

Center for Advanced Research in Entity Resolution and Information
Quality (ERIQ)

 OYSTER v3.3 Reference Guide

Document Version: 1.11, Date: 18 March 2013

Copyright © 2012 ERIQ
University of Arkansas at Little Rock

Edited by:

Fumiko Kobayashi

Authors:

Fumiko Kobayashi and John Talburt

1

Revision History

Version Date Prepared By Position Reason for Update

1.1 11/17/2010

Fumiko
Kobayashi

RA Added Output section

Modified the section heading to contain
defining numbers

Removed redundant information

Added Introduction

1.2 12/01/10

Fumiko
Kobayashi

RA Modified to reflect new XML
requirements for OYSTER v2.4

Expanded Log section of the Output
section

1.3 2/4/2011 Fumiko
Kobayashi

RA Modified document to reflect new
changes to Oyster V2.6

1.4 2/27/2011

3/1/2011

Fumiko

Kobayashi

RA Added Comparator section

Modified document to reflect new

changes to OYSTER V3.0

1.5 5/2/2011 Fumiko

Kobayashi

RA Modified document to reflect new

changes to OYSTER V3.1

1.6 6/14/2011 Fumiko

Kobayashi

RA Updated Output section and

RunScript section

1.7 6/22/2011 Fumiko

Kobayashi

RA Removed References to

RunScriptName

1.8 10/28/2011

02/01/2012

Fumiko

Kobayashi

RA Modified document to reflect new

changes to OYSTER V3.2

1.9 02/24/2012

04/18/2012

Fumiko

Kobayashi

RA Added clarification regarding

discrepancies in Change Report

between engines.

1.10 08/24/2012 Fumiko

Kobayashi

RA Added UDI, CAC, KILL, and new

comparators.

1.11 12/02/2012

03/18/2013

Fumiko

Kobayashi

RA Updated UDI and Log File sections

Update to reflect OYSTER v3.3 change

2

Table of Contents

I. Introduction ... 6

II. Scripts ... 7

1. OysterRunScript ... 7

1.1 XML Declaration and Comments .. 7

1.2 <OysterRunScript> Tag .. 8

1.3 <Settings> Tag .. 8

1.4 <LogFile> Tag .. 11

1.5 <RunMode> Tag ... 12

1.6 <EREngine> Tag ... 12

1.7 <AttributePath> Tag ... 13

1.8 <IdentityInput> Tag ... 13

1.8.1 Type=”None” .. 14

1.8.2 Type=”TextFile” ... 14

1.8.3 Type=”Database” ... 14

1.9 <IdentityOutput>Tag ... 15

1.9.1 Type=”None” .. 15

1.9.2 Type=”TextFile” ... 15

1.9.3 Type=”Database” ... 15

1.10 <LinkOutput> Tag ... 16

1.10.1 Type=”TextFile” .. 16

1.10.2 Type=”Database” .. 17

1.11 <AssertionInput> Tag ... 17

1.12 <ReferenceSources> Tag ... 18

1.13 <Source> Tag .. 18

2. OysterAttributes ... 18

2.1 XML Declaration and Comments ... 19

2.2 <OysterAttributes> Tag .. 19

3

2.3 <Attribute> Tag .. 20

2.4 <IdentityRules> Tag ... 20

2.5 <Rule> Tag .. 20

2.6 <Term> Tag .. 21

2.7 <Indices> Tag .. 26

2.8 <Index> Tag .. 26

2.9 <Segment> Tag .. 26

2.10 User Defined Index (UDI) Example.. 27

2.11 Scan Hash Function .. 27

2.12 Cross-Attribute Compare (CAC) ... 29

3. OysterSourceDescriptor .. 31

3.1 XML Declaration and Comments ... 31

3.2 <OysterSourceDescriptor> Tag ... 31

3.3 <Source> Tag ... 32

3.3.1 Type=”FileDelim” .. 32

3.3.2 Type=”FileFixed” .. 33

3.3.3 Type=”Database” ... 33

3.4 <ReferenceItems> Tag .. 34

3.5 <Item> Tag .. 35

3.5.1 Delimited Text Items ... 35

3.5.2 Fixed Width Items .. 38

3.5.3 Database Items... 39

III. Attribute-Based vs. Record-Based Matching for Identities ... 40

1. Example ... 40

1.1 Attribute-Based ... 40

1.2 Record-Based ... 41

IV. Reference Sources ... 44

1. Example from Text Files .. 44

1.1 From Delimited Files.. 44

1.2 From Fixed Width Files ... 45

4

2. Example from Database Tables ... 46

2.1 From Open Database Connectivity (ODBC) .. 46

2.1.1 Creating ODBC Connections ... 46

2.1.2 Example from ODBC .. 48

2.2 From MySQL .. 49

2.3 From Microsoft SQLServer .. 50

V. Outputs .. 51

1. Identity Document ... 51

1.1 <root> Tag .. 51

1.2 <Metadata> Tag ... 51

1.2.1 <Modifications> Tag .. 52

1.2.1.1 <Modification> Tag ... 52

1.2.2 <Attributes> Tag ... 53

1.2.2.1 <Attribute> Tag .. 53

1.3 <Identities> Tag ... 53

1.3.1 <Identity> Tag .. 54

1.3.2 <References> Tag ... 54

1.3.2.1 <Reference> Tag .. 55

1.3.2.1.1 <Value> Tag ... 55

1.4 Example... 55

2. Link Index .. 56

3. Identity Change Report .. 57

3.1 Sections ... 57

3.1.1 Metadata Section ... 58

3.1.2 Summary .. 58

3.1.3 Change Detail .. 58

3.4 ChangeReportDetail=”Off” ... 59

3.3 ChangeReportDetail=”On” ... 60

4. Identity Merge Map .. 61

5. Log File .. 61

5

5.1 Summary Stats.. 62

5.2 Cluster Stats ... 62

5.3 Rule Stats .. 65

5.4 Index Stats .. 65

5.5 Resolution Stats ... 68

5.6 Timing Stats ... 68

6. Extended Log File ... 70

VI. Other OYSTER Functionality ... 71

1. KILL Thread .. 71

2. 90% memory Warning ... 71

VII. OYSTER User-Defined Inverted Index ... 72

1. Inverted Index.. 72

2. Match Key .. 72

2.1 Match Key Example 1... 73

3. Index Operation... 73

4. Alignment of Index with Match Rules ... 75

5. Index Recall and Precision .. 75

5.1 Alignment Scenarios .. 76

5.2 Index Fewer Attributes Strategy ... 77

5.3 Multiple Index Strategy ... 78

6. The Alignment Process ... 79

6.1 Rule Analysis ... 79

6.2 Index Design .. 80

6.2.1 Match Key Comparators versus Similarity Comparators .. 82

6.2.2 Balancing Alignment with Reduction ... 83

6.3 Alignment Validation ... 85

VIII. Error Messages .. 86

Common Errors .. 86

Figures .. 87

6

I. Introduction

This OYSTER reference guide is intended for use by OYSTER users who already have an

understanding of the basics of both OYSTER and Entity Resolution as introduced in the

“Introduction to Entity Resolution with OYSTER” document bundled with OYSTER. This

document is divided into seven sections. The first section is the introduction which you are

reading now. The second section is designed to answer configuration questions regarding

available options in the OYSTER XML files. The third section provides an explanation and

example of Record-based and Attribute based matching. The fourth section provides

examples of how to establish connections to different types of source inputs. The fifth

section details how to read and understand the various output files that can be generated

by an OYSTER run. The sixth section describes other features of OYSTER that fall outside

the realm of any other section. The last section provides a list of common errors that can be

encountered during the configuration of OYSTER and how to resolve the errors.

7

II. Scripts

This reference contains an exhaustive explanation of all components that make up the XML

files required by OYSTER. Each file is broken down into sections by their tags and each tag

section explains the possible attributes and values associated with each tag,

1. OysterRunScript

This section describes all the different tags and attributes available in the OysterRunScript.

This table outlines the available tags and the RunModes they are required for:

Run Script Element

M
ergeP

u
rge

Id
en

tity
C

ap
tu

re

Id
en

tity
R

eso
lu

ti
o

n

Id
en

tity
U

p
d

ate

A
ssertR

efT
o

R
ef

A
ssertR

efT
o

Str

A
ssertStrT

o
Str

A
ssertSp

litStr

<Settings> Req Req Req Req Req Req Req Req
<LogFile> - - - - - - - -
<RunMode> Req Req Req Req Req Req Req Req
<EREngine> - - - - - - - -
<AttributePath> Req Req Req Req Req Req Req Req
<IdentityInput> None None Req Req None Req Req Req
<IdentityOutput> None Req None Req Req Req Req Req
<LinkOutput> Req Req Req Req Req Req None None
<AssertionInput> None None None None Req Req Req Req
<ReferenceSources> Req Req Req Req None None None None
<Source> Req Req Req Req None None None None

Please Note: the “-“ indicates these tags are optional for the corresponding RunMode. “Req”

specifies a tag must be defined for the corresponding RunMode of it can cause an error.

“None” means the tag must not be specified for the corresponding RunMode of it may cause

an error.

1.1 XML Declaration and Comments

All the OYSTER XML documents begin with an XML declaration and a comment section.

The XML declaration is required and must be included exactly as follows:

<?xml version="1.0" encoding="UTF-8"?>

8

The comments section is optional but should be included in the file. The following is the
suggested format of the comments section:

<!--

 Document : RunScript.xml

 Created on :

 Author :

 Description:

 Purpose of the document follows.

-->

1.2 <OysterRunScript> Tag

<OysterRunScript>

.

.

<child_elements>...</child_elements>

.

.

</OysterRunScript>

The OysterRunScript tag is the root element and thus the start and end tag encloses all
other elements in the document. All other elements are considered child elements to this
root element. It has no attributes.

The OysterRunScript tag can enclose up to 10 of the following tags:

 <Settings>

 <LogFile>

 <RunMode>

 <EREngine>

 <AttributePath>

 <IdentityInput>

 <IdentityOutput>

 <LinkOutput>

 <ReferenceSources>

 <Source>

 <AssertionInput>

1.3 <Settings> Tag

<Settings RunScriptName="Name" Explanation="Off" Debug="On" SS=”No”

ChangeReportDetail="No" Trace=”On” />

The Settings tag directs what information is written to the Oyster.log file that is created

during each OYSTER run. It also directs what additional output files are generated during

9

the run and the level of detail written to the files. Its one other function is to validate the

RunScript by checking the name of the RunScript to make sure it valid.

The Setting tag has six attributes:

 RunScriptName

o Assigned value must match the name of the RunScript .xml file without the
.xml file extension.

o Example:
 Filename is “OysterRunScript.xml”
 RunScriptName should be assigned the value of

“OysterRunScript”
o Function:

 The RunScriptName attribute is simply a check that makes sure the
user is not copying a RunScript without checking to make sure it does
what they intend to do. It does this by forcing the user to open the
RunScript to edit at least one value.

 Explanation

o Acceptable values:
 “On”

 “Off”

o Function:
 The Explanation flag turns on the log file and writes out an

explanation of what is happening when OYSTER runs.
 Debug

o Acceptable values
 “On”

 “Off”

o Function:
 The Debug flag turns on the "IdentityCaptureOutput.idty.emap" and

"IdentityCaptureOutput.idty.indx" files and it adds more detail to the
log file.

 If the Explanation flag is off and the Debug is on the log file still
gets written out due to the way Java handles logging.

The following table provides an explanation of the different combinations of the
Explanation and Debug attributes.

Explanation Debug Description
Off Off There is no explanation and no debug. Only significant errors are output

to the log file. Best performance in speed.

On Off There is an explanation but no debug. Explanation and significant errors
are output to the log file. Still good performance.

10

 SS

o Acceptable values:
 “On”

 “Off”

o Function:
 The SS attribute turns on the System Statistics for the run and

generates statistics before and after parts of the run such as before
and after reading in a new source file. These statistics include:

 Heap Size – Total Memory
 Max Heap Size – Max Memory allowed to be used
 Used Heap Size – Memory being used
 Free Heap Size – memory not being used.

o Defaults to “Off” if not included in the RunScript

 ChangeReportDetail

o Acceptable values:
 “Yes”

 “No”

o Function:
 The ChangeReportDetail attribute dictates the level of detail that

will be written to the Change Report output file.
 When it is set to “Yes”, OYSTER will produce detailed change report.
 When it is set to “No”, OYSTER will produce a brief change report that

does not contain a comprehensive list of OYSTER IDs.
 Causes OYSTER to generate two reports stored in same directory as

the output .idty file:
 “Identity Change Report”
 “Identity Merge Map”

o Defaults to “No” if not included in the RunScript

 Trace

o Acceptable values:
 “On”

 “Off”

o Function:
 The Trace attribute turns off and on the Trace functionality of the

OYSTER .idty file.
 Trace provides the user the capability to trace the progress of a

reference from the current run all the way back to its origin (when
enabled since the first run). This allows the ability to examine the
origin and the evolution of a reference throughout its lifetime to figure

Off On There is an explanation and a debug as well significant errors are
output to the log file. Performance decreased due to increased logging.

On On There is an explanation and a enhanced debug as well significant errors
are output to the log file. Poor performance should only be used on
small files for testing purposes.

11

out where a bad match was made and fix it with the use of one of the
four assertions.

o Defaults to “Off” if not included in the RunScript.
o If Trace is on, the performance of OYSTER is impacted.

The Settings tag is not optional meaning OYSTER will not run successfully if the run

script does not contain this element. All attributes can be omitted from the Settings tag

except for the RunScriptName attribute. OYSTER will default all missing attribute values

to “Off” or “No”.

NOTE: Explanation and Debug should only be set to “On” when testing or trying to

resolve an issue with a Run. By setting these attributes to “On” there can be a significant

performance impact for a run on the scale of the run taking hours instead of minutes.

1.4 <LogFile> Tag

<LogFile Num="5" Size="100000000">Z:\Oyster\Log\Log_%g.log</LogFile>

The LogFile tag directs where the log file for the run is stored, the number of log files that

can be created before OYSTER round-robins and overwrites the first file, and the allowed

size of the log file. The start and end tag enclose character data that represents the

absolute path to the generated log files.

The LogFile tag has two attributes:

 Num

o Accepts any integer as a value.
o Function:

 Defines the number of log files that can be created for the run.
o Defaults to 10

 Size

o Accepts any integer as a value
 The integer represents the max size of the file in bits. i.e. 100000000

bits ≈ 11.9 megabytes
o Function:

 Defines the max size of each generated log file.
o Defautls to 100000bits

The Absolute path to the log files must contain the _%g as this tells OYSTER where to

include the numeric increment in the name of the log files.

12

1.5 <RunMode> Tag

<RunMode>Mode</RunMode>

The RunMode tag is used to define which mode the OYSTER run is configured to run in.

This dictates what tags should be included in the RunScript for it to validate correctly.

The RunMode tag has no attributes. The start and end tags enclose character data that

represents a valid RunMode. Valid RunModes are:

 MergePurge

 IdentityCapture

 IdentityResolution

 IdentityUpdate

 AssertRefToRef

 AssertRefToStr

 AssertStrToStr

 AssertSplitStr

1.6 <EREngine> Tag

<EREngine Type="RSwooshStandard" />

The EREngine tag is used to define which entity resolution engine should be used for the

defined OYSTER run.

The EREngine tag has one attributes:

 Type

o Acceptable values:
 “RSwooshStandard”

 Tells OYSTER to use the original R-Swoosh engine to perform
ER. Faster than the RSwooshEnhanced engine when a low
percentage of duplicate records are expected to be processed.

 Uses Attribute-Based matching
 “RSwooshEnhanced”

 Tells OYSTER to use an enhanced R-Swoosh engine to perform
ER. Faster than the RSwooshStandard engine when a high
percentage of duplicate records are expected to be processed
across multiple sources.

 Uses Attribute-Based matching
 “FSCluster”

13

 Tells OYSTER to use the Fellegi-Sunter record-linking model to
perform ER. This is not a modification of the R-Swoosh engine.
FSCluster is a completely different method of performing ER
and may produce different results when compared with the
results of RSwooshStandard or RSwooshEnhanced.

 Uses Record-Based matching.

The EREngine tag is completely optional. When left out of the RunScript, OYSTER defaults

to RSwooshStandard as the EREngine.

1.7 <AttributePath> Tag

 <AttributePath>Absolute Path to Attributes.xml file</AttributePath>

The AttributePath tag has no attributes. The start and end tag enclose character data

that represents the absolute path to the OYSTER Attributes script, described in the

OysterAttributes section.

The AttributePath tag and the absolute path to the attributes file are required or the

OYSTER run will produce the error: “##ERROR: Reference Items and

Attributes do not match. “

1.8 <IdentityInput> Tag

The IdentityInput tag specifies where the Identities to be used as input are stored.

These identities are stored in an XML format generated by a previous OYSTER run. The

identities XML can be stored in and read from a text file or a database table.

The IdentityInput tag must have the Type attribute that defines the three possible
formats of this tag.

 Type attribute
o This attribute is required. If it is omitted OYSTER will stop running without

producing any user facing error.
o Acceptable Values:

 “None”

 “TextFile”

 “Database”

14

1.8.1 Type=”None”

 <IdentityInput Type="None" />

When Type is assigned the value of “None” IdentityInput has only the Type
attribute.

The IdentityInput statement cannot be left out of the run script or OYSTER will stop
running once it reaches this section of the run script. To prevent this OYSTER must be
notified that there is no identity input by assigning a Type value of “None”.

1.8.2 Type=”TextFile”

<IdentityInput Type="TextFile">Absolute Path</IdentityInput>

When Type is assigned the value of “TextFile” the IdentityInput tag has only the

Type attribute. The start and end tag enclose character data that represents the absolute

path to the text file containing the XML formatted identities.

1.8.3 Type=”Database”

<IdentityInput Type="Database" Server="123.123.123.123" Port="1433"

SID="PROD" UserID="UserName" Passwd="Password">Table

Name</IdentityInput>

When Type is assigned the value of “Database” the IdentityInput tag may have up

to five additional attributes.

 Type – Must be assigned the value of “Database”

 Server – Must be assigned the address of the database server to be used.
o DNS Name
o IP address

 Port – Must be assigned the port number on which the database server will
respond to requests.

 SID – Must be assigned the name of the database in which the XML identities are
stored on the server.

 UserID – Must be assigned the name of the user with access to the required data.

 Passwd – Must be assigned the password associated to the user given as the values
of the UserID attribute.

The start and end tag enclose character data that represents the table name in which the

identity input can be located.

Please note that when connecting to Microsoft SQLServer or MySQL, the table name must

be fully qualified or OYSTER will produce a connection error. An example of a fully

15

qualified table name is “DatabaseName.dbo.TableName” in SQL Server or

“DatabaseName.TableName” in MySQL.

1.9 <IdentityOutput>Tag

The IdentityOutput tag specifies where the Identities defined during the OYSTER run

will be stored.

The IdentityOutput tag must have the Type attribute that defines the three possible
formats.

 Type attribute
o Acceptable Values:

 “None”

 “TextFile”

 “Database”

1.9.1 Type=”None”

 <IdentityOutput Type="None" />

When Type is assigned the value of “None” IdentityOutput has only the Type
attribute.

The IdentityOutput statement cannot be left out of the run script or OYSTER will stop
running once it reaches this section of the run script. To prevent this OYSTER must be
notified that there is no identity output by assigning a Type value of “None”.

1.9.2 Type=”TextFile”

<IdentityOutput Type="TextFile">Absolute Path</IdentityOutput>

When Type is assigned the value of “TextFile” the IdentityOutput tag has only

the Type attribute. The start and end tag enclose character data that represents the

absolute path to the text file that will be created to contain the XML formatted identities for

the OYSTER run.

1.9.3 Type=”Database”

<IdentityOutput Type="Database" Server="123.123.123.123" Port="1433"

SID="PROD" UserID="UserName" Passwd="Password">Table

Name</IdentityOutput>

16

NOTE: as of OYSTER v3.3 the Output to a DBMS is not implemented but will be supported

in the future with the following implementation.

When Type is assigned the value of “Database” the IdentityOutput tag may have

up to five additional attributes.

 Type – Must be assigned the value of “Database”

 Server – Must be assigned the address of the database server to be used.
o DNS Name
o IP address

 Port – Must be assigned the port number on which the database server will
respond to requests.

 SID – Must be assigned the name of the database in which the XML identities are to
be stored on the server.

 UserID – Must be assigned the name of the user with access to write to the desired
table.

 Passwd – Must be assigned the password associated to the user given as the values

of the UserID attribute.

The start and end tag enclose character data that represents the table name in which the

identity output will be written.

Please note that when connecting to SQLServer 2005 or MySQL, the table name must be

fully qualified or OYSTER will produce a connection error. An example of a fully qualified

table name is “DatabaseName.dbo.TableName” in SQL Server or

“DatabaseName.TableName” in MySQL.

1.10 <LinkOutput> Tag

The LinkOutput tag specifies where the link index created during the OYSTER run will be

stored. A link output is required for every OYSTER run.

The LinkOutput tag must have the Type attribute that defines the two possible formats.

 Type attribute
o Acceptable Values

 “TextFile”

 “Database”

1.10.1 Type=”TextFile”

<LinkOutput Type="TextFile">Absolute Path</LinkOutput>

17

When Type is assigned the value of “TextFile” the LinkOutput tag has only the

Type attribute. The start and end tag enclose character data that represents the absolute

path to the text file that will be created to contain the link index created for the OYSTER

run.

1.10.2 Type=”Database”

<LinkOutput Type="Database" Server="123.123.123.123" Port="1433"

SID="PROD" UserID="UserName" Passwd="Password">Table Name</LinkOutput>

NOTE: As of OYSTER v3.3 the output to a DBMS is not implemented but will be supported

in the future with the following implementation.

When Type is assigned the value of “Database” the LinkOutput tag may have up to

five additional attributes.

 Type – Must be assigned the value of “Database”

 Server – Must be assigned the address of the database server to be used.
o DNS Name
o IP address

 Port – Must be assigned the port number on which the database server will
respond to requests.

 SID – Must be assigned the name of the database in which the link index will be
stored on the server.

 UserID – Must be assigned the name of the user with access to write to the desired
table.

 Passwd – Must be assigned the password associated to the user given as the values
of the UserID attribute.

The start and end tag enclose character data that represents the table name in which the

link index will be written.

Please note that when connecting to SQLServer 2005 or MySQL, the table name must be

fully qualified or OYSTER will produce a connection error. An example of a fully qualified

table name is “DatabaseName.dbo.TableName” in SQL Server or

“DatabaseName.TableName” in MySQL.

1.11 <AssertionInput> Tag

<AssertionInput>Absolute Path to Source Descriptor XML</AssertionInput>

18

The AssertionInput tag has no attributes. The start and end tag enclose character data

that represents the absolute path to the OYSTER SourceDescriptor XML script, described in

the OysterSourceDescriptor section.

This tag is only used when running OYSTER in one of the four assertion modes.

NOTE: Assertion runs can only accept a single source unlike the other OYSTER RunModes.

1.12 <ReferenceSources> Tag

<ReferenceSources>

.

<Source>...</Source>

.

</ReferenceSources>

The ReferenceSources tag has no attributes. The start and end tag enclose a series of

Source tags, discussed in the next section, that are children of the ReferenceSources

tag.

This tag is only used when running OYSTER in one of the four none-assertion modes.

1.13 <Source> Tag

<Source>Absolute Path to Source Descriptor XML</Source>

The Source tag contains no attributes.

The start and end tag enclose character data that represents the absolute path to the

OYSTER SourceDescriptor XML script, described in the OysterSourceDescriptor section.

Multiple Source tags can be included in the RunScript. There should be one Source tag
for every SourceDescriptor defined for the OYSTER run.

This tag is only used when running OYSTER in one of the four none-assertion modes.

2. OysterAttributes

This section describes all the different tags and attributes available in the OysterAttributes

file.

19

2.1 XML Declaration and Comments

All the OYSTER XML documents begin with an XML declaration and a comment section.

The XML declaration is required and must be included exactly as follows:

<?xml version="1.0" encoding="UTF-8"?>

The comments section is optional but should be included in the file. The following is the
suggested format of the comments section:

<!--

 Document : Attributes.xml

 Created on :

 Author :

 Description:

 Purpose of the document follows.

-->

2.2 <OysterAttributes> Tag

<OysterAttributes System="System_Name">

.

<child_elements>...</child_elements>

.

</OysterAttributes>

The OysterAttributes tag has a single attribute.

 System – Assigned the name of the system for which the OYSTER run was
configured. This value is created and defined by the user.

o Has no impact of the outcome of the OYSTER run.
o Possible to completely remove this attribute from the OysterAttributes file

with no impact to the run
.

OysterAttributes is the root element of this file and thus the start and end tag
encloses all other elements in the document. All other elements are considered child
elements to this root element. The OysterAttributes tag can enclose seven tags:

 <Attribute>

 <IdentityRules>

 <Rule>

 <Term>

 <Indices>

 <Index>

 <Segment>

20

2.3 <Attribute> Tag

<Attribute Item="Name" Algo="matchAlgoName" />

The Attributes tag has two attributes.

 Item

o Must be assigned a name of an attribute that is used to define a reference in
the source file.

o The value must match the value assigned to Attribute in the <Item> tag
of the OysterSourceDescriptor file for the same attribute or OYSTER will
produce the error: “##ERROR: Reference Items and Attributes
do not match.”

 Algo

o Assign a pre-defined matching algorithm that is to be used for comparing
attribute values of this type

o Specifying an algorithm is optional, and if it not given or a given name is not
found, then a default matching algorithm is used.

o The default matching algorithm supports many different comparators
which are defined in detail in the <Term> Tag section of this document.

There must be one Attribute statement defined for each distinct Attribute value

defined in the OysterSourceDescriptor file, discussed in the OysterSourceDescriptor section

excluding any attribute assigned an OYSTER reserved word such as @RefID.

2.4 <IdentityRules> Tag

<IdentityRules>

.

<child_elements>...</child_elements>

.

</IdentityRules>

The IdentityRules tag has no attributes. The start and end tag enclose the Rule and
Term tags described in the next two section. The Rule elements are considered child

elements to this element and the Term elements are considered grandchildren of this
element.

2.5 <Rule> Tag

<Rule Ident="rule_name">

.

.

21

<child_elements>...</child_elements>

.

.

</IdentityRules>

The Rule tag has one attribute.

 Ident – assigned value represents a unique name for the matching rule.

The start and end tag enclose the Term tags described in the next section. The Term

elements are considered child elements to this element.

Any number of matching rules can be defined for any given source input and are
determined by the user. Each rule must be provided a unique Ident value.

2.6 <Term> Tag

<Term Item="name" MatchResult="code"/>

The Term tag has up to three attributes.

 Item - Assigned value must correspond to the value of one of the Item attributes

defined in the Attributes section.

 MatchResult – Match codes used to determine equivalence for the Item
o Available default True/False match codes:

 EXACT – used if the two values being compared must be EXACT
matches. This function is case sensitive.

 EXACT_IGNORE_CASE – Functions exactly like Exact except this
version is not case sensitive. Example: “Sam” matches “SAM”

 TRANSPOSE – used to allow for a difference between a source and a
target of 2 adjacent characters in one of the values being in reverse
order. This is case sensitive. Example: Value1 = “12345” and Value2 =
“12435”. In this case OYSTER’s matching algorithm would return
TRANSPOSE.

 INITIAL – used to allow two values being compared to be
equivalent if one value is an initial and it matches the first character of
the other value. This function is case sensitive. Example: Value1 = “J”
and Value2 = “John”. In this case OYSTERs matching algorithm would
return INITIAL.

 NICKNAME – used to allow for two values to be equivalent if both
values can be found in and correspond to one another in the lookup
table (see the alias.dat file). This function is not case sensitive.
Example: Value1 = “Robert” and Value2 = “Bob”. In this case OYSTERs

22

matching algorithm would check the lookup table, find the values are
valid, and return NICKNAME.

 SOUNDEX – used to allow a match if two values produce the same
hashing code according to the Soundex algorithm (a phonetic
algorithm for indexing names by sound, as pronounced in English).
This function is not case sensitive. Example: Using this algorithm, both
"Robert" and "Rupert" return the same hash and OYSTER would
return SOUNDEX when these 2 values are compared.

 DMSOUNDEX – used to allow a match if two values produce the same
hashing code according to the Daitch-Mokotoff Soundex algorithm (a
refinement of the Russell and American Soundex algorithms designed
to allow greater accuracy in matching of Slavic and Yiddish surnames
with similar pronunciation but differences in spelling). This function
is not case sensitive. Example: Using this algorithm, both “Moskowitz”
and “Moskovitz” return the same hash and OYSTER will return
DMSOUNDEX when these 2 values are compared. Note that these 2
values actually produce different hash results using the SOUNDEX
algorithm and would not match.

 IBMALPHACODE – used to allow a match if two values produce the
same hashing code according to the IBM Alpha Code algorithm. This
function is not case sensitive. Example: Using this algorithm, both
“Rodgers” and “Rogers” produce the same hash and OYSTER will
return IBMALPHACODE when these 2 values are compared.

 NYSIIS (New York State Identification and Intelligence System) –
used to allow a match if two values produce the same hashing code
according to the NYSIIS Code algorithm (is a phonetic algorithm
devised in 1970 as part of the New York State Identification and
Intelligence System and features an accuracy increase of 2.7% over
the traditional Soundex algorithm). This function is not case sensitive.
Example: Using this algorithm, both “McKee” and “Mackie” produce
the same hash and OYSTER will return NYSIIS when these 2 values are
compared.

 MATCHRATING – used to allow a match if two values produce a
similar hashing code that is then compared by a similarity algorithm
according to the Western Airlines Match Rating Approach algorithm.
This function is not case sensitive. Example: “Byrne” produces BYRN
and “Boern” produces BRN which both produce a similarity rating of 5
with a minimum rating of 4 meaning that OYSTER will find them to
match and return MATCHRATING.

 CAVERPHONE – this is a phonetic matching hash algorithm similar
to SOUNDEX but is optimized for accents present in the southern part
of New Zealand. Example: Old and Hold both produce a hash value of
AT11111111 so are considered a match.

 METAPHONE – this is a phonetic matching hash algorithm similar to
SOUNDEX that hashes words by their English pronunciation. Example:

23

Franky and Frankie both generate the hash FRNK so they are
considered a match.

o Available default functionalized match codes:
 LED (Levenshtein Edit Distance) – used if wanting to allow for

matches based on a normalized edit distance score when comparing 2
attributes. The LED function is not case sensitive. Default threshold is
0.8 if LED match is used without a threshold assigned. The user
defined threshold take this form: “LED(threshold)” where the
threshold must be between 0 and 1.

 QTR (Q-Gram Tetrahedral Ratio) – Default threshold is 0.25 if QTR
match is used without a threshold assigned. QTR is not case sensitive
and the user defined threshold take the form of:
“QTR(threshold)” where the threshold must fall between 0 and 1.

 SUBSTRLEFT(length) – used to allow a match on 2 values if the
first x characters starting from the left are the same. This is not case
sensitive. Example: SubStrLeft(3) makes “Samual” match “Sam”.

 SUBSTRRIGHT(length) – used to allow a match on 2 values if the
last x characters starting from the right most character are the same.
This is not case sensitive. Example: SubStrRight(4) makes
“JeanAnne” match “Anne”.

 SUBSTRMID(start, length) – used to allow a match on 2
values if the middle characters starting from position x for a specified
length are the same. This is not case sensitive. Example:
SubStrMid(2,6) makes “Krystal” match “Crystalline”.

 SmithWaterman(Match, Mismatch, Gap, Threshold)-

used to find local sequence alignment. Match, Mismatch, and Gap can
be integers of float values. The threshold must be a value between 0
and 1 where 1 indicates an exact match.

 SCAN(Direction, CharType, Length, Casing, Order)

– a new hash algorithm that was created for OYSTER and introduced
in v3.3 along with the UDI. It examines the value string either from
left-to-right or from right-to-left (Direction) searching for the type
of characters specified (CharType). As characters are found they are
extracted to form the hash value until the requested number of
characters (Length) has been found, or until the end of the value
string is encountered. If the number of characters found is less than
the number requested, the hash value is padded with asterisk (*) to
meet the Length request. The Casing and Order parameters designate
operations to be performed on the hash value after the characters
have been extracted. The Casing parameter allows the user to specify
whether the letters in the hash value are to be converted to uppercase
or left as is. The Order parameter allows the user to specify the
reordering of the characters in the hash value.

 Parameters
o Direction

24

 Acceptable Values

 LR – scan string left-to-right

 RL – scan string right-to-left
o CharType

 Acceptable Values
 ALL – extract all characters

 NONBLANK – extract only non-blank
characters

 ALPHA – extract only letter and digit
characters

 LETTER – extract only letters of the
English alphabet

 DIGIT – extract only digits 0-9
o Length

 Acceptable Values
 An integer between 1 and 30

o Casing

 Acceptable Values
 ToUpper – all letters in the hash should

be converted to upper casing.
 KeepCase – all letters in the hash should

keep original casing.
o Order

 Acceptable Values

 SameOrder – keep original order in
which the charecters were extracted.

 L2HKeepDup – reorder the hash
characters from lowest to highest values.
Keep any dup characters.

 L2HDropDup – reorder the hash
characters from lowest to highest values.
Drop any duplicate characters from the
hash.

 Examples: the following table shows some example uses of the
SCAN algorithm.

25

Scan Configuration String Value Hash Value

Scan(LR, ALPHA, 8, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

“123NOAKS”

Scan(RL, ALPHA, 8, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

“AKSTAPT5”

Scan(LR, DIGIT, 6, KeepCase, SameOrder) “123 N. Oak St, Apt
#5”

“1235**”

Scan(RL, DIGIT, 6, KeepCase, SameOrder) “123 N. Oak St, Apt
#5”

“**1235”

Scan(LR, NONBLANK, 20, KeepCase,
SameOrder)

“123 N. Oak St, Apt
#5”

“123N.OakSt,Apt#5****”

Scan(LR, ALL, 10, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

123 N. OAK”

Scan(LR, DIGIT, 9, KeepCase, SameOrder) “412-67-1784” “412671784”

Scan(LR, DIGIT, 9, KeepCase, L2HKeepDup) “412-67-1784” “112446778”

Scan(LR, DIGIT, 9, KeepCase, L2HDropDup) “412-67-1784” “124678***”

Scan(RL, DIGIT, 7, KeepCase, SameOrder) “+501-555-1234” “5551234”

Scan(RL, DIGIT, 7, KeepCase, L2HKeepDup) “+501-555-1234” “1234555”

Scan(RL, DIGIT, 7, KeepCase, L2HDropDup) “+501-555-1234” “**12345”

 CompareTo - When the <Term> element contains the CompareTo attribute, the

<Term> will define a cross-attribute comparison (see section “2.12 Cross-Attribute

Compare (CAC)” for a full example)
o Valid values consist of either be a single OYSTER attribute identifier defined

in the same Attributes script defining the <Term> element or a list of valid
OYSTER attribute identifiers separated with a semi-colon (;)

 e.g. CompareTo=”Item_A; Item_B; Item_C”.
o The combined list of OYSTER attribute identifiers defined by both the Item

and the CompareTo attributes must all be distinct (not repeated).

Multiple Term tags are used to build a single matching rule.

The <Term> element of an identity rule must enclose only one of the following
combinations of attributes

1. Item and MatchResult
2. Item, MatchResult, CompareTo

 OYSTERs default matching algorithm supports the above matching codes but this can be

extended by the user by extending the base class OysterComparator.java as a new class

with a name starting with “OysterCompare” and implementing the method String:

getMatchCode(String, String).

26

2.7 <Indices> Tag

<Indices>

.

<child_elements>...</child_elements>

.

</Indices>

The Indices tag has no attributes. The start and end tag enclose the Index and Segment
tags described in the next two section. The Index elements are considered child elements
to this element and the Segment elements are considered grandchildren of this element.

2.8 <Index> Tag

<Index Ident=”ID”>

.

<child_elements>...</child_elements>

.

</Index>

The Index tag has one attribute.

 Ident – assigned value represents a unique name for the Index being defined.

The start and end tag enclose the Segment tags described in the next section. The

Segment elements are considered child elements to this element.

Any number of Indexes can be defined for any given run and are defined by the user. Each
Index must be provided a unique Ident value.

2.9 <Segment> Tag

<Segment Item="Name" Hash="Hash " />

The Segment tag has two attributes.

 Item

o The value must be a valid OYSTER attribute defined by an <Attribute>
element in the same OysterAttribute script containing the <Index> element.

 Hash

o The value must be a valid Index Hash algorithm defined by an OYSTER Utility
Class.

 Scan

27

 Soundex

 DMSoundex

 IBMAlphaCode

 NYSIIS

o The Hash algorithm designated by the value of a Hash attribute will
transform the values of the attribute identified by the Item attribute of the
same <Segment> element into a fixed-length character string according to
the hash algorithm.

Note that the final index value produced by an <Index> statement will be a concatenation

of the individual hash values produced that are defined by each <Segment> element. The
hash values will be concatenated in the same order as <Segment> elements occur in the

<Index> statement.

Each <Segment> element must have an Item attribute and a Hash attribute or OYSTER
will generate an error.

2.10 User Defined Index (UDI) Example

The following is an example of how to build two custom indices:

<Indices>

<Index Ident="X1">

<Segment Item="FirstName" Hash="Soundex"/>

<Segment Item="LastName" Hash="Scan(LR, LETTER, 7, Y,

SameOrder)” />

<Segment Item="HomePhone" Hash="Scan(RL, DIGIT, 7, N,

SameOrder)" />

</Index>

<Index Ident="X2">

<Segment Item="LastName" Hash="NYSIIS(6)"/>

<Segment Item="SchoolCode" Hash="Scan(LR, ALPHA, 6, Y, Same)" />

<Segment Item="SocialSecNbr" Hash=”Scan(LR, DIGIT, 9, N,

L2HKeepDup)" />

</Index>

</Indices>

The example shows the instructions for creating two indices “X1” and “X2”. Both indices

are created by hashing three attributes. For a detailed explanation of the principals

involved with designing properly aligned UDI, see section “VII. OYSTER User-Defined

Inverted Index” on page 70 of this Reference Guide.

2.11 Scan Hash Function

The Scan function is a new hash algorithm that was created for OYSTER and introduced in
v3.3 to complement the new UDI functionality (discussed in the previous few sections). The
algorithm examines the string value either from left-to-right or from right-to-left
(Direction), depending on which is specified, searching for the type of characters

28

specified (CharType). As valid characters that match the CharType are found they are

extracted to form the hash value until the requested number of characters (Length) has
been found, or until the end of the value string is encountered. If the number of characters
found is less than the number requested, the hash value is either left or right padded with
asterisk (*), depending on the specified Direction, to meet the Length request. The
algorithm also accepts Casing and Order parameters to designate operations to be
performed on the hash value after the characters have been extracted. The Casing
parameter allows the user to specify whether the letters in the hash value are to be
converted to uppercase or left as is. The Order parameter allows the user to specify the
reordering of the characters in the hash value. The syntax of the Scan algorithm is as
follows:

SCAN(Direction, CharType, Length, Casing, Order)

As described above, the scan algorithm has the following five (5) parameters:

 Parameters
o Direction

 Acceptable Values

 LR – scan string left-to-right

 RL – scan string right-to-left
o CharType

 Acceptable Values
 ALL – extract all characters

 NONBLANK – extract only non-blank characters

 ALPHA – extract only letter and digit characters

 LETTER – extract only letters of the English alphabet
o DIGIT – extract only digits 0-9

o Length

 Acceptable Values
 An integer between 1 and 30

o Casing

 Acceptable Values
 ToUpper – all letters in the hash should be converted to upper

casing.
 KeepCase – all letters in the hash should keep original casing.

o Order

 Acceptable Values
 SameOrder – keep original order in which the characters

were extracted.
 L2HKeepDup – reorder the hash characters from lowest to

highest values. Keep any dup characters.
 L2HDropDup – reorder the hash characters from lowest to

highest values. Drop any duplicate characters from the hash.

29

Examples: the Table 1 shows some example uses of the SCAN algorithm along with how the
various options affect the produced Hash value.

Table 1: Scan Algorithm Examples

Scan Configuration String Value Hash Value

Scan(LR, ALPHA, 8, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

“123NOAKS”

Scan(RL, ALPHA, 8, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

“AKSTAPT5”

Scan(LR, DIGIT, 6, KeepCase, SameOrder) “123 N. Oak St, Apt
#5”

“1235**”

Scan(RL, DIGIT, 6, KeepCase, SameOrder) “123 N. Oak St, Apt
#5”

“**1235”

Scan(LR, NONBLANK, 20, KeepCase,
SameOrder)

“123 N. Oak St, Apt
#5”

“123N.OakSt,Apt#5****”

Scan(LR, ALL, 10, ToUpper, SameOrder) “123 N. Oak St, Apt
#5”

123 N. OAK”

Scan(LR, DIGIT, 9, KeepCase, SameOrder) “412-67-1784” “412671784”

Scan(LR, DIGIT, 9, KeepCase, L2HKeepDup) “412-67-1784” “112446778”

Scan(LR, DIGIT, 9, KeepCase, L2HDropDup) “412-67-1784” “124678***”

Scan(RL, DIGIT, 7, KeepCase, SameOrder) “+501-555-1234” “5551234”

Scan(RL, DIGIT, 7, KeepCase, L2HKeepDup) “+501-555-1234” “1234555”

Scan(RL, DIGIT, 7, KeepCase, L2HDropDup) “+501-555-1234” “**12345”

2.12 Cross-Attribute Compare (CAC)

OYSTER provides the functionality for the match rules to compare values between

references that are logically stored different attributes. This is known as Cross-Attribute

Compare. This functionality is best shown in the below example.

Suppose that two valid references are provided in Table 2:

Table 2: Valid References for CAC

 FName LName SSN LEA
Ref1 Bill Doe 123456789 K45
Ref2 Doe William (null) 123456789

Ref1 represents the Input Reference and Ref2 is the Candidate Reference.

If the cross-attribute comparison rule is given as:

<Rule Ident=”1”>

 <Term> Item=”FName” CompareTo=”LName” MatchResult=”Nickname” />

 <Term> Item=”LName” CompareTo=”FName” MatchResult=”Exact” />

 <Term> Item=”LEA” CompareTo=”SSN” MatchResult=”Exact” />

30

</Rule>

Based on these rules, the two references would be found to match.

31

3. OysterSourceDescriptor

This section describes all the different tags and attributes available in the

OysterSourceDescriptor.

3.1 XML Declaration and Comments

All the OYSTER XML documents begin with an XML declaration and a comment section.

The XML declaration is required and must be included exactly as follows:

<?xml version="1.0" encoding="UTF-8"?>

The comments section is optional but should be included in the file. The following is the
suggested format of the comments section:

<!--

 Document : SourceDescriptor.xml

 Created on :

 Author :

 Description:

 Purpose of the document follows.

-->

3.2 <OysterSourceDescriptor> Tag

<OysterSourceDescriptor Name="source name">

 .

<child_elements>...</child_elements>

.

</OysterSourceDescriptor>

The OysterSourceDescriptor tag has a single attribute.

 Name

o Should be assigned a unique value that identifies the source described in the
OysterSourceDescriptor.

o A unique Name value must be set in each OysterSourceDescriptor for each
source to be used in the OYSTER run.

o When performing Identity Resolution or Identity Update, the Name value
must be different from the name values used on any of the previous runs that
contributed to the identity input file.

o This attribute is used in both the link output and the identity output files to
specify which source an identity originated from.

This is the root element and thus the start and end tag encloses all other elements in the
document. All other elements are considered child elements to this root element. The

32

OysterSourceDescriptor tag can enclose three tags:

 <Source>

 <ReferenceItems>

 <Item>

3.3 <Source> Tag

The Source tag defines the type of source and all the connection information required for

the source. There must be exactly one source defined via the Source tag in every

OysterSourceDescriptor XML file.

The Source tag can define connections to sources stored in three different formats which
are defined by the value of the Type attribute.

 Type

o Acceptable Values
 “FileDelim”

 “FileFixed”

 “Database”

3.3.1 Type=”FileDelim”

<Source Type="FileDelim" Char="|" Qual="" Labels="Y">Absolute

Path</Source>

The Source tag has four attributes, including the Type attribute, when Type is assigned

the value of “FileDelim”.

 Type – must be assigned the value of “FileDelim”

 Char – the value assigned must identify the character used as the delimiter for the
attributes that form a reference in the source file.

o Special characters used as delimiters:
 Tab – specified as “\t”, “[t]”, or “\u0008”
 Quotation – specified as “"”

 Qual – the value assigned must identify the character used to qualify attributes in
the source file.

 Labels – identifies if the source file contains labels as the first line of the
document.

o Acceptable Values
 “Y” – Causes OYSTER to ignore the first line in the source file.
 “N” – Causes OYSTER to include the first line in the source file.

33

The start and end tag enclose character data that represents the absolute path to the
delimited text file that contains the source data.

3.3.2 Type=”FileFixed”

<Source Type="FileFixed">Absolute Path</Source>

The Source tag has no additional attributes when the Type attribute is assigned the value

of “FileFixed”.

The start and end tag enclose character data that represents the absolute path to the fixed
width text file that contains the source data.

3.3.3 Type=”Database”

When the Type attribute is assigned the value “Database” there is three different

formats available for the Source tag.

3.3.3a ODBC Connections

<Source Type="Database" SID="Database_Name" UserID="User" Passwd="Pass"

CType="odbc">Table Name</Source>

The Source tags that define ODBC connections have either three or five attributes
including the Type attribute.

 Type – Must be assigned the value of “Database”

 SID – Must be assigned the name of the database in which the source data is stored
on the server.

 UserID – Must be assigned the name of the user with access to write to the desired
table.

o Optional - Only required if the UserID and Password are not defined during
the creation of the actual ODBC connection

 Passwd – Must be assigned the password associated to the user given as the values
of the UserID attribute.

o Optional - Only required if the UserID and Password are not defined during
the creation of the actual ODBC connection

 CType – Must be assigned the value of “odbc”

The start and end tag enclose character data that represents the name of the table that
contains the source data.

34

3.3.3b Standard Database Connections

<Source Type="Database" Server="123.123.123.123" Port="####"

SID="Database_Name" UserID="User" Passwd="Pass"

CType="Type_of_Database">Table Name</Source>

The Source tags that define standard database connections have seven attributes
including the Type attribute.

 Type – Must be assigned the value of “Database”

 Server – Must be assigned the address of the database server to be used.
o DNS Name
o IP address

 Port – Must be assigned the port number on which the database server will
respond to requests.

 SID – Must be assigned the name of the database in which the source data is stored
on the server.

 UserID – Must be assigned the name of the user with access to the desired table.

 Passwd – Must be assigned the password associated to the user given as the value
of the UserID attribute.

 CType – Value is based on the type of database to which a connection is being made.
o Possible values

 “mysql”

 “oracle”

 “postgresql”

 “sqlserver”

The start and end tag enclose character data that represents the table name in which the

source data is located. This character data must represent a fully qualified table name. An

example of a fully qualified table name is “DatabaseName.dbo.TableName” in SQL

Server or “DatabaseName.TableName” in MySQL.

3.4 <ReferenceItems> Tag

<ReferenceItems>

.

<child_elements>...</child_elements>

.

</ReferenceItems>

The ReferenceItems tag has no attributes. The start and end tag enclose the Item tags
described in the next section. The Item elements are considered child elements to this
element.

35

3.5 <Item> Tag

The Item tags are used to define each attribute of the source data. There must be one

defined Item tag for each attribute used to define a reference located in the source data

including one for the reference identifier.

The Item tag has three different formats. These formats are directed by the value assigned

to the Type attribute discussed previously in the <Source> Tag section.

3.5.1 Delimited Text Items

<Item Name="item 1" Attribute="RID" Pos="0"/>

The Item tag has three attributes when defining an attribute in a delimited text file.

 Name – User defined value that names the attribute

 Attribute - values must correspond directly to the Item values in the
OysterAttributes.xml file

o OYSTER Keywords
 @RefID - is used to inform OYSTER what field in the data is the

unique keyed field
 NOTE: All RefIDs in the source file MUST be unique.

 @Skip - is used to skip data that may appear in the file but will not be
used for integration.

 @AssertRefToRef – is used when performing a Reference to
Reference assertion run. This keyword implies that the input
references which have same value of @AssertRefToRef must be
grouped together to a new output identity with a new OYSTER ID

 Example:

 @AssertRefToStr – is used when performing a Reference to
Structure assertion run. This keyword informs OYSTER that the
reference should be merged into the structure that matches the

S1.R1, S1.R2, S1.R3}
RefID, FN, LN, Address, @AssertRefToRef

S1. R1, Mary, Smith, 3 Pine St, 1

S1. R2, Mary, Smith, 1 Oak St, 1

S1. R3, Mary, Jones, 2 9th St, 1

S1. R4, Rose, Smith, 3 Pine St, 2

S1. R5, Rose, Smith, 1 Oak St, 2

…

Create

Create

Input references:

S1

New OISs

Structure 1: “ABCDEFGH”

Structure 2: “XYZWQPJD”

{S1.R1, S1.R2, S1.R3}

{S1.R4, S1.R5}

36

OYSTER ID identified by the @AssertRefToStr tag. OYSTER will
ignore all defined rules.

 Example:

 @OID – Identifies valid OYSTER IDs in an input file that will, when
used in conjunction with @AsserStrToStr, cause the OYSTER IDs
to consolidate into a single OYSTER ID.

 @AssertStrToStr – is used when performing a Structure to
Structure assertion run. This keyword informs OYSTER that it should
ignore all defined rules and force matches on structures (Previously
resolved Identities) that have been assigned like numbers for this
attribute.

 Must be used in conjunction with @OID

 Example:

RefID, FN, LN, Address, @AssertRefToStr

R1, Mary, Jones, 1 Maple St., ABCDEFGH

R2, John, Doe, 2 Elm St., ABCDEFGH

…

Input references:

S2

Identity Input

Identity Output

Add

Structure: “ABCDEFGH”

Structure: “ABCDEFGH”

Update

{S1.R1, S1.R2, S2.R1,

 S2.R2}

 {S1.R1, S1.R2}

37

 @RID - The value of @RID must be a valid reference ID in an
existing OYSTER identity structure. The Reference IDs of @RID which
have same value of @AssertSplitStr must be split from original
identity into a new OYSTER identity with a new OYSTER ID.

 @AssertSplitStr – is used when performing a Split Structure
assertion run. This keyword informs OYSTER that it should ignore all
defined rules and force a split on structures that have been assigned
like numbers for this attribute.

 Must be used in conjunction with @RID

 Example:

RefID,@OID, @AssertStrToStr

R1, ABCDEFGH, 1

R2, XYZWQPJD, 1

…

Input OIDs
Output

Identity

…

<Identities>

…

 <Identity Identifier="ABCDEFGH" CDate="2011-09-11">

 <References>

 <Reference Value="A^S1.R1|…"/>

 <Reference Value="A^S1.R2|…"/>

 <Reference Value="A^S1.R3|…"/>

 </References>

 </Identity>

 <Identity Identifier="XYZWQPJD" CDate="2011-09-11">

 <References>

 <Reference Value="A^S1.R4|…"/>

 <Reference Value="A^S1.R5|…"/>

 </References>

 </Identity>

…

</Identities>

…

…

<Identities>

…

 <Identity Identifier="ABCDEFGH" CDate="2011-09-14">

<StrToStr>

 <OID>XYZWQPJD</OID>

</StrToStr>

 <References>

 <Reference Value="A^S1.R1|…"/>

 <Reference Value="A^S1.R2|…"/>

 <Reference Value="A^S1.R3|…"/>

 <Reference Value="A^S1.R4|…"/>

 <Reference Value="A^S1.R5|…"/>

 </References>

 </Identity>

…

</Identities>

…

38

 Pos - value is used to specify the location of the item in the source file
o Pos counting starts from the left most delimited attribute.
o Pos numbering starts at 0

3.5.2 Fixed Width Items

<Item Name="item 2" Attribute="Attr 1" Start="10" End="11"/>

The Item tag has four attributes when defining an attribute in a fixed width text file.

 Name - User defined value that names the attribute

 Attribute - values must correspond directly to the Item values in the
OysterAttributes.xml file

o See previous section for full list of OYSTER Keywords
 Start - used to specify the location of the first character in the fixed width item in

the source file
 End - used to specify the location of the last character in the fixed width item in the

source file

RefID,@RID, @AssertSplitStr

R1, S1.R3, 1

R2, S1.R4, 1

R3, S1.R5, 2

…

Split OIS

Assertion Input

…

<Identities>

…

 <Identity Identifier="ABCDEFGH"

CDate="2011-09-14">

 <References>

 <Reference Value="A^S1.R1|…"/>

 <Reference Value="A^S1.R2|…"/>

 <Reference Value="A^S1.R3|…"/>

 <Reference Value="A^S1.R4|…"/>

 <Reference Value="A^S1.R5|…"/>

 </References>

 </Identity>

…

</Identities>

…

…

<Identities>

…

 <Identity Identifier="ABCDEFGH" CDate="2011-09-14">

 <NegStrStr>

 <OID>XYZWQPJD</OID>

 <OID>NJUHJJKKK</OID>

 </NegStrStr>

 <References>

 <Reference Value="A^S1.R1|…"/>

 <Reference Value="A^S1.R2|…"/>

</References>

 </Identity>

…

</Identities>

…

…

<Identities>

…

 <Identity Identifier="XYZWQPJD" CDate="2011-09-14">

 <NegStrStr>

 <OID>ABCDEFGH</OID>

<OID>NJUHJJKKK</OID>

 </NegStrStr>

 <References>

 <Reference Value="A^S1.R3|…"/>

 <Reference Value="A^S1.R4|…"/>

</References>

 </Identity>

…

</Identities>

Identity Input

…

<Identities>

…

 <Identity Identifier="NJUHJJKKK" CDate="2011-09-14">

 <NegStrStr>

 <OID>XYZWQPJD</OID>

 <OID>ABCDEFGH</OID>

 </NegStrStr>

 <References>

 <Reference Value="A^S1.R5|…"/>

</References>

 </Identity>

…

</Identities>

…

39

3.5.3 Database Items

<Item Name="item 3" Attribute="Attr 2" />

The Item tag has two attributes when defining an attribute in a database table.

 Name

o Must be assigned a value equal to the column name in the table in which the
attribute is stored

o Used to build the SQL Select statement used by OYSTER to fetch the
references from the source database.

o Used in the Matching Rules section when building the rules
 Attribute - value must correspond directly to the corresponding Item value in

the OysterAttributes.xml file.
o See previous section for full list of OYSTER Keywords

40

III. Attribute-Based vs. Record-Based Matching for Identities

There are two types of matching that can be done when matching records in an input

source against a previously defined Knowledge Base (KB).

 Attribute-Based Matching - when the matching depends on any combination of
attributes from any records contained in a single identity.

 Record-Based Matching - when the matching depends completely on the attributes
in a single record contained in a single identity.

1. Example

This example illustrates how matching is done via Attribute-Based and Record-Based. The

sample input records are:

1|Sam|Jacobs|05071982|SC11

2|Samual|Jacobs|05071982|SC21

The example identity that has already been defined is:

<Identity Identifier="VUKPECCU0KHBJUDO" CDate="2011-06-14">

 <References>

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

 </References>

</Identity>

The match rules used to determine a match state that first name, last name, and school
code (SC##) must match exactly.

1.1 Attribute-Based

As defined above, Attribute-Based matching depends on any combination of attributes

from any records contained in a previously defined identity. This means that the first name,

last name, and school code attribute for each record in the source must have a matching

attribute in any record in the identity it is being compared against.

This is how the matching takes place:

1. Record “1|Sam|Jacobs|05071982|SC11” is selected.
2. The first name, last name and school code are noted:

41

a. Sam, Jacobs, SC11
3. All records are selected from the identity:

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

4. The first name, last name, and school code are noted:
a. Sam & Samual, Jacobs, SC21 & SC11

5. The attributes from the source and the identity record are compared
a. Does Sam = Sam or Samual?

i. Yes
b. Does Jacobs = Jacobs?

i. Yes
c. Does SC11 = SC21 or SC11?

i. Yes
6. Since all the matching rules are satisfied, it is determined that the source record is a

match and it is now part of the identity.
7. The new identity would look like this:

<Identity Identifier="VUKPECCU0KHBJUDO" CDate="2011-06-14">

 <References>

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source2.1|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 </References>

</Identity>

8. Once the first record is matched, the process aborts for this identity and selects the
next source record:

a. 2|Samual|Jacobs|05071982|SC21

9. If you apply the same process to this source record you will see that it too matches
and is part of the identity.

10. The final identity structure looks like:

<Identity Identifier="VUKPECCU0KHBJUDO" CDate="2011-06-14">

 <References>

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source2.1|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source2.2|B^Samual|C^Jacobs|D^05071982|E^SC21"/>

 </References>

</Identity>

1.2 Record-Based

As defined above, Record-Based matching is depended on all the attributes in each

individual record of the previously defined identity. This means that the first name, last

42

name, and school code attribute for each record in the source must have an exactly

matching record in the identity it is being compared against.

This is how the matching takes place:

1. Record “1|Sam|Jacobs|05071982|SC11” is selected.
2. The first name, last name and school code are noted:

a. Sam, Jacobs, SC11
3. Record "A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21” is selected from the

identity.
4. The first name, last name, and school code are noted:

a. Sam, Jacobs, SC21
5. The attributes from the source and the identity record are compared

a. Does Sam = Sam?
i. Yes

b. Does Jacobs = Jacobs?
i. Yes

c. Does SC11 = SC21?
i. No

6. Since all 3 attributes do not match this record from the identity is discarded and the
next record from the identity is selected:

a. A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>
7. The attributes from the source and the identity record are compared

a. Does Sam = Sam?
i. Yes

b. Does Jacobs = Jacobs?
i. Yes

c. Does SC11 = SC11?
i. Yes

8. Since all the matching rules are satisfied, it is determined that the source record is a
match and it is now part of the identity.

9. The new identity would look like this:

<Identity Identifier="VUKPECCU0KHBJUDO" CDate="2011-06-14">

 <References>

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source2.1|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 </References>

</Identity>

10. Once the first record is matched, the process aborts for this identity and selects the
next source record:

a. 2|Samual|Jacobs|05071982|SC21

43

11. If you apply the same process to this source record you will see that
the records do not match so a new identity will be created. The final

identities will look like this:

<Identity Identifier="VUKPECCU0KHBJUDO" CDate="2011-06-14">

 <References>

 <Reference Value="A^source1.3|B^Sam|C^Jacobs|D^05071983|E^SC21"/>

 <Reference Value="A^source1.4|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source1.5|B^Samual|C^Jacobs|D^05071982|E^SC11"/>

 <Reference Value="A^source2.1|B^Sam|C^Jacobs|D^05071982|E^SC11"/>

 </References>

</Identity>

<Identity Identifier="SUGPQC4UBKPBAU9O" CDate="2011-06-14">

 <References>

 <Reference Value="A^source2.2|B^Samual|C^Jacobs|D^05071982|E^SC21"/>

 </References>

</Identity>

Please note that the Record-Based matching will produce fewer consolidations in general

but requires less processing and memory which speeds up the overall processing time.

44

IV. Reference Sources

Appendix B shows the modified SourceDescriptor that is required for each of the four

examples in this document to be run against a fixed width text file instead of the delimited

text files that were used in the main body.

For OYSTER to use different types of sources as input only the SourceDescriptor file needs

to be modified. This is due to the fact that the connection string for the data source is

defined inside of the SourceDescriptor along with the fields used for attributes that are

stored in the defined source.

1. Example from Text Files

This section defines example OysterSourceDescriptor files that can be used to read

reference sources that are store in text files.

1.1 From Delimited Files

Figure 1 illustrates a pipe (|) delimited text file that can be used as input for an OYSTER

run. Any text character can be used as the delaminating character so long as it is specifically

defined in the SourceDescriptor.

Figure 1: Delimited Text Input

The SourceDescriptor illustrated in Figure 2 can be used in an OYSTER run if the input

source is stored in a delimited text file like the one shown in Figure 1.

45

Figure 2: Source Descriptor for a Delimited Text File

1.2 From Fixed Width Files

Figure 3 illustrates a fixed width text file that can be used as input for an OYSTER run.

Figure 3: Fixed Width Text Input

The SourceDescriptor illustrated in Figure 4 can be used in an OYSTER run if the input

source is stored in a fixed width text file like the one shown in Figure 3.

46

Figure 4: Source Descriptor for a Fixed Width Text File

2. Example from Database Tables

This section defines example OysterSourceDescriptor files that can be used to read

reference sources that are store in various database tables. OYSTER can connect to data

base tables through ODBC connections and also has the functionality to allow for

connection strings to be defined inside the SourceDescriptor file to form direct connections

to other DBMSs.

2.1 From Open Database Connectivity (ODBC)

OYSTER has the ability to make use of existing ODBC connections to read reference sources

from tables stored in databases systems that can be connected to via ODBC; Microsoft

Access is one such database system.

2.1.1 Creating ODBC Connections

ODBC connections are simple to create with Windows XP or a newer Windows OS. The

following instructions will guide you through creating an ODBC connection to an Access

Database that can be used as an OYSTER source.

1. Open your control panel: Click on Start, then click on Control Panel.

47

2. Next, double click on the Administrative Tools icon.

3. Then, double click on the Data Sources (ODBC) icon.

4. In the ODBC Data Source Administrator Window, click on the ADD button on the
right side of the screen.

5. In the Create New Data Source window, scroll the list and click on Microsoft Access
Driver (*.mdb, *.accdb)

6. Click Finish

7. In the ODBC Microsoft Access Setup window, enter OYSTER in the Data Source
Name field.

8. In the Database section click Select.

9. Browse to the folder in which your OYSTER source database is located and select
the Access Database file from the list.

10. Click OK for each Window until all windows are closed. The ODBC connection is now
set up.

ODBC can be used to create connection too many different types of data sources. For more

information about ODBC connections please refer to this Microsoft knowledge base article:

http://support.microsoft.com/kb/110093.

http://support.microsoft.com/kb/110093

48

2.1.2 Example from ODBC

The SourceDescriptor illustrated in Figure 5 can be used by OYSTER if the input source is

stored in a database, such as Microsoft Access, in which an ODBC connection has been

established.

Figure 5: Source Descriptor for accessing an Access DB Table

49

2.2 From MySQL

The SourceDescriptor illustrated in Figure 6 can be used by OYSTER if the input source is

stored in a MySQL server database table.

Figure 6: Source Descriptor for accessing a MySQL DB Table

50

2.3 From Microsoft SQLServer

The SourceDescriptor illustrated in Figure 7 can be used by OYSTER if the input source is

stored in a Microsoft SQLServer Database table.

Figure 7: Source Descriptor for accessing SQL Server Table

51

V. Outputs

1. Identity Document

The Identity document is an Output generated by OYSTER when a user defines a type and

location for the <IdentityOutput> tag of the RunScript, discussed in section “1.9

<IdentityOutput>Tag” of this document.

This section describes the different tags and attributes generated by OYSTER for the

Identity output document when the Identities discovered during an OYSTER run are saved.

1.1 <root> Tag

<root>

.

.

<child_elements>...</child_elements>

.

.

</root>

The <root> tag has no generated attributes. This is the root element and thus the start and
end tag encloses all other elements generated for the document. All other elements are
considered child elements to this root element. The root tag will enclose 12 tags:

 <Metadata>

 <Modifications>

 <Modification>

 <Attributes>

 <Attribute>

 <Identities>

 <Identity>

 <References>

 <Reference>

 <Value>

 <Traces>

 <Trace>

1.2 <Metadata> Tag

<Metadata>

.

<child_elements>...</child_elements>

52

.

</Metadata>

The Metadata tag has no generated attributes. The start and end tags enclose the
Modifications, Modification, Attributes, and Attribute tags, discussed in
the next sections, which are children of the Metadata tag.

The Metadata tag occurs only once in an Identity output document and is located as the

top section of the file above the defined identities.

1.2.1 <Modifications> Tag

< Modifications>

.

<child_elements>...</child_elements>

.

</Modifications>

The Modifications tag has no generated attributes. The start and end tags enclose a
series of Modification tags, discussed in the next section, that are children of the
Modification tag.

There will be a single Modifications tag generated by OYSTER in each Identity output

file. This tag represents a history of all the runs that were performed to create the identity

file up to and including the current run.

1.2.1.1 <Modification> Tag

<Modification ID=”1” OysterVersion="3.3" Date="2012-08-24 19.21.30"

RunScript="RunScriptName" />

The Modification tag has four generated attributes.

 ID

o This is a sequential number generated and assigned to each new Modification
tag that is inserted into the Run Script

 OysterVersion

o OYSTER derives this value from the version number embedded in the current
OYSTER executable.

 Date

o This is the date in which the Identity Output file was last updated.
 RunScript

o This is the file name of the RunScript without the .xml extension.
o Used to allow users to track run history.

A new Modification tag is generated each time OYSTER updates the Identity Output file

53

through and IdentityUpdate run. The multiple Modification tags can be used to help

back track where records in an identity came from originally.

1.2.2 <Attributes> Tag

< Attributes>

.

<child_elements>...</child_elements>

.

</Attributes>

The Attributes tag has no generated attributes. The start and end tags enclose a series
of Attribute tags, discussed in the next section, that are children of the Attributes
tag.

There will be a single Attributes tag generated by OYSTER in each Identity output file.

This tag represents the Attributes used for every Identity tag defined by OYSTER.

1.2.2.1 <Attribute> Tag

<Attribute Name=”value” Tag=”value”/>

The Attribute tag has two generated attributes.

 Name
o OYSTER derives this value from the Attribute value assigned by the user

in the <Item> tag of the source descriptor.

 Tag
o Unique value assigned to each attribute by OYSTER to allow for clearly

defined relations to the reference assigned to the Value attribute of the
<Reference> Tags, discussed in a following section, that make up this
identity.

There will be one corresponding Attribute tag generated by OYSTER in the Identity

output file for every unique value assigned to the Item tag in the Attributes file by the user.

1.3 <Identities> Tag

<Identities>

.

<child_elements>...</child_elements>

.

</Identities>

54

The Identities tag has no generated attributes. The start and end tags enclose a series

of Identity tags, discussed in the next section, that are children of the Identities tag.

There will be a single Identities tag generated by OYSTER in each Identity output file.

This tag encloses all the identified identities defined by the Identity tag discussed in the

next section.

1.3.1 <Identity> Tag

< Identity Identifier="Unique_Oyster_gernerated_ID" CDate=”Date”>

.

<child_elements>...</child_elements>

.

</Identity>

The Identity tag contains two attributes. The start and end tag enclose a series of

Attribute tags, discussed in the next section, that are children of the Identity tag.

 Identifier
o OYSTER assigns this attribute the value of a uniquely generated OYSTER ID.
o This ID is created to uniquely define the real world entity in which the child

Attributes and References tags define.

 CDate

o Denotes the date in which the identity was added to the .idty file.
o Can be used in conjunction with the Modification tags to help backtrack

where the identities originated from.

One Identity element will be defined for every unique real-world entity (cluster)

discovered by the OYSTER runs.

1.3.2 <References> Tag

< References>

.

<child_elements>...</child_elements>

.

</References>

The References tag has no generated attributes. The start and end tags enclose a series
of Reference tags, discussed in the next section, that are children of the References
tag.

55

There will be one corresponding References tag generated by OYSTER in the Identity

output file for every unique Identity tag defined by OYSTER.

1.3.2.1 <Reference> Tag

< Reference>

.

<child_elements>...</child_elements>

.

</Reference>

The Reference tag has no generated attributes. The start and end tags enclose a series of

Value tags, discussed in the next section, that are children of the Reference tag.

There will be one corresponding Reference tag generated by OYSTER in the Identity

output file for every input source reference processed by OYSTER.

1.3.2.1.1 <Value> Tag

<Value>A^AttributeValue1|B^AttributeValue2|…<Value/>

The Value tag has one no generated attributes. This tag contains all the attribute values
that make up a reference. Each attribute is pipe (|) delimited and each attribute has a
corresponding identifier concatenated to the front of the value that directly relates the part
of the Value to an Attribute Tag through the Tag attribute.

 Example "A^ source1.2|B^Joe|C^6/4/1980|D^L902|E^010-94-8189"

There will be one corresponding Value tag generated by OYSTER in the Identity output

file for every source reference that composes the identified cluster.

1.4 Example

OYSTER is designed to analyze every reference in a provided source and consolidate the

unique values of the attributes into a unique identity that is discovered using the matching

rules defined for the OYSTER run. Each discovered identity is stored using the tags

discussed above. An Identity document generated by an OYSTER run is illustrated in Figure

8.

56

Figure 8: Example Identity Document

2. Link Index

The link index file is a file that is generated by OYSTER for every OYSTER run. This file

defines the clusters by assigning each input reference a link value so that references found

by OYSTER to identify the same real-world entity belong to same cluster.

This file contains three pieces of information for each reference processed during the

OYSTER RUN.

 RefID – Identifies the reference by combining the source name and the reference
ID of the reference.

o The source name is defined by the user through the Name attribute of the
OysterSourceDescriptor tag discussed in section “3.2

<OysterSourceDescriptor> Tag” of this document.
o The reference ID of the reference is defined by the user through assigning the

@RefID keyword to an Attribute attribute of an Item tag discussed in
section 3.5 <Item> Tag of this document.

 OysterID – this is the unique link value defined by OYSTER and is used to identity
references that belong to the same cluster.

o Each cluster of references define the same real-world identity
o The same OysterID is assigned to each member of a cluster.

 Rule – This identifies which rules were used when matching this reference to other
references.

o Rules are assigned unique identifiers by the user through the Ident
attribute of the Rule tag discussed in section 2.5 <Rule> Tag of this
document.

o A record may have more than one rule listed if they were matched on more
than one rule.

57

o A rule of “null” will be listed if no matches were found for the record.

An example Link Index is illustrated in Figure 9. This link Index defines three clusters,
{source1.1, source1.3, source1.5}, {source1.2, source1.4}, and
{source1.6} with cluster identifier (link) values of QN5Y16P5HK5JX6FA,
ZKCZ2FFW4R6RICUV, and E255F96M3COGM323 respectively.

Figure 9: Example Link index

3. Identity Change Report

The Identity Change Report.txt file is created during every OYSTER run. It is stored in the

directory specified for the output link index or .idty file. This file provides details pertaining

to updates, merges, and new identity creations that took place during the run. It also

provides information as to the number of input identities and output identities. The level of

detail provided in this output document can be specified by setting the value of the

“ChangeReportDetail” attribute to “On” or “Off” (see section 1.3 <Settings>

Tag)

It is important to mention that due to how the RSwoosh and FSCluster engines in OYSTER

were initially designed to handle matching internally, the change reports may be different

when running the same records on different engines. FSCluster identifies some merges as

updates since the update status takes precedence over merge internally whereas RSwoosh

will identify the same consolidation as a merge. This is to be expected in OYSTER v3.2 and

the initial release of OYSTER v3.3 but will be updated in the final release of OYSTER v3.3

such that the Change report matches between all engines.

3.1 Sections

The Identity Change Report consists of three (3) sections; Metadata, Summary, and

Change Detail.

58

3.1.1 Metadata Section

The first section contains metadata that defines some basic information about the OYSTER

run that generated the change report.

 Date – The date the change report is generated

 RunScript Path – the full file name, including extension, of the run script.

 RunScript Name – the name of the run script as specified in the
RunScriptName attribute of the run script

3.1.2 Summary

The second section contains various counts that form a summary of the actions that took

place during the run.

 Count of Output Identities – Total number of Identities written to .idty
file.

 Count of Input Identities – Number of Identities read from identity input
file.

 Count of Input Identities Updated and Written to Output –
Count of Identities that existed in the input identity file that had new source
references added to the identity.

 Count of Input Identities Not Updated and Written to Output
– Count of identities from the input identity file that were not modified in any way
during the run.

 Count of Input Identities Merged – Count of Merges that occurred
during the run.

 Count of New Identities Created – count of new identities created from
references in the input source that did not match any of the input identities on any
rule.

The following relations should always be observed among the above counts:

1. Output Identities = Input Identities – Merged Identities + New Identities
2. Input Identities = Input Identities Update + Input Identities Not Updated

3.1.3 Change Detail

The third section contains details such as the OYSTER IDs and the Reference ID for

identities and references involved in creating, merging, or updating identities.

 New Identities Created – list of all identities that are created during the run.
o Contains two pieces of information

 Identifier – OYSTER ID of the new identity

59

 Reference – list of all reference IDs that are contained in the new
identity.

 Only listed if ChangeReportDetail=”Yes”

 Input Identities Merged – list of all identities that are merged during the
run.

o Contain two pieces of information
 Input Identifier – The OYSTER ID that the identity had in the

identity input file.
 Output Identifier – The OYSTER ID that the identity had in the

identity output file
 Input Identities Updated – list of all identities that have new references

added during the run.
o Contains three pieces of information.

 Identifier – OYSTER ID of the identity that is getting new
references added.

 Reference before update – List of identity references that
made up the identity in the identity input file.

 Only listed if ChangeReportDetail=”Yes”

 References after update – List of identity references that
make up the identity in the identity output file.

 Only listed if ChangeReportDetail=”Yes”

3.2 ChangeReportDetail=”Off”

When the ChangeReportDetail is set to “Off”, OYSTER tracks and provides a minimal

level of detail regarding the merging and updating of identities in an .idty file.

An Identity change report with value set to “Off” is shown in Figure 10.

60

Figure 10: Identity Change Report with ChangeReportDetail="Off"

3.3 ChangeReportDetail=”On”

When the ChangeReportDetail is set to “On”, OYSTER tracks and provides extra

details regarding the merging and updating of identities in an .idty file. This extra detail

consists of the reference level information involved in the merge, update, or identity

creation. An Identity change report with value set to “Off” is shown in Figure 11.

Figure 11: Identity Change Report with ChangeReportDetail="On"

61

4. Identity Merge Map

The Identity Merge Map.csv file is created during every OYSTER run. It is stored in the same

directory as the Identity Change Report. This file provides a list of OYSTER IDs for

identities in an input .idty file that have merged during the current OYSTER run. The file

contains a list of the original OYSTER ID (Input Identity) and the ID that the identity was

merged into (Output Identity). The file is Tab delimited. The Identity Merge Map.xls file

can be seen in Figure 12.

Figure 12: Identity Merge Map

5. Log File

The oyster.log file is created during every OYSTER run. The contents of the oyster.log file

vary depending on the values set for the Explanation, Debug, and SS attributes of the

Settings tag in the OysterRunScript.

If both the Explanation and Debug attributes are assigned the value “No” then the

oyster.log file will contain only the output that was printed to the command prompt unless

there are major errors in the run. This output consists of a report that is comprised of

various statistics that describe the run. This report has six sections:

 Summary Stats

 Cluster Stats

 Rule Stats

 Index Stats

 Resolution Stats

 Timing Stats

Each of these sections contains various statistics. Each of these is defined in the following
sections.

62

5.1 Summary Stats

The Summary Stats section contains five statistics:

 Total Records Processed - The total number of input references that were
read from the input files defined in the SourceDescriptors.

 Total Clusters – The total number of resulting clusters (identities) generated
by the OYATER run. (The number of resulting identities created by linking input
references.)

 Max Cluster Size – The count of references that were linked to create the
largest resulting cluster by the OYSTER run.

 Min Clusters Size > 1 – The count of references that were linked to create
the smallest resulting cluster that contains more than a single reference. (contains at
least a single linked pair of references)

 Min Cluster Size – The count of references that were linked to create the
smallest resulting cluster by the OYSTER run.

An example of this section is shown in Figure 13. This example shows that 12 references
were processed into eight clusters. Three of the references were linked to create the largest
cluster and the smallest cluster contains a single reference. The smallest clusters with more
than one reference contain two references.

5.2 Cluster Stats

The Cluster Stats section contains 17 statistics. The first statistic is:

 Cluster Size Distribution – Provides a Frequency listing of all the clusters
in a knowledgebase grouped by the number of linked references in a cluster
(identity).
This is represented by 3 columns:

o Cluster Size – Represents the number of linked references in the cluster
o # of Clusters – Represents the number of clusters which contain the

number of linked references specifies in the corresponding “Cluster
Size”

o # of Records – indicates the number of linked references that exist in
clusters of a particular size. Calculated as: “Cluster Size” * “# of
Clusters”

###################

Summary Stats ##

###################

Total Records Processed : 12

Total Clusters : 8

Max Cluster Size : 3

Min Cluster Size > 1 : 2

Min Cluster Size : 1

Figure 13: Summary Stats Section of Log File

63

Note: Exceedingly large clusters are outliers and should be investigated as should
large numbers of single clusters.

The next three statistics in this section provide information about the references and
clusters located in and loaded from an identity input file.

 Clusters loaded – Total number of clusters loaded from the identity input file.
o Shows a value of 0 if no identity input file was loaded.

 References loaded – Total number of references that comprise the loaded
clusters.

o Shows a value of 0 if no identity input file was loaded.

 Avg # of Refs/Cluster – This is the average number of clusters that were

loaded per cluster. Calculated as “Clusters loaded” / “References
loaded”

o Shows a value of “NaN” if no identity input file was loaded. “NaN” means
Not a Number and is generated when dividing 0 by 0.

The next group of statistics in this section relies on the values presented in the Cluster Size,
of Clusters, and # of Records columns displayed in the Cluster Size
Distribution statistic.

 Average Cluster Grouping – The ACG is the average of the Cluster Size. This
is found by summing all the unique Cluster Sizes and then dividing by the count of
the unique cluster sizes. i.e. (1+2+3+4+5+6+7+8+9)/ 9 = 5.

 Average Cluster by Count – The ACC is the average of the # of Clusters
column. This is found by summing all the # of Clusters values and dividing by the
count of the # of Clusters values.

 Average Cluster Size – The ACS is the average cluster size for the run. This is
found by summing the # of Records values and dividing by the sum of the # of
Clusters values.

 Number of Duplicate Recs – calculates the number of duplicate records
found while processing the input references. This is found by taking the summation
of each cluster size minus 1 times the corresponding # of Records.
∑ (Cluster Size – 1) * # of Records

 Duplication Rate – The duplication rate is the percentage of the references
that are found to be duplicates based on the identity rule set. The Calculation is:
1 - (Total clusters / Total records)

The remaining 8 statistics provided in this section are focused on match candidates.

 Total Candidates Size - The total number of Candidates that were returned
by the index based on the input record set and the indexing rules.

 Total DeDup Candidates Size - A unique count of the Total Candidate Size.
This is possible due to a cluster having multiple refID's (many to one relationship).

64

 Total # Candidates – A count of the fact that a Candidate was found for a
record, i.e. input #25 returns 3 candidate records, this is counted one time.

 Avg Candidates per Input - The Avg. Candidates is the Total Candidates Size
/ Total # Candidates.

 Total Matched Count – Represents a count of matches that occurred between
references and candidates.

 Matches per Candidates Size – Represents the percentage of matches per
the full Candidates Size. Calculated as Total Match Count / Total Candidates Size

 Matches per DeDup Candidates Size - Represents the percentage of
matches per the Total DeDup Candidates Size. Calculated as Total Match Count /
Total DeDup Candidates Size

 Matches per Candidates - Represents the percentage of matches per the
Total # Candidates. Calculated as Total Match Count / Total # Candidates

An example of the Cluster Stats section can be seen in Figure 14 and Figure 15.

###################

Cluster Stats ##

###################

Cluster Size Distribution

Cluster Size # of Clusters # of Records

 1 5 5

 2 2 4

 3 1 3

Clusters loaded : 0

References loaded : 0

Avg # of Refs/Cluster : NaN

Average Cluster Grouping : 2

Average Cluster by Count : 2

Average Cluster Size : 1.50000

Number of Duplicate Recs : 4

Duplication Rate : 0.33333

Total Candidates Size : 66

Total DeDup Candidates Size : 43

Total # Candidates : 11

Avg Candidates per Input : 6.00000

Total Matched Count : 4

Matches per Candidates Size : 0.06061

Matches per DeDup Candidates Size: 0.09302

Matches per Candidates : 0.36364

Figure 14: Cluster Stats Example Part 1

Figure 15: Cluster Stats Example Part 2

65

5.3 Rule Stats

The Rule Stats section only contains two statistics. These provide usage statistics for the

rules defined in the OYSTER run.

 Number of Rules – Specifies the number of Rules defined in the
OysterAttributes file.

 Rule Firing Distribution - A frequency of the number of times a rule has
fired. This is represented as corresponding columns of data.

o Rule – the Rule number associated to the rule that fired.
o Counts – The number of time the corresponding rule fired.

NOTE: Only rules that fired have a count here so it a rule is never triggered it
doesn’t appear with a count of zero.

An example of the Rule Stats section can be seen in Figure 16.

5.4 Index Stats

The Index Stats section contains 17 statistics all relating to the Indexes defined by the user.

 Keys - The count of Hash Keys in the indices.

 Total tokens - The total number of RefID’s held in the indicies.

 Unique tokens - The unique number of RefID’s held in the indicies.
o Since a single record can match multiple indexes this only counts a RefID

once.

 Max tokens per key – Give the max number of RefID’s (tokens) associated to a
single Key.

 Min tokens per key - Give the min number of RefID’s (tokens) associated to a
single Key.

 Min tokens > 1 per key - Give the min number of RefID’s (tokens) associated
to a single Key where there is more than a single token associated to the key.

 Total tokens per key - The average number of RefID’s per Hash Key.

 Unique tokens per key - The average number of unique RefID’s per Hash Key.

###################

Rule Stats ##

###################

Number of Rules: 2

Rule Firing Distribution

Rule Counts

1 1

2 3

Figure 16: Rule Stats Example

66

 Total per Unique tokens - The total number of RefID’s / the unique number
of RefID’s

 Unique per Total tokens - The unique number of RefID’s / the total number
of RefID’s

The next three statistics are explained in detail on the following website. The concepts for
each are such that it is not possible to concisely explaine each. Please refer to this site for
details: http://www.tc3.edu/instruct/sbrown/stat/shape.htm

 Skewness

o If skewness is less than -1 or greater than +1, the distribution is highly
skewed.

o If skewness is between -1 and -½ or between +½ and +1, the distribution is
moderately skewed.

o If skewness is between -½ and +½, the distribution is approximately
symmetric.

o Bulmer, M. G., Principles of Statistics (Dover, 1979)
 Kurtosis

o A normal distribution has kurtosis exactly 3 (excess kurtosis exactly 0). Any
distribution with kurtosis ?3 (excess ?0) is called mesokurtic.

o A distribution with kurtosis <3 (excess kurtosis <0) is called platykurtic.
Compared to a normal distribution, its central peak is lower and broader, and
its tails are shorter and thinner.

o A distribution with kurtosis >3 (excess kurtosis >0) is called leptokurtic.
Compared to a normal distribution, its central peak is higher and sharper,
and its tails are longer and fatter.

 Excess – The Kurtosis value minus 3
o The reference standard is a normal distribution, which has a kurtosis of 3. In

token of this, often the excess kurtosis is presented: excess kurtosis is simply
kurtosis-3. For example, the “kurtosis” reported by Excel is actually the
excess kurtosis.

 Max key – This is the top index key in terms of size.

 Top 10 keys - The top ten index keys by descending size.

 Frequency of the Index Candidates - This is the frequency of the Index Candidates.
The candidates of size zero are records that did not match anything in the index, i.e.
the first record in a cluster. This statistic is represented by three corresponding
columns:

o Candidate Size

o # of Candidates

o # of Records

NOTE: These counts can be used to help fine tune index. If there are a large number
of records in the zero bin then you are possibly missing some candidates with your
rules. If there were some large groups, i.e. candidate sizes > 50 then you rules are
not granular enough.

http://www.tc3.edu/instruct/sbrown/stat/shape.htm

67

 Frequency of the Index Groups by Size – Shows the Frequency of the Index Groups
sorted by size. This is represented by three corresponding columns:

o Index Group

o Index Size

o # of Records

An example of the Index Stats can be seen in Figure 17 and Figure 18.

Figure 17: Index Stats Example Part 1

###################

Index Stats ##

###################

Keys : 62,403

Total tokens : 160,696

Unique tokens : 80,348

Max tokens per key : 408

Min tokens per key : 1

Min tokens > 1 per key : 2

Total tokens per key : 2.57513

Unique tokens per key : 1.28757

Total per Unique tokens : 2.00000

Unique per Total tokens : 0.50000

Skewness : 1.07905

Kurtosis : 1.18336

Excess : -1.81664

Max key : 1234, 1235, 1236, 1237, 1238, 1239

Top 10 keys :

408 : 1234, 1235, 1236, 1237, 1238, 1239

396 : 0123

296 : 0124, 0134

288 : 1245, 1246, 1247, 1248, [42 More]...

276 : 0125, 0126, 0127, 0128, [13 More]...

264 : 1123, 1223, 1233

204 : 1124, 1125, 1126, 1127, [33 More]...

198 : 0112, 0113, 0122, 0133, 0223, 0233

176 : 0145, 0146

168 : 1456, 1457, 1458, 1459, [57 More]...

68

5.5 Resolution Stats

The Resolution Stats section, unlike the other five sections, is conditional. It only appears if

the mode of the OYSTER run is set for Identity Resolution. This section only contains a

single statistic.

 Records resolved - . This is the count of the number of records that were
resolved (found) in the identity repository.

An example of the Resolution stats can be seen in Figure 19.

Figure 19: Resolution Stats Example

5.6 Timing Stats

The Timing Stats section contains 11 statistics regarding the performance of the run.

 Candidate Size # of Candidates # of Records

 0 973 0

 1 977 977

 2 959 1,918

 3 915 2,745

 4 916 3,664

 5 859 4,295

 6 839 5,034

 7 788 5,516

 8 769 6,152

 9 714 6,426

 ...

 Index Group Index Size # of Records

 1 45,989 45,989

 2 12,621 25,242

 3 2,288 6,864

 4 521 2,084

 5 76 380

 6 94 564

 7 1 7

 8 67 536

 12 109 1,308

 ...

########################

Resolution Stats ##

########################

Records resolved : 102

Figure 18: Index Stats Example Part 2

69

 Elapsed Seconds - The elapsed time for the processing to take place for the
OYSTER Run.

o This does not include time for reading or writing identity files.
 Throughput (records/hour) - The estimated number of records that could be

read in an hour if the same speed is held without change.
o This is a realistic measure if the index is properly aligned and in Resolution

or Assertion mode. For other modes, this is extremely optimistic.
 Average Matching Latency (ms) - The average amount of time it took to

look up a Candidate list and check the list to find a matching record.
 Max Matching Latency (ms) - The max amount of time it took to look up a

Candidate list and check the list to find a matching record.
 Min Matching Latency (ms) - The min amount of time it took to look up a

Candidate list and check the list to find a matching record.

 Average Non-Matching Latency (ms) - The average amount of time it took
to look up a Candidate list and check the list to find a non-matching record.

 Max Non-Matching Latency (ms) - The max amount of time it took to look
up a Candidate list and check the list to find a non-matching record.

 Min Non-Matching Latency (ms) - The min amount of time it took to look up
a Candidate list and check the list to find a non-matching record.

 Time process started - This is a timestamp of when OYSTER started
processing

 Time process ended – This is a timestamp of when OYSTER finished processing

 Total elapsed time – This is the start time – the end time. This gives you the
entire time for the OYSTER run to occur.

An example of the Timing Stats section can be seen in Figure 20.

####################

Timing Stats ##

####################

Elapsed Seconds : 7

Throughput (records/hour) : 2,215,028.57143

Average Matching Latency (ms) : 0.326910

Max Matching Latency (ms) : 33

Min Matching Latency (ms) : 0

Average Non-Matching Latency (ms): 0.13838

Max Non-Matching Latency (ms) : 7

Min Non-Matching Latency (ms) : 0

Time process started at 2013-02-09 13.49.05

Time process ended at 2013-02-09 13.49.12

Total elapsed time 0 hour(s) 0 minute(s) 7 second(s)

Figure 20: Timing Stats Example

70

6. Extended Log File

The oyster.log file with the Debug and Explanation value is set to “Yes” displays a lot

more information than when they are turned off. The extended log file contains all the

information that was contained in the log file shown in the previous sections but also

includes the following additional information:

 Link index
 EntityMaps
 Identity Output
 ValueIndexes
 Comparison Matrixes
 Masks

These log files are extensive as they map every comparison and it is not feasible to show a
full extended log file here.

71

VI. Other OYSTER Functionality
This section outlines functionality that is available in OYSTER but is not integrated into one

of the XML files.

1. KILL Thread

In Oyster v3.2 and earlier, when a user initiates a kill operation on an OYSTER run, the
program simply terminates and all current state information is lost from any output
buffers. Note: in v3.2 and earlier, kill operations are initiated via ctrl+c or by closing the run
window. The purpose of the Kill Thread, introduced in OYSTER v3.3, is to allow OYSTER the
ability to retain the current state of the run when a Kill is initiated. This will also provide
the user with a direct OYSTER implemented method to Kill the processing of a run. This
allows the user to gracefully exit the process and review the results of the run up till the kill
point.

The Kill process depends on two things. The first is a new thread that is initiated during the
start of the OYSTER run that repeatedly “polls” the directory in which the initiating
RunScript resides and checks for the existence of a “kill.txt” file. The second is the kill.txt
file itself. The user must create this file when they decide to kill the process.

No additional options are required in any of the XML scripts to initiate the Kill Thread.
The kill.txt file that invokes the Kill process is an empty text file that is placed in the
directory in which the initiating RunScript resides. The file name must be “kill.txt” as this is
what the Kill Thread is checking for.

The Kill Thread polls the directory every 20 seconds so there may be a slight delay from the

time the kill.txt file is placed in the directory and the current run is stopped.

2. 90% memory Warning

The purpose of the 90% Memory Warning is to alert users that OYSTER has been over 90%
memory capacity for more than 10 minutes. This warning is for informational purposes
only and does not pause or interrupt the current OYSTER run.

The 90% Memory Warning is a separate thread that is initiated with an OYSTER run. It
checks the current allocated Heap size and the current Used Heap size. It calculates “Used
Heap size”/”Allocated Heap size” and if the resulting percentage is larger than 90% for 10
minutes it will throw a warning. Java always keeps a larger Allocated Heap then the Used
Heap and if the Used Heap needs more space Java will increase the size of the Allocated
Heap to compensate for the required space. If the Used Heap size is greater than 90% of the
Allocated Heap for longer than 10 minutes, this means that Java no longer has the ability to
inflate the Allocated Heap since it is already inflated to the Max Heap size allowed. No
additional options are required in any of the XML scripts to initiate the thread that handles
the memory monitoring or the Memory Warning.

72

VII. OYSTER User-Defined Inverted Index
A new feature has been added to OYSTER Version 3.3 that allows the user to define an

inverted, match-key index. The User-Defined Index (UDI) feature can significantly reduce

run-time. However, a poorly designed UDI can significantly increase false negative error

rates. This section defines the concepts involved for UDI and details the efforts what must

be used to properly align the UDI with the defined match rules.

1. Inverted Index

An inverted index is a lookup table that allows a user to quickly find all of the records that

have a common value. For example, all of the records that the value “JOHN” for the first

name. The principle of the inverted index can be applied to entity resolution (ER)

algorithms as technique for reducing the number of comparisons needed to resolve a set of

input references.

In the case of ER, the common value is a match-key. When an input reference is read into

the OYSTER engine for processing, the index quickly locates all previously processed

records that share the same match key as the input reference

2. Match Key

A match key is a string value generated by applying algorithms (hash functions) to the

attribute values in a reference. In the OYSTER engine, algorithms are first applied to

selected attribute values then the final match key is formed by concatenating the algorithm

outputs in a fixed order. A particular configuration of attributes and hash algorithms

comprises a hash-key generator. Figure 21 shows a hash-key generator that selects

attributes A, B, and D of an input reference.

73

Figure 21: Schematic of Match-Key Generator

2.1 Match Key Example 1

Attributes – FirstName, LastName

Hash Algorithms

First Name: LeftSubstring(1)

Last Name: LeftSubstring(5)

Hash Values

FirstName: “PHILIP” LeftSubstring(1)”P”

LastName: “DOE” LeftSubstring(5) ”DOE”

Match Key = “P”+”DOE” = “PDOE”

3. Index Operation

The index is an inverted index on the match-keys generated by each input reference as it is

processed. As each reference is read into the system, the attribute values are input into a

match-key generator. The resulting match-key is then used to lookup all other previously

processed references that also generated that same match key. The previously processed

references that have the same match-key then become the candidates to test against the

input records by the match rules. It is important to note that these are the ONLY

candidates to be tested for matching. After the input record has been matched to all of the

candidate records, the input record is also inserted into the index (lookup table). Figure 22

Value A Value D Value C Value B Value E

Has

h 1

Has

h 2

Has

h 3

Value

A’

Value

B’

Value

D’

A’+B’+D’

Match-Key

Generator

Reference

Hash

Algorithm

Match-

Key

Hash

Outputs

74

shows the first step where the match-key is generated and used to lookup matching

candidates.

Figure 22: Match-Key Lookup for Match Candidates

The same process show in Figure 22 is also shown in Figure 23using the match-key

generator of Example 1. Note that in Figure 23, the input reference “PHILIP DOE”

generates the match-key “PDOE” that returns three matching candidates. Which of these

three actually match the input reference will depend on the rules. If the rules require that

first and last names must be exact, then only the candidate reference R8 would be a match.

On the other hand, if the rules allow the first name to match by their Soundex values, then

both candidate references R4 and R8 would be a match.

Figure 23: Candidates Returned by Match-Key "PDOE"

Input

Referenc

e

Matching

Rules

Reference 4

Reference 5

Match-Key

Generator
“Key2” Match-Key Inverted

Index

“Key1”, Ref1, Ref2, Ref3

“Key2”, Ref4, Ref5

“Key3”, Ref6, Ref7, Ref8

“Key4”, Ref9

“Key5”, Ref10, …

Previously

processed

references

that also

generated

“Key2”

Lookup “Key2”

in Index

R9 “PHILIP” “DOE”

Match-Key

Generator from

Example 1

“PDOE”

R1 “BOB” “CAMP”

R4 “PHILLI

P”

“DOE”

R5 “ROBER

T”

“CAMP”

R7 “PAM” “DOE”

R8 “PHILIP” “DOE”

…

…

Input Reference Previously Process

Records

Index
lookup

75

4. Alignment of Index with Match Rules

It is important to understand that the index generators work independently of Match Rules.

In order to get accurate ER results, the match rules and the index generators must work

together. The match rules can only compare an input record to the set of candidate

references returned by the index. Even though an input is capable of matching a previously

processed reference, that match will only be known by the system if the matching reference

is found by the Index, i.e. the input and previously processed reference generate same

match key.

Figure 24: Examples of Good and Poor Rule-to-Index Alignment

Figure 4: Examples of Good and Poor Rule-to-Index Alignment

The Rules and Index in Figure 24 labeled “Proper Alignment” are in alignment because if

two references match on first name by Soundex, then the two names must begin with the

same first letter. This means that the hash function that extracts the first left character of

the name will also be the same since the Soundex algorithm does not change the first

character of the input string. Therefore if two names match by Soundex then it follows that

they must begin with the same letter. Similarly if two last names are the same (Exact

match), then the hash function that extracts the first five letters of the name will also give

the same value.

On the other hand, the Rules and Index shown in Figure 24 and labeled “Misalignment” fail

to align properly. The problem is that the first name comparator is by nickname or alias.

Two nicknames may not begin with the same first letter. For example, a reference with

first name “ROBERT” and last name “SMITH” will generate the match key “RSMITH” by this

index. Another reference with first name “BOB” and last name “SMITH” will generated the

match key “BSMITH”. However, these two references will match since “BOB” is a common

nickname for “ROBERT”, but these references generate different match keys. Therefore

there is a rule-to-index misalignment.

5. Index Recall and Precision

Two measures often applied to an index are its recall measure and its precision measure.

Recall is the percentage of record pairs that match by one of the rules and that also

Proper Alignment

Match Rule:
First Name: Soundex
Last Name: Exact

Index:
LeftSubstring(FirstName, 1)
LeftSubstring(LastName, 5)

Misalignment

Match Rule:
First Name: NickName
Last Name: Exact

Index:
LeftSubstring(FirstName, 1)
LeftSubstring(LastName, 5)

76

generate the same match key by one of the indices. Proper alignment is achieved between

rules and indices when the indices have 100% recall. On the other hand, precision is the

percentage of record pairs generating the same match key that also match by one of the

rules.

When an index has less than 100% precision, it means that it will return some records to

the rules for match comparison that will not match. The lower the precision the more

unnecessary effort that will be expended by the process in comparing an input record to

previously processed records that will not match by any of the rules. It is the recall

measure that has the most impact the accuracy of the ER process. When the recall is less

than 100%, it means that the indices will fail to find some matches between records that

are present in the data. In this respect, recall is the more important consideration for

accuracy of the ER process, whereas precision the more important consideration for the

efficiency (performance) of the ER process. The general rule for index design is to first

achieve 100% recall (alignment), then work to increase precision while maintaining 100%

recall.

5.1 Alignment Scenarios

Figure 25: Diagrams of Rule-to-Alignment Scenarios

The circles labeled (1) in Figure 25 illustrate 100% alignment. Each pair of references that

match by the rules also generates the same match key. The circles labeled (2) represent a

typical misalignment where some, but not all pairs of references that match by the rules

generate the same match key. The circles labeled with (3) represent total misalignment

where none of the matching pairs of references generate the same match key and none of

the pairs generating the same key will match. The scenario illustrated by the circles

labeled (4) is one where every pair of references that produce the same match key will

Pairs of references that generate the same match

key

Pairs of references that match by the identity rules

Desired

Alignment

Misalignments

(1)
Recall=100%

Precision<100
%

(2)
Recall<100%

Precision<100
%

(3)
Recall=0%

Precision=0%

(4)
Recall<100%

Precision=100
%

77

match by one of the rules (100% precision), but some pairs that match by the rules do not

generate the same match key.

5.2 Index Fewer Attributes Strategy

It is not necessary to index every attribute used in a rule. For some situations it may be

better for the match-key generator to use fewer inputs in order to attain alignment. The

left-most box of Figure 26 shows the same misalignment of match rules and index as in

Figure 24. The right-most box of Figure 26 shows how this misalignment can be corrected

by dropping the hash on the FirstName attribute and only generating the match-key from

the LastName attribute.

Figure 26: Indexing on Fewer Attributes to Attain Alignment

Figure 27: The Effect of Removing Attributes from the Match-Key Generator

As illustrated in Figure 27, for a given set of attributes and their corresponding hash

algorithms, it will always be true deleting one or more of the terms (i.e. an attribute and its

hash algorithm) will never decrease the number of pairs of references generating the same

match-key, and in most cases will increase that number.

Misalignment

Match Rule:
First Name: NickName
Last Name: Exact

Index:
LeftSubstring(FirstName, 1)
LeftSubstring(LastName, 5)

Proper Alignment

Match Rule:
First Name: NickName
Last Name: Exact

Index:
LeftSubstring(LastName, 5)

Pairs of references that generate the same match

key

Pairs of references that match by the identity rules

Misalignment

Index 1 using
attributes A, B, and C

Index 2 using
attributes A and

C

Index 3 using
only attribute

A

Alignment

78

Although indexing on fewer attributes may help attain rule-to-index alignment, the fact that

it returns more candidates for matching may result in a performance problem. Another

strategy that can help to address the performance issue while still attaining alignment is to

implement more than one index.

5.3 Multiple Index Strategy

Most entity resolution systems that use match-key indices will also allow for defining more

than one index. When more than one index is defined, the candidate list returned to the

match rules is the union of all of the candidates returned by each of the indices. Multiple

indices are often needed when different rules compare different sets of attributes.

Figure 28: Same Rule Set with One Index and Two Indices

Figure 28 shows a set of two matching rules on four attributes. Even though both rules

match on First Name, the comparators are different. Because the second rule compares

First Name by NickName, indexing on First Name would cause misalignment. The only

alignment solution using a single index would be to simply index on Last Name. This

means that for every input reference, the index would return a list of all previously

processed references that share the same first five characters of the last name.

The two-index solution shown on the right would provide better performance while still

maintaining alignment. Index 1 is designed to be in alignment with Match Rule 1 while

taking advantage of the fact that names matching by Soundex must also agree on the first

character. It also includes Last Name and Birth Year since these are Exact match attributes

in Rule 1. Similarly Index 2 is designed to align with Rule 2. Even though it does not use

One Index

Match Rule 1:
First Name: Soundex
Last Name: Exact
Birth Year: Exact

Match Rule 2:
First Name: NickName
Last Name: Exact
School ID: Exact

Index:
LeftSubstring(LastName, 5)

Two Indices

Match Rule 1:
First Name: Soundex
Last Name: Exact
Birth Year: Exact

Match Rule 2:
First Name: NickName
Last Name: Exact
School ID: Exact

Index 1:
LeftSubstring(FirstName, 1)
LeftSubstring(LastName, 5)
LeftSubstring(BirthYear, 4)

Index 2:
LeftSubstring(Lastname, 5)
LeftSubstring(SchoolID, 5)

79

First Name because of the NickName comparator, it does use the School ID that is in Rule 2,

but not in Rule 1. Since each rule is in alignment with at least one index, the entire set of

rules is alignment. Furthermore the combined set of candidates returned for each input

record by the two indices will no larger than the set of candidates returned by the single

index, and in most cases will be smaller.

Figure 29: Combined Effect of Two Indices

The effect of combining multiple indices is illustrated in Figure 29. Whereas neither index

by itself is in alignment with the rules, together they can create alignment. Any overlap

between the indices (i.e. same candidate references returned by more than one rule) can

easily be removed prior to matching, so overlaps between multiple indices does not add to

the number of comparisons that must be made.

6. The Alignment Process

There are three steps in the alignment process

1. Rule Analysis

2. Index Design

3. Alignment Validation

6.1 Rule Analysis

Rule Analysis is best done using a table or spreadsheet. Each rule makes one row in the

table and each column is for an identity attribute. The cells in the table show the type of

comparison that is required by the rule for that attribute.

Table 3 shows a table for 17 identity rules operating on 11 identity attributes labeled A1 to

A11. The rules and attributes shown in Table, and the average number of candidates

returned by various index schemes for these rules are based on tests performed on actual

school enrollment information.

Pairs of references that generate the same match

key

Pairs of references that match by the identity rules

Misalignment

Index 1 Index 1 + Index 2

Alignment

Index 2

80

Table 3: Showing 17 Rules and 11 Identity Attributes

Rule A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

1 EXACT EXACT EXACT

2 EXACT EXACT EXACT

3 EXACT EXACT EXACT EXACT

4 LED(0.80) EXACT EXACT EXACT EXACT EXACT

5 EXACT EXACT LED(0.80) EXACT EXACT EXACT

6 LED(0.65) EXACT EXACT EXACT EXACT

7 EXACT LED(0.55) EXACT EXACT EXACT

8 EXACT LED(0.80) EXACT EXACT

9 EXACT EXACT EXACT EXACT

10 EXACT EXACT EXACT EXACT EXACT EXACT

11 EXACT EXACT EXACT EXACT EXACT EXACT

12 EXACT EXACT EXACT EXACT EXACT EXACT

13 EXACT EXACT EXACT EXACT

14 LED(0.90) LED(0.87) EXACT EXACT EXACT

15 LED(0.85) EXACT EXACT EXACT

16 EXACT EXACT EXACT EXACT

17 EXACT EXACT EXACT EXACT

Although most attributes in this table require an “EXACT” match, some allow an

approximate match by the Levenshtein Edit Distance function denoted by LED(0.xx) where

the number 0.xx in parentheses indicates the matching threshold. For example, Rule 5

requires the Levenshtein similarity to be 55% or higher between the values of Attribute A3.

6.2 Index Design

The goal of index design is two-fold

1. (Alignment) Define one or more indices so that whenever two records match by one

the rules, both records with generate the same match key by at least one index

2. (Reduction) Define each index in such a way that a minimal number of records will

generate the same match key.

The ideal situation would be to define one index for each rule that only generates the same

match key for records that match by that rule. For certain rule sets this is possible by

simply translating each rule term-by-term into a corresponding index. For example,

suppose that a system only used Rules 1 and 2 shown in Table 3. Since Rule 1 requires and

exact match on Attributes A1, A3, and A4, the index for this rule would simply be generate a

match key by concatenating these three values, i.e. the match key would be A1+A3+A4.

Similarly, the index for Rule 2 would only need to concatenate Attributes A1, A3, and A5, i.e.

the match key would be A1+A3+A5. In this case, for each rule, every record that matches

81

by the rule would create the same match key, and any two records creating the match key

would match by the rule. An OYSTER implementation of these two rules and indices is

shown in the Figure 30.

Figure 30: OYSTER Implementation of Rules 1 and 2 of Table 1 with Index

Note that the hash generator SCAN produces the equivalent of an EXACT match with the
settings shown in Figure 1Figure 30. Here the SCAN is set to scan the string from left-to-
right (Direction parameter set to “LR”), extract all of the characters in string (Character
Type parameter set to “All”), scan the entire length of the string (Length set to “0”),
and keep the characters in the same order (Ordering parameter set to “SameOrder”).
However, for many rule sets is not possible because of comparators that perform

approximate matching. Most comparators are built to allow for some level of variation

between the values being compared yet still considering the values to be (approximately)

the same. In many cases this is done by reducing both values the common third value.

Even for exact comparison between strings, there is often consideration for ignoring

differences between corresponding letters due to case, i.e. upper case versus lower case. In

OYSTER this corresponds to the “ExactIgnoreCase” comparator or the “SCAN”

comparator using all upper case conversion. For example, this would map the strings

“John”, “john”, and “JOHN” all to the common value string of “JOHN” before making the

comparison.

<IdentityRules>

 <Rule Ident=”R1”>

 <Term Item=”A1” MatchResult=”Exact”>

 <Term Item=”A3” MatchResult=”Exact”>

 <Term Item=”A4” MatchResult=”Exact”>

 </Rule>

 <Rule Ident=”R2”>

 <Term Item=”A1” MatchResult=”Exact”>

 <Term Item=”A3” MatchResult=”Exact”>

 <Term Item=”A5” MatchResult=”Exact”>

 </Rule>

</IdentityRules>

<Indices>

 <Index Ident=”P1”>

 <Segment Item=”A1” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 <Segment Item=”A3” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 <Segment Item=”A4” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 </Index>

 <Index Ident=”P2”>

 <Segment Item=”A1” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 <Segment Item=”A3” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 <Segment Item=”A5” Hash=”Scan(LR,All, 0, KeepCase, SameOrder)”>

 </Index>

</Indices>

82

6.2.1 Match Key Comparators versus Similarity Comparators

Each hash algorithm in a match key generator is designed as a function which takes as its

argument a single attribute value and maps it (transforms it) to a single output value. On

the other hand, rule comparators take a pair of attribute values and map it a Boolean value,

either True or False. However, as described earlier, many rule comparators such as the

“ExactIgnoreCase” comparator work on the same principle as a match key function.

When a pair of attribute values is input to the comparator, it first operates separately on

each value to produce two outputs. If the two outputs are the same, then the comparator

value for the pair is True, else the comparator value is False. For this reason, comparators

of this type are called match key comparators.

The simplest type of match key comparator is the EXACT each value of the pair is mapped

to itself. Another type of match key comparator is the Soundex comparator primarily used

for strings represented a person’s name. The Soundex comparator maps each name string

to a 5-character string that starts with the first letter of the input string and is followed by

four decimal digits. The four digits are derived according to the Soundex Algorithm. If both

input name strings produce the same 5-character output string, then the Soundex

comparator produces a True value. For example, the names “Phillip” and “Philip” product

the same Soundex value of “P410”.

Matching rules that use only match key comparators can be translated directly in an index

by a series of hash functions that correspond to the match key comparator as was

illustrated in Figure X. Unfortunately not all comparators operate in this way. Many

comparators are a type called similarity comparators. Similarity comparators generate a

numerical value that represents some measure of the similarity between two attribute

values. These comparators cannot operate on each attribute value independently, but must

consider both values to product a similarity measure. A primary example is the

Levenshtein Edit Distance (LED) algorithm that measures the similarity between two

character strings. Unlike Soundex, it does not make sense to talk about the LED of a single

string. The LED can only be generated between two strings where it is based on the

number simple character transformations that are required to convert one string into the

other string. For example if one value is “John” then it could be transformed into each of

the values “Jon”, “Jhn”, or “ohn” with a single deletion transformation. This makes “John”

75% similar to each of these three other strings (one change out of four characters).

However, there is no function that can operate on each of these strings independently and

produce a single value that will predict that it will be 75% LED similar to each of the other

strings. The similarity can only be known when both strings are present and are processed

together by the LED algorithm.

83

6.2.2 Balancing Alignment with Reduction

As long as each rule has at least one match key comparator, then it will always be possible

to create a set of indices that have proper alignment. For example, each of the 17 rules in

Table 3 uses at least one Exact comparator. In fact, Table 3 shows that every rule requires

either an exact match on A1 or an exact match on A3. Therefore one possible design to

index the rules in Table 3 would be two indices where the first index uses only the value of

A1 and the second index uses only the value A3. This would satisfy the alignment condition

in that every pair of records that matches by one of the rules, but also have to have either

the same value for A1 or the same value for A3.

Whether or not this would be a practical index design will depend on the number of

records being processed. The second constraint of index design is reduction. For small

sets of records, this may not be a problem, but for large datasets there may be so many

records that have the same value for A1 or the same value for A3, that the number of

comparisons performed by the rules will be too large, and system performance will be

affected.

For example, suppose that the system implementing the 17 rules of Table 3 is able to make

200,000 comparisons per second for each rule. Assuming the match rate is low then a

worst case estimate is that each input record has to be compared to every candidate

record. If this system runs without an index then each input record will have to compared

to each previously processed record (assuming the One-Pass algorithm) by each of the 17

rules, or 17xNx(N-1)/2 for N input records. If N is relatively small, say 10,000 records,

then the total run-time, even without an index will only be about 142 minutes or 2 hours

and 22 minutes.

Now suppose that the two index design (A1 and A3) is implemented in the system. The

reduction in comparisons will depend on the average number of records that generate the

same match keys for these indices. With the index in place, each input record will only be

compared to all previously processed records that generate the same match key as the

input record by either of the two indices. If a set of indices on average returns M

candidates for comparison, then the total comparison effort for the system with 17 rules to

process N input records is approximately 17xNxM comparisons.

Even though there can be some overlap between the records that generate the same match

key for both by both indices, for worst case assumption that can be ignored. Therefore

assuming on that on average the A1 index returns 200 candidate records and the A3 index

returns 400 records, or 600 candidates combined, the total run-time for 10,000 input

records can be dramatically reduced to approximately 8.5 minutes.

However, if the number of input records is increased to 1,000,000 records, then the run-

time using the two-index design will increase to more than 14 hours. In this case the

84

reduction afforded by the simple two-index design may no longer be acceptable. One

analysis technique that can be used to estimate the level of index reduction is to load in the

input data into a database, then translate each index into an SQL query to profile the counts

of duplicate match keys that each index will generate. In addition, some systems may

provide the user with information on index performance. For example, OYSTER provides

information in its standard log file about the average number of tokens (records) per match

key, the 10 match keys with the largest number of tokens, and other helpful index statistics.

In general, the more attributes that are concatenated to produce a match key, the fewer

records that produce the same match key. At the same time, when there are many rules

such as in Table 3, designing indices that use more attributes per index may require adding

new indices in order to maintain proper alignment.

Table 4: Alignment Pattern of 4 Index Design

Rule A1+A4 A1+A5 A3+A4 A1+A2+A7
1 X X
2 X
3 X
4 X
5 X
6 X
7 X
8 X X
9 X

10 X
11 X X
12 X X
13 X X
14 X
15 X
16 X X
17 X X

Table 4 shows an alternative 4-Index design that aligns with the 17 rules of Table 1. An “X”

in a cell of Table 4 means that the rule indicated by the cell row is in alignment with the

index given by the cell column. Three of the four indices each hash two of the attributes,

A1+A4, A1+A5, and A3+A4. These three indices are aligned with all of the rules except for

Rule 10. A fourth index based on A1+A2+A7 is added to cover this rule and assure rule-to-

index alignment. Although there are more indices in this scheme, the combined number of

candidates returned by this design is approximately 25 records per match key. Applying

the same calculation as before, the run-time for an input file of 1,000,000 records will be

85

reduced from 14 hours using the previous design to approximately 35 minutes using the

design shown in Table 4.

Another factor to consider is that more indices will increase the storage requirements plus

some additional overhead in performance for multiple lookups. However, in general these

are minor in consideration of the much larger reduction that can be obtained.

Given the consideration of alignment and reduction, index design may have an impact on

rule design. For example, if a proposed rule uses only similarity comparator such as LED or

Q-gram, then it may not be possible to design and index that assures alignment. In this case

it may be prudent to break the single rule into multiple rules where each rule has at least

one match key comparator that can be index. Another strategy is to experiment and see if

similarity comparators can be replaced by match key comparators. For example for name

values, it may be that the Levenshtein comparator can be replaced with the Soundex,

NYSIIS, or other match key name comparators without a significant loss in accuracy.

In some situations performance considerations may dictate that 100% alignment is not

possible or practical. Nevertheless, every attempt should be made to attain alignment, or at

least to have the highest level of alignment possible.

6.3 Alignment Validation

The final step in index design is to validate the rule-to-index alignment. The best way to

test alignment to run a manageable subset of the records without indexing, then run the

same subset with the index. If the rules and indices are in alignment the results from both

runs should be identical. Of course if all of the input records could be run in a manageable

amount of time, there is no need to index in the first place, so validation is always carried

out using a test set. This leave open the possibility that the validation may not extend to

the entire input set because there is always the possibility that the records for which a

misalignment occurs may not be present in the test set. As a matter of best practice, the

test set should be selected in such a way that every match rules fires at least one time.

86

VIII. Error Messages

Common Errors

1. “##ERROR: Reference Items AttributeItem not an Attribute.”

a. Verify the Item value in the OysterAttributes.xml file matches the value
assigned to Attribute in the OysterSourceDescriptor file

b. Verify the absolute path to the OysterAttributes.xml file is specified correctly
in the OysterRunScript.xml file.

2. “##ERROR: Reference Items and Rules do not match.”

a. Verify the value assigned to Name for each Item specified in the
OysterSourceDescriptor matches exactly the values assigned to Item in the
matching rules defined in the OysterSourceDescriptor

3. “##ERROR: Rule Item: AttributeItem not an Attribute”

a. Verify that the attributes in the Item attribute in the rules match the attribute
names defined by the <Attribute> tag

4. “##ERROR: CompareTo: AttributeItem not an Attribute”

a. Verify that the attributes in the CompareTo attribute in the rules match the
attribute names defined by the <Attribute> tag

5. “##ERROR: RunMode invalid RunMode.” or “##ERROR: Invalid
RunScript Mode.”

a. Verify the <RunMode> value defined in the RunScript is one of the 8 valid
RunModes accepted by OYSTER.

6. “##ERROR: Invalid RunScript Name, does not match the
external name.”

a. Verify the RunScriptName value in the <Settings> tag of the RunScript
match the file name of the RunScript without the .xml extension.

87

Figures

Figure 1: Delimited Text Input .. 44

Figure 2: Source Descriptor for a Delimited Text File ... 45

Figure 3: Fixed Width Text Input ... 45

Figure 4: Source Descriptor for a Fixed Width Text File .. 46

Figure 5: Source Descriptor for accessing an Access DB Table .. 48

Figure 6: Source Descriptor for accessing a MySQL DB Table .. 49

Figure 7: Source Descriptor for accessing SQL Server Table .. 50

Figure 8: Example Identity Document ... 56

Figure 9: Example Link index .. 57

Figure 10: Identity Change Report with ChangeReportDetail="Off" ... 60

Figure 11: Identity Change Report with ChangeReportDetail="On" ... 60

Figure 12: Identity Merge Map ... 61

Figure 13: Summary Stats Section of Log File... 62

Figure 14: Cluster Stats Example Part 1 .. 64

Figure 15: Cluster Stats Example Part 2 .. 64

Figure 16: Rule Stats Example .. 65

Figure 17: Index Stats Example Part 1 ... 67

Figure 18: Index Stats Example Part 2 ... 68

Figure 19: Resolution Stats Example .. 68

Figure 20: Timing Stats Example ... 69

Figure 21: Schematic of Match-Key Generator ... 73

Figure 22: Match-Key Lookup for Match Candidates ... 74

Figure 23: Candidates Returned by Match-Key "PDOE" ... 74

Figure 24: Examples of Good and Poor Rule-to-Index Alignment .. 75

Figure 25: Diagrams of Rule-to-Alignment Scenarios ... 76

Figure 26: Indexing on Fewer Attributes to Attain Alignment... 77

Figure 27: The Effect of Removing Attributes from the Match-Key Generator 77

Figure 28: Same Rule Set with One Index and Two Indices .. 78

Figure 29: Combined Effect of Two Indices ... 79

Figure 30: OYSTER Implementation of Rules 1 and 2 of Table 1 with Index 81

file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407132
file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407133
file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407134
file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407135
file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407137
file:///C:/Users/Michael/Desktop/School/Documentation/Oyster%20v3.3%20Reference%20Guide%202013%2003%2018.docx%23_Toc351407139

