u

University of
Stavanger

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:
Spring semester, 2015
Master of Science in Computer Science

Restricted access

Writer: Thomas Larsson Kleveland

(Writer’s signature)

Faculty supervisor:
Reggie Davidrajuh

External supervisor(s):
Derek Gdbel

Thesis title:

The application of fuzzy text recognition and -manipulation technologies to clean-up, idealize,
improve, and integrate sets of unstructured data

Credits (ECTS): 30 ECTS

Key words:

Text processing Pages: 42
Entity Resolution

Fuzzy matching + enclosure: 2

Stavanger, 15" of June, 2015.
Date/year

The application of fuzzy text recognition and -manipulation
technologies to clean-up, idealize, improve, and integrate sets of
unstructured data.

Thomas Larsson Kleveland
Computer Science
University of Stavanger
15" of June, 2015

Table of Contents

1 INTFOAUCTION ..ottt bbbttt bbbt 7
IO TSt] o o] PSSRSO 7

2 THEONY AN FESUILS ..ot sttt st nbe e nrees 9
2.1 Open text With reguIar EXPrESSIONScuiiriiitiieisieie sttt ettt b e b et e 9
211 Regex fOr WOIK IEM IDScciiiieiiieieieite ettt ettt bbbttt eb s 11
2.1.2 Regex for WBS (Work Breakdown StrucCture) IDS.........cccoereiierieiieniee e 12

2.1.3 REQEX FOr WBS COUBS... .ottt ettt bbb bbbt nb e bt b eb s 13

2.2 Recognizing a Person NAME N @ TEXEcoeiiiiriiiiirieieieseeee sttt 14
2.2.1 Gazetteer lists with fuzzy matching algorithms ..o 15

2.2.2 Fuzzy searching With APACHE LUCENEccviiiieeicieiescse sttt st sneeneas 17

2.2.3 Stanford NER (Named Entity RECOGNIZEN)cviiiiiieieieie e ste ettt eneas 18

2.3 Date recognition anNd PArSINGcccveeeieeiieiereesesesreseeseeseesses e sresre e aseeeesesteseestestesseeseenseseessesresseasesseans 20
2.3.1 Stanford NER (Named Entity RECOGNIZEN)cvivieeieieicie ettt eneas 20

2.3.2 USING rEQUIAT EXPIESSIONScutiteieieiteieteste sttt sttt st sttt se bttt st ne e bt b b e bbb e bt sbe e eb et neese b 21

2.3.3 Per Cell @PPIOACKHcuiiiiiite bbb 23

2.4 CUITENCY FECOGNMITIONeitiiiiiitiitetiiti sttt ettt etttk bt b bbb bbb bbb bt bbbt n et 25
2.4.1 Stanford NER (Named Entity RECOGNIZET)ccceriiiiiiiiiiieiee e 26

2.4.2 Using ANNIE With GATE DEVEIOPETccueieiiiiirieiirieiet ettt e 26

243 Per Cell @PPIOACKHcviiiiiite e bbb 29

2.5 General entity recognition using OYSTER (Open sYSTem Entity Resolution)cccecvevveiivcvennnnne, 31

K B 1001 0] (=10 0 =T Y = L[] 1RSSR 33
3L APACNE LUCENE ...ttt bbb bbb bbbt b bt 33
KB - L2 0] £ I N =1 PSSP 35
3.3 ANNIE With GATE DEVEIOPET ..ottt 36
B OYSTER ..ottt ettt £t bt b Rt £ AR bR bR e ARt bRtk R et ettt e nens 38
341 BaSIC KNOWIBAGEeiviiciiite ettt bbbttt bbb 38

3.4.2 Custom matching @lgOrithmscvoiiiiiie e e e ene e 41

] (= =] o0 PSRRI 43
A ZIP-TIE CONTENT......iiiieieieee e ettt 44

Table of

Figures

Figure 1: Regular expression cheat SNEet [2]c.ocviieiieiiiie e 10
Figure 2: A part of the Work Item 1D Spreadsheet............cooviiiiiiiiiiiieieesese e 11
Figure 3: Visual representation of the Work Item ID regeX [3]....ccccovverieieiiienieeiesie e 12
Figure 4: A part of the spreadsheet where Work Item IDs were identifiedcccceovennee. 12
Figure 5: A part of the WBS ID Spreadsheetccccviveiiiiiiieie e 12
Figure 6: Visual representation of the WBS ID regeX [3]......ccoovviriieieieniieniseseseeeeeees 13
Figure 7: A part of the spreadsheet where WBS I1Ds were identifiedc.ccoccooiinininnennn, 13
Figure 8: Visual representation of the WBS code regex [3]cccooveveiierieienieeneese e 14
Figure 9: An example of the result using the Levenshtein distance and gazetteer lists to
FECOQNIZE PEISON NAMES. ..e.veeuveesieteesieesiesteesteeseesteesteaseesseesseaseeaseesseassesseesseessesseesseeseesseesseesennes 17
Figure 10: An example result of a Stanford NER test when recognizing person names. 19
Figure 11: Stanford NER example OULPUL...........ccoi i 20
Figure 12: Visual representation of the date recognition regex. Created with Debuggex [3].. 22
Figure 13: Example of supported formats correctly matched with the created regex. Created
WIth DEDUGOEX [3]. .. et bbbttt 23
Figure 14: Date recognition flowchart. Created using gliffy [12]........ccccooviiiiiiiiiiiieieee 24
Figure 15: Stanford NER currency ClassifiCationcccoociiiiiiiiiieiene s 26
Figure 16: ANNIE components form a pipeline which appears in this figure. [8].................. 27
Figure 17: From the file, number.jape, that came with the applicationcc.ccoovviiirnennn, 28
Figure 18: Currency and date recognition flowchart. Created using gliffy [12]........c..ccoc....... 30
Figure 19: Visual representation of the “Number”-regeXcccuvveririirieeiiienineneese e 31
Figure 20: Visual representation of the "Amount Multiplicator”-regexccccoevvvvvervenene. 31
Figure 21: Classifying word by word with Stanford NER.............ccccoeiiiiiiinicce, 35
Figure 22: Classifying a string with Stanford NERcc.ccooiiiiiiiiiiicccece e 36
Figure 23: Currency code list added t0 ANNIE Gazetteer...........cccovevereiiieninininieeeeiee 37
Figure 24: Currency unit gazetteer I00KUP........ccveiiiiieiicie e 37
Figure 25: MillionBillionCurrenCyUNIT FUIEoviiiiiiieee s 38
Figure 26: A snapshot of the Identity Capture test data............ccccceeveiiieiicie i 39
Figure 27: Identity Capture OYSTER Source DeSCIPLOr.........cccvrveierienierieniisiesieseseeeeeees 40
Figure 28: Identity Capture OYSTER attributes using LEDcccccoevieviiiccece e 41

Acknowledgements

This thesis is the end product of my study of Master of Science in Computer Science. | want
to thank both my faculty supervisor, Reggie Davidrajuh, and my external supervisor, Derek

Gobel, for great guidance and advice along the way. | also want to thank my colleague, Paolo
Predonzani, for his technical expertise.

Thomas Larsson Kleveland, Stavanger, 15" of June, 2015

1 Introduction

The topic area of this master thesis research is around integrated teams in the Oil & Gas
Exploration & Production area. Many small to medium size initiatives in Oil & Gas
companies are managed by teams of 10 to 50 people from different disciplines. They each
contribute from their own area of work and expertise. These are many, ranging from activity
scheduling, resource planning, materials handling, logistics, maintenance engineering and
planning, project engineering, to production technology, process engineering, etc. When
organized into a project team, their contributions need to be effectively combined to produce a
desired outcome on offshore production facilities, drilling rigs or onshore plants and offices.
This can be a maintenance program, a drilling program, construction- or other project work, a
shutdown/turnaround, everyday operations, or office based projects such as IT projects and
real-time data systems.

It is difficult and complex to coordinate the efforts of 10 to 50 people from different
disciplines in detail. Many mistakes happen as a result of this complexity, and money is
wasted. Therefore in the oil industry, much emphasis is placed these days on integrating their
information. Knowledge management systems are an example of such efforts.

We will be developing a solution together with an International Oil & Gas company here in
Stavanger that seeks to go 1 step further. The solution will be open to teams like mentioned
above. Fuzzy text recognition and -manipulation techniques will be applied to interpret the
data from the team members (a lot of which is in spreadsheets), clean it up, idealize it,
normalize it, give it meaning, and integrate it such that problems and defects can be spotted at
a much greater detail level than can be today, and other interesting things can be done with it.

1.1 Description

In the oil & gas industry, to achieve things, many disciplines are required to collaborate.
Between disciplines, the templates and applications that people use, and even the language,
can vary. Effective collaboration requires effective information sharing. To achieve this at a
small expense and without the need to spend many hours, we need to find a way to
automatically improve the data that individuals use in such a way, that end-to-end integration
and comparison is made possible.

To this end, this research aims to apply fuzzy text technology such that nomenclature,
terminology, abbreviations, units of measure, naming of people and things, are normalized to
‘standard’ wording. With this, we will be able to combine data more easily, and use it to
create charts and reports. In choosing our standard for terminology we will follow the
1ISO15926 industry standard.

We will be creating a range of fuzzy text solutions, and applying them to live data from an oil
company. It is our objective to identify the best approaches to:
» Automatically recognize the data type of the most commonly used data in the context
of the oil company.
« Automatically enhance this data to standard terminology.
» Integrate the enhanced, normalized data into the data model for comparison, reporting,
simulation, and optimization.

The uncertainty that requires our academic approach is twofold:
* We don’t know whether we will be able to automatically classify the data we receive.
* We don’t know whether we will be able to effectively normalize all data that we
receive.

In both cases we expect that we may end up with bits of ‘uninterpreted’, ‘un-normalized’ data
in our data set. Our experiments will seek to identify the approach that minimizes such
occurrences.

2 Theory and results

“In computer science, approximate string matching (often colloquially referred to as fuzzy
string searching) is the technique of finding strings that match a pattern approximately
(rather than exactly).” [1]

This thesis’ fuzzy text recognition and manipulation is split into five main parts: open text,
person names, date/time, currency and general entity recognition. Different strategies has
been applied to achieve this goal.

2.1 Open text with regular expressions

“In theoretical computer science and formal language theory, a regular expression
(abbreviated regex or regexp and sometimes called a rational expression) is a sequence of
characters that define a search pattern, mainly for use in pattern matching with strings, or
string matching, i.e. "find and replace"-like operations.” [2]

Learning how to use regular expressions was done with the help of informative websites with
explanations and test engines. [3] [4]

Following is a cheat sheet providing an overview of some of the most used regular expression
characters:

Character classes

\w hd \s
‘W \D \S
[abc]
[fabc]
[a-g]

Anchors

fabcs

\b

Escaped characters

Ve Ax AN escaped special characters
\t \n \r

\uBBAS

o

Quantifiers & Alternation

Figure 1: Regular expression cheat sheet [3]

When using a regular expression to search a text with many words sometimes the pattern
being searched for can appear inside a word rather than the word itself. For example a regular
expression that searches for a number with four digits would find “3700” inside “837003”,
even though this is not often desired. By using regular expression lookahead and lookbehind
it’s possible to check if the found pattern is not a part of a word. It checks for certain
characters at the start and the end of the pattern. Possible characters that marks a start/end of a
pattern could be a whitespace (represents either a horizontal or vertical space), comma (for
listing), period (end of a sentence) or the end/start of the string.

The regular expression for the lookahead: (? =\s], |\.|$). It looks for a whitespace, a comma,
a period or the end of the string after the pattern that has been found.

The regular expression for the lookbehind: (? <=\s|, |\.|"). It looks for a whitespace, a
comma, a period or the start of the string in front of the pattern that has been found. The
reason why lookbehind wasn’t listed in the cheat sheet is because regular expressions in
JavaScript does not support it.

10

2.1.1 Regex for Work Item IDs
A spreadsheet of possible Work Item IDs was provided:

Clean Work ltem I1D's -
HAO113G011
HAO113G019
HAO113G020
HAOT13G021
HAO113G022
HAMGADD
HAMGADOT
HAMGADDTS
HAO1GAD025
HAONMGADDZE
HAOMGADD3Z
3 |HAD1GADDI3
4 |HAD1GADD3E
5 |HAMGADDIT

1R |HAMM R4 NNAF
Figure 2: A part of the Work Item ID spreadsheet

3 fod | =

—_
e 0 00 =) N n e

=5
ra

= [| =
LRI = W |

Using this spreadsheet, a pattern was found by examining the different kinds of IDs:

e The IDs always started with one of the characters H, K, L, P, Q, R or S. The pattern for
this behaviour for a regex language is expressed as [HKLPQRS] .
The second character could be any uppercase letter: [A — Z] .
The following 5 characters was either an uppercase letter or a number: [A — Z\d]{5} .
The preceding 2 or 3 characters was a number: \d{2,3} .
The next character was sometimes a period: \.? . As the period already is a regular
expression character defining any character except newline, it had to be escaped.

e The remaining characters were always numbers: \d*.
This resulted in a first draft of the regular expression:

[HKLPQRS][A — Z][A — Z\d]{5}\d{2,3}\.7\d *
However, using this regular expression could sometimes find an ID inside a word. For
example “TIHA01GA001956” is not a Work Item ID, but it would find “HA01GA0019”
inside the word, which is a Work Item ID. This is a rare case, but is solved, as mentioned
earlier, using lookahead and lookbehind.

Combining these additions, the second and final draft for the Work Item 1Ds was created:

(2 <=\sl, |\. ") [HKLPQRS][A — Z][A — Z\d}{5\d{2,3}\.7\d * ? =\s], |\. |$)

11

@ o

if preceded by
\S

One of One of

¢ HKLPQRS-AZ

One of
A-Z nd o
5 tirmes 2.3

v

Figure 3: Visual representation of the Work Item ID regex [4]

if followed by

\s

°-O

This regular expression correctly identified all of the Work Item IDs (in red) in a large excel
document:

2.1.2 Regex for WBS (Work Breakdown Structure) IDs

Discipline : Al - Milestones

PM3IT0075
PME 7007

PM37007

=
wd 2

L

PMET00T
PMET00T
PME 7007
EM3T00T

i Lh Lh

PMET00T

LN

PMET00T

PME 7007
EM3T00T
PMET00T
PMET00T
PME 7007
EM3T00T

i Lh Lhouh

Labh Lh

[i e Y i Y i Y e [i)

PMI 700751

Figure 4: A part of the spreadsheet where Work Item 1Ds were identified

370075 - M3 Prix
FTO0TS - W4 Bvsl
370075 - M5 Rea
370075 - M2 PIC
FT0075 - W6 Are
ITO0T5 - M7 Evsl
370075 - M8 Cla:
370075 - WIS PO
370075 - W10 AL
IT0075 -MI11 L
3700735 - Fabricat
3700735 - Installal
370075 - MC Cor
370075 - Handov
370075 - W12 A
370073 - Close m

L

A spreadsheet of possible Work Item IDs was provided:

Clean WBS ID's -

70012
BT0017
mr0023
BT0025
B70025
B70033
F70035
B70038
P70042
"70045
mT0047
m70056
BT0081
Br0062
F70083
F70064
mrnngs

Figure 5: A part of the WBS ID spreadsheet

Using this spreadsheet, a pattern was found by examining the different kinds of IDs:

The WBS IDs always started with the number 3700 .

12

The following two characters after that were numbers: \d{2} .
As a number like 370000 likely can appear inside another number, the same lookbehind and
lookahead as for the work item ID’s was added:

(?<=\s|,\-|")3700\d{2}(? =\sl,]\ |$)

if preceded by

\s

if followed by

@ - & -3700— \d~— @

-

2 times

\s
0O

$

Figure 6: Visual representation of the WBS ID regex [4]

This regular expression correctly identified all of the WBS IDs (in red) in a large excel
document:

Discipline ;: Al - Milestones

PM3T00T30 370075 - M3 Poin
PMITO0T30 370075 - W4 Bwst
PMITO0T50 (370075 - M5 Read
PAMITOOTI0 (370075 - M2 PID
PMITO0T0 370075 - M6 Ares
PMITO0T30 370075 - M7 Bwst
PM3ITO0T50 (370075 - M8 Clas
PM3T0O0T30 (370075 - MO PDD
PM3T00731 370075 - MI10 All
PMIT00751 370075 -M11 LK
PM3IT00751 (370075 - Fabricati
PM3T00731 370075 - Installat:
PM3T00731 370075 - MC Con
PM3IT00751 370075 - Handov

PMITO0T51 (370075 - MI12 As
PM3TO0T31 (370075 - Close ov

Figure 7: A part of the spreadsheet where WBS IDs were identified

2.1.3 Regex for WBS codes

A document about the WBS code structure and a gazetteer list over different WBS codes were
provided. Using these documents, the following information was extracted and deduced:

The first letter was a of either C, Z, O, M or N: [CMNOZ] .

The second character was a period: \. .
The 5 following characters was either a uppercase letter or a digit: [A — Z0 — 9]{5} .
Here the word-regex (\w) is not used as it’s short for [A — Za — z0 — 9_] and includes
the character “_” and lowercase letters.

The next character was a period: \. .

The following letter was either A, B, C, D, E, For Z: [ABCDEFZ] .
The last characters were optional, but it was always 2 letters optionally, separated by
period, followed by 1 to 6 letters or digits: (\.[4 — Z]{2}(\.[A — Z0 — 9]{1,6})?)?.

The document about the WBS code structure had some additional information regarding the
optional 2 letters, suggesting only a small set of letters could be possible. This information did

13

not seem to be accurate as it existed letters outside this set in the gazetteer list. Therefore, the
2 optional letters were made as generic as possible to support letters outside the mentioned
set.

As this pattern rarely is found inside a word, the lookahead and lookbehind was not added.
After combining the steps, this was the resulting regular expression that was used:

[CMNOZ]\.[A — Z0 — 9]{5}\. [ABCDEFZ](\.[A — Z]{2}(\.[A — Z0 — 9]{1,6})?)?

Group 1
Group 2
Ore of Ore of Orne of One of Ore of
@® cvnNnozZ . AZO9 . ABCDEFZ . A-Z .~ AZ0OS9 O
5 tirmes 2 times upto &

Figure 8: Visual representation of the WBS code regex [4]

This regular expression correctly identified all of the WBS codes in a large excel document.

The regular expression part that supported only the letters mentioned in the WBS code
structure document:

(CS|D[ADW]|F[EX]|G[EGOS]|I[CNOV]|P[OPR]|RE|S[AE]|TP)

2.2 Recognizing a person name in a text

The process of recognizing a person name in a text might seem easy for the human eye as
people would be able to spot most person names within a text. However, using a computer to
automatically recognize a person name makes things a lot more difficult. It’s hard to define a
person name and different approaches were used.

14

2.2.1 Gazetteer lists with fuzzy matching algorithms

Using this approach the program will test a text against premade gazetteer lists. To be able to
support spelling errors, fuzzy matching is needed as well. For testing purposes a spreadsheet
is used containing person names and position titles, one entry per cell. The objective is to
filter out the person names. As a person name is split into a first name and a last name (and
possible more middle names), the full string inside the cell will be split into words. The first
word will be tested against the first names gazetteer list, the middle words against the middle
names gazetteer list and the last word against the last names gazetteer list. The testing is done
by iterating through the list and doing a fuzzy match with the testing word and the gazetteer
entry. The fuzzy algorithm used is called Levenshtein distance, which measures the difference
between two strings.

function LevenshteinDistance (char s[l..m], char t[l..n]):
// for all i and j, d[i,j] will hold the Levenshtein distance between
// the first i1 characters of s and the first j characters of t;
// note that d has (m+1)*(n+1) values
declare int d[0..m, O..n]

set each element in d to zero

// source prefixes can be transformed into empty string by
// dropping all characters

i from 1 to m:

dafi, 0] := 1

// target prefixes can be reached from empty source prefix
// by inserting every character

J from 1 to n:

dro, jl :=3

j from 1 to n:

i from 1 to m:

s[i] = t[j]:
dfi, j] := d[i-1, 3J-1] // no operation
required
dfi, J] := minimum(d[i-1, J] + 1, // a deletion
dafi, j-11 + 1, // an insertion
dfi-1, j-11 + 1) // a substitution
d[m, n]

Pseudo code 1: Levenshtein distance (lterative with full matrix) [5]

The distance (or also called edit distance) is measured by counting the number of character
edits. A character edit includes insertions, deletions and substitutions. The facts about the
Levenshtein distance is largely taken from [5]. As an example, the distance between the word
“Bart” and “Berty” is 2. First edit involves changing “a” to “e”, second edit removes the “y”.
The normal way of determining if the strings are a fuzzy match is setting a limit of the edit
distance. For example setting the max edit distance to be 2 would fuzzy match “Bart” and

15

“Berty”, but not fuzzy match a distance higher than that. This method provides a problem
when comparing name parts that has few characters. For example, using a max edit distance
of 2, the name “Di” would be fuzzy matched with all names with 2 characters. The solution to
this problem is using a normalized version of the Levenshtein distance, where the output of
the computation is a number between 0 and 1, where 1 is a perfect match.

LevenshteinDistance(origStr, gazzStr)

NormLevDist = 1 —
ormLeviLs max(origStr.length, gazzStr.length)

Equation 1: Normalized Levenshtein distance

LevenshteinDistance is the method that returns the edit distance, origStr and gazzStr are the
comparing strings.

Using the normalized version, a threshold can be set for fuzzy matching the strings that will
work better with all name lengths. As an example, using a threshold of 0.6 would only match
the name “Di” with “Di”, as more than one edit distance would result in a threshold below
0.5. While the normalized Levenshtein distance between “Bart” and “Berty” would be 0.67,
thus resulting in a fuzzy match.

As a person name needed to be tested against different sets of gazetteer lists, an average
Levenshtein distance of the combined name will be calculated with the use of the normalized
distance of the best matches for each first/middle/last name.

o BestNormLevDist;

AvgBestNormLevDist =

n
Equation 2: Average Best Normalized Levenshtein distance

Where BestNormLevDist is the best normalized distance (closest to 1) a comparison returned
when comparing the original string with an entry from the gazetteer list and n is number of
words in the person name. For example, if the best normalized distance for the first name was
0.91, for the middle name was 0.78 and the last name was 0.86. The average normalized
distance of the best matches would be 0.85.

Following picture is an example of the algorithm running through 800+ cells of text testing
against gazetteer lists at the size of 100 000+ (last names) and 40 000+ (first names) entries:

16

OriginalString

Head of HSEQ

Eva Fagemes

Advisor

Management Support

Kari Samneen

Leader HSE Operations

Elin Sigrid Witse

Leader Quality Management

Hagen Soland

Leader Environment

Jammecke Amkveermn Moe

Sr. Advisor Quality

Randi Eltvik Larsen

Sr. Advisor Environment

Wenche R. Helland

Sr. Advisor Quality

Havard Kalver

Sr. Advisor HSE Projects

Ole Kjetil Handeland

Leader Health & Work Environment
Sighjern Dalane

Leader Document & Information Management
Tor Ove Holsen

Leader Emergency Management
Stig Sandal

Leader Risk & Barrier Management
Anders Tharaldsen

Coordinator Emergencv Management
Silje Rosnes

Special Advisor

Geir Pettersen

HR Business Parmer
AnneSvendsen

HR. Business Parmer

Aina Skretting @stratt

Leader Office Facility Management

LevenshteinDistanceBestMatch
Head of HSEQ
Eva Vallernes

| Addison

Management Support

Kari Samben

Leader HSE Operations

Elin Sigrist Wiltse

Leader Quality Management

Hagen Sovland

Leader Environment

Jannecke Anker Moe

Sr. Advisor Quality

Randi Haltvik Larsen

Sr. Advisor Environment

Wenche Ra Helland

Sr. Advisor Quality

Havard Kalter

Sr. Advisor HSE Projects

Ole Kjell Langeland

Leader Health & Work Environment
Sighjorn Balane

Leader Document & Information Management
Tor Ovie Holten

Leader Emergency Management
Stig Sandahl

Leader Risk & Barrier Management
Anders Thorvaldsen

Coordimator Emergency Management
Sifje Rosanes

Special Advisor

Geir Pettersen

HE. Business Partner

Svendsen

HF. Business Partner

Aina Skretting Istrati

Leader Office Facility Management

Classification Normalizedl evenshtemDistance

0.833333333333333
0.714285714285714

0.857142857142857

0.793650793650794

0.828571428571429

0.833333333333333

0.904761904761905

0.833333333333333

0.833333333333333

0.814814814814815

0.854166666666667

0.861111111111111

0.928571428571429

0.909090909090909

0.857142857142857

LastName 0.666666666666667

0.857142857142857

Figure 9: An example of the result using the Levenshtein distance and gazetteer lists to recognize person names.

The classifications were not that far off, but the best matches rarely matched the person name.
The downside of using gazetteer lists is that the result highly depends on the quality of the

lists. Splitting up the name and comparing thousands of entries in the gazetteer list with the
Levenshtein distance algorithm is computationally expensive. The computation time of the
example was around 4 minutes.

2.2.2 Fuzzy searching with Apache Lucene

“Apache Lucene is a free open source information retrieval software library, originally
written in Java by Doug Cutting. ” [6]

Apache Lucene features include text indexing and searching. The search feature includes
fuzzy searching. By default, the fuzzy search uses the Damerau-Levenshtein algorithm, but
it’s also possible to use the classic Levenshtein algorithm. The threshold of the fuzzy search
match can be adjusted in the interval between 0 and 1, where 1 is a perfect match. Facts in
this paragraph was taken from a website [7].

To be able to search a gazetteer list, the list will first need to be indexed. After indexing the
gazetteer lists it’s possible to run a search towards these indexed lists and the engine will

return which list contains the word being searched for. In other words, it could return multiple
classifications and it does not say which one of the classifications that are more likely the best

one.

17

2.2.3 Stanford NER (Named Entity Recognizer)

“Stanford NER is a Java implementation of a Named Entity Recognizer. Named Entity
Recognition (NER) labels sequences of words in a text which are the names of things, such as
person and company names, or gene and protein names. It comes with well-engineered
feature extractors for Named Entity Recognition, and many options for defining feature
extractors. Included with the download are good named entity recognizers for English,
particularly for the 3 classes (PERSON, ORGANIZATION, LOCATION)...” [8]

The Stanford NER implementation is a powerful tool for recognizing person names in a text.
It uses a classification dictionary containing persons, organisations and locations to label
words. An example of an output of the text “My name is Thomas Kleveland.”: “My/O
name/O is/O Thomas/PERSON Kleveland/PERSON./O”. Where “O” (means “Other”) and
“PERSON?” are the classification labels.

Following picture is an example of the Stanford NER engine going through 800+ cells of text,

the rows with the PositionTitle-tags were the cells that were not recognized as person names
(the cell was either a position title or a person name):

18

Ongmal Strng

Head of HZEQ

Evwa Fagernes

Adwmsor

Management Suppott

Ean Samneen

Leader HSE Operations

Elin Signid Witse

Leader Quality IManagement

Hiagen Soland

Leader Enwironment

Jannecke Ambverm IMoe

=t Adwisor Quality

Eandi Eltwik Larsen

st Adwizor Enwironment

Wenche E. Helland

ot Adwvizor Quality

Havard Ealver

ot Adwizor HSE Projects

Ole Ejetd Handeland

Leader Health & “Work Ennronment
Zigbern Dalane

Leader Document & Information Management
Tor Owve Holsen

Leader Emergency Management
Stig Sandal

Leader Fisk & Barnier Management
Anders Tharaldzen

Coordinator Emergency Management
siie Eesnes

spectal Adwisor

(Geir Pettersen

HE. Business Partner
Annesvendsen

HE Business Partner

Aina Skretting stratt

Leader Office Facility IManagement

Classfication

Figure 10: An example result of a Stanford NER test when recognizing person names.

19

The total computation time for classifying the list was 15 seconds, which was included the
seconds it took to load the classification model into the memory. Going through the entire list
of 800+ cells, only a few of them were classified wrong. Names with spelling errors were also
classified correctly. The downside of classifying the person names using this method is the
inability to give good suggestions for potential spelling errors.

2.3 Date recognition and parsing

A date can be in many different formats, several different approaches has been made to figure

out the best way to handle date recognition and parsing.

2.3.1 Stanford NER (Named Entity Recognizer)

The Stanford NER also offered a 7-class model, which would label “Time, Location,

Organization, Person, Money, Percent, Date”. Following is a test to recognize dates using this

model:

Type
05.23.2013
05/23/2013
05/23413
05-23-13
05-23-2013
52313
05.23.13
04.05.1979
12/5/2002
Bmi13
4-29-13
03-1-2013
5232013
£i23/2013
5123113
5-23-13
5-23-2013
23 may 2013
23, May 13
may 75
23.0513
23.05.2013
23052013
2340513
93-05-13
23-05-2013
93513
2352013
2345/2013
2345113
93513
23-5-2013

Classification Label
05.23.2013/0
05237201350
0542341340
05-23-1340
05-23-201350
5.23.13/0

05.23.1340

04.05. 197970
126200250
B/AA30

4-29-13/0
03-1-2013/0
5.23.2013/0
8237201350
8/23/13/0

5-23-13/0
5-23-2013/0
23/0./0may/02013/DATE
23/0./0May/DATET1I/DATE
may0YDATETS/DATE
23.05.13/0
230520130
2305201350
23051340
23-05-13/0
23-05-201350
23.5.13/0
23.5.2013/0
2388201350
23813/0

23-5-13/0
23-5-2013/0

Figure 11: Stanford NER example output

As the output of the Stanford NER classification failed to label several of the different date
formats correctly, another approach was needed.

20

2.3.2 Using regular expressions

A date can be expressed in several different ways. A regular expression excels at finding text
with a certain pattern. The first approach using a regex was to develop a single regex to
recognize different patterns of a date in a text with many words that could be something else
than dates. Only the final draft will be shown in this chapter, the rest are listed in the
enclosure. The regex will be split into different parts and explained individually.

The first part is the day and month. In regular expression language it’s not possible to simply
express a number range. The range is only for characters. For example [0 — 9] matches any
characters from 0 to 9. While [1 — 31] will only be read as characters from 1 to 3 and the
character 1 and not the number range 1 to 31. This makes expressing the number range more
complex in a regex:

(3[01]][12][0 —9]|0?[1 — 9])
This regex will find any number from 1-31 with an optional 0 in front of single digits. This
will be used to identify the day part. Generally the date might be followed by a period. In

English dates, the day can sometimes be followed by the ordinals th, st, nd or rd instead. That
is usually also followed up by the word of (for example 23™ of May):

(\.?|(th|st|nd|rd)\sof)?
This type of the date is then followed by the month name.
The regex for the month names:

(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|maliy]|jun[ie]?|jul[iy]?|aug(ust)?|sep(t(e
mber)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)

This regex supports both English and Norwegian month names in full and short form. As
many of the month names are equal, the regex is shortened by only having some of the
characters different. The combination of the mentioned regexes would support date formats of
the type 24" of Oct, 13. May, 06 dec.

Another way of describing a date is using the 23.12.15 or 9.23.2015 depending on the
position of the month number and day number. To be able to support both types of dates, the

regex that was used for a day is used for both parts. The symbols separating the day, month
and year can be a period, a forward slash or a dash:

(3[01]{[12]{0 — 91107 [1 — 9 [-\./1(3[01]][12][0 — 9]|0? [1 — 9])

The second and last part of the date is the year, limiting this from 1000-2999 or 00-99 for the
shorter form:

([12][0 — 9]{3}3\d{2})

To support both uppercase and lowercase month names, the regex is to be used with the flag /i
(ignore case). This can be done in most regex match engines or by adding the flag inside the

21

regex (?i) . Adding a lookbehind and lookahead and combining both of the ways of

expressing a date, the final regex:

(?<=\s|,|")((((3[01]|[12][0-9]|0?[1-

9] (\.?|(th|st|nd|rd)\sof))?\s?(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|ma[iy]|jun

[ie]?]jul[iy]?|aug(ust)?|sep(t(ember)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)

N\s?)[(3[01]][12][0-9]]0?[1-9D[-\./1(3[01]|[12][0-9]|0?[1-9D)[-\./D([12][O-
II33N\A{2)?7(?=\s].$)

Reading this regex is easier when presented visually:

Group 1

Group 2

Group 20

One of One of

12 -8

Group 12 i
@ o e a . s

aug ust Nd

Group 18
One of One of

3-01

Soerh One of One of

12-09 =0 73

One of One of

12-09 =0 7%

©ne of One of

<] 138] Lz

Figure 12: Visual representation of the date recognition regex. Created with Debuggex [4]

The regex supported a lot of different date formats:

22

if followed by

\s

$

-0

fi5.23.13
04.06.19749
12/6,/2002
6,/9/13
A4-29-13
03-1-2013
#a.3.13
5.23.2013
9 5/23/2013
10 5723713
11 5-23-13
12 $J-23-2013
13 238 mag 2013
4 P30 May 13
5 93 may 2013
e May 2014
17 23%d of May, 2014
Figure 13: Example of supported formats correctly matched with the created regex. Created with Debuggex [4].

I on Ln b= s R3O

LU U U 8

| S LN N]

It’s hard to create a regex of this magnitude without false positives. An example of a false
positive that this regex would find is 30.31.14. This date will however not successfully parse
using a date parser.

The regex did also have false negatives. For example the date May 23, 2014 would only be
matched as May 23, as this could mean May 2023.

Before looking more into improving the regex, another approach towards recognizing a date
was made.

2.3.3 Per cell approach

As the recognition of dates is aimed towards a spreadsheet, another way of looking at it is by
a per cell basis. In spreadsheets, a cell can have a type of content, one of the types being date.
If a cell is of type date, the date is already recognized. If the cell is of type string, recognizing
and parsing potential dates is needed. Instead of creating a complex regex that looks for a
complete date, it’s easier to create multiple regexes that matches date parts. An example of a
date part could be October, 13" or 2014. The algorithm will tokenize the string inside the cell
into words (split on space) and then iterate through those words and use multiple regexes to
test each word if it could be a part of a date. A word in this context is characters separated by
a space. If a part of a date is found, a run is started and will add the word to a list. The run
will continue until a following word is not a part of a date. The preceding words found to be a
part of a date will then be attempted to parse. The run will reset and the process will be redone
until there are no more words left in the cell.

23

‘ Start '

h 4

Resetcurrentrun |«

h 4
Nextword in list |«

Test against part-
no— orgate patterns

yes

Parse date

}-es—r

Add word to
current run

no

v

Parse date

Figure 14: Date recognition flowchart. Created using gliffy [9].

As the words were only tokenized by space, a word could also be a full date, for example

23.05.2014. A list of type of date parts that should be matched:

14

78

1978

23.12.14
12.23.2014
23-12-14
23/12/14

Any month name
14th

“78

The regex for a year, mentioned in the previous chapter, matches the 3 first types:

([12][0 — 9]{3}|\d{2})

This regex will match the 3 first types.

The regex for a day, month number and a year can be expressed using a combination of the

day-month regex

(3[01]][12][0 = 9]]0? [1 — 9D[-\./1(3[01]|[12][0 — 9]|0? [1 - 9])

And the year regex:

24

(3[01]{[12]{0 — 9]]0? [1 — 9 [-\-/1(3[01]|[12][0 — 9]|0? [1 — 9D[-\./1([12][0
— 91{3}\d{2})

This regex will match the 4 next types.

The regex for a month name is also mentioned in the previous chapter:

(jan(uary?)?|feb(ruary?)?|mar(s|ch)?|apr(il)?|maliy]|jun[ie]?|jul[iy]?|]aug(ust)?|sep(t(e
mber)?)?|o[kc]t(ober)?|nov(ember)?|de[sc](ember)?)
This regex will match the month names.

As there are no difference between 23 May and 23" of May, removing potential ordinals and
ignoring the word of prepares it better for the parsing process. Removing the ordinals can be
done by using a regex to find it:

(2 <=\d)(th|st|nd|rd)

The same goes for 78 and 78, where removing the ‘ character makes it easier. This makes the
total count of 4 regexes for determining whether a word is a part of a date or a full date.

For parsing the date, C# has a method called DateTime.Parse(string s) that automatically
parses a string using the current locale settings. To use another locale it’s possible to use an
additional parameter DateTime.Parse(string s, IFormatProvider provider). When a date is not
a valid format for the current locale, a FormatException is thrown. To be able to support both
the date formats where the month number and day number has different places, it’s possible to
surround the first attempt to parse towards the en-GB (the culture code for United Kingdom)
locale with a try/catch. In the catch clause, the second attempt to parse it towards the en-US
(the culture code for United States) locale will be made. This will ensure both of the formats
to be parsed. However, a problem that did not get handled are the ambiguous dates. For
example the date, 06.04.23, is impossible to determine whether it means 6™ of April or 4™ of
June. Further research into solving this could involve looking at other dates in the same
spreadsheet.

2.4 Currency recognition

A currency can have many different formats, but the difference between a currency and a
normal number is the currency type. The currency types determines the value of the number it
is combined with. A number can therefore have different types of value before a specific
currency type is associated with the number. The number can also sometimes have
multiplying symbols, for example $1MM suggests that the number is actually 1 000 000. The
multiplying symbols can sometimes have different meaning, in the oil industry the M actually
means a million, while the normal abbreviation for a million is MM. As the currency notations
can vary, the most common notations found in various confidential spreadsheets provided
were in following format:

[Number] [Amount Multiplicator]? [Currency code/symbol]
[Currency code/symbol] [Number]| [Amount Multiplicator]?

An example of the first format is 200 MNOK, which is 200 000 000 NOK in the oil industry.

25

An example of the second format is $ 1M, which is 1 000 000 USD (or any other currency
code with the $ symbol.

2.4.1 Stanford NER (Named Entity Recognizer)

As mentioned in the chapter regarding date recognition, the Stanford NER had a 7-class
model where one of those classes was Money. After testing the library against different types
of currency formats, only dollars were labelled correctly when it had the form $12000:

Type Classification Lahel
$12000 F12000/MONEY
120008 1200080

12 000 £ 12/0 00070 £/0
£12000 £12000/0

120005 120000

Figure 15: Stanford NER currency classification

Another approach to recognize currencies was needed.

2.4.2 Using ANNIE with GATE Developer

“General Architecture for Text Engineering or GATE is a Java suite of tools originally
developed at the University of Sheffield beginning in 1995 and now used worldwide by a wide
community of scientists, companies, teachers and students for many natural language
processing tasks, including information extraction in many languages.” [10]

By default, the GATE Developer program comes with an IE (Information Extraction) system
called ANNIE (A Nearly-New Information Extraction system), which uses a combination of
different processing resources. The system is developed by Hamish Cunningham, Valentin
Tablan, Diana Maynard, Kalina Bontcheva, Marin Dimitrov and others. It relies on finite
state algorithms and the JAPE language. The preceding text and the following picture was
largely taken from the GATE website on the chapter regarding ANNIE [11].

26

Document format ANNIE? LaSIE

(=ML, HTNL, BGIL, email,

IE modules
Ttupat: . GATE
URL or ? Documnent (_\ 1

Unicode Clags Se&&ice ST e
Tokeniser - Rules ageer Cascade
I y
MNOTE: sguare hoxes are
- Marne q
. Flex Leszical unded
EITITI PIOCEsses, I QIes are
L MSEr Analysis Grammar Matcher data.

L b
FS Gazetteer Lists Buchart . AV Prolog
Loolaup ~ Parser Cramimar

5 ; TAPE 8 3 HlProlog
entence entence ‘ Dislat - W

Splitter N Patterns Extraction Rules

. '
HipHep Brill Rules GATE Document
Tagger - Lexi ML f
e Output. 5 NE.!TE.ITRJSTWEEanamns

Figure 16: ANNIE components form a pipeline which appears in this figure. [11]

By creating rules for the Semantic Tagger component and adding the currency codes/symbols
as gazetteer lists, an attempt was made to implement a currency tagger. The rules and macros
are created using a language called JAPE. The JAPE grammar is explained in detail in the
GATE JAPE Grammar Tutorial [12]. When installing the GATE Developer application,
several .jape-files were included that served the purpose of tagging different type of text, for
example address, email, url, etc. One of these types were number, which already included a
rule for some currency notations:

27

Rule: MonewyCurrencyUint
/I 30 pounds

i
{AMOUNT_MUMBER)

({Lookup.major Type == currency _unitk)
i

snumber -
inumber, Money = Jkind = "number”, rule = "MoneyCurrencyUnik"r

Rule: MoneySyrmbaollnit

i $30
I $30 U35

I ok £1421
I 4200S

{
({Token.symbaolkind == currency)|
{Lookup.majorType == currency_unit})
{AMOLUNT _MUMBER)
!
{Lookup.major Type == currency _unitt
)t
]

number

-
snumber Money = fkind = "number”, rule = "MoneySymbolUnit"t

Fule: MoneylnikSymbal
I} US 430

{

{Lookup.major Type == currency_unit, Lookup,minorType == pre_amounk};
({Taoken.symbolkind == currency}|

{Laokup.majorType == currency_unit, Lookup,minar Type == post_amaount-)
{AMOLMT_MUMBER)
]

rnumber

-
inumber, Money = fkind = "number”, rule = "MoneyUnikSymbolt

Figure 17: From the file, number.jape, that came with the application

The rules uses a combination of macros (e.g. AMOUNT_NUMBER) and gazetteer (e.g.
Lookup) lists to tag open text with the appropriate types. The goal was to create JAPE-rules
that would match the formats mentioned in the introduction of the Currency recognition
chapter. Looking at the existing rules it seems possible to create such rules for a currency. It
looks like it’s possible to concatenate “patterns” to match a word, like $20US is matched
because $ is a currency symbol (Token.symbolkind == currency), 20 is a number
(AMOUNT_NUMBER) and US is a currency unit from the gazetteer list with the majorType
currency_unit. However, there were some differences in the currency notation format required
and the ones that already existed. The difference being that the tokenizer (the program that
splits words/sentences into tokens) would split numbers and symbols into separate tokens.
Therefore, $20US would have 3 tokens ($, 20 and US), while MNOK would just be one token.
As it was only possible to handle the tokens individually, the token MNOK could not be
matched to a gazetteer list of currency codes (because of the prefix M). A token could not be
tampered with before comparing to a gazetteer list, so there was no way of comparing a token

28

to a combination of two gazetteer lists. For example, it was not possible to compare a token to
{Lookup.majorType = amount_multiplicator} (or referring to a macro) + {Lookup.majorType
= currency_unit}, where + symbol meaning they were concatenated.

The implementation of the JAPE-rules and gazetteer lists attempts are explained in the
implementation chapter 3.3.

With the use of GATE, following papers should be cited [13] [14].

2.4.3 Per cell approach

In this chapter, only the theory behind how an approach like this could be made is talked
about. There were no implementations or results performed.

Like mentioned in the chapter 2.3.3, a spreadsheet cell can be of certain types, this includes a
currency-type. If the cell is of type currency, the currency is already recognized and can be
treated as such.

When handling number-formatted cells without a currency code or symbol, it’s necessary to
look at the context. The currency code can sometimes be in the horizontally adjacent cells or
mentioned in a column header if the rows for that column are all numbers. The currency code
can also sometimes be mentioned at the start of the document, e.g. “Numbers in NOK” or
even “Numbers in $1MM” which would suggest that the discovered numbers are really 1 000
000 times bigger. If there is a mention of a currency in a header of a table in the spreadsheet,
it should be analysed to potentially extract information about other cell’s currency codes. For
example if a column had the header “MNOK?”, this would probably mean that the rows for
this column should be of type NOK and the actual value is the row value times a million.

When a cell is of type string, the same approach made to recognize a date could be made for a

currency, testing each word for the possibility of being part of a currency. Example of how a
flowchart of the algorithm would be:

29

Start

0

Nextword in list g -

%

; Add word to
. Testagainst part-
o [. - A
End of list? no P otdate patterns)es—b currerztndate
yes no
»| Resetcurrent A
I l Parse date > date-run
Parse
Parse date currency
Testagainst part- Add word to
e of-currency yes —p current 1
patterns currency-run
no
Parse »| Resetcurrent
currency ¥l currency-run

Figure 18: Currency and date recognition flowchart. Created using gliffy [12].

The currency formats mentioned in the introduction of chapter 2.4 are used to create part-of-
currency regexes combined with the use of gazetteer lists of currency symbols and codes.

Part-of-currency examples that should be matched:
“100,100.10”

“100”

“10.100,10”

“10.100NOK”

“10.100MNOK”

“NOK10,000”

10.000kr”

“kr10.000”

The currency formats:

[Number] [Amount Multiplicator]? [Currency code/symbol]
[Currency code/symbol] [Number] [Amount Multiplicator]?

Where [Number] is matched using a regex:

M+-1710-91{1,33(2:[0-91*(%:[,][0-91{1})?| (?:,[0-9 {3 *(?:\.[0-9]{1,2})?| (?:\.[O-
I13N*(7:[0-91{1,2H7)$

30

One of

One of One of

Q-9 0-9
One of One of
One of , 09 09
@ 09 $-O
2 times upto 2
upte 3
One of One of
-9 -9
3 timas upteo 2

Figure 19: Visual representation of the “Number -

regex

This regex was taken from an answer on stackoverflow.com [15].
The [Amount Multiplicator] is matched using a regex:
(?1) [kmb]|mm|[bm]In|[bm]il[]j]\.?

fi
One of

kmb

' One of O

bm—1n

One of One of

bm il 1]

Figure 20: Visual representation of the *Amount Multiplicator”-regex

The [Currency code] and [Currency symbol] are matched using a gazetteer lists [16] [17].

2.5 General entity recognition using OYSTER (Open sYSTem Entity
Resolution)

“Entity Resolution (ER) is the process of determining whether two references to real-world
objects are referring to the same object or to different objects. ” [18]

“The OYSTER (Open sYSTem Entity Resolution) is an entity resolution system that supports
probabilistic direct matching, transitive linking, and asserted linking. ” [19]

There are different types of record linkage. One of them being deterministic record linkage,
where two records are said to match if all or some identifiers are identical. And the other one
being probabilistic record linkage, also called fuzzy matching, probabilistic merging or fuzzy
merging. The method uses thresholds to determine if a pair is a match, a non-match or a
possible match. The possible matches can be dealt with by e.g. human review, depending on
requirements. This paragraph was largely taken from the Wikipedia page about Record
linkage. [20]

31

The foundation for the internal logic of OYSTER is the R-Swoosh algorithm, an algorithm for
systematically applying the match and merge functions to arrive at the generic entity
resolution of R (ER(R)), where R is the initial set of entity references. This paragraph was
largely taken from the R-Swoosh Algorithm part in the book Entity Resolution and
Information Quality [18].

Using OYSTER, the goal was to discover WBS project title entities in a provided spreadsheet
by abiding by certain rules for matching. The rules were as following:

o [fthe WBS project title is the exact same, it’s the same entity.

o If the WBS project title is very close to equal (spelling errors or the use of symbols
like “-), it’s the same entity as long as any potential year inside the project title is the
Same.

o Ifthe WBS project title is cut off, but equal to the start of another string, it’s the same
entity. For example “High temperature in potable water Cooling sy” is the same entity
as “High temperature in potable water Cooling systems”.

To be able to match project titles that are very close to equal, a fuzzy match is required.
OYSTER comes with multiple fuzzy algorithms. A list of the algorithms with explanations
can be found in the OYSTER Reference Guide. These algorithms can be used by specifying
them in the “MatchResult ’-attribute in the “Attributes”-file [21]. Several of the algorithms
were tested, but the default algorithms offered by OYSTER could not satisfy the mentioned
rules for entity matching. A reason for this is that some of the project titles could have a year
that would be different, thus being a different entity. Pure fuzzy matching a string where only
the year would be different would still result in a match if the threshold is not set to exact
match, but fuzzy matching would still be needed for the text that could contain spelling errors
or “cut-offs”.

To be able to align the entity matching with the rules mentioned, two custom matching
algorithms were implemented. Using the custom algorithms, oyster managed to find a total of
51 entities compared to the correct number of 53 of a total 85 input rows.

The reason it did not correctly find 53 entities was because of contradicted matching. E.g.:
“Keep 3D model updated” was not supposed to be the same entity as “Keep 3D model
updated - 2015”, but “CAPEX - Installation, Prefab and Estimating TQs for” was the same
entity as “CAPEX - Installation, Prefab and Estimating TQs for 2014”. This was not possible
to create a matching rule for. This caused 2 of the input rows to be wrongly matched to
another entity instead of having their own entity created. Comparatively, the closest number
of entities created when trying out the predefined OYSTER algorithms was 66 by using the
LED(0.8)-algorithm. Even though it might’ve been possible to improve this number by only
using the default algorithms, there we no fuzzy algorithm that could take the year- or “cut-
off’-problem into consideration. The implementation is described in the chapter 3.4.

32

3 Implementations

3.1 Apache Lucene

The Apache Lucene implementation and testing was largely done by following a tutorial
online [22]. Using the sample code provided on the webpage, the
“FileindexApplication.java”-file was edited to test the engine. Using different gazetteer lists,
it was possible to search these indexed gazetteer lists by running:

Searcher searcher = new Searcher(INDEX_DIR);

List<IndexItem> result = searcher.findByContent("Managr~0.8",
DEFAULT_RESULT_SIZE);

print(result);

This would run a fuzzy search for “Managr” with the Damerau-Levenshtein distance
threshold of 0.8.

The printed result:

Query: Managr~0.8
PositionTitles.xlsx
0.040840294 = (MATCH) sum of:
0.040840294 = (MATCH) weight(content:manager”~0.8333333 in 2)
[DefaultSimilarity], result of:
0.040840294 = score(doc=2,freq=26.0), product of:
0.28785136 = queryWeight, product of:
0.8333333 = boost
0.71231794 = idf(docFreq=3, maxDocs=3)
0.48492622 = queryNorm
0.1418798 = fieldWeight in 2, product of:
5.0990195 = tf(freq=26.0), with freq of:
26.0 = termFreq=26.0
0.71231794 = idf(docFreq=3, maxDocs=3)
0.0390625 = fieldNorm(doc=2)

Lastnames.x1lsx
0.009665137 = (MATCH) sum of:
0.0014967038 = (MATCH) weight(content:manag”@.8 in 1) [DefaultSimilarity],
result of:
0.0014967038 = score(doc=1,freq=1.0), product of:
0.54523754 = queryWeight, product of:
0.8 = boost
1.4054651 = idf(docFreq=1, maxDocs=3)
0.48492622 = queryNorm
0.002745049 = fieldWeight in 1, product of:
1.0 = tf(fregq=1.0), with freq of:
1.9 = termFreq=1.0
1.4054651 = idf(docFreq=1, maxDocs=3)
0.001953125 = fieldNorm(doc=1)
0.0046771993 = (MATCH) weight(content:manage”0.8333333 in 1)
[DefaultSimilarity], result of:
0.0046771993 = score(doc=1,freq=9.0), product of:
0.56795573 = queryWeight, product of:

33

0.8333333 = boost
1.4054651 = idf(docFreq=1, maxDocs=3)
0.48492622 = queryNorm
0.008235147 = fieldWeight in 1, product of:
3.0 = tf(fregq=9.0), with freq of:
9.0 = termFreg=9.0
1.4054651 = idf(docFreq=1, maxDocs=3)
0.001953125 = fieldNorm(doc=1)
0.0034912345 = (MATCH) weight(content:manager~0.8333333 in 1)
[DefaultSimilarity], result of:
0.0034912345 = score(doc=1,freq=76.0), product of:
0.28785136 = queryWeight, product of:
0.8333333 = boost
0.71231794 = idf(docFreq=3, maxDocs=3)
0.48492622 = queryNorm
0.012128602 = fieldWeight in 1, product of:
8.717798 = tf(freq=76.0), with freq of:
76.0 = termFreq=76.0
0.71231794 = idf(docFreq=3, maxDocs=3)
0.001953125 = fieldNorm(doc=1)

Firstnames.xlsx
0.004126114 = (MATCH) sum of:
0.001132706 = (MATCH) weight(content:manager”~0.8333333 in @)
[DefaultSimilarity], result of:
0.001132706 = score(doc=0,freq=2.0), product of:
0.28785136 = queryWeight, product of:
0.8333333 = boost
0.71231794 = idf(docFreq=3, maxDocs=3)
0.48492622 = queryNorm
0.0039350376 = fieldWeight in @, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
0.71231794 = idf(docFreq=3, maxDocs=3)
0.00390625 = fieldNorm(doc=0)
0.0029934077 = (MATCH) weight(content:manar”@.8 in @) [DefaultSimilarity],
result of:
0.0029934077 = score(doc=0,freq=1.0), product of:
0.54523754 = queryWeight, product of:
0.8 = boost
1.4054651 = idf(docFreq=1, maxDocs=3)
0.48492622 = queryNorm
0.005490098 = fieldWeight in @, product of:
1.0 = tf(freq=1.0), with freq of:
1.0 = termFreq=1.0
1.4054651 = idf(docFreq=1, maxDocs=3)
0.00390625 = fieldNorm(doc=0)

Result Size: 3
PositionTitles.xlsx
Lastnames.x1lsx
Firstnames.xlsx

It was however not possible to access the matching weights directly, e.g.
“manager™0.8333333".

34

3.2 Stanford NER

The implementation is available in a zipped file from the Stanford NER website [8]. Direct
download location: http://nlp.stanford.edu/software/stanford-ner-2015-01-29.zip (150 MB).
The java-library and classifiers are inside this file, however it’s mostly the classifiers that
takes up space.

For the person name recognition, only the 3-class model is needed
(english.all.3class.distsim.crf.ser.gz). For the date and currency recognition, the 7-class model
is needed (english.all.7class.distsim.crf.ser.gz). The classifier takes some seconds to load into
the memory. The implementation was done in C# with the use of a ported java-library [23].

The following examples are inspired by the examples provided on the webpage of the java-
library port [23]. Using the implementation, there are different ways of classifying a string.
One way is to take the entire string and classify it, the other way is classifying the string word
by word. It was needed to extract the classification, and the word by word alternative
provided the easiest method of doing so as it iterated through the entities instead of cells.
What was discovered when using the word by word classification was that Stanford NER also
takes context into account. For example, when running the string “My name is Per Espeland”
through the both of the ways of classifying a string, the word by word method did not tag Per
as a person. Classifying the entire string however, correctly tagged Per as a person because it
had contextual knowledge compared to the word by word classification method.

Figure 21: Classifying word by word with Stanford NER

35

http://nlp.stanford.edu/software/stanford-ner-2015-01-29.zip

- Classifier

Figure 22: Classifying a string with Stanford NER

Where O (means Other) and PERSON are the classifications. The example of the result
mentioned in chapter 2.2.3 was created using the word by word method as the knowledge of
the difference between the methods was found at a later point in time.

For using the NER in java, the official java-demo-file can be found at
http://nlp.stanford.edu/software/ner-example/NERDemo.java.

3.3 ANNIE with GATE Developer

This chapter assumes knowledge of information presented in chapter 2.4.2. The file,
number.jape, was used as a starting point when creating new JAPE-rules in the file
currency.jape. For the file to be discovered in the ANNIE NE Transducer, the filename was
needed to be listed in the main.jape-file. A gazetteer list of the currency codes [16] was added
to ANNIE under the Major-type currency_unit.

36

http://nlp.stanford.edu/software/ner-example/NERDemo.java

) GATE Developer 8.0 build 4625 =13

85| @ e | e]+ | %]

@ satE Messages | : . ANNIE OrthoMate | ‘ BNMIE POS Tagae
,_:_| ﬁé applications #53 ANMIE Sentence .. | E AMMIE English T... | Q ANMIE @ ANNIE Gazetteer | O Document Reset .. | *IE ANMIE NE Transd..
‘ ANMIE airport Ist 'l nddl Filker Addl +Cals | 176 entries [CaseIns. | Regex
=] @ Language Resources List name Major ‘_ Minor Language | Annotz Yalue
ET =N [GCation ETe Cookp €D Y
- & Corpus for NER Classi cabinet_rninisters,|st person_full government Lookup aFn
= ﬁ‘ Processing Resources cdg.Ist jcdg Lookup ALL
charities. st lorganization charity Lookup D
%E AMMIE ME Transducer | |city lst location city Lookup NG
Aa ity _cap,lst location city Lookup P
) ANMIE CrthoMatcher city _lower Isk location ity Lookup RS
‘ ANMIE POS Tagger ity _uk.lsk location ity Lookup a0 |
compary st jorganization company Lookup awG |
- gl ANMIE Sentence Splitt | |company_ambig.lst lorganization compary Lookup a7 |
; company_cap.lsk iorganization Compar Linoiku Eam |
R | ~iE Gazeiteer party_cap ? pany P feam |
country. lsk location country Lookup BED
'& ANMIE English Takenis country_abbrey,lst location country_abbres Lookup BDT
- country_adj.lst country _adj (COUNTRYAD] Lackup™ ez
Q Document Reset PR, country_cap.lst lacation country Laokup D |
country_code.lst country_code Lookuy Bl |
Dakastores ¥ " e e BIF_|
country_lower . |st location country Lookup EMD
CUFFEnCY _Unit END
currency_prefix.lsk currency _unit pre_amount Lookup EOR
currency_unik.lst EUFrEncy _unit post_armount Lookup BOW
date_key.lst date_key Lookup BRL
date_other.lst date_key ather Lookup 55D
date_unit.lst dake_unit Lookup BTH
'I LI day. Ist date day Lookup B
ax day _cap.lst date day Lookup EYR
I LI I department Ist iorganization government Lookup 57D
Facility, st Facility building Lookup ciD
Facility_key Ist Facility ke Lookup COF
Facility_kew_ext.Ist Facility _kev_ext Lookup CHE
Festival lst date Festival Lookup CHF
Foreign_ministers.lst person_full government Lookup CH
govern_key.lst igovern_key Lookup CLF
government, sk oFganizatian qovernment Lookup CLp
government_baselst |government_base Lookup ChY
greeting. Ist greeting LOOk‘leI cop
Resoucerestyros [|- L e =
'I _,I Gazetteer Editor | Iritialisation Paramatarsl
Vigws builk!

Figure 23: Currency code list added to ANNIE Gazetteer

An example of a rule to match a token with one of the gazetteer lists in the Major-type
curreny_unit:

Rule: Currencyldnit

i
[
({Lookup.majorType == currency_unith)

inumber --=
snumber Money = {kind = "number”, rule = "CurrencyUnit";
Figure 24: Currency unit gazetteer lookup

This successfully discovered all tokens that matched any entries in the gazetteer lists in the
Major-type currency_unit. However, when the attempt was made to add a prefix to the lookup
so that it would match MNOK or MMNOK instead of just NOK, it did not have the expected
result. The reason for this was the close dependency of tokens in the programming language.
Only individual tokens could be compared to gazetteer lists, and as MNOK or MMNOK were
individual tokens, they would not get matched as there were no entries in the gazetteer lists
equal to that string. The rule that failed to successfully match a currency notation:

37

Rule: MillionEilliorZurrency Jnik
i

i
{AMOUNT_MUMBER)

(MILLION_BILLION)

({53paceToken})?

({Lookup.majorType == currency_unik-)
i

inumber -
snumber . Money = fkind = "number”, rule = "MillionBilionZurrencynit"}-

Figure 25: MillionBillionCurrencyUnit rule

Where AMOUNT_NUMBER (default macro from number.jape) was the number,
MILLION_BILLION (default macro from number.jape with a few more additions) was the
amount multiplicator (e.g. M, MM, K, etc.), the optional SpaceToken represents a space and
the lookup is the gazetteer lists with the Major-type currency_unit. The rule would
successfully match “2800 M NOK” or “2800M NOK”, but not “2800 MNOK” or
“2800MNOK™. The reason being the problem mentioned earlier in this chapter and chapter
2.4.2. An alternative solution to this could be to add all of the currency codes with all of the
different amount multiplicators. This list would however get very large (the count of currency
codes times the count of amount multiplicators). The reason for trying out ANNIE was
because it looked like it was possible to create a rule using a combination of some kind of
regex and gazetteer list. The difference was that a regex works on a simple word (e.g.
(M)?NOK would cover both MNOK and NOK), but the Jape-language had limitations when
trying to combine strings before comparing it to a gazetteer list.

3.4 OYSTER

The OYSTER demonstration runs, documentation and source code was downloaded from
http://sourceforge.net/projects/oysterer/files/, and then navigating to
“OYSTER_3.3/Download All/ OYSTER_v3.3_Download_All..zip".

The source of OYSTER, including all of the files created/edited in the implementation comes
with the thesis submission.

3.4.1 Basic knowledge

The OYSTER implementation comes with different run-modes [24]:

Run-Mode Short description

Merge-Purge Entity references are systematically compared to each
other and separated into clusters of equivalent records.

Identity Capture System builds a set of identities from the references it
processes rather than starting with a known set of
identities.

Reference to Reference Assertion | A process of forcing references to match even when no
defined match rules would be able to bring them
together. The forced matches are based off of previous
user knowledge of the references.

Identity Resolution Only matches the references to the input identities, not
the references itself. The input identities are specified
in an .idty-file.

38

http://sourceforge.net/projects/oysterer/files/

Identity Update

Both takes input identities as input and updates these
identities with any new information presented as an
updated .idty-file.

Reference to Structure Assertion

Forces references to be matched with an existing
identity in the .idty-file by using the OysterID

Structure to Structure Assertion

Used to fix false negative matches produced in
previous runs by force re-match references.

Structure Split Assertion

Used to fix false positive matches and does the
opposite of what the "Structure to Structure Assertion™
does. It forces an identity structure in an existing .idty-
file to divide into two or more identity structures.

These run-modes were presented as demonstration runs (Run001-008). The run-mode,
Identity Capture, was tested using a spreadsheet of WBS project titles converted to a text file
with a tabular delimiter (WBS (unique, without WBSID).txt):

1 TdentityID WES 1

n
o I R

I [} ; [} [} I ;

ap n I [FUR |

[el e e T e ¥ - I & -]
o kD

Vega H2S 5Gavandsy
- Vega H25 3Gavangsz

I
]
R
1 m

e O VI 4 Y R I T E e RV v I &+ B

L

P
f
[RS T % T 6 S T T S R R

I
1]
(=R Y e B & -]

f
L L
[FL I]

[FE T ¥ B - R PU TR L T T 8
[s L R N T T+]
[£}

[

n
L
[':%

Inprove Lifting arrangement for Seawater Lift Pumps

- Improve Lifting arrangement for Seawater Lift Pumps
Improvement of lifeboat securing arrangement

- Improvement of lifeboat securing arrangement
Modification of Anti-surge instrumentation

— Modification of Anti-surge instrumentation

8] Eeep 3D model updated

Hiviglass ma yends utover

- Nivdglass mé ysnde uhover

- Niwvéglass mé wende ukover Discipline : A - Management / Admin HA0113G011
Hypoclorite injection to potable water

- Hypoglorite injection to potable water
Modification to Gjga MEG package

- Modification to Gjga MEG package

GIJ@R specification development

High temperature in potable water Cooling systems

- High temperature in potable water Cooling 3y

— High temperature in potable water Cooling systems
MIMCR MCD -Start Air Amplifier

- MINCR MCD -5tart Lir Amplifier

Change out 8 e.a spools on scrubber pumps.- Minor

- Change out 8 e.a spools on scrubber pumps.- Minor Mod
Modifications to doors in the Galley

— Modifications to doors in the Galley

Replace helideck popupn piping - Minor Mod

- Replace helideck ponup piping - Minor Mod

Remowval of oil fumes from Compressor

- Removal of oil fumes from Compressor

Modification to Lean MEG Filters 67CEQOS4A/E and

- Modification to Lean MEG Filters &TCBOS4L/E and &7CEOCZA/E
Modification of kitchen work in galley

- Modification of kitchen work in galley

Figure 26: A snapshot of the Identity Capture test data

A run script that references the “Source Descriptor”’- and “Attribute”-files (mentioned later
in this chapter) was created. It contains the locations of the output files and the log-file, as

39

well as the run-mode. It is also possible to specify the Entity Resolution (ER) engine used to
process the references. The default is the R-Swoosh algorithm:

1 <?xml version="1.0" encoding="UTF-8"72>

2

El<OysterRunScript>

<Settings Run3criptilame="IdentityCaptureRunScript" Explanation="0n" Debug="0n" ChangeReportDetail="Yes" Trace="On" 33="0Off" />
<LogFile Num="5" 3ize="100000000">C:\Oyster\Log\WBS\IdentityCapture %g.log</LogFile>
<Runiode>IdentityCapture</RunMods>

10 <EREngine Type="RSwooshStandard" />

12 <!-- Attributes read from file only -—->

13 <httributePath>C:\Oyster\WBS\IdentityCapture\Scripts\IdentityCaptureAttributes.xml</AttributePath>

15 <!-- Merge-purge does not start with any managed identities --3>

16 <IdentityInput Type="None"/>

18 <!-— Merge-purge does not produce any managed identities —->

18 <IdentityCutput Type="TextFile">C:\Oyster\WBS\IdentityCapture\Ountput\IdentityCapturefutput.jdty</IdentityCutput>

20

21 <!-- Merge-purge only output is the Link Index -->

22 <LinkCutput Type="TextFile">C:\Oyster\WBS\IdentityCapture\Ontput\IdentityCapturelndex.link</LinkOutput>

53

2 <!-- Sources to Run -->

25 = <ReferenceSources>

26 <Source>C:\Oyster\WBS\IdentityCapture\Scripts\IdentityCaptureSourceDescriptor.xml</Source>

2 r </ReferenceSources>

2 L</OysterRunScript>

A source descriptor .xml-file referencing the input references and the items (columns in this
case) in the input was created, called " IdentityCaptureSourceDescriptor.xml”:

1 <?xml version="1.0" encoding="UTF-8"72>
2
<0OysterSourceDescriptor Name="WBSOSD":>
<!-- Delimited —->
<Source Type="FileDelim" Char="\t" Qual="" Labels="¥">C:\Oyster\WBS\IdentityCapture\Input\WBS (unique, without WBSID).txt</Source>
<Referenceltems>
<!-- Items in Source -->
8 <Item Name="IdentityID" Attribute="@ERefID" Fos="0" />
5 <Item Name="WBS 1" Attribute="WBS" Pos="1" />
10 </Referenceltems>
</0OysterSourceDescriptory>

Figure 27: Identity Capture OYSTER Source Descriptor

The absolute path for the input-file and tabular delimiter is specified. The column-names are
linked to the attributes in the “Attributes”-file mentioned later in this chapter.

An example of the “Attributes”-file when fuzzy matching with the use of Levenshtein Edit
Distance:

40

1 <%yl versiorn="1.0" encoding="UTF-8"%>

z

3 [H<=oysterAttributes Svysten="Input20120a" >

4 <ittribute Item="WBS"'" Algo= "none" /=

3

& T R

7T B <IdentityRules>

2 E <Rule Tdent="1"3>

2 “<Term ITtem="WBS" MatchResult="Exact"/>
10 = </Rule=
11 H <RBule Ident="2":=
1z <Term Item="WBS" MatchResult="LED{(0.8)" /=
13 - </Rules=
14 - </IdentityRules>
15 </ OysterAttributess>

Figure 28: Identity Capture OYSTER attributes using LED

Using this file, OYSTER will match an entity when it is exactly the same and when the
normalized Levenshtein Edit Distance threshold is at least 0.8 (the threshold has to be
between 0 and 1, where 1 is an exact match).

3.4.2 Custom matching algorithms

As mentioned in the reference guide: “OYSTERs default matching algorithm supports the
above matching codes but this can be extended by the user by extending the base class
OysterComparator.java as a new class with a name starting with “OysterCompare” and
implementing the method String: getMatchCode(String, String).” [21].

To be able to align the entity matching with the rules mentioned in chapter 2.4, two custom
matching algorithms were implemented. Using the source code for OYSTER, the
“QysterCompareDefault.java” was copied and renamed “OysterCompareCustom.java”,
where this file was edited to include the new matching algorithms.

3.4.2.1 CUSTOMLED (ledThreshold, charType, useRestAlphaExact)

The parameters:

Parameter Description

ledThreshold The Levenshtein Edit Distance threshold. Must be between 0 and 1,
where 1 is an exact match. The same as for the default Levenshtein
Edit Distance algorithm.

charType Instead of using the Levenshtein Edit Distance on the entire string,
the algorithm uses it on parts of the string instead. Which part is
defined by the “charType”-attribute and can either be “LETTER” or
“DIGIT”. Example: If charType = “LETTER” and the testing string is
“Management and Admin 2015”, the algorithm would do a
Levenshtein Edit Distance test on “ManagementandAdmin” vs the
letters of the entity being tested against and not on the digits.

41

useRestAlphaExact | A boolean determining whether to do an exact match on the
remaining alphanumeric-characters (digits or letters) that did not get
fuzzy matched. E.g.: The remaining characters of “Management and
Admin 2015” where charType = “LETTER” would be “2015” and
where charType = “DIGIT” would be “ManagementandAdmin”.

Using this algorithm it was possible to correctly match project titles that had spelling errors,
but still exclude project titles with a different year.

3.4.2.2 LEFTCONTAINS (useOnlyAlpha, minLength)

The algorithm checks if the comparing strings are contained in the start of one of them. E.g.:
“TEST” would result in a match when compared to “TESTING”, but “TEST” would not result
in a match when compared to “PTESTING”.

The parameters:

Parameter Description

useOnlyAlpha A boolean determining whether to only use
the alphanumeric characters of the
comparing strings. This will exclude most
symbols.

minLength The minimum length required for the
comparing strings. This is to be able to
prevent strings like “M” causing all strings
that starts with “M” to be matched as the
same entity.

Using this algorithm it was possible to correctly match project titles that had “cut-offs”.

The “Attribute”-file using the new custom algorithms:

1 <%?xml wersion="1.0" encoding="UTF-8"?%>

=

3 [H=oysterittributes Zysten="WBSOL" >

4 <Attribute Iten="WBS" Algo= "none" />

5

=) <l-- -==

7 = <IdentityRules>

=] E <Rule Ident="1">

=) “<Term Item="WBS" MatchResult="Exact"/>

10 </Rule>

11 H <RBule Ident="2":>

1z <Term ITtem="WBS" MatchResult="CUSTOMLED(0.S,LETTER,TRUE}" />
13 I </Rule>

14 H <Rule TIdent="3">

15 <Term Item="WBS" MatchResult="LEFTCOHTAIHS (TRUE, 5/)"/ >
1a </Rule>

17 E </IdentityRules>

15 “</Oysterdttributess

42

References

[1] Wikipedia, “Approximate string matching - Wikipedia, the free encyclopedia,” 15 April
2015. [Online]. Available: https://en.wikipedia.org/wiki/Approximate_string_matching.
[Accessed 15 June 2015].

[2] Wikipedia, “Regular expression - Wikipedia, the free encyclopedia,” Wikipedia, the free
encyclopedia, 05 June 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Regular_expression. [Accessed 11 June 2015].

[3] G. Skinner and gskinner team, “RegExr: Learn, Build, & Test RegEx,” [Online].
Available: http://www.regexr.com/.

[4] S. Toarca, “Debuggex: Online visual regex tester. JavaScript, Python, and PCRE.,”
Debuggex.com, [Online]. Available: https://www.debuggex.com/.

[5] Wikipedia, "Levenshtein distance - Wikipedia, the free encyclopedia,” 21 April 2015.
[Online]. Available: http://en.wikipedia.org/wiki/Levenshtein_distance. [Accessed 10
June 2015].

[6] Wikipedia, “Lucene - Wikipedia, the free encyclopedia,” Wikipedia, the free
encyclopedia, 09 June 2015. [Online]. Available: http://en.wikipedia.org/wiki/Lucene.
[Accessed 10 June 2015].

[7] Apache Software Foundation, “FuzzyQuery (Lucene 4.3.0 API),” [Online]. Available:
https://lucene.apache.org/core/4_3_0/core/org/apache/lucene/search/FuzzyQuery.html.

[8] The Stanford Natural Language Processing Group, “The Stanford NLP (Natural
Language Processing) Group,” [Online]. Available:
http://nlp.stanford.edu/software/CRF-NER.shtml. [Accessed 10 June 2015].

[9] Glifty, “Online Diagram Software and Flow Chart Software - Gliffy,” Gliffy, 2015.
[Online]. Available: https://www.gliffy.com.

[10] Wikipedia, “General Architecture for Text Engineering - Wikipedia, the free
encyclopedia,” 12 June 2015. [Online]. Available:
https://en.wikipedia.org/wiki/General _Architecture_for_Text_Engineering. [Accessed
14 June 2015].

[11] GATE, “GATE.ac.uk - sale/tao/splitch6.html,” [Online]. Available:
https://gate.ac.uk/sale/tao/splitch6.html#chap:annie.

[12] D. Thakker, T. Osman and P. Lakin, “GATE JAPE Grammar Tutorial,” 27 February
2009. [Online]. Available: https://gate.ac.uk/sale/thakker-jape-
tutorial/ GATE%20JAPE%20manual.pdf.

[13] H. Cunningham, D. Maynard and K. Bontcheva, Text Processing with GATE (Version
6), GATE, 2011.

[14] H. Cunningham, V. Tablan, A. Roberts and K. Bontcheva, “PLOS Computational
Biology: Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open
Source Text Analytics,” 2013. [Online]. Available: http://tinyurl.com/gate-life-sci/.
[Accessed 2015].

[15] L. Tupone, “What is "The Best™ U.S. Currency RegEx? - Stack Overflow,” 15
December 2014. [Online]. Available: http://stackoverflow.com/questions/354044/what-
is-the-best-u-s-currency-regex#answer-27491430. [Accessed 15 June 2015].

43

[16] ISO 4217 maintenance agency (MA), SIX Interbank Clearing, “Current currency &
funds code list - ISO Currency,” 2015. [Online]. Available: http://www.currency-
iso.org/en/home/tables/table-al.html. [Accessed April 2015].

[17] Wikipedia, “Currency symbol - Wikipedia, the free encyclopedia,” 14 June 2015.
[Online]. Available: https://en.wikipedia.org/wiki/Currency_symbol. [Accessed 15 June
2015].

[18] J. R. Talburt, in Entity Resolution and Information Quality, Morgan Kaufmann; 1
edition (December 22, 2010), 2010, pp. 1, 63-99, 157-172.

[19] F. Kobayashi and J. Talburt, Introduction to Entity Resolution with OYSTER v3.3,
University of Arkansas at Little Rock, 2012.

[20] Wikipedia, “Record linkage - Wikipedia, the free encyclopedia,” 4 June 2015. [Online].
Available: https://en.wikipedia.org/wiki/Record_linkage. [Accessed 15 June 2015].

[21] F. Kobayashi and J. Talburt, in OYSTER v3.3 Reference Guide, University of Arkansas
at Little Rock, 2013, pp. 22-26.

[22] F. Sabar, “Fazlan's Blog Spot: Apache Lucene Tutorial: Indexing Microsoft
Documents,” 7 June 2012. [Online]. Available:
http://fazlansabar.blogspot.no/2012/06/apache-lucene-tutorial-indexing.html.

[23] The Stanford Natural Language Processing Group, “Stanford Named Entity Recognizer
(NER) for .NET,” [Online]. Available: http://sergey-
tihon.github.io/Stanford. NLP.NET/StanfordNER.html.

[24] F. Kobayashi, OYSTER v3.3 Demonstration Runs User Guide, University of Arkansas
at Little Rock, 2013.

A Zip-file content

The zip file contains the implementations done including some of the gazetteer lists. As I did
not have time to format the C# implementations, they do not look very pretty.

44

