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Abstract

In this Master Thesis, an overview of the performance and applicability of IHFoam numerical tool to
offshore engineering related problems is presented.

IHFoam is a recent numerical tool for wave modeling using a Computational Fluid Dynamics
(CFD) approach, a set of boundary conditions for modelling of numerical wave tanks, compiled
together within a well known CFD project, OpenFOAM®. This is being constantly developed by
scientific research communities worldwide and is also stepping into the industry as a reliable and
accurate tool providing solutions for multitude of engineering problems were fluids are present.

Different sets of simulations, picked from the literature or experimental tests, aim the validation
of this tool: i) simple two dimensional simulations where the waveform is confronted against theo-
retical solutions, are tailored for validation of the model, and ii) three dimensional simulations are
included for completeness in order to investigate the loads exerted to a vertical cylinder in the mid-
dle of a numerical wave flume.



Preface

The aim of this Thesis report is a follow up of the research project initiated as a requirement for obtain-
ing the MSc Offshore Technology, specialization of Marine and Subsea Technology, at the University
of Stavanger, Norway.

This work will also serve as a kick off investigation in the UiS to start experiencing and assessing
one of the main CFD codes modelling available as a research tool for wave structure interaction from
a a priori general and unrestricted perspective, that is, OpenFOAM® environment compiled together
with IHFoam routines.

This project will focus on assessing the performance of this specific CFD tool (IHFoam) for pre-
dicting wave parameters and forces. For this purpose, an assessment is made on the wave form η,
the velocities and the forces on a simple submerged vertical cylinder, by simulating several setups
covering a wide range of conditions.
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Chapter 1

Introduction

In offshore conditions, environmental loads, and particularly those of waves, are usually a major
concern driving the design process of marine structures. Waves, and wave loads in particular, are
usually dealt with by means of analytical solutions obtained for very simple cases with limiting as-
sumptions, the rest are usually modelled by reduced scale tests in experimental facilities tailored to
model specific conditions. The former are usually too limited to model most geometries and load
conditions, dynamic systems or wave structure interaction. The scale tests provide valuable input
for the design process, but they are also limited in simulating the design conditions, geometry and
loading, but also because some forces are not scalable –i.e. viscosity or surface tension – and the
control of the boundary conditions is quite limited.

Moreover those tests require always a very complex setup, with costly facilities, and only limited
geometries and loading conditions can be included, for economic reasons. For instance, ultra deep
water offshore structures in the range of 1500- 2000 m depth, would require a basin depth of 30-50 m
depth keeping usual scale factors of 1:50 or 1:70. This is something unthinkable nowadays, and so
other techniques must be developed. Numerical simulation

Another set of tools is emerging as a promising complement to the aforementioned, the numerical
simulations, these will –and are already – developing an important part in solving these issues. They
are based on solving the foundational differential equations of the problem and its boundary condi-
tions by means of numerical (discrete) methods. This requires the appropriate discretization schemes
considering the variables that are relevant to the problem. The potential of this tool is tremendous
since, in theory, all kinds of geometries, loadings, couplings and system behaviours can be modelled
a priori.

The development of numerical simulations has to be thoroughly validated with experimental
data, this has to be done starting from elementary wave structure interactions, like a partially sub-
merged vertical cylinder subject to wave loading, and such is the aim of this work.
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Chapter 2

State of the Art

In this chapter a brief review of the theoretical basis of the underlying concepts used in this docu-
ment is presented. It is not intended to be a thorough insight, so it is focused on the theories, models,
techniques and expressions required for getting to the results presented in chapter 5.

2.1 Classical Wave Theory

Gravity waves are a periodic perturbation originated at the interface between two different phases by
a displacement of fluid out of the position of static equilibrium. Once the fluid is displaced, the free
surface will try to restore its original position, oscillating between this equilibrium state (still water
level) [Lig, 2001].

Historically wave models have been dealt with by means of different theories that imply certain
specific assumptions. The very beginning of wave theory is the linear theory developed by Airy
(1895) – also known as Stokes I theory – which basically considers a simple sinusoidal wave travel-
ling in space and varying with time. By doing this, It also assumes potential theory for the calculation
of the velocity field – i.e. no friction losses –and linearises the free surface boundary conditions and
the differential equation itself (see ref. [Fenton, 1990] for details). This first approximation is valid
for infinite depths, that is, when the wave is unaffected by the presence of the bottom –d

L
> 0.5–and

for cases when the steepness ε = H
L

, is sufficiently small and the linearisation is acceptable – i.e. very
smooth waveforms. Those are the reasons why this first theory is called the linear theory or the small
amplitude theory. From here, other theories will take into account some of the non linearities by
including a series approximation of the free surface in terms of the steepness η = f (ε), in order to
consider the non linearities due to the surface kinematic and dynamic boundary conditions, allowing
to model steeper waves. Other sources of non linearities like breaking waves or velocity skewness
and asymmetries, are not accounted for in most theories and none of them considers friction losses.
The term nonlinear is a complex concept that includes a whole spectrum of behaviours that differ
from the linear theory, but none of the wave theories captures those fully.

2.1.1 Assumptions and founding equations

There are some common assumptions included the linear wave theory that strongly influences its ac-
curacy and applicability. The main assumption of incompressibility is very convenient when dealing
with water, and no drawbacks can be pointed out here. This assumption will lead to a very compact
equation for the velocity:

∇ ·~U = 0 (2.1)
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Another assumption is the existence of a potential function φ– associated to a conservative scalar
field 1such as the gravitational field – that governs the velocity relies on the irrotationality:

~ω = ∇x~U =~0 (2.2)

Furthermore, the potential theory provides an elegant relation to obtain the velocities from the
potential function φ:

~U =
∂φ

∂x
·~i+ ∂φ

∂y
·~j+ ∂φ

∂z
·~k (2.3)

Both equations 2.1 and 2.3 combined together lead to the Laplace equation, known to be a linear
differential operator, which is very convenient:

∇2φ = 0 (2.4)

The main drawbacks of embracing the potential theory are related to i) neglecting the friction
losses, which can be relevant for long domains and shallow waters and/or for breaking conditions,
and ii) the implied irrotationality, which keeps the model from modelling rotating flows, like eddies
or swirls. This, though, is quite assumable condition in waves if they are non breaking, that is why
all relevant theoretical studies in wave hydrodynamics are formulated by means of irrotational flow.
One of the consequences of irrotationality is that the waves are symmetrical about the wave crest. In
steep waves, though, where the wave is close to breaking, this assumption is on its limit and the the-
ory needs some adjustments to account for the inaccuracies arisen from some rotationality according
to Mas [2007].

The boundary conditions for the potential theory can be classified as linear and nonlinear:

1. Linear boundary conditions are those having just linear differential operators in their defini-
tions, for instance, a Dirichlet boundary condition for the velocity, such as normal velocity to a
wall vn = 0, this, in terms of potential variable, leads to:

∂φ

∂n
= 0 (2.5)

2. Non linear boundary conditions, these are defined in terms of non linear differential operators
or coupled variables– i.e. a definition of the boundary condition that is referring to the solution
η(x, t).

This latter type is the case of the so called kinematic boundary condition, this condition states that
the flow cannot trespass certain boundaries or walls, which in a flat bottom leads to eq. 2.5, but when
dealing with the moving and irregular free surface, and the material derivative concept is used – DF

Dt

along a moving particle – the expression obtained is:

∂

∂t
(z−ξ(x,y, t))+∇φ · (z−ξ(x,y, t)) = 0 (2.6)

1A conservative field is a escalar field where the work needed to displace a particle is independent on the path followed,
for instance, magnetic, electric or gravitational fields.
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Yielding to:

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0,z = η(x,y, t) (2.7)

Which is highly non linear, since it refers to the solution η(x,y, t).

Another necessary non linear boundary condition states that the pressure at the free surface is the
same as the atmospheric, this is the so called the dynamic boundary condition. This condition can be
obtained manipulating the Bernoulli Energy Equation for irrotational and potential flows.

g ·η+
∂φ

∂t
+

1

2
·
(

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

+

(

∂φ

∂z

)2
)

z=η(x,y,t)

= 0 (2.8)

The solution has the form:

η =−1

g

(

∂φ

∂t
+

1

2
∇φ ·∇φ

)

,z = η(x,y, t) (2.9)

Therefore, both the dynamic and kinematic boundary condition are sources of non linearities in
the problem. Note the mixed terms in both expressions where the potential φ is together with the free
surface elevation η, being both coupled unknowns.

Nevertheless, those expressions can be fully linearised to get a compact and simple solution. An-
other alternative is that they can be developed in Taylor series around the still water elevation (z=0)
by means of a small parameter – for instance, the wave steepness ε = H

L
. This expansion series can be

truncated to obtain an analytical approximation for steeper waves. That is the procedure for obtain-
ing the higher order Stokes solutions.

Another important boundary condition is that of the inlet and outlet boundaries in a wave tank,
these are not treated in classical wave theory, since they come from the numerical integration prob-
lem of a closed domain from a CFD point of view. On the one hand, at the inlet, the correct conditions
for water elevations and velocities should be specified with time, on the other hand, the outlet –and
inlet –boundaries should act as transparent walls, this can turn into a difficult problem and there is not
a single way of treating this issue. We will discuss further when we start discussing the properties of
the numerical model.

In general, those conditions can have the form [Fenton, 1990]:

∂φ

∂x
= G(x,y,z, t) (2.10)

Where G(x,y,z, t) is an known velocity field at the outlet.
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2.1.2 Linear Theory

The linear theory implies a full linearisation of the dynamic and kinematic boundary conditions, to-
gether with eq.2.4:

∇2φ = 0; in Ω (2.11)

∂η

∂t
=

∂φ

∂z
; at z = 0 (2.12)

∂φ

∂t
=−gη; at z = 0 (2.13)

∂φ

∂z
= 0; at z =−d (2.14)

The Airy wave has the following form:

η =
H

2
cos(k · x−ω · t +θ) (2.15)

Where H is the wave height, k = 2π
L

the wave number, ω the angular frequency, x is the spatial
variable (in one dimension), t is the time variable and θ is some initial phase (usually set to 0, only
relevant when there is interaction with other waves). This wave is fully linear and symmetric from
the still water level.

From eqs eqs. (2.11) to (2.14) the exact expression can be derived for the potential:

φ =
H ·g
2 ·ω

cosh(k(d + z))

cosh(kd)
(k · x−ω · t) (2.16)

From this expression, the other relevant parameters, such as velocities and accelerations, can be
derived through eq.2.3.

2.1.3 Non Linear theories

Stokes Waves

A generalisation of the linear theory is made in the higher order theories. As it has been already
mentioned, there are different theories depending on the approach to solve eq. 2.4 and the kinetic
and dynamic boundary conditions.

A step forward from the Airy wave is that of the Stokes higher order waves. Higher order Stokes
theory is basically a generalization of the linear theory by including n harmonics when defining the
free surface η:

η =
n

∑
i=1

ηi =
n

∑
i=1

Ai · εn−1cos(i(k · x−ω · t))+Θ(εn) (2.17)

n here is the order of the Stokes wave and Θ(εn) is a truncation error of order εn.

Each of the components of the Stokes wave ηi has double the frequency from the one with lower
order, and their amplitudes Ai can be obtained by applying the kinematic and dynamic boundary
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conditions expressing the non linear contributions by the Taylor expansion series of order n – the so
called Stokes expansion. For instance, second order theory can be obtained by expressing the dynamic
boundary conditions in a Taylor series of order 2:

∂2φ

∂t2
+g

∂φ

∂z
+2∇φ ·∇∂φ

∂t
− 1

g

∂φ

∂t

∂

∂z

(

∂2φ

∂t2
+g

∂φ

∂z

)

= 0+Θ(φ3) (2.18)

Similarly, with the kinematic boundary condition 2.9:

ξ =
1

g

(

∂φ

∂t
+

1

2
∇φ ·∇− 1

g

∂φ

∂t

∂2φ

∂z∂t

)

z=0

+Θ(φ3) (2.19)

This will give us the following solution with 2 harmonics, for a Stokes wave of second order.

η = Acos(kx−ωt)+
1

2
k2A2cos(2(kx−ωt)) (2.20)

The coefficients of the Stokes waves have been obtained up to the fifth order wave, with very long
expressions that are out of the scope of this section.

Since the order of magnitude of the individual terms of the Stokes expansion are assumed to be
in the order of Θ(d

L
) = 1, a problem occurs if d

L
<< 1, where secondary crests begin to appear in the

wave through. In practice it is required that d
L
> 0.10− 0.15 to avoid this problem for a Stokes 5

th

wave [Fenton, 1990].

Stokes waves break with the horizontal symmetry of the wave form in respect to the still water
level, creating higher crests and shallower throughs as can be observed in fig. 2.1. This produces
steeper crests and more impact-like forces than linear waves, as will be seen in chapter 5.

η

x,t

H
H

Figure 2.1: Cualitative representation of a linear wave form (dashed) vs Stokes wave (dotted)

Stokes theory is more suitable for waves that are not very long relative to the water depth (ref
[Fenton, 1990]) and when used out of their suitable limits, will fail to converge or converge very
slowly. To overcome this, Dean (1965) proposes a solution to the given eq.2.4 by producing series
expansions based on a small parameter and obtaining the solution numerically using a spectral ap-
proach. This path leads to the so called stream function theory developed by [Fenton and Rienecker,
1982]. In this case it is more convenient to use the stream function as the main variable to solve, from
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which all the others (velocities, pressure) will be obtained.

Stream Function Theory

The classic approach underlying the different wave theories has been that of Stokes’, that is, solving
the differential equation of the potential 2.4 and the suitable boundary conditions approximated to a
given order by means of the Taylor expansion series around z = 0, by this we can obtain an analytical
expression for the amplitudes of the different harmonics ηi. An alternative to this is obtaining the
harmonic coefficients by means of a Fourier transform directly, solving the equations for the reference
variables numerically –by Newton’s method, for instance. That is the approach underlying behind
the Stream Function theory derived by Fenton and Rienecker [1982].

This theory relies on the existence of a stream function ψ that fulfils:

− ∂ψ

∂xr

= v (2.21)

∂ψ

∂z
= u (2.22)

(2.23)

Where xr is the spatial horizontal coordinate in the plane of the wave motion, moving with the
wave velocity c at the top of the wave crest. z is the vertical coordinate.

The condition for its existence is incompressibility (eq. 2.1), combining this with irrotationality,
Laplace equation for incompressible fluids turns into:

− ∂2ψ

∂x2
r

+
∂2ψ

∂z2
= 0 (2.24)

From here, Dean (1965) used this definition to create a new approach to solve eq. 2.24 with respect
of the coordinate system (xr,z).

The general form for the stream function considered in this theory is:

ψ(x,z) = B0z+
N

∑
j=1

B j

sinh jkz

cosh jkh
cosh jkx (2.25)

The coefficients are obtained by a Fourier transform, solving the equation 2.4 in the frequency
domain.

This theory is a convenient approach for a wide range of depths, since its assumptions don’t im-
pose limitations to the parameters d/L or H/L for convergence, in contrast with Stokes and Cnoidal
theories. Its wave form will adapt fairly well to any particular condition (in the range of wave param-
eters where waves are stable) [Fenton, 1990] and it can be particularly useful for regular steep waves
in shallow water.

Other non linear theories, such as Bousinesq’s solitary wave or Cnoidal waves, are based on the
same principle as the stream function theory, that is, posing the problem in terms of the stream func-
tion and then solving it by approximation of the variables by expansion series by means of a small
parameter (just like Stokes’ approach), in this case, the expansion parameter is H/d. Those are limited
to long and smooth waves.
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2.1.4 Wave stability

Each wave theories are numerically stable for a certain range of parameters, except for the stream
function theory, which is a general approach to the problem. As stated previously, linear waves are
limited both by the wave steepness and the water depth, applicability of Stokes waves is limited
mainly by the relative wave depth d/L.

The applicability of the different wave theories are summarized in figure 2.2. The suitability for
the different theories is shown, depending on the depth – adimensionalized by the period h

gT 2 –and

the steepness of the waveform – taken here into account with the dimensionless parameter H
gT 2 .

Figure 2.2: Selection of suitable wave theories, taken from Méhauté [1976]. H is the wave height, h is the
water depth, λ is the wave length and T is the wave period

A slightly different issue than the wave theory numerical stability is the physical wave stability.
Wave forms in a real environment will be limited by a number of factors, namely:

• Water depth: Shallow water will make the wave feel the bottom, the energy of the wave is con-
strained in a more limited water column, increasing the wave height, but also reducing wave
length, and thus increasing wave steepness. More over, throughs tend to be longer than crest
–developing a pronounced asymmetry in the horizontal axis – so the local wave steepness at the
crest area grows dramatically. This, taken to the limit, induces the collapse of the wave form,
i.e. breaking of the wave.

• Sometimes non linear effects, such as wind blowing on the water surface or opposing currents,
can create temporarily high steepness wave forms, which might be unstable and breaking, even
in very deep water.
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• Other situations, such as the presence of an obstacle or structure, reflected waves or non linear
superposition of waves, can add steepness to η and induce breaking.

All those factors will limit the possible combinations of H, L and d that one may encounter in real
gravity waves. [Fenton, 1990] and Williams [1981] derived a theoretical expression from the Stokes
wave theory for the maximum wave height that is stable given the depth and the wave length (see
eq. 2.26).

Hmax

d
=

0.141063
L
d
+0.0095721

(

L
d

)2
+0.0077829

(

L
d

)3

1+0.0788340
L
d
+0.0317567

(

L
d

)2
+0.0093407

(

L
d

)3
(2.26)

2.1.5 Wave Loads

An analytical expression exists for wave loading on vertical cylinders. The hydrodynamic forces on
a piled structure is usually calculated by means of the Morison equation, eq. 2.27

f (z, t) = ρπCM

D2

4

du

dt
+ρCDu2D (2.27)

Where f (z, t) is the total force per unit of length of the pile,z is the vertical coordinate, ρ is the den-
sity of the fluid, CM is the mass coefficient (usually taken egual to 2 for cylinders), D is the diameter
of the submerged cylinder (can be z dependent), u is the horizontal velocity normal to the cylinder,
and CD is the drag coefficient, dependent on the Reynolds number Re. the first term responds to the
inertia forces, the second term represents the contribution of drag forces.

The relevance of the drag and inertia terms is usually assessed by means of the Keulegan-Carpenter
number, named after Garbis H. Keulegan (1890–1989) and Lloyd H. Carpenter:

NKC =
u0T

D
(2.28)

Where u0 is the amplitude of the wave velocity –the particle velocity at the wave crest– T is the
wave period and D is the diameter of the cylinder.

The number is a relation between the convective acceleration ((u ·∇)u ∼ V 2

L
) and the local acceler-

ation (∂u
∂t

∼ V
T

) as derived from the dimensionless form of the Navier Stokes equations.

When NKC is small, we either have that u0T is small or D is large. The first possibility implies
that the oscillations of flow around the cylinder are slow and there is no flow separation. The second
possibility implies that we do not have too many eddy currents generated. For both cases, the inertia
forces will dominate.

The limits for the inertia dominated cases are somehow diffuse, the flow separation for two-
dimensional oscillatory flow around vertical cylinders occurs around NKC = 1.6, nevertheless Sumer and Fredsø
[2006] proposes NKC << 20 − 30 for considering a inertia dominated flow. In this project NKC =
[7.565−10.73], which is considered well into the aforementioned range to assume inertia dominated
flow.

Equation 2.27 is more a semi empirical expression than a result of equilibrium analysis. Therefore
it considers a series of coefficients that depend on the characteristics of the object (roughness, size,
shape, ...) and the flow conditions (Reynolds number, boundary conditions, proximity of walls, ...).
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The velocities and accelerations can be obtained from a suitable theory and used as an input for the
given eq. 2.27.

Some requirements need to meet for applying eq. 2.27:

• Constant velocity/acceleration over a certain part of the wave. This means that the diameter of
the structure has to be small in comparison with the length of the wave, approximately: D< L/5.
If the structure is wider or the wave is shorter, the Morison approximation that assumes that
there is a period with constant velocity and acceleration is no longer true, and the terms for
drag and inertial forces are not valid, since they are both based on this assumption.

• Non breaking wave at the cylinder/structure. The terms for the Morison equation assume
a smooth change in forces (both for dynamic pressure (velocity) and inertial forces (accelera-
tion)). A breaking wave has completely different dynamics, since slamming of water occurs
against the wall of the structure so a sudden impact load strikes the structure producing great
turbulence, even compressed air trapped inside the wave shape can hit the structure. In this
conditions, a slamming factor Cs can be introduced to take this into account in the Morison
expression. This factor is ranging from [π−2π] which depends largely on the wave form.

Breaking waves usually happen when the waveform is too steep or the depth is too shallow, or
even in unusual cases, as strong wind blowing or current against the wave (artificially increas-
ing its steepness).

• The structure should not move considerably when the waves hit, this is stated as: s < 0.2D ,
where s is the displacement and D is the diameter of the structure. If this limitation is violated,
dynamic forces and coupled motions such as vortex induced vibrations actuate on the struc-
ture, and the acting forces cannot just be modelled as the sum of drag and inertial forces. This
limitation is not very strict for stiff structures, but could be a concern in slender pipes such as
risers or flowlines.

• Other assumptions, such as the considerations on CD (its dependency with Reynolds number
or with roughness or the shape of the structure) are also relevant but largely out of the scope of
this project.

2.2 Numerical Methods

CFD is a branch of the Fluid Mechanics that uses numerical methods for modelling fluid flows re-
solving the Navier Stokes Equations (NSE). These equations, properly discretized, together with the
appropriate boundary conditions, both in time and in space, and a meshed domain, form a complete
posed problem for the CFD analysis.

CFD can be seen as a multidisciplinary topic though, a shared knowledge of Fluid Mechanics,
computer science and numerical analysis. In this thesis, focus is set to its application to the Marine
technology (Fluid Mechanics) side, leaving the computer science and numerical discretization point
of view for further specialised work.

The CFD discipline started in los Alamos (CA,US) after the Second World War but didn’t become
maintream until the mid 70’s in the XX century. It has turned into a common tool in fluid analysis
during the last 20 years, developed together with the constant increase in data processing power of
available computers. Nevertheless, its application to waves hasn’t started until recent times, with
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the appearance of new specific solving techniques, boundary conditions and the availability of calcu-
lation power. This context allowed for the analysis of the wave problem in a general form, starting
from the NSE.

The NSE is a general set of equations for fluids and are the very foundation of the CFD. They
are obtained applying continuity equation and Newton’s second law of motion together with the
assumption that the stress tensor is a sum of a viscous –deviatoric– tensor and a spheric pressure
gradient tensor (the so called constitutive relation):

σσσ∼∼∼ =−pIII∼∼∼−
2

3
µ
(

trDDD∼∼∼

)

III∼∼∼+2µDDD∼∼∼ (2.29)

Where σσσ∼∼∼ is the stress tensor, p is the pressure (scalar), µ is the kinematic viscosity, III∼∼∼ is the unity
tensor and DDD∼∼∼ is the strain rate tensor.

The general NSE equations can then be expressed in the following compact form:

∂ρ

∂t
+∇

(

ρ~U
)

= 0 (2.30)

−∇p+µ
(

∇2~U
)

+
1

3
µ
(

∇
(

∇ ·~U
))

+ρb = ρU̇ (2.31)

These equations are suitable for non turbulent flows, but can be generalized including turbulence
if the turbulent variables –p and ~U– are averaged through time. They won’t be shown here, since the
scope of this document is restricted to laminar simulations.

2.2.1 Volume of Fluid Method for 2 phase flows

The Volume of Fluid Method (VOF) is a technique developed by Hirt and Nichols [1981] and modi-
fied by for two phase flows by [Berberović et al., 2009]. It mainly consists on using an approximation
when modelling the interface of two immiscible and incompressible phases, this is done by including
a scalar variable α in the equations that represents the portion of a volume of fluid –i.e. an infinites-
imal volume in a differential equation and a cell volume if we deal with discrete equations – that is
filled with one of the two phases (water in our case). The α field is bounded between 0 and 1, so
if, for instance, α = 0.25 this would mean that the cell is filled with water in a proportion of 25%.
The method is implemented together with the RANS equations for incompressible flows by adding a
equation of scalar transport for α as showed in eqs. (2.32) to (2.34) (as showed in Higuera et al. [2013]).

∇ ·U = 0 (2.32)

∂ρ~U

∂t
+∇ ·

(

ρ~U~U
)

−∇
(

µe f f ∇~U
)

=−∇p∗−~g~r∇ρ+∇~U ·∇µe f f +σκ∇α (2.33)

∂α

∂t
+∇ ·α~U +∇ ·α~Uc (1−α) = 0 (2.34)

Where ~U is the Eulerian velocity,~g is the acceleration of gravity, p∗ is a pseudo-dynamic pressure,
~r is the position vector, σ is the surface tension and κ is the free surface curvature. µe f f is the efficient
dynamic viscosity, which takes into account the molecular dynamic viscosity and the turbulent effects
by means of the turbulent kinetic viscosity νturb, see eq. 2.35.
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µe f f = µ+ρνturb (2.35)

Equation 2.34 models the scalar transport of α, which inludes a material derivative plus an arti-
ficial compression term ∇ ·α~Uc (1−α) [Weller, 2002] to have non zero values only at the free surface.
~Uc = min[cα|U |,max[|U |]] where cα is a compression coefficient between 0 and 1. The compression
term is zero if the velocity ~Uc is perpendicular to the interface. The purpose of this compression of
the velocity is to avoid smearing and diffusion of the free surface during simulations, potentially
leading to a still water surface. This point is specially relevant for long simulations (¿50 periods) as
stated by [Afshar, 2010]. Without this numerical technique this diffusion can only be retarded if the
mesh resolution is increased.

Equation 2.34 is solved by a specially designed solver within IHFoam called MULES (Multidimen-
sional Universal Limiter for Explicit Solution) which ensures a final value with physical meaning –
i.e. bounded between 0 and 1.

VOF technique allows to express any of the properties at every point in the domain by means of
a single analytical expression. This is done by simply weighting the properties of the two phases in
relation to their proportion α. For instance, the density can be expressed as: ρ = ρw ·α+ρa · (1−α),
where ρw and ρa are the densities of the fluid and the air phases.

The VOF method allows complex configurations of the free water surface without the need of
including a dynamic mesh, which is far more complex and less robust. There are some drawbacks
though, and those are due to the fact that i) the VOF method doesn’t perform well when there is high
surface tension involved, which is not the case for gravity waves with long lengths, and ii) the VOF
could be giving wrong results for high steepness of the free surface (H/L > 0.05) according to [Afshar,
2010], but this is largely dependent on the compression factor cα. This latter issue has been observed
in the simulations analysed in this project when using the compression technique for the alpha field
transport equation 2.34 (see 5 for more details).

The VOF numerical model can support all available turbulence models in OpenFOAM®, namely:
κ− ε, κ−ω, SST and LES.

2.2.2 Boundary Conditions

The boundary conditions for the CFD approach need to be specifically tailored to the RANS equa-
tions with the VOF approximation. Since the definition of the problem is made from a more general
perspective, they are different than the boundary conditions set for traditional wave theory.

There is no such thing as potential theory in the context of the RANS equations, but similar as-
sumptions can be made, neglecting friction losses at boundaries, and assuming no turbulence –i.e.
laminar flow. With this in mind, we can expect similar results from a CFD approach than from wave
theory. Moreover, if the Keulegan-Carpenter number is in the range of NKC << 20−30, we can expect
an inertia dominated situation, as defined in subsection 2.1.5, where drag forces can be neglected. If
we calculate the loads by integrating the normal pressure around the cylinder, neglecting the shear
stresses – which are around zero, since the boundary condition for the wall is a slip condition – those
loads should agree well with measurements.

Following this logic, slip conditions have been considered for all boundaries and objects in the
simulations, meaning that only the normal velocity is set to zero on that surface.

Following is a short description of the specific boundary conditions for velocity:
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2.2.3 Wave Generation

Wave generation in physical wave tanks can be challenging, the generation is made with wave mak-
ers that can be of a piston or flap type. Therefore wave boards cannot accurately reproduce the
exponential velocity profiles of progressive waves, creating spurious waves together with the waves
that are intended to create, namely: freely propagating waves, bound waves and evanescent waves
[Wellens, 2012].

Unlike physical wavemakers, numerical wave generation can be achieved by imposing the exact
theoretical velocity profile with a Dirichlet boundary condition, so spurious waves can be a priori
avoided. The velocity profile is obtained from an analytical wave theory, choosing one that is suit-
able for the range of conditions of the experiment (see 2.2).

2.2.4 Wave Absorption

In this whole subsection we will follow the description of wave absorption based on Wellens [2012].

Waves are usually modelled to predict their behaviour and effects on open sea conditions, never-
theless, testing is always done in the controlled conditions of a laboratory. This has clear advantages,
since in the open sea it is not possible to control basic parameters such as the incoming waves, the
depth, wind, ... Nevertheless, this has a big drawback relative to the difficulty of imposing transpar-
ent boundaries at the outlet, this affects both physical experiments and numerical simulations.

The energy flux, travelling with the wave, has to leave the flume, if not, the reflections will affect
the waves upstream and the basic parameters of the waves, giving misleading results.

Physical Wave Tanks

In a physical wave tank the problem is usually solved partially including absorbing elements such
as porous media (sponge layers like gravel or gratings) dissipating the wave energy by increasing tur-
bulence, or absorbing beaches (sloping bottoms), where the energy dissipation is due to friction with
the bottom and the wave breaking turbulence, or a combination of the two. This approach to the
problem is called passive absorption. These devices are usually can lead a reflection coefficient of up to
10%, for a well designed passive absorber [Edinburgh Designs Limited].

Another different philosophy is what is called active absorption, which consists mainly in control-
ling the reflections by means of the motion of the wave boards. This approach can be viewed from 3
different perspectives: [Schäffer and Klopman, 2000]:

1. Reversing time: the absorption of a wave can be seen as the opposite action of generating the
same wave. Imposing an opposite motion in the paddles can, in theory, absorb the incident
waves. This needs a measurement of the incoming waves and a controlling system so the pad-
dles are moved to counteract the reflected velocities.

2. Cancelling the reflected wave using the superposition principle: The reflected progressive wave
can be cancelled creating a wave of equal amplitude and opposite phase. Both waves will add
so to cancel each other’s velocity fields.

3. Creating a transparent boundary at the outlet, letting the waves propagate through it and leave
the flume without reflections.
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Numerical wave tanks

The problem is the same in the context of a numerical simulation, but the approach has to be different.
Numerically mimicking the effect of a given physical absorption element by accurately reproducing
breaking wave conditions, friction and turbulence is unachievable today, and would be extremely
costly in terms of computational resources and time. In turn, the approaches for dealing with numer-
ical reflections are included within either one of this 3 methods:

1. Dissipation zones: The aim of this philosophy is reduce the wave energy before they actually
reach the outlet boundary, so in theory no reflection can happen. A well known example is
the pressure damping technique, which includes an artificial increased pressure term in RANS
equations:

p = α(x) ·w(x, t)|η (2.36)

Where p is the pressure variable, α(x) is a coefficient that is gradually increased along a dissipa-
tion zone to increase the damping and w(x, t)|η is the vertical velocity at the free surface.

This method is more efficient with short steep waves, where the vertical velocities are greater
for long waves, longer zones are required to dissipate all the wave energy.

This numerical technique requires of damping (or dissipation) zones of 2 or 3 times the wave-
length, according to Wei and Kirby [1995], which can be even larger than the domain itself,
increasing the computational cost. Another important drawback is that some authors have also
noticed an increase in the mean water level when using this dissipation zones [Mendez et al.,
2001]. Another drawback stated by Wellens [2012] is that, at the inlet, they cannot dissipate
outgoing waves and leave incoming waves unaffected at the same time.

2. Kinematics from external methods: The concept here is obtaining the solution of the waveform
by means of external solvers, if there are differences with the solution in the internal method a
local boundary condition – specific for a given simulation – is set to match the external solution.
This is feasible if the conditions of the simulation can hold an undisturbed wave. Nevertheless,
since the aim of the simulation is often modelling wave-structure interaction, the wave will be
disturbed by the presence of the structure, this makes this procedure hard to apply. Some au-
thors have suggested incorporating the effects of radiation and diffraction obtained from linear
theory into this type of boundary condition to overcome this issue. This alternative is not so
straight forward though, since non linear kinematics should be used for this purpose and there
is not a non linear analytic theory that accounts for diffractions, as stated by Wellens [2012].

3. Non-reflective boundary conditions:They are also known as artificial boundary conditions, ra-
diation conditions, absorbing boundary conditions or weakly reflective boundary conditions.
They consist on solving a differential equation transformed to the frequency domain, solving
this transformed equation and transforming the solution of the wave modes back into the time
domain to obtain the operator. Getting a global solution –for all the frequency domain – is
complex and costly so the boundary condition is approximated, being only valid for a range
of frequencies around the harmonics of the solution. The solution is also truncated to a finite
number of harmonics to save computational cost.

This latter type –Non-reflective boundary conditions– is the type implemented in IHFoam ab-
sorbing boundary condition. The cornerstone of this active absorption boundary condition is the so
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called Sommerfeld radiation condition, for the potential in two dimensions:

(

∂2

∂t2
− c2∇2

)

Φ = 0 (2.37)

Applying a Fourier Transform to this equation to have it terms of frequency leads to the disper-
sion relation. Following linear theory and neglecting non linearities, any free surface elevation can
be represented by a linear superposition of waves –the so called superposition principle – we can
expand the dispersion relation in series, truncate the result and then doing an inverse Fourier Trans-
form to have it back again in time, leading to this simplified form:

(

∂

∂t
+ c

∂

∂x

)

φ = 0 (2.38)

If we include the exact expression for the dispersion relation to obtain c we obtain a condition
that is perfectly absorbing for a single component of the wave, since the dispersion relation has been
truncated to just represent one of them:

(

∂

∂t
+
√

gd

√

tanh(kd

kd

∂

∂x

)

φ = 0 (2.39)

Luppes et al. [2010] introduces an approximation to the dispersion relation so to represent not
just one harmonic of the free surface, but all the components, this is done only to an acceptable range.
A proper election of the coefficients a0, a1 and b1, would give a reasonable approximation of c for
a specified range, tailored to the most energetic harmonics of the incident waves. The approximate
expression is shown in eq. 2.40 and its graphical representation in fig. 2.3.

c ≈
√

gd
a0 +a1(kd)2

1+b1(kd)2
(2.40)

Figure 2.3: Approximation of the dispersion relation introduced in Sommerfeld radiation condition,
coefficients a0 = 1.04, a1 = 0.106 and b1 = 0.289, taken from Luppes et al. [2010], fig. 8.

This expression is used in the development of the active boundary condition implemented in
IHFoam, as it will be shown in 3.0.2.
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2.3 Previous works

Numerous publications exist that try to analyse or reproduce the loads on a long cylinder exposed
to a oscillatory flow. From the classical papers of Stokes [1851],[Wang, 1968], [Honji, 1981] or [Hall,
1984], to experimental papers of Sarpkaya [1986], Otter [1990] or Chaplin [2000] among many others.

Apart from the aforementioned, there have been some other recent relevant studies more specifi-
cally related to the scope of this project:

1. Schäffer and Klopman [2000] develops an active absorption boundary condition based on digi-
tal filtering tailored for shallow water conditions, which is the base for IHFoam tool.

2. Afshar [2010] built a numerical wave tank with tailored boundary conditions to generate a 5
th

order Stokes wave, using relaxation zones for generation and absorption, measuring 1 wave
length for generation and 3 for absorption zones, and focussed on the calculation of the error
with theoretical solution, but was unable to validate his wave tank against experimental results.

3. ComFLOW® is another numerical model developed by Luppes et al. [2010] for numerical wave
tanks, this model uses the cutting cell method, which is said to have less computational cost but
also to be less robust compared to the adaptative meshing method of OpenFOAM® Higuera et al.
[2013].

4. Paulsen et al. [2012] used InterFoam solver together with waves2foam boundary condition tool-
box, one of the passive absorption type, to successfully model loads on submerged cylinders
mainly in shallow and intermediate water depth conditions, validated against the measure-
ments from Huseby and Grue [2000].

5. Higuera et al. [2013] included a thorough description of the IHFoam approach and generation
and absorption boundary conditions, including validation of two dimensional and three di-
mensional cases, with solitary and cnoidal waves in shallow water. A series of papers related
to coastal applications and porous structures came later on.

6. Peng [2014] used waves2foam approach –passive absorption – to model slamming forces on
breaking waves on cylinders, validating them against the experiments from Ting and Kirby
[1994].

No work has been done to date that tries to assess the application of IHFoam environment to the
simulation of wave loading on cylinders.
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Chapter 3

Numerical Model Description

The tool used to model the cases presented in chapter 5 were run within OpenFOAM ®environment,
version 2.2.2 , using InterFoam solver and IHFoam routines.

OpenFOAM®is a free, open source CFD software package developed by OpenCFD Ltd at ESI
Group and distributed by the OpenFOAM®Foundation. The OpenFOAM®environment includes a
sets of solvers for different physical problems, with focus on fluids, and a number boundary condi-
tions that is growing continuously with the support of the open source community. It is widely used
by the research international community and its solvers have been extensively validated in numer-
ous publications in the recent years. More details about the model can be obtained in Weller et al.
[1998] and http://www.openfoam.org/.

The package comes with independent C++ libraries tailored for specific condition and assump-
tions based on the RANS equations (incompressible, supersonic, multiphase, potential ,...), and a set
of boundary conditions to solve those, which is constantly growing (Dirichlet, Neumman (gradients),
and combined boundary conditions).

InterFoam is a multiphase solver for incompressible fluids that uses a Volume of Fluid (VOF)
method within OpenFOAM®, a rather simple technique to solve the complex interaction of the
phases at the interface (or free surface), see section 2.2.1.

IHFoam is a tooldeveloped by the Hydraulic Institute of Cantabria (Spain) that needs to be com-
piled within InterFOAM, a two phase solver from the OpenFOAM ®family for incompressible flows.
The version currently used for this project is IHFoam 2.0. An overview of the model can be obtained
at https://openfoamwiki.net/index.php/Contrib/IHFOAM

3.0.1 Equations

The governing equation of the specific solver InterFoam – used for all the simulations included in
this document – are the RANS equations for incompressible fluids, including the VOF approach for
a 2 phase flow, as mentioned in section 2.2.1.

3.0.2 Boundary Conditions

Boundary conditions in OpenFOAM® can be either of a base type or numerical type. Base type is a
type of patch described purely in terms of geometry or a data communication link (symmetryPlane or
empty boundary conditions). Numerical type assigns the value to the field variables in the given patch.
The latter can be of primitive type –the base numerical patch condition assigned to a field variable on
the patch– or derived type – a complex patch condition, derived from the primitive type, assigned
to a field variable on the patch. Mathematically speaking, the numerical type can be either Dirichlet,
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Neumann or Robin type.

Since the model is for incompressible fluids and laminar flow, we only need to set boundary con-
ditions for velocity, pressure and the VOF field values (alpha field).

Total pressure only needs to be specified at one boundary, usually the top boundary (atmosphere),
setting it to zero value for convenience. The rest of the boundaries use buoyantPressure that sets a fixed-
Gradient pressure –specifying a gradient for P normal to the boundary – based on the atmospheric
pressure gradient .

Here is a brief explanation of other boundary conditions used in this project:

1. fixedValue: the value of a variable (vectorial or scalar) is specified at the boundary.

2. empty: Since OpenFOAM®always generates geometries in three dimensions, this boundary
condition instructs the software to solve in 2D, leaving the dimension normal to the plane of
the boundary as a dummy dimension. This is the case for the front and back walls in the 2D
simulations.

3. zeroGradient: Gradient normal to the patch is set to zero –i.e. extrapolates values from the do-
main. Only applicable to scalar variables.

4. symmetryPlane: Applies to planar faces where symmetry exist in the geometry and the flow
field for the three dimensional simulations. Used for the plane of symmetry containing the axis
of the cylinder and a vector in the x direction. It implies:

• Zero normal velocity at the symmetry plane.

• Zero normal gradients of all variables at symmetry plane.

5. slip: zeroGradient if applied to a scalar; if applied to a vector, normal component is set to zero,
tangential components are set to zeroGradient.

6. inletOutlet: Switches U and p between fixedValue and zeroGradient depending on direction of U.

7. pressureInletOutletVelocity: Combination of pressureInletVelocity –When p is known at inlet, U is
evaluated from the flux normal to the patch– and inletOutlet.

Wave generation

The wave generation boundary condition is the starting point of the model. An accurate generation
of incident waves is of utmost importance to get aimed wave forms and velocities through out the
domain and avoid noise, spurious waves and currents. For instance, breaking waves are very sensi-
tive to wave profiles, any anomalies introduced in the wave can cause rising of non linearities and
early breaking.

Trying to use the setFields utility from OpenFOAM®to impose inlet boundary conditions is a very
rough way of including values for the alpha field or for the velocities, very inaccurate for our pur-
pose, since it only considers either wet (α = 1) or dry cells (α = 0), but nothing in between.
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There are a couple of relevant attempts available in the literature to implement a time dependent
boundary condition for the interphase level within InterFoam [Higuera et al., 2013]:

• Using GroovyBC, an opensource boundary condition that allows to impose any mathematical
expression for the water phase level with time. It needs an explicit approximation of the free
surface, needing an analytic calculation of the wavelength, so it is only suitable for Stokes I and
II theories.

• Some other authors, like Jacobsen et al. [2012], have proposed a complete solution to this, ac-
counting for wet, dry and partially filled cells. This solution applies only to passive absorption
boundaries, by means of relaxation zones, not being applicable to IHFoam.

IHFoam doesn’t use any of the above, it includes a tailored module, coded from scratch, to gen-
erate Stokes theory (I, II and V orders), cnoidal and stream function theories, Bousinesq and solitary
waves. It also supports irregular waves based on linear and second order harmonics. All theories
share the numerical implementation of the wave generation process.

Only free surface, through the VOF function values (alpha1 field or α1) and velocities are speci-
fied at the inlet patch (an open boundary in OpenFOAM®), since imposing pressure would lead to
an over specified problem.

The numerical scheme considers for every time step the theoretical and the measured water level
at the inlet patch, in order to consider the effects of high amplitude reflected waves arriving to the
inlet. For this matter, three zones are stablished depending on the elevation (z coordinate) at the
generation patch in order to define the boundary conditions for U and α1 (see fig. 3.1):

Figure 3.1: Three areas (a,b,c) in which the inlet patch is divided to define the boundary conditions for U and
α1 (left) and a table that summarizes the definition of the boundary conditions (right), extracted from

Higuera et al. [2013]. M stands for measured value, T for theoretical value.

Boundary conditions are set depending on the case:

• Zone a: Air phase, the faces of the boundaries have velocities and α1 set to zero.

• Interface of zones a-b: If M > T a zero gradient condition for α1 and zero value for U . If M < T

the theoretical water level is intersected with the mesh at the patch to obtain α1 value of the cell,
the centroid of this cell is obtained to calculate the velocity at that point using the theory U , the
imposed velocity is the multiplication of those values U ·α1. This is done to avoid spurious high
air velocities at the boundary that would lead to instabilities and lower the required Courant
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number and time step.

• Zone b: If M > T we have the same conditions as before. If M < T α1 is set to one if the flow
is entering the domain and to zero gradient otherwise, velocities are set to values according to
theory.

• Interface of zones b-c: If M > T α1 is set to zero gradient and velocity is calculated following
the procedure described for interface a-b. If M < T α1 is set to one if the flow is entering the
domain and zero gradient otherwise. U is set to the theoretical value.

• Zone c: filled with water, U is set to the corresponding theoretical value, α1 is set to one if the
flow is entering the domain and zero gradient otherwise. This is said to be more stable and
avoids α1 from reaching negative values.

Active wave absorption

The active wave absorption boundary condition implemented in IHFoam is meant to work alone
or together with wave generation. This, in theory, allows for longer simulations without linear re-
flections. It is based on the superposition principle by generating a velocity field Uc in the opposite
direction to that of the reflected wave to cancel the reflection.

The boundary conditions is based on the work by Schäffer and Klopman [2000], considering lin-
ear shallow water theory, where a constant velocity profile U can be assumed, that is related to the
wave celerity c by means of eq. 3.1 the given expression:

Ud = cη (3.1)

Following the thread from section 2.2.4, the difficult point here is the calculation of c to include a
wide range of harmonics in eq. 2.40, but if we consider shallow water theory, the dispersion relation
can be simplified to c =

√
gd for every harmonic no matter the frequency, which is very convenient.

This leads us to the expression in eq. 3.2.

Uc =−
√

g

h
ηr (3.2)

Where Uc is the correction velocity perpendicular to the boundary pointing into the domain, and
ηr is the amplitude of the linear reflected wave, which can be estimated by measuring the level at
the wavemaker (inlet patch) ηm, and subtracting the target elevation ηt (from the Fenton solution),
according to the one expected as if no reflections would occur.

ηr = ηm −ηt (3.3)
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Chapter 4

Methodology

In this chapter we will describe the procedure to get the results presented in chapter 5.

All the simulations in this project were run within OpenFOAM ®version 2.2.2 environment, using
InterFoam VOF solver and IHFoam routines: i) IH Waves InletAlpha and IH Waves InletVelocity gener-
ation for α and velocity (U) fields, and active absorption boundary conditions for the U fields at the in-
let patch; and ii) IH 3D 2DAbsorption InletVelocity for the active absorption for U and the outlet patch.
This latter is preferred to the three dimensional tailored boundary condition –IH 3D 3DAbsorption InletVelocity–
when the incoming waves are perpendicular to the patch surface[Higuera et al., 2013], which is as-
sumed to be consistent for all the cases, even for the three dimensional simulations, since in those
cases the reflections with the cylinder are negligible compared to the target waves.

The two dimensional simulations where all set within a linux environment, using a laptop with 4
cores, 7.5 GiB of RAM and 4 processors Intel® Core™ i3-2375M CPU @ 1.50GHz.

The three dimensional simulations have been run in a unix cluster, with a variable number of
nodes involved in each simulation, in a case to case basis. The general rule was to involve around
100.000 cells per node.

All simulations have used a dynamic time step setting, with a maximum Courant number of 0.5
to ensure stability and convergence.

4.1 Two dimensional simulations

This simulations were picked from the literature in order to assess the performance of the tool for a
given range of conditions, mainly with varying depth to length ratio and steepness ε = H

L
, as a previ-

ous phase for modelling more complex three dimensional cases.

The table 4.1 shows a list of the simulations considered with some relevant dimensionless pa-
rameters. For each of those, a two dimensional domain has been designed according to dimensions
provided in Paulsen et al. [2012]. This domain is sketched in figure 4.2.

Paulsen et al. [2012] cases are taken from the three dimensional simulations included in table 1
in that paper. The simulations are done using waves2foam tool, also based in InterFOAM but using
relaxation zones. The stream function for the 2D validation of the generation model in that same
publication is also included among the simulations (H=10 m, T=14 s, d=20 m). Moreover, since this
case has behaved reasonably well in the model, an extension of this cases have been used to assess

1Summary of simulations considered in this work
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Source N1 Wave
theory

H/L d/L

Paulsen et al. [2012] table 1 6 stream
function

0.042-0.092 0.082-0.247

Paulsen et al. [2012] two
dimensional validation (inc.

extension)

11 stream
function

0.033-0.05 0.1-2.29

OC5 tests 6 Stokes 5
th 0.041-0.082 1.360-2.671

Grue and Huseby [2002] tests 2 stream
function

0.089/0.093 0.486/0.721

Table 4.1: Data sets considered for two dimensional simulations

the performance of the model for deeper waters (d=20, 30, 40, 50, 60, 80, 120, 155, 190, 700 m).

One more simulation, also derived from the two dimensional validation case used in Paulsen et al.
[2012], was included as an extension to have a case well within the limits of the model (low steepness
and shallow water), (H=8 m, T=14 s, d=20 m). This case has also been included in the three dimen-
sional simulations.

OC5 cases are a set of small scale experiments made in the Phase I of the OC5 Program referred
to Offshore Wind Systems, that took place in MARINTEK wave flume in Trondheim, in order to vali-
date code results to physical test data. The flume is In a 80 m long tank, 10.5 m wide, and 10 m deep,
equipped with a hydraulic double-flap long crested wavemaker at one end.

Grue and Huseby [2002] tests where carried out in a tank that was 24.57 m long, 0.5 m wide and
a water depth of 0.6 m, with a piston type wavemaker.

In figure 4.1, an graphical overview of all the two dimensional simulations is presented, together
with the applicability of the different theories. Most of the waves are in the intermediate depth range.
Note also that the stream function wave can be applied anywhere in the stability range of waves, as
discussed in 2.1.3, and has been used widely in the literature gathered as the base for this present
work.

4.1.1 Domain

The length of the domain has been chosen to be at least as long as the wave length, but in the cases
from the OC5 project, the length has been chosen to be twice that value, in order to avoid having the
reflective outlet patch too close.

The height of the domain as been chosen as d+2H , this has proven to be sufficient since no water
has be found to overtake that limit.

The mesh resolution is usually determined by the ppwh –points per wave height – and is usu-
ally set around 10-15, since finer meshes will not lead to a perceptible improvement in the results
[Paulsen et al., 2012]. The cell aspect ratio is set to 2, where ∆x = 2∆z, where z is the axis in the vertical
direction, and x is the axis in the direction of the wave propagation.
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Figure 4.1: Summary of 2D cases together with suitable wave theories, taken from Méhauté [1976]. H is the
wave height, h is the water depth, λ is the wave length and T is the wave period

Figure 4.2: Domain for two dimensional simulations, L is the wave length, H is the wave height and ppwh
stands for points per wave height

4.1.2 Boundary Conditions

The boundary conditions used for pressure, alpha and velocity fields, within the two dimensional
simulations are summarized in table 4.2.

4.1.3 Diffusive error

The performance of IHFoam to simulate and propagate the waves is validated against theory. Stream
function theory [Fenton and Rienecker, 1982] is used for Paulsen et al. [2012] and Grue and Huseby

1Number of cases considered
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Boundary P α field U

Inlet buoyantPressure IH Waves InletAlpha IH Waves InletVelocity

Outlet buoyantPressure inletOutlet IH 3D 2DAbsorption InletVelocity

Top totalPressure(0) zeroGradient pressureInletOutletVelocity

Bottom buoyantPressure zeroGradient slip

FrontandBack empty empty empty

Table 4.2: Boundary conditions for two dimensional simulations

[2002] cases and Stokes 5th theory is used for validation of OC5 cases.

An estimation of the error in the two dimensional simulations have been included in order to
quantify this performance against theory. This error is defined as:

εd =
1

H

√

√

√

√

√

NT

∑
i=1

(

η
f oam
i −ηth

i

)2

NT

(4.1)

Where NT is the number of points within a wave period T , η f oam is the free surface elevation from
the still water surface as obtained from IHFoam model, ηth is the same elevation as obtained from the
theoretical solution, which has been obtained by means of the software tool created by Fenton [2014]
and freely available through his web page. This tool provides a numerical solution for the two non
linear theories used in this project: stream function theory [Fenton and Rienecker, 1982], and Stokes
5

th theory.

The diffusive error is measured in a gauge situated at the middle of the flume for a whole wave
period duration and for 4 different wave periods, from the 5

th to the 8
th wave, starting at the moment

when the wave actually reaches the gauge. This will give us an idea of the performance of the model
and the existence of numerical diffusion.

The theoretical solution is shifted to match the zero upcrossings in both plots for the 5
th wave

of the record, and later refining the shift of the theoretical solution in order to minimise the error as
defined in 4.1.

4.1.4 Reflection coefficient

In order to assess the performance of the active absorption boundary condition included in IHFoam
software tool, as described in 3.0.2, a quantification of the reflections is needed. This has been done
following the procedure described in Goda and Suzuki [2011].

The method uses the Fourier series approximation of the time series of the free surface elevation
η at two gauges, with a separation between them ∆l that has to fulfil that is not a multiple of half
the wave length :∆l 6= nL

2
, where n = 0,1,2, .... This is to avoid a divergence in the calculation of the

reflection coefficient, that is sin(k∆l) = 0, giving R → ∞.

As a general rule, the to gauges were located at the midflume, with a separation of ∆l = L
9
. The

reflection coefficient is obtained by approximating a Fourier series of the surface elevation of the two
gauges j = 1,2:
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η j =
N

∑
i=1

A jicos(ωit)+B jisin(ωit) (4.2)

Where A ji and ωi are the amplitude and the angular frequency of the ith harmonic at gauge j.

The reflected and incident wave amplitudes Ai and Ar can then be approximated for a monochro-
matic wave as:

Ai =
1

2|sin(k∆l)|

√

(A2 −A1cos(k∆l)−B1sin(k∆l))2 +(B2 +A1sin(k∆l)−B1cos(k∆l))2 (4.3)

Ar =
1

2|sin(k∆l)|

√

(A2 −A1cos(k∆l)+B1sin(k∆l))2 +(B2 −A1sin(k∆l)−B1cos(k∆l))2 (4.4)

This equation can also be applied to each harmonic independently by means of the superposition
principle, so to obtain the reflection coefficient for each harmonic frequency. The reflection coefficient
is, in reality, dependent on the frequency r = f (ω). In this project, the reflection coefficient for both
the fundamental frequency and the second harmonic have been obtained, and also a weighted av-
erage of the whole spectral resolution (see Goda and Suzuki [2011]) with the square of the incident
amplitude, that average gives us an idea of the reflection coefficient in terms of energy.

From the indicent and reflected amplitudes Ai and Ar, the incident and reflected spectrum S( f )
can be obtained by eq. 4.5 for every frequency bandwith ∆ f for the jth harmonic.

S( j ·∆ f ) =
A( j ·∆ f )2

2∆ f
(4.5)

It is important to remark that the procedure used to obtain the reflections –reflection coefficient
and reflected spectra – is based on the superposition principle using the linear theory for all the har-
monics in the wave, assuming the reflected energy is contained in the same frequency as the incident
energy. Therefore, this method doesn’t take into account non linear effects happening at the bound-
aries, such as breaking waves (total or partial) splashes, runups, ... which do happen in some of the
simulations. It is, anyway, a good estimation of the performance of the boundary condition consid-
ering linear effects, for smooth waves. As far as the author is concerned, an alternative doesn’t exist
for accounting non linear effects in the computation of the reflection coefficient. This is a wide topic
out of the scope of this Master Thesis, further work needs to be developed to assess the effect of non
linearities on reflections at the boundaries.

4.2 Three dimensional simulations

The three dimensional cases are picked from the literature, and they are also included among the two
dimensional set. It is thought that way in order to first assess the wave generation and boundary
conditions and then the pressure forces.

A summary of the cases, together with the relevant parameters of the waves and cylinder diame-
ter D is shown in table 4.3.

2Number of simulations considered
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Source N2 Wave
theory

H/L d/L D[m] NKC

Paulsen et al. [2012] table 1 4 stream
function

0.042-0.092 0.082-0.247 6 7.62-9.98

Paulsen et al. [2012] two
dimensional validation

1 stream
function

0.033-0.05 0.1-2.29 6 8.54-10.45

Grue and Huseby [2002] tests 2 stream
function

0.089/0.093 0.486/0.721 0.06 10.73/7.56

Table 4.3: Data sets considered for three dimensional simulations

4.2.1 Domain

The three dimensional cases are meant to obtain the loads on the vertical cylinders, the domain now
is prismatic with similar dimensions than those of the two dimensional cases, these are shown in
table 4.3.

Figure 4.3: Domain for three dimensional simulations, L is the wave length, H is the wave height and ppwh
stands for points per wave height

The mesh is uniform and rectangular with a cell size of 15 ppwh and a length of the domain of
2L for all the cases except the OC5 project set, where the resolution is set to 10 ppwh and the length
of the domain equal to L. This was necessary for keeping an affordable size for the model, since the
OC5 cases are in very deep water compared to the wave height– 10 m versus 0.60 m.

The aspect ratio here is set to 1, so ∆x = ∆y = ∆z.

4.2.2 Boundary Conditions

The boundary conditions in space for the three dimensional cases, are summarized in table 4.4.
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Boundary P α field U

Inlet buoyantPressure IH Waves InletAlpha IH Waves InletVelocity

Outlet buoyantPressure zeroGradient IH 3D 2DAbsorption InletVelocity

Top totalPressure(0) inletOutlet pressureInletOutletVelocity

Bottom buoyantPressure zeroGradient slip

Frontwall buoyantPressure zeroGradient slip

symmetryplane symmetryPlane symmetryPlane symmetryPlane

cylinder buoyantPressure zeroGradient slip

Table 4.4: Boundary conditions for three dimensional simulations
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Chapter 5

Results

5.1 Two dimensional simulations

In this section the relevant results will be presented for the two dimensional simulations, splitting
them into wave generation, wave form and velocities.

5.1.1 Wave Generation

The wave generation is done according to section 3.0.2. It has been found that wave generation is
more accurate on smooth waves than on steep ones.

Following is a set of plots showing the relevant differences found among the cases considered
mainly depending on the steepness H/L.
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Figure 5.1: Generated water elevations at inlet patch, H/L = 0.05 for a stream function wave. Estimated
averaged error on generation of waves 5, 5+1, 5+2 and 5+3 is ε = 0.047.

A general overview of those plots show how the wave generation performs well on steepness
H/L < 0.05 (figure 5.2 ) with crests 1 m lower than expected (10% error), but fails to accurate repre-
sent theory specially on steeper crests, see fig. 5.3 and 5.1 for an illustration on this. A non smooth
staircase profile is observed on most cases, which can lead to noise in the tank. Afshar [2010] also
observed this phenomena, but for a different wave generation numerical procedure. A finer grid is
proposed by the aforementioned author to avoid this problem, despite of the higher computational
cost.

A more refined mesh has been essayed to further investigate this issue following the reasoning by
Afshar [2010]. Nevertheless, refining the mesh to half the size of the initial mesh size –i.e. from 15 to
30 ppwh– did not produce any improvement, in fact, the error in the generated wave form increases
if the mesh is refined, see 5.4.

Certain improvement to this generation error is achieved though, if we remove the compression
term from eq. 2.34, by setting cAlpha coefficient to 0. The result on the same case as in 5.3 is shown in
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Figure 5.2: Generated water elevations at inlet patch, H/L = 0.032, for a stream function wave. Estimated
averaged error on generation of waves 5, 5+1, 5+2 and 5+3 is ε = 0.057.
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Figure 5.3: Generated water elevations at inlet patch, H/L = 0.092, for a stream function wave. A staircase
profile can be observed in the wave form. Estimated averaged error on generation of waves 5, 5+1, 5+2 and

5+3 is ε = 0.071.
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Figure 5.4: Generated water elevations at inlet patch, same case as fig. 5.3, but an aspect ratio ∆x/∆z = 1 and
30 ppwh. Estimated averaged error on generation of waves 5, 5+1, 5+2 and 5+3 is ε = 0.143.

fig. 5.5.
This staircase profile fades when giving enough space for the wave to ”settle”, but spurious effects

can be induced in the wave and the velocities, which may contribute to the observed non linearities
in section 5.1.2.

In table 5.1, the average error in the wave generation ε̂0, together with this same error in the
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Figure 5.5: Generated water elevations at inlet patch, same case as fig. 5.3, but compression ratio coefficient
cAlpha is set to 0. Estimated averaged error on generation of waves 5, 5+1, 5+2 and 5+3 is ε = 0.062, an

improvement of -1.4% in the error.

midflume ε̂m, is presented for the stream function theory among four cases included in table 1 within
Paulsen et al. [2012]. There seems to be a direct relation between the steepness H/L and the error in
the generation. On the other hand, removing the compression term improves the generation error in
about 1% (not in every case though) and seems to lead to a higher error at the midflume.

Source cAlpha H [m] T[s] d[m] H/L ε̂0 ε̂m

Paulsen et al. [2012] table 1-
case 2

1 10.02 12.7 25 0.055 0.056 0.069

Paulsen et al. [2012] table 1-
case 2

0 10.02 12.7 25 0.055 0.049 0.115

Paulsen et al. [2012] table 1-
case 4

1 12.44 11.67 35 0.068 0.054 0.063

Paulsen et al. [2012] table 1-
case 4

0 12.44 11.67 35 0.068 0.026 0.092

Paulsen et al. [2012] table 1-
case 20

1 13.36 12.31 25 0.074 0.068 0.072

Paulsen et al. [2012] table 1-
case 20

0 13.36 12.31 25 0.074 0.064 0.080

Paulsen et al. [2012] table 1-
case 22

1 16.58 11.35 35 0.092 0.071 0.089

Paulsen et al. [2012] table 1-
case 22

0 16.58 11.35 35 0.092 0.062 0.064

Paulsen et al. [2012] table 1-
case 12

1 10.86 8.99 30 0.090 0.100 0.069

Paulsen et al. [2012] table 1-
case 12

0 10.86 8.99 30 0.090 0.099 0.109

Table 5.1: Summary of errors in wave generation (ε̂0) and propagation at the midflume (ε̂m)

Plot in figure 5.6 summarizes the generation error of the selected cases from Paulsen et al. [2012],
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table1.

Figure 5.6: Wave generation error depending on the steepness switching the compression term on (cAlpha=1)
and off (cAlpha=0).

5.1.2 Wave Propagation

The performance within the flume, specially at the midflume, where a potential structure would be
located, is assessed in this section. A number of relevant simulations are presented, illustrating three
different phenomena affecting the results:

• Wave skewness and early breaking: it is observed that, when including the numerical compres-
sion technique of the velocity as defined in 2.34, waves with steepness H/L > 0.05 will develop
skewness, breaking the symmetry of the wave form, and will break if given enough propaga-
tion length, see fig. 5.7. Removing this compression term completely –i.e. cAl pha factor set to 0
– solves the problem, maybe an intermediate solution could also be valid, further investigation
is required to test the effects of this parameter in the solution. For the sake of this project, only
values 0 and 1 have been included in the results.

Figure 5.7: Breaking wave, earlier than expected, H = 13.36m, T = 12.31s, d = 25m, H/L = 0.074 and
H/Hmax = 0.81, for a Stream function wave.

• Reflections coming from the inlet ant outlet boundaries. Those can be either from linear or non
linear reflections. The linear reflections can be quite limited well into the intermediate depth
range, a reflection coefficient of less than 10% can be obtained for d/L < 0.16. The non linear
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reflections are more difficult to predict and may appear on steep waves, in order to limit those,
and based on the simulations included in this project, a steepness of H/L < 0.07 could be a
rough indication. This non linear reflections are more harmful if the waves are short (T¡ 3-4
s), usual in scaled wave tank tests, since the splashes and other non linearities seem to create
energy in that frequency range. This is the case of all the OC5 set, where d/L > 1.2 and station-
ary resonant waves form due to the full reflection with the outlet and inlet. These have been
removed from the results of the three dimensional simulations, since they show a very poor
performance already in a simpler two dimensional setup.

On fig. 5.8 an extended case from the validation in Paulsen et al. [2012] is shown, modified to
be in very deep water conditions, with a smooth wave form to limit the expected nonlinearities.
This case seems to suffer mainly from linear reflections from the outlet, with the same frequency
as the incident wave. If we compare this case with fig. 5.9, where the wave shows peaks, non
linear reflections splashing and partial breaking, may introduce noise in a different frequency.
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Figure 5.8: Simulation showing linear reflections, H = 10m, T = 14s, d = 700m.
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Figure 5.9: Simulation showing non linear reflections, H = 0.6m, T = 2.1s, d = 10m, from the OC5 case set.

On figure 5.11 and 5.12 a representative example of the OC5 case is presented, those cases are
all in very deep water d/L > 1.3, well out of the range where the active absorption boundary
condition is tailored. On the one hand, non linear reflections deteriorates the wave form after 10
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Figure 5.10: Simulation showing non linear interactions with the outlet, H = 0.28m, T = 1.52s, d = 10m,
from the OC5 case set.

periods (5.11) including noise with different frequencies from the ones in the incident wave, on
the other hand, the linear reflections create a stationary wave due to the high reflective bound-
aries (5.12).
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Figure 5.11: Simulation showing distortion of the wave form non linear reflections after 5, 10 and 15 periods,
H = 0.28m, T = 1.52s, d = 10m, from the OC5 set.

The relation between the reflection coefficient, as defined in 4.1.4, and the relative wave depth
is presented in figure 5.13, showing a direct relation between those.

• Spurious velocities coming from the wave absorption boundary condition: as has already been
described in section 3.0.2, the active boundary condition is based on an artificial imposed veloc-
ity field that cancels the measured reflected wave from the outlet patch. It is based on shallow
water theory so it is constant throughout the depth, but since this assumption is not fully met
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Figure 5.12: Simulation showing reflections causing stationary waves with 4 nodes (domain=2L),
H = 0.28m, T = 1.52s, d = 10m, from the OC5 case.

Figure 5.13: Plot of reflection coefficient on the first harmonic (fundamental frequency) against d
L

showing a
clear trend towards higher reflections in deeper waters.

on the cases presented, which are mostly within the intermediate water depth range, spurious
currents are generated from the residuals of the cancelation velocity and propagated upwind
towards the inlet, this could affect the wave stability. Of course this is more evident in very
deep water, an example of this case with d/L = 2.287 is shown in figure 5.14.

• Just as Afshar [2010] noted, spurious velocities, abnormally high, seem to be generated just
above the surface in the air phase. According to this author, the cause of this might be that
the VOF method solves one single transport equation for all the domain and only the densities
make a difference when distributing scalar and vectorial properties between the phases of cells
at the interface, and this is done by simple proportionality using the density as weighting func-
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Figure 5.14: Spurious velocities in the water column (midflume, right plot), just over the bottom the
horizontal velocities are opposite to the velocities of the wave (at the surface), H = 10m, T = 14s, d = 700m,

for a Stream function wave.

tion, according to section 2.2.1. Partially filled cells share the momentum between the air phase
and the water phase and, since the air has a density around 1000 times less than water, the
gaseous phase gets unrealistic high velocities on the partially filled cells at the interface, that
also drives the movement of the upper cells and creates an air current just above. This effect
can be observed in fig. 5.15.

Figure 5.15: Artificially high air velocities just over the interface, H = 10m, T = 14s, d = 20m, for a Stream
function wave. Velocities in [m/s].

• Spurious velocities coming from the outlet patch: The active wave absorption boundary condi-
tion includes cancelling velocities in the water filled cells, but also in the partially filled ones,
giving momentum to the air phase, which is transmitted to the upper layers. This will create
spurious air blows injected directly into the domain with high velocity see fig. 5.16 . That can
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be an issue and affect the results if the air velocities are under study.

Figure 5.16: Spurious air velocities coming from the outlet (blows), H = 10m, T = 14s, d = 20m, Stream
function wave. Velocities in [m/s].

Finally, a relation between the water depth and the measured error is presented in fig. 5.17. A
trend can be observed showing a direct relation between those parameters. The correlation is not
very high, since the error may depend on many other parameters, such as the wave steepness, the
period or the Ursell number, to name a few.

Figure 5.17: Plot of diffusive error (average value for 4 waves, as defined in 4.1.3) against d
L

5.2 Three dimensional simulations

For completeness, a set of three dimensional simulations have been included in this project in order
to obtain the forces on a simple structure – a vertical submerged cylinder. The cases considered have
been obtained from the set used in the two dimensional simulations, picking only the ones in inter-
mediate water depths from Paulsen et al. [2012] and Grue and Huseby [2002], since the OC5 cases,
in very deep water conditions, have proven to be way out of the limit that restricts the good perfor-
mance of the model. The selected cases, and its relevant parameters, are shown in table 4.3.

The forces are calculated by integration of the normal pressures around the cylinder by means of
the forces function, integrated within controlDict dictionary. This is consistent with the fact that the
cylinder patch is set to slip boundary condition to model an inertia dominated situation, considering
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drag as negligible.

5.2.1 Simulations from Paulsen et al. [2012]

Figures 5.18 to 5.21 show the total inline force in Paulsen et al. [2012] cases divided in two different
sets, depending on the value of H/Hmax –Hmax is defined in section 2.1.4. The results are compared
with simulations from Paulsen et al. [2012] and with Morison forces, calculated from the velocities
obtained from the Stream function theory. The simulations show that, without the compression term,
the slamming forces are more obvious, since the waves tend to be steeper than theory. The results
are obtained removing the compression term completely (cAlpha=0), which show a better agreement
with Paulsen et al. [2012] measurements and prevents early wave breaking.

The agreement with Paulsen et al. [2012] solution is quite good. A secondary load cycle appears
on all simulations (even without the compression term), but it is more obvious when H/Hmax > 0.6 ,
while Paulsen et al. [2012] did not obtain them for H/Hmax = 0.6.

The results are summarized in table 5.2, where the results with and without compression term
(cAlpha=1 and 0, respectively), can be compared. The loads are higher in the first case, specially in
waves with steepness H/L > 0.07 where the waves break over the cylinder (the other cases will break
also, but at the end of the flume).

Inline Force Fmax

ρgdD2

Source H/L cAlpha Paulsen et al.
[2012]

IHFoam

Paulsen et al. [2012] table 1- case 2 0.055
1 0.277 0.325

0 0.277 0.273

Paulsen et al. [2012] table 1- case 4 0.068
1 0.253 0.293

0 0.253 0.240

Paulsen et al. [2012] table 1- case 20 0.074
1 0.461 0.736

0 0.461 0.469

Paulsen et al. [2012] table 1- case 22 0.092
1 0.450 0.683

0 0.450 0.414

Table 5.2: Summary of results for the total inline forces in the cylinder together with the compared values
from other sources. The IHFoam results are an average of all the waves within the simulation time.

5.2.2 Experiments from Grue and Huseby [2002]

Two experiments from Grue and Huseby [2002] have been reproduced using IHFoam, the results are
shown in fig. 5.22 and 5.23, with quite smooth wave forms. A good general agreement of the inline
forces has been found on those. Secondary load cycles seem to show slightly just at the end of the
primary load cycle, since this waves are not very steep. Coefficient cAlpha is set again to zero, to
avoid artificial increase of steepness as discussed for previous cases.
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Figure 5.18: Inline forces on a cylinder of D=6 m, H/Hmax=0.6, kd=0.85 (Paulsen et al. [2012] table 1-case
2). Total simulation time (top), focus on one period compared with solution from Paulsen et al. [2012] (fig. 9)
in dimensionless form (center) and comparison with Morison inertia forces derived from the accelerations in

Fenton solution (bottom).

5.2.3 Load cycle

The time series obtained in this project for the wave loads on a vertical cylinder have some interesting
features to highlight here, these are shown in figure 5.24. First there is clear vertical asymmetry on
those plots, more pronounced in the steeper waves, the load profile increases to a maximum value
just before the crest passes.
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Figure 5.19: Inline forces on a cylinder of D=6 m, H/Hmax=0.6, kd=1.2 (Paulsen et al. [2012] table 1-case 4).
Total simulation time (top), focus on one period compared with solution from Paulsen et al. [2012] (fig. 9) in

dimensionless form (center) and comparison with Morison inertia forces derived from the accelerations in
Fenton solution (bottom).
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Figure 5.20: Inline forces on a cylinder of D=6 m, H/Hmax=0.81, kd=0.87 (Paulsen et al. [2012] table 1-case
20). Total simulation time (top), focus on one period compared with solution from Paulsen et al. [2012] (fig. 9)
in dimensionless form (center) and comparison with Morison inertia forces derived from the accelerations in

Fenton solution (bottom).
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Figure 5.21: Inline forces on a cylinder of D=6 m, H/Hmax=0.82, kd=1.22 (Paulsen et al. [2012] table 1-case
22). Total simulation time (top), focus on one period compared with solution from Paulsen et al. [2012] (fig. 9)
in dimensionless form (center) and comparison with Morison inertia forces derived from the accelerations in

Fenton solution (bottom).
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Figure 5.22: Inline forces on a cylinder of D=6 cm, H/Hmax=0.634, kd=3.05. Total simulation time
(top), focus on one period compared with experiments from Grue and Huseby [2002] and with

Morison inertia forces derived from the accelerations in Fenton solution (bottom).

7 8 9 10 11 12
t [s]

−2

−1

0

1

2

Fo
rc

e 
[N

]

Total Force acting on the cylinder. Case GrueHuseby_stream7.7cm_T0.7

ihFoam Grue&Huseby 2002

9.0 9.1 9.2 9.3 9.4 9.5 9.6
t [s]

−2

−1

0

1

2

Fo
rc

e 
[N

]

Total Force one period

ihFoam
Morison- Fenton
Grue&Huseby 2002

Figure 5.23: Inline forces on a cylinder of D=6 cm, H/Hmax=0.653, kd=4.53. Total simulation time
(top), focus on one period compared with experiments from Grue and Huseby [2002] and with

Morison inertia forces derived from the accelerations in Fenton solution (bottom).
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Figure 5.24: Images from one of the simulated cases on a cylinder of D=6 m, T=11.35 s, H/Hmax=0.82,
kd=1.22. Inline force on one period (top), simulation screenshots (a-f). Ts is the period of the secondary load
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Chapter 6

Summary and Conclusions

An overview of the state of the art of CFD simulation of waves is made in this report reviewing the
theory and concepts to the state of the art of today’s model. The the main challenges to achieve a re-
alistic wave tank for further studies related to wave-structure interaction have also been highlighted.

Two dimensional wave flume simulations were investigated for a wide range of conditions to
test the capability of IHFoam to predict wave forms and velocity profiles according to theory. All the
simulations neglect the friction with walls and bottom, thus the turbulence model is set to laminar,
and slip boundary conditions are included for all walls. This is consistent with theory since all the
NKC < 15.

Wave generation perform reasonably well for smooth waves, but fails to accurately represent De-
ficient wave generation on very steep waves causing instabilities in the wave profile. This is partially
solved if the compression term from eq. 2.34 is removed.

The limits to the performance of the active absorption boundary condition are established based
on the error of the simulations and the reflection at the boundaries. The active absorption boundary
condition performs better for shallow to intermediate water depths L/d > 0.5 with reflection coeffi-
cients that can get as low as 4.4% for steepness H/L = 0.05 in intermediate depths (d/L = 0.1); grow
up to 22.4% in the limit of deep water conditions (d/L = 0.5) and 68.9% if the waves go into very
deep water (d/L = 2.29). This greatly limits the applicability of this tool to model offshore condi-
tions, specially in big depths. As an example, a design wave of around 20 m and T=14 s will have

L = gT 2

2π = 306m, deep water conditions implies that d > L/2 = 150m which is quite a low limit and is
outbounded in many current offshore facilities, not to talk about the ultra deep water facilities that
are to come.

The simulations show non linear effects on most cases, leading to an early breaking in some
simulations–, approximately when H/L > 0.05– if the compression technique from eq. 2.34 is applied
to the velocities. That is much before the predicted theoretical limit stated in [Fenton, 1990].

Another observed effect is that non linearities on the outlet patch, such as asymmetries, splashes
and partially breaking waves, fail to be cancelled by the active absorption boundary condition, pro-
ducing reflections in different frequencies than that of the harmonics of the incident wave. This is
observed in all of the cases to a certain extent, but is more apparent in the OC5 set, where the periods
are short (1-2 sec) and in very deep water conditions (see fig. 5.10). These non linear reflections are
difficult to quantify, since the theory behind the obtention of the reflection coefficients relies in the
applicability of the superposition principle form linear theory (see section 3.0.2) , which is not appli-
cable in non linear systems. Non linear superposition of frequencies from wave runups and partial
breaking of waves needs to be included in the active boundary condition if it aims the analysis of
steep waves interaction with structures, specially with short periods.
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Other artificial phenomenon is that of the spurious velocities induced by the active wave absorp-
tion boundary condition, tailored for shallow water, seem to induce a constant velocity profile Uc at
the outlet, that might be propagating throughout the domain. The effect of this velocity in the gen-
erated waves is similar to that of a opposing current applied to a wave: it induces an increase in the
steepness, and can cause early wave breaking [Wolf and Prandle, 1999]. This opposing current can
be observed in fig. 5.14.

Another anomalous effect is that of the spurious high air velocities just above the interface and
air blows from the outlet boundary, which can be of a concern if the velocities of the air phase are
being looked into – i.e. for wind energy purposes.

This spurious effect has no clear solution since the cause lies within the VOF method and the
absorption boundary condition implementation, [Afshar, 2010] proposes a relaxation of the veloci-
ties just above the water surface. Patterson [2008] proposed removing the convection term of the air
phase above the free surface, modifying the air convection in the transport equation multiplying the
convective term by the phase fraction value, so this is unmodified for the water phase (α = 1) and
reduced for the partially filled and dry cells. Of course, none of those aim to accurately represent the
air velocities above the wave, they just intend to avoid spurious effects of the air velocities on the
wave. A more detailed work is needed to assess those solutions.

At the outlet boundary spurious air currents are also observed, maybe due to the fact that the ac-
tive absorption boundary condition creates a cancellation velocity Uc –meant to affect the water phase
– that also affects the air phase in the partially filled cells at the interface, creating a momentum that
drives a velocity at the air phase that is about three times higher than Uc, due to the differences in
density. This needs to be treated numerically within the absorption boundary condition, maybe in-
cluding similar solutions as the ones presented by [Afshar, 2010] and Patterson [2008].

It looks like tailoring an absorption boundary condition for a general case is a cumbersome task.
The active boundary condition implemented in IHFoam performs well under some circumstances,
that is, shallow to intermediate water depths (reflections less than 10% when d/L < 0.16) with little
non linearities involved, since it is based on linear theory. Skewed wave forms, splashes, near break-
ing or breaking waves won’t be cancelled by the boundary condition, which will try to approximate
the water elevation to a linear wave form reflected back from the outlet to generate the cancelling
velocity Uc field.

Three dimensional simulations, including a vertical cylinder in the middle of the flume, are in-
cluded as a second phase of the project for completeness. Forces are calculated based on a frictionless
approach, ensuring that all cases are inertia dominated and drag forces can be neglected.

The time series for the loads are obtained removing the compression term so to avoid early break-
ing. They all show similar patterns than those shown in Paulsen et al. [2012]: Smoother waves, with
steepnes H/L < 0.068, show round-shaped, sinusoidal like, force profiles; steeper cases show a saw-
tooth profile with acute peaks, suggesting wave asymmetries and some slamming forces, with forces
greater than those predicted by morison equation. Secondary load cycles show after the maximum
load peak, appearing in all cases, slightly showing up in less steep waves (H = 0.6Hmax), earlier than
those obtained by the referred author (H = 0.8Hmax), but this is not regarded as a big concern since
the overall agreement is good.

Agreement with Grue and Huseby [2002] experiments is very good, since those two cases are
based on smooth profiles. The error here is very small, less than 5%, and the model is able to repre-
sent accurately the main features of the measured time series (peak, phase, secondary cycle).
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6.1 Further work

Further work needs to be carried out in relation to the develop of active absorption boundary condi-
tions valid for a wide range of conditions, Wellens [2012] work is a good base to do so. They should
be able to cancel a wide range of reflected frequencies coming from non linearities and perform well
in deep water, specially for offshore applications.

Another important field for improvement is the inclusion of realistic wind velocities in the air
phase. It has not been set focus on this aspect here but it can be of importance in the case of wind
wave interaction and generation of waves, or in the context of wind turbine projects, for instance. Co-
inciding with the observations by Afshar [2010], the VOF method seems to be including artificially
high velocities at the interface.

Others fields of research is the inclusion of a turbulence model (such as κ− ε or LES) and mod-
elling a boundary layer around the cylinder to simulate drag force, so the work can be extended to
higher Keulegan-Carpenter numbers.

It would also be interesting to see a thorough study of the accuracy of the model to predict wave
breaking and wave slamming loads, validated both against experiments and theory (based on eq.
2.26, for instance). The numerical modelling of waves and its validation through theory and exper-
iments is limited because all three methods –theory, experiments and numerical modelling – have
their inaccuracies, assumptions and drawbacks. Experiments have lack of control over all parame-
ters, such as accurate wave generation and absorption, theory usually has too limiting assumptions
regarding non linearities, interaction with the atmosphere and friction, and numerical methods rely
on input from those two.
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