E RI Q Center for Advanced Research in Entity Resolution and Information
Quality (ERIQ)

L Il ENTITY RESOLUTION &

INFORMATION QUALITY

Introduction to Entity Resolution with
OYSTER v3.3

Document Version: 1.10, Date: 02 December 2012

Copyright © 2012 ERIQ
University of Arkansas at Little Rock

Edited by:
Fumiko Kobayashi

Authors:

Fumiko Kobayashi and John Talburt

Revision History

Version Date Prepared By Position Reason for Update
1.1 10/27/2010 | Fumiko RA e Added Appendixes
Kobayashi e Updated Document and
Figures to reflect
OYSTER v2.1
1.2 12/01/2010 | Fumiko RA e Updated Figure 2 with
Kobayashi new data flow
e Updated text and figures
to reflect OYSTER
v2.4.1
1.3 12/15/2010 | Fumiko RA e Corrected erroneous
Kobayashi and outdated scripts
e Added section to
discuss new startup
operation that doesn't
expect Z-drive
e Modified cover page
layout
e Modified Revision
History layout
1.4 2/4/2011 Fumiko RA Modified document to reflect
Kobayashi new changes to Oyster V2.6
1.5 3/2/2011 Fumiko RA Modified document to reflect
Kobayashi new changes to Oyster V3.0
1.6 4/30/2011 | Fumiko RA Modified document to reflect
Kobayashi new changes to Oyster V3.1
1.7 6/14/2011 | Fumiko RA e Added Java memory
Kobayashi argument explanation
e Updated new changes
made to 3.1
1.8 6/22/2011 | Fumiko RA Removed references to
Kobayashi RunScriptName
1.9 10/26/2011 | Fumiko RA Update with changes made
04/15/2012 | Kobayashi to 3.2
1.10 8/24/2012 | Fumiko RA Update with changes made
12/02/2012 | Kobayashi to 3.3

Table of Contents

9L 0T 10 ot [) o 1FU T 4
Introduction to Entity Resolution (ER) . ssesssssssenses 5
Five Activities of Entity RESOIULION ... ssssssssssssssssssnans 5
Four ArchiteCtures Of ER ...t ss s s st ss s ssssssnsnes 7
Four Techniques for Determining EQUIVAlENCe.........couverinreneenernserereessesseesessesses s 7
Principles and Law Of ER....cnssssnsssns 9
INErodUCtiON t0 OYSTER .ot 10
Entity Identity Information Management (EIIM) ... 10
Y= o 5 () o PP 11
TTACEADILILY ovvvrveeresrrecissire s 12
(083 0 T =) 01) o PP 12
User Define INAeX (UDI)....eiressrsesssssssssesssssssssssessesssssssssssssssans 12
Cross-Attribute COmPAariSON (CAC) .errnrrerssressssssesssssssessssesssssssssssssssesssssssesssssssssssssssssssssssssssans 13
BasiC OYSTER RUN SEEPS .. sss s s ssesssssssssssssesssssssssssenssnsnes 14
FIlES QNd SEIUCTUTE ..ot bbbt 15
Launching OYSTER ...t sssssssssasssns 19
Invoking the OYSTER RUN SCTIPE....eeeeeceeeeeeeeeeeseeesesesessessessssssssssssesssssssssssssssssssssssssees 20
Run OYSTER With EXTa MEMOTYccierereeeeeseeeeeeeeesseeessesessessessees 21
OYSTER XML FILES ..o eeeses s sssessss st s s sssssanes 22
OYSTErRUNSCIIPT vt bbb bbb bbb 22

(0 T N 010 E (o3 DT | 010) TP 24
OYSTER RESEIVEA WOTAS ...cceeeeeeereererrerresressensenes 25

L0) a0] 01T R 26
1502000 o] LI Yol <) 0T | o Lo TP 28
WL OYSTER o 28
What Is SO Great ADOUL OYSTER ..ottt sssssnns 36
OYSTER RUN CONIGUIAtIONS covuveuivreuireesessesessessesssessssssessesssesssssssssesssssesssssssssssssessessssssssssssssssssssssessssssens 37
LY 23 oo 01U o= 37

L0003 014740 =1 (o) HTP OO OO OO OO 38

EXAIMIPIE ettt 39
[AENTILY CAPTULE..cevcereeerererreeesesess e s bbb 45
(000) 03 ¥ =4 11 o= L 10 o SOOI 46
EXAIMIPIE .ttt 47
Identity Build from ASSEItIONS. ... ssssssssass 53
Reference to Reference CoNfiguration ... sessesssssesssessesssessessssssssssessesans 54
Reference to Structure CONfigUIation ... sessesssssesssessesssesssssssssssssssesans 61
Structure to Structure Configuration........r s 68
Structure Split CONfiGUIAtION ... s 74
[AeNtity RESOIULION vttt 80
(0003 0141401 =1 (o) o KPP 81
0= 40 o) L 82
FIGUTES oottt R 87

Introduction

In this document you will learn about the basic concepts of Entity Resolution (ER). This
document touches on the five activates of ER, the four architectures of ER, and the four
techniques used to determine equivalence in ER. Once a foundation is established you will
learn what the OYSTER system is and how it can be used to perform ER. This document
also briefly explains Entity Identity Information Management (EIIM) and how OYSTER
provides functionality not found in any other ER system to integrate EIIM. This document
details not only what OYSTER was designed to do but also the files that are required by
OYSTER and how to configure the files to perform different types of ER.

This document is written in the hopes that once you finish reading it, you will have a
sufficient understanding of both ER and OYSTER to allow you to effectively use the OYSTER
system to help resolve your ER needs. The various sections of this document were designed
to not only guide you through the use of OYSTER but also to provide you a reference that
can be used when you need help configuring your OYSTER runs.

Entity Resolution

Introduction to Entity Resolution (ER)

Entity Resolution is the process by which a dataset is processed and records are identified
in the dataset that represent the same real-world entity. Each record in the dataset is
defined by a group of attributes. These attributes vary depending on the type of data; some
examples of attributes would be FirstName, LastName, and SocialSecurityNumber if
referring to person data or SerialNumber, Description, and ModelNumber if referring to
product data.

Five Activities of Entity Resolution

The process of entity resolution encompasses a broad set of activities. These activities are
defined to be the following five major activities:

ERA1 - Entity Reference Extraction - Locating and collecting entity references from
unstructured information.

e Isonly necessary when an entity reference source is presented as unstructured
information.

e Interestin ERA1 has grown along with the realization that a great deal of an
organization’s useful information often resides in unstructured formats.

ERAZ2 - Entity Reference Preparation - The application of profiling, standardization,
data cleansing, and other data quality techniques to structured entity
references prior to the start of the resolution process.

e Extensive pre-processing of entity reference sources is necessary before effective
resolution process can take place.
e Also known as the ETL (Extract, Translate, Load) process

ERA3 - Entity Reference Resolution - Resolving (deciding) whether two references are
to the same or different entities.

e Often done by applying a process called matching.
o A process by which the decision is based on the degree of similarity between
the values of the identity attributes in the two references
e ER systems generally use four basic techniques for determining that references are
equivalent and should be linked.

Direct Matching
Transitive Equivalence
Relationship Resolution
Asserted Equivalence

0 O O O

ERA4 - Entity Identity Management (EIM) - Building and maintaining a persistent

record of

entity identity information over time.

ER systems that support identity management have a significant advantage because
they have the potential to:

o Maintain persistent link values

o Allow transactional processing

o Go beyond direct matching and link records by relationships and assertions
ER system that always assign the same reference the same link value are said to
provide persistent link values.

o ER systems that support persistent links will assign the same link value to a

reference each time it is presented.

ER systems that build entity identities as they process references are called identity
capture systems
Entity Identity Information Management (EIIM) is a fairly new concept in ER. It is a
component of entity identity management (EIM) and is a set of rules and utilities that
can be used to maintain and update entity identity information based on asserted
knowledge and identity monitoring.

ERAS5- Entity Relationship Analysis - Exploring the network of relationships among

different, but related entities.

Exploring entity relationships is at the intersection of entity resolution and data
mining.

Entity Entity Entity Entity Entity
Reference j Reference | j Reference | j Identity | j Relationship
Extraction Preparation | Resolution | Management Analysis

ERA1 ERA2 ERA3 ERA4 ER5

Figure 1: Five activities of Entity Resolution

These activities, as illustrated in Figure 1, define the whole of what ER is (Big ER). When
most people refer to ER they are referring to only a subset of these activities, generally

ERAZ and ERA3 (Little ER). Not every ER process involves all five activities, and different
ER tools and systems are designed to handle different parts of the overall ER process.

Four Architectures of ER

e Merge-purge
o Entity references are systematically compared to each other and separated into
clusters (subsets) of equivalent records
o Most common form of ER
o Also known as record linkage

e Heterogeneous database join
o A transactional ER system where attribute values from an input reference is
translated into queries to different databases and database tables. The query
results are analyzed to determine if there are references in databases that are
equivalent to the input reference.

e Identity resolution
o All incoming references are resolved against a predefined set of managed
identities.
o Each identity in an identity resolution system has a fixed identifier that can be
used to link references that are equivalent to the identity, thus creating a persistent
link

e Identity capture
o A form of identity resolution in which the system builds (learns) a set of identities
from the references it processes rather than starting with a known set of identities.

Four Techniques for Determining Equivalence

e Direct Matching — determining equivalence between two references based on the degree
of similarity between the values of corresponding attributes. The five basic methods for
determining the similarity of attribute values are:

o Exact match

Numerical difference

Approximate syntactic match

Approximate semantic match

Derived match codes

o O O O

e Transitive Equivalence — determining equivalence through the use of an intermediary or
common record. This means that if record A = record B, and record B = record C, then
through transitive equivalence record A= record C. This is the simplest break down of
transitive equivalence; there can be any number of intermediary records that form a link
between other records.

e Relationship Resolution — discovering links by exploring patterns of relationships
among references that don’t rise to the level of equivalence. This is often done through
the use of techniques borrowed from graph theory and network analysis. Relationship

resolution allows multiple relationships to be considered and multiple equivalence
decisions to be made at the same time. This is a growing method when approaching the
issue of resolving co-authors.

e Asserted Equivalence — the instantiation of a link between two references based on a
prior knowledge that they are equivalent. An asserted equivalence often takes the form of
one record carrying the attribute values of two non-matching references. This means a
single identity may contain two first names and two last names that do not match but
based on prior knowledge, such as the person changed their name, both first and last
names refer to the same real-world entity.

Principles and Law of ER

There are seven principles of entity resolution as defined by Dr. John Talburt. These
principles are as follows:

ER Principle #1: Information systems store and manipulate references to entities, not the
entities.

ER Principle #2: ER is fundamentally about linking equivalent references, not record
matching.

ER Principle #3: ER false negatives are generally a more difficult problem to detect and
solve than are false positives.

ER Principle #4: ER processes are generally designed avoid false positives at the expense of
creating false negatives.

ER Principle #5: Entity Resolution is not the same as Identity Resolution.

ER Principle #6: ER systems that provide persistent link values must also implement some
form of identity management.

ER Principle #7: ER systems link equivalent references through inferred and asserted
linking. Inferred links can be created through direct matching, transitive
linking, or relationship resolution.

The following is the fundamental law of Entity Resolution.

Fundamental Law of ER: Two entity references should be linked if and only if they are
equivalent (reference the same real-world entity).

OYSTER

Introduction to OYSTER

OYSTER is an open-source software development project sponsored by the ERIQ Research
Center at the University of Arkansas at Little Rock (ualr.edu/eriq). OYSTER (Open sYSTem
Entity Resolution) is an entity resolution system that supports probabilistic direct
matching, transitive linking, and asserted linking. To facilitate prospecting for match
candidates (blocking), the system builds and maintains an in-memory index of attribute
values to identities. Because OYSTER has an identity management system, it also supports
persistent identity identifiers. OYSTER is unique among other ER systems in that it is built
to incorporate Entity Identity Information Management (EIIM). OYSTER supports EIIM by
providing methods that force identifiers to be unique among identities, maintain persistent
IDs over the life of an identity, and by allowing the ability to fix false-positive and false-
negative resolutions, which cannot be done with matching rules, through the use of
assertion, traceability, and other features.

OYSTER is written in Java and the source code and documentation are available as a free
download on file page of the OYSTERER SourceForge website
(http://sourceforge.net/projects/oysterer/). OYSTER is free for use under the OYSTER
open-source license and the GNU General Public License version 2.0 (GPLv2).

Although the original version of OYSTER was developed to support entity resolution (ER)
for student records in longitudinal studies, the system design readily accommodates a
broad range of ER domains and entity types. A key feature of the system is that all entity
and reference-specific information is interpreted at run-time through user-defined XML
scripts. This allows OYSTER to be configured as a merge-purge, identity capture, identity
resolution, identity update, or assertion system.

The OYSTER Project has been guided by several design principles

e OYSTER does not use an internal database for its operation.
e System inputs and outputs can either be text files or database tables.
e XML scripts are used to define

o All entity identity attributes

o The layout of each reference source

o Identity rules for resolving each reference source

Entity Identity Information Management (EIIM)
As mentioned in the previous section, OYSTER is built to incorporate EIIM. It does this by
providing facilities to do multiple types of assertions (some developed specifically for and

10

http://sourceforge.net/projects/oysterer/

unique to the OYSTER project) and traceability to track the lifetime of a record. These
features are discussed in the following sections.

Assertion

In entity resolution, assertion is the ability to introduce knowledge into an Entity Identity
Structure (EIS) to force resolutions or to force reference to never resolve. Match Rules can
only resolve references based on the algorithms and information available. There are four
(4) types of assertion runs that are made available in the OYSTER System. These are as
follow:

e Reference to Reference
e Reference to Structure
e Structure to Structure

e Structure Split

Each of these are in the following sections.

Reference to Reference Assertion

Reference to Reference Assertions (RefToRef) is the most well know and used form of
asserted linking. RefToRef Assertion forces multiple references to be matched and resolved
into the same cluster. It is performed on references that would not match on any defined
matching rule but are known to represent the same entity. An example of this could be a
person who has changed addresses and also changed their name. If the user has this
knowledge they can use OYSTER to force the entity reference for the original name and
address to match the new name and address forcing them to resolve to the same identity.
OYSTER builds and maintains an Entity Identity Structure (EIS), in the form of an xml
formatted idty file. Since the identity created by this assertion run contains both the old
and new name and address any further reference for the person, no matter if it is old or
new, will resolve to this identity.

Reference to Structure Assertion

Reference to Structure Assertion (RefToStr) is a type of assertion created for the OYSTER
system that forces multiple references to be consolidated with an existing identity
structure found in the OYSTER idty file. RefToStr Assertions are used to inject references
into identity structures based on knowledge about the reference. For example, a magazine
company has a centralized EIS for customer and potential customer information. A
subscriber changes their name address but do not want to stop receiving their magazine so
they contact the magazine company to inform them of the change. The magazine company
can use RefToStr Assertion to inject this new information about the subscriber into an
existing identity in their knowledge base. Without RefToStr Assertion the new information
for the subscriber would not have matched the identity structure using standard matching
rules.

11

Structure to Structure Assertion

Structure to Structure Assertion (StrToStr) is a type of assertion created for the OYSTER
system that forces multiple identity structures found in an existing EIS to be consolidated
into a single identity structure. This is used to fix false negative matches that were
produced by the OYSTER match rules. Through the use of StrToStr Assertions multiple
identity structures that are later found to actually match can be forced to consolidate.
These consolidations are based on previous knowledge of the references in the identity
structures.

Structure Split Assertion

Structure Split Assertion (SplitStr) is a type of assertion created for the OYSTER system
that forces a single identity structure found in an existing EIS to be divided into two (2) or
more identity structures. This is used to fix false positive matches that were produced by
the OYSTER match rules. Through the use of SpltiStr Assertion an identity structure can be
forced to split and negative assertion rules are put into place in the EIS that will never
allow these newly split identity structures to be merged in the future. These splits are
based on previous knowledge of the references in the identity structure.

Traceability

Another aspect of OYSTER that allows for EIIM is its ability to trace the progress of a
reference from the current run all the way back to its origin. This allows the ability to
examine the origin and the evolution of a reference throughout its lifetime to figure out
where a bad match was made and fix it with the use of one of the four assertions. This
ability is known in OYSTER as Traceability and is a new feature that is introduced in
version of OYSTER v3.2. Traceability is localized into the idty file that is generated by each
run if the Trace value is set to “On” in the RunScript. Detailed explanations of the idty file
and all of its elements can be found in the OYSTER Reference Guide.

Change Report

The last feature provided by OYSTER for EIIM is the Change Report. This feature allows for
users to easily monitor changes that were made during the current OYSTER run. The
change report is a consolidated list of all new merges, updates, and new identities that
were done during the run. A new change report is produced with every run of OYSTER and
detailed explanations of the change report can be found in the OYSTER Reference Guide.

User Define Index (UDI)

OYSTER v 3.3 introduced an exciting new feature that allows a user to define multiple
customized indices. As mentioned earlier, OYSTER uses indices to build the candidate lists
used when matching is performed.

12

In the original design of OYSTER, the attribute values of incoming references were inserted
into an inverted index as a way to find the most probably match candidates for newly input
references. However, it was found that this method of building the inverted index has
three major drawbacks.

1. Itis predicated on the idea that each identity rule will have at least one exact match
term. System performance tends to degrade dramatically when rules have one or
more inexact match terms (LED, Scan, etc.)

2. The index key is always a value from a single attribute. To find candidates for multi-
term identity rules the system has to perform multiple lookups, one for each rule
term with an exact match before reducing the candidate set to a manageable size.

3. The index logic is fixed. Therefore to gain maximum performance, users must tailor
identity rules in a way that best fits the logic of the index scheme rather than using
an index logic that best fits the identity rules being used.

The new user-defined index scheme will allow the user to direct OYSTER to create a single
index value that represents multiple terms (attributes) in a rule. It will also allow the user
to define more than one index which allows the user to customize an index for specific
rules. Each index defined by the user will be a single value formed by concatenating a
series of “hash values.” Each hash value is created by applying a pre-defined
transformation to the value of an attribute. Many of the hash algorithms may be the same
as or directly related to a particular similarity function (Soundex, Scan, etc.)

This ability to build custom indices provides drastic improvements in runtimes. The
tradeoff is that the user must have an intimate knowledge of the rules and data to build
optimized indexes. When indexes are designed correctly, the OYSTER runtime can decrease
from hours and possible days to a matter of minutes. It is important to note that with the
introduction of UDI into the OYSTER system, the default inverted index has been removed
and if not UDI is defined, OYSTER will do brute force comparisons (compare every record
with every other record).

The syntax of UDIs is defined in detail in the Oyster v3.3 Reference Guide.

Cross-Attribute Comparison (CAC)

A second new feature that is introduced in OYSTER v3.3 is the Cross-Attribute Comparison
(CAC). The purpose of the cross-attribute comparison is to allow users to create identity
rules that compare different attributes between two references, such as comparing first
name to last name or social security number to student number. In previous version of
OYSTER a rule only allows the user to compare the values of the same attribute between
two references.

The syntax of the CAC is defined in detail in the Oyster v3.3 Reference Guide.

13

Basic OYSTER Run Steps

An OYSTER run comprises the following steps

1. Start Run
a. Read Run Script

b. Load identities into memory from stored XML documents

c. While there are reference sources to process
i. Read reference source
ii. Resolve each reference to an identity
iii. Update identities (if in capture mode)
iv. Update link index

Write link index file
Write change report
. Write merge map

2. End Run

@™o o

The dataflow diagram in Figure 2 illustrates the above steps.

Write updated identities to storage as XML documents

Run Script OYSTER
Specify Engine g el Select Engine
—

Memory

Attribute List

a
b,
5

Attribute Path . .
WL Attributes
Description
i - s
Identity In-Path " Identities
e

f\ M
:>“
Identity Out-Path gzl \\

Identity List

Fi

-(_‘ X iﬂ:

wat., | Descriptor(s)

RefSrc 1 Descriptor

RefSrc 2 Descriptor

.,

El

—| B2
E3

14 En

m W1
W2

W3

Wn

Selected

»

> Resolution

Identity Index

Link Index
rid1, eid1
rid2, eid2
rid3, eid3

ridn, idn

Figure 2: Basic OYSTER Run Steps Dataflow

14

Files and Structure

OYSTER requires multiple files to function and creates additional files when it runs:

e Input Files:

o OysterRunScript.xml

o OysterSourceDescriptor.xml

o OysterAttributes.xml

o Input Source files (if using a text file for the input source)

o Inputidty file (if performing Identity Resolution or Identity Update)
e Output Files:

o Name.idty (Optional)
Name.link (Required)
Name.idty.emap (if Explanation="[On/Off]" and Debug="0n")
Name.idty.indx (if Explanation="[On/Off]" and Debug="0On")
Log file (always created, location and name can be defined in Run Script)
Identity Change Report.txt
Identity Merge Map.csv

O O O O O O

When building these files there is no predefined location where to save them. It is
recommended a Run folder be created for each new OYSTER run you attempt. This will
allow you to easily organize and keep track of your used and generated files. Inside the Run
folder create an Input, Scripts, and Output folder and place the files in their corresponding
folder. The suggested structure should look similar to this:

Z:\Oyster\Run001\
\Input\(Place input source files here)
\Output\ (output should be generated here [specified in RunScript])
\Scripts\(Place all scripts here)

Figure 3 illustrates the above folders. By using this structure you can perform unlimited

runs of OYSTER while staying organized. Please note drive Z: is not required by OYSTER,
the above suggested folder structure could be stored in any location.

15

) Z:\Oyster\Run001 g@
.:’l

File Edit \iew Favorites Tools Help

@ Back = [_J lﬁ /.._\‘ Search |~ Folders v
Address |[ﬁ Z:40vsteriRunonl kl &

File and Folder Tasks # Input

) Make & new Folder

@ Publish this folder to
the Web

{4 Share this Folder

COukpuk

Scripts

»

Other Places

I Ovster

E] My Docurnents
I Shared Documents
i My Computer

‘:ﬂ My Metwork Places

Details ¥ M
3 objects 0 bytes ﬂ Iy Computer
Figure 3: Run001 folder

There are a few other files and folders that are necessary when running certain features of
OYSTER. Inside the OYSTER folder there must be a folder named ‘data’ that contains a file
named ‘alias.dat’ (shown in Figure 4). This file contains a tab delimited file with two
columns of data (illustrated in Figure 5). The first column contains a name and the second
column contains an acceptable alias for that name. This is the lookup file that is used when
“Nickname” is specified in the match rules.

) I:\Oyster\data g@
| '\:l

File Edit Wiew Favorites Tools Help

@Back b L) lﬁ /:\J Seatch [Falders v

Address |B 2\ Oysteridata Il] G
[

alias.dat
DAT File
Z5EKE

»

File and Folder Tasks

(4 Make a new Folder

&8 Fublish this Folder to
the web

k! share this Folder

»

Other Places

| Oyster

@ My Docurments
I Shared Documents
g My Computsr

) My Network Places

[v]

1 objects 24,4 KB 4 My Computer

<«

Details

Figure 4: data folder

16

.
{# alias. dat (Z:\Oyster\data) - GVIM =Jo&d

File Edit Tools Synkax Buffers Window Help
ARRSE @@ B hwe 534 THda 72 2

tHAME HICK HAME |
AARON RON
ABEL ABE
ABEDHEGD BEDHEY
ABIJAH AB
ABIJAH BIGE
ABIGAIL AE
ABIGAIL ABBIE
ABIGAIL ABBY
ABIGAIL AEBY
ABIGAIL GAIL
ABIGAIL NABBY
ABHER AB
ABNER ABBIE
ABRAHAM ABE
ABRAHAM ABRAM
ABRAHAM BRAM
ABSALOM AB
ABSALOM ABEIE
ABSALOM APP
ADALINE ADA
ADALINE ADELA
ADALINE ALINE
ADALINE EDITH

ADAN ADE

ADAM EDIE

ADDY AD

ADELAIDE ADA hd

Figure 5: alias.dat file

The other required folder must be named ‘lib’ (shown in Figure 6) and must contain the
following files:

mysql-connector-java-5.0.8-bin.jar
ojdbc14.jar

sgljdbc4.jar

sgljdbc.jar

swing-layout-1.0.jar

These files are used by OYSTER to make connections and handle the data when sources
other than text files are used.

Please note that the data and lib folder MUST be stored in the same folder in which the
oyster.jar file is located. When the .jar file is run, it searches the directory in which it is run
from for these two folders. If it fails to locate the folders then OYSTER will fail to make a
connection to any data source other than a text file and will be unable to perform any
matching on “Nickname”.

17

2 2:\0yster\lib R =1"<
File Edit ‘ew Favorites Tools Help #
- Y @] .
@ Back. _J L@ Ve Search [I_ Folders
Address |&J 7\ Ovsterilib Il] B
~
] . [_] I.-\-‘| mysql-connector-java-5.0.5-bi. .
File and Folder Tasks = _ﬁ}l Executable Jar File
) =1 czokg
) Make a new Folder
@ Publish this Folder ko Ly idbeld jar
the: Wb £ | Executable Jar File
4 Share this Folder 1,520 KB
Z D-‘l sqlidbe4 . jar
Executable Jar File
Other Places S = li’l 456 KR
@ Oyster D-‘l sqlidbe. jar
£} My Documents L] | Executable Jar File
— 435 KB
[Shared Documents
i My Computer Iy swing-layout-1.0jar
ﬂ My Nebwork Places £;,. Executable Jar File
135 KB
Details ¥ v
5 objects (Disk free space: 3.72 GB) 3.00 MB _r_i My Computer

Figure 6: lib folder

The main OYSTER folder is depicted in Figure 7.

File Edit View Favorites Tools Help

) Z:\Oyster [._HE]W

eBack < _) L@ pSearch [{ Folders v

Address |[ﬁ] TihOryster M Go
| Mame Size | Type
File and Folder Tasks & S)data File Fo
= Make & new folder Db File Fo
= | LT s e [CIRuRDOL File Fo
@ Publish this Folder to [l oyster.bat LKB M5-DO
the wieh ;

Ea:-; e (s Gy |£] Oyster:]ar 95 kKB Execu
=] RunScripkdd sl ZKB XMLD

Other Places & =

g Mew Volume (Z:)
My Documenks
| Shared Documents
:a My Compuker

& 1y Netwark Places

Details ¥ [vl(] Im | m
& objects 95.9 KB :i Ty Computer
Figure 7: OYSTER folder

The above structure is purely a suggestion to allow for organized OYSTER testing and runs.
It may also be beneficial to create a folder in which to store the generated log files

18

Launching OYSTER

There are various methods that can be utilized to launch OYSTER. The first method to run
OYSTER is via the command prompt. The following steps will launch OYSTER.

NOTE: OYSTER requires Java version 1.5 or newer to run or it will error out.

1. Open a Commnad Prompt
a. Select Start->Run
b. Type cmd, press Enter.
2. From here there are two ways to launch OYSTER.
a. Option 1: Navigate to the folder that contains the Oyster.jar file.
i. Use the cd command to navigate, type cd followed by the folder path
in which the .jar file can be found.
Example: cd d:\example\ Oyster\
ii. Once the command prompt is pointed to the correct folder, OYSTER
can be launched by typing the following command:
java —jar Oyster.jar
b. Option 2: Use the absolute path to the Oyster.jar file in the java command.
i. Through the use of the absolute path the Oyster.jar file can be
launched no matter which folder the command prompt is pointed to.
ii. An example command that uses the absolute path is:
java -jar D:\Example\ Oyster\ Oyster.jar

The second method is to create a batch file that contains the command needed to call and
run the Oyster.jar file. By creating a batch file it creates an additional file that must be
stored in the same folder as OYSTER (for portability) but removes the necessity to know
how to navigate to the folder containing the oyster.jar file as was required by the first
method. The following steps will create a batch file that can be used to launch an OYSTER
run.

1. Open Notepad
a. Select Start->Run
b. Type notepad, press Enter
2. Type java -jar Oyster.jar
a. Please note that the absolute path can be used for the Oyster.jar file if the .jar
file will always be stored in the same location but you want the ability to
move the batch file to a more accessible location such as on the Desktop. The
command with the absolute path would look like: java -jar
D:\Folder\Path\Oyster.jar
3. Save the file as Oyster.bat in the same folder that the Oyster.jar file is located unless
the absolute path was used as described above.
4. Tolaunch OYSTER simply double click on the Oyster.bat file.
Note: The path and file name in the batch file must always be edited to match the
path and file name of the Oyster.jar file whenever they are changed.

19

Invoking the OYSTER Run Script

Once OYSTER is launched a Run Script can be invoked to perform the desired run. Figure 8
shows the prompt provided by OYSTER at the beginning of each run.

N C\Windows\system32\cmd.exe |ﬂ‘d_hj

Z:“Oyster>java —jar Oyster. jar
Oyster v.3.3

Flease input the name of the runScript:

Figure 8: OYSTER Prompt

OYSTER expects to receive the name of the run script as input from the user. The specified
run script may or may not require the user to specify the absolute path along with the
name depending on the location from which the Oyster.bat file is launched. The following
three scenarios all illustrate how an OYSTER run script can be invoked.

1. OYSTER is being run from the same folder as the run script using Absolute Path
a. When prompted by the OYSTER run with "Please input the name of the
runScript:”, type D:\Oyster\Run1\RunScript.xml
b. You can see this example uses the absolute path “D:\Oyster\Run1\” in
addition to the name of the run script. In this scenario the absolute path is
not actually required, due to both the run script and the .jar file being located
in the same folder, but will not cause any error with the run.
2. OYSTER is being run from the same folder as the run script using Local Path
a. When prompted by the OYSTER run with "Please input the name of the
runScript:”, type RunScript.xml
b. You can see this example that since the Oyster.bat file is stored in and ran
from the same folder in which the run script is stored, it does not require the
absolute path, only the name of the run script.
3. OYSTER is being run from a different folder than the run script
a. When prompted by the OYSTER run with "Please input the name of the
runScript:”, type D:\Oyster\Run1\RunScript.xml
b. You can see this example uses the absolute path “D:\Oyster\Run1\” in
addition to the name of the run script. In this scenario, the absolute path
must be included since the Oyster.bat file is located in a different folder than
the run script.

Once the folder structure is complete and OYSTER can be launched properly, the OYSTER
run can be set up.

20

Run OYSTER with Extra Memory

The OYSTER system was designed to perform all of its processing in Random Access
Memory (RAM). This decision was made for various reasons but mainly to provide a
system that can process large quantities of records very quickly. When disk I/0 is removed
and the system relies strictly on RAM for its work space, the processing can be sped up
significantly.

Since OYSTER is written in Java, there are limitations on the amount of memory that is
allocated by default. The default memory allocation for Java is 64 megabytes. This is
enough space to process smaller amounts of records but you will eventually run out of
memory as you process more and more records into a Knowledge Base.

Java offers 2 parameters that allow the user to control the amount of memory (called a
heap in Java) to be allocated.

e -Xms
o This argument allows a user to define the initial size of them memory to be
allocated.
o Defaults to 2ZMB
o -Xmx

o This argument allows a user to define the maximum memory that can be
used during the Java run.
= NOTE: on Windows based 32-bit computers, the maximum memory
allowed to be allocated by Java is 2048MB (2GB). This limitation does
not exist in 64-bit systems or in UNIX.
o Defaults to 64MB

NOTE: When setting the Java memory size, the memory argument should be
specified using one of the letters 'm' or 'M' for MB, or 'g' or 'G' for GB. 'MB' or 'GB' will
not work.

These parameters are added to the java -jar Oyster.jar command ran from the
command prompt or stored in a run script.

A finished command that allocates 64MB of memory for the initial run with a maximum of
2GB of memory would be: java -Xmsé64M -Xmx2G -jar Oyster.jar

21

OYSTER XML Files

OYSTER functions are directed by a series of customizable XML documents. These
documents tell OYSTER everything from where the input source files are located, to what
attributes are located in the input source, to what rules should be applied in order to
perform ER. OYSTER requires a minimum of three XML documents in order to run
correctly. These three documents are:

e QOysterRunScript
e QysterSourceDescriptor
e CQOpysterAttributes

OYSTER always requires one OysterRunScript and one OysterAttributes file for every run
and always at least one OysterSourceDescriptor file. There must be one
OysterSourceDescriptor for each input source to be used during the OYSTER run.

OysterRunScript

The OysterRunScript is the main file for any OYSTER run. It is the first file requested by
OYSTER when the run is initiated. It is used to specify the following:

e The RunScriptName
o This attribute value must match the file name without the extension.
e If Explanation and Debug are turned on or off.
o These options restrict the amount of information written to the log files.
If extra detail is required in the Change Report.
If Trace is enabled.
If memory statistics are displayed at various stages in the run.
The location, size, name, and number of log files that can be created.
The RunMode for the run
The resolution engine to be used during the run.
o OYSTER offers three resolution engines (Described in detail in the Reference
guide):
= RSwooshStandard
e Uses Attribute-Based Matching
= RSwooshEnhanced
e Uses Attribute-Based Matching
= FSCluster
e Uses Record-Based Matching
e The path to the XML OysterAttributes document defining the entity attributes to be
used during the run
e The path to the XML Identity documents, if any, to be loaded at the start of the run

22

o This is an identity file generated by a previous OYSTER run.
The path to a location where the updated XML Identity documents will be stored at
the end of the run if any are specified for the run
A list of paths to the OysterSourceDescriptor XML document(s)
o One per source file to be included in the run.
The path to a location where the Link Index will be written at the end of the run
A path to each source input file and assertion input file

A simple OysterRunScript is illustrated in Figure 9.

<Oys

Chan

Size

</Oy

<?xml version="1.0" encoding="UTF-8"?>

terRunScript>
<Settings RunScriptName="TestRun” Explanation="Off" Debug="Off" SS="No”
geReportDetail="No” Trace="0On” />

<LogFile Num="5"
="100000000">2z:\Oyster\Log\MergePurge %g.log</LogFile>

<RunMode>IdentityCapture</RunMode>
<EREngine Type="RSwooshEnhanced" />
<AttributePath>Z:\Oyster\OysterAttributes.xml</AttributePath>

<!-- Identity Input Selection -->
<IdentityInput Type="None"/>

<!-- Identity Output Selection (Only needed when Capture="Yes”) -->
<IdentityOutput Type="TextFile">Z:\Oyster\Test.idty</IdentityOutput>

<!-- Link Output Selection (Always Required) -->
<LinkOutput Type="TextFile">Z:\Oyster\Test.link</LinkOutput>

<!-- Sources to Run -->

<ReferenceSources>
<Source>Z:\Oyster\OysterSourceDescriptorl.xml</Source>

</ReferenceSources>

sterRunScript>

Figure 9: Sample OysterRunScript

The OysterRunScript in Figure 9 makes use of only text files for the Output, OYSTER also
has the ability to read and write to a database. This RunScript is for an IdentityCapture run,
different tags are used when performing an assertions run. A full reference of the
OysterRunScript file can be found in the OYSTER Reference Guide. Both types of matching,
Record-Based and Attribute-Based, are also defined in detail in the OYSTER Reference

Guide.

23

OysterSourceDescriptor

The OysterSourceDescriptor contains information about the input source file. It is used to
specify the location of the input source, and the attributes in the source that make up a
record. The OysterSourceDescriptor is different from the OysterAttributes and
OysterRunScript files in that there can be multiple OysterSourceDescriptors in a single
OYSTER run. This is due to OYSTER requiring an OysterSourceDescriptor file be created for
each input source that will be used during the OYSTER run, if there are five input source
files then there should be five corresponding OysterSourceDescriptors for those files. Each
OysterSourceDescriptor should contain a unique value in the “Name” field or OYSTER will
not function correctly.

A sample OysterSourceDescriptor is illustrated in Figure 10.

<?xml version="1.0" encoding="UTF-8"?>

<OysterSourceDescriptor Name="sourcel">

<!-- Types of Sources (Only one can be defined) -->
<!-- Delimited -->
<Source Type="FileDelim" Char="|" Qual="" Labels="Y">Z:\Oyster\

Test Data 1.txt</Source>

<!-- Items in Source (One for each item in the source including
reference identifier -->
<ReferenceItems>
<!-- For Delimited -->
<Item Name="IdentityID" Attribute="Q@RefID" Pos="0"/>
<Item Name="Fname" Attribute="StudentFirstName" Pos="1"/>
<Item Name="Lname" Attribute="StudentLastName" Pos="2"/>
<Item Name="SSN" Attribute="SocialSecurityNbr" Pos="3"/>
<Item Name="DOBYMD" Attribute="StudentDateOfBirth" Pos="4"/>
</Referenceltems>
</OysterSourceDescriptor>

Figure 10: Sample OysterSourceDescriptor

The OysterSourceDescriptor in Figure 10 specifies a delimited text file as the input source
with the file being Delimited by “|” and the file having labels. All of this is specified in one
line of the OysterSourceDescriptor as shown in Figure 11.

<Source Type="FileDelim" Char="|" Qual="" Labels="Y">Z:\Oyster\
Test Data 1.txt</Source>

Figure 11: Source File Definition in OysterSourceDescritpor

The last section of the file, illustrated in Figure 12, identifies the Attributes in the input
source and the position that each one is located at in the file.

24

<Referenceltems>
<!-- For Delimited -->
<Item Name="IdentityID" Attribute="Q@RefID" Pos="0"/>
<Item Name="Fname" Attribute="StudentFirstName" Pos="1"/>
<Item Name="Lname" Attribute="StudentLastName" Pos="2"/>
<Item Name="SSN" Attribute="SocialSecurityNbr" Pos="3"/>
<Item Name="DOBYMD" Attribute="StudentDateOfBirth" Pos="4"/>
</Referenceltems>

Figure 12: Attribute identifiers in OysterSourceDescriptor

A full reference of the OysterSourceDescriptor file can be found in the OYSTER Reference
Guide.

OYSTER Reserved Words

During the design of the OYSTER system, it was decided that there is a need for a set of
reserved words that can be used to specify special attribute types in the OYSTER Source
Descriptor. In Figure 12, The @RefID keyword is used as the Attribute value for the item
named IdentityID. This specific keyword informs OYSTER that this attribute is the unique
identifier for the references in the source input file. OYSTER will exclude this value when
creating OYSTER IDs but will use it to allow for future file tracking along with the source
name specified.

A complete list of OYSTER reserved words, and their uses, can be located in the OYSTER
Reference Guide.

25

OysterAttributes

The OysterAttributes file is used to identify each attribute that is present in the input

source and the rules to be used by OYSTER to perform ER on the input source records. Each

XML <Attribute> element in the document defines one OYSTER attribute labeled by the
value of the XML “Item” attribute. These labels are used in the Source Descriptor to
identify the logical items in a Reference Source that are OYSTER identity attributes. In

addition to the attribute name, the value of the XML attribute “Algo” specifies a pre-defined

matching algorithm that is to be used for comparing attributes value of this type.

Specifying an algorithm is optional, and if it not given or a given name is not found, then a

default matching algorithm is used.

A sample OysterAttributes file is illustrated in Figure 13.

<?xml version="1.0" encoding="UTF-8"?>

<OysterAttributes System="School">
<Attribute Item="StudentFirstName" Algo="None” />
<Attribute Item="StudentLastName" Algo="None”/>
<Attribute Item="SocialSecurityNbr" Algo="None”/>
<Attribute Item="StudentDateOfBirth" Algo="None”/>

<l-- -=>
<IdentityRules>
<Rule Ident="1">
<Term Item="Fname" MatchResult="Exact"/>
<Term Item="Lname" MatchResult="Exact"/>
<Term Item="SSN" MatchResult="Exact"/>
</Rule>
<Rule Ident="2">
<Term Item="Fname" MatchResult="Initial"/>
<Term Item="Lname" MatchResult="Exact"/>
<Term Item="SSN" MatchResult="Exact"/>
</Rule>
</IdentityRules>
</OysterAttributes>

Figure 13: Sample OysterAttributes File

In this example the default matching algorithm will be used since Algo is specified as
“None”. This provides the users the ability to match using the following comparators:

e True/False

o EXACT
EXACT_IGNORE_CASE
TRANSPOSE
INITIAL
NICKNAME
SOUNDEX
DMSOUNDEX

© 0O O O O O

26

IBMALPHACODE
MATCHRATING
NYSIIS
CAVERPHONE
o METAPHONE
e Functionalized
o LED - defaultis 0.8 if LED match is used, signature for user defined threshold
is LED(threshold)
o QTR - defaultis 0.25 if QTR match is used, signature for user defined
threshold is QTR(threshold)
SUBSTRLEFT (length)
SUBSTRRIGHT(length)
SUBSTRMID(start, length)
Scan(Direction, CharType, Length, Casing, Order)
SmithWaterman(Match, Mismatch, Gap, Threshold)

o O O O

0O O O O O

All the above comparators are described in detail in the “Oyster v3.3 Reference Guide”.

The last section of the file, illustrated in Figure 14, specifies the identity rules that are
defined by the user to be used to perform ER on the records in the input source.

<IdentityRules>
<Rule Ident="1">
<Term Item="Fname" MatchResult="Exact"/>
<Term Item="Lname" MatchResult="Exact"/>
<Term Item="SSN" MatchResult="Exact"/>
</Rule>
<Rule Ident="2">
<Term Item="Fname" MatchResult="Initial"/>
<Term Item="Lname" MatchResult="Exact"/>
<Term Item="SSN" MatchResult="Exact"/>
</Rule>
</IdentityRules>

Figure 14: Identity Rules defined in OysterSourceDescriptor

In this script ‘MatchResult="Exact” and ‘MatchResult="Initial”’ are being used. By default
OYSTER can use the match codes listed above but this can be extended by the user by
extending the base class OysterComparator.java as a new class with a name starting with
“OysterCompare” and implementing the method String: getMatchCode(String, String).

A full reference of the OysterAttributes file can be found in the OYSTER Reference Guide.
As of OYSTER v3.3 the OysterAttributes file also allows for user Defined Indexes (UDI) to be
defined for the run and also allows users to specify Cross-Attribute Comparison (CAC)

rules. Both of these new functionalities are define din detail in the OYSTER Reference
Guide.

27

Example Scenario

Now that we have covered the basics of how OYSTER runs and each of the XML files
required for it to run successfully, consider the following data:

ID|FirstName | LastName |DateofBirth
10 |MICHAEL |DANIELS|11/16/1938

58 | HECTOR | SCHOONOVER |10/21/1966
6| CLINTON |REYES|2/20/1910
43|GRACIELA |HOANG|6/4/1913

37 |MICHAEL|AMPEREZ|1/24/1987

11| |IDANIELS|11/16/1938

57 | HECTOR | SCHOONOVER |10/21/1966
16| CLINT|REYES|2/20/1910

42 |GRACIELA |HOANG|6/4/1913

Assume that a company has been having problems on an employee report that is generated
monthly. The report has some employees listed multiple times which is skewing the
numbers and causing erroneous data to be presented to upper management. The manager
who receives this report reviewed the data and has noticed that the duplicate records
match one of the following rules:

1. The first name is missing, the last names are the same, and the dates of birth are the
same.

2. The first name was entered incorrectly but the last names are the same and the date
of birth are the same.

3. The first names are the same, the last names are the same, the dates of birth are the
same but the employee was supplied a new ID.

The manager has tasked you with cleaning up and consolidating the employee table based
on his three matching rules.

With OYSTER

To perform this task using OYSTER, the first step should be to analyze the data set and
create an OysterSourceDescriptor file. This file will assign logical names to each of the
attributes in the data set.

This dataset contains four attributes: ID, FirstName, LastName, DateofBirth. These four
attributes should be translated into the Referenceltems section of the
OysterSourceDescriptor file. Note that when using a delimited text file as the input source
the “Name” and “Attribute” values defined for each item do not need to match the labels

28

given in the files. The “Pos” however has to match the relative position of the attribute in
the input source.

The Referenceltems sections would be defined as illustrated in Figure 15.

<ReferenceItems>
<!-- For Delimited -->
<Item Name="IdentityID" Attribute="Q@RefID" Pos="0"/>
<Item Name="Fname" Attribute="StudentFirstName" Pos="1"/>
<Item Name="Lname" Attribute="StudentLastName" Pos="2"/>
<Item Name="DOBYMD" Attribute="StudentDateOfBirth" Pos="3"/>
</Referenceltems>

Figure 15: Attributes Defined in OysterSourceDescriptor

The last step in building the OysterSourceDescriptor is specifying the type of file and where
it will be located. Since this dataset is delimited by the character “|”, the entry would look
like the Source in Figure 16 assuming the file has been saved as
Z:\Oyster\Input\Data_1.txt.

<Source Type="FileDelim" Char="|" Qual=""
Labels="Y">Z:\Oyster\Input\Data_ 1.txt</Source>

Figure 16: Source File Definition

Those are all of the steps required in building the OysterSourceDescriptor. You should
make a note of where the file is saved as this location must be specified later in the
OysterRunScript. The completed OysterSourceDescriptor file is illustrated in Figure 17.
Save this file in the Scripts folder discussed earlier in the Files and Structure section of this
document.

<?xml version="1.0" encoding="UTF-8"?>

<OysterSourceDescriptor Name="sourcel”>

<!-- Types of Sources (Only one can be defined) -->
<!-- Delimited -->
<Source Type="FileDelim" Char="|" Qual=""

Labels="Y">Z:\Oyster\Input\Data 1.txt</Source>

<!-- Items in Source (One for each item in the source including
reference identifier -->
<ReferencelItems>
<!-- For Delimited -->
<Item Name="IdentityID" Attribute="Q@RefID" Pos="0"/>
<Item Name="Fname" Attribute="StudentFirstName" Pos="1"/>
<Item Name="Lname" Attribute="StudentLastName" Pos="2"/>
<Item Name="DOBYMD" Attribute="StudentDateOfBirth" Pos="3"/>
</Referenceltems>
</OysterSourceDescriptor>

Figure 17: Complete OysterSourceDescriptor File

29

Now that the OysterSourceDescriptor file has been created the OysterAttributes file must
000Dbe created to define which algorithms should be used on each attribute during
matching and what matching rules will be used during ER. Note that the attributes Item
value in the OysterAttributes file must match the value assigned to Attribute in the
OysterSourceDescriptor file. Since only Missing and Exact are required when doing
matching for this dataset, the default OYSTER matching algorithm can be used. The defined
attributes are shown in Figure 18. The Algo attribute can be left off since the default
algorithm is to be used by OYSTER.

<Attribute Item="StudentFirstName" />
<Attribute Item="StudentLastName" />
<Attribute Item="StudentDateOfBirth" />

Figure 18: Defined Attributes in the OysterAttribute.xml File

The next step is to review the matching rules provided and translate them into Rules that
can be used by OYSTER. Rule one states that the first name is missing, the last names are
the same, and the dates of birth are the same. As discussed earlier, by default OYSTER can
handle Exact and Missing matching (along with others). That means this rule could be
translated into the OYSTER rule illustrated in Figure 19.

<Rule Ident="1">
<Term Item="StudentFirstName" MatchResult="Missing"/>
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="StudentDateOfBirth" MatchResult="Exact"/>
</Rule>

Figure 19: Identity Rule 1

The next rule states that the first name was entered incorrectly but the last names are the
same and the date of birth are the same. This rule can be translated into the OYSTER rule
illustrated in Figure 20.

<Rule Ident="2">
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="StudentDateOfBirth" MatchResult="Exact"/>
</Rule>

Figure 20: Identity Rule 2

The last rule states that the first names are the same, the last names are the same, the dates
of birth are the same but the employee was supplied a new ID. This rule can be translated
into the OYSTER rule illustrated in Figure 21.

<Rule Ident="3">
<Term Item="StudentFirstName" MatchResult="Exact"/>
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="StudentDateOfBirth" MatchResult="Exact"/>
</Rule>

Figure 21: Identity Rule 3

30

The complete OysterAttributes file is illustrated in Figure 22.

<?xml version="1.0" encoding="UTF-8"7?>

<OysterAttributes System="School">
<Attribute Item="StudentFirstName" />
<Attribute Item="StudentLastName" />
<Attribute Item="StudentDateOfBirth" />
<l-= =-=>
<IdentityRules>
<Rule Ident="1">
<Term Item="StudentFirstName" MatchResult="Missing"/>
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="StudentDateOfBirth" MatchResult="Exact"/>
</Rule>
<Rule Ident="2">
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="DOBYMD" MatchResult="Exact"/>
</Rule>
<Rule Ident="3">
<Term Item="StudentFirstName" MatchResult="Exact"/>
<Term Item="StudentLastName" MatchResult="Exact"/>
<Term Item="StudentDateOfBirth" MatchResult="Exact"/>
</Rule>
</IdentityRules>
</OysterAttributes>

Figure 22: Complete OysterAttributes File

Save this file in the Scripts folder discussed earlier in the Files and Structure section of this
document. This location will be specified in the OysterRunScript.

Now that the OysterAttributes and OysterSourceDescriptor files are created, the
OysterRunScript can be created. This file requires you specify the location of your
OysterAttributes and OysterSourceDescriptor as well as the location of where you want the
output files to be stored. You are can also set the level of logging to take place and the
RunMode that will be used for this particular run. The complete OysterRunScript is
illustrated inFigure 23. Save this file as “Z:\Oyster\OysterRunScript.xml”.

31

<?xml version="1.0" encoding="UTF-8"?>

<OysterRunScript>
<Settings RunScriptName="OysterRunScript" Explanation="Off" Debug="Off"
ChangeReportDetail="No" Trace="On” />

<LogFile Num="5" Size="100000000">Z:\Oyster\Log\Run_%g.log</LogFile>
<RunMode>IdentityCapture</RunMode>

<EREngine Type="FSCluster" />
<AttributePath>Z:\Oyster\Scripts\OysterAttributes.xml</AttributePath>

<!-- Identity Input Selection -->
<IdentityInput Type="None"/>

<!-- Identity Output Selection (Only needed when CaptureMode=On) -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output\Test.idty</IdentityOutput>

<!-- Link Output Selection (Always Required) -->
<LinkOutput Type="TextFile">Z:\Oyster\Output\Test.link</LinkOutput>

<!-- Sources to Run -->
<ReferenceSources>
<Source>Z: \Oyster\Scripts\OysterSourceDescriptorl.xml</Source>
</ReferenceSources>
</OysterRunScript>

Figure 23: Compete OysterRunScript File

Now that each of the three required XML files have been created, you can launch OYSTER
through either of the methods discussed in the Launching OYSTER section of this
document. Once launched, you will be prompted for the name of the OysterRunScript as
shown in Figure 24:

¥ C\Windows\system32\cmd.exe = | B ||

Z:\Oyster>java —jar Oyster. jar
Oyster v.3.3

Flease input the name of the runScript:

Figure 24: Command prompt opened by Oyster.bat file

The OYSTER version number is displayed when OYSTER is launched as depicted in Figure
24.

32

Once you specify the name of the OysterRunScript and press enter OYSTER will process
your records and display the results on the screen, the results for this run are shown on
Figure 25 and Figure 26.

ER CA\Windows'system32\cmd exe |E|E|é]

“Oyster>java —jar Oyster.jar
Oyster v.3.3

FPleaze input the name of the punScript:
OysterRunScript.xml
Opening Z:sOysterNOysterRunScript.xml

Initializing Comparators...

StudentFirstNane edu.valr.oyster.association.matching.OysterCompareDefaul
t CEXACT,. EXACT_IGNORE_CASE, MISSING, INITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSQ)
UNDEX, IBMALPHACODE. MATCHRATING, NYSIIS, CAUERPHONE. CAUERPHONEZ, METAPHONE, ME
}gPHa?Eﬁﬁ“:EgDLEHHNHUNSCH, SMITHWATERMAN. SCAM. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM

StudentLastMame edu.ualr.oyster.association.matching.OysterCompareDefault [EXACT .,
EXAGT_IGHORE_CASE. MISSING. IMITIAL. TRANSPOSE, LED. QIR. SOUNDEX. DMSOUMDEX.
BMALPHACODE, MATCHRATING. NYSIIS. CAVERPHONE. CAVERPHONE2. METAPHONE,. METAPHONEZ
- NEEDLEMANWUNSCH. SMITHWATERMAN. SCAN. SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID. HICK

MAME 1

S tudentDateOfBirth edu.uwalr.oyster._association.matching.OysterCompareDef aull
it CEXACT,. EXACT_IGHNORE_CASE, MISSING, INITIAL. TRANSPOSE. LED, QTR. SOUNDEX. DMSQ)
UNDEX, IBMALPHAGODE. MATCHRATIMG, WYSIIS. CAUERPHOME. CAUERPHOMEZ. METAFPHONE, ME|
}%P“a¥gﬁﬂn:E§DLEHRNHUNSC“' SMITHWATERMAN, SCAN. SUBSTRLEFT, SUBSTRRIGHT, SUBSTRHM|

Tnitializing Index...
Index Type: Mulllndex

OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUN

Initializing EntityMap...
EntityMap Type: EntityMap

N CRefID

B StudentFirstHame

C StudentLastName

D StudentDateOfBirth

Engine Type: OysterMergeEngine

Bypassing Least GCommon Rule filter

Bource: Z:\OystersData_1._txt

[RSwooshing. ..

Records processed for Z:\Oyster\OysterSourceDescriptorl.xml: 9(4>
i of Consolidation Steps: 4

B

il Summary Stats

T S S
lTotal Records Processed

Min Cluster Size

B

i Cluster Stats Hit

L S

Cluster Size Distribution

Cluster Sizi # of Clusteri # of Recordi

2

Clusters loaded
References loaded
fug # of Refs/Cluster

fverage Cluster Grouping
Average CGluster by Gount
Average CGluster Size
Mumber of Duplicate Recs
Duplication Rate

Total Candidates Size

Total DeDup Candidates Size

Total # Candidates

Avg Candidates per Input

Total Matched Count

Matches per Candidates Size [515]5)
Matches per DeDup Candidates Size A .88RnA
Matchez per Candidates 8.908008

TR

Lz Rule Stats #if
R
Mumber of Rules: 3

Rule Firing Disteibution
Rule

1

2

Figure 25: Output generated by OYSTER run as written to the Command Prompt - 1

B8 C\Windowshsystem32\cmd exe
HH R
i Index Stats #fl
B

eys

Min tokens > 1 per key
Total tokens per key
Unigue tokens per key H
Total per Unigue tokens :
Unigue per Total tokens =

Max key
;op 18 keys
8 ? 5

7.00008
7. 008808
1.886808
1.80808

: <null>

: <null>
4 3

2

Candidate Size # of Candidates # of Records

BEREididi b did izt e

H# Timing Stats #Hi

LR s pie i iaiiiie gt
[Elapsed Seconds
[hroughput <{records hour>

a
Infinity

Average Matching Latency (ms> B.?????g

Max Matching Latency <ms>
Min Matching Latency {ms}»

1
Average Mon—-Matching Latency (ms 3.11111
Max Mon—Matching Latency (ms) 8
Min Hon—Matching Latency (ms) 1

Time proce started at 2012-08-24 20_11 .48
Time proce ended at 2812-88-24 28.11 .48
Total elapsed time B hour<{s> B nminute{s? B second<{(s>

ster>pause
any key to continue .

[

Figure 26: Output generated by OYSTER run as written to the Command Prompt - 2

From the results you can see that OYSTER was able to read nine records and resolve them
to five entities (Clusters).

The OYSTER output is stored in XML format in the “Identity Change Report.txt”, “Test.idty”,

and the “Test.link” file that was specified in the OysterRunScript. The contents of the files

are shown in Figure 27, Figure 28, Figure 29 respectively.

| Identity Change Report.txt - Notepad

- "III---I---II--lE:I =) -EL-‘

File Edit Format View Help

Date

Identit
jCount o
count of
count of
count of
count of
count of

Identity

PYSTER Identity change Report

T Aug 24, 2012

runscript path: oysterrunscript.xml
RUNSCript Name: OysTerrunscript

change summary section

output Identities: 5

Input Identities: 0

Input Identities updated and written to output:
Input Identities Not updated and written to output:
Input Identities merged: 0

New Identities Created: 5

change petail section

New Identities Created
Identifier
IlMJSPGYRUTOZVYRS
AMFXVKZICWESMSUN
9OVNIN22HKWXCKIH
RWUIWZNNP3BLDHEL
XLWMSSEIPFKX6PQO

Input Identities merged
Input Identifier

Input Identities updated
Identifier

oo

m

Figure 27: Change Report Generated by OYSTER Run

34

— —
] Testidty - Notepad

Eile Edit Format View Help
k?xml version="1.0" encoding="UTF-8"7> ~
<root> v
«Metadata>
<Modifications>
<Modification ID="1" Oysterversion="3.3" Date="2012-08-24 20.11.48"
Runscript="oysterrunscript” />
</Modifications>
<attributes>
<attribute Name="@RrefID" Tag="aA"/>
fl <Attribute Name="StudentFirstName" Tag="B"/>
<Attribute Name="studentLastName" Tag="C"/>
<attribute Name="studentpateofsirth” Tag="D"/>
</Attributess
</Metadatas
<Identities>
<Identity Identifier="1MI5PGYRUTOZVYRS" CDate="2012-08-24">
<references>
I <References
<value>Arsourcel. 37 |BAMICHAEL |CAAMPEREZ | DAL /24 /1987 </value>
<Traces/>
</Reference>
</Referencess>
</Identity>
<Identity Identifier="90VN3N22HKWXCKIH" CDate="2012-08-24">
<rReferences>
<reference>
<value>arsourcel. 57 | BAHECTOR | CASCHOONOVER | DA10/21/1966</value>
<Traces/>
</rReference>
<References
<value>A*sourcel, 58 |BAHECTOR |CASCHOONOVER | DA10,/21/1966</value>
<Traces/>
</Reference>
</References>
</Identit
<Identity Identifier="AMFXVKZICWESMBUN" CDate="2012-08-24"> L
<References> 3
<reference>
<value>arsourcel.10|BAMICHAEL |CADANIELS|DA1L/16/1938</value>
<Traces/>
</rReference>
<References
<valuesAhsourcel.ll|CADANIELS|DAL1/16/1938</Values
<Traces/>
</Reference>
</References>
</Identit
<Identity Identifier="RWUIWZNNP38LDH61" CDate="2012-08-24">
<References>
<reference>
<value>arsourcel.16|BACLINT|CAREYES|DAZ/20/1910</value>
<Traces/>
</rReference>
<References
<value>arsourcel. 6| BACLINTON |CAREYES|DAZ/20,/1910</value>
<Traces/>
</Reference>
</References>
</Identity>
<Identity Identifier="XLWMSSEIPFKX6PQO" CDate="2012-08-24">
<References>
<reference>
<value>Arsourcel.42 | BAGRACIELA |CAHDANG |DAG/4 /191 3</value>
I <Traces/>
</rReference>
<Reference>
<value>arsourcel.43|BAGRACIELA |CAHOANG |DAG /4 /1913</value>
<Traces/>
</rReference>
</References>
</Identity> L4
</Identities>
</root> <
L
Figure 28: Identity File Generated by OYSTER Run
[Tt — (= © fime|
| Testlink - Notepad =
Eile Edit Format Niew Help
refID OysterID Rule -
sourcel.11 AMFXVEZ TCWESMEUN [1] o
sourcel. 37 1MISPGYRUTOZVYRS [&]
sourcel.l16 RWUIWZNNP3IBLDHEL [2]
sourcel. 57 QOWVNINZ ZHKWXCKIH [2] -
sourcel. & RWUIWZNNP3IBLDHEL (&, 2]
sourcel. 58 GOVN3IN2 ZHKWXCKIH (&, 2]
sourcel.43 XKLWMSSEIPFEXGEPQO (@, 2]
sourcel.42 XLWMSSEIPFEXGEPQO [2] =

2
sourcel.10 AMFXVKZ TCWESMEUN @, 1] H

[- -

Figure 29: Link File Generated by OYSTER Run

35

What Is So Great About OYSTER

With the above scenario it may be hard to see what is good about using OYSTER. It may
seem like creating the XML files is more work than it is worth to consolidate the nine
records. Imagine, however, that these nine test records are an excerpt from a table
containing thousands of records. Imagine again trying to process all these records by hand.
This would be nearly impossible to accomplish without some degree of error and would
take a ridicules amount of time. This is where OYSTER comes in. Through using the same
XML scripts that we created for the nine records, OYSTER can perform the same Entity
Resolution on the thousands of records by simply replacing the source file(s) with a file
containing all of the records.

36

OYSTER Run Configurations

OYSTER can be configured to perform three of the four basic ER architectures and four
types of asserted linking (discussed earlier). For OYSTER to run, a user must specify what
“mode” it should run in. The mode is defined by the value defined in the XML <RunMode>
tag of the source descriptor. This section will discuss the basic constraints and
configuration requirements of setting up an OYSTER run and demonstrate how to use

OYSTER for each of the following:

e Merge-purge
o RunMode = “MergePurge”
e |dentity capture
o RunMode = “IdentityCapture”
e Identity build from assertions
o Reference to Reference
= RunMode = “AssertRefToRef”
o Reference to Structure
= RunMode = “AssertRefToStr”
o Structure To Structure
= RunMode = “AssertStrToStr”
o Split Structure
* RunMode = “AssertSplitStr”
e ldentity resolution
o RunMode = “IdentityResolution”
e |dentity Update
o RunMode = “IdentityUpdate”

Merge-purge

Figure 30 illustrates the dataflow for an OYSTER run configured to perform merge-purge.

OYSTER

Reference
Sources

%

Figure 30: Merge-purge configuration

37

Configuration

When OYSTER is configured to perform merge-purge there should also be no input
identities or output identities specified in the OysterRunScript, but a Link files must be
specified as shown in Figure 31.

<!-- Identity Input Selection -->
<IdentityInput Type="None"/>

<!-- Identity Output Selection -->
<IdentityOutput Type="None” />

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 31: Defined Input and Output for Merge-purge

Lastly, the RunMode should be set to “MergePurge” as shown in Figure 32.

<RunMode>MergePurge</RunMode>

Figure 32: RunMode Set to “MergePurge” in OysterRunScript for Merge-purge

38

Example

This run will use the test data file named ‘Merge-purgeTest.txt’, illustrated in Figure 33.
This data consists of six references composed by five attributes. The first attribute is the

IdentitylID, this is a unique identifier associated to each record. The other attributes consist
of FirstName, LastName, SchoolCode, and DOB. When these attributes are combined as they

are in the source file they are used to define a set of sample student references.

% MergePurgeTest. txt (Z:\Oyster\Run00 1\ nput) - GVIM

=X

File Edit Tools 3Zwnkax Buffers Window Help

ndentityID |FirstHame |LastHame | SchoolCode | DOB
1|Edgar | Jones | B34 | 2006811 04

2 |Mary|Smith|G55] 19990921
3|Eddie |Jones |H15| 20081104

4| Mary | Smith|H17 19990921

C|Eddie | Jones | G34| 200681104

6| Super |[Han |G19 | 28811184

1,1

All

QAERE 9@ B BRe S5SA TR

Figure 33: Source data for merge-purge run

After analyzing the source data the source descriptor file can be created. This file contains

information including the location of the source data, the attributes to be used to define

each reference in the source, and how to connect to the source. The contents of this file are

illustrated in Figure 34.

¥ MergePurgeSourceDescriptor.xml + (C:\Oyster\Run001\Scripts) - GVIM2
Fle Edit Tools Syntax Buffers Window Help

<OysterSourceDescriptor Hame="source1”>
<t-- Delimited -->

|MergePurgeTest txt<{/Source’

entifier -->
<Referenceltems>
<?*-- For Delimited -->
<Item Hame="IdentityID" Attribute="ERefID" Pos="'8"/>

<Item Hame="Lname” Attribute="StudentLastHame” Pos="2"/>
<Item Hame="Scode” Attribute="LEA" Pos="3"/>

</Referenceltems>
<f0ysterSourceDescriptor>

AERE 28 B ERE HSA TIda ?2 4
<7xml version="1.8" encoding="UTF-8"7>
<t--

Document : HMerge-purgeSourceDescriptorqg.xml

Created on : 18/18/2811

Author : Fumike Kobayashi

Description: Source Descriptor for the Herge-Purge sample run
-—>

<Item Hame="Fname" Attribute="StudentFirstHame" Pos="1"/>

<Item Hame="DOBYMD" Attribute="StudentDate0fBirth" Pos="4"/>

<Source Type="FileDelin” Char=""|" Qual=""" Labels="%Y">c:\0yster\Run@81\Inputi

<*-- Items in Source (One for each item in the source including reference id

w

1.1 All

Figure 34: Source Descriptor used for Merge-purge sample run.

39

Once the source descriptor is defined the source attributes file must be defined. This file is
stored in the Source folder along with the source descriptor file above. The attributes file is
used to define the attributes in the source along with the algorithm used to compare the
attributes and the matching (identity) rules used to perform ER. For this sample run two
identity rules will be used. The first rule states that the reference will be considered
equivalent if the FirstName, LastName, and DOB attributes match. The second rules states
that the references are equivalent if the LastName, DOB, and SchoolCode match. The
source attribute file is named ‘MergePurgeAttributes.xml’ and is shown in Figure 35.

¥ MergePurgeAttributes.xml + (C:\Oyster\Run001\Scripts) - GYIM2
Fle Edit Tools Syntax Buffers Window Help

ad@é 9@ B BERB LA T2 ? 2
|B7xnl version="1.0" encoding="UTF-8"7> ~
{t—-

Document : MergePurgeattributes.xnl

Created on : 16/18/11

Author : Fumiko Kobayashi

Description:

Attribute xml file for the Merge-purge sample run
-->

<OysterAttributes System="School™>
<Attribute Item="StudentFirstMame™” Algo= "none’ ;>
<attribute Item="'StudentLastHame" Algoe="none" />
<Attribute Item="LEA" Algo="none" />
<Attribute Item="StudentDate0fBirth™ Algo="none" />

{t—- —=>
<IdentityRules>
<Rule Ident="1">
<Term Item="StudentFirstHame'" HatchResult="Exact"/>
<Term Item="StudentLastHame"” HatchResult="Exact"/>
{Tern Item="StudentDate0fBirth” HatchResult="Exact"/>
</Rule>
<Rule Ident="2">
<Term Item="StudentLastNHame"” HatchResult="Exact"/>
<Term Item="LEA" HatchResult="Exact"/>
<Term Item="StudentDate0fBirth" HatchResult="Exact"/>
</Rule>
</IdentityRules>
</fOysternttributes> v
1,1 All

Figure 35: Attributes file used for the Merge-purge sample run

Once the source data is obtained, the source descriptor is created, and the attributes file is
created the last step is to configure the run script since it is the controlling xml file that tells
OYSTER where to find all the other files. Due to this being a merge-purge ER run, no input
identities or output identities files should be specified in the run script. As mentioned
above the run script should be stored in the root OYSTER folder as this is where the
OYSTER program is expecting the file to reside. The file for this sample is named
‘MergePurgeRunScript.xml’ and is shown in Figure 36.

40

k. MergePurgeRunScript.xml + (C:\Oyster) - GYIM1
Fie Edit Tools Syntax Buffers Window Help

aQARE 98 B hue 5334 THD 22

n .
K-

Document : HergePurgeRunScript.xml

Created on = 2/86/2012

Author : Fumiko Kobayashi

Description: Sample Merge-purge Run Script
-—>

KOysterRunScript>
<Settings RunScriptHame="tergePurgeRunScript” Explanation="0ff" Debug="0ff" ChangeReportDetail="Yes"/>

<LogFile Hum="5" Size="1000006660">C:\0yster\Log\HergePurge_%g.log</LogFile>
<RunMode>HergePurge</Runkode>
<EREngine Type="RSwooshStandard" />

<t-- pttributes read from file only --> *
<AttributePath>C:\0yster\Run@61\ScriptsiHergePurgeattributes. xml</nttributePath>

<?-- Werge-purge does not start with any managed identities —->
<IdentityInput Type="Hone" />

<t-- Herge-purge does not produce any managed identities -->
<IdentityOutput Type="Hone" />

<1-- Werge-purge only output is the Link Index -->
<{LinkDutput Type="TextFile">C:\0yster\Run@81\0utputi\MergePurgelndex.link</Link0Output>

<ReferenceSources>
<Source>C:\0yster\Run@61\ScriptsiMergePurgeSourcebescriptor . xml</Source>
</ReferenceSources>
[</0ysterRunScript> v
2,8-1 Bot

Figure 36: Run Script used for Merge-purge Example

Now that all the scripts for the Merge-purge sample have been created we can run OYSTER.
To run OYSTER you double click on the Oyster.bat file (highlighted in Figure 37) that was
described earlier in the Launching OYSTER section of this document.

) Z:\Oyster g@
'l*r

File Edit ‘iew Favorites Tools Help

eBack - @ - l'ﬁ; /.__\1 Search H Folders v

Address |Lﬂ Z\Oyster [v] &z
| Marne Size | Type
File and Folder Tasks % [S)data File: Fald
Iim Renane this file = | Db File Fold
B ove this fi ICRun0 File Fold
gy Move .'s _'B =*| Merge-purgeRunScript. xml 1KE ML Deg
[©opy this file [Floyster.bat 1KE MS-DOS
@ Publish this file ko the @ (Oryster jar 95 KB Executa
Weh
() E-mail this file
T
iga Print this file ["I<] i | [)
Type: M3-DOS Batch File Date Modified: 9/4/2010 1:57 PM Si: 20 bytes :J My Computer

Figure 37: Oyster.bat file location

This action opens a command prompt and calls the Oyster.jar file to run via the command
line. The command prompt requests that you type the name of the Run Script that was
created, shown in Figure 38. Be sure to include the .xml extension along with the file name.
This file name is not case sensitive.

41

E¥ C\Windows\system32\emd.exe |£‘E‘£—hj

Z:\0yster>java —jar Quster.jar
Oyster v.3.

[Please input the name of the runScript:

Figure 38: Command prompted opened by Oyster.bat file

Once the name of the run script has been specified, as shown in Figure 39, press enter.
(Please see the Invoking the OYSTER Run Script section for more information.)

BN C\Windows\system32\cmd.exe |£‘E‘£—hj

Z:\Oyster>java —jar Ouster.jar
(TE3 -3 T

Flease input the name of the runScript:
MergePurge RunScript .xml_

Figure 39: Command Prompt with RunScript name typed

Once the run is complete you will see the results of the run written to the command box
window.

E C\Windows'system32\cmd exe

FPleaze input the name of the runScript:
MergePurgeRunScript . xml
Opening Z:\OystersMergePurgeRunScript.xml

Initializing Comparators...

StudentFirstNane edu.valr.oyster.association.matching.OysterCompareDefaul
t (EXRACT, EXACT_IGMORE_CASE., MISSIMG. INITIAL. TRANSPOSE, LED, QTR. SOUNDEX. DMSO)
UNDEX, IBMALPHACODE. MATCHRATING, NYSIIS, CAUERPHONE. CAUERPHONEZ, METAFHONE, ME
TAPHONEZ, NEEDLEMANWUNSCH, SMITHUATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM
ID. NICKNAME]

S tudentLastMame edu.ualr._oyster.association.matching.OysterCompareDefault [ERACT,
EXACT_IGNORE_CASE, MISSING, INITIAL, TRANSPOSE. LED. QTR. SOUNDEX. DMSOUNDEX.
[BMALPHACODE,. MATCHRATING. NYSIIS. CAVERPHONE. CAVERPHONEZ2, METAPHONE. METAPHONEZ|
Nn:g?DLEHRNHUNSCH. SHITHUATERMAN, SCAM, SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID. HNICH

LEA edu.ualr.oyster.association.matching.QysterCompareDefault [EXACT,. EXACT_I
GMORE_CASE, MISSIMG. INITIAL. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUNDEX. IBMALPHAC]
ODE, MATCHRATING, NYSIIS. CAUERPHONE. CAUERPHONEZ, METAPHONE, METAPHONEZ, NEEDLE
MANWUNSCH,. SMITHUYATERMAN. SCAM. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRMID, NICKNAME]

StudentDateOfBirth edu.uwalr.oyster.association.matching.OysterCompareDef aull
it CEXACT,. ERACT_IGHNORE_CASE, MISSING, INITIAL. TRANSPOSE, LED, QTR. SOUNDEX. DMSQ)
UMDEX, IBMALPHACODE. MATCHRATING, NYSIIS, CAUERPHOME. CAUERPHOMEZ, METAPHONE, ME
;gPHﬂ?Eﬁﬁn:EEDLEHHNH“NSCH, SMITHWATERMAM. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRHM|

Initializing Index...
Index Type: Hulllndex

OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUH

Figure 40: Information generated by OYSTER run to Command box - 1

EX C\Windows\system32\cmd.exe

Initializing EntityMap...
EntityMap Type: EntityMap

A BERefID

B StudentFirstName
C StudentLastMame
D LEA

E StudentDateOf Bix
Engine Type: OysterMergeEngine

Bypassing Least Common Rule filter
Bource: Z:“Oyster\RunBBixInput MergePurgelest.txt
[REwooshing. ..

[Records processed for Z:“Oyster“RunBB1-\Scripts:MergePurgeSourceDescriptor.xml:
<3>

f of Consolidation Steps: 3

HUERROR: Qutput Identities Input Identities — Merged Identities + New Identit|
ies

I R

ik Summary Stats i
I
Total Records Processed
Total Clusters

Max Cluster Size

Min Gluster Size > 1
Min Cluster Size

NTEEEE R B

i Cluster Stats i

TR R

Cluster Size Distribution

Cluster Siz: # of Clusteri i of Recurdi

2 i 2
3 i 3
Clusters loaded

References loaded
fvg # of Refs~/Cluster

Average Cluster Grouping
verage Cluster by Count
Average Cluster Size
Humber of Duplicate Recs
Duplication Rate

Total Candidates Size

Total DeDup Candidates Size

Total # Gandidates

Avg Candidates per Input

Total Matched Count

Matches per Candidates Size
Matches per DeDup Candidates Size
Matches per Candidates

NIRRT B S
e R g #it

I R

ik Index Stats
Llaieadis iz Bl 2t

e us

Total tokens

Unigue tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key
Total tokens per key
Unigue tokens per key 5]5]5}
otal per Unigue tokens - BEAAAa
Unigque per Total tokens 1.06808

<null>
: <null>
1 a

Gandidates # of Records

R R R

k. Timing Stats #i
LEpEadaistiaidis 2iaiaid 2 28 g

Elapsed Seconds

Throughput {records-hour>
Average Matching Latency {ms>
Max Matching Latency {(ms)

Min Matching Latency (ms>
fverage Mon—Matching Latency <{ms)
Max Mon—Matching Latency <{ms)
Min Won—Matching Latency {(ms)>

ITime process started at 2812- 24 20_48 .28
Time process ended at 2812-88-24 20.48.29
Total elapsed time @ hour<{s> @ minutels> 1 second{(s)

Z:\Oyster>pause
Press any key to continue . . . _

Figure 41: Information generated by OYSTER run to Command box - 2

43

By examining the output, as shown in Figure 40 and Figure 41, you can see that OYSTER
processed 6 references and found that these 6 references belong to 3 real-world identities

(Clusters).

Although multiple output files were created, the only output file desired for a Merge-purge
run is the link file. This file can be found in the Output folder shown in Figure 42.

& C-\Dyster\Run001\Output

File Edit View Favorites Tools Help

eﬁack v _) lﬁ /-\‘ Search i Folders v

=)
:'l

Address |23 C:\Oyster\Rund0 1\0utput

v|.Go

File and Folder Tasks %

9 Make a new folder

@ Publish this folder to
the Web
|2 Share this folder

Oy MergePurgelndex.emap

n MergePurgelndex.link
INK File
1KE

Other Places

[Runddl

=3 My Document:

L
= = Idenhty Change Report. txt C Idenht\f Merge Map.csv
= et men licrosaft Office Excel Comma ...
1k

0y MergePurgeIndex indx

5 ohjects

2.53 KB 4 My Computer

Figure 42: Folder containing output of Merge-purge OYSTER run

When the MergePurgelndex.link file is opened, as shown in Figure 43, it lists all the
references that were read in from the source by their source ID, it also lists the OYSTER ID
that was assigned to each reference and what rule it used, if any, to match the reference to
another reference. The references that share the same OYSTER ID compose the linked
records meaning they are the same real-world entity as discovered by performing the

Merge-Purge with OYSTER.

j MergePurgelndexwlink - Notepad

1

I|Ei|e Edit Format View Help

RefID oOysterID Rule

sourcel. 3 XWIBNYSEQ3IOWHESY
sourcel. 2 MWIAGFLZZ2ATENXZ 5
sourcel.l XWIBNVSEQ3IOWXESY
sourcel. 6 FYONETPUEBE1DHZLO
sourcel. 5 XVIBNWVSEQ3OWXKEDY
sourcel. 4 MWIAGFLZ 2ZA1ENXZ 5

Figure 43: Link file generated by OYSTER Merge-purge run

This sample run was done using a delimited text file. Examples of how to connect to a Fixed
Width text file, a Microsoft Access DB, MySQL, and Microsoft SQLServer can be seen in the

OYSTER Reference Guide.

44

Identity Capture

Figure 44 illustrates the dataflow for an OYSTER run configured to perform Identity
Capture.

Output

Identities

OYSTER

=
N

Reference
Sources

Figure 44: Identity capture dataflow

Configuration

When OYSTER is configured to perform identity capture there should be no input identities
specified in the OysterRunScript but a link file and output identity file should be specified,
the code is illustrated in Figure 4.5.

<!-- Identity Input Selection -->
<IdentityInput Type="None"/>

<!-- Identity Output Selection -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output.idty</IdentityOutput>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 45: Defined Input and Output for Identity Capture

The identity capture co
nfiguration allows for the identities that were discovered during the run to be saved at the
end of the run.

Lastly, the RunMode should be set to “IdentityCapture” as shown in

Figure 46.

<RunMode>IdentityCapture</RunMode>

Figure 46: RunMode Set to “IdentityCapture” in OysterRunScript for Identity Capture Run

46

Example

This run will use the test source file named ‘IdentityCaptureTest.txt’, shown in Figure 47.
This data consists of the same six references that were used for the previous Merge-purge
example. Note that the same source file used in the Merge-purge example could have been
used without creating a copy with a new name by placing the path to the Merge-
purgeTest.txt file in the OysterSourceDescriptor.xml defined for this example. This was not
done in order to provide this example with a sense of autonomy.

| 1% IdentityCaptureTest.txt (Z:\0yster\Run002\Input) - GVIM1 (=)<
QERE 9@ B BV SSIA T2 2 2

dentityID|FirstHame |LastHame|SchoolCode |DOB
1|Edgar|Jones |G34| 20001104
2|Mary|Smith|E55]19990921

3|Eddie|Jones|H15| 200011604

| Mary|Smith|H17 19990921

C|Eddie|Jones|G34| 28081104

6| Super |Man|G19|20611184

File Edit Tools Syntax Buffers ‘Window Help

1,1 All

Figure 47: Identity Capture Source Input File

After analyzing the source data the source descriptor file can be created and is named
‘IdentityCaptureSourceDescriptor.xml!’. This file is shown in Figure 48.

] 4 IdentityCaptureSeurceDescriptor...(C:\Oyster\Run002\Scripts) - GVIM1
File Edit Tools Syntax Buffers Window Help

AdRsE 9@ B Bune 554 THa ? A

|87xml version-"1.0" encoding-"UTF-8"?7> ~

&

Document : IdentityCGaptureSourcebescriptor.xzml

Created on : 18/18/2011

Author : Fumiko HKobayashi

Pescription: Source Descriptor for the Identity Capture sample run
—=>

<DysterSourceDescriptor Hame="sourcel™>

<t-- Delimited -->

<Source Type="FileDelim™ Char="|" Qual=""" Labels=""¥">c:\0yster\Run882sInput:l
dentityCaptureTest.txt<{/Source>

<*-- Items in Source (One for each item in the source including reference ide
ntifier -->
<Referenceltems>
<t-- For Delimited -->
<Item Hame="IdentityID" Attribute="@RefID" Pos="0"/>
<Item Hame="Fname" Attribute="StudentFirstName™ Pos="1"/>
<Item Hame="Lname" Attribute="StudentlLastMame” Pos="2"/>
<Item Hame='"Scode" Attribute="LER" Pos="3"/>
<Item Hame="DOBYMD" Attribute="StudentDate0fBirth" Pos="4"/>
</Referenceltems>
</0ysterSourcebescriptor> v
1,1 n11

Figure 48: Source Descriptor Defined For Identity Capture Example

Following the same process as was performed when setting up the merge-purge example,
once the source descriptor is defined the source attributes file must also be defined. This
file is stored in the Source folder along with the Source Descriptor file. The attributes file is
used to define the attributes in the source along with the algorithm used to compare the

47

attributes and the matching (identity) rules used when ER is performed. For this sample
run two identity rules will be used. The first rule says that the reference will be considered
equivalent if the FirstName, LastName, and DOB attributes match. The second rules states
that the references are equivalent if the LastName, DOB, and SchoolCode (LEA) match.
These are the same rules that were used for the merge-purge example. The source
attribute file is named ‘IdentityCaptureAttributes.xml’ and is depicted in Figure 49.

14 IdentityCaptureAttributes.xml + (C:\Oyster\Run002\Scripts) - GVIM1
Fle Edit Tools Syntax Buffers Window Help

AERE 28 B ERE HSA TIda ?2 4
I6?xml version="1.0" encoding=-"UTF-8"7> A
8-

Document : IdentityCapturefttributes.xml

Created on = 1871872811

Author : Fumikoe Kobayashi

DPescription:

Attribute xml file for the Identity Capture sample run
-—>

<Oysterpattributes System="School">
<Attribute Item="StudentFirstHame" Algo= "none" />
<Attribute Item="StudentLastName” ALgo="none" />
<Attribute Item="LEA" Algo="none" />
<attribute Item="StudentDateOfBirth” fAlge="none" />

{1-- =2
<IdentityRules>
<Rule Ident="1">
<Tern Item="StudentFirstName" HatchResult="Exact"/>
<Term Item="StudentLastHame" HatchBResult="Exact"/>
<Term Item="StudentDate0fBirth" HatchResult="Exact"/>
</Rule>
{Rule Ident="2"3
<Term Item="StudentLastNHame" HatchResult="Exact"/>
<Term Item="LEA" HatchResult="Exact™/>
{Tern Item="StudentDate0fBirth” HatchResult="Exact"/>
</Rule>
</IdentityRules>
</0ysterpttributes> w
1.1 A1l

Figure 49: Attributes File Defined For the Identity Capture Example

The attributes file may look familiar. This is due to the fact that the same source records
were used for both the merge-purge example and this identity capture example. Due to
this, both attributes files are defined identically.

As with the merge-purge example, the last file that needs to be created is the RunScript for
this example. For this identity capture example, no input identity file should be specified in
the Run Script but both the output identity file and the link files should be specified. The
Run Script should again be stored in the root OYSTER folder as this is where the OYSTER
program is expecting the file to reside. The file for this sample is named
‘IdentityCaptureRunScript.xml’ and is shown in Figure 50.

48

File Edit Tools Syntax Buffers Window Help

adRE 9@ B RER HSA THa 7 %
K?xml version="1._8" encoding="UTF-8"?> A~
<1--

Document IdentityCaptureRunScript.xml

treated on - 82/61/11
fiuthor : Fumiko Kobayashi
Description: Sample Identity Capture Run Script

KOysterRunScript>
<Settings RunScriptHame="IdentityCaptureRunScript” Explanation="0n" Debug="0n" l:llangellepurtlletail="NuI rad

{LogFile Hum=
<EREngine Typ

Size="100000606">C:\0ysterilog\IdentityCapture_%g.log</LogFile>
RSwooshStandard" 7>

{t-- Attributes read from file only ——>
<AttributePath>C:\0yster\Run@62\Scripts\IdentityCaptureattributes.xml</AttributePath>

<t-- Merge-purge does not start with any managed identities -->
<Identitylnput Type="Hone"/>

{t-- Merge-purge does not produce any managed identities -->
<IdentityOutput Type="TextFile">C:\0yster\Run@@2\0utputyldentityCapturedutput.idty</Identityoutput>

{*-— Merge-purge only output is the Link Index -->
<LinkOutput Type="TextFile">C:\0yster\Run882\0utputildentityCapturelndex.link</LinkOutput>

{?-— Sources to Run -->
<ReferenceSources>
<Source>C:\0yster\Run882\ScriptsildentitycaptureSourceDescriptor.xml</Source>
{/ReferenceSources>
</0ysterRunScript> v
11,187 A1l

Figure 50: RunScript for Identity Capture Example

Now that all the scripts for the Identity capture example have been created we can run
OYSTER. This process is depicted in Figure 37, Figure 38, and Figure 39 and described in
their surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 51 and Figure 52:

B C\Windowshsystem32\cmd.exe | | |

Z:\0yster>java —jar QOuster.jar
Oyster v.3.3

Please input the name of the runScript:
IdentityCaptureRunScript.xml
Opening Z:\0yster\IdentityCaptureRunScript . xml

Initializing Comparators...
StudentFirstMame edu.ualr.oyster.association.matching.OysterCompareDefaull
» EXACT_IGHORE_CASE. MISSING, INITIAL. TRANSPOSE, LED, QTR. SOUNDEX. DMSQ)
- IBMALPHACODE, MATCHRATIMG, MNYSIIS, CAUERPHOME. CAUERPHOMEZ, METAPHOMNE. ME
TAPHONEZ, NEEDLEMANWUNSCH, SMITHUATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRHM
ID. NICKNAME]

S tudentLastMame edu.ualr._oyster.association.matching.OysterCompareDefault [ERACT.
EXACT _IGNORE_CASE. MISSING, INITIAL, TRANMSPOSE, LED. QTR. SOUNDEX, DMSOUNDEX.

[BMALPHACODE, MATCHRATING. NYSIIS. CAVERPHONE. CAVERPHONEZ2, METAPHONE,. METAPHONEZ|
ﬁR:E];DLEHRNHUNSCH. SMITHWATERMAN, SCAN, SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID,. HNICK|

LEA edu.ualr.oyster.association.matching.OysterCompareDefault [EXACT, EXACT_I
GNORE_CASE, MISSING. INITIAL,. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUNDEX. IBMALPHAC)
ODE, MATCHRATING. NYSIIS. CAUERPHONE. CAVERPHOMEZ. METAPHONE., METAPHOMEZ2. NEEDLE
MANWUNSCH, SMITHWATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRMID, NICKNAME]

StudentDateOfBirth edu.ualr.oyster.association.matching.OysterCompareDefaull
EXACT_IGHORE_GASE, MISSING. INITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSOQ)
ACODE. MATCHRATING, NYSIIS. CAUERPHOME. CAUERPHOMEZ, METAPHOME, ME
E2, HEEDLEMANWUNSCH, SMITHUATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM
ID. NICKNAME]

Initializing Index...
Index Type: Nulllndex

OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUH

Initializing EntityMap...
EntityMap Type: EntityMap

A BRefID

B StudentFirstName
C StudentLastMame
D LEA

E StudentDateOfBirth
Engine Tupe: OusterMergeEngine

Figure 51: Output written to command box by OYSTER run - 1

49

BN C:\Windows\system3Z\cmd exe |_ L S

Bypassing Least GCommon Rule filter
Bource: F:\0yster\RunBBZ2:\InputsIdentityCaptureTest .txt
RSwooshing. ..

Records processed for Z:\Oyster\RunBA2vScriptssIdentityCaptureSourceDescriptor. x|
nl: 6¢3>

of Consolidation Steps: 3
uuuuuuuuuuuuuuuuuug

Total Records Processed
Total Clusters

Max Cluster Size

Min Cluster Size > 1
Min Cluster Size

B R

i Cluster Stats i

i S

Cluster Size Distribution

Cluster Sizi # of Clusteri B of Racordi

2 i 2
3 1 3
Clusters loaded

References loaded
Avg # of Refs/Cluster

Average CGluster Grouping 2
Average Cluster by Count 1
Auverage Cluster EBize 2 .90008
Mumber of Duplicate Recs 3
Duplication Rate A.58088

Total Candidates Size

Total DeDup Candidates Size

Total # Candidates

fvg Candidates per Input

lTotal Matched Count

Matches per Candidates Size
Matches per DeDup Candidates Size
Matches per Candidates

18
16

8
2.25088
a

B.080688
@.08068
A.a8p68

T R

L Rule Stats #it

(B I

Mumber of Rules:

[Rule Firing Distribution

fule Coungs

2 i

LA RO SR B
it Index Stats #if
HHAREE AR

Keys

Total tokens

Unigque tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key

Total tokens per key 6. ARAAA
Unigue tokens per key b . B8ABA
Total per Unigue tokens 1.80808
Unigue per Total tokens 1.0800088

<null>

: <null>
1 a

Candidates # of Records

R S A R R 4

H# Timing Stats #i

T A

Elapzed Seconds 2
Throughput {recordsshour’ 1. 800 .ARREA
Average Matching Latency (ms) 1.666667
Max Matching Latency <ms) 4
Min Matching Latency {ms}» 2
fverage Mon—Matching Latency (ms)> 2 .A8BBRA
Max Mon—Matching Latency <ms) 3
Min Hon—Matching Latency (ms) 1

Time process started at 2012-08-24 20.59.88
Time process ended at 2012-88-24 20.59.18
Iotal elapsed time B hour<{s> B ninute{s? 2 second{s)>

Z:\Oysterrpause
Press any key to continue . . .

Figure 52: Output written to command box by OYSTER run - 2

By examining the output you can see that OYSTER processed 6 references and found that
these 6 references belong to 3 real-world identities (groups). These results are identical to

50

the results from the merge-purge example. This was expected since the same source
records were used in both examples and the same rules were used to match those records.
The difference between the merge-purge and the identity capture is that the identity
capture example stored the resulting identities of the ER into an output file in addition to
creating an identical link file as was seen in the merge-purge example. Both of these output
files can be seen in the Z:\Oyster\Run002\Output folder, as shown in Figure 53.

& C:\Oyster\Run002\Output Z||E|g|
File Edit Wew Favorites Tools Help 1',"
e Back - _/J l.@ /:__\J search |{~"; Folders v The link, .idty, and
Address |33 C:\Oyster\Rund02\0utput V| Go Identlty Cha.nge
= Report.txt files are
) ~ — il . IdentityCaptureQutput.indx X
File and Folder Tasks # INDX File the output files that

L matter for this run.

[Move the selected

\

1= Ly The other files are
Copy the selected i

. generated by
W Publish the selected ioni
(2] assigning the Debu

iterns to the Web 3 IdentityCaptureQutput.emap g g_ g
63 E-mail the selected T IEI;l.-‘B«P File attribute in the

i < I .

ltems Settings tag of the
¥ Delete the selected .

items run script the value

of “On”.

Other Flac=s Identity Merge Map.csv

| Microsoft Office Excel Comma ...
a; 1KB

) Run002

My Documents
i My Computer =
8 My Network Places

3 objects selected 2.08KB :J My Computer

Figure 53: Contents of the Output Folder for Identity Capture Example

The link file, shown in Figure 54, lists all the references that were read in from the source
by their source ID, it also lists the OYSTER ID that was assigned to each reference and what
rule it used, if any, to match the reference to another reference. The references that share
the same OYSTER ID compose the linked records meaning they are the same real-world
entity.

= . . 1

| IdentityCapturelndex.link - Notepad

File Edit Format WView Help

rRefID OysterID Rule

sourcel, 3 KVIBNVSEQIOWXEBEY [&,

sourcel, 2 MWIAGFLZ 2A1ENXZS [&,

sourcel.l XKVIBNVSEDSOWXEEY [&,

sourcel. 6 FYONETPUSB1DHZLO [@&]

sourcel. s XVIBNVSEQIOWXBEY [2,

sourcel. 4 MWIAGFLZ 2A1ENXZS [1]
I — 3 -

Figure 54: Link File Generated by Identity Capture Example

As discussed previously, identity capture is a form of entity resolution in which the system
builds (learns) a set of identities from the references it processes rather than starting with

51

a known set of identities. This set of identities is stored in the IdentityCaptureOutput.idty
file, shown in Figure 55, which was generated by this run preserving the information
derived from the three clusters of references.

" IdentityCaptureOutput.idty - Notepad T —— =]
Eile Edit Format View Help
k?xm1 version="1.0" encoding="UTF-8"7> o
<root>
<Metadatax
<Modifications>
«Modification ID="1" Oysterversion="3.3" Date="2012-08-24 20.59.09"
Runscript="IdentityCaptureRunscript"” />
</Modifications>
<Attributes>
<Attribute Name="@RefID" Tag="A"/>
<Attribute Name="studentFirstName" Tag="B"/>
<Attribute Name="StudentLastName" Tag="cC"/>
<Attribute Name="LEA" Tag="D"/>
<Attribute Name="StudentDateofBirth" Tag="E"/>
</Attributes>
I </Metadatas
<Identities>
<Identity Identifier="FYONETPUSB1DH2L0" CDate="2012-08-24">
<References>
<Reference>
<value=arsourcel. 6|BASuper |[CAMan|DAGLY |EA20011104</values
<Traces/>
</Reference>
</References>
</Identit
<Identity Identifier="MWIAGFLZ2AlENXZ5" CDate="2012-08-24">
<References>
<References
<value=arsourcel. Z|BAMary|Ccrsmith|DAGS5 |EALS990921</values
<Traces/>
</Reference>
<References
<valuesarsourcel. 4 |BAmary|casmith|paHL7 |EALS990921</value>
<Traces/>
</References
</References>
I </Identity>
<Identity Identifier="XVISNVSEQ30WX86Y" CDate="2012-08-24">
<References>
<Reference>
<valuerArsourcel.l|BAEdgar [CAJones |DAG34 |EA20001104</Values
<Traces/>
</Reference=
<Reference>
<vValue=Arsourcel. 3|BAEddie|CAJones |DAHLS |[EA20001104</Values=
<Traces/>
</rReferences>
<references
<value>Arsourcel. 5|BAEddie|CAJones |DAG34 |EA20001104</Values
<Traces,/>
</rReferences>
</rReferences>
</Identity=
</Identitiess
</root> il

Figure 55: IdentityCaptureOutput.idty File

By examining the identity structures created in the identity capture configuration you can
see how each one directly corresponds to one of the Link Indexes shown in Figure 54. The
OYSTER IDs in Figure 54 correspond to the Identity Identifiers in Figure 55.

As with the merge-purge example, this sample run was done using a delimited text file.

Examples of how to connect to a Fixed Width text file, a Microsoft Access DB, MySQL, and
Microsoft SQLServer can be seen in the OYSTER Reference Guide.

52

Identity Build from Assertions

Figure 56 illustrates the dataflow for an OYSTER run configured to build identities from an
assertion file.

Input Identities only
required when dealing

lnput with structl_lre based Olltpllt
. assertions. N
Identities Identities

OYSTER

Ny
@ @

Figure 56: Dataflow to build identities from Assertions.

As mentioned previously, there are four types of Assertions:

Reference to Reference
Reference to Structure
Structure To Structure
Split Structure

Each of these is shown in the following sections.

53

Reference to Reference Configuration

When OYSTER is configured to build identities from an assertion file input identities are
optional and if specified the new asserted identities will be added into the existing idty
structure. A link file and output identity file must be specified. This is shown in Figure 57.

<!-- Identity Input Selection -->
<IdentityInput Type="None"/>

<!-- Identity Output Selection -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output.idty</IdentityOutput>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 57: Defined Input and Output for Building Assertions

OYSTER can use the identity capture architecture to build a set of identities from a set of
assertions. Reference to Reference Assertions represent knowledge about one or more
known entity identities. The identities built through this process can be used as an input
when performing Identity Resolution or Identity Update to force a match based on the
previous knowledge represented by the assertions.

Lastly, the RunMode should be set to “AssertRefToRef” as shown in Figure 58.

<RunMode>AssertRefToRef</RunMode>

Figure 58: RunMode Set to “AssertRefToRef” in OysterRunScript for Reference to Reference Assertion Run

54

Example

Running OYSTER in the Reference to Reference Assertions Configuration allows identity
information to be asserted, preserved, and input into later processes (OYSTER runs) that
run in the Identity Resolution or Identity Update Configuration. These identities can be
built from a set of assertion sources that represent knowledge about the entities.

For this example, the test source file is named ‘AssertionsSource.txt’, shown in Figure 59.
This data consists of four references; each reference is constructed from the following
attributes:

RefID
FirstName
LastName
DOB
SchCode
Assert

I AssertionsSource.txt - Notepad

File Edit Format Wiew Help

refID, FirstNname, LastMame, DOB, schCode, Assert
1,Edgar, Jones, 20001104, G34,1

2, Mary, smith, 19990921, 55,2

3, Eddie, Jones, 20001104, H1S,1

4,Mary, smith, 19990921, H17, 2|

Figure 59: Source file for Identity Build from RefToRef Assertions

Note that based on previous knowledge, an Assert attribute has been added to the source
records. The Assert attribute should match for records that are known to represent the
same entity. Since a reference to reference assertion run is based off of previous knowledge
of the references there is no need to analyze the source data. Based on the knowledge
about the source references, the source descriptor file can be created. Using this source file
information the source descriptor file, named “AssertionsSourceDescriptor.xml”, can be
created. This file is shown in Figure 60.

55

14 AssertionsSourceDescriptor.xml + (C:\Oyster\Run003\Scripts) - GVIM
Fle Edit Tools Syntax Buffers Window Help

GEEE 9@ B aERE SSA Tda 2 A

I6?xml version="1.0" encoding=-"UTF-8"7> A

8-
Document : AssertionsSourcePescriptor.xml
Created on = 1871872811
Author : Fumikoe Kobayashi
Pescription: Descriptor for AssertionsSource.txt
-=>

<0ysterSourcebescriptor Hame="RefToRefAs1>
{t-- Delimited —->
<Source Type="FileDelin” Char=""," Qual=""" Labels="Y">c:\0ysteryRun@83\Inputy
AssertionsSource.txt</Source>
{t-- Items in Source —->
<Referenceltems>
<Item Hame="RefID” Attribute="@RefID" Pos="0"/>
<Item Hame="F1" Attribute="StudentFirstHame™ Pos=""1"/>
<Item Hame="L1" Attribute="StudentLastName" Pos="2"/3
<Item Hame="DOB" Attribute="StudentDate0fBirth” Pos="3"/>
<Item Hame="SC1" Attribute="StudentSchoolCode” Pos="L4"/>
{Item Hame="Assert” Attribute="GAssertRefToRef" Pos="5"/>
</Referenceltems>
<f0ysterSourceDescriptor> w
1.1 A1l

Figure 60: Source Descriptor for Identity Build from Assertions

Note that when creating the source descriptor for an assertion run, as mentioned earlier, an
Assert attribute is added to each record to represent the previous knowledge. To identify to
OYSTER that this is a RefToRef assertion run there is a predefined key word that must be
assigned as the value of the Attribute attribute of the Assert attribute. This keyword is
@AssertRefToRef. By looking at Figure 60 you can see that the @AssertRefToRef keyword
was used. The @AssertRefToRef keyword forces OYSTER to use RefToRef assertion logic on
the source input and to ignore any user defined matching rules. Matching will only occur if
the Assert attribute in the source file are the same for multiple records.

Following the same process as was performed in the previous two examples, once the
source descriptor is defined the source attributes file must also be defined. This file is
stored in the Source folder along with the Source Descriptor file. The attributes file is used
to define the attributes in the source along with the algorithms used to compare the
attributes and the matching (Identity) rules used when performing ER. For this example
run no matching rules will be identified. Instead, as mentioned earlier, the matching will
depend solely on the values of the Assert attribute.

The source attribute file is named ‘AssertionsAttributes.xml’ and is depicted in Figure 61.

56

F. AssertionsAttributes.xml (C:\Oyster\Run0Q03\Scripts) - GVIM
Eile Edit Tools Syntax Buffers Window Help

aRRRE 9@ B BREe 53S5A TEH 7 R
|&=xm1 version-""1.0" encoding-"UTF-8"7> -~
<t—-

Document : AssertionsAttributes.xzml

Created on : 18718711

Author : Fumiko Kobayashi

Description: RefToRef Attributes for Assertion example
-->

<0ysterAttributes System="StudentDemo'>
<Attribute Item="StudentFirstHame" algo="‘none" />
<Attribute Item="StudentLastHame" algo=""none" />
<Attribute Item=""StudentDate0fBirth" algo="none" />
<Attribute Item=""StudentSchoolCode” algo="none" />

<?*—— Identity Rules ——3>
<IdentityRules>
</IdentityRules>
</0ysterAttributes> -
1,1 A1l

Figure 61: Attributes file for Identity Build from RefToRef Assertions

The defined attributes match the number of distinct values assigned by the Attribute value
in the source descriptor. You may also note that there is no rule defined for this run as
mentioned earlier but the Rule tag must still be include or the OYSTER run will fail.

As with the previous two examples, the last file that needs to be created is the RunScript for
this example. For the attributes example, no input identity file should be specified in the
Run Script but both the output identity file and the link files should be specified. The Run
Script should again be stored in the root OYSTER folder as this is where the OYSTER
program is expecting the file to reside. The file for this sample is named
‘RefToRefAttributesRunScript.xml’ and is shown in Figure 62.

K., AssertionsRunScript.xml + (C:\Oyster) - GVIM3
File Edit Tools Syntax Buffers Window Help

AR 8@ B BRR 5338 THda ?2 =

<7xml version="1.8" encoding="UTF-8"7> »~
K1--

Document : AssertionsRunScript.xml

created on : 2/1/26811

Author : Fumiko Kobayashi

Description: Identity Build From Assertions run script

KoysterRunScript >
<Settings RunScriptHame="AssertionsRunScript” Explanation="0n" Debug="0n" ChangeReportDetail="Ho" />

<LogFile Hum="5" Size="180080006">C:\0yster\Log\Assertions_%g.log</LogFile>
<EREngine Type="RSwooshStandard" />

<AttributePath>C:\0yster\RunB@3\Scripts\Assertionsattributes. xml</attributePath>

<1-- No input identities -->

<IdentityInput Type="HNone" />

<1-- Identity Build for Later Resolution -->

<Identitylutput Type="TextFile">C:\0yster\Run@63\0utputiAssertionsOutputldentities.idty</Identitydutput>

€1-- Link Index is output but not used -->

<LinkOutput Type="TextFile">G:\0yster\Run@63\0utputinssertionsLinks.link</LinkOutput>

<1-- Sources to Run -->
<pssertionInput>C:\0yster\Rund@3\ScriptsinssertionsSourceDescriptor xml</Assertionlnput>
[</0ysterRunScript> v
25,77 All

Figure 62: Run Script for Identity Build from RefToRef Assertions

Now that all the scripts for the Assertions example have been created we can run OYSTER.
This process is depicted in Figure 37, Figure 38, and Figure 39 and described in their
surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 63 and Figure 64.

57

B
B8 Codonmaysroseret oo =l e |

Z:\0yster>java —jar QOuster.jar
Oyster v.3.

Please input the name of the runScript:
AzsertionsRunScript . xml
Opening Z:\0yster“AzsertionsRunScript.xml

Initializing Comparators...
S tudentFirstMame edu.ualr.oyster.association.matching.OysterCompareDefaull
ERACT_IGHORE_CASE, MISSING. INITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSOQ)
ACODE. MATCHRATING, NYSIIS. CAUERPHOME. CAUERPHOMEZ, METAPHOME, ME
EZﬁnngﬁDLEHRNHUNSCH, SMITHWATERMAN, SCAN. SUBSTRLEFT, SUBSTRRIGHT. SUBSTRHM

StudentLastMame edu.ualr.oyster.association.matching.OysterCompareDefault [EXACT.,
EXACT_IGNORE_CASE, MISSING, INITIAL,. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUNDEX.
[BMALPHACODE,. MATCHRATING. NYSIIS. CAVERPHONE. CAVERPHONEZ,. METAPHONE. METAPHONEZ
I:‘R:E]:-.IEDLEI‘IFIN|.-JUNS(:H. SHITHUATERMAN,. SCAM, SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID. NICH

StudentDateOfBirth edu.valr.oyster.association.matching.OysterCompareDefaul
t (EXRACT, EXACT_IGMORE_CASE, MISSIMG. INITIAL. TRANSPOSE. LED, QTR. SOUNDEX. DMSO)
UNDEX, IBMALPHACODE. MATCHRATING, NYSIIS, CAUERPHONE. CAUERPHONEZ, METAPHONE, M
}gPHg?Eﬁﬁ“:EEDLEHHNHUNSCH, SMITHWATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM|

StudentSchoolCode edu.ualr.oyster.association.matching.OysterCompareDefaull
- EXACT_IGNORE_CASE, MISSING. IMITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSQ
IBMALPHACODE. MATCHRATING, WYSIIS,. CAUERPHOME. CAUERPHOMEZ, METAPHOME, ME

TAPHONEZ, NEEDLEMANWUNSCH, SMITHUATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRHM

ID,. HICKNAME]

Initializing Index...
Index Type: Mulllndex

OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUN

Initializing EntityMap...
EntityMap Type: EntityMap

A DBRefID

B StudentFirstName

C StudentLastMame

D StudentDateOfBirth

E StudentSchoolCode

Engine Type: OysterfssertionE

F BAssertRefToRef
Source: Z:\0yster\RunBB3\Input fAssertionsSource.txt

LSRRI S IR R I L

Summary Stats

H R
Total Records Processed
Total Clusters

Max Cluster Size

Min Cluster Size > 1
Min Cluster Size

I
S NIET. -]

HERE g e iR]

i Cluster Stats ##

HHAREEE AR

Cluster Size Distribution

Cluster Sizg # of Cluster; i of Recordi

Clusters loaded a
References loaded a
fug # of Refs/Cluster MaM

fverage Cluster Grouping 4
Average CGluster by Gount
Average Cluster Size
Mumber of Duplicate Recs
Duplication Rate

2
2.08088
2

~Infinity

Total Candidates Size

Iotal DeDup Candidates Size

Total # Candidates

Aug Candidates per Input

Total Matched Count

Matches per Candidates Size
Matches per DeDup Candidates Size
Matches per Candidates

LR R R
i Rule Stats ##

Mumber of Rules:
[Rule Firing Disteibution
Rule Counts

T R

[Index Stats H#it
B

eys

Total tokens

Unigue tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key

Total tokens per key 4. 0808
Unigue tokens per key 4. 000008
Total per Unigue tokens 1.P8BAAA
Unigue per Total tokens 1.88808

Figure 63: Output to Command Box Generated by OYSTER Run - 1

58

B8 ComdonmaysromSeret coe o =1 -

: <null>

: <null>
a

Candidate Size # of Candidates # of Records

H i
Throughput {(recordsshourl H 8.90008
Average Matching Latency <ms) H MaN
Max Matching Latency <ms)> B A
Min Matching Latency <ms> = 9.223,372.036,854,. 775,887
fverage Non—Matching Latency (ms>: HaM
Max Mon—Matching Latency <ms) H 5]
Min Hon—Matching Latency {ms) = 9,223,.372,.036,.854,.775 .87

Time process started at 2012-88-24 21.11.42
Time pro el -
Iotal elapsed time B hour<s> B nminute{s? 1 second{s)>

Z:~0ysterrpause
Press any key to continue . . .

Figure 64: Output to Command Box Generated by OYSTER Run - 2

The statistics for this run may be slightly confusing. According to the statistics, OYSTER
processed the 0 records and found they belong to 2 real-world identities, shown in Figure
65. This is due to this being an Assertions run and the references were asserted into
equivalence, not matched. This figure also shows that no rules were used for matching and
instead all matching was done through assert.

| AssertionsLinks.link - Notepad | =NACT —th
File Edit Format View Help

RrefID OysterID Rule p
AS1.32 BMN7 3PME2S1BOHKS [BassertRefToref]

ASl.4 ROAY IWKL JAHUTWEE [BassertrRefToRef]

Asl.1 BMNT IPME2SIBOHKSD [®, @assertRefTorRef]
AS1.2 ROAY IWKL JAHUTWKEK [&, @assertRefToref]

Figure 65: Link file created for Identity Build from Assertions

The entire point of this RefToRef assertion run is to build a set of identities that can be used
as input when performing Identity Resolution or Identity Capture. These identities are
constructed through the use of previous knowledge about the references. As shown in
Figure 66 these 4 references resolve to 2 identities. By assigning the Assert attribute the
@AssertRefToRef Attribute value in the source descriptor, it forced OYSTER to match the
records with no regard to the other attribute values of the record.

59

| AssertionsOutputldentitiesidty - Notepad

File Edit Format View Help
<7xml version="1.0" encoding="UTF-8"7>
<root>

metadatas
<modifications>
<vodification ID="1" Oysterversion="3.3" Date="2012-08-24 21.11.42"
</Modifications>
<attributes>
<Attribute Name="@RefID" Tag="A"/>
<attribute Name='StudentFirstname” Ta
<attribute Name='StudentLastname" T:
e=""Studentpaceofsirtl
<Attribute Name="studentschoolcode” Tag:
</Attributes>
</Metadata>
<Identities>
<Identity Identifier="BMN73PME2SIBOMKO" CDare="2012-08-24">
<references>
<references
<value>AAAS1.1|BAEdgar [CAJones |DA20001104 |EAG34</Value>
races/>

Runscript="AssertionsRunscript” />

H
k]
7
g
£
B
=

/>
/>

I

</Reference>
<Reference>
<value>Anasl.3|srEddie | CATones | DAZ0001104 |EAHLS</Values
<Traces/>
</Reference>
</References>
</Identit
<Identity’ Identifier="RIAY3WKIJAHUTWKK" CDare="2012-08-24">
<references>
<Reference>
<value>ArASl. 2| BAMary |CASMith|DA19990021 | EAGSS</value>
<Traces/>
</Reference>
<reference>
<valuerarAsl.4|BAMary |CAsmith|DA19990921 |EAHLT</vValue>
<Traces/>
</Reference>
</References>
</Identity>
</Identities>

</root>

Figure 66: Identity file created for Identity Build from Assertions

As with the previous examples, this sample run was done using a delimited text file.
Examples of how to connect to a Fixed Width text file, a Microsoft Access DB, MySQL, and

Microsoft SQLServer can be seen in the OYSTER Reference Guide.

Reference to Structure Configuration

When OYSTER is configured for Reference to Structure Assertions, input identities are

required since the purpose of this type of assertion is to force a new reference to match an
existing identity. A link file and output identity file must also be specified. This is shown in

Figure 67.

<!-- Identity Input Selection -->
<IdentityInput Type="TextFile">Z:\Oyster\Input.idty</IdentityInput>

<!-- Identity Output Selection -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output.idty</IdentityOutput>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 67: Defined Input and Output for Building Assertions

OYSTER can use the identity capture architecture to build a set of identities from a set of
assertions. Reference to Structure Assertions represent knowledge about one or more
known entity identities. The identities updated through this process can be used as an
input when performing Identity Resolution or Identity Update to force a match based on
the previous knowledge represented by the assertions. This type of assertion is used to

force a reference to match an existing identity that would not match based on any defined

rule.

Lastly, the RunMode should be set to “AssertRefToStr” as shown in Figure 68.

<RunMode>AssertRefToStr</RunMode>

Figure 68: RunMode Set to “AssertRefToRef” in OysterRunScript for Reference to Reference Assertion Run

61

Example

Running OYSTER in the Reference to Structure Assertion configuration allows reference
information to be injected into an existing identity, preserved, and input into later
processes (OYSTER runs) that run in the Identity Resolution or Identity Update
Configuration. These identities can be built from a set of assertion sources that run against
a previous set of identities and represent knowledge about the entities.

For this example, the test source file is named ‘AssertionsSource.txt’, shown in Figure 69.
This data consists of one reference; the reference is constructed from the following
attributes:

RefID

FirstName
LastName

DOB

SchCode
@AssertRefToStr

| AssertionsSource.bd - Motepad EI@

File Edit Format Miew Help

refID, FirstName, LastName, DOB, SchCode, @assertRefTostr
1,Edgar, Jones, 20001104, G34,HYPRZBIYSFXOLlIMS

Figure 69: Source file for Identity Build from RefToStr Assertions

Note that based on previous knowledge, an @AssertRefToStr attribute has been added to
the source records. The @AssertRefToStr attribute should contain the OYSTER ID of an
identity in the input idty file in which the source reference is to be inserted into. Since a
reference to structure assertion run is based off of previous knowledge of the references
there is no need to analyze the source data. Based on the knowledge about the source
references, the source descriptor file can be created. Using this source file information the
source descriptor file, named “AssertionsSourceDescriptor.xml”, can be created. This file is
shown in Figure 70.

62

{8 AssertionsSourceDescriptor.xml (Z:\Oyster\Run007\Scripts) - GVIML E@
File Edit Tools Syntax Buffers Window Help

SAHPE| 9 | BBRRBSSA|THO? B

Fizxml version-"1.0" encoding-"UTF-8"7> -

<T-—
Document : AssertionsSourceDescriptor.xml
Created on : 11/26/2618
Author : Fumiko Kobayashi
Pescription: Descriptor for AssertionsSource.txt
—>

m

<OysterSourceDescriptor Hame="AS1">
<t-- Delimited -->
<Source Type="FileDelim" Char="," Qual=""" Labels="%">2:\0yster\RunB887%Inputy
AssertionsSource.txt</Source>
<t-- Items in Source -->
<Referenceltems>
<Item Hame="RefID" Attribute="GERefID" Pos="0"/>
<Item Hame="F1" Attribute="StudentFirstMame" Pos="1"/>
<Item Hame="L1" Attribute="StudentLastHame'" Pos="2"f>
<Item Hame="DOB" Attribute="StudentDatedfBirth” Pos=""3"/>
<Item Hame="LER" Attribute="LEA" Pos="4"/>
<Item Hame="Assert” Attribute="@AssertRefToStr" Pos="5"/>
</Referenceltems>
</O0ysterSourceDescriptor> -
1,1 All

Figure 70: Source Descriptor for Identity Build from Assertions

Note that when creating the source descriptor for a RefToStr assertion run, as mentioned
earlier, an @AssertRefToStr attribute is added to each record to represent the previous
knowledge. To identify to OYSTER that this is a RefToStr assertion run there is a predefined
key word that must be assigned as the value of the Attribute attribute of the
@AssertRefToStr attribute. This keyword is @AssertRefToStr. By looking at Figure 70 you
can see that the @AssertRefToStr keyword was used. The @AssertRefToStr keyword forces
OYSTER to use RefToStr assertion logic on the source input and to ignore any user defined
matching rules. Matching will only occur if the @AssertRefToStr attribute in the source file
matches existing OYSTER IDs in the idty input file.

Following the same process as was performed in the previous two examples, once the
source descriptor is defined the source attributes file must also be defined. This file is
stored in the Source folder along with the Source Descriptor file. The attributes file is used
to define the attributes in the source along with the algorithms used to compare the
attributes and the matching (Identity) rules used when performing ER. For this example
run no matching rules will be identified. Instead, as mentioned earlier, the matching will
depend solely on the values of the @AssertRefToStr attribute.

The source attribute file is named ‘AssertionsAttributes.xml’ and is depicted in Figure 71.

¥ AssertionsAttributes.xml (C:\Dyster\Run003\Scripts) - GVIM =13
File Edit Tools Syntax Buffers Window Help

o T e = B meaeE H S A T 7R

[H7xml version-"1.0" encoding=-"UTF-8"7> b

< ——

Document : AssertionsAttributes.xml

Created on = 18518/711

Author z Fumiko HKobayashi

DPescription: RefToRef Attributes for Assertion example
——>

<DysterAttributes System=""StudentDemo >
<Attribute Item=""StudentFirstHame" algo=""none" s>
<Attribute Ite

"StudentLastHame"" algo=""none"" #>

<Attribute Item=""StudentDateOfBirth™ algoe=""none"" #>
<Attribute Item=""StudentSchoolCode” algo=""none" />
<*—— Identity Rules ——3>
<IdentityRules>
</IdentityRules>
</O0usterAattributes> ~
1,1 ALl

Figure 71: Attributes file for Identity Build from RefToStr Assertions

63

The defined attributes match the number of distinct values assigned by the Attribute value
in the source descriptor. You may also note that there is no rule defined for this run as
mentioned earlier but the Rule tag must still be include or the OYSTER run will fail.

As with the previous two examples, the last file that needs to be created is the RunScript for
this example. For the RefToStr example, the input identity file, output identity file, and the
link files should be specified. The Run Script should again be stored in the root OYSTER
folder as this is where the OYSTER program is expecting the file to reside. The file for this
sample is named ‘RefToRefAttributesRunScript.xml’ and is shown in Figure 72.

{8 RefToStrAssertionRunScriptaml + (Z:\Oyster) - GVIML =N on ===
File Edit Tools Syntax Buffers Window Help
QAERa e @ BRRRISSA|THO[? R
<7xml version="1.0" encoding="UTF-8"?>
<1--
Document : RefToStrAssertionRunScript.xml
Created on : 2/1/2811
Author : Fumiko Kobayashi

Description: Identity Build From Assertions run script
>

<OysterRunScript>
<Settings RunScriptHame="RefToStrAssertionRunscript” Explanation="0n" Debug="On" />

<LogFile Hum="5" Size="1060000000">2:\0yster\Log\RefToStrAssertions %g.log</LogFile>
<RunMode>AssertRefToStr</Runtode>

<EREngine Type="FSCluster />

<nttributePath>2:\0yster\RunB@7\ScriptsiAssertionsAttributes.xnl</AttributePath>

<*-- Input identities -->

<IdentityInput Type="TextFile">Z:\0Oyster\Rune@7\Input\RefToStrInputTest.idty</IdentityInput>

<t-- Identity Build for Later Resolution -->

<IdentityOutput Type="TextFile">2:\0yster\Run887\0utputiAssertionsOutputidentities.idty</IdentityOutputy

<t-- Lfink Index is output but not used -->
<LinkOutput Type="TextFile">Z:\0yster\RunB07\0utputifAssertionsLinks .link</LinkOutput>

<AssertionInput>Z:\0yster\RunBB7\ScriptsiAssertionsSourceDescriptor .xml</AssertionInput>
</OysterRunScript> o
— INSERT — 23,11 A1l

Figure 72: Run Script for Identity Build from RefToRef Assertions

Now that all the scripts for the RefToStr Assertions example have been created we can run
OYSTER. This process is depicted in Figure 37, Figure 38, and Figure 39 and described in
their surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 73 and Figure 74.

E¥ C\Windows\system32\cmd.exe |£|E|él

Z:\Oyster>java —jar Ouster.jar
Oyster v.3.3

Please input the name of the runScript:
RefToStrAssertionRunScript.xml
Opening Z:x0Oyster RefToStrAssertionRunScript.xml

Initializing Comparators...
StudentFirstName edu.uwalr.oyster.association.matching.OysterCompareDef aull
b - EXACT_IGNORE_CASE, MISSING, INITIAL,. TRANSPOSE, LED, QTR. SOUNDEX,. DMSO)
- IBMALPHACODE, MATCHRATING. WYSIIS. CAUERPHOME. CAUERPHOMEZ, METAPHONE. ME
;gPHﬂ?Eﬁﬁn:EEDLEHHNH“NSCH, SMITHWATERMAM,. SCAN. SUBSTRLEFT, SUBSTRRIGHT, SUBSTRHM|

StudentLastMame edu.ualr.oyster.association.matching.OysterCompareDefault [ERACT .
EXACT_IGHNORE_CASE. MISSING. IMITIAL. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUMDEX.

BMALPHACODE, MATCHRATING, NYSIIS, CAUERPHONE, CAUERPHONE2, METAPHONE, METAPHONE2
- NEEDLEMANWUNSCH. SMITHWATERMAN. SCAN. SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID. HICK
NAME 1

StudentDateOfBirth edu._uwalr.oyster_association.matching.OysterCompareDef aull
it CEXACT,. EXACT_IGHORE_CASE, MISSING, INITIAL. TRANSPOSE. LED, QTR. SOUNDEX. DMSQ)
UNDEX, IBMALPHACODE. MATCHRATIMG. NYSIIS. CAUERPHOME. CAUERPHOMEZ. METAPHONE, ME
;gPHg?Eﬁﬁn:E%DLEHRNH“NSCH, SMITHWATERMAN,. SCAN. SUBSTRLEFT, SUBSTRRIGHT, SUBSTRHM|

ILEA edu.ualr.oyster.association.matching.QysterCompareDefault [EXACT,. EXACT_I
GMORE_CASE, MISSIMG. INITIAL. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUNDEX. IBMALPHAC]
ODE, MATCHRATING, NYSIIS. CAUERPHONE. CAUERPHONEZ, METAPHONE, METAPHONEZ, NEEDLE
MANWUNSCH,. SMITHUYATERMAN. SCAM. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRMID, NICKNAME]

Initializing Index...
Index Type: Hulllndex

Figure 73: Output to Command Box Generated by OYSTER Run - 1

64

BN C\Windows\system32icmd exe |££|th

[ClusterRecord Type: UNKNOWN

Initializing EntityMap...
EntityMap Type: EntityMap

A BERefID

B StudentFirstMame

IC StudentLastName

D StudentDateOfBirth
[E LEA

Loading Previous IdentityRepository: Z:\Oyster\RunBB87?\Input“RefToStrInputTest.id|
[y

i CRefID

B StudentFirstMame

C StudentLastMame

D StudentDateOfBirth

[E LEA

Building Index
Engine Type: QusterfAssertionEngine

F PAssertRefToStr
Source: Z:\0ysters\RunBA?\Input-AssertionsSource.txt

ﬂgERBOR: Input Identities = Input Identities Update + Input Identities Mot Updat
i

HHES I R

HHES B

HHE Cluster Stats HHE

IS BRI

[Cluster Size Distribution

Cluster Siz: # of Cluste»i # of Recurdi

Clusters loaded

References loaded

Avg # of Refs/Cluster

i

1
1.800868

Average Cluster Grouping
Average Cluster by Count
Average Cluster Size
Humber of Duplicate Recs
Duplication Rate

—Infinity

Total Candidates Size a
Total DeDup Candidates Size a
Total # Candidates a
Avg Candidates per Input HaM
Total Matched Count a
Matches per Candidates Size HaM
Matches per DeDup Candidates Size HaH
Matches per Candidates H HaM

FHES B R T

HE Rule Stats it

IR BRI

MNumber of Rules:

[Rule Firing Distribution

(Hule Counts

FEIETE BRI S L
fif Index Stats #H#
CHER B R

eys
Total tokens

Unigue tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key

Total tokens per key 7 .000068
UUnigue tokens per key 7 .800008
Total per Unigue tokens 1.88008
Unigque per Total tokens 1.880008

Max key <null>

= <{null>
2 i a

GCandidates # of Records

HER I R

H#t Timing Stats #H

RS BB

Elapsed Seconds a

Throughput <{records-hour> HaM
i LLEL]

5]
9.223.372,036.854,775 .8
LEL]

Average Mon—Matching Latency {ms>
Max Mon—Matching Latency (ms
Min Mon—Matching Latency <ms> 9.223,.372,.036,.85%4,.775.887

Time process started at 2812-88-24 21.21
Time process ended at 2012-@8-24 21 .21._87
Total elapsed time B hourds) B minute{s> B second{s)

Z:~0Oyster>pause
Press any key to continue . . .

Figure 74: Output to Command Box Generated by OYSTER Run - 2

65

The statistics for this run may be slightly confusing. According to the statistics, OYSTER
processed the 0 records and found they belong to 3 real-world identities, shown inFigure
74. This is due to this being an Assertions run and the references were asserted into
equivalence, not matched. Figure 75 shows the Link file with shows the reference AS1.1

was added to the specified Identity, it also shows that no rules were used for matching, all
matching was done through assert.

s

{8 AssertionsLinks.1...007\Output) - GVIM2 =R =

File Edit Tools Syntax Buffers Window Help
AREE 9 @ | B nBnedd:
efID OysterID Rule
As1.1 HYPRZBIYSFXB1IMS null

1,1 A1l

Figure 75: Link file created for Identity Build from Assertions

-~

-

The entire point of this RefToStr assertion run is to update a set of identities that can be
used as input when performing Identity Resolution or Identity Update. These identities are
updated through the use of previous knowledge about the references. Figure 76 shows the
reference was asserted into the correct identity. By assigning the Assert attribute the
@AssertRefToStr Attribute value in the source descriptor, it forced OYSTER to match the
records with no regard to the other attribute values of the record.

B o {E=SEoR ==
Ele Edt ook Symac Guffers Window Heip
ANRE |9 @ B RERRSSA|I TR ? R
Krouts
<Hetadata>
Hodific
~ Date-"21z-01-31 22.00.46" RUNSCript-"IdentitycaptureRunscript™ />
* pate="2012-0h-1h4 20.20.22" RunScript="RefToStrassertionRunScript™ /3
</Modificati >
<Attributes>
<Attribute Hame-"BRefID" Tag-'
<Attribute Names=* Fi
CALTribute Mane:
<Attribute Hame-"Si
<Attribute Name=‘L ="E“/>
</nteributes>
</Metadata>
<ldentities>
<ldentity [dentiFier="sWZPUHURHOZERSRY" CDate="2012-81-31">
<References >
<Rererence>
<Value>A”sourcel.6|B Super |G Han|B"280111 84| E*C19</Valued>
Traces>
<Trace 0ID-"s" RUNID-"1" Rule-[@]"/>
</Traces>
</Reference>
</Rererences>
</1dentity>
<Identity Identifier="HYPRZBIVSFXO1IMS" CDate="2812-01-31">
<Reserences>
<Reference>
<UaluerA"AS1.1|B Edgar|C Jones | D" 20061164 | E"G38</ Value
<Tracess>
</Reference:
<ererence>
<val ourcel.1|B Edgar |C Jones| 020081104 |EG3A</Nalue>
P
[<Trace 0ID="s" RunID-"1" Rule-"[@]"/>
5
L/ReFere
<ReFerence>
<Value>A”sourcel.3|B"Eddie|C"Jones|D 20001104 |E“H15</Value>
<Traces>
<Trace 0ID-"SHEGISVITNZUFOZE™ RUNID="1" Rule="[B]"/>
<<<<<<<< >
</Reference>
<ReFerence>
<Value>A”sourcel.5|B Eddie|C"Jones|D 20001104 |E~GI4</Valued
<Traces>
<Trace DID="SHOGIOVITKZUFOZE™ RunID="1" Rule="[1]"/>
Traces>
</Reference>
</References >
</identity
<lgentity Identifier-"RDMIGKYDIXESURCE™ CDATE-"ZH1Z-U1-317>
<Heferences >
hererence>
<Ualue>Asourcel.2|B"Hary|C SRitN| D" 19990921 |E G55 C/Value>
<Traces>
<Trace 0ID="=" RuniD="1" Rule="[@]"/>
<Traces>
</Reference>
<Referen
“sourcel . 4|B Hary |G SRIiER| DT 19998921 [ETHI7</Value>
>
CIrace 0Ip=“=* RUnID=*1" Rule="[1]"/>
N
</Reference:
</References>
</ldentity>
</Tdentitiesy
<sraat>
35,1-8 a1

Figure 76: Identity file created for Identity Build from RefToStrAssertions

66

As with the previous examples, this sample run was done using a delimited text file.
Examples of how to connect to a Fixed Width text file, a Microsoft Access DB, MySQL, and
Microsoft SQLServer can be seen in the OYSTER Reference Guide.

67

Structure to Structure Configuration

When OYSTER is configured to build identities from a structure to structure assertion run,
the input identities are required since asserted identities will be pulled from the existing
idty structure. A link file and output identity file must also be specified. This is shown in
Figure 77Figure 57.

<!-- Identity Input Selection -->
<IdentityInput Type="TextFile">Z:\Oyster\Input.idty</IdentityInput>

<!-- Identity Output Selection -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output.idty</IdentityOutput>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 77: Defined Input and Output for Building Assertions

OYSTER can use the identity update architecture to build a set of identities from a set of
assertions. Structure to Structure Assertions represent knowledge about two or more
known entity identities. The identities built through this process can be used as an input
when performing Identity Resolution or Identity Update to force a match based on the
previous knowledge represented by the assertions.

Lastly, the RunMode should be set to “AssertStrToStr” as shown in Figure 78.

<RunMode>AssertStrToStr</RunMode>

Figure 78: RunMode Set to “AssertStrToStr” in OysterRunScript for Structure to Structure Assertion Run

68

Example

Running OYSTER in the Structure To Structure Assertions configuration allows identity
information to be asserted, preserved, and input into later processes (OYSTER runs) that
run in the Identity Resolution or Identity Update Configuration. These identities can be
built from a set of assertion sources that represent knowledge about the existing entities.

For this example, the test source file is named ‘AssertionsSource.txt’, shown in Figure 79.
This data consists of 2 references; each reference is constructed from the following

attributes:
e ReflD
e OID

o AssertStrToStrLastName

mj AssertionsSourcetd - Motepad EI@

File Edit Fermat View Help

RefID, @OID, @AssertStrToStr -
1,HYPRZEBIYSFX01IMS,1
2, 4WZPUMUNMOTF458Y,1

Figure 79: Source file for Identity Build from StrToStr Assertions

Note that based on previous knowledge, an OID and Assert attribute has been configured to
force two identities in the identity source to merge. The Assert attribute should match for
identities that are known to represent the same entity. Since a Structure to Structure
assertion run is based off of previous knowledge of the identities there is no need to
analyze the source data. Based on the knowledge about the source references, the source
descriptor file can be created. Using this source file information the source descriptor file,
named “AssertionsSourceDescriptor.xml”, can be created. This file is shown in Figure 80.

& D A0y ripts) - GVIM3 [E=8 Bl |

File Edit Tools Syntax Buffers Window Help
QERG|2E| 4 omREE A5A|THa ? 0

<?xml wersion="1.0" encoding="UTF-8"?7> =

<r--
Document : AssertionsSourcebescriptor.xml
Created on : 11/26/2018
Author : Fumiko Kobayashi
Description: Descriptor for AssertionsSource.txt
-->

<OystersourceDescriptor Mame="AsS3">
<t-- Delimited —->
<Source Type="FileDelin” Char="," Qual="" Labels="Y">Z:\0yster\Run@08\Inputi\fAssertionsSource.txt<{/Source>
<{t-- Items in Source -->
<Referenceltens>
<Item Hame="ReferencelD" Attribute="@RefID" Pos="8" />
<Item Hame="OYSTERID" fttribute="G0ID" Pos="1" />
<Item Hame="StructureToStructurefAssertion” Attribute="@AssertStrToStr" Pos="2"/>

</Referenceltens>
</0ysterSourceDescriptor> <

Figure 80: Source Descriptor for Identity Build from Assertions

Note that when creating the source descriptor for a Structure to Structure assertion run, as
mentioned earlier, an AssertStrToStr and OID attribute is configured for each record to

69

represent the previous knowledge. To identify to OYSTER that this is a StrToStr assertion
run there is a predefined key word that must be assigned as the value of the Attribute
attribute of the Assert attribute. This keyword is @AssertStrToStr. The Keyword @OID
must also be specified and correspond to the attribute that represents the OYSTER IDs of
the identities to be merged. The @AssertStrToStr keyword forces OYSTER to use StrToStr
assertion logic on the source input and to ignore any user defined matching rules. Matching
will only occur if the Assert attribute in the source file are the same for multiple records.

Following the same process as was performed in the previous two examples, once the
source descriptor is defined the source attributes file must also be defined. This file is
stored in the Source folder along with the Source Descriptor file. The attributes file is used
to define the attributes in the source along with the algorithms used to compare the
attributes and the matching (Identity) rules used when performing ER. For this example
run no matching rules will be identified. Instead, as mentioned earlier, the matching will
depend solely on the values of the Assert attribute.

The source attribute file is named ‘AssertionsAttributes.xml’ and is depicted in Figure 81.

& AssertionsAttributes... \Run00B\Scripts) - GVIM4 =] =]
Eile Edit Tools Syntax Buffers Window Help
AdDE 8 @ B R S3SA T
<g*ml version="1.0" encoding="UTF-8"7> -
<t--
Document : AssertionsAttributes . xml
Created on : 11/26/18 =
Author : Fumiko Kobayashi

Description: Attributes for Assertion example
-->

<0ysterattributes System="StudentDemo'>

{t-- Identity Rules -->
{IdentityRules>
</ldentityRules>
</Oysterattributes> -
1,2 All

Figure 81: Attributes file for Identity Build from StrToStr Assertions

Since a StrToStr assertion is based only on existing identities in the idty file and the
attributes are specified by OYSTER keywords, the attribute file requires no attributes to be
defined. You may also note that there is no rule defined for this run as mentioned earlier
but the Rule tag must still be include or the OYSTER run will fail.

As with the previous two examples, the last file that needs to be created is the RunScript for
this example. For the attributes example, no input identity file should be specified in the
Run Script but both the output identity file and the link files should be specified. The Run
Script should again be stored in the root OYSTER folder as this is where the OYSTER

70

program is expecting the file to reside. The file for this sample is named
‘StrToStrAttributeRunScript.xml!’ and is shown in Figure 82.

{ StiToStrAssertionRunScriptxml + (Z:\Oyster) - GVIMS Fefa =
File Is Syntex Buffers Window Help

ag 9@ BER&KSSA TH2? 2

E7=ml version="1.0" encoding="UTF-8"7> -

<r-—
Document @ AssertionsRunScript.xml
/172811
umiko Kobayashi
Description: Identity Build From Assertions run seript
-->

<OysterRunScript>
<settings RunScriptHame-"StrToStrAssertionRunScript” Explanation-"0n" Debug="On" />

<LogFile Hum="5" Size="106800000">2:\0yster\Log\StrioStraAssertions_%g.leg</LogFile>
<Runtode>AssertStrToStr</Runtode>

<EREngine Type="FSCluster" />

<AttributePath>Z:\0yster\RunB8\ScriptsiAssertionsAttributes.xml</AttributePatn>

<t-- No input identities -->

<IdentityInput Type="TextFile">2:\Oyster\RunBO8\Input\StrToStrInputTest. idty</Identitylnput>

<t-- Identity Build for Later Resolution -—>

<IdentityOutput Type="TextFile">Z:\0yster\Run8o8\DutputinssertionsOutputldentities.idty</Identitydutput>

<Assertioninput>2:\0yster\RUNBBB\SCripts\AssertionsSourceDescriptor .xml</AssertionInput>
</0ysterRunscript> -
1,1 a1l

Figure 82: Run Script for Identity Build from StrToStr Assertions

Now that all the scripts for the StrToStr Assertions example have been created we can run
OYSTER. This process is depicted in Figure 37, Figure 38, and Figure 39 and described in
their surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 83 and Figure 84.

BE¥ C:\Windows\system32\cmd.exe | =nnen X

Oysterrjava —jar Oyster.jar
yster v.3.3

Please input the name of the runScript:
StrToStrAssertionRunScript . xm
Opening Z:xOysteprsStrloStrAssertionRunScript.xml

m

Initializing Comparators...
Initializing Index...

Index Type: Nulllndex
OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOWN
Initializing EntityMap...
EntityMap Type: EntityMap

A @RefID

Loading Previous IdentityRepository: Z:\Oyster\RunBB8\Input:StrToStrInputTest . id|
ity

A BRefID

B StudentFirstMame

C StudentLastMame

D StudentDateOfBirth

E LEA

Building Index
Engine Type: OysterAssertionEngine

F B0ID
G BAssertStrToSte
Source: Z:ixOuyster\RunB@B8\Input™AssertionsSource.txt

MUERROR: Input Identities = Input Identities Update + Input Identities Not Updat
e

TR Y

i Summary Stats #Hf
(B HHHE
Total Records Processed
Total Clusters

Max Cluster Size

Min Cluster Size > 1
Min Cluster Size

|
FRrENE

T

i Cluster Stats i

(B

Cluster Size Distribution

Cluster Size # of Clusters # of Records

Clusters loaded 3

References loaded 6
Auvg # of Refs- Cluster 2 . 98888 =

Figure 83: Output to Command Box Generated by OYSTER Run - 1

71

@ CAWindows\system32\cmd.exe [

fverage Cluster Grouping H -
Average CGluster by Gount H

Average Cluster Size MaN

Mumber of Duplicate Recs H

Duplication Rate H —Infinity

Total Candidates Size

Total DeDup Candidates Size

Total # Candidates

Avg Candidates per Input

Total Matched Count

Matches per Candidates Size
Matches per DeDup Candidates Si=
Matches per Candidates H

(B

Ls Rule Stats il
B R

Mumber of Rules: B

[Rule Firing Distribution

Rule Counts

m

HERE R

LS Index Stats il

I S

Keys

Total tokens

Unigue tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key =

Total tokens per key H 6. B0R0A
Unique tokens per key H 6. AAEAA
lotal per Unigue tokens = 1.88888
Unigue per Total tokens = 1.6060808

Max key : <null>

gop 18 keys
5 4 2

: <null>
1 a

Candidate Size # of Candidates # of Records

B R

[Timing Stats

I A R A A 4

Elapsed Seconds H 2]

[hroughput <{records- hour? H MaN

Average Matching Latency <{ms) MaN

Max Matching Latency {ms} 5]

Min Matching Latency {ms}» -223,.372,836.854,775,887
Average Mon-Matching Latency MaN

Max Hon—Matching Latency {ms) A

Min Hon—Matching Latency (ms) = 9.223,372.036,854,. 775,887

tarted at 2012-88-24 21.37.28
ded at 2012-88-24 21 .37.28
time B hourd{s) B minute(s> B second{s>

Z:\Oysterrpause
Press any key to continue . . . =

Figure 84: Output to Command Box Generated by OYSTER Run - 2

The statistics for this run may be slightly confusing. According to the statistics, OYSTER
processed the 0 records and found they belong to 2 real-world identities. This is due to this
being an Assertions run and the Identities were asserted into equivalence, not matched.
This figure also shows that no rules were used for matching and instead all matching was
done through assert. StrToStr assertion runs do not generate a link output file.

The entire point of this StrToStr assertion run is to merge a set of identities. These
identities are constructed through the use of previous knowledge about the references
contained in the Identities. As shown in Figure 85 these 4 references resolve to 2 identities.
By assigning the Assert attribute the @AssertStrToStr Attribute value in the source
descriptor, it forced OYSTER to match the records with no regard to the other attribute
values of the record.

72

udentLastName
=“Student

<Attribute Name-"LEA” Tag="E"/>

</Attributes>

</metadata>

e” T
tDateofBirth” Tag="D
a
<1dentit

5 idty - a
|[e Edit Fomat Yiew Hep
[7xm1 version="1.0" encoding="uUTF-8 7>
<root>
wetadata
odifications>
<Modification ID="1" Oysterversiona"3.2" Dates"2012-01-31 22.00.46" RunScript="IdentityCaptureRunscript” /
<modification I0="2" Oysterversion="3.3" Date-"2012-08-24 21.37.28" Runscript="StrToStrassertionRunscript”
</modifications>
<attributes>
<Attribute Name="GRefID" Tag="A"/.
<ATtribute Namea"STudentFirstw:
<attribute Nam dentL
<attribute N

<Identity Identifier="HYPRZBIYSFXO1IM5" CDate="2012-01-31">
<references>
<Reference>

<value>Arsourcel.1|BAEdgar |CAJones |DA20001104 [EAG34</Value>
<Traces>
<Trace OID="*" RunID="1" Rule="[2]"/>
</Traces>
</Reference>
<reference>

<Traces>

<value>Atsourcel. 3|8AEddie|CAJones |DA20001104 |EAHL S</Value>
</Traces>
</reference>
<Reference>
<valu

<Trace OID="SHGGIOYTIK7VFO7E" RUNID="1" Rule="[8]"/>
<Trac

e>Ansourcel. 5|8AEddie|CAJones |DA20001104 [EAG34</Value>
es>

</Traces>

</Reference>

<Reference>

<Trace OID="SHGGIIYTIK7VFO7E" RUnID="1" Rule="[1]"/>
<Traces>

</Strrostr>
</1der

<value>atsourcel. 6| BASuper [CAMan|DA20011104 |EAG19</Value>
</Traces

</reference>
<StrTostr>

<OT0>4WZPUMUNMO7FAS8Y</O1D>
</References>
%
<I

<Trace 0ID="*" RunID="1" Rule="[2]"/>
>

Tity>

dentity Identifier="RONQEKYDIX6SVXCE™ CDate="2012-01-31">
<References>

<Reference>

<Traces>

alue>AAsourcel. 2| BAMary| CASmith| DA19990921 | EAGSS</Value>

<Trace OID="*" RUNID="1" Rule="[8]"/>

</Traces>

</reference>

<reference>

<value:
<Trace:

>ANsourcel. 4 |BAMary |CASmith|DA19990921 [EAHLT</Value>
<>
</Traces>
</Reference>
</References>
</Identit
) </1dentities>
</root>

<Trace OID="*" RunID="1" Rule="[1]"/>

Figure 85: Identity file created for Identity Build from Assertions

As with the previous examples, this sample run was done using a delimited text file.

Examples of how to connect to a Fixed Width text file, a Microsoft Access DB, MySQL, and
Microsoft SQLServer can be seen in the OYSTER Reference Guide.

73

Structure Split Configuration

When OYSTER is configured to build identities from a Structure Split assertion, the input
identities are required. A link file and output identity file must also be specified. This is
shown in Figure 86.

<!-- Identity Input Selection -->
<IdentityInput Type="TextFile">Z:\Oyster\Input.idty</IdentityInput>

<!-- Identity Output Selection -->
<IdentityOutput
Type="TextFile">Z:\Oyster\Output.idty</IdentityOutput>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 86: Defined Input and Output for Building StrSplit Assertions

OYSTER can use the identity update architecture to split identities based on the assertion
information. Structure Split Assertions represent knowledge about false positive
resolutions made to one or more known entity identities. The identities built through this
process can be used as an input when performing Identity Resolution or Identity Update to
force a match based on the previous knowledge represented by the assertions.

Lastly, the RunMode should be set to “AssertSplitStr” as shown in Figure 87.

<RunMode> AssertSplitStr</RunMode>

Figure 87: RunMode Set to “AssertSplitStr” in OysterRunScript

74

Example

Running OYSTER in the Split Structure configuration allows identity information to be
asserted, preserved, and input into later processes (OYSTER runs) that run in the Identity
Resolution or Identity Update Configuration. These identities can be built from a set of
assertion sources that represent knowledge about the entities. This can be used to fix False
Positive resolutions from previous runs.

For this example, the test source file is named ‘AssertionsSource.txt’, shown in Figure 88.
This data consists of four references; each reference is constructed from the following

attributes:
e RefID
e @RID
e @OID
e @AssertSplitStr

-

Mj AssertionsSourcetxt - Motepad EI@
File Edit Format View Help
refID,@RID, @OID, @Assertsplitstr -

1l,5o0urcel.l,HYPREZEBIYSFXO1IMS,1
2,50urcel. 5,HYPRZBIYSFXO01IMS, 2

Figure 88: Source file for Identity Build from SplitStr Assertions

Note that based on previous knowledge, an Assert, RID, and OID attribute has been
configured as source references. See the reference guide for details on the function of each.
Since a Structure Split assertion run is based off of previous knowledge of the references
there is no need to analyze the source data. Based on the knowledge about the source
references, the source descriptor file can be created. Using this source file information the
source descriptor file, named “AssertionsSourceDescriptor.xml”, can be created. This file is
shown in Figure 89.

& D A0y ripts) - GVIMS [E=8 Bl |

File Edit Tools Syntax Buffers Window Help
QERG|2E| 4 omREE A5A|THa ? 0

<?xml wersion="1.0" encoding="UTF-8"?7> =

<r--
Document : AssertionsSourcebescriptor.xml
Created on : 11/26/2018
Author : Fumiko Kobayashi
Description: Descriptor for AssertionsSource.txt

I

>

<OystersourceDescriptor Hame="AS4">
<t-- Delimited —->
<Source Type="FileDelin" Char="," Qual="" Labels="¥">Z:\0yster\Run889\InputiAssertionsSource.txt<{/Source>
BRreferenceltens>
<t-- Items in Source -->
<Item Hame="RefID" Attribute="@RefID" Pos="8" />
<Item Hame="ReferencelD” Attribute="GRID" Pos="1" />
<Item Hame="0VSTERID" Attribute="@DID" Pos="2" />
<Item Hame="StructureSplitAssertion” Attribute="GAssertSplitStr" Pas="3"/>
</Referenceltens>
</0ysterSourceDescriptor> -
13,5 ALl

Figure 89: Source Descriptor for Identity Build from Structure Split Assertions

75

Note that when creating the source descriptor for a SplitStr assertion run, as mentioned
earlier, an Assert, OID, and RID attribute are added to each record to represent the
previous knowledge. To identify to OYSTER that this is a SplitStr assertion run there is a
predefined key word that must be assigned as the value of the Attribute attribute of the
Assert attribute. This keyword is @AssertSplitStr. The @AssertSplitStr keyword forces
OYSTER to use SplitStr assertion logic on the source input and to ignore any user defined
matching rules.

Following the same process as was performed in the previous two examples, once the
source descriptor is defined the source attributes file must also be defined. This file is
stored in the Source folder along with the Source Descriptor file. The attributes file is used
to define the attributes in the source along with the algorithms used to compare the
attributes and the matching (Identity) rules used when performing ER. For this example
run no matching rules will be identified. Instead, as mentioned earlier, the matching will
depend solely on the values of the Assert attribute.

The source attribute file is named ‘AssertionsAttributes.xml’ and is depicted in Figure 90.

% AssertionsAttributes.xml (Z\Oyster\Run00%\Scripts) - GVIMS EI@

File Edit Tools Syntax Buffers Window Help
AERE | 9 &| B RRB/SSAITAQ? 2

<?xml version="1.0" encoding="UTF-8"?> -

R

Document : AssertionsAttributes.xml

Created on : 11/26/18

Author : Fumike Kobayashi

Description: Attributes for Assertion example
-=>

m

<OysterAttributes Syste-="StudentDemo"!

<t-- Identity Rules -->
<IdentityRules>
</IdentityRules>
</Dysterpttributes> -
18,39 All

Figure 90: Attributes file for Identity Build from SplitStr Assertions

Since the SplitStr attributes consist of only attributes specified by OYSTER keyword, no
attributes need to be configured in the attribute file. You may also note that there is no rule
defined for this run as mentioned earlier but the Rule tag must still be include or the
OYSTER run will fail.

As with the previous two examples, the last file that needs to be created is the RunScript for
this example. For the attributes example, no input identity file should be specified in the
Run Script but both the output identity file and the link files should be specified. The Run
Script should again be stored in the root OYSTER folder as this is where the OYSTER
program is expecting the file to reside. The file for this sample is named
‘StrSplitAttributesRunScript.xml’ and is shown in Figure 91.

76

{# strSplitAssertionRunScriptami (Z:\Oyster) - GYIM7 =3 =N |

File Edit Tools Syntsx Buffers Window Help

& & 9e B BReLSATHA? R
<?xml version="1.8" encoding="UTF-8"?> -
<t

Document : AssertionsRunScript.xml

Created on : 2/1/2011

Author : Fumiko Kobayashi

Description: Identity Build From Assertions run script
I =
<OysterRunScript>

<Settings RunScriptHame="StrSplitAssertionRunScript” Explanation="0n" Debug="0n" />

<LogFile Hum="5" Size="100000000">Z:\0yster\Log\StrSplitssertions %g.log</LogFile>
<RunHode>AssertSplitStr</Runtode>

<EREngine Type="FsCluster />

<attributePath>2Z:\0yster\RunB@9\ScriptsiAssertionsattributes.xnl</AttributePath>

<t-- No input identities -->

<IdentityInput Type="TextFile">Z:\Oyster\Rune@9\Input\StrsplitInputTest.idty</IdentityInput>

<t-- Identity Build for Later Resolution -->

<IdentityOutput Type="TextFile">2:\0yster\Run089\0utputiAssertionsOutputidentities.idty</IdentityOutputy

<AssertionInput>Z:\0yster\RunBB2\ScriptsiAssertionsSourceDescriptor .xml</AssertionInput>
</OysterRunScript> -
17,84 a1l

Figure 91: Run Script for Identity Build from SplitStr Assertions

Now that all the scripts for the Assertions example have been created we can run OYSTER.
This process is depicted in Figure 37, Figure 38, and Figure 39 and described in their
surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 92 and Figure 93.

@ CAWindows\system32\cmd exe =R

Z:\Oyster>java —jar Ouster.jar
Oyster v.3.3

Please input the name of the runScript:

StrSplitAssertionRunScript.xml
Opening Z:xOuystepnStrSplitAssertionRunScript.xml

Initializing Comparators...
Tnitializing Index...

Index Type: Hulllndex
OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUN

Initializing EntityMap
EntityMap Type: EntityMap

A BERefID

Loading Previous IdentityRepository: Z:\Oyster\RunBB?<Input:StrSplitInputTest.id
[t

v

A" BRefID

B StudentFirstName

C StudentLastMame

D StudentDateOfBirth

E LEA

Building Index

Engine Type: OysterfssertionEngine

F BRID

G EOID

H PAssertSplitStr

Source: Z:\0yster RunB@?\Input fAzsertionsSource.txt

HERS LRSS
il Summary Stats i
T S S
lTotal Records Processed

Min Cluster Size

i R i

[Cluster Stats #it

BRI

Cluster Size Distribution

Cluster Size # of Clusters # of Records

Clusters loaded = E]
References loaded 6
fug # of Refs- Cluster 2 .00008

Figure 92: Output to Command Box Generated by OYSTER Run - 1

77

@ CAWindows\system32\cmd exe =R

fverage Cluster Grouping

Average Gluster by Gount

Average Cluster Size MaN
Mumber of Duplicate Recs H

Duplication Rate H —Infinity

Total Candidates Size

Total DeDup Candidates Size

Total # Candidates

Avg Candidates per Input

Total Matched Count

Matches per Candidates Size
Matches per DeDup Candidates Si=
Matches per Candidates H

(BT

Ls Rule Stats il
T R

Mumber of Rules: B

[Rule Firing Distribution

Rule Counts

HERE IR

LS Index Stats il

I S

Keys

Total tokens

Unigue tokens

Max tokens per key

Min tokens per key

Min tokens > 1 per key =

Total tokens per key H 6. B0R0A
Unique tokens per key H 6. AAEAA
lotal per Unigue tokens = 1.88888
Unigue per Total tokens = 1.6060808

Max key : <null>

gop 18 keys
5 4 2

: <null>
1 a

Candidate Size # of Candidates # of Records

B R

[Timing Stats

R A R A R 4

Elapsed Seconds H i

[hroughput <records- hour? H A .88888

Average Matching Latency <{ms) MaN

Max Matching Latency {ms} 5]

Min Matching Latency {ms} -223,.372,836.854,775,887
Average Mon-Matching Latency MaN

Max Hon—Matching Latency {ms) A

Min Hon—Matching Latency (ms) = 9.223,372.036,854,. 775,887

tarted at 2012-88-24 21.46.00
ded at 2012-88-24 21 .46 .81
time B hourd{s) B minute(s> 1 second{s>

Z:\Oysterrpause
Press any key to continue . . .

Figure 93: Output to Command Box Generated by OYSTER Run - 2

The statistics for this run may be slightly confusing. According to the statistics, OYSTER
processed the 0 records and found they belong to 5 real-world identities. This is due to this
being a SplitStr Assertions run and the references were asserted to split, not matched.
SplitStr runs generate no link output file.

The entire point of this SplitStr assertion run is to fix false positive resolutions made by
previous OYSTER runs. As shown in Figure 94 this caused the specified identity to split into
two separate identities.

78

! AssertionsOutputdentitesidty - R—

[Eile Edit Format yiew Hep

[?xm] version="1.0" encoding="uUTF-8"7> -
<root>

<vetadata>
vodifications>
Modification ID="1" Oysterversion="3.2" Date="2012-02-06 20.28.54" Runscript="IdentiTyCaptureRunscript”
Hodification ID="2" Oysterversion="3.3" Date="2012-08-24 21.46.01" RUNScr ipt="strSpl{tASSertiONRUNSCHIpL" />
</Modifications>
<attributes>
Attribute Name=gRefI0" Tag="A”
<Attribute Na umnirsmme T
ZAtr ibute Nam astName
<ATtribute Names studenma(eofmr(h Tag="0"/>
<Atribute Name="LEA" Tag"E"
</attributes>
</Metadata>
<Identities>
<Identity Identifier="4WZPLMUNMO7FASBY" CDate="2012-02-06">
<references>

<Reference>
<value>Arsourcel. 6|BASuper |CAMan|DA20011104 |EAG19</Value>
<Traces>
<Trace OID"*" RunID="1" Rule~"[&]"/>
Traces>

</Reference>
</ neferen(es

</1dent
<lden(1(y Identifier-"C28GIV78BAOPWIMW" CDate="2012-08-24">
<references>
<reference>.
<value>arsourcel. 5|BAEdie|CAJones |DA20001104 [EAG34</Value>
<Traces>
<Trace 0ID="*" RunID="1" Rule="[1, 2]"/>
</Traces>
</Reference>
<Negstrsrs

<OT0>HYPRZBIVSFXO1IMS5</0ID>
<OT0>QINBWBEBIWEBTF7Ui</OID>
</Negstrstr>
[Sreferences>
</Ident
Saentity mentiﬁer- HYPRZBIYSFXO1IMS” CDate="2012-02-06">
erences>
<References e
<value>atsourcel. 3| BAEGdie|CAIones [DA20001104 |EAHL 5</Value>
<Traces>
<Trace OID="SHGGIIYTIK7VFO7E" RUNID="1" Rule="[8]"/>
/Traces>
</Reference>
<Negstrstr>
<0T0>Q1NSWBEBIWESTF7U</0ID>
<010>C 28G9Y7 BBAOPWIVW</OTD>
</Negstrstr>
e erencess
</1dent
ddennry Tdentifier="INEWBEBOWESTF7U" CDate="2012-08-24">
References>
<reference>
<Value>Atsourcel. 1|8AEdgar |CAJones |DA20001104 |EAG34</VaTlue>
<Traces>
<Trace OID="HYPRZBIYSFXOLIMS" RunID="1" Rule="[8]"/>
races>
</Referemcts.
<Negstrstr>
<OTO>HYPRZBIVSFX011M5</0ID>
<010>C2869Y7 8BAOPWIMW</OT0>
</Negstrstr>
</References>
</1dentity>
<Identity Identifier="RONQEKYDIX6SVXCE" CDate="2012-02-06">
<References>
<Reference>
<value>Arsourcel. 2| BAvary [CASiTh| DA19990921 |EAGSS</Value>
<Traces>
<Trace OID="RONQEKYDIX6SVXCE" RunID="1" Rule="[8]"/>
</Traces>
</reference>
<reference>
alueasourcet. 4lswary\(Asnith]leWOQZHEANL</ value>
<ar
" rrace 010-"+" Run1o="1" Rule="[1]"/>
Traces>
<JReferences
</References>
</1dentit
</1dentities>
</root> s

Figure 94: Identity file created for Identity Build from SplitStr Assertions

Note that the split identities were assigned a NegStrStr value which keeps these references
from ever matching on following runs.

As with the previous examples, this sample run was done using a delimited text file.

Examples of how to connect to a Fixed Width text file, a Microsoft Access DB, MySQL, and
Microsoft SQLServer can be seen in the OYSTER Reference Guide.

79

Identity Resolution

Figure 95 illustrates the dataflow for an OYSTER run configured to perform identity

resolution.

Input
Identities

Reference
Sources

OYSTER

@

Figure 95: Identity Resolution dataflow

80

Configuration

When OYSTER is configured to perform identity resolution there should be no output
identity file specified in the OysterRunScript but a link file and input identity file must be
specified. The configuration is shown in Figure 96.

<!-- Identity Input Selection -->
<IdentityInput Type="TextFile">Z:\Oyster\Input.idty</IdentityInput>

<!-- Identity Output Selection -->
<IdentityOutput Type="None"/>

<!-- Link Output Selection -->
<LinkOutput Type="TextFile">Z:\Oyster\Index.link</LinkOutput>

Figure 96: Defined Input and Output for Identity Resolution

In this configuration the process starts with a fixed set of identities, the Input.idty file
defined in Figure 96. The reference sources are resolved against the input identities.
References that do not resolve to any of the input identities are written to the link index,
“Index.link” above, with the same special link value that indicates “no resolution”.

You can use the AssertionsOutputldentities.idty file created by doing the identity build
from RefToRef Assertions earlier as the input identities for the Identity Resolution
configuration. This allows for OYSTER to create matches based on user knowledge about
specific entities.

Lastly, the RunMode should be set to “IdentityResolution” as shown in Figure 97.

<RunMode>IdentityResolution</RunMode>

Figure 97: RunMode Set to “IdentityResolution” in OysterRunScript

81

Example

This example will use the test source file named ‘IdentityResolutionTest.txt’, shown in
Figure 98. This data consists of six references. Each reference is defined by a RefID,

FirstName, LastName, DOB, and SchCode attributes.

This run also uses the identities created by the previous assertions run that are stored in
the AssertionsOutputldentities.idty file. The identity resolution run requires a set of

identity inputs so that it can identify identities in the input source that resolve to one of the

input identities.

After analyzing the source data the source descriptor file can be created.

Using this source file and these two rules, the source descriptor file, named
‘IdentityResolutionSourceDescriptor.xml’ can be created. This file is shown in Figure 99.

{# IdentityResolutionTest.txt...\Oyster\Run004\Input) - GVIM o

SRDE 9@ B Saxwe 5334 Tada 2 2

File Edit Tools Syntax Buffers Window Help
efID, FirstNHame, LastHame, DOB, SchCode
1, Edgar, Jones, 28081184, G34

2, Mary, Smith, 19998921, G55

3, Eddie, Jones, 28861184, H1S

4, HMary, Smith, 19998921, H17

5, Eddie, Jones, 28861184, G34

6, Super, Man, 28811184, G19

1,1

All

>

Figure 98: Source Input for Identity Resolution Example

¥ IdentityResolutionSourceDescrip... (C:\Oyster\Run004\Scripts) - GVIM
Fle Edit Tools Syntax Buffers Window Help

e = e B e 334 T@D 2 2

|B7xnl version="1.0" encoding="UTF-8"7>

<t
Document : IdentityResolutionSourceDescriptor.xml
Created on : 16/18/2611
Author : Fumiko Kobayashi

Description: Demonstrate Identity Resolution Configuration of OYSTER
-->

<OysterSourceDescriptor Hame="IR1">
<t-- Delimited -->

IdentityResolutionTest.txt</Source>
<t-- Items in Source -->
<Referenceltems>
<Item Hame="RefID” Attribute="BRefID" Pos="8"/>
<Item Hame="Fname" Attribute="StudentFirstHame" Pos="1"/>
<Item Hame="Lname” Attribute="StudentLastHame” Pos="2"/>
<Item Hame="DOBYMD" Attribute="StudentDate0fBirth” Pos="3"/>
<Item Hame="Scode" Attribute="StudentSchoolCode" Pos="4"/>
</Referenceltems>
<f0ysterSourceDescriptor>

1.1

<Source Type="FileDelim™ Char="," Qual=""" Labels="Y">c:i\0yster\RunB88s\Inputy

All

Figure 99: Source Descriptor for Identity Resolution Example

82

Again, by following the same process as was performed when setting up the merge-purge
example, once the source descriptor is defined the source attributes file must also be
defined. This file is stored in the Source folder along with the Source Descriptor file. The
attributes file is used to define the attributes in the source along with the algorithm used to
compare the attributes and the matching (Identity) rules used when ER is performed. For
this example run two identity rules will be used. The first rule says that the reference will
be considered equivalent if the FirstName, LastName, and DOB attributes match. The
second rules states that the references are equivalent if the LastName, DOB, and
SchoolCode match. The source attribute file is named ‘IdentityResolutionAttributes.xml’
and is depicted in Figure 100.

¥ IdentityResolutionAttributes.xml + (C:\Oyster\Run004\Scripts) - GVIM
Eile Edit Tools Syntax Buffers Window Help

aAadhsE 938 B HERe 554 Tda 22

|B7xnl version="1.0" encoding="UTF-8"7> ~

-

Document : IdentityResolutionAttributes.xml

Created on : 16/18/2611

Author : Fumiko Kobayashi

Description: Attributes for Identity Resolution example
-

<Oysterfttributes System="IdentityResolution™>
<Attribute Item="StudentFirstMame" />
<Attribute Item="StudentLastName™ />
<Attribute Item="StudentDateOfBirth™ />
<attribute Item="StudentSchoolCode" />
<t-- Identity Rules --3>
<ldentityRules>
<Rule Ident="1"">
<Tern Item="StudentFirstName" HatchResult="Exact"/>
<Term Item="StudentLastName" HatchResult="Exact"/>
<Term Item="StudentDate0fBirth” HMatchResult="Exact™/>
</Rule>
<Rule Ident="2">
<Term Item="StudentLastName"” HatchBResult="Exact"/>
{Tern Item="StudentDate0fBirth” HatchResult="Exact"/>
<Term Item="StudentSchoolCode" HatchResult="Exact"/>
</Rule>
</IdentityRules>
</fOysternttributes> v
1,1 All

Figure 100: Attributes file for Identity Resolution Example

As with the other examples, the last file that needs to be created is the RunScript for this
example. For this identity resolution example, no output identity file should be specified in
the Run Script but both the input identity file and the link files should be specified. The Run
Script should again be stored in the root OYSTER folder as this is where the OYSTER
program is expecting the file to reside. The file for this example is named
‘IdentityResolutionRunScript.xml’ and is shown in Figure 101.

83

{# IdentityResclutionRunScriptxml (Z:\Oyster) - GVIMLL =3 =N |

File Edit Tools Syntax Buffers Window Help
= glee BRRRISSA|ITEAQ[? A

E’?xll version="1.0" encoding="UTF-8"?> -
<e-—

Document : IdentityResolutionRunScript.xml

Created on : 108/16/2011

Author : Fumiko Kobayashi

Description: Identity Resolution Test -->

<OysterRunScript>
<Settings RunScriptHame="IdentityResolutionRunScript” Explanation="0n" Debug="On" />

m

<LogFile Mum="1" Size="180000060">2:\0ysteriLog\IdentityResolution_%g.log</LogFile>
<RunMode>IdentityResolution<{/Runtode>

<EREngine Type="FSCluster” />
<nttributePath>2:\0yster\RunB@s\ScriptsildentityResolutionAttributes.xml</AttributePath>

<*-- Input identites are output from Identity Build from Assertions example-->
<IdentityInput Type="TextFile">Z:\Oyster\Rune@s\Input\AssertionsOutputldentities.idty</IdentityInput>

<#-— No identity output in identity resolution -->
<IdentityOutput Type="Hone" />

<*-— Link Index -->
<LinkOutput Type="TextFile">Z:\0yster\Run@es\OutputildentityResolution.link</LinkOutput>
<t-- Sources to Run -->
<ReferenceSources>
<Source Capture="Ho">Z:\0yster\Run88¥\ScriptsiIdentityResolutionSourceDescriptor. xml</Source>
</Referencesources>
</0ysterRunScript> -
1,1 a1l

Figure 101: Run Script for Identity Resolution Example

Now that all the scripts for the Identity Resolution example have been created we can run
OYSTER. This process is depicted in Figure 37, Figure 38, and Figure 39 and described in
their surrounding text in the Example section.

Once the run is complete the output for the run will be written to the command box by
OYSTER. This output is shown in Figure 102 and Figure 103.

B C\Windowshsystem32\cmd exe | =R X

Z:\0yster>java —jar ster.jar
Oyster v.3.3

Please input the name of the runScript:
IdentityResolutionRunScript.xml
Opening Z:\0yster\IdentityResolutionRunScript . xml

Initializing Comparators...
S tudentFirstMame edu.ualr.oyster.association.matching.OysterCompareDefaull
- EXACT_IGNORE_CASE, MISSING. IMITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSQ
- IBMALPHACODE, MATCHRATIMG, MYSIIS, CAUERPHOME. CAUERPHOMEZ, METAPHOME. ME
%gP“a¥gﬁﬁnHE§DLEHRNHUNSC“' SMITHWATERMAN, SCAN. SUBSTRLEFT, SUBSTRRIGHT. SUBSTRHM

StudentLastMame edu.ualr.oyster.association.matching.OysterCompareDefault [EXACT.,
EXACT_IGNORE_CASE, MISSING, INITIAL,. TRANSPOSE, LED. QTR. SOUNDEX. DMSOUNDEX.
[BMALPHACODE,. MATCHRATING. NYSIIS. CAVERPHONE. CAVERPHONEZ,. METAPHONE. METAPHONEZ
Nn:g?DLEHHNHUNSCH. SHITHUATERMAN,. SCAM, SUBSTRLEFT, SUBSTRRIGHT. SUBSTRMID. NICH

StudentDateOfBirth edu.valr.oyster.association.matching.OysterCompareDefaul
t (EXRACT, EXACT_IGMORE_CASE., MISSIMG. INITIAL. TRANSPOSE, LED, QTR. SOUNDEX. DMSO)
UNDEX, IBMALPHACODE. MATCHRATING, NYSIIS, CAUERPHONE. CAUERPHONEZ, METAPHONE, ME
}gPHa?Eﬁﬁ“:EEDLEHHNHUNSCH, SMITHWATERMAN. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM|

StudentSchoolCode edu.ualr.oyster.association.matching.OysterCompareDefaull
EXACT_IGHORE_GASE, MISSING. INITIAL. TRANSPOSE. LED. QTR. SOUNDEX. DMSOQ)
LPHACODE. MATCHRATING, WYSIIS,. CAUERPHOME. CAUERPHOMEZ, METAPHOME, ME
E2, HEEDLEMANWUNSCH, SMITHUATERMAN,. SCAN. SUBSTRLEFT. SUBSTRRIGHT. SUBSTRM

ID. NICKNAME]

Initializing Index...
Index Type: Nulllndex

OysterldentityRecord Type: Map
ClusterRecord Type: UNKNOUN

Initializing EntityMap.
EntityMap Type: EntityMap

A DBRefID

B StudentFirstName

C StudentLastMame

D StudentDateOfBirth
E StudentSchoolCode

Figure 102: Screen Output Created by Identity Resolution Example Run - 1

84

BN C\Windows\systern32icmd.exe |E|E‘éj

Loading Previous IdentityRepository: Z:\Oyster“RunBB4>\Input“AssertionsOutputlden|l
tities.idty

A BRefID

B StudentFirstMame

Engine lupe: OysterClusterEngine

[Bypassing Least Common Rule filter

Source: Z:\Oyster\RunBB4:\InputsldentityResolutionTest. txt

Records processed for Z:“\Oyster\RunBB4“Scripts~IdentityResolutionSourcelescripto
b .xml: 6<A>

of Consolidation Steps: B8

ﬂgERROR: Input Identities = Input Identities Update + Input Identities Mot Updat|
e

REEEREEEE R

Total Records Processed
Total Clusters

Max Cluster Size

Min Cluster Size > 1
Min Cluster Size

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
Gluster Stats
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
(Cluster Size Distribution
Cluster Siz; # of Clusteri # of Hecordi

2 i
3 i

[Clusters loaded
References loaded
Avg ## of RefssCluster

Average Cluster Grouping
Average Cluster by Count
Average Cluster Size
Mumber of Duplicate Recs
plication Rate

Total Candidates Size

Dup Candidates Size

ndidates

Avg Candidates per Input
Total Matched Count
Matches per Candidates Size
Matches per DeDup Candidates Size
Matches per Candidates

5
A.2A833
B.41667
A.83333

BERREREE RS ER RG]

1 Rule Stats il
GEEREREEE RS R
Number of Rules:

[Rule Firing Distribution
?ule

2

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
tats

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Hax tokens per key

tokens per key
Min tokens > 1 per key
Total tokens per key 4.
Unigue tokens per key 4.
Total per Unigue tokens 1.9688088
UUnigue per Total tokens 1.

Max key <null>

Top 18 keys
4

(3 2
[Candidate Size Candidates # of Records

= <null>

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Records resolved

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

il T g St i
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Elapsed Seconds

Throughput (records-hour>
Average Hatchlng Latency {ms>

Max Mon—Matching Latency Cms)>
Min Mon—-Matching Latency <ms)»

Time process started at 2012-88-24 21 .53.15
Time process ended at 2A12-B8-24 21 .53.186

Total elapsed time B hourdCs) B minute{s)> 1 second{s)

Figure 103: Screen Output Created by Identity Resolution Example Run - 2

85

The output in Figure 103 may seem a little confusing in that it states that OYSTER was able
to process 6 records but only found 2 entities (Clusters). This is due to the way Identity
Resolution works; it only creates links for records that resolve to an existing identity in the
identity input file. If a reference in the source input does not resolve it is not counted.

[—— R —

| IdentityResolution.link - Notepad | o e S
File Edit Format View Help

refID OysterID Rule -
IR1. 6 COO000OOOO00O00 [@]

Irl.1 EMN7 3PME2SIBOHKD [@]

IRl. 5 EMN7 3PME2SIBOHKD [@] E
IrRl. 4 ROAYIWKL JAHUTWEEK [@]

Irl. 3 EMNT 3IPMEZ2SIBOHKD [@]

IRl.2 ROAYIWKL JAHUTWEE [@]

Figure 104: Link File Created by Identity Resolution Example Run

As you can see in the Link file generated by this identity resolution example, shown in
Figure 104, OYSTER was able to create links for 5 of the 6 references in the source data.
The sixth reference was assigned an OYSTER ID of ‘XXXXXXXXXXXXXXXX’ which means that
reference could not be linked to any existing identity in the identity input file for this run.
This is the type of data you are looking for when performing Identity Resolution.

86

Figures

Figure 1: Five activities of Entity ReSOIUtION ... 6
Figure 2: Basic OYSTER Run Steps DatafloW........oerenennenerneesreseesssssesessesessssssesssessssssessesssessens 14
P G T o L1 (0] e =) o 16
FigUIE 4: data fOlder .ottt 16
Figure 5: alias.dat file.....oerereeresriseeseieee s s s 17
FigUIE 6: [iD fOlAET ..cuiiiiier e 18
Figure 7: OYSTER fOlA@T ...t ssesssssss s ssssse s sssssss s sssss s ssssssssssssssssssesns 18
Figure 8: OYSTER Prompt.... s ssssssssssssssssasssssanes 20
Figure 9: Sample OySterRUNSCIIPE ...cuieceeeceeereeeereeeeseesesseeseseessssesssesssees 23
Figure 10: Sample OysterSourceDeSCIIPLOT ... sssssssens 24
Figure 11: Source File Definition in OysterSourceDeSCritPOroenreneseessesssssessesssesseens 24
Figure 12: Attribute identifiers in OysterSourceDeSCriPtor ... reererenreeeeeeeeesseeeseesseseenes 25
Figure 13: Sample OysterAttributes File........osssssesssss s 26
Figure 14: Identity Rules defined in OysterSourceDeSCriptorooeerereeesersessessessessessessenes 27
Figure 15: Attributes Defined in OysterSourceDesSCriptor ... 29
Figure 16: SOUrce File DefiNitionceeeneeeeeceeeeesesesessesessessesesessessessessessessessessessessessessessenes 29
Figure 17: Complete OysterSourceDeSCriptor File ... reseeseeseeseeseesssseesessessesseesesees 29
Figure 18: Defined Attributes in the OysterAttribute.xml File.......ccooiniiniinicninirssiiss 30
Figure 19: Identity RULE T ... ssesssnes 30
Figure 20: Identity RULE 2 ...t ssssssens 30
Figure 21: Identity RULE 3 ... ssesesnes 30
Figure 22: Complete OySterAttributes File ... 31
Figure 23: Compete OysterRUNSCIIPt File ..o sesssessens 32
Figure 24: Command prompt opened by Oyster.bat file ... 32
Figure 25: Output generated by OYSTER run as written to the Command Prompt - 1.......... 33
Figure 26: Output generated by OYSTER run as written to the Command Prompt - 2.......... 34
Figure 27: Change Report Generated by OYSTER RUN ... 34
Figure 28: Identity File Generated by OYSTER RUNcccoviriniensenirsssesses s 35
Figure 29: Link File Generated by OYSTER RUN ... 35
Figure 30: Merge-purge CONfigUIationoeeeenereenessessesssssessessessssssssssesssssssssesssssssssssssessssssesns 37
Figure 31: Defined Input and Output fOr Merge-purge......ccooeereereereeneeseesssseesesseessssesssssesssssessesees 38
Figure 32: RunMode Set to “MergePurge” in OysterRunScript for Merge-purgec.ccecunue. 38
Figure 33: Source data for Merge-pUIrge MU ... ssssssssesssesssssssssesssesssens 39
Figure 34: Source Descriptor used for Merge-purge sample run.......coooeeenensessensessesessessenes 39
Figure 35: Attributes file used for the Merge-purge sample runooenneenneneesseesesssesnenns 40
Figure 36: Run Script used for Merge-purge EXamplennncnsneenenceseseesessessesseesesees 41

file:///C:/Users/Michael/Desktop/2012%2012%2003%20Oyster%20Documentation/Oyster%20v3.3%20User%20Guide%202012%2008%2024.docx%23_Toc346903654

Figure 37: Oyster.Dat file l0CAtION ...t nes 41
Figure 38: Command prompted opened by Oyster.bat file ... 42
Figure 39: Command Prompt with RunScript name typed ... 42
Figure 40: Information generated by OYSTER run to Command boX - 1cccuermmneererssensenns 42
Figure 41: Information generated by OYSTER run to Command boX - 2cccureerrereererreerenns 43
Figure 42: Folder containing output of Merge-purge OYSTER runccoccounnmenrnesnssneesesnsnsenns 44
Figure 43: Link file generated by OYSTER Merge-purge run........ooneneereeneesseeseessessssssessesssesseens 44
Figure 44: Identity capture dataflow........onnn s 45
Figure 45: Defined Input and Output for Identity Capture........menereeneeseeseesessessessesssesseens 46
Figure 46: RunMode Set to “IdentityCapture” in OysterRunScript for Identity Capture Run

... 46
Figure 47: Identity Capture Source INPut File ... 47
Figure 48: Source Descriptor Defined For Identity Capture Examplecocnnennnceninsnnnenns 47
Figure 49: Attributes File Defined For the Identity Capture Exampleccconnenncencercenennns 48
Figure 50: RunScript for Identity Capture EXample ... 49
Figure 51: Output written to command box by OYSTER run - 1 ... 49
Figure 52: Output written to command box by OYSTER 1un - 2 ... 50
Figure 53: Contents of the Output Folder for Identity Capture Example.........ooomnerrirneenenns 51
Figure 54: Link File Generated by Identity Capture EXampleccconnenrenrenrensensenseseseeenes 51
Figure 55: IdentityCaptureOutput.idty File ..o sesssesssnns 52
Figure 56: Dataflow to build identities from ASSEIrtions. ... s 53
Figure 57: Defined Input and Output for Building ASSErtionscoooeeneeensesessesesesseseseenes 54
Figure 58: RunMode Set to “AssertRefToRef” in OysterRunScript for Reference to Reference
ASSETTION RUN ..ottt 54
Figure 59: Source file for Identity Build from RefToRef ASSertions ... 55
Figure 60: Source Descriptor for Identity Build from ASSertions.........cooeereersersessessesesesenes 56
Figure 61: Attributes file for Identity Build from RefToRef Assertions........cconemeneeneerceneenees 57
Figure 62: Run Script for Identity Build from RefToRef ASSErtions........uerernceneeseesessesnseens 57
Figure 63: Output to Command Box Generated by OYSTER Run - 1. 58
Figure 64: Output to Command Box Generated by OYSTER Run - 2.......cccounnrnseninennernennenns 59
Figure 65: Link file created for Identity Build from ASSertions........ooneneneessersesessesesesenes 59
Figure 66: Identity file created for Identity Build from ASSertions..........eenn. 60
Figure 67: Defined Input and Output for Building ASSErtionseneneenesneesessessesneens 61
Figure 68: RunMode Set to “AssertRefToRef” in OysterRunScript for Reference to Reference
ASSEITION RUIN .o 61
Figure 69: Source file for Identity Build from RefToStr ASSertionscccnvcenereeneeneeneesceneenees 62
Figure 70: Source Descriptor for Identity Build from ASSertions.........onemerneesseesesssesneens 63
Figure 71: Attributes file for Identity Build from RefToStr ASSertions..........omeneeresseenenns 63
Figure 72: Run Script for Identity Build from RefToRef Assertions........cconenneneneeneesceneenens 64
Figure 73: Output to Command Box Generated by OYSTER Run - T.....cccnnemeenseneeseenesseennenns 64

Figure 74: Output to Command Box Generated by OYSTER Run - 2. 65
Figure 75: Link file created for I[dentity Build from ASSErtions.........oeneseeneeneeseeseesesseens 66
Figure 76: Identity file created for Identity Build from RefToStrAssertions.........een: 66
Figure 77: Defined Input and Output for Building ASSertions ... 68
Figure 78: RunMode Set to “AssertStrToStr” in OysterRunScript for Structure to Structure

ASSEIION RUN . 68
Figure 79: Source file for Identity Build from StrToStr ASSErtionsoenereenseseeseessessesseens 69
Figure 80: Source Descriptor for Identity Build from ASSertions..........nen: 69
Figure 81: Attributes file for Identity Build from StrToStr ASSErtionseneresseeseeens 70
Figure 82: Run Script for Identity Build from StrToStr ASSErtionsoereeneesseeseesessesneens 71
Figure 83: Output to Command Box Generated by OYSTER Run - 1.....cccnnemneinneesensnnenns 71
Figure 84: Output to Command Box Generated by OYSTER Run - 2. 72
Figure 85: Identity file created for Identity Build from ASSertions..........en. 73
Figure 86: Defined Input and Output for Building StrSplit ASSertionsccmreeneercereereereenees 74
Figure 87: RunMode Set to “AssertSplitStr” in OysterRUNSCIiPE ..o 74
Figure 88: Source file for Identity Build from SplitStr ASSErtionsunemenseseesessesnenns 75
Figure 89: Source Descriptor for Identity Build from Structure Split Assertionsccccec.... 75
Figure 90: Attributes file for Identity Build from SplitStr ASSertionsomennneesernensenns 76
Figure 91: Run Script for Identity Build from SplitStr ASSertions........cooerererrereesessesesseeenes 77
Figure 92: Output to Command Box Generated by OYSTER Run - 1.....cccnnnneinineenersennenns 77
Figure 93: Output to Command Box Generated by OYSTER Run - 2.......cccovnmnenineenersensenns 78
Figure 94: Identity file created for Identity Build from SplitStr Assertions..........ccooeerrerrerrennes 79
Figure 95: Identity Resolution dataflow ... 80
Figure 96: Defined Input and Output for Identity ReSolution ... 81
Figure 97: RunMode Set to “IdentityResolution” in OysterRuUnSCript......cooererneerreseesressesnsenns 81
Figure 98: Source Input for Identity Resolution EXample ... 82
Figure 99: Source Descriptor for Identity Resolution Example.......ccoonenenrensennennenseseseeenns 82
Figure 100: Attributes file for Identity Resolution EXample.........ccoomnenrnenineenensesseeneesesnenns 83
Figure 101: Run Script for Identity Resolution EXample ... 84
Figure 102: Screen Output Created by Identity Resolution Example Run - 1 ... 84
Figure 103: Screen Output Created by Identity Resolution Example Run - 2.......ccoovrirenenees 85
Figure 104: Link File Created by Identity Resolution Example Run........ccoooenrnenieneesernennenns 86

89

