained in overall the metrics are highlighted in bold face.

6.2 Living Labs online evaluation

Our rankings run in Living labs test phase from 1st of May and continued
until the 16th of May for during of two weeks. Table 5 depicts the result of
the experiment conducted. Living Lab evaluation environment registers the
number of wins, losses and ties for our experimental ranking methods against
production ranking. When the product items in the experimental system
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receive more clicks than production system, a win is counted. Impressions
refer to the number of times an interleaved ranking ,made up of a method
ranking and production’s ranking, is being presented to users. The main
evaluation metrics is the outcome. Outcome is fraction number of wins of
methods to total impressions without the ties given by:

outcome =
#wins

#wins+#losses

According to Living labs result shown in Table 5 , All methods received
about the same number of impressions, the relative difference between them
is within 10%. In over 70% of the cases there is a tie between the experimental
and production rankings; this is the same for all three methods.

In terms of outcome metric method-2 outperforms both methods. This
disagrees with results obtained based on historical relevance judgements.
Method-2 has strong outcome metric with significant margin to method-1.
In accordance with the outcome measure, method-2 has also registered more
wins per impression against the production system. Method-3 holds second
place but has achieved the lowest number of losses per impression. Overall,
method-1 ‘s performance is degraded when compared to its effectiveness on
historical judgements , dropping from first to third. Since method-1 is base-
line PRMS which compute the mapping probability based on fields instead
of query terms themselves , the relative performance recorded is not unantic-
ipated. One important observation we made is that term-specific mapping
is beneficial as reflected from both method-2 and method-3 prevalence over
method-1.

Methods MAP MRR nDCG nDCG@5 nDCG@10

Method-1 0.8118 0.9948 0.7045 0.5136 0.5709

Method-2 0.7916 0.9948 0.7012 0.5121 0.5703

Method-3 0.7997 0.9948 0.7026 0.5108 0.5710

Table 4: Offline Evaluation for training queries , Best results show in boldface
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Methods Outcome Wins Losses Ties Impressions

Method-1 0.2827 54 137 508 699

Method-2 0.3413 71 137 517 725

Method-3 0.3277 58 119 488 665

Table 5: LivingLabs platform results

40



7 ANALYSIS

7 Analysis

In analysis section we begin our analysis on the presented methods both
quantitatively and qualitatively. The variation among the three ranking pro-
posed methods in product search is determined using correlation coefficient
,τ in Table 6. From the table we observe that the ranking of method-2 and
method-3 are highly correlated and method-1 has relatively lower similarity
to both of the methods. Despite the ranking resemblances, Table 7 below
shows varying assignment of weights across the different fields of sample key-
word queries searched in the experiment. The sample queries are composed
of single term queries and a multiple term query. In method-1 the weights
are constant across fields owing to the dependence solely on fields perfor-
mance. While in method-2 and method-3, the weights alternate according
to the mapping probability of terms to fields.

method Method-2 Method-3

Method-1 0.867 0.864

Method-2 X 0.95

Table 6: Kendal correlation

In Figures (8,9,10) the wins method-X has recorded against the produc-
tion system are represented by upper bars, where as the red bars correspond
to losses per each and every query (both test and train queries). We can
infer from the graphs that all the methods has registered losses specially in
leftmost part of the plot. This shows beating the production systems was
not a trivial task. Generally the shape of the graphs are comparable owing
to the high correlation among the rankings. The deciding metric taken into
account to contrast the systems is the outcome metric , and according to
outcome metric method 2 is the best. The marginal difference in outcome
metric in between method 2 and method 3 conform to the rankings simili-
tude according to τ measure .However, due to the minimal outcome metric
gap between the method 2 and method 3, together with the favorable result
method 3 has scored in terms of # losses we would like to run the rankings
for more impressions to decide the winner with high degree of confidence.
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Query query terms Field Name M-1 M-2 M-3

baba baba

product_name 0.1989 0.2509 0.2713
contents 0.2468 0.2592 0.3509
category 0.152 0.3723 0.3024
short_desc 0.1054 0.0658 0.0356
description 0.1384 0.0516 0.0391

pötyi pötyi
product_name 0.1989 0.1067 0.0877
contents 0.2468 0.882 0.906
description 0.1384 0.0109 0.006

minnie minnie

product_name 0.1989 0.086 0.1156
contents 0.2468 0.086 0.1479
characters 0.1339 0.8102 0.7214
short_desc 0.1054 0.0117 0.008
description 0.1384 0.0072 0.0068

bogyó és babóca

bogyó

product_name 0.1989 0.061 0.0861
contents 0.2468 0.0633 0.1118
description 0.1384 0.0034 0.0034
short_desc 0.1054 0.0062 0.0044
characters 0.1339 0.8657 0.7941

és

product_name 0.1989 0.0874 0.1218
contents 0.2468 0.0984 0.1714
description 0.1384 0.2578 0.2514
short_desc 0.1054 0.2316 0.1613
characters 0.1339 0.3246 0.2939

babóca

product_name 0.1989 0.0594 0.0823
contents 0.2468 0.0875 0.1514
description 0.1384 0.0034 0.0033
short_desc 0.1054 0.0061 0.0042
characters 0.1339 0.8434 0.7587

Table 7: Field weight assignment according to methods
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Figure 8: Method-1 : # wins and # losses against production system ordered
by # wins

Figure 9: Method-2 : # wins and # losses against production system ordered
by # wins
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We found that this was in accordance to the hypothesis we made that
term-specific mapping in product search (method 2 and method 3) has ac-
complished significant improvement over static weighting (method 1) which
is based solely on field’s performance. Method2 assumes equal field prior for
the all the fields whereas method3 deployed field effectiveness measures from
method1 for field prior probabilities. From this we can infer that estimating
field mapping priors based on historical clicks hardly performs better than
the setting where the priors are uniformly distributed.

The result of experiments in Living Labs has shown to be inversely related
to historical relevance judgements results. This result possibly implies the
relevance of Living lab platforms for information retrieval task.

Figure 10: Method-3 : # wins and # losses against production system or-
dered by # wins
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Query Analysis

The following analysis takes a deeper look at queries marked on previous
method 1 plot in based on aggregated number of clicks products received
during the training phase. For each query two plots are shown : the former
portrays the number of clicks of products received in descending order as
a result of a query search(unranked product-click plot). The second plot
orders the products according to one of the methods’ rankings against the
number of clicks( ranked product-click plot). Besides some of the plots show
a secondary vertical axis indicating the price of products.

Logically a ranked product-click plot that has equivalent shape to the
unranked product-click plot would be considered acceptable ranking. For
query "monopoly" , this is not the case and it has lost 13 times and won only
once against production system. If we look closely at the ranked product-
click plot, products returned at ranking positions 2-4 have got relatively
low number of clicks. One likely reason can be attributed to the price level
of the products. As shown in the line graph at the ranked product-click
plot, products at top ranks in particular those at position 2 and 3 are very
expensive compared to other products ranking at top(almost double to the
average price).The result implies that in product search one crucial factor
that we must take in consideration is the price of the products. We can
infer that including some price related characterstics in order to supplement
product data may be beneficial in improving the retrieval accuracy.

Another query "busz" has recorded satisfactory result against production
system winning 14 and lost only 5 times. Unlike to the ranked product-query
plot of query "monopoly", this has roughly similar shape to the unranked
product-query plot. The unranked product-query plot has multiple products
which likely are relevant and the ranking has achieved more click for the top
ranked products.
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Figure 11: click distribution for query Monopoly
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Figure 12: click distribution for query Busz
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8 Conclusion

In this thesis we studied, adapted and evaluated well-established retrieval
models and analyzed how they fit to product search task. We applied gener-
ative mixture language models approach based on fielded document models.
Principally, we proposed functions to estimate query terms-field mapping
probability component. We estimated field weights depending on exclusive
field efficiency determined by making use of evaluation metric nDCG com-
puted from historical CTR relevance judgement. Altenative methods es-
timated the mapping probability based on query term abundance in field
Collection. The retrieval methods were evaluated both in traditional Trec-
style employing historical CTR relevance judgement and Living Lab platform
where the rankings were presented to real customers to an e-commerce site
’regiojatek.hu’. The comparison among the methods was carried out by
taking production system as a reference.

We discovered , according to Living Labs evaluation metric ’outcome’,
methods that are based on term-field mapping were superior to the static
field performance weighting approach. The evidence we presented shows
that term specific mapping has a positive effect on retrieval performance in
product search task.

We also found out that the accuracy measure of methods performed ac-
cording to historical CTR has given different results from Living labs results
evaluation. This supports the notion of the need for Living lab platform
in information retrieval tasks. To make more concrete conclusion about the
significance of Living labs platform though, it would have been interesting
to compare evaluation results based on expert relevance judgements ,which
we don’t have access, from the e-commerce site against result from Living
labs instead of relevance judgements built of historical CTR which only can
barely provide hints.

The price of products in the e-commerce site was dynamic ,thus we believe
factors such as product’s price level and price adjustments e.g. in form of sales
has an influence on which products got clicked during our online experiment.
In future it would be appealing to study those factors and devise retrieval
models that manipulate such data and supplement it in the ranking of the
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product in order to attain high user utility.

Another question that could be interesting to answer in the future is :If
product retrieval accuracy can be boosted by incorporating product popu-
larity information learned out of sale records.
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- Source Code : Retrieval package and Client code for Living labs API
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retrieval/__MACOSX/retrieval/retrieval/._lucene_tools.py





retrieval/__MACOSX/retrieval/Living lab Client/._participant.py





retrieval/__MACOSX/retrieval/retrieval/._results.py





retrieval/__MACOSX/retrieval/retrieval/._scorer.py





retrieval/__MACOSX/retrieval/retrieval/.___init__.py





retrieval/retrieval/retrieval/indexer.py

"""
Indexer - Indexes text fields in product documents
@author: Krisztian Balog
@Edited by Aman Berhane
"""

import sys
from lucene_tools import Lucene

indexed_fields = ['product_name','title' ,'brand','short_description','description','characters','category','main_category','queries']
def lucene_indexer(docs):
    index_dir="/new_index"    
    lucene = Lucene(index_dir)
    lucene.open_writer()
    for doc in docs:
        contents = []
        doc[Lucene.FIELDNAME_CONTENTS] = ""
        
        print "Indexing document ID " + str(doc['docid'])
        # create content field
        for f in doc:
            if (f in indexed_fields):
                doc[Lucene.FIELDNAME_CONTENTS] = doc[Lucene.FIELDNAME_CONTENTS] +" "+ str(doc[f]) 
       
        for f in doc:
            #if f in indexed_fields:
            field_name = Lucene.FIELDNAME_ID if f == "docid" else f
            field_type = Lucene.FIELDTYPE_ID if f == "docid" else Lucene.FIELDTYPE_TEXT_TVP
            contents.append({'field_name': field_name,
                             'field_value': str(doc[f]),
                             'field_type': field_type})
        lucene.add_document(contents)

    lucene.close_writer()








retrieval/retrieval/Living lab Client/kendal.py

"""
  Kendal Coefficient of correlation
  @Aman Berhane
"""


def load_ranking(file):
	rank = {}
	for line in open(file,"r"):
		qid,_,pid,r,_,_= line.split()
		if qid in rank :
			rank[qid].append({pid:r})
		else:
			rank[qid] = [{pid:r}]
			
	return rank			

def number_pairs(n):
	return n*(n-1)/2 if n > 1 else 0 

def average(lista):
	return sum(lista) / float(len(lista))

def numerator(rankA , rankB):
	numer = 0 
	N = len(rankA)
	for i in range(0,N):
		for j in range(i+1,N):
			sign =(rankB[i] - rankB[j]) * (rankA[i] - rankA[j])
			if sign > 0: 
			 	numer += 1
			else: 
			 	numer -= 1
	
	return numer 

def kendel_tau(listA,listB):
	numera = numerator(listA,listB)
	den = number_pairs(len(listA))
	return numera/float(den) if den != 0 else 1
		

def main():
	m1 = load_ranking(input_file1)
	m2 = load_ranking(input_file2)
	print 'Loaded ranking ...'
	listA = [] 
	listB = []
	accum_kend = []
	low = []
	for qid in m1:
		for pair in m1[qid]:
			pid = pair.keys()[0]
			rank1 = pair.values()[0]
			rank2 = next((r[pid] for r in m2[qid] if pid in r),0)
			listA.append(int(rank1))
			listB.append(int(rank2))
		t = kendel_tau(listA,listB)
		accum_kend.append(t)
		listA =[]
		listB=[]
	
	print accum_kend
	
if __name__ == '__main__':
	main()






retrieval/retrieval/retrieval/lucene_tools.py

"""
Tools for Lucene.
All Lucene features should be accessed in nordlys through this class. 

- Lucene class for ensuring that the same version, analyzer, etc. 
  are used across nordlys modules. Handles IndexReader, IndexWriter, etc.  
- Command line tools for checking indexed document content

@author: Krisztian Balog
@author: Faegheh Hasibi
"""

import argparse
import sys
sys.path.append("/usr/local/lib/python2.7/site-packages")
import lucene
from nordlys.storage.mongo import Mongo
from nordlys.retrieval.results import RetrievalResults
from java.io import File
from org.apache.lucene.analysis.standard import StandardAnalyzer
from org.apache.lucene.document import Document
from org.apache.lucene.document import Field
from org.apache.lucene.document import FieldType
from org.apache.lucene.index import FieldInfo
from org.apache.lucene.index import MultiFields
from org.apache.lucene.index import IndexWriter
from org.apache.lucene.index import IndexWriterConfig
from org.apache.lucene.index import DirectoryReader 
from org.apache.lucene.index import Term
from org.apache.lucene.queryparser.classic import QueryParser
from org.apache.lucene.search import IndexSearcher
from org.apache.lucene.search import BooleanClause
from org.apache.lucene.search import TermQuery
from org.apache.lucene.search import BooleanQuery
from org.apache.lucene.search import FieldValueFilter
from org.apache.lucene.search.similarities import LMJelinekMercerSimilarity
from org.apache.lucene.search.similarities import LMDirichletSimilarity
from org.apache.lucene.search.similarities import Similarity
from org.apache.lucene.store import SimpleFSDirectory
from org.apache.lucene.util import BytesRefIterator
from org.apache.lucene.util import Version
from org.apache.lucene.search import DocIdSetIterator
# has java VM for Lucene been initialized
lucene_vm_init = False


class Lucene(object):
    
    # default fieldnames for id and contents
    FIELDNAME_ID = "docid"
    FIELDNAME_CONTENTS = "contents"

    # internal fieldtypes
    # used as Enum, the actual values don't matter
    FIELDTYPE_ID = "id"  
    FIELDTYPE_TEXT = "text" 
    FIELDTYPE_TEXT_TV = "text_tv"
    FIELDTYPE_TEXT_TVP = "text_tvp"
        
    def __init__(self, index_dir):
        global lucene_vm_init
        
        if not lucene_vm_init:
            lucene.initVM(vmargs=['-Djava.awt.headless=true'])
            lucene_vm_init = True
        self.dir = SimpleFSDirectory(File(index_dir))
        self.analyzer = None
        self.reader = None
        self.searcher = None
        self.writer = None
        self.ldf = None
        # Caching variables
        self.coll_termfreq = dict()
        self.coll_length = dict()
        self.term_freqs = dict()
        self.doc_ids = dict()

    def get_version(self):
        """Get Lucene version"""
        return Version.LUCENE_48
    
    def get_analyzer(self):
        """Get analyzer"""
        if self.analyzer is None:
            self.analyzer = StandardAnalyzer(self.get_version())
        return self.analyzer
        
    def open_reader(self):
        """Open IndexReader."""
        if self.reader is None:
            self.reader = DirectoryReader.open(self.dir)
    
    def get_reader(self):
        return self.reader
                
    def close_reader(self):
        """Close IndexReader."""
        if self.reader is not None:
            self.reader.close()
            self.reader = None
        else:
            raise Exception("There is no open IndexReader to close")
    
    def open_searcher(self):
        """
        Open IndexSearcher. Automatically opens an IndexReader too,
        if it is not already open. There is no close method for the 
        searcher.
        """
        if self.searcher is None:
            self.open_reader()
            self.searcher = IndexSearcher(self.reader)

    def get_searcher(self):
        """Returns index searcher (opens it if needed)."""
        self.open_searcher()
        return self.searcher

    def set_lm_similarity_jm(self, method="jm", smoothing_param=0.1):
        """Set searcher to use LM similarity.

        :param method: LM similarity ("jm" or "dirichlet")
        :param smoothing_param: smoothing parameter (lambda or mu)
        """
        if method == "jm":
            similarity = LMJelinekMercerSimilarity(smoothing_param)
        elif method == "dirichlet":
            similarity = LMDirichletSimilarity(smoothing_param)
        else:
            raise Exception("Unknown method")

        if self.searcher is None:
            raise Exception("Searcher has not been created")
        self.searcher.setSimilarity(similarity)

    def open_writer(self):
        """Open IndexWriter."""
        if self.writer is None:
            config = IndexWriterConfig(self.get_version(), self.get_analyzer())
            config.setOpenMode(IndexWriterConfig.OpenMode.CREATE)
            self.writer = IndexWriter(self.dir, config)
        else:
            raise Exception("IndexWriter is already open")
           
    def close_writer(self):
        """Close IndexWriter."""
        if self.writer is not None:
            self.writer.close()
            self.writer = None
        else:
            raise Exception("There is no open IndexWriter to close")
            
    def add_document(self, contents):
        """
        Add a Lucene document with the specified contents to the index.
        See LuceneDocument.create_document() for the explanation of contents.
        """
        if self.ldf is None: # create a single LuceneDocument object that will be reused
            self.ldf = LuceneDocument()
        self.writer.addDocument(self.ldf.create_document(contents))
        
    def get_lucene_document_id(self, doc_id):
        """Load a document from a Lucene index based on its id"""
        if doc_id not in self.doc_ids:
            self.open_searcher()
            query = TermQuery(Term(self.FIELDNAME_ID, doc_id))
            tophit = self.searcher.search(query, 1).scoreDocs
            if len(tophit) == 1:
                self.doc_ids[doc_id] = tophit[0].doc
            else:
                self.doc_ids[doc_id] = None
        return self.doc_ids[doc_id]
    
    def print_document(self, lucene_doc_id, term_vect=False):
        """Print document contents."""
        if lucene_doc_id is None:
            print "Document is not found in the index."
        else: 
            doc = self.reader.document(lucene_doc_id)
            print "Document ID (field '" + self.FIELDNAME_ID + "'): " + doc.get(self.FIELDNAME_ID)

            # first collect (unique) field names
            fields = []
            for f in doc.getFields():
                if f.name() != self.FIELDNAME_ID and f.name() not in fields:
                    fields.append(f.name())

            for fname in fields:
                print fname
                for fv in doc.getValues(fname):  # printing (possibly multiple) field values
                    print "\t" + fv
                # term vector
                if term_vect:
                    print "-----"
                    termfreqs = self.get_doc_termfreqs(lucene_doc_id, fname)
                    for term in termfreqs:
                        print term + " : " + str(termfreqs[term])
                    print "-----"

    def get_lucene_query(self, query, field=FIELDNAME_CONTENTS):
        """Create Lucene query from keyword query"""
        """
        @todo this is temp fix
        remove ( ) and !
        because they break QueryParser
        """
        query = query.replace("(", "").replace(")", "").replace("!", "")
        return QueryParser(self.get_version(), field,
                           self.get_analyzer()).parse(query)

    def get_id_lookup_query(self, id):
        """Create Lucene query for searching by (external) document id """
        return TermQuery(Term(self.FIELDNAME_ID, id))

    def get_and_query(self, queries):
        """Create an AND Boolean query from multiple Lucene queries """
        # empty boolean query with Similarity.coord() disabled
        bq = BooleanQuery(False)  
        for q in queries:
            bq.add(q, BooleanClause.Occur.MUST)
        return bq

    def get_id_filter(self):
        return FieldValueFilter(self.FIELDNAME_ID)

    def __to_retrieval_results(self, scoredocs, field_id=FIELDNAME_ID):
        """Convert Lucene scoreDocs results to RetrievalResults format."""
        rr = RetrievalResults()

        if scoredocs is not None:
            print "writing %d docs"%(len(scoredocs))
            for i in xrange(len(scoredocs)):
                #print scoredocs[i].score
                score = scoredocs[i].score
                lucene_doc_id = scoredocs[i].doc  # internal doc_id
                doc_id = self.reader.document(lucene_doc_id).get(field_id)
                rr.append(doc_id, score, lucene_doc_id)
            print "Print score from retrieval results %d "% rr.num_docs()
		
        return rr

    def score_query(self, query, field_content=FIELDNAME_CONTENTS, field_id=FIELDNAME_ID, num_docs=100):
        """Score a given query and return results as a RetrievalScores object."""
        lucene_query = self.get_lucene_query(query, field_content)
        scoredocs = self.searcher.search(lucene_query, num_docs).scoreDocs
        return self.__to_retrieval_results(scoredocs, field_id)
                                    
    def print_stat(self):
        """Print index statistics"""
        self.open_reader()
        print "Number of documents: " + self.reader.numDocs()

    def get_doc_termvector(self, lucene_doc_id, field):
        """Outputs the document term vector as a generator."""
        terms = self.reader.getTermVector(lucene_doc_id, field)
        if terms:
            termenum = terms.iterator(None)
            for bytesref in BytesRefIterator.cast_(termenum):
                yield bytesref.utf8ToString(), termenum

    def get_doc_termfreqs(self, lucene_doc_id, field):
        """Returns term frequencies for a given document field.

        :param lucene_doc_id: Lucene document ID
        :param field: document field
        :return dict: with terms
        """
        if lucene_doc_id not in self.term_freqs:
            self.term_freqs[lucene_doc_id] = dict()
        if field not in self.term_freqs[lucene_doc_id]:
            self.term_freqs[lucene_doc_id][field] = dict()
            # Gets term frequencies
            termfreqs = {}
            for term, termenum in self.get_doc_termvector(lucene_doc_id, field):
                termfreqs[term] = int(termenum.totalTermFreq())
            self.term_freqs[lucene_doc_id][field] = termfreqs

        return self.term_freqs[lucene_doc_id][field]

    # def get_doc_length(self, lucene_doc_id, field):
    #     """ Returns length of document for the given field. """
    #     # this returns -1, as the information is not saved in terms.
    #     terms = self.reader.getTermVector(lucene_doc_id, field)
    #     return terms.getSumTotalTermFreq()

    # def get_coll_termvector(self, field):
    #     """ Returns collection term vector for the given field. """
    #     self.open_reader()
    #     fields = MultiFields.getFields(self.reader)
    #     if fields is not None:
    #         terms = fields.terms(field)
    #         if terms:
    #             termenum = terms.iterator(None)
    #             for bytesref in BytesRefIterator.cast_(termenum):
    #                 yield bytesref.utf8ToString(), termenum

    def get_coll_termfreq(self, term, field):
        """ Returns collection term frequency for the given field.

        :param term: string
        :param field: string, document field
        :return: int
        """
        if field not in self.coll_termfreq:
            self.coll_termfreq[field] = dict()
        if term not in self.coll_termfreq[field]:
            self.open_reader()
            self.coll_termfreq[field][term] = self.reader.totalTermFreq(Term(field, term))
        return self.coll_termfreq[field][term]

    def get_coll_length(self, field):
        """ Returns length of field in the collection.

        :param field: string, field name
        :return: int
        """
        if field not in self.coll_length:
            self.open_reader()
            self.coll_length[field] = self.reader.getSumTotalTermFreq(field)
        return self.coll_length[field]


class LuceneDocument(object):
    """Internal representation of a Lucene document"""

    def __init__(self):
        self.ldf = LuceneDocumentField()
        
    def create_document(self, contents):
        """Create a Lucene document from the specified contents.
        Contents is a list of fields to be indexed, represented as a dictionary
        with keys 'field_name', 'field_type', and 'field_value'."""        
        doc = Document()        
        for f in contents:            
            doc.add(Field(f['field_name'], f['field_value'], 
                          self.ldf.get_field(f['field_type'])))            
        return doc
        

class LuceneDocumentField(object):
    """Internal handler class for possible field types"""
    
    def __init__(self):
        """Init possible field types"""

        # FIELD_ID: stored, indexed, non-tokenized
        self.field_id = FieldType()
        self.field_id.setIndexed(True)
        self.field_id.setStored(True)
        self.field_id.setTokenized(False)

        # FIELD_TEXT: stored, indexed, tokenized, with positions
        self.field_text = FieldType()
        self.field_text.setIndexed(True)
        self.field_text.setStored(True)
        self.field_text.setTokenized(True)

        # FIELD_TEXT_TV: stored, indexed, tokenized, with term vectors (without positions)
        self.field_text_tv = FieldType()
        self.field_text_tv.setIndexed(True)
        self.field_text_tv.setStored(True)
        self.field_text_tv.setTokenized(True)
        self.field_text_tv.setStoreTermVectors(True)

        # FIELD_TEXT_TVP: stored, indexed, tokenized, with term vectors and positions
        # (but no character offsets)
        self.field_text_tvp = FieldType()
        self.field_text_tvp.setIndexed(True)
        self.field_text_tvp.setStored(True)
        self.field_text_tvp.setTokenized(True)
        self.field_text_tvp.setStoreTermVectors(True)
        self.field_text_tvp.setStoreTermVectorPositions(True)
    
    def get_field(self, type):
        """Get Lucene FieldType object for the corresponding internal FIELDTYPE_ value"""
        if type == Lucene.FIELDTYPE_ID:
            return self.field_id
        elif type == Lucene.FIELDTYPE_TEXT:
            return self.field_text
        elif type == Lucene.FIELDTYPE_TEXT_TV:
            return self.field_text_tv
        elif type == Lucene.FIELDTYPE_TEXT_TVP:
            return self.field_text_tvp
        else:
            raise Exception("Unknown field type")


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--index", help="index directory", type=str)
    parser.add_argument("-l", "--lookup", help="lookup a document id", type=str)
    parser.add_argument("-t", "--termvect", help="term vector for a document id", type=str)
    parser.add_argument("-s", "--stat", help="stats", action="store_true", default=False)
    args = parser.parse_args()

    index_dir = args.index
    doc_id = args.lookup if args.lookup is not None else args.termvect

    print "Index:       " + index_dir + "\n"

    l = Lucene(index_dir)

    if (args.lookup is not None) or (args.termvect is not None):
        lucene_doc_id = l.get_lucene_document_id(doc_id)
        tv = args.termvect is not None
        l.print_document(lucene_doc_id, tv)
        l.close_reader()
    elif args.stat:
        l.print_stat()


if __name__ == '__main__':
    main()






retrieval/retrieval/Living lab Client/participant.py

#!/usr/bin/env python

# This file is part of Living Labs Challenge, see http://living-labs.net.
#
# Living Labs Challenge is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Living Labs Challenge is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Living Labs Challenge. If not, see <http://www.gnu.org/licenses/>.

"""
	@Edited by Aman Berhane
"""

import matplotlib.pyplot as plt
import matplotlib.pylab as p
import argparse
import requests
import json
import time
import random
import os
from nordlys.retrieval import indexer

QUERYENDPOINT    = "participant/query"
DOCENDPOINT      = "participant/doc"
DOCLISTENDPOINT  = "participant/doclist"
RUNENDPOINT      = "participant/run"
FEEDBACKENDPOINT = "participant/feedback"
HISTORICALENDPOINT = "participant/historical"
OUTCOMEENDPOINT = "participant/outcome"

HEADERS = {'content-type': 'application/json'}

class Participant():
	def __init__(self):
		path = os.path.dirname(os.path.realpath(__file__))
		description = "Living Labs Challenge's Participant Client"
		parser = argparse.ArgumentParser(description=description)
		parser.add_argument('--host', dest='host',
							default='http://living-labs.net',
							help='Host to listen on.')
		parser.add_argument('--port', dest='port', default=5000, type=int,
							help='Port to connect to.')
		parser.add_argument('-k', '--key', type=str, required=True,
							help='Provide a user key.')
		parser.add_argument('-s', '--simulate_runs', action="store_true",
							default=False,
							help='Simulate runs.')
		parser.add_argument('--store_run', action="store_true",
							default=False,
							help='Store TREC run (needs --run_file).')
		parser.add_argument('--run_file',
							default=os.path.normpath(os.path.join(path,
													 "../../data/run.txt")),
							help='Path to TREC style run file '
							'(default: %(default)s).')
		parser.add_argument('--get_feedback', action="store_true",
							default=False,
							help="Get feedback, if any")
		parser.add_argument('--reset_feedback', action="store_true",
							default=False,
							help="Get feedback, if any")
		parser.add_argument('--wait_min', type=int, default=1,
							help='Minimum simulation waiting time in seconds.')
		parser.add_argument('--wait_max', type=int, default=10,
							help='Max simulation waiting time in seconds.')

		args = parser.parse_args()
		self.key = args.key
		self.host = "%s:%s/api" % (args.host, args.port)
		if not self.host.startswith("http://"):
			self.host = "http://" + self.host

		self.runid = 0
		
		if args.store_run:
			self.store_run(args.key, args.run_file)

		if args.get_feedback:
			self.get_feedbacks(args.key)

		if args.reset_feedback:
			self.reset_feedback(args.key)

		if args.simulate_runs:
			self.simulate_runs(args.key, args.wait_min, args.wait_max)

	def get_queries(self):
		url = "/".join([self.host, QUERYENDPOINT, self.key])
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		
		return r.json()
		#return json.loads(r.text,encoding="utf-8")

	def get_doclist(self,qid):
		url = "/".join([self.host, DOCLISTENDPOINT, self.key, qid])
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		return r.json()


	def get_document(self,docid):
		url = "/".join([self.host, DOCENDPOINT, self.key, docid])
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		return r.json()
		
		

	# if qid == "all" returns feedback for all queries
	def get_feedback(self, qid, runid=None):
		urlList = [self.host, FEEDBACKENDPOINT, self.key, qid]
		if runid:
			urlList.append(str(runid))
		url = "/".join(urlList)
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		return r.json()

	def reset_feedback(self):
		queries = self.get_queries()
		for query in queries["queries"]:
			qid = query["qid"]
			url = "/".join([self.host, FEEDBACKENDPOINT, self.key, qid])
			r = requests.delete(url, headers=HEADERS)
			time.sleep(random.random())
			if r.status_code != requests.codes.ok:
				print r.text
				r.raise_for_status()

	def historical_feedback(self,qid):
		urlList = [self.host, HISTORICALENDPOINT, self.key, qid]
		url = "/".join(urlList)
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		return r.json()


	def store_runs(self, runs):
		for qid in runs:
			run = runs[qid]
			run["runid"] = str(self.runid)
			url = "/".join([self.host, RUNENDPOINT, self.key, qid])
			print 'submitting ...%s'% qid 
			r = requests.put(url, data=json.dumps(run), headers=HEADERS)
			time.sleep(random.random())
			if r.status_code != requests.codes.ok:
				print r.text
				r.raise_for_status()

		print "Your runs er submitted ...."

	def update_runs(self,runs, feedbacks):
		for qid in runs:
			if qid in feedbacks and feedbacks[qid]:
				clicks = dict([(doc['docid'], 0) for doc in runs[qid]['doclist']])
				for feedback in feedbacks[qid]:
					for doc in feedback["doclist"]:
						if doc["clicked"] and doc["docid"] in clicks:
							clicks[doc["docid"]] += 1
				runs[qid]['doclist'] = [{'docid': docid}
											for docid, _ in
											sorted(clicks.items(),
												   key=lambda x: x[1],
												   reverse=True)]
				print clicks
		self.runid += 1
		self.store_runs(runs)
		return runs

	def update_runid(self, old_runid):
		try:
			while int(old_runid) >= self.runid:
				self.runid += 1
		except ValueError:
			pass

	def simulate_runs(self, wait_min, wait_max):
		queries = self.get_queries()
		runs = {}
		for query in queries["queries"]:
			qid = query["qid"]
			runs[qid] = self.get_doclist(qid)
		feedbacks = {}
		feedback_update = self.get_feedback(self.key, "all")
		for elem in feedback_update['feedback']:
			self.update_runid(elem["runid"])
		while True:
			for elem in feedback_update['feedback']:
				qid = elem["qid"]
				if qid in feedbacks:
					feedbacks[qid].append(elem)
				else:
					feedbacks[qid] = [elem]
			#runs = self.update_runs(runs, feedbacks)
			time.sleep(wait_min + (random.random() * (wait_max - wait_min)))
			for qid, doclists in feedbacks.items():
				for doclist in doclists:
					print qid, " ".join([doc["docid"] for doc in doclist
									 if doc["clicked"]])

			feedback_update = self.get_feedback("all", self.runid)
	"""
	:filter run against given doclist
	"""
	def store_run(self,run_file):
		runs = {}
		nominees = {}
		current_qid = None
		for line in open(run_file, "r"):
			qid, _, docid, _, _, _ = line.split()
			if current_qid is None or current_qid != qid:
				runs[qid] = {"doclist": []}
			#filter results that only occur in doclist
			if not nominees or current_qid != qid:
				nominees = self.get_doclist(qid)
			
			for doc_nominee in nominees['doclist']:
				if len(nominees['doclist']) == 1:
					runs[qid]['doclist'].append({"docid":doc_nominee['docid']})
				elif doc_nominee['docid'] == docid:
					runs[qid]['doclist'].append({"docid":docid})
					break
			current_qid = qid
		
		self.store_runs(runs)

	def get_feedbacks(self,qid):
		feedbacks = {}
		for elem in self.get_feedback(qid)['feedback']:
			qid = elem["qid"]
			if qid in feedbacks:
				feedbacks[qid].append(elem["doclist"])
			else:
				feedbacks[qid] = [elem["doclist"]]
		for qid, doclists in feedbacks.items():
			for doclist in doclists:
				print qid , " ".join([doc["docid"]
								 for doc in doclist
									 if doc["clicked"]])
				#with open('feedback.txt','w') as fdbk:
				#	fdbk.write(line + '\n')

	def multiple_feedbacks(self,qid,team):
		clicks = {}

		for elem in self.get_feedback(qid)['feedback']:
			for doc in elem['doclist']:
				
				if not doc['clicked'] and (doc['team'] == team) :
					docid = doc['docid'] 
					if docid in clicks:
						clicks[docid] += 1
					else:
						clicks[docid] = 1

		return clicks


	# filter unique documents from queries doclists            
	def get_unique_documents(self,doclists):
		unique_documents = []
		unique_doc_ids = []
		for qid in doclists:
			for qlist in doclists[qid]["doclist"]:
				if qlist["docid"] not in unique_doc_ids:
					unique_doc_ids.append(qlist["docid"])
					#unique_documents.append(qlist)

		return unique_doc_ids 

	"""
	:param - output file
	:creates qrels from historical feedback
	"""
	def prepare_qrels(self,filename):
		print 'preparing qrels file'
		with open('data/'+filename, 'w') as out:
			historic = self.historical_feedback("all")
			for histo_feed in historic['feedback']:
				docids = []
				for doc in histo_feed['doclist']:
					if doc['docid'] not in docids:
						out.write(str(histo_feed['qid'] )+ " Q0 " + str(doc['docid']) + " " + str(float(doc['clicked']) * 1000)+ "\n")
    					docids.append(doc['docid'])


	"""
    :param - output jsonfile, queries 
    :write json queries to file 
    :format {'query': 'Lego', 'query_id' :'R-q23'}
	"""
	def prepare_json_queries(self,allqueries,jsonfile):
		qlist = []
		for query in allqueries['queries']:
			q = {}
			if query['qstr']:
				q['query'] = query['qstr'] 
				q['query_id'] = query['qid']
				qlist.append(q)
		with open('data/'+ jsonfile, 'w') as f:
			json.dump(qlist,f)
    

	"""
		:returns  all unique documents for Indexing
		: Make fields visible for indexing 
	"""

	def prepare_dox(self,unique_doc_ids):
		
		alldox = []
		for docid in unique_doc_ids :
			print "getting doc %s" % docid
			adoc = self.get_document(docid)
			for f in adoc['content']:
				adoc[f] = adoc['content'][f]

			adoc['characters'] = " ".join(adoc['characters'])
			weighted_query = proportionate_query(adoc['queries']) if adoc['queries'] else ""
			adoc['queries'] = weighted_query 
			del adoc['content']
			alldox.append(adoc)
		return alldox


	"""
		: Indexer function first prepare documents ,then clear duplicate

	"""
	def index_products(self,):
		all_queries = self.get_queries()
		for query in all_queries["queries"]:
			qid = query["qid"]
			print 'getting doclist for %s'%qid
			doclists[qid] = self.get_doclist(qid)
	
		unique_doc_ids = self.get_unique_documents(doclists)
		alldox = self.prepare_dox(unique_doc_ids)	
		print "Indexing documents..."
		indexer.lucene_indexer(alldox)
		print "Indexing finished successfully"

	def outcome(self, qid):
		url = "/".join([self.host, OUTCOMEENDPOINT, self.key, qid])
		r = requests.get(url, headers=HEADERS)
		time.sleep(random.random())
		if r.status_code != requests.codes.ok:
			print r.text
			r.raise_for_status()
		
		return r.json()


def proportionate_query(doc_queries):
	repeated_terms = ""
	for query in doc_queries:
		repeated_terms = query + " "
		prob = float(doc_queries[query])
		repeated_terms = repeated_terms * int(round(prob)) * 100 

	return repeated_terms

def main():
	
	doclists = {}
	
	
	participant = Participant()
	print "getting  queries ..."
	all_queries = participant.get_queries()
	print "Number of queries : %d" % len(all_queries['queries'])
	
	for query in all_queries["queries"]:
		qid = query["qid"]
		print 'getting doclist for %s'%qid
		doclists[qid] = participant.get_doclist(qid)
	
	
	unique_doc_ids = participant.get_unique_documents(doclists)
	alldox = participant.prepare_dox(unique_doc_ids)	
	print "Indexing documents..."
	indexer.lucene_indexer(alldox)
	
if __name__ == '__main__':
	main() 


	






retrieval/retrieval/retrieval/results.py

"""
Result list representation.

- for each hit it holds score and both internal and external doc_ids

@author: Krisztian Balog
"""

import operator


class RetrievalResults(object):
    """Class for storing retrieval scores for a given query."""
    def __init__(self):
        self.scores = {}
        # mapping from external to internal doc_ids -s
        self.doc_ids = {}

    def append(self, doc_id, score, doc_id_int=None):
        """Adds document to the result list"""
        self.scores[doc_id] = score
        if doc_id_int is not None:
            self.doc_ids[doc_id] = doc_id_int

    def increase(self, doc_id, score):
        """Increases the score of a document (adds it to the results list
        if it is not already there)"""
        if doc_id not in self.scores:
            self.scores[doc_id] = 0
        self.scores[doc_id] += score

    def num_docs(self):
        """Returns the number of documents in the result list."""
        return len(self.scores)

    def get_scores_sorted(self):
        """Returns all results sorted by score"""
        return sorted(self.scores.iteritems(), key=operator.itemgetter(1), reverse=True)

    def get_doc_id_int(self, doc_id):
        """Returns internal doc_id for a given doc_id."""
        if doc_id in self.doc_ids:
            return self.doc_ids[doc_id]
        return None

    def write_trec_format(self, query_id, run_id, out, max_rank=100):
        """Outputs results in TREC format"""
        rank = 1
        for doc_id, score in self.get_scores_sorted():
            if rank <= max_rank:
                out.write(query_id + " Q0 " + str(doc_id) + " " + str(rank) + " "
                          + str(score) + " " + run_id + "\n")
            rank += 1







retrieval/retrieval/retrieval/retrieval.py

"""
Console application for general-purpose retrieval.

first pass: get top N documents using Lucene's default retrieval method (based on the catch-all content field)
second pass: perform (expensive) scoring of the top N documents using the Scorer class

General config parameters:
- index_dir: index directory
- query_file: query file (JSON)
- model: accepted values: lucene, lm, mlm (default: lm)
- method : (method1, method2 or method3) product search
- output_file: output file name
- output_format: (default: trec) -- not used yet
- run_id: run in (only for "trec" output format)
- num_docs: number of documents to return (default: 100)
- field_id: id field to be returned (default: Lucene.FIELDNAME_ID)
- first_pass_num_docs: number of documents in first-pass scoring (default: 10000)
- first_pass_field: field used in first pass retrieval (default: Lucene.FIELDNAME_CONTENTS)

Model-specific parameters:
- smoothing_method: jm or dirichlet (lm and mlm, default: jm)
- smoothing_param: value of lambda or mu (lm and mlm, default: 0.1)
- field_weights: dict with fields and corresponding weights (only mlm)
- field: field name for LM model

@todo rewrite it using Lucene's Rescoring API

@author: Krisztian Balog
"""
from datetime import datetime

import sys
import json
import os
from nordlys.retrieval.lucene_tools import Lucene
from scorer import Scorer
from results import RetrievalResults
from indexer import lucene_indexer


class Retrieval(object):
    def __init__(self, config_file):
        """Loads config file, checks params, and sets default values.

        :param config_file: JSON config file
        """
        # load config file
        try:
            self.config = json.load(open(config_file))
        except Exception, e:
            print "Error loading config file: ", e
            sys.exit(1)

        # check params and set default values
        try:
            if 'index_dir' not in self.config:
                raise Exception("index_dir is missing")
            if 'query_file' not in self.config:
                raise Exception("query_file is missing")
            if 'output_file' not in self.config:
                raise Exception("output_file is missing")
            if 'run_id' not in self.config:
                raise Exception("run_id is missing")
            if 'model' not in self.config:
                self.config['model'] = "lm"
            if 'num_docs' not in self.config:
                self.config['num_docs'] = 100
            if 'field_id' not in self.config:
                self.config['field_id'] = Lucene.FIELDNAME_ID
            if 'first_pass_num_docs' not in self.config:
                self.config['first_pass_num_docs'] = 10000
            if 'first_pass_field' not in self.config:
                self.config['first_pass_field'] = Lucene.FIELDNAME_CONTENTS

            # model specific params
            if self.config['model'] == "lm" or self.config['model'] == "mlm":
                if 'smoothing_method' not in self.config:
                    self.config['smoothing_method'] = "jm"
                if 'smoothing_param' not in self.config:
                    self.config['smoothing_param'] = 0.1

            if self.config['model'] == "mlm":
                if 'field_weights' not in self.config:
                    raise Exception("field_weights is missing")

        except Exception, e:
            print "Error in config file: ", e
            sys.exit(1)

    def __open_index(self):
        self.lucene = Lucene(self.config['index_dir'])
        self.lucene.open_searcher()

    def __close_index(self):
        self.lucene.close_reader()

    def __load_queries(self):
        self.queries = json.load(open(self.config['query_file']))

    def __first_pass_scoring(self, query):
        """Returns first-pass scoring of documents.

        :param query: raw query
        :return RetrievalResults object
        """
        print "\tFirst pass scoring... ",
        results = self.lucene.score_query(query, field_content=self.config['first_pass_field'],
                                          field_id=self.config['field_id'],
                                          num_docs=self.config['first_pass_num_docs'])
        print results.num_docs()
        return results

    def __second_pass_scoring(self, query, res1):
        """Returns second-pass scoring of documents.

        :param query: raw query
        :param res1: first pass results
        :return: RetrievalResults object
        """
        print "\tSecond pass scoring... ",
        scorer = Scorer.get_scorer(self.config['model'], self.lucene, query, self.config)
        results = RetrievalResults()
        for doc_id, orig_score in res1.get_scores_sorted():
            doc_id_int = res1.get_doc_id_int(doc_id)
            score = scorer.score_doc(doc_id, doc_id_int)
            results.append(doc_id, score)
        print "done"
        return results

    
    def retrieval(self):
        """Scores queries and outputs results."""
        s_t = datetime.now()  # start time
        total_time = 0.0

        self.__open_index()
        self.__load_queries()

        # init output file
        if os.path.exists(self.config['output_file']):
            os.remove(self.config['output_file'])
        out = open(self.config['output_file'], "w")

        for q in self.queries:
            query_id = q['query_id']
            query = q['query']
            print "scoring [" + query_id + "] " + query
            # first pass scoring
            res1 = self.__first_pass_scoring(query)
            # second pass scoring (if needed)
            if self.config['model'] == "lucene":
                results = res1
            else:
                results = self.__second_pass_scoring(query, res1)
            # write results to output file
            results.write_trec_format(query_id, self.config['run_id'], out, self.config['num_docs'])

        # close output file
        out.close()
        # close index
        self.__close_index()

        e_t = datetime.now()  # end time
        diff = e_t - s_t
        total_time += diff.total_seconds()
        time_log = "Execution time(sec):\t" + str(total_time) + "\n"
        print time_log


def print_usage():
    print sys.argv[0] + " <config_file>"
    sys.exit()


def main(argv):
    if len(argv) < 1:
        print_usage()

    r = Retrieval(argv[0])
    r.retrieval()


if __name__ == '__main__':
    main(sys.argv[1:])







retrieval/retrieval/retrieval/scorer.py

"""
Various retrieval models for scoring a individual document for a given query.

@author: Krisztian Balog
@ Edited by Aman Berhane for Product search task

"""

from __future__ import division
import math
from lucene_tools import Lucene
from org.apache.lucene.analysis.tokenattributes import CharTermAttribute
from org.apache.lucene.search import CollectionStatistics


class Scorer(object):
    """Base scorer class."""

    SCORER_DEBUG = 0

    def __init__(self, lucene, query, params):
        self.lucene = lucene
        self.query = query
        self.params = params
        self.lucene.open_searcher()
        """
        @todo consider the field for analysis
        """
        self.query_terms = self.analyze_query()

    def analyze_query(self):
        """Analyses the query.

        NOTE: The analyser might return terms that are not in the collection.
              These terms are filtered out later in the scorer.

        :return list of query terms
        """
        qterms = []  # holds a list of analyzed query terms
        ts = self.lucene.get_analyzer().tokenStream(Lucene.FIELDNAME_CONTENTS, self.query)
        term = ts.addAttribute(CharTermAttribute.class_)
        ts.reset()
        while ts.incrementToken():
            qterms.append(term.toString())
        ts.end()
        ts.close()
        return qterms

    @staticmethod
    def get_scorer(model, lucene, query, params):
        """Returns Scorer object (Scorer factory).

        :param model: accepted values: lucene, lm or mlm
        :param lucene: Lucene object
        :param query: raw query (to be analyzed)
        :param params: dict with models parameters
        """
        if model == "lm":
            return ScorerLM(lucene, query, params)
        elif model == "mlm":
            return ScorerMLM(lucene, query, params)
        else:
            raise Exception("Unknown model '" + model + "'")


class ScorerLM(Scorer):
    """LM scorer."""

    def __init__(self, lucene, query, params):
        super(ScorerLM, self).__init__(lucene, query, params)
        self.smoothing_param = self.params.get('smoothing_param', 0.1)

    def get_term_probs(self, lucene_doc_id, field):
        """ Returns probability of each term for the given field using JM smoothing
        i.e. for each term: p(t|theta_d_f) = [(1-lambda) n(t, d_f)/|d_f|] + [lambda n(t, C_f)/|C_f|]

        :param lucene_doc_id: internal Lucene document ID
        :param field: entity field name, e.g. <dbo:abstract>
        :return: dictionary of terms with their probabilities
        """
        if self.params.get('smoothing_method', "jm") != "jm":
            raise Exception("Err: Only JM smoothing is supported!")

        # Gets term freqs for field of document
        # If the document is not in the index, all freqs are zero
        doc_term_freqs = {}
        if lucene_doc_id is not None:
            doc_term_freqs = self.lucene.get_doc_termfreqs(lucene_doc_id, field)

        # Gets term probabilities
        len_d_f = sum(doc_term_freqs.values())
        p_t_theta_d_f = {}  # holds smoothed term probabilities for the document field
        len_C_f = self.lucene.get_coll_length(field)
        for t in set(self.query_terms):
            # p(t|theta_e_f) = [(1-lambda) n(t, e_f)/|e_f|] + [lambda n(t, C_f)/|C_f|]
            doc_term_freq = doc_term_freqs.get(t, 0)
            p_t_d_f = doc_term_freq / len_d_f if len_d_f != 0 else 0
            coll_term_freq = self.lucene.get_coll_termfreq(t, field)
            p_t_C_f = coll_term_freq / len_C_f if len_C_f > 0 else 0
            if self.SCORER_DEBUG:
                print "\t\tt=" + t + ", f=" + field
                print "\t\t\tDoc:  n(t,f)=" + str(doc_term_freq) + "\t|f|=" + str(len_d_f)
                print "\t\t\tColl: n(t,f)=" + str(coll_term_freq) + "\t|f|=" + str(len_C_f)
            p_t_theta_d_f[t] = ((1 - self.smoothing_param) * p_t_d_f) + (self.smoothing_param * p_t_C_f)
        return p_t_theta_d_f

    

    def score_doc(self, doc_id, lucene_doc_id=None):
        """ LM score for the given query and document field. """
        if lucene_doc_id is None:
            lucene_doc_id = self.lucene.get_lucene_document_id(doc_id)
        field = self.params.get('field', Lucene.FIELDNAME_CONTENTS)
        if self.SCORER_DEBUG:
            print "Scoring doc ID=" + doc_id

        p_t_theta_d = self.get_term_probs(lucene_doc_id, field)
        # p(q|theta_d) = prod(p(t|theta_d)) ; we return log(p(q|theta_d))
        p_q_theta_d = 0
        for t in self.query_terms:
            # Skips the term if it is not in the field collection
            if p_t_theta_d[t] == 0:
                continue
            if self.SCORER_DEBUG:
                print "\t\tP(" + t + "|" + field + ") = " + str(p_t_theta_d[t])
            p_q_theta_d += math.log(p_t_theta_d[t])
        if self.SCORER_DEBUG:
            print "\tP(d|q)=" + str(p_q_theta_d)
        return p_q_theta_d

        # def score_doc_old(self, doc_id, lucene_doc_id=None):
        # """Entity is matched against the ID field in the index.
        #
        #     The score is zero if either the entity ID is invalid or it does
        #     not contain any of the query term.
        #     """
        #     field = self.params.get('field', Lucene.FIELDNAME_CONTENTS)
        #     # "normal" query
        #     normal_query = self.lucene.get_lucene_query(self.query, field)
        #     # query for the ID field
        #     id_query = self.lucene.get_id_lookup_query(doc_id)
        #     # create Boolean query (normal_query AND id_query)
        #     and_query = self.lucene.get_and_query([normal_query, id_query])
        #
        #     # we only need the top document (and there should only be one)
        #     topdoc = self.lucene.searcher.search(and_query, 1).scoreDocs
        #
        #     if len(topdoc) == 0:
        #         return 0
        #
        #     return topdoc[0].score


class ScorerMLM(ScorerLM):
    """MLM scorer."""

    def __init__(self, lucene, query, params):
        super(ScorerMLM, self).__init__(lucene, query, params)

    # p(f|t) = p(t|C_f) * p(f)/ Sigma(p(t|C_f') * p(f'))
    """
    A mapping function (term to field)
    
    """
    def mapping_f_t(self,term,field):
        
        field_weights = self.params['field_weights']
        method = self.params['method']
        sum_prob_t_C_f = 0 # Sigma[p(t|C_f)]
        for eachfield in field_weights:
            len_C_f = self.lucene.get_coll_length(eachfield)
            coll_term_freq = self.lucene.get_coll_termfreq(term, eachfield)
            p_t_C_f = coll_term_freq / len_C_f if len_C_f > 0 else 0 # P(t|C_f) = n(t,C_f) / |C_f|
            weight = field_weights[eachfield]

            sum_prob_t_C_f += p_t_C_f * field_weights[eachfield] if method == 'method3' else p_t_C_f # METHOD 3
            if field == eachfield:
                term_coll_prob = p_t_C_f * field_weights[eachfield] if method == 'method3' else p_t_C_f

        p = float(term_coll_prob / sum_prob_t_C_f) if sum_prob_t_C_f != 0 else 0
        print "P(%s|%s)= %s"%(field,term,p)
        return p 
        

    def score_doc(self, doc_id, lucene_doc_id=None):
        """ Scores a given entity using the Mixture of Language Models (using JM smoothing)"""
        if lucene_doc_id is None:
            lucene_doc_id = self.lucene.get_lucene_document_id(doc_id)
        print 'score_doc'
        weights = self.params['field_weights']
        method = self.params['method']
        # gets term prob for each field
        field_term_probs = {}
        for field in weights.keys():
            field_term_probs[field] = self.get_term_probs(lucene_doc_id, field)

        if self.SCORER_DEBUG:
            print "Scoring doc ID=" + doc_id

        # p(q|theta_d) = prod(p(t|theta_d)) ; we return log(p(q|theta_d))
        p_q_theta_d = 0
        for t in self.query_terms:
            if self.SCORER_DEBUG:
                print "\tt=" + t
            # p(t|theta_d) = sum(mu_f * p(t|theta_d_f))
            p_t_theta_d = 0
            for f in weights:
                if method == 'method1':    
                    p_t_theta_d += weights[f] * field_term_probs[f][t] ## METHOD 1
                else :
                    p_t_theta_d += self.mapping_f_t(t,f) * field_term_probs[f][t]  ## METHODS 2,3
                if self.SCORER_DEBUG:
                    print "\t\t\tf=" + f + ", mu_f=" + str(self.mapping_f_t(t,f)) + "  P(t|theta_d,f)=" + str(field_term_probs[f][t])
            # Skips the term if it is not in the field collection
            if p_t_theta_d == 0:
                continue
            p_q_theta_d += math.log(p_t_theta_d)
            if self.SCORER_DEBUG:
                print "\t\tP(t|theta_d)=" + str(p_t_theta_d)
        return p_q_theta_d

      

if __name__ == '__main__':
    pass







retrieval/retrieval/README.txt

README file for 'Product Search project'

Retrieval :
The codebase is implemented by Dr Krisztian Balog : I have built my methods on top of the implementations.

To run retrieval using the different methods edit the configuration file in conf/retrieval.json as 
"method": method_name   e.g. "method":"method1"

Client for Living Lab API:
- participant.py file takes care of all data communication between client and living labs API.
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retrieval/retrieval/retrieval/conf/retrieval.json

{
	"index_dir":"/Users/AmanL/Documents/masterpro/Pylucene/living-api/ll/client/data/new_index",
	"output_file": "/Users/AmanL/Documents/masterpro/trec/trec_eval.9.0/baselines/updated_qrels/retrieval.txt",
	"query_file": "data/testqueries.json",
	"smoothing_param":0.1,
    "method":"method1",
    "run_id": "method1",
    "first_pass_num_docs": 1000,
    "num_docs": 100,
    "model": "mlm",
    "field_weights": {
        "brand":0.024,
        "product_name": 0.2,   
        "contents": 0.25, 
        "description":0.14,
        "characters":0.13,
        "category":0.15,
        "short_description":0.1
        }


}
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