
1

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science

Spring semester, 2015

Restricted access

Writer: Thomas Larsson Kleveland

…………………………………………
(Writer’s signature)

Faculty supervisor:

Reggie Davidrajuh

External supervisor(s):

Derek Göbel

Thesis title:

The application of fuzzy text recognition and -manipulation technologies to clean-up, idealize,

improve, and integrate sets of unstructured data

Credits (ECTS): 30 ECTS

Key words:

Text processing

Entity Resolution

Fuzzy matching

 Pages: 42

 + enclosure: 2

 Stavanger, 15th of June, 2015.

 Date/year

2

3

The application of fuzzy text recognition and -manipulation

technologies to clean-up, idealize, improve, and integrate sets of

unstructured data.

Thomas Larsson Kleveland

Computer Science

University of Stavanger

15th of June, 2015

4

Table of Contents

1 Introduction .. 7

1.1 Description .. 7

2 Theory and results .. 9

2.1 Open text with regular expressions ... 9
2.1.1 Regex for Work Item IDs ... 11
2.1.2 Regex for WBS (Work Breakdown Structure) IDs ... 12
2.1.3 Regex for WBS codes... 13

2.2 Recognizing a person name in a text .. 14
2.2.1 Gazetteer lists with fuzzy matching algorithms ... 15
2.2.2 Fuzzy searching with Apache Lucene ... 17
2.2.3 Stanford NER (Named Entity Recognizer) .. 18

2.3 Date recognition and parsing .. 20
2.3.1 Stanford NER (Named Entity Recognizer) .. 20
2.3.2 Using regular expressions ... 21
2.3.3 Per cell approach .. 23

2.4 Currency recognition .. 25
2.4.1 Stanford NER (Named Entity Recognizer) .. 26
2.4.2 Using ANNIE with GATE Developer .. 26
2.4.3 Per cell approach .. 29

2.5 General entity recognition using OYSTER (Open sYSTem Entity Resolution) 31

3 Implementations ... 33

3.1 Apache Lucene ... 33
3.2 Stanford NER ... 35
3.3 ANNIE with GATE Developer ... 36
3.4 OYSTER ... 38

3.4.1 Basic knowledge .. 38
3.4.2 Custom matching algorithms .. 41

References ... 43

A Zip-file content .. 44

5

Table of Figures

Figure 1: Regular expression cheat sheet [2] ... 10
Figure 2: A part of the Work Item ID spreadsheet ... 11
Figure 3: Visual representation of the Work Item ID regex [3] ... 12
Figure 4: A part of the spreadsheet where Work Item IDs were identified 12

Figure 5: A part of the WBS ID spreadsheet ... 12
Figure 6: Visual representation of the WBS ID regex [3] .. 13
Figure 7: A part of the spreadsheet where WBS IDs were identified 13
Figure 8: Visual representation of the WBS code regex [3] .. 14
Figure 9: An example of the result using the Levenshtein distance and gazetteer lists to

recognize person names. .. 17

Figure 10: An example result of a Stanford NER test when recognizing person names. 19
Figure 11: Stanford NER example output .. 20

Figure 12: Visual representation of the date recognition regex. Created with Debuggex [3] .. 22
Figure 13: Example of supported formats correctly matched with the created regex. Created

with Debuggex [3]. ... 23
Figure 14: Date recognition flowchart. Created using gliffy [12]. ... 24

Figure 15: Stanford NER currency classification .. 26
Figure 16: ANNIE components form a pipeline which appears in this figure. [8] 27

Figure 17: From the file, number.jape, that came with the application 28
Figure 18: Currency and date recognition flowchart. Created using gliffy [12]. 30
Figure 19: Visual representation of the “Number”-regex .. 31

Figure 20: Visual representation of the "Amount Multiplicator"-regex 31
Figure 21: Classifying word by word with Stanford NER ... 35

Figure 22: Classifying a string with Stanford NER ... 36
Figure 23: Currency code list added to ANNIE Gazetteer ... 37

Figure 24: Currency unit gazetteer lookup ... 37
Figure 25: MillionBillionCurrencyUnit rule .. 38

Figure 26: A snapshot of the Identity Capture test data ... 39
Figure 27: Identity Capture OYSTER Source Descriptor .. 40

Figure 28: Identity Capture OYSTER attributes using LED ... 41

6

Acknowledgements

This thesis is the end product of my study of Master of Science in Computer Science. I want

to thank both my faculty supervisor, Reggie Davidrajuh, and my external supervisor, Derek

Göbel, for great guidance and advice along the way. I also want to thank my colleague, Paolo

Predonzani, for his technical expertise.

Thomas Larsson Kleveland, Stavanger, 15th of June, 2015

7

1 Introduction

The topic area of this master thesis research is around integrated teams in the Oil & Gas

Exploration & Production area. Many small to medium size initiatives in Oil & Gas

companies are managed by teams of 10 to 50 people from different disciplines. They each

contribute from their own area of work and expertise. These are many, ranging from activity

scheduling, resource planning, materials handling, logistics, maintenance engineering and

planning, project engineering, to production technology, process engineering, etc. When

organized into a project team, their contributions need to be effectively combined to produce a

desired outcome on offshore production facilities, drilling rigs or onshore plants and offices.

This can be a maintenance program, a drilling program, construction- or other project work, a

shutdown/turnaround, everyday operations, or office based projects such as IT projects and

real-time data systems.

It is difficult and complex to coordinate the efforts of 10 to 50 people from different

disciplines in detail. Many mistakes happen as a result of this complexity, and money is

wasted. Therefore in the oil industry, much emphasis is placed these days on integrating their

information. Knowledge management systems are an example of such efforts.

We will be developing a solution together with an International Oil & Gas company here in

Stavanger that seeks to go 1 step further. The solution will be open to teams like mentioned

above. Fuzzy text recognition and -manipulation techniques will be applied to interpret the

data from the team members (a lot of which is in spreadsheets), clean it up, idealize it,

normalize it, give it meaning, and integrate it such that problems and defects can be spotted at

a much greater detail level than can be today, and other interesting things can be done with it.

1.1 Description

In the oil & gas industry, to achieve things, many disciplines are required to collaborate.

Between disciplines, the templates and applications that people use, and even the language,

can vary. Effective collaboration requires effective information sharing. To achieve this at a

small expense and without the need to spend many hours, we need to find a way to

automatically improve the data that individuals use in such a way, that end-to-end integration

and comparison is made possible.

To this end, this research aims to apply fuzzy text technology such that nomenclature,

terminology, abbreviations, units of measure, naming of people and things, are normalized to

‘standard’ wording. With this, we will be able to combine data more easily, and use it to

create charts and reports. In choosing our standard for terminology we will follow the

ISO15926 industry standard.

We will be creating a range of fuzzy text solutions, and applying them to live data from an oil

company. It is our objective to identify the best approaches to:

• Automatically recognize the data type of the most commonly used data in the context

of the oil company.

• Automatically enhance this data to standard terminology.

• Integrate the enhanced, normalized data into the data model for comparison, reporting,

simulation, and optimization.

8

The uncertainty that requires our academic approach is twofold:

• We don’t know whether we will be able to automatically classify the data we receive.

• We don’t know whether we will be able to effectively normalize all data that we

receive.

In both cases we expect that we may end up with bits of ‘uninterpreted’, ‘un-normalized’ data

in our data set. Our experiments will seek to identify the approach that minimizes such

occurrences.

9

2 Theory and results

“In computer science, approximate string matching (often colloquially referred to as fuzzy

string searching) is the technique of finding strings that match a pattern approximately

(rather than exactly).” [1]

This thesis’ fuzzy text recognition and manipulation is split into five main parts: open text,

person names, date/time, currency and general entity recognition. Different strategies has

been applied to achieve this goal.

2.1 Open text with regular expressions

“In theoretical computer science and formal language theory, a regular expression

(abbreviated regex or regexp and sometimes called a rational expression) is a sequence of

characters that define a search pattern, mainly for use in pattern matching with strings, or

string matching, i.e. "find and replace"-like operations.” [2]

Learning how to use regular expressions was done with the help of informative websites with

explanations and test engines. [3] [4]

Following is a cheat sheet providing an overview of some of the most used regular expression

characters:

10

Figure 1: Regular expression cheat sheet [3]

When using a regular expression to search a text with many words sometimes the pattern

being searched for can appear inside a word rather than the word itself. For example a regular

expression that searches for a number with four digits would find “3700” inside “837003”,

even though this is not often desired. By using regular expression lookahead and lookbehind

it’s possible to check if the found pattern is not a part of a word. It checks for certain

characters at the start and the end of the pattern. Possible characters that marks a start/end of a

pattern could be a whitespace (represents either a horizontal or vertical space), comma (for

listing), period (end of a sentence) or the end/start of the string.

The regular expression for the lookahead: (? =\𝑠|, |\. |$). It looks for a whitespace, a comma,

a period or the end of the string after the pattern that has been found.

The regular expression for the lookbehind: (? <=\𝑠|, |\. |^). It looks for a whitespace, a

comma, a period or the start of the string in front of the pattern that has been found. The

reason why lookbehind wasn’t listed in the cheat sheet is because regular expressions in

JavaScript does not support it.

11

2.1.1 Regex for Work Item IDs

A spreadsheet of possible Work Item IDs was provided:

Figure 2: A part of the Work Item ID spreadsheet

 Using this spreadsheet, a pattern was found by examining the different kinds of IDs:

 The IDs always started with one of the characters H, K, L, P, Q, R or S. The pattern for

this behaviour for a regex language is expressed as [𝐻𝐾𝐿𝑃𝑄𝑅𝑆] .
 The second character could be any uppercase letter: [𝐴 − 𝑍] .
 The following 5 characters was either an uppercase letter or a number: [𝐴 − 𝑍\𝑑]{5} .

 The preceding 2 or 3 characters was a number: \𝑑{2,3} .

 The next character was sometimes a period: \. ? . As the period already is a regular

expression character defining any character except newline, it had to be escaped.

 The remaining characters were always numbers: \d*.

This resulted in a first draft of the regular expression:

[𝐻𝐾𝐿𝑃𝑄𝑅𝑆][𝐴 − 𝑍][𝐴 − 𝑍\𝑑]{5}\𝑑{2,3}\. ?\𝑑 ∗

However, using this regular expression could sometimes find an ID inside a word. For

example “TIHA01GA001956” is not a Work Item ID, but it would find “HA01GA0019”

inside the word, which is a Work Item ID. This is a rare case, but is solved, as mentioned

earlier, using lookahead and lookbehind.

Combining these additions, the second and final draft for the Work Item IDs was created:

(? <=\𝑠|, |\. |^)[𝐻𝐾𝐿𝑃𝑄𝑅𝑆][𝐴 − 𝑍][𝐴 − 𝑍\𝑑]{5}\𝑑{2,3}\. ?\𝑑 ∗ (? =\𝑠|, |\. |$)

12

Figure 3: Visual representation of the Work Item ID regex [4]

This regular expression correctly identified all of the Work Item IDs (in red) in a large excel

document:

Figure 4: A part of the spreadsheet where Work Item IDs were identified

2.1.2 Regex for WBS (Work Breakdown Structure) IDs

A spreadsheet of possible Work Item IDs was provided:

Figure 5: A part of the WBS ID spreadsheet

Using this spreadsheet, a pattern was found by examining the different kinds of IDs:

 The WBS IDs always started with the number 3700 .

13

 The following two characters after that were numbers: \𝑑{2} .

As a number like 370000 likely can appear inside another number, the same lookbehind and

lookahead as for the work item ID’s was added:

(? <=\𝑠|, |\. |^)3700\𝑑{2}(? =\𝑠|, |\. |$)

Figure 6: Visual representation of the WBS ID regex [4]

This regular expression correctly identified all of the WBS IDs (in red) in a large excel

document:

Figure 7: A part of the spreadsheet where WBS IDs were identified

2.1.3 Regex for WBS codes

A document about the WBS code structure and a gazetteer list over different WBS codes were

provided. Using these documents, the following information was extracted and deduced:

 The first letter was a of either C, Z, O, M or N: [𝐶𝑀𝑁𝑂𝑍] .
 The second character was a period: \. .
 The 5 following characters was either a uppercase letter or a digit: [𝐴 − 𝑍0 − 9]{5} .

Here the word-regex (\w) is not used as it’s short for [𝐴 − 𝑍𝑎 − 𝑧0 − 9_] and includes

the character “_” and lowercase letters.

 The next character was a period: \. .
 The following letter was either A, B, C, D, E, F or Z: [𝐴𝐵𝐶𝐷𝐸𝐹𝑍] .
 The last characters were optional, but it was always 2 letters optionally, separated by

period, followed by 1 to 6 letters or digits: (\. [𝐴 − 𝑍]{2}(\. [𝐴 − 𝑍0 − 9]{1,6})?)? .

The document about the WBS code structure had some additional information regarding the

optional 2 letters, suggesting only a small set of letters could be possible. This information did

14

not seem to be accurate as it existed letters outside this set in the gazetteer list. Therefore, the

2 optional letters were made as generic as possible to support letters outside the mentioned

set.

As this pattern rarely is found inside a word, the lookahead and lookbehind was not added.

After combining the steps, this was the resulting regular expression that was used:

[𝐶𝑀𝑁𝑂𝑍]\. [𝐴 − 𝑍0 − 9]{5}\. [𝐴𝐵𝐶𝐷𝐸𝐹𝑍](\. [𝐴 − 𝑍]{2}(\. [𝐴 − 𝑍0 − 9]{1,6})?)?

Figure 8: Visual representation of the WBS code regex [4]

This regular expression correctly identified all of the WBS codes in a large excel document.

The regular expression part that supported only the letters mentioned in the WBS code

structure document:

(𝐶𝑆|𝐷[𝐴𝐷𝑊]|𝐹[𝐸𝑋]|𝐺[𝐸𝐺𝑂𝑆]|𝐼[𝐶𝑁𝑂𝑉]|𝑃[𝑂𝑃𝑅]|𝑅𝐸|𝑆[𝐴𝐸]|𝑇𝑃)

2.2 Recognizing a person name in a text

The process of recognizing a person name in a text might seem easy for the human eye as

people would be able to spot most person names within a text. However, using a computer to

automatically recognize a person name makes things a lot more difficult. It’s hard to define a

person name and different approaches were used.

15

2.2.1 Gazetteer lists with fuzzy matching algorithms

Using this approach the program will test a text against premade gazetteer lists. To be able to

support spelling errors, fuzzy matching is needed as well. For testing purposes a spreadsheet

is used containing person names and position titles, one entry per cell. The objective is to

filter out the person names. As a person name is split into a first name and a last name (and

possible more middle names), the full string inside the cell will be split into words. The first

word will be tested against the first names gazetteer list, the middle words against the middle

names gazetteer list and the last word against the last names gazetteer list. The testing is done

by iterating through the list and doing a fuzzy match with the testing word and the gazetteer

entry. The fuzzy algorithm used is called Levenshtein distance, which measures the difference

between two strings.

function LevenshteinDistance(char s[1..m], char t[1..n]):

 // for all i and j, d[i,j] will hold the Levenshtein distance between

 // the first i characters of s and the first j characters of t;

 // note that d has (m+1)*(n+1) values

 declare int d[0..m, 0..n]

 set each element in d to zero

 // source prefixes can be transformed into empty string by

 // dropping all characters

 for i from 1 to m:

 d[i, 0] := i

 // target prefixes can be reached from empty source prefix

 // by inserting every character

 for j from 1 to n:

 d[0, j] := j

 for j from 1 to n:

 for i from 1 to m:

 if s[i] = t[j]:

 d[i, j] := d[i-1, j-1] // no operation

required

 else:

 d[i, j] := minimum(d[i-1, j] + 1, // a deletion

 d[i, j-1] + 1, // an insertion

 d[i-1, j-1] + 1) // a substitution

 return d[m, n]
Pseudo code 1: Levenshtein distance (Iterative with full matrix) [5]

 The distance (or also called edit distance) is measured by counting the number of character

edits. A character edit includes insertions, deletions and substitutions. The facts about the

Levenshtein distance is largely taken from [5]. As an example, the distance between the word

“Bart” and “Berty” is 2. First edit involves changing “a” to “e”, second edit removes the “y”.

The normal way of determining if the strings are a fuzzy match is setting a limit of the edit

distance. For example setting the max edit distance to be 2 would fuzzy match “Bart” and

16

“Berty”, but not fuzzy match a distance higher than that. This method provides a problem

when comparing name parts that has few characters. For example, using a max edit distance

of 2, the name “Di” would be fuzzy matched with all names with 2 characters. The solution to

this problem is using a normalized version of the Levenshtein distance, where the output of

the computation is a number between 0 and 1, where 1 is a perfect match.

𝑁𝑜𝑟𝑚𝐿𝑒𝑣𝐷𝑖𝑠𝑡 = 1 −
𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜𝑟𝑖𝑔𝑆𝑡𝑟, 𝑔𝑎𝑧𝑧𝑆𝑡𝑟)

𝑚𝑎𝑥(𝑜𝑟𝑖𝑔𝑆𝑡𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑔𝑎𝑧𝑧𝑆𝑡𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ)

Equation 1: Normalized Levenshtein distance

LevenshteinDistance is the method that returns the edit distance, origStr and gazzStr are the

comparing strings.

Using the normalized version, a threshold can be set for fuzzy matching the strings that will

work better with all name lengths. As an example, using a threshold of 0.6 would only match

the name “Di” with “Di”, as more than one edit distance would result in a threshold below

0.5. While the normalized Levenshtein distance between “Bart” and “Berty” would be 0.67,

thus resulting in a fuzzy match.

As a person name needed to be tested against different sets of gazetteer lists, an average

Levenshtein distance of the combined name will be calculated with the use of the normalized

distance of the best matches for each first/middle/last name.

𝐴𝑣𝑔𝐵𝑒𝑠𝑡𝑁𝑜𝑟𝑚𝐿𝑒𝑣𝐷𝑖𝑠𝑡 =
∑ 𝐵𝑒𝑠𝑡𝑁𝑜𝑟𝑚𝐿𝑒𝑣𝐷𝑖𝑠𝑡𝑖

𝑛
𝑖=0

𝑛

Equation 2: Average Best Normalized Levenshtein distance

Where BestNormLevDist is the best normalized distance (closest to 1) a comparison returned

when comparing the original string with an entry from the gazetteer list and n is number of

words in the person name. For example, if the best normalized distance for the first name was

0.91, for the middle name was 0.78 and the last name was 0.86. The average normalized

distance of the best matches would be 0.85.

Following picture is an example of the algorithm running through 800+ cells of text testing

against gazetteer lists at the size of 100 000+ (last names) and 40 000+ (first names) entries:

17

Figure 9: An example of the result using the Levenshtein distance and gazetteer lists to recognize person names.

The classifications were not that far off, but the best matches rarely matched the person name.

The downside of using gazetteer lists is that the result highly depends on the quality of the

lists. Splitting up the name and comparing thousands of entries in the gazetteer list with the

Levenshtein distance algorithm is computationally expensive. The computation time of the

example was around 4 minutes.

2.2.2 Fuzzy searching with Apache Lucene

“Apache Lucene is a free open source information retrieval software library, originally

written in Java by Doug Cutting.” [6]

Apache Lucene features include text indexing and searching. The search feature includes

fuzzy searching. By default, the fuzzy search uses the Damerau-Levenshtein algorithm, but

it’s also possible to use the classic Levenshtein algorithm. The threshold of the fuzzy search

match can be adjusted in the interval between 0 and 1, where 1 is a perfect match. Facts in

this paragraph was taken from a website [7].

To be able to search a gazetteer list, the list will first need to be indexed. After indexing the

gazetteer lists it’s possible to run a search towards these indexed lists and the engine will

return which list contains the word being searched for. In other words, it could return multiple

classifications and it does not say which one of the classifications that are more likely the best

one.

18

2.2.3 Stanford NER (Named Entity Recognizer)

“Stanford NER is a Java implementation of a Named Entity Recognizer. Named Entity

Recognition (NER) labels sequences of words in a text which are the names of things, such as

person and company names, or gene and protein names. It comes with well-engineered

feature extractors for Named Entity Recognition, and many options for defining feature

extractors. Included with the download are good named entity recognizers for English,

particularly for the 3 classes (PERSON, ORGANIZATION, LOCATION)...” [8]

The Stanford NER implementation is a powerful tool for recognizing person names in a text.

It uses a classification dictionary containing persons, organisations and locations to label

words. An example of an output of the text “My name is Thomas Kleveland.”: “My/O

name/O is/O Thomas/PERSON Kleveland/PERSON./O”. Where “O” (means “Other”) and

“PERSON” are the classification labels.

Following picture is an example of the Stanford NER engine going through 800+ cells of text,

the rows with the PositionTitle-tags were the cells that were not recognized as person names

(the cell was either a position title or a person name):

19

Figure 10: An example result of a Stanford NER test when recognizing person names.

The total computation time for classifying the list was 15 seconds, which was included the

seconds it took to load the classification model into the memory. Going through the entire list

of 800+ cells, only a few of them were classified wrong. Names with spelling errors were also

classified correctly. The downside of classifying the person names using this method is the

inability to give good suggestions for potential spelling errors.

20

2.3 Date recognition and parsing

A date can be in many different formats, several different approaches has been made to figure

out the best way to handle date recognition and parsing.

2.3.1 Stanford NER (Named Entity Recognizer)

The Stanford NER also offered a 7-class model, which would label “Time, Location,

Organization, Person, Money, Percent, Date”. Following is a test to recognize dates using this

model:

Figure 11: Stanford NER example output

As the output of the Stanford NER classification failed to label several of the different date

formats correctly, another approach was needed.

21

2.3.2 Using regular expressions

A date can be expressed in several different ways. A regular expression excels at finding text

with a certain pattern. The first approach using a regex was to develop a single regex to

recognize different patterns of a date in a text with many words that could be something else

than dates. Only the final draft will be shown in this chapter, the rest are listed in the

enclosure. The regex will be split into different parts and explained individually.

The first part is the day and month. In regular expression language it’s not possible to simply

express a number range. The range is only for characters. For example [0 − 9] matches any

characters from 0 to 9. While [1 − 31] will only be read as characters from 1 to 3 and the

character 1 and not the number range 1 to 31. This makes expressing the number range more

complex in a regex:

(3[01]|[12][0 − 9]|0? [1 − 9])

This regex will find any number from 1-31 with an optional 0 in front of single digits. This

will be used to identify the day part. Generally the date might be followed by a period. In

English dates, the day can sometimes be followed by the ordinals th, st, nd or rd instead. That

is usually also followed up by the word of (for example 23rd of May):

(\. ? |(𝑡ℎ|𝑠𝑡|𝑛𝑑|𝑟𝑑)\𝑠𝑜𝑓)?

This type of the date is then followed by the month name.

The regex for the month names:

(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|ma[iy]|jun[ie]?|jul[iy]?|aug(ust)?|sep(t(e
mber)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)

This regex supports both English and Norwegian month names in full and short form. As

many of the month names are equal, the regex is shortened by only having some of the

characters different. The combination of the mentioned regexes would support date formats of

the type 24th of Oct, 13. May, 06 dec.

Another way of describing a date is using the 23.12.15 or 9.23.2015 depending on the

position of the month number and day number. To be able to support both types of dates, the

regex that was used for a day is used for both parts. The symbols separating the day, month

and year can be a period, a forward slash or a dash:

(3[01]|[12][0 − 9]|0? [1 − 9])[−\./](3[01]|[12][0 − 9]|0? [1 − 9])

The second and last part of the date is the year, limiting this from 1000-2999 or 00-99 for the

shorter form:

([12][0 − 9]{3}|\𝑑{2})

To support both uppercase and lowercase month names, the regex is to be used with the flag /i

(ignore case). This can be done in most regex match engines or by adding the flag inside the

22

regex (? 𝑖) . Adding a lookbehind and lookahead and combining both of the ways of

expressing a date, the final regex:

(?<=\s|,|^)((((3[01]|[12][0-9]|0?[1-
9])(\.?|(th|st|nd|rd)\sof))?\s?(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|ma[iy]|jun
[ie]?|jul[iy]?|aug(ust)?|sep(t(ember)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)
,?\s?)|(3[01]|[12][0-9]|0?[1-9])[-\./](3[01]|[12][0-9]|0?[1-9])[-\./])([12][0-
9]{3}|\d{2})?(?=\s|,|$)

Reading this regex is easier when presented visually:

Figure 12: Visual representation of the date recognition regex. Created with Debuggex [4]

The regex supported a lot of different date formats:

23

Figure 13: Example of supported formats correctly matched with the created regex. Created with Debuggex [4].

It’s hard to create a regex of this magnitude without false positives. An example of a false

positive that this regex would find is 30.31.14. This date will however not successfully parse

using a date parser.

The regex did also have false negatives. For example the date May 23, 2014 would only be

matched as May 23, as this could mean May 2023.

Before looking more into improving the regex, another approach towards recognizing a date

was made.

2.3.3 Per cell approach

As the recognition of dates is aimed towards a spreadsheet, another way of looking at it is by

a per cell basis. In spreadsheets, a cell can have a type of content, one of the types being date.

If a cell is of type date, the date is already recognized. If the cell is of type string, recognizing

and parsing potential dates is needed. Instead of creating a complex regex that looks for a

complete date, it’s easier to create multiple regexes that matches date parts. An example of a

date part could be October, 13th or 2014. The algorithm will tokenize the string inside the cell

into words (split on space) and then iterate through those words and use multiple regexes to

test each word if it could be a part of a date. A word in this context is characters separated by

a space. If a part of a date is found, a run is started and will add the word to a list. The run

will continue until a following word is not a part of a date. The preceding words found to be a

part of a date will then be attempted to parse. The run will reset and the process will be redone

until there are no more words left in the cell.

24

Figure 14: Date recognition flowchart. Created using gliffy [9].

As the words were only tokenized by space, a word could also be a full date, for example

23.05.2014. A list of type of date parts that should be matched:

 14

 78

 1978

 23.12.14

 12.23.2014

 23-12-14

 23/12/14

 Any month name

 14th

 ‘78

The regex for a year, mentioned in the previous chapter, matches the 3 first types:

([12][0 − 9]{3}|\𝑑{2})
This regex will match the 3 first types.

The regex for a day, month number and a year can be expressed using a combination of the

day-month regex

(3[01]|[12][0 − 9]|0? [1 − 9])[−\./](3[01]|[12][0 − 9]|0? [1 − 9])

And the year regex:

25

(3[01]|[12][0 − 9]|0? [1 − 9])[−\./](3[01]|[12][0 − 9]|0? [1 − 9])[−\./]([12][0
− 9]{3}|\𝑑{2})

This regex will match the 4 next types.

The regex for a month name is also mentioned in the previous chapter:

(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|ma[iy]|jun[ie]?|jul[iy]?|aug(ust)?|sep(t(e
mber)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)

This regex will match the month names.

 As there are no difference between 23 May and 23rd of May, removing potential ordinals and

ignoring the word of prepares it better for the parsing process. Removing the ordinals can be

done by using a regex to find it:

(? <=\𝑑)(𝑡ℎ|𝑠𝑡|𝑛𝑑|𝑟𝑑)

The same goes for ’78 and 78, where removing the ‘ character makes it easier. This makes the

total count of 4 regexes for determining whether a word is a part of a date or a full date.

For parsing the date, C# has a method called DateTime.Parse(string s) that automatically

parses a string using the current locale settings. To use another locale it’s possible to use an

additional parameter DateTime.Parse(string s, IFormatProvider provider). When a date is not

a valid format for the current locale, a FormatException is thrown. To be able to support both

the date formats where the month number and day number has different places, it’s possible to

surround the first attempt to parse towards the en-GB (the culture code for United Kingdom)

locale with a try/catch. In the catch clause, the second attempt to parse it towards the en-US

(the culture code for United States) locale will be made. This will ensure both of the formats

to be parsed. However, a problem that did not get handled are the ambiguous dates. For

example the date, 06.04.23, is impossible to determine whether it means 6th of April or 4th of

June. Further research into solving this could involve looking at other dates in the same

spreadsheet.

2.4 Currency recognition

A currency can have many different formats, but the difference between a currency and a

normal number is the currency type. The currency types determines the value of the number it

is combined with. A number can therefore have different types of value before a specific

currency type is associated with the number. The number can also sometimes have

multiplying symbols, for example $1MM suggests that the number is actually 1 000 000. The

multiplying symbols can sometimes have different meaning, in the oil industry the M actually

means a million, while the normal abbreviation for a million is MM. As the currency notations

can vary, the most common notations found in various confidential spreadsheets provided

were in following format:

[Number] [Amount Multiplicator]? [Currency code/symbol]
[Currency code/symbol] [Number] [Amount Multiplicator]?

An example of the first format is 200 MNOK, which is 200 000 000 NOK in the oil industry.

26

An example of the second format is $ 1M, which is 1 000 000 USD (or any other currency

code with the $ symbol.

2.4.1 Stanford NER (Named Entity Recognizer)

As mentioned in the chapter regarding date recognition, the Stanford NER had a 7-class

model where one of those classes was Money. After testing the library against different types

of currency formats, only dollars were labelled correctly when it had the form $12000:

Figure 15: Stanford NER currency classification

Another approach to recognize currencies was needed.

2.4.2 Using ANNIE with GATE Developer

“General Architecture for Text Engineering or GATE is a Java suite of tools originally

developed at the University of Sheffield beginning in 1995 and now used worldwide by a wide

community of scientists, companies, teachers and students for many natural language

processing tasks, including information extraction in many languages.” [10]

By default, the GATE Developer program comes with an IE (Information Extraction) system

called ANNIE (A Nearly-New Information Extraction system), which uses a combination of

different processing resources. The system is developed by Hamish Cunningham, Valentin

Tablan, Diana Maynard, Kalina Bontcheva, Marin Dimitrov and others. It relies on finite

state algorithms and the JAPE language. The preceding text and the following picture was

largely taken from the GATE website on the chapter regarding ANNIE [11].

27

Figure 16: ANNIE components form a pipeline which appears in this figure. [11]

By creating rules for the Semantic Tagger component and adding the currency codes/symbols

as gazetteer lists, an attempt was made to implement a currency tagger. The rules and macros

are created using a language called JAPE. The JAPE grammar is explained in detail in the

GATE JAPE Grammar Tutorial [12]. When installing the GATE Developer application,

several .jape-files were included that served the purpose of tagging different type of text, for

example address, email, url, etc. One of these types were number, which already included a

rule for some currency notations:

28

Figure 17: From the file, number.jape, that came with the application

The rules uses a combination of macros (e.g. AMOUNT_NUMBER) and gazetteer (e.g.

Lookup) lists to tag open text with the appropriate types. The goal was to create JAPE-rules

that would match the formats mentioned in the introduction of the Currency recognition

chapter. Looking at the existing rules it seems possible to create such rules for a currency. It

looks like it’s possible to concatenate “patterns” to match a word, like $20US is matched

because $ is a currency symbol (Token.symbolkind == currency), 20 is a number

(AMOUNT_NUMBER) and US is a currency unit from the gazetteer list with the majorType

currency_unit. However, there were some differences in the currency notation format required

and the ones that already existed. The difference being that the tokenizer (the program that

splits words/sentences into tokens) would split numbers and symbols into separate tokens.

Therefore, $20US would have 3 tokens ($, 20 and US), while MNOK would just be one token.

As it was only possible to handle the tokens individually, the token MNOK could not be

matched to a gazetteer list of currency codes (because of the prefix M). A token could not be

tampered with before comparing to a gazetteer list, so there was no way of comparing a token

29

to a combination of two gazetteer lists. For example, it was not possible to compare a token to

{Lookup.majorType = amount_multiplicator} (or referring to a macro) + {Lookup.majorType

= currency_unit}, where + symbol meaning they were concatenated.

The implementation of the JAPE-rules and gazetteer lists attempts are explained in the

implementation chapter 3.3.

With the use of GATE, following papers should be cited [13] [14].

2.4.3 Per cell approach

In this chapter, only the theory behind how an approach like this could be made is talked

about. There were no implementations or results performed.

Like mentioned in the chapter 2.3.3, a spreadsheet cell can be of certain types, this includes a

currency-type. If the cell is of type currency, the currency is already recognized and can be

treated as such.

When handling number-formatted cells without a currency code or symbol, it’s necessary to

look at the context. The currency code can sometimes be in the horizontally adjacent cells or

mentioned in a column header if the rows for that column are all numbers. The currency code

can also sometimes be mentioned at the start of the document, e.g. “Numbers in NOK” or

even “Numbers in $1MM” which would suggest that the discovered numbers are really 1 000

000 times bigger. If there is a mention of a currency in a header of a table in the spreadsheet,

it should be analysed to potentially extract information about other cell’s currency codes. For

example if a column had the header “MNOK”, this would probably mean that the rows for

this column should be of type NOK and the actual value is the row value times a million.

When a cell is of type string, the same approach made to recognize a date could be made for a

currency, testing each word for the possibility of being part of a currency. Example of how a

flowchart of the algorithm would be:

30

Figure 18: Currency and date recognition flowchart. Created using gliffy [12].

The currency formats mentioned in the introduction of chapter 2.4 are used to create part-of-

currency regexes combined with the use of gazetteer lists of currency symbols and codes.

Part-of-currency examples that should be matched:

 “100,100.10”

 “100”

 “10.100,10”

 “10.100NOK”

 “10.100MNOK”

 “NOK10,000”

 “10.000kr”

 “kr10.000”

The currency formats:

[Number] [Amount Multiplicator]? [Currency code/symbol]
[Currency code/symbol] [Number] [Amount Multiplicator]?

Where [Number] is matched using a regex:

^[+-]?[0-9]{1,3}(?:[0-9]*(?:[.,][0-9]{1})?|(?:,[0-9]{3})*(?:\.[0-9]{1,2})?|(?:\.[0-
9]{3})*(?:,[0-9]{1,2})?)$

31

Figure 19: Visual representation of the “Number”-regex

This regex was taken from an answer on stackoverflow.com [15].

The [Amount Multiplicator] is matched using a regex:

(?i)[kmb]|mm|[bm]ln|[bm]il[lj]\.?

Figure 20: Visual representation of the "Amount Multiplicator"-regex

The [Currency code] and [Currency symbol] are matched using a gazetteer lists [16] [17].

2.5 General entity recognition using OYSTER (Open sYSTem Entity

Resolution)

“Entity Resolution (ER) is the process of determining whether two references to real-world

objects are referring to the same object or to different objects.” [18]

“The OYSTER (Open sYSTem Entity Resolution) is an entity resolution system that supports

probabilistic direct matching, transitive linking, and asserted linking.” [19]

There are different types of record linkage. One of them being deterministic record linkage,

where two records are said to match if all or some identifiers are identical. And the other one

being probabilistic record linkage, also called fuzzy matching, probabilistic merging or fuzzy

merging. The method uses thresholds to determine if a pair is a match, a non-match or a

possible match. The possible matches can be dealt with by e.g. human review, depending on

requirements. This paragraph was largely taken from the Wikipedia page about Record

linkage. [20]

32

The foundation for the internal logic of OYSTER is the R-Swoosh algorithm, an algorithm for

systematically applying the match and merge functions to arrive at the generic entity

resolution of R (ER(R)), where R is the initial set of entity references. This paragraph was

largely taken from the R-Swoosh Algorithm part in the book Entity Resolution and

Information Quality [18].

Using OYSTER, the goal was to discover WBS project title entities in a provided spreadsheet

by abiding by certain rules for matching. The rules were as following:

 If the WBS project title is the exact same, it’s the same entity.

 If the WBS project title is very close to equal (spelling errors or the use of symbols

like “-“), it’s the same entity as long as any potential year inside the project title is the

same.

 If the WBS project title is cut off, but equal to the start of another string, it’s the same

entity. For example “High temperature in potable water Cooling sy” is the same entity

as “High temperature in potable water Cooling systems”.

To be able to match project titles that are very close to equal, a fuzzy match is required.

OYSTER comes with multiple fuzzy algorithms. A list of the algorithms with explanations

can be found in the OYSTER Reference Guide. These algorithms can be used by specifying

them in the “MatchResult”-attribute in the “Attributes”-file [21]. Several of the algorithms

were tested, but the default algorithms offered by OYSTER could not satisfy the mentioned

rules for entity matching. A reason for this is that some of the project titles could have a year

that would be different, thus being a different entity. Pure fuzzy matching a string where only

the year would be different would still result in a match if the threshold is not set to exact

match, but fuzzy matching would still be needed for the text that could contain spelling errors

or “cut-offs”.

To be able to align the entity matching with the rules mentioned, two custom matching

algorithms were implemented. Using the custom algorithms, oyster managed to find a total of

51 entities compared to the correct number of 53 of a total 85 input rows.

The reason it did not correctly find 53 entities was because of contradicted matching. E.g.:

“Keep 3D model updated” was not supposed to be the same entity as “Keep 3D model

updated - 2015”, but “CAPEX - Installation, Prefab and Estimating TQs for” was the same

entity as “CAPEX - Installation, Prefab and Estimating TQs for 2014”. This was not possible

to create a matching rule for. This caused 2 of the input rows to be wrongly matched to

another entity instead of having their own entity created. Comparatively, the closest number

of entities created when trying out the predefined OYSTER algorithms was 66 by using the

LED(0.8)-algorithm. Even though it might’ve been possible to improve this number by only

using the default algorithms, there we no fuzzy algorithm that could take the year- or “cut-

off”-problem into consideration. The implementation is described in the chapter 3.4.

33

3 Implementations

3.1 Apache Lucene

The Apache Lucene implementation and testing was largely done by following a tutorial

online [22]. Using the sample code provided on the webpage, the

“FileIndexApplication.java”-file was edited to test the engine. Using different gazetteer lists,

it was possible to search these indexed gazetteer lists by running:

Searcher searcher = new Searcher(INDEX_DIR);
List<IndexItem> result = searcher.findByContent("Managr~0.8",
DEFAULT_RESULT_SIZE);
print(result);

This would run a fuzzy search for “Managr” with the Damerau-Levenshtein distance

threshold of 0.8.

The printed result:

Query: Managr~0.8

PositionTitles.xlsx
0.040840294 = (MATCH) sum of:
 0.040840294 = (MATCH) weight(content:manager^0.8333333 in 2)
[DefaultSimilarity], result of:
 0.040840294 = score(doc=2,freq=26.0), product of:
 0.28785136 = queryWeight, product of:
 0.8333333 = boost
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.48492622 = queryNorm
 0.1418798 = fieldWeight in 2, product of:
 5.0990195 = tf(freq=26.0), with freq of:
 26.0 = termFreq=26.0
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.0390625 = fieldNorm(doc=2)

Lastnames.xlsx
0.009665137 = (MATCH) sum of:
 0.0014967038 = (MATCH) weight(content:manag^0.8 in 1) [DefaultSimilarity],
result of:
 0.0014967038 = score(doc=1,freq=1.0), product of:
 0.54523754 = queryWeight, product of:
 0.8 = boost
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.48492622 = queryNorm
 0.002745049 = fieldWeight in 1, product of:
 1.0 = tf(freq=1.0), with freq of:
 1.0 = termFreq=1.0
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.001953125 = fieldNorm(doc=1)
 0.0046771993 = (MATCH) weight(content:manage^0.8333333 in 1)
[DefaultSimilarity], result of:
 0.0046771993 = score(doc=1,freq=9.0), product of:
 0.56795573 = queryWeight, product of:

34

 0.8333333 = boost
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.48492622 = queryNorm
 0.008235147 = fieldWeight in 1, product of:
 3.0 = tf(freq=9.0), with freq of:
 9.0 = termFreq=9.0
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.001953125 = fieldNorm(doc=1)
 0.0034912345 = (MATCH) weight(content:manager^0.8333333 in 1)
[DefaultSimilarity], result of:
 0.0034912345 = score(doc=1,freq=76.0), product of:
 0.28785136 = queryWeight, product of:
 0.8333333 = boost
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.48492622 = queryNorm
 0.012128602 = fieldWeight in 1, product of:
 8.717798 = tf(freq=76.0), with freq of:
 76.0 = termFreq=76.0
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.001953125 = fieldNorm(doc=1)

Firstnames.xlsx
0.004126114 = (MATCH) sum of:
 0.001132706 = (MATCH) weight(content:manager^0.8333333 in 0)
[DefaultSimilarity], result of:
 0.001132706 = score(doc=0,freq=2.0), product of:
 0.28785136 = queryWeight, product of:
 0.8333333 = boost
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.48492622 = queryNorm
 0.0039350376 = fieldWeight in 0, product of:
 1.4142135 = tf(freq=2.0), with freq of:
 2.0 = termFreq=2.0
 0.71231794 = idf(docFreq=3, maxDocs=3)
 0.00390625 = fieldNorm(doc=0)
 0.0029934077 = (MATCH) weight(content:manar^0.8 in 0) [DefaultSimilarity],
result of:
 0.0029934077 = score(doc=0,freq=1.0), product of:
 0.54523754 = queryWeight, product of:
 0.8 = boost
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.48492622 = queryNorm
 0.005490098 = fieldWeight in 0, product of:
 1.0 = tf(freq=1.0), with freq of:
 1.0 = termFreq=1.0
 1.4054651 = idf(docFreq=1, maxDocs=3)
 0.00390625 = fieldNorm(doc=0)

Result Size: 3
PositionTitles.xlsx
Lastnames.xlsx
Firstnames.xlsx

It was however not possible to access the matching weights directly, e.g.

“manager^0.8333333”.

35

3.2 Stanford NER
The implementation is available in a zipped file from the Stanford NER website [8]. Direct

download location: http://nlp.stanford.edu/software/stanford-ner-2015-01-29.zip (150 MB).

The java-library and classifiers are inside this file, however it’s mostly the classifiers that

takes up space.

For the person name recognition, only the 3-class model is needed

(english.all.3class.distsim.crf.ser.gz). For the date and currency recognition, the 7-class model

is needed (english.all.7class.distsim.crf.ser.gz). The classifier takes some seconds to load into

the memory. The implementation was done in C# with the use of a ported java-library [23].

The following examples are inspired by the examples provided on the webpage of the java-

library port [23]. Using the implementation, there are different ways of classifying a string.

One way is to take the entire string and classify it, the other way is classifying the string word

by word. It was needed to extract the classification, and the word by word alternative

provided the easiest method of doing so as it iterated through the entities instead of cells.

What was discovered when using the word by word classification was that Stanford NER also

takes context into account. For example, when running the string “My name is Per Espeland”

through the both of the ways of classifying a string, the word by word method did not tag Per

as a person. Classifying the entire string however, correctly tagged Per as a person because it

had contextual knowledge compared to the word by word classification method.

Figure 21: Classifying word by word with Stanford NER

http://nlp.stanford.edu/software/stanford-ner-2015-01-29.zip

36

Figure 22: Classifying a string with Stanford NER

Where O (means Other) and PERSON are the classifications. The example of the result

mentioned in chapter 2.2.3 was created using the word by word method as the knowledge of

the difference between the methods was found at a later point in time.

For using the NER in java, the official java-demo-file can be found at

http://nlp.stanford.edu/software/ner-example/NERDemo.java.

3.3 ANNIE with GATE Developer

This chapter assumes knowledge of information presented in chapter 2.4.2. The file,

number.jape, was used as a starting point when creating new JAPE-rules in the file

currency.jape. For the file to be discovered in the ANNIE NE Transducer, the filename was

needed to be listed in the main.jape-file. A gazetteer list of the currency codes [16] was added

to ANNIE under the Major-type currency_unit.

http://nlp.stanford.edu/software/ner-example/NERDemo.java

37

Figure 23: Currency code list added to ANNIE Gazetteer

An example of a rule to match a token with one of the gazetteer lists in the Major-type

curreny_unit:

Figure 24: Currency unit gazetteer lookup

This successfully discovered all tokens that matched any entries in the gazetteer lists in the

Major-type currency_unit. However, when the attempt was made to add a prefix to the lookup

so that it would match MNOK or MMNOK instead of just NOK, it did not have the expected

result. The reason for this was the close dependency of tokens in the programming language.

Only individual tokens could be compared to gazetteer lists, and as MNOK or MMNOK were

individual tokens, they would not get matched as there were no entries in the gazetteer lists

equal to that string. The rule that failed to successfully match a currency notation:

38

Figure 25: MillionBillionCurrencyUnit rule

Where AMOUNT_NUMBER (default macro from number.jape) was the number,

MILLION_BILLION (default macro from number.jape with a few more additions) was the

amount multiplicator (e.g. M, MM, K, etc.), the optional SpaceToken represents a space and

the lookup is the gazetteer lists with the Major-type currency_unit. The rule would

successfully match “2800 M NOK” or “2800M NOK”, but not “2800 MNOK” or

“2800MNOK”. The reason being the problem mentioned earlier in this chapter and chapter

2.4.2. An alternative solution to this could be to add all of the currency codes with all of the

different amount multiplicators. This list would however get very large (the count of currency

codes times the count of amount multiplicators). The reason for trying out ANNIE was

because it looked like it was possible to create a rule using a combination of some kind of

regex and gazetteer list. The difference was that a regex works on a simple word (e.g.

(M)?NOK would cover both MNOK and NOK), but the Jape-language had limitations when

trying to combine strings before comparing it to a gazetteer list.

3.4 OYSTER

The OYSTER demonstration runs, documentation and source code was downloaded from

http://sourceforge.net/projects/oysterer/files/, and then navigating to

“OYSTER_3.3/Download All/ OYSTER_v3.3_Download_All..zip”.

The source of OYSTER, including all of the files created/edited in the implementation comes

with the thesis submission.

3.4.1 Basic knowledge

The OYSTER implementation comes with different run-modes [24]:

Run-Mode Short description

Merge-Purge Entity references are systematically compared to each

other and separated into clusters of equivalent records.

Identity Capture System builds a set of identities from the references it

processes rather than starting with a known set of

identities.

Reference to Reference Assertion A process of forcing references to match even when no

defined match rules would be able to bring them

together. The forced matches are based off of previous

user knowledge of the references.

Identity Resolution Only matches the references to the input identities, not

the references itself. The input identities are specified

in an .idty-file.

http://sourceforge.net/projects/oysterer/files/

39

Identity Update Both takes input identities as input and updates these

identities with any new information presented as an

updated .idty-file.

Reference to Structure Assertion Forces references to be matched with an existing

identity in the .idty-file by using the OysterID

Structure to Structure Assertion Used to fix false negative matches produced in

previous runs by force re-match references.

Structure Split Assertion Used to fix false positive matches and does the

opposite of what the "Structure to Structure Assertion"

does. It forces an identity structure in an existing .idty-

file to divide into two or more identity structures.

These run-modes were presented as demonstration runs (Run001-008). The run-mode,

Identity Capture, was tested using a spreadsheet of WBS project titles converted to a text file

with a tabular delimiter (WBS (unique, without WBSID).txt):

Figure 26: A snapshot of the Identity Capture test data

A run script that references the “Source Descriptor”- and “Attribute”-files (mentioned later

in this chapter) was created. It contains the locations of the output files and the log-file, as

40

well as the run-mode. It is also possible to specify the Entity Resolution (ER) engine used to

process the references. The default is the R-Swoosh algorithm:

A source descriptor .xml-file referencing the input references and the items (columns in this

case) in the input was created, called " IdentityCaptureSourceDescriptor.xml”:

Figure 27: Identity Capture OYSTER Source Descriptor

The absolute path for the input-file and tabular delimiter is specified. The column-names are

linked to the attributes in the “Attributes”-file mentioned later in this chapter.

An example of the “Attributes”-file when fuzzy matching with the use of Levenshtein Edit

Distance:

41

Figure 28: Identity Capture OYSTER attributes using LED

Using this file, OYSTER will match an entity when it is exactly the same and when the

normalized Levenshtein Edit Distance threshold is at least 0.8 (the threshold has to be

between 0 and 1, where 1 is an exact match).

3.4.2 Custom matching algorithms

As mentioned in the reference guide: “OYSTERs default matching algorithm supports the

above matching codes but this can be extended by the user by extending the base class

OysterComparator.java as a new class with a name starting with “OysterCompare” and

implementing the method String: getMatchCode(String, String).” [21].

To be able to align the entity matching with the rules mentioned in chapter 2.4, two custom

matching algorithms were implemented. Using the source code for OYSTER, the

“OysterCompareDefault.java” was copied and renamed “OysterCompareCustom.java”,

where this file was edited to include the new matching algorithms.

3.4.2.1 CUSTOMLED (ledThreshold, charType, useRestAlphaExact)

The parameters:

Parameter Description

ledThreshold The Levenshtein Edit Distance threshold. Must be between 0 and 1,

where 1 is an exact match. The same as for the default Levenshtein

Edit Distance algorithm.

charType Instead of using the Levenshtein Edit Distance on the entire string,

the algorithm uses it on parts of the string instead. Which part is

defined by the “charType”-attribute and can either be “LETTER” or

“DIGIT”. Example: If charType = “LETTER” and the testing string is

“Management and Admin 2015”, the algorithm would do a

Levenshtein Edit Distance test on “ManagementandAdmin” vs the

letters of the entity being tested against and not on the digits.

42

useRestAlphaExact A boolean determining whether to do an exact match on the

remaining alphanumeric-characters (digits or letters) that did not get

fuzzy matched. E.g.: The remaining characters of “Management and

Admin 2015” where charType = “LETTER” would be “2015” and

where charType = “DIGIT” would be “ManagementandAdmin”.

Using this algorithm it was possible to correctly match project titles that had spelling errors,

but still exclude project titles with a different year.

3.4.2.2 LEFTCONTAINS (useOnlyAlpha, minLength)

The algorithm checks if the comparing strings are contained in the start of one of them. E.g.:

“TEST” would result in a match when compared to “TESTING”, but “TEST” would not result

in a match when compared to “PTESTING”.

The parameters:

Parameter Description

useOnlyAlpha A boolean determining whether to only use

the alphanumeric characters of the

comparing strings. This will exclude most

symbols.

minLength The minimum length required for the

comparing strings. This is to be able to

prevent strings like “M” causing all strings

that starts with “M” to be matched as the

same entity.

Using this algorithm it was possible to correctly match project titles that had “cut-offs”.

The “Attribute”-file using the new custom algorithms:

43

References

[1] Wikipedia, “Approximate string matching - Wikipedia, the free encyclopedia,” 15 April

2015. [Online]. Available: https://en.wikipedia.org/wiki/Approximate_string_matching.

[Accessed 15 June 2015].

[2] Wikipedia, “Regular expression - Wikipedia, the free encyclopedia,” Wikipedia, the free

encyclopedia, 05 June 2015. [Online]. Available:

http://en.wikipedia.org/wiki/Regular_expression. [Accessed 11 June 2015].

[3] G. Skinner and gskinner team, “RegExr: Learn, Build, & Test RegEx,” [Online].

Available: http://www.regexr.com/.

[4] S. Toarca, “Debuggex: Online visual regex tester. JavaScript, Python, and PCRE.,”

Debuggex.com, [Online]. Available: https://www.debuggex.com/.

[5] Wikipedia, "Levenshtein distance - Wikipedia, the free encyclopedia," 21 April 2015.

[Online]. Available: http://en.wikipedia.org/wiki/Levenshtein_distance. [Accessed 10

June 2015].

[6] Wikipedia, “Lucene - Wikipedia, the free encyclopedia,” Wikipedia, the free

encyclopedia, 09 June 2015. [Online]. Available: http://en.wikipedia.org/wiki/Lucene.

[Accessed 10 June 2015].

[7] Apache Software Foundation, “FuzzyQuery (Lucene 4.3.0 API),” [Online]. Available:

https://lucene.apache.org/core/4_3_0/core/org/apache/lucene/search/FuzzyQuery.html.

[8] The Stanford Natural Language Processing Group, “The Stanford NLP (Natural

Language Processing) Group,” [Online]. Available:

http://nlp.stanford.edu/software/CRF-NER.shtml. [Accessed 10 June 2015].

[9] Gliffy, “Online Diagram Software and Flow Chart Software - Gliffy,” Gliffy, 2015.

[Online]. Available: https://www.gliffy.com.

[10] Wikipedia, “General Architecture for Text Engineering - Wikipedia, the free

encyclopedia,” 12 June 2015. [Online]. Available:

https://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering. [Accessed

14 June 2015].

[11] GATE, “GATE.ac.uk - sale/tao/splitch6.html,” [Online]. Available:

https://gate.ac.uk/sale/tao/splitch6.html#chap:annie.

[12] D. Thakker, T. Osman and P. Lakin, “GATE JAPE Grammar Tutorial,” 27 February

2009. [Online]. Available: https://gate.ac.uk/sale/thakker-jape-

tutorial/GATE%20JAPE%20manual.pdf.

[13] H. Cunningham, D. Maynard and K. Bontcheva, Text Processing with GATE (Version

6), GATE, 2011.

[14] H. Cunningham, V. Tablan, A. Roberts and K. Bontcheva, “PLOS Computational

Biology: Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open

Source Text Analytics,” 2013. [Online]. Available: http://tinyurl.com/gate-life-sci/.

[Accessed 2015].

[15] L. Tupone, “What is "The Best" U.S. Currency RegEx? - Stack Overflow,” 15

December 2014. [Online]. Available: http://stackoverflow.com/questions/354044/what-

is-the-best-u-s-currency-regex#answer-27491430. [Accessed 15 June 2015].

44

[16] ISO 4217 maintenance agency (MA), SIX Interbank Clearing, “Current currency &

funds code list - ISO Currency,” 2015. [Online]. Available: http://www.currency-

iso.org/en/home/tables/table-a1.html. [Accessed April 2015].

[17] Wikipedia, “Currency symbol - Wikipedia, the free encyclopedia,” 14 June 2015.

[Online]. Available: https://en.wikipedia.org/wiki/Currency_symbol. [Accessed 15 June

2015].

[18] J. R. Talburt, in Entity Resolution and Information Quality, Morgan Kaufmann; 1

edition (December 22, 2010), 2010, pp. 1, 63-99, 157-172.

[19] F. Kobayashi and J. Talburt, Introduction to Entity Resolution with OYSTER v3.3,

University of Arkansas at Little Rock, 2012.

[20] Wikipedia, “Record linkage - Wikipedia, the free encyclopedia,” 4 June 2015. [Online].

Available: https://en.wikipedia.org/wiki/Record_linkage. [Accessed 15 June 2015].

[21] F. Kobayashi and J. Talburt, in OYSTER v3.3 Reference Guide, University of Arkansas

at Little Rock, 2013, pp. 22-26.

[22] F. Sabar, “Fazlan's Blog Spot: Apache Lucene Tutorial: Indexing Microsoft

Documents,” 7 June 2012. [Online]. Available:

http://fazlansabar.blogspot.no/2012/06/apache-lucene-tutorial-indexing.html.

[23] The Stanford Natural Language Processing Group, “Stanford Named Entity Recognizer

(NER) for .NET,” [Online]. Available: http://sergey-

tihon.github.io/Stanford.NLP.NET/StanfordNER.html.

[24] F. Kobayashi, OYSTER v3.3 Demonstration Runs User Guide, University of Arkansas

at Little Rock, 2013.

A Zip-file content

The zip file contains the implementations done including some of the gazetteer lists. As I did

not have time to format the C# implementations, they do not look very pretty.

