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ABSTRACT 
 
 
Environmental concerns and regulatory controls for oil and gas exploration and 
production activities have been increasing with the prospecting of deep-water fields 
and sensitive areas, such as the artic seas. To stop any incidents developing into 
critical events, subsea leak detection systems are required for a fast, cost-effective, 
and reasonable accurate method to not only detect the leakage substance (in this case 
methane), but also to identify its source and location. This thesis evaluates approaches 
to extend the capabilities of such systems deploying methane sniffers  (pinpoint 
sensors) in locating the leakage sources by combining their sensory information with 
advanced data analytics. It will assess the potential role of artificial neural networks 
(ANNs) in improving the accuracy of leak source identification of permanently 
installed subsea leak detection systems. 
 
The study reviews the advantages and disadvantages of four different modeling 
techniques that have been chosen to support this task: the analytical approach, the 
optimization approach, the probabilistic approach and the direct inverse approach. In 
the evaluation phase, the optimization approach, which underlies the working 
principles of artificial neural networks, was identified as the approach providing the 
highest accuracy, shortest time to run and with the lightest demands on resources in 
order to identify the location of methane leakage source in subsea condition. In 
addition, a computational fluid dynamics (CFD) module is also introduced to generate 
the data that is essential for the ANN training and testing process. 
 
This thesis contains five main experiments. The first experiment provides the use of 
CFD to simulate different methane leakage source locations and its area of dispersion 
in steady state. The next two experiments are creating and training the artificial neural 
network architecture in order to maximize its performance. The last two experiments 
demonstrate the performance of ANNs using unseen data in the presence of noise-free 
and noisy data sets. 
 
The overall results lead to the conclusion that the combined approach (CFD and 
ANN) is a promising tool for supporting pinpoint sensors used in subsea leak 
detection systems to increase the efficiency of identifying leakages in calm condition. 
Moreover this combined approach can also tolerate contaminated data up to 
approximately 4% of noise.  
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CHAPTER 1 INTRODUCTION 
 
1. Introduction 

 
 

1.1. Background and Purpose 
 
Subsea oil and gas leakages and spills are not only of concern to the oil & gas 
industry, but pose a substantial risk to societies as a whole. With the exploration of 
increasingly environmentally sensitive areas such as the arctic seas, environmental 
concerns are on the rise. This in turn has created new demands from regulators and 
authorities around the world, especially on the Norwegian Continental Shelf, to install 
leak detection systems for new field developments (as well as existing ones) in order 
to avoid the most severe consequences from malfunctions of offshore oil and gas 
activities. 
 
For this reason, DNV GL; the organization that establishes and maintains technical 
standards for the construction and operation in maritime oil and gas, introduced the 
Joint Industry Project (JIP) on Offshore Leak Detection, with more than twenty 
participants ranging from regulators, operators, integrators, and subsea supplier who 
are working together to integrate different technologies into a leak detection system 
usable in real-world applications. In addition, JIP has also established the relevant 
functional requirements and general specification for subsea leak detection systems as 
well as the recommended practice DNV-RP-F3021: selection and use of subsea leak 
detection systems. This document is a guide for companies and organizations to 
provide reliable monitoring systems that will minimize the impact to human life, 
property and the environment from major accidents in oil and gas activities both 
subsea and on the surface (Decomworld, 2014).  
 
It has been a few years now since leak detection systems became first available on the 
market. Manufacturers of such systems have been continuously releasing new 
products and methodologies to fulfil the safety requirements from new regulations. 
However, current solutions often address very specific parts of an overall incident 
scenario, such as high sensitivity sensors, but are not applicable to others, such as 
wide-area monitoring, for example (DNV GL, n.d.). The overarching aim of this 
master thesis is to integrate any technologies or methodologies into subsea leak 
detection systems, specifically in methane sniffers, that have the potential to enhance 
their performance when it comes to identifying leakage sources. 
 
 

                                                
1	  The recommended practice DNV-RP-F302 is not the final version, as the JIP is upgrading this 
document at the moment. 
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1.2. Motivation 
 
Stinger Technology AS, one of the JIP’s participant members, offered me the 
opportunity to write this master thesis on improving the accuracy of leakage source 
identification of a permanently installed subsea leak detection system. As an 
innovation solution provider focusing on subsea systems, Stinger Technology has 
been developing permanently installed subsea leak detection systems since 2013 that 
have been deployed in the Norwegian Continental Shelf (NCS) to provide early 
warning of conditions which may develop into critical events. 
 
Stinger's subsea leak detection system is designed to combine two different type of 
sensor technology based on JIP's guidelines. These are Sonar and Methane Detectors 
(Methane sniffers). Each type of sensor can compensate for the weaknesses of the 
other and in combination result in a vastly improved system performance compared to 
single sensor type deployment. For example, the Methane sniffers are extremely 
sensitive to low concentration of gases, but are limited to the small local area where 
the sensors are mounted; for wider area coverage and longer distances to the leak 
source Sonar can compensate for this shortcoming (Coley, 2013). In combination this 
supports Stinger's Subsea Leak Detection capabilities to detect concentrations of 
dissolved gas from very small leaks to plumes of bubbles within wider coverage 
areas. 
 
However, the most challenging part is to provide an effective way to identify the 
exact source of a leak once the system issues an alert. Even though Remotely 
Operated Vehicles (ROV) can be used to pinpoint the exact location of the leakage 
subsea, this is a complex, time-consuming and costly process with its success 
impacted by the location, environment and experience of ROV pilots, as well as the 
sea depth, currents, and so on. Some areas may not be accessible by ROV at all. 
These issues suggest that there is a significant opportunity for a quicker, cheaper and 
yet still useably accurate method and system to identify the source of leaks in subsea 
conditions to strengthen the defence against major incidents.  
 
Leakage source identification is not a new feature and sonars have been used in the 
past to pinpoint leakage locations. In order to improve the performance of the leakage 
detection system Stinger Technology wants to enable the use of point sensors 
(methane sniffers) to identify the leakage source, since they are more sensitive than 
the sonars; performing well even with low concentrations of methane dissolved in the 
water and able to detect even very small leakages and provide early warning to 
operators. 
 
Unfortunately, the measurement of methane sniffers is limited to the very localized 
area in which they are mounted. Hence, this study will focus on concepts that aim to 
extend the ability of the methane sniffers (for leakage source identifications) in terms 
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coverage in particular and source location accuracy, as well as improve factors such 
as time-to –action, speed of detection and overall resource requirements. 
 
 
1.3. Scope of work 
 
The scope of work for this master thesis contains two main parts. These are: 
 
 
1.3.1. Gathering the related information and techniques 
 
Generally, leakage source identification can be characterized as a reconstruction 
problem: identifying which input (unknown causes) has led to what output (known 
consequences) based on given system parameters (Bady, 2013). This means that 
observed measurements (concentration of dissolved methane in the sea water) must be 
interpreted to investigate the cause of this occurrence (methane leakage location). In 
modeling processes this is called inverse modeling.  
 
Therefore, the first part of this thesis collects any related information and case studies 
from a variety of sources relating to the use of inverse modeling techniques in source 
identification. Bady (2013) divides inverse modelling techniques into four main 
approaches. Zhang 's (2007) and Zheng and Chen 's ( 2010) research provides a 
definition of each approach summarised below:   
 

• The Analytical Approach – This uses an analytical solution of the distributions 
of known outputs to inversely solve the casual characteristics. Because this 
approach is only effective for very simple problems, its applications are very 
limited. 

• The Optimization Approach – For this approach, source determination would 
be treated as an optimization problem. It tries to identify which optimization 
methods, such as pattern search methods or genetic algorithms, can be used to 
find out the optimal solution. In addition, this approach uses forward 
modelling to create the effectual data based on all possible causal 
characteristics.  

• The Probabilistic Approach – This approach is almost the same as the 
optimization approach, but it uses probability concepts such as Bayesian 
inference or stochastic Monte Carlo to express possible causal characteristics 
instead.  

• The Direct Inverse Approach – Generally for this approach, the governing 
equations that describe cause-effect relations would be reversed to solve the 
reversed governing equation. 
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Each approach and its advantages and disadvantages will be further described in the 
literature review sections, using case studies from a variety of industries,. In addition, 
only a methodology that has a reasonable possibility to be useful and operationally 
deployable with point sensors for identifying the leakage locations in a wider 
coverage area will be selected for further investigation.   
 
 
1.3.2. Examine the possibility of the use of the selected methodology to improve 

the performance of methane sniffers 
 
In case of a serious incident, real-time prediction is one of the most important tools 
for successful crisis management. The optimization approach has been chosen for this 
master thesis as it provides fast calculation times that matches the requirements and 
characteristics encountered during real-world incidents. However, this approach 
involves a large amount of forward modelling to build up an extensive database, 
which requires various combinations of parameters to cover as many real incidents as 
possible. In addition, to keep resource and time requirements at manageable and cost-
effective levels, artificial neural networks (one of several methods in the optimization 
approach) may offer an alternative approach to reduce the size of the database and 
still be able to provide relevant results. This will make leak source detection easier to 
deploy, faster to calculate and more accurate.  
 
Therefore, the second part of this study is about setting up the experiments to examine 
the ability of artificial neural networks (ANNs) and computational fluid dynamics 
(CFD) to support the use of point sensors to pinpoint the leakage source in subsea 
environments. As artificial neural networks require the data for the database to 
generate outputs, the simulation part in this thesis consists of two major steps: 
creating the database and setting up the artificial neural network to solve the task at 
hand.  
 
For the step of creating the database, I describe the data requirements and the 
importance of data for ANNs, as well as demonstrating how to acquire these data sets. 
CFD is introduced to simulate the release of methane from different known source 
locations (representing real leakage points), in order to identify the dissolved methane 
concentration levels at six locations (representing the reading value from six methane 
sniffers). CFD has been used as the collection of data in the real-world environment is 
very costly and time consuming. In addition, CFD offers an alternative to generate as 
many data sets for this study as the artificial neural network requires. 
 
The architecture, selected from a variety of options, underpinning the artificial neural 
network is a backpropagation neural network. The backpropagation neural network 
will be examined and I will describe how to set up such a network from scratch and 
get it ready for use. This also includes the optimisation of each related parameter in 
order to enable the network to generate the best outcomes. Lastly, this optimised 
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network will be trained to try to validate my hypothesis that artificial neural networks 
have potential to improve the performance of methane sniffers and can be used for 
subsea leak source identification. As the use of both CFD and artificial neural 
networks in combination with point sensors is relatively new in subsea conditions in 
the oil and gas industry, the results of this experiment should provide interesting 
topics for discussion and may provide the focus for future, more detailed studies into 
this subject.  
 
 
1.4. Outline of the thesis 
 
The readers of this thesis will have a range of subject knowledge, motivations and 
interests so I deemed it useful to provide an outline of the thesis because not all 
readers require the same level of detail. The structure of the thesis consists of five 
main chapters: 
 
Chapter 1: Introduction 
 
This is intended to provide the context in which both oil and gas companies and 
society as a whole are increasingly concerned about the severe potential (and actual) 
consequences from offshore oil and gas activities, especially with regards to 
environmental impacts. This has led to calls (and in some cases implementation) of 
much stricter rules by regulators and authorities. As part of a wider range of 
measures, this thesis concerns itself specifically with the potential performance 
improvement of current subsea leak detection systems. 
 
Chapter 2: Literature review 
 
The literature review will provide readers with background information, based on 
summaries of all useful and related research and analysis, which support this work 
from a variety of different viewpoints and application areas. The background 
information and analysis can be classified as: 
 

1.) Leak detection technology – reviews the advantages and disadvantages of 
current technologies. The reader will gain a better understanding of areas that 
need improving. 

2.) Inverse modelling method – deals with four modelling approaches to 
overcome the limitations of pinpoint sensors in a variety of industries and 
applications. The modelling approach with the highest potential will be 
selected for further investigation. 

3.) Testing tools – evaluation of a variety of tools that can support the modelling 
approach for subsea applications. 
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Chapter 3: Experimental design 
 
I have set up five different experiments to support my research. The experiments 
range from how to set up the network and collect the data from scratch to getting the 
network ready for use. This will be of specific interest to readers who want to obtain 
knowledge on modelling with neural networks. The experiments are applicable to 
other areas and also several useful techniques are provided in each experiment. 
 
Within the variation of difficulties and methodology of all experiments, I have applied 
the same structure to all experiments to eliminate complexity and potential confusion. 
Experiments will start with stating my assumptions and a basic introduction, followed 
by the objectives and will conclude with the methodology used for conducting the 
experiment.  
 
Chapter 4: Experimental results and analysis 
 
All experimental results are shown in this chapter. This chapter contains five results 
from five experiments and one summary and discussion part. For all five parts I 
present the result using graphics such as a table or graph, along with the results of the 
analysis.  
 
At the end of the chapter, a summary and discussion are provided. The statement here 
delivers a summary of the useful information from all five experiments in brief: why 
we needed to conduct this experiment, what are the final outcomes, and how each 
experiment connects to each other. Moreover, I also indicate the potential for 
improvements as well as possible alternative solutions to improve the performance of 
the selected model, so it can be used in real world environments. 
 
Chapter 5: Conclusion and suggestion. 
 
In the concluding part, all research work and experiments conducted for this master 
thesis are summarised and I finalise my conviction case to answer the key question: 
do the use of ANNs and CFD have potential to improve the performance of methane 
sniffers in sub-sea environments. In addition, I also assess if it is reasonable to 
compare results from other industries and application areas within the same category 
in order to demonstrate supporting evidence from related research; this is to help 
strengthen the case of this study.  
 
As this master thesis is only an initial feasibility study, the recommendation and 
future scope of study are also provided. This will help to define what application users 
(businesses, organisations, institutions, etc.) actually need in terms of skills or 
knowledge in order to enable this model to perform in a useful capacity in real world 
scenarios.  
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CHAPTER 2 LITERATURE STUDY 
 
2. Literature study 

 
The literature review is an important part of any mater thesis, as it provides useful and 
relevant information to the reader. This applies to and is in support of all parts of the 
thesis: defining the problem, establishing a hypothesis or thesis’s question, designing 
an experiment, analysing the results, making a conclusion, and providing suggestions 
for improvement. Therefore, all the information contained here has been collected 
from respectable sources recommended by the university, such as Springer, 
ScienceDirect, IEEE, and Wiley. This approach aims to strengthen  the credibility of 
the research and conclusions of this thesis. 
 
As this part of the chapter contains material from several areas of expertise, I only 
outline the basic theory of each concept and its application based on case studies. The 
main reason for this approach is to enable the reader to fully understand each concept 
as well as to connect each concept with subsea leak detection systems. Moreover, I 
have tried to avoid using technical terms and phrases as much as possible in order to 
eliminate complexity. This should make this thesis more readable and its findings 
easier to digest. Hopefully both experienced and non-experienced readers will find 
some of the concepts stimulating and thought-provoking.  
 
The relevant literature has been separated into three different groups based on three 
different topics: 
 

1.) Leak detection technology – As this thesis focuses on methane sniffer 
solutions for leak detection, I will review current technology concepts, 
properties, advantages, limitations and area coverage, as well as briefly 
discussing what the industry is excepting from leak detection systems in the 
near future. 
 

2.) Inverse modelling method – This is the algorithm, which can be used to solve 
an inverse problem. There are a number of different methodologies used with 
inverse modelling. In this study four main approaches, which are widely used 
for a variety of applications and in a number of industries, will be reviewed. 
The principles of reviewing are based on both technical and business criteria. 
The advantages and disadvantages of each of the approaches for both 
implementations in leak detection systems, and more specifically, leaks source 
identification, will be summarised. Finally, only the approach with the highest 
potential for these applications will be used to run a feasibility study for this 
specific purpose. 
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3.) ANNs and CFD concepts and tools – This reviews the underlying concept and 
functionality of ANNs and CFD and tries to establish its relationships for the 
questions under review in this thesis. Metaphorically speaking, this constitutes 
the “brain” of this exercise. In contrast the OpenFOAM and Artificial Neural 
Network toolbox from Matlab are the tool-sets, or the “hands”, of the exercise. 
All of them will be briefly described in terms of characteristics and 
functionality, as well as relevance for the core topic. 

 
 
2.1. Leak detection technology 
 
Environmental concerns and regulatory pressures are the main factors in making the 
oil and gas industry focus more on effective and reliable monitoring systems to 
prevent any leakage of oil and gas and its resulting contamination. This applies 
especially to subsea production systems located on the seabed in depth of 100m to 
1000m; these pose a significant challenge for operators. Apart from human safety and 
the avoidance of environmental impacts, high installation and maintenance costs are 
also a concern. Therefore, many methods and principles are currently introduced to 
provide high reliability and efficient subsea leak monitoring systems in order to 
achieve early warning and allow for immediate corrective action.  
 
As mentioned, earlier, the focus is on the methane sniffer method as one of the 
leading detection technologies in the field. It is one of the technologies that has 
already been deployed as part of subsea leakage detection systems. The aim of this 
thesis is to identify possible solutions to enhance the detection system performance by 
using the data collected from methane sniffer to quickly identify the leakage location. 
 
 
2.1.1. Methane sniffer method 
  
Sniffers are sensors that detect and measure even small concentration of carbon 
molecules in water. Generally two principle measuring technologies are deployed 
with these sniffers. The first principle is a semi-conductor system, which is based on 
the conductivity of the component (coated with tin-dioxide layer) inside the sensor 
chamber. Theoretically, the hydrocarbon molecules react with the oxygen on the 
surface of the component. This releases free electrons in the layer and increase the 
conductivity. The changing of conductivity is converted to a voltage signal which is 
then digitized in order to provide readable data to users (Neptune Oceanographics, 
n.d.). The second principle is associated with the optical non-dispersive infrared 
spectrometry (NDIR) method; it basically uses a degree of absorption of infrared light 
to determine the concentration of methane (Cole, 2013). In addition, regardless of the 
measurement technology deployed, both are based on the diffusion of hydrocarbons 
from the water across the specific membrane into the sensor chamber behind. The 
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water stays outside. Generally, sniffer methods can be applied to detect the higher 
order chains of hydrocarbons (hydrocarbon sniffer) or just methane (CH4); which is 
the substance of interest (methane sniffer). A picture of a methane sniffer and its 
dimensions is shown in Figure 1 and more specific details are shown in Appendix A. 
 
Methane sniffers provide a number of advantages for subsea leak detection system. 
These are (Neptune Oceanographics, n.d.),(Neptune Oceanographics, n.d.),(Esser, 
2008): 
 

• Being able to detect almost any hydrocarbon leakage sources, as CH4 is the 
smallest molecule of almost all hydrocarbons including oil and natural gas. 
Any other gaseous substances in the environment such as H2S cannot be 
detected, and are of no consideration for our purposes. 

• Very high sensitivity (about 50nM – 10uM for standard setting) meaning that 
methane sniffer still performs well even with low concentrations of methane 
dissolved in the water; able to detect even very small leakages. 

• Response time within a few seconds (immediate detection). 
• Eliminates the use of dyes (fluorescent marker) in the field makes the system 

more environmentally friendly. 
• Low failure rate and power consumption due to no internal moving parts or 

pumps. 
 
 
 
 
 
 
 
 
 
 
 
 
On the other hand, the methane sniffer also has some limitations because they are 
point sensors by design. The main disadvantage is that the measurement is limited to a 
very localized area from which the gas is diffused into a chamber for analysis. In 
addition, the environmental conditions might also interfere with the measurement 
performance; for example sensors would not be able to detect any methane dissolved 
in water if sea currents drive the leaking medium in the opposite direction away from 
where the sensor is located. This could make detection slow and unreliable. In order 
to overcome these challenges, leakage detection system tends to use an array of 
sensors that include a sufficient number of methane sniffers. That extends the 
detection area coverage as well as reduces traveling times of methane from leakage 

Figure 1 The methane sniffer 
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source to the chamber of the sensors; allowing the system faster and near real-time 
detection (Esser, 2008). 
 
In addition, there are other drawbacks of methane sniffers that still exist and cannot be 
eliminated easily. Those are the difficulties of quantification of leakage levels and the 
limitation of identifying a leak source location (Cole, 2013). In order to overcome 
both drawbacks the combination of several types of sensor can compensate in these 
circumstances, but would often prove difficult and costly. 
 
Based on recommended practice DNV-RP-F302 on the challenge posed by the 
development of subsea leak detection systems, there are four capabilities the industry 
would like to see most in leakage detection system (DNV, 2010). Those are the 
technologies, which can provide quantification, identification, localization, and 
classification of a leakage. It would be of specific benefit to the industry if these four 
operations could be integrated into only one system or technology. This is, therefore, 
one of the main starting points that underlies the objective of this master thesis. 
Specifically, it is to identify any solutions or algorithms, which can provide extra 
functionality (identification) for the methane sniffers, in order to decrease the high 
complexity of combining several sensors as well as reduce related costs. 
 
 
2.2. Inverse modeling method 
 
Before going into detail about inverse modeling methods, we should start with a brief 
introduction of what inverse theory and an inverse problem is and what it does. 
 
An inverse problem is a general framework to find unknown causes based on known 
consequences. The inverse problem methodology is principally used for two different 
types of problems: the reconstruction problem; model and output are used to identify 
which input has led to this output.  
 
The other problem is the identification problem which, with given model parameters 
and observation data, identifies the model (system) of the relationship between inputs 
and outputs. While the forward theory is typically focused on cause-effect sequences 
such as the forward-time problem, which with given model parameters and model, 
finding out the output of the model (Bady, 2013). Figure 2 show the system of inverse 
problem and forward problem (Richardson and Zandt, 2009). 
 
 
 
 
 
 



 11 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Where: 
 
The model parameters: They are the parameters that characterize a model or define a 
particular system. It can be either the numerical quantitative values for the forward 
problem or unknown values that we want to estimate in case of the inverse problem. 
 
Model: This describes the mathematical relationship between model parameters as 
well as other related information and the output data. This relationship may be a 
simple linear model or something inherently more difficult such as a non-linear 
model. 
 
Model results: This is the data which is observed or measured in each circumstance 
and are inferred by the model parameters that characterize the system. 
 
As the definition of the inverse problem is completely different from the forward 
problem, using the normal forward method in order to solve the problem might not be 
appropriate or can yield complex solutions. Therefore, the inverse modeling method is 
deemed to be more suitable, as it can estimate the model parameters based on 
observed data and physical understanding of the model characteristics. 
 
In this study, the inverse modeling method is used to investigate the methane leakage 
source on the seabed around the oil platform, as an incident might develop into a 
severe oil or gas spill with potentially catastrophic consequences. 
 
However, using inverse modeling methods in this specific application requires some 
base data inputs. This is provided by the methane concentration measured by methane 
sniffers at six different locations and the seawater current flow in the considered area. 
They are used as both the observed data and the model respectively. The estimated 

Figure 2 The system of inverse problem and forward problem 
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numerical value derived from the model will represent the methane leakage locations 
(estimated model parameter). 
 
In addition, inverse modeling is a discipline that applies any mathematical techniques 
to combine measurements and models to solve the inverse problem (ETH Zurich, 
2008). Unfortunately, there exist no inverse modeling (mathematical) techniques that 
have been employed in subsea conditions as in the present study. Therefore, each 
mathematical technique reviewed in this chapter will be based on techniques used in 
applications with some proximity to this specific problem (subsea leakage source 
identification) such as the detection of pollutant sources in air or ground water.  
 
As each approach (inverse modeling method) provides several types of concepts to 
solve the specific application, only one concept for source identification will be used 
for each approach demonstrated in the following sections. This allows the reader to 
see the big picture of each approach and total area of inverse modeling method in 
particular: how they work and also the differences between each approach regard to 
solving a problem process. In addition, the four approaches (mathematical techniques) 
will be discussed highlighting each advantages, and disadvantages, as well as 
possibility to implement it as a leakage source identification feature in subsea 
condition. 
 
 
2.2.1. The analytical approach 
 
This approach is a very simple method, which most people have probably already 
used, but do not necessarily know. For example y = 3 + x, where y = number of total 
seats for the dinner tonight, 3 is the number of hosts. If the total seats are 5, we know 
that we have to invite 2 more people to fill all seats (x). It seem that the results from 
the analytical approach is solved by fitting the model parameter (x) to the observed 
data (y).  
 

𝑥   =   𝐺(𝑦) 

where,  G(y) is a linear/non linear operator 
 
However, the system is more complex in relation to this thesis; it consists of a large 
diversity of elements connected together and the operator can be much more 
complicated. Therefore the methods to solve the problem need to be more advanced.  
 
In the case of air pollution in urban areas, Islam and Roy's (2002) and Islam's (1999) 
research demonstrated a solution to identify the emission source by using an 
analytical approach. The methodology of using this approach for inverse problems is 
shown in following steps.  
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Firstly, the analytical approach typically requires a starting equation, which has to be 
able to describe the distributions of airflow and pollutant concentration from source. 
Therefore, the Gaussian plume equation, one of the best known diffusion equations 
and the most commonly used in several research studies, was deployed in Islam, 
(1999) work. The Gaussian plume equation is (Turner, 1994)(L. C. Thomson et al., 
2007)  :   
 

𝐶 𝑥,𝑦, 𝑧,𝐻 =   
𝑄

2𝜋𝑢𝜎!𝜎!
   ∙ exp −

𝑦!

2𝜎!!
   ∙    exp −

𝑧 − 𝐻 !

2𝜎!!
+   exp −

𝑧 + 𝐻 !

2𝜎!!
 

 
with  
 𝜎! = 𝑎𝑥! 
 𝜎! = 𝑐𝑥! + 𝑓 
 
where: 
 C  = the concentration of the pollutant (kg/m3) 
 Q = the source injection rate (g/s) 
 u  = the average wind speed (m/s) 
 x  = the distance downwind from the stack (m.) 
 y = the crosswind distance from plum centerline (m.) 
 z  = vertical distance from ground level (m.) 
 H = the stack height; sum of stack height and plume rise (m.) 
 𝜎! ,𝜎!  = the standard deviations of the concentration in y and z axis (m.) 
 a,c,d, and f  = the indices of the downwind position x 
 
Based on the equation earlier, it consists of a large diversity of elements connected 
together. As a result researchers have to apply more advanced mathematical 
techniques to solve this equation.  
 
 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 3 The Gaussian plume model (Thomson et al., 2007). 
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Secondly, as the origin of the emission source is unknown, most of the parameters in 
this equation still remain unknown such as coordinate x and y as well as the emission 
rate of the source (Q) that may vary with time. Therefore, apart from trying to directly 
solve these unknown parameters by the different types of equation, Islam, (1999) 
decided to use data from two different locations of sampling sites in order to create 
the ratio of the concentration. This will eliminate parameter Q. The ratio of the 
concentrations between two sampling site is: 
 

!!
!!
= exp− !!!!  !!!

!!!!
 

 
that is equal to 
 

𝑦! =   
−2𝜎!! ln

𝐶!
𝐶!

+ 𝑟!"!

2𝑟!"
 

 
where, 𝑟!" is the distance between two sampling sites, and 𝜎! = 𝑎𝑥! 
 
To solve the problem, one of the techniques which can be implemented is a graphical 
solution; defining the value of x then calculate y from the Equation 2-2, repeat it with 
several x values, and finally plot and draw a line into the coordinate x - y graph. The 
emission source location will lie on the curve somewhere. Fortunately, it is possible to 
be more specific about the location of the emission source by adding the new set of 
data from another pair of sampling sites and solve it employing the methods 
mentioned earlier. Consequently, the intersection of both curves denotes the location 
of the emission source as shown in Figure 4. 
 
This is one example of several articles that have been published on this topic. It 
implies, in order to determine an emission source location, there are many different 
type of models (which are created to predict the concentration of gas in the 
atmosphere), and also many mathematical techniques to solve the unknown 
parameters of a model. Kathirgamanathan et al., (2012) research created the source 
term from an advection-diffusion equation and also implemented a non-linear least 
squares regression as a methodology for identifying the source location. In addition, 
even though there are several concepts that can be used in this analytical approach, 
they all have one thing in common no matter how complex the question are, is the 
requirement of a starting equation (for example the Gaussian plume equation). 
 
 
 
 
 

Equation 2-1 

Equation 2-2  
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Finding a real starting equation (model), which is able to completely describe the 
dispersion of pollutants can be very difficult. Even the Gaussian dispersion equation 
which has been widely used for many years, has many limitations such as the 
emission rate and horizontal meteorological conditions being constant, no wind shear, 
and the inability to take historical data into an account (Durrenberger, 2014). All of 
the major and minor constraints have significant impact on the prediction accuracy of 
the model (How well the model can represent the real environments). Low accuracy 
models can lead to differences between estimated and actual concentration that might 
directly affect the prediction process and the performance may deteriorate further. 
 
This drawback applies especially to subsea conditions. Therefore, the disadvantage of 
using the analytical approach for subsea leakage source identification can be 
summarized as follows: 
 

1.) At present there are no theoretical models to fully support the characteristic or 
behavior of methane dispersed in the seawater, meaning that it is more 
difficult to estimate the related parameter as well as the methane concentration 
at various locations. 

2.) The dispersion of methane in subsea condition can be a very complex process. 
There are many related parameters, which could interfere with the behavior of 
methane dispersion such as temperature, location, timing, and the total volume 

Figure 4 Equipotential pollution source curves (EPS1 and EPS2) from two pair of sampling sites 
(A,B) and (C,D). The emission source locates in location (p,q) (Islam, 1999).   
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of release. Also, the water current path does not remain static; the water 
current velocity and direction is changing over time and specific events such 
as surge currents may occur. This constitutes a dynamic system. All this 
makes it difficult to build a model that can take account of all these variances. 

3.) After the model has been built, it may consist of many related parameters, 
meaning that in practical terms the total system has to combine many types of 
sensor to measure and identify the value of all related parameters in order to 
solve the model. In addition, the mathematical concepts used to solve the 
equation have to be more advanced as the complexity of the model grows. 
This may result in increased calculation time, more resource to solve the 
equation and a final answer that is very much an approximation. 

4.) As this approach is based on mathematical equations any errors, which are 
added during the measurement process, would introduce additional uncertainty 
into the prediction. The implication is that this approach is unlikely to tolerate 
any noise (such as the error from reading a sensor, malfunction of sensors, 
etc.) from even a small percentage of the data. 

 
On the other hand, the analytical approach has been validated by Alifanov's (1983) 
research for specific applications. He focuses on solving inverse heat-conduction 
problems with the analytical approach. The results show that this approach can 
provide very high accuracy and efficient methodologies for this specific problem.  
 
However, one dimensional heat conduction problems are simple problems compared 
to 2D or 3D methane dispersion in subsea condition. Therefore, using the analytical 
approach can provide a usable result only for a case of a simple problem, whereas for 
high complexity problems such as subsea leakage source identification, good results 
are unlikely to be produced due to the many limitations mentioned earlier. 
 
 
2.2.2. The Probabilistic Approach 
 
The underlying principle of the probabilistic approach is the use of probability theory 
to quantify variation and ambiguity of information used in the model. The implication 
is that in the modelling process the value of parameters are typically represented in 
distributed form, instead of the fixed value as with the other three approaches 
(Ghahramani, 2011). The benefit of distribution enable each source parameter to 
describe a range of possible values and also to show which value is most likely to 
occur. In addition, not only the source parameter can be shown as a distribution, but 
also the results of the model. Therefore, the probabilistic approach can express all 
aspects of uncertainty in the model; both input and output. That may lead to 
performance improvements of the model in terms of forecasting or decision making 
respectively, due to the full range of possible outcomes, which will be taken into 
account. 
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The probabilistic modelling methods are mainly based on the Bayesian inference, 
especially when the probabilistic modelling is used to solve inverse problems. Using 
the Bayesian framework in contamination source identification was originally 
developed in the late 90’s by Neupauer and Wilson in the area of groundwater 
pollutant source identification (Zhai et al., 2011). This approach has been developed 
further to enhance performance by the introduction of the adjoint equation and 
dynamic inversion amongst others. This has increased the efficiency of the probability 
modelling method, as well as making it more adaptive respectively (Zheng and Chen, 
2011). However, the most common use of this approach is to combine the Bayesian 
inference with stochastic Monte Carlo or Markov Chain Monte Carlo. Both are used 
as sampling tools to estimate the outcome. 
 
Using the Bayesian approach in contamination source identification (in air conditions) 
can be divided into two main stages: the pre-event or simulation stage and the data 
interpretation stage (Sohn et al., 2002).  
 
The pre-event or simulation stage 
 
Sreedharan et al., (2006) briefly concludes that the major task of the first stage“… 
consists of developing a library of hypothetical contaminant transport simulations 
spanning the set of all plausible pollutant release and internal airflow conditions.”. 
Typically a library is created by applying the fundamental principles of Bayesian 
inference or Bayes’ rule.  
 
Bayes’ rule provides a statistical method to calculate the output (a posterior 
probability) based on unknown parameters including its probability distribution, and 
the likelihood of observation given unknown parameters. The Bayes’ rule is shown as 
the following equation (Walpole et al., 2011). 
 

𝑝 𝑌 𝑂 =   
𝑝(𝑌)𝑝 𝑂 𝑌

𝑝(𝑂)   ∝ 𝑝(𝑌)𝑝 𝑂 𝑌  

 
Where; 

Y   = the unknown parameter  
 O   = the observations 
 𝑝(𝑌)  = the prior distribution of the parameter 
 𝑝 𝑌 𝑂  = the posterior distribution of the parameter 

 𝑝 𝑂 𝑌   = the likelihood function  
 𝑝(𝑂)  = the marginal distribution of O 
 
Basically, we can treat 𝑝 𝑂  as a constant. Then the posterior distribution can be 
expressed as  
 



18 

𝑝 𝑌 𝑂   ∝   𝑝(𝑌)𝑝 𝑂 𝑌  
 
where the symbol “∝” mean is proportional to 
 
As we have seen from the earlier equation, the posterior is proportional to the product 
of the prior distribution and the likelihood function. Therefore, the first stage of the 
Bayesian modelling framework is to express all assumptions using the concept of 
probability, especially for both the prior distribution and the likelihood function. 
However, assignment of both the prior distribution and the likelihood is difficult due 
to the fact that it contains a high degree of unknown probability and also demands a 
huge amount of processing time. 
 
It is a requirement of the Bayesian method that model creators define parameters prior 
to execute calculations. The prior probability can contain any information known 
about the unknown parameters before the event will occur. In addition, information is 
provided based on the fact that different configurations might lead to the same 
outcome and vice versa, some will be more probable than others (Keats et al., 2007). 
 
In order to estimate uncertainty, the model should be based on the reliability of 
historic observation data in order to maximise its performance. For example, if 
historical data shows that an area with a high density of pipes is the main source of 
leakages, then the value of the prior probability will increase (it represent how likely 
the leakage will occur in this region). However, all possible parameter scenarios will 
have to be defined in order to cover all probabilistic ranges (location of source in x y z 
axis, strength of source, and source duration respectively). We can simply call this 
process the parameters uncertainty characterization. 
 
The likelihood function describes the probability of the level of contamination, which 
is given by unknown parameters (i.e. location, strength, and duration). This 
probability of the likelihood function is basically obtained by solving the equation 
(Zeng et al., 2012). However, there are many other techniques and several types of 
equation to determine the probability, which can be used varying from application to 
application. 
 
Once both the prior distribution and likelihood function are defined the model 
designer can generate a library by sampling the pool of the model parameters 
(unknown parameter) and predicting the output for each set of parameters. Each set of 
parameters and their outcomes represent one scenario that has a chance to occur in 
real environments. This sampling process is being repeated again and again with 
varying the parameters. Thus the resulting library of simulations may consist of more 
than a thousand different scenarios. In addition there are several types of sampling 
techniques, which can be applied here, such as Important Sampling (IS), Monte Carlo 
(MC), Bayesian Monte Carlo (BMC), and Bayesian Markov Chain Monte Carlo 
(BMCMC). The last two sampling techniques are performing well and are widely 
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used in many applications and in contamination source identification in particular. 
However, the benefits of selecting a well performing sampling method is not only to 
fully capture all ranges of possible condition, but also reducing the time used for the 
sampling process. Rajabalinejad, (2010) demonstrated the comparison between the 
results obtained by IS, MC, and BMC and showed that BMC can reduce the number 
of simulations by 3 and 30 times compared to MC and IS respectively. Also, 
BMCMC perform better in many cases because of its ability to improve on previous 
samplings to better approximate the next sample selection as it shown in Figure 5 
(Zheng and Chen, 2011). 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The data interpretation stage 
 
This stage always takes place during a release event. It is basically to gather the 
measurement value from several sensors installed in different locations within the 
considered area and send it to the monitoring-computer. All of the collected data will 
be interpreted by the algorithm, which will compare the sensoring data with the data 
in the library. The data with the best fit will become the output of the model. This 
stage is very simple and quickly executed due to no requirement to re-execute the 
time-consuming pre-event stage of the analysis (Sohn et al., 2002) 
 
Based on the overview of the probabilistic approach, which was provided earlier, I 
have identified both the advantages and the disadvantages of this approach and have 

Figure 5 Sampling results of MCMC. Blue points are the sampling point and the arrows show the 
direction of the sampling process. The sampling point quickly arrived at the neighbourhood of the 

source, and gradually approximate to the source (Zheng and Chen, 2011). 
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applied it to subsea leakage source identification. This is summarized and shown 
below: 
 
The advantage 
 

1. The Bayesian modelling framework expresses all assumptions using the 
concept of probability. This means that not only one specific value will be 
assigned to a parameter, but also the value contains uncertainty of how likely 
this value can occur. This is called the probability density function (pdf). 
Therefore a posterior probability distribution of the parameters is obtained 
rather than a single solution. The example of the posterior probability densities 
of unknown parameter is shown in Figure 6 (Zhang et al., 2015). In practical 
terms, this form of output can add extra benefits to the user, such as the model 
forecasting the leakage source in x-axis at 3 meters from the reference point 
(based on posterior probability densities of xs shown in Figure 6), which is not 
exactly the same location as the true leakage source. This means that once 
operators go to the site they will have a range of options and areas to 
investigate based on the ranking of high probability obtained by the posterior.  
 
 

 
 
 
 

 
2. This approach allows the evaluation of data confidence by repeating the data 

interpretation stage again and again with the same value of all input 
parameters, 100 times for example. The model basically generated 100 
slightly different posterior distribution of each unknown parameter. These can 

Figure 6 Comparison of the posterior probability densities of unknown parameter (a) xs, (b)ys, (c) Ss, (d) ton, 
and (e) toff between true value and prediction value from original BMCMC and improved BMCMC. 
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be used to calculate a confident interval in order to ensure the accuracy of the 
outcome. The implication is that the uncertainty of the solution can be easily 
be evaluated. 

3. Because of the libraries that were previously created, the probabilistic 
approach can perform very fast analysis of sensory data by cross referencing. 
Based on Sohn et al., (2002) research, the researched model could predict 
contaminant dispersion in buildings within under two minutes with high 
probability. 

 
The disadvantage 
 

1. One of the major limitations of the probability approaches, especially one with 
Bayesian inference, is to presuppose the probability density function of prior 
distribution of all model parameter (predict the distribution of the parameters) 
such as leakage source location, source strength, and source emission duration. 
This is a very difficult task and hard to achieve in a short period of time due to 
lack of the real operational information. However, uncertainty distribution that 
describes the probabilistic range of possible values can be assumed or 
estimated; wide distributions are generally used by the limited prior 
information. These cannot fully represent the characteristics of the considered 
parameters. This results in the difficulty to obtain an explicit scheme of the 
posterior probability distribution of the parameters. Moreover, even the high 
reliability of the observation data, which can be obtained in one specific site, 
cannot necessarily be fully applied to other locations.  

2. Even though there are several techniques that can be applied for a sampling 
process to reduce the processing time, this process is still time consuming, 
especially when the many unknown parameters are taken into account. In 
addition, reducing the processing time may interfere with the sampling 
performance, thus, sampling technique have to be carefully selected. 

3. Bayesian inversion is limited only to models with a few numbers of unknown 
parameters. However, whilst it is possible to use this approach for scenarios 
with a high number of unknown parameters by deploying the Wiener 
integration, this is difficult to be implemented as the level of equations used 
gets extremely complex (Snieder, 1998). 
 
 

2.2.3. The optimisation approach 
 
The process of the optimisation approach is typically based on trial and error of many 
possible values to optimise the objective functions or model parameters.  
 
In case of subsea leakage identification for example, the optimisation approach 
focuses on interpreting the output or the consequence of the event (the level of 
methane dissolved in the water measured by sensors). It subsequently fits them to the 



22 

library (the database), which can contain all related information such as the water 
current flow model and the methane transport model. In addition, the ‘fit’, sometimes 
called ‘match’ or ‘pair’, is usually achieved by adjusting the model parameter until 
they identify the best or the most probable data (less errors). The final result will 
identify the possible source of contamination, specifically the leakage location.  
 
Basically, each method of the optimisation approach can be separated into two main 
groups based on types of the final data which is generated and it characteristics. These 
are the indirect search method and the direct search method (Zheng and Chen, 2010). 
The basic concept and the limitation of both methods will be demonstrated based on 
case studies. The featured case studies mainly relate to the source identification 
problems.  
 
The case studies of indirect search method are: 
 
Based on Elbern et al., (2000) research, the four-dimensional variational assimilation 
(4D-var) method was deployed to identify the emission rates of a source (which it is 
an objective function of this case study) based on pollutant measurements such as SO2 
and NO in the environment. In Elbern’s example the emission rates are subject to 
optimization. The 4D-var method will iteratively use any possible values of the 
emission rates to minimize the misfit between modeled concentration levels and 
measurements. Later the predicted emission rates of sources will be sent to an air 
pollution dispersion model, in order to inversely locate the pollutant source. Also 
Yumimoto and Uno's (2006) research demonstrated the upgraded 4D-var method 
which was applied to optimise CO2 emissions based on the measured data from three 
main stations and then used CO2 emission data to predict the concentration field based 
on chemical transport models (CTMs). 
 
It seems that the output obtained by the indirect search method could not fully answer 
the optimal control problem, unless other post-processes were applied. Typically, the 
optimised values of objective functions are needed as input for other related models 
and equations, for generating the final results. However, the selected objective 
functions may create a major problem with this approach by introducing high levels 
of complexity. The more complex the objective functions are, the higher the 
calculating times will be and the greater the number of related equations that need to 
be taken into consideration will be. In addition, the indirect search is a method that 
requires partial derivatives of objective functions to search for an optimal point (also 
called descent method) unlike direct search, which does not require partial derivatives 
and can therefor be described as non-gradient or zero-order method (Kumar, n.d.). 
 
On the other hand, the direct search method focuses on the overall system rather than 
each individual parameter. This group of algorithms are more suitable for pollutant 
contamination source location. Firstly, the implication is that a usable final outcome 
(also knows as optimal solution) will be generated when the given tolerance is 
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reached (such as errors less than 0.1). Secondly, usually the objective functions, 
which indirectly relate to the original optimal control problem can be ignored. The 
differences between both methods are shown in Figure 7, where the first optimises 
any parameters to produce a predicted leakage location and the second optimises the 
matching between input and output sources. 
 
However, the same optimisation methods can be used for both direct and indirect 
methods. 
 

 
 
 
 
 
In the case study we will describe several concepts of each optimisation algorithms 
(using for direct search methods in source identification problem). The most widely 
used algorithms are: 
 
 
2.2.3.1. The pattern search method 
 
This algorithm is one of the basic optimisation methods. In terms of the searching 
process, the pattern search method consists of two basic steps. They are “the axis 
direction move” and “the pattern move”. Zheng and Chen's (2010) research has 
demonstrated the application of the pattern search method to identify the location and 

Figure 7 Flowcharts of indirect/direct search method 
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strength of hazardous material releases. In this case, the location and also source 
strength were given as the unknown parameters. Also, the Gaussian plume model was 
used as the air dispersion model in order to calculate the concentration at each 
location.  
 
The processes of the pattern search method can be summarised in the following steps. 
Step One defines the theoretical parameters (leakage location and source strength) and 
its initial values (the global or local optimum point depending on this initial value).  
In Step Two the model algorithm will vary each parameter by increasing or 
decreasing their values from current point applying a constant factor. It is called the 
axis direction move. Following on, we calculate the criteria value (the difference 
between calculated concentrations and measured concentration). If there are no such 
increase or decrease of the criteria value compared with the values of the previous 
points, the step size is halved (it is called the pattern move) and the process is 
repeated from the first step again and again until the termination criteria are reached 
(Davidon, 1991), (Zheng and Chen, 2010).  
 
 
2.2.3.2. The simulated annealing 
 
The method of Simulated Annealing (SA) was introduced by Kirkpatrick et al., 
(1983). It is based on an analogy with thermodynamics, specifically the process of 
heating and controlled cooling of a material in order to reduce any defects in the 
material. This process directly depends on thermodynamic energy (E).  
 
Once applying this thermodynamic analogy to the optimization problem, the goal is to 
bring the system from initial state to a state in which the system uses minimum 
possible energy. The rule for accepting change in state is also based on the Boltzmann 
probability distribution as in the following equation (Laura C. Thomson et al., 2007). 
 
 

𝑅 0,1 <   exp −
𝐸! −   𝐸!!!

𝑇!
 

 
where: 
 
 R (0,1)  = A random number between zero to one 
 En  = The energy of the system at current point 

En-1  = The energy of the system at last accepted point 
 Tn  = The temperature or cooling parameter.  
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Laura C. Thomson et al., (2007) research uses the simulated annealing to locate the 
gas source. The location was given as the unknown parameter and the Gaussian 
plume model was applied as the air dispersion model in order to calculate the 
concentration at each location. The processes of the simulated annealing method can 
be summarised as follows:  
 

1.) Initialize control parameter T. The value of T is decreased after each iteration 
based on 𝑇! =   𝑇!!! 1−   𝜀 , where 𝜀 is the constant value (between 0 to 1) 
specifies the time used to reach the solution. The higher value of 𝜀 (close to 1), 
the smaller number of iterations using to find an output. However, this might 
results in missing an optimal solution. 

2.) Randomise the initial value of gas source location. 
3.) Model starts calculating the energy En based on the new value of unknown 

parameters. This En value represents the difference between calculated 
concentrations and measured concentrations.  

4.) Comparison between En and En-1. The change is automatically accepted, if 
En<En-1. Whereas, in case of En > En-1, the change will only occur, if the results 
from the exponential was greater than the random number R. 

5.) Adjust T  
6.) Repeat the step 2, 3, 4, 5 and 6 until the value T becomes zero. 

 
Because the new value of the unknown parameter is newly set at every iteration, this 
algorithm can search for the global optimum. 
 
In addition, the simulated annealing was also deployed by Newman et al., (2005) to 
determine contaminant source zones in natural ground water, in which the flux plane 
conceptual model was treated as the groundwater flow model in order to calculate the 
concentration at each location. 
 
 
2.2.3.3. The genetic algorithm 
 
The genetic algorithm (GA) is classified as one of the artificial intelligent 
optimization methods. Similarly to most optimisation techniques, the genetic 
algorithm is based on iteration, but the most interesting and different part of GA is its 
operation to modify the parameter. This is inspired by the principle of biological 
genetics and natural selection. The process of GA can be shown as the following steps 
(Ushakov, 2013): 

 
1.) Initialisation  – Random selection of genes (population of solutions which 

contains the parameter values) from gene pool and determination of the 
number of selecting genes. 

2.) Selection – each set of the parameters are evaluated by a fitness function 
(similar to the cost function) in order to measure the quality of the represented 
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solution. Genes with better quality than the requirement stay alive while others 
die off. The results are called first generation. 

3.) Genetic operations – this step is all about generating a second generation 
population of solutions. The second generation basically contains a higher 
quality of genes than the earlier generation. In terms of breeding, the 
algorithm randomly selects the pairs of individuals and shares many of the 
characteristics of its individuals using genetic operators (the most widely use 
are crossover or mutation). 

4.) This generational process (step 1, 2 and 3) keeps repeating until a termination 
condition has been reached. 

 
The genetic algorithms has been studied in many research articles such as Khlaifi et 
al., (2009). These represent the combination of the Gaussian dispersion model with 
genetic algorithm in order to identify SO2 emitting source. This study utilises real data 
obtained from three different locations in France over a 24 hour period on the 11th 
March 1992. It showed promising results. Likewise, the research from Haupt (2005) 
proved useful for using genetic algorithm in dispersion modelling specifically in 
source position identification applications. In addition, the main advantages of GA are 
that it can deal with a large number of parameters, it does not require initial values 
and its ability to utilise global search and provide more than a single solution 
(Goldberg, 1989). 
 
Even though all three reference algorithms have their own specific advantages and 
limitations, they have one commonality; they all require the pollutant dispersion 
model. However, as I mention earlier in the section on the disadvantage of the 
analytical approach, there are no theoretical models to fully support the characteristic 
or behavior of pollutants dispersed in conditions such as air and ground water. 
Therefore, these kinds of support models may constitute the weakest link of the total 
system.  
 
Fortunately there is one well-known optimization algorithm, which does not require 
the dispersion model. This is the artificial neural network. The research of Reich et 
al., (1999) and Rege and W.Tock, (1996) demonstrates this by using artificial neural 
networks for source identification of unknown air pollution and for estimating 
emission rates of hydrogen sulfide and ammonia respectively. Moreover, they also 
suggest that artificial neural networks are a promising method to deal with 
identification of patterns, specifically in the presence of noisy or ambiguous data (in 
non-linear systems). For this reason I have decided to select this algorithm to 
represent the optimization approach and to compare it with the other three approaches 
applied to subsea leakage source identification. The fundamental advantages and 
disadvantages are discussed below. 
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2.2.3.4. The artificial neural network 
 
Artificial neural network (ANN) is a mathematical model that was designed to mimic 
the learning process of humans. Human learning processes are typically based on 
being exposed to a range of experiences. For example, a proofreader who works at a 
publisher for many years is likely to proofread faster and has a higher accuracy 
compared to a newly graduated one. This is due to the fact that a professional 
proofreader has had much greater exposure and familiarity with words, sentences and 
syntax. The underlying concept is that humans can learn to recognize and respond to 
patterns, which they have experienced and have been frequently exposed to.  
 
Artificial neural networks (ANN) are designed using similar principles. They can be 
trained to recognize patterns in data as well as learning and understanding the 
relationships between inputs and outputs. This enables an ANN to make predictions 
based on the unseen inputs within a range of historical data used for training purposes 
(Rege and W.Tock, 1996). The process of ANN development can be divided into two 
main steps. Those are: 
 

1. Initial stage – the ANN architecture as well as relevant coefficients, such as 
bias and weight, have to be carefully set up with the appropriate values.  

2. Training stage – a significant amount of the data such as observed 
concentration (input) and leakage source location (output) are presented to the 
ANN. Then the model creates mapping of the input-output correlations in an 
underlying process. This is the key stage to determine the performance of the 
ANN in terms of prediction or forecasting. 

 
The advantages and disadvantages of using ANNs for subsea leakage source 
identification are summarized and shown below: 
 
The advantages 
 

1.) An event or accident usually consists of three elements: These are cause, 
consequence, and system, which links cause to consequence. The other 
algorithms reviewed earlier all need the elements of consequence and system 
for inverse calculation to find the cause. This can sometimes create a problem 
due to a lack of models, which represent the ‘real’ environment and are usable. 
However, this problem is eliminated by ANNs, which do not require a 
methane dispersion model, but only concentration data and the location of 
leakages. This means this algorithm can easily be applied to a high-complexity 
and non-linear system. 

2.) Most models of dispersion are based on estimated parameters such as 
dispersion coefficients in the horizontal and vertical directions (in case of the 
Gaussian model), which are difficult to incorporate into a predictive model. 
Moreover, in case of creating new air dispersion models, factors such as 
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atmospheric stability characteristics have to be fully understood and taken into 
consideration to generate a usable model. This can be very complex and time 
consuming. Fortunately, ANNs are not subject to those constraints by being a 
completely empirical model (using relationship rather than logical 
explanation) (Rege and W.Tock, 1996). This can reduce or eliminate the need 
for specific knowledge of related parameter such as turbulence or vortices 
occurring in the considered area needing to be taken into account.  

3.) As ANNs are completely empirical models, as well as a reliable predictive 
tool, they have the ability to solve inverse problems that contain noisy or 
ambiguous data. This means that ANNs have greater tolerance of noise, which 
can improve the overall system performance. This is a very useful feature, as 
small errors from measurements can cause large oscillation in the results (Li 
and Niu, 2005). 

4.) Many of the optimisation approach techniques require a much larger amount 
of time per iteration to solve the problem. With ANNs, the main time-
investment occurs during the training process only. This means that 
subsequently ANNs can predict the output almost in real time in operational 
conditions. 

 
The disadvantages 
 

1.) As mentioned earlier, ANNs are a new approach to deal with complex and 
non-linear problems and are based on soft computing methodology. Therefore, 
to find the theoretical guidance that supports each specific application can be 
very difficult. Constructing a model is fundamentally based on trial and error 
of the different values and theories in order to determine and improve the 
performance of the ANN. This is a time consuming process and has its own 
inherent problems. 

2.) The output of the optimisation approach is estimated data, which minimises 
data misfits between the database and calculated value. This implies that the 
optimal point should be presented in the lowest point (global minima) of the 
objective function. Normally, only linear problems can contain one minima 
(or maxima) point. Unlike the nonlinear problem, the objective function has a 
large number of local minima and maxima as shown in Figure 8. (Snieder, 
1998). The fact that ANNs use a backpropagation algorithm as its local 
optimization method can lead to misidentification of a local minimum as the 
global minimum. In addition, the final estimates (or optimal solution) obtained 
by local optimization methods cannot always easily be verified if the result is 
located at the global minima or at one of the local minima. 
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3.) In order to train an ANN a high number of data sets are required. This data has 
to be sufficiently scattered over a range of variables in order to capture all 
possible scenarios for a given process to increase the ability of prediction of an 
ANN. However, the vast sets of data often prove to be computationally and 
financially challenging as well as time consuming.  

 
 
2.2.4. The Direct Inverse Approach 
 
The direct inverse approach is the methodology that solves the inverse problem by 
reversing the governing equations, which can describe cause–effect relations. The 
implication is that this modelling method basically starts from the end result running 
simulations counting down time to zero in decremental steps in order to obtain the 
contaminant concentration evolution (from end point to starting point) (Liu and Zhai, 
2007). The original techniques for direct inverse modelling are the regularization 
technique and the stabilization technique. These techniques can improve the solution 
accuracy by reducing the instability of reversed governing equations. In addition, 
Kato's et al., (2004) research, which focuses on atmospheric contaminant transport 
modelling, evaluates a contamination source by backward trajectory analysis of the 
flow. This technique reverses only the contaminant transport by convection. This is 
simple to implement and can approximate the contamination source. However, the 
method can cause calculation problems when the convection is weak.  
 
The process of the direct inverse approach can be separated into two main steps: 
operator identification and numerical methods. The first steps is concerned with 
finding/adjusting a suitable operator to perform decremental time steps with the 
operator being still stable. 
 
According to Zhang and Chen, (2007) and Bady, (2013) research, which uses direct 
inverse modelling to identify the contaminant source in enclosed environments and 

Figure 8 the example of the objective function (a) for linear problem which has one minima (b) for 
nonlinear problem which has a large number of minima and maxima (Snieder, 1998). 
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urban areas respectively, the pollutant concentrations are based on the convection-
diffusion equation (it can be in solid, liquid, and gas form). However, this original 
equation has to be slightly adjusted for the inverse calculation as shown below: 
 
The original governing transport (without source) equation: 
 
 

𝜕 𝜙 𝜏
𝜕𝜏 =   −

𝜕
𝜕𝑥!

𝑢!𝜙 𝜏 +   
𝜕
𝜕𝑥!

Γ
𝜌   
𝜕𝜙 𝜏
𝜕𝑥!

 

 
The adjusted equation: 
 
 

𝜕 𝜙 𝜏
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𝜕
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𝑢!𝜙 𝜏 +   𝜀
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Based on one-dimensional flow as shown in Figure 9 and implicit format, the adjusted 
equation can be discretized into:   
 

𝜙! 𝜏 + Δ𝜏 =   
1

1+ 𝑢!Δ𝜏Δ𝑥 − 6𝜀Δ𝜏
Δ𝑥 !

∙ 𝜙! 𝜏 +
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1+ 𝑢!Δ𝜏Δ𝑥 − 6𝜀Δ𝜏
Δ𝑥 !
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− 4𝜀Δ𝜏

Δ𝑥 !

1+ 𝑢!Δ𝜏Δ𝑥 − 6𝜀Δ𝜏
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∙ 𝜙! 𝜏  

 
 
 
 
 
 
 
 
 
 
 
This equation can be used to identify contaminant sources as long as the value of 𝜀 is 
larger than 𝑢!Δ𝑥!/6. 
 
The second step of the direct inverse approach deals with numerical methods. 
Reversed equations and numerical schemes are forwarded to a simulation platform, 

Figure 9 Typical control volume for the one-dimensional flow 



 31 

such as the CFD program, that helps answer the question based on the finite-volume 
discretization. For reverse simulation we assume that the event is taking place during 
the period between 0s and 200s. Therefore the distributions of airflow and transient 
pollutant concentration at t = 200s become an initial data point for the inverse CFD 
modelling. Later, CFD starts solving the transport equation from this moment using 
negative time steps until reaching t = 0s. At this point the pollutant source can be 
identified by the location that contains the highest concentration (Bady, 2013). Based 
on my review of this approach, it is similar to other approaches in that they all have 
both advantages and disadvantages for use in source identification. These are 
described below: 
 
The advantages  
 

1.) The first main advantage of the direct inverse approach is that it needs less 
contaminant source data compared to the other three approaches. Based on the 
Bady's (2013) case study, the adjusted equation requires only the flow field of 
air and the pollutant concentration at the last time step. These two different 
types of data can easily be extracted from sensors (i.e. airflow meter for flow 
rate and methane sniffer for contaminant concentration).  

2.) The direct inverse approach seems to have greater ability to solve high 
complexity problems when compared to the analytical approach, for example. 
It also can be used in other areas and applications. For example Zhang and 
Chen, (2007) use this approach to identify the contaminant source in the office 
environments, which have many obstructions and specific air flow 
characteristics such as inlets located on the rear wall at the floor level and 
outlets is in the ceiling in the centre of the room. This kind of scenario might 
be too complex for the analytical approach but not for the direct inverse 
approach. 

 
The disadvantages  
 

1.) The direct inverse approach requires CFD with its high demand on processing 
resources to calculate the leakage source. The domain (considered area) will 
be discretized into a finite number of elements or cells; the higher number of 
cells, the more data will needed to be calculated. Therefor this method 
demands high calculation efforts (it is very common that CFD process require 
millions of calculation), which require often the use of supercomputers and 
long calculation times. 

2.) From the case study of Bady (2013), the governing transport (which can be 
called the operator of the system) has to be adjusted in order to make an 
equation become stable in inverse modelling. This process sometime might be 
too complex because of the adjusted equation not being exactly the same as 
the original governing transport for contaminant as the solution of 
contaminant source might not be accurate, especially in a complex case as 
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show in Figure 10. The maximum concentration at t = 1s obtained by forward 
simulation is a spot next to the box, whereas the results from reverse 
simulation (c.) is more dispersive which makes it harder to pinpoint the real 
polluting source. 

 
 

 
 

3.) This approach requires time between the initial leakage and the time it reaches 
the sensors, as well as the concentration. This can reduce the accuracy of the 
results if the simulation cannot stop at the right moment (contaminant strength 
will become more dispersive while the simulations keep running).  

 
 
2.2.5. Summary 
 
The four different methodologies used in inverse problem approaches all have their 
own advantages and disadvantages. The analytical approach does not provide 
sufficient information and is not able to simulate the complexity of subsea leak 
detection scenarios and therefore cannot be used in such systems. Equally, the 
probabilistic approach, whilst potentially yielding usable results, is not appropriate for 
subsea leak detection because of its need for large amounts of accurate historical data. 
This is often not practical in an operational environment. Therefor the probabilistic 
approach will not be considered further in this master thesis.  
 

Figure 10 Concentration fields, (a) at t = 1 s obtained by forward time simulation; (b) at t = 200 s 
obtained by forward-time simulation; (c) at t = 1 s obtained by inverse simulation (Bady, 2013). 
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The direct inverse modelling approach is very interesting. It is a very straightforward 
method with only a few data points needed for calculation, and no requirements for 
obtaining large amounts of historical data. Similar to some of the other approaches, 
the main drawback is the time needed for running caluclations. The more accurate the 
results, the more resource is required. Whilst the long calculating times can be 
alleviated by using a super computer, this will definitely increase the capex cost of the 
system. 
 
This leaves the optimization approach. This approach requires significant investment 
in building a database, which matches inputs and outputs based on historical data 
(training data) obtained by forward CFD modeling. This increases the time to 
simulate each scenario.  
 
In case of a serious incident, real-time prediction is one of the most important tools 
for successful crisis management. The artificial neural network is the optimization 
approach method, which has been chosen for this study because it can run in almost 
real time and can easily deal with a non-linear system. Even though the optimization 
approach requires a large database of information to improve the accuracy and 
demands a large amount of forward CFD modeling, the database can be set up prior to 
any incident occurring. That means that long processes of acquiring information for 
the database would not interfere or create a huge load of calculation for the 
identification of the leakage source once the incident is occurring, meaning the system 
can work almost in real-time. 
 
Vukovic and Srebric, (2007) mentions that for successful source determination, real 
incidental events have to fall within the scope of the database. That means a 
comprehensive database requires various combinations of parameters and covers as 
many real incidents as possible. Therefore, in order to keep resource and time 
requirements at manageable and cost-effective levels, the ANN can replace these pre-
populated databases with the neural network’s nonlinear mapping. This alternative 
approach can reduce the size of databases and is still able to provide relevant results. 
This will make leak source detection technology easier to deploy, faster to compute 
and  produce more accurate predictions. 
 
In addition, as the optimization approach is counted as regressive inverse modeling, 
Willmann et al., (2015) suggest three solutions that might help to improve the 
performance of regressive inverse modeling. Those are: 1.) Introduction of prior 
knowledge, 2.) Consideration of other data sources, and 3.) Leaning how to handle 
uncertainty. Fortunately, the architecture of ANNs is extremely flexible and is either 
suitable or unsuitable with the only decisive criteria to be considered its performance 
for the task in hand. Thus, all of the three features can be integrated easily by 
customizing the ANN architecture.  
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For all the reasons mentioned earlier the artificial neural network will be used in the 
present study to identify any potential for its use in leakage source identification, 
especially in the subsea environment where ANNs have not yet been used extensively 
or indeed at all. 
 
 
2.3. ANN concepts and tools. 
 
Using artificial neural networks for leakage source identification requires a well 
designed algorithm (the artificial neural network), which improves the accuracy of the 
outputs, as well a good database which is essential for the ANNs learning process. For 
this thesis, I am generating a database (set of patterns) based on CFD.  
 
Therefore, information in this part is divided into two sections: the concepts of the 
artificial neural network (ANN) and the concept of computational fluid dynamics 
(CFD). In addition, the introductions of the applications or toolboxes, which are used 
to implement both ANN and CFD in this master thesis, are also briefly described. 
 
 
2.3.1. Artificial neural networks (ANNs) 
 
 
2.3.1.1. Introduction 
 
In 1958, psychologist Frank Rosenblatt developed the first artificial neural network, 
which was called Perceptron (and is today referred to as artificial neuron). This 
artificial neuron was derived from observation of biological neurons, which include 
soma, dendrites and axon. Generally in the biological process of each neuron, 
information comes into the neuron via dendrites (receivers) first. Soma processes the 
information and then passes it to an axon (sender). Therefore, an artificial neuron is a 
mathematical model, which mimics the structure and functionalities of a biological 
neuron. The structures of both the artificial and the biological neurons are shown in 
Figure 11. 
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An artificial neuron has three simple sets of rules to process the information, which 
flows though the neuron. Those are the multiplication, summation and activation 
rules. The information comes into the body of the neuron via inputs and every input 
value is multiplied with individual weight and bias values. This section is called 
multiplication. The summation part summarizes all weighted inputs and biases. 
Finally this sum of weighted inputs is transferred into the activation function (also 
called transfer function). This process will generate the output(s), which are readable 
and understandable for a human operator. At the end of the system, the processed 
information is passed to users via output channels (Krenker et al., 2011). The process 
of an artificial neuron is shown in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Biological and artificial neuron design (Krenker et al., 2011). 

Figure 12 The process of artificial neuron (Krenker et al., 2011). 
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Based on the Figure 12, each artificial neuron can be shown in mathematical form as 
the following equation (Krenker et al., 2011). 
 

𝑦 𝑘 =   𝐹( 𝑤! 𝑘 ∙ 𝑥! 𝑘 + 𝑏)
!

!!!

 

 
where: xi(k) is input value, wi(k) is weight value, yi(k) is output value, b is bias, and F 
is transfer function. 
 
The equation demonstrates the working principle of artificial neurons and it is simple 
and does not require specialist calculations. However, the human brain (biological 
neuron network) consists of more than a million neurons, which are connecting each 
other with both dendrites and axons in order to process visual data and learn to 
recognize objects, for example. This also applies to an artificial neural network. 
Therefore ANNs can become the solution, which can provide higher calculation 
power to address several types of high complexity problems. These are difficult or 
impossible to solve with conventional methods. The example of the artificial neural 
networks which consists of several single neurons is shown in Figure 13 (Almurib et 
al., 2011).  
 
 

 
 
 
 
 
 

Figure 13 A two layer artificial neural network (Almurib et al., 2011) 
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In addition, to provide usable outcomes, the artificial neural network needs to be 
taught to solve the type of given problem before implementation. Every time the 
artificial neural network is learning something new, the weight values inside of each 
neuron are adjusted to respond to the new information. This is similar to human brain 
cognition (biological neural networks), which learns from the experiences on the 
bases of how humans interact with the environment, both past and present. 
 
The artificial neural network is a mathematical model, which mimics the structure and 
functionalities of biological neural networks. That means it demands an understanding 
of basic mathematical concepts, which are used to describe and analyze neural 
network processing. This can help model designers to deliver results, which are 
comparable with those that the human brain can produce. In addition, each neural 
network has it own specification values and functionalities depending on the problem 
and the expected outcome. In a broader sense creating an artificial neural network 
comprises three principle elements. These are: 
 
Neural network components – how basic components can influence the design, 
implementation and use of artificial neural networks. 
Topology – how an artificial neural network is organized into layers and how the 
layers are connected. 
Adaptation – how an artificial neural network is configured to deal with incoming 
information. 
 
 
2.3.1.2. The artificial neural network components 
 
The artificial neural network consists of many simple processing units (neurons), 
which communicate by sending weighted signals to each other. Therefore the main 
components of each neural network have to be combined with at least two structural 
components: connection weights and processing units. However, there are also some 
sets of basic factors that can contribute to the design, implementation and use of 
neural networks, in order to obtain the best results. Those are processing element 
activation functions and input/output patterns. Each of these elements are examined 
below: 
 

1. Processing units 
The main role of processing units can be separated into two main simple tasks. The 
first role of the processing unit is as the center of information flow. It receives the 
input from other processing units or from external sources, processing this 
information to generate an output signal, and then sends it to different destinations. As 
the center of information flow, the processing units can be sorted into three types 
based on functionality. Those are input units, which receive information from outside 
the network, output units which transfer information to the target outside of the neural 
network, and hidden units with input and output signals continuing inside the system. 
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All of them are laid out in input layer, output layer, and hidden layer respectively as 
shown in Figure 13. In addition, even though there are many units connected with 
each other, all of them carry out their computations at the same time (Alavala, 2008). 
Another function of processing units is the adjustment of the weights, which let neural 
networks become adaptive systems. 
 
Building the number of processing units for a neural network has to be well defined as 
it directly affects the models performance. Too few processing units lead to 
suboptimal outputs, whereas too large a number can increase processing time, cost 
and also result in poor predictions due to overfitting. The concept of overfiting is 
described in Appendix C.  
 

2. Connection between units (Network Weight) 
Based on Figure 12, we can see that apart from exchanging the data signal between 
processing units, artificial neurons also extend their performance by including the 
weight value in each (input) connection. The main function of the weight value is to 
define the information flow through the network and also modify the amount of 
information transferring between processing units. Typically, the connection weights 
are automatically updated (either synchronously or asynchronously) to fit with the set 
of information during the training process. Connection weights with positive values 
are excitatory connections, whereas negative values are inhibitory connections 
(Eberhart and Shi, 2007).  
 

3. Input and output pattern 
Neural networks require good data sets for the training process in order to exploit 
their full learning potential. The network can be trained in two different ways: 
Training with single patterns (inputs) is defined as an autoassociative network, 
whereas networks that use pattern pairs (both inputs and outputs) are called 
heteroassociative network (Eberhart and Shi, 2007). In addition, the key issue is to 
determine what patterns should apply to the neural network. The data (input and 
output patterns) used for the training process should be able to fully represent all 
possible features of the system. This allows neural networks to deal with any type of 
unseen information. The better the training data, the higher the performance the 
model can achieve.  
 

4. Processing Element Activation Function  
The transfer function (F) is typically used to map a processing unit’s domain (i.e. 
inputs, weights, and bias) to produce the new value of output signal. Also the value of 
each output signal is located within the pre-specified range for example -1 to 1, or 0 to 
1 (Eberhart and Shi, 2007). This means that each output is standardized to easily 
connect with other processing units. In addition, transfer functions can be any 
mathematical function, depending on the problem to be solved. Examples could be 
that the linear function performs well with other linear functions, whereas the step 
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function, the ramp function, the sigmoid function, and the Gaussian function are best 
suited to non-linear functions. Five of the activation functions are shown in Figure 14. 
 

 

 
 
The sigmoid function was deployed in this study because of its s-shaped function with 
a simple formula, which creates output values in the range of -1 to 1. That can be 
important when calculating weight updates in the artificial neural network, especially 
when we are mainly focusing on time and accuracy. 
 
 
2.3.1.3. Topologies 
 
Even though the neural network is created by interconnecting of individual artificial 
neurons, the random connection between each neuron may lead to high complexity 
and an unmanageable system. Therefore, researchers have defined and created several 
standardized topologies of artificial neural networks in order to solve the different 
types of problems with easier, faster and more efficient solutions. However, the 
topologies of the neural network can be clearly separated into two different types of 
networks based on patterns of connections (Krenker et al., 2011).  
 
Feed forward artificial neural networks are those network in which the information 
must flow from input to output unit in only one direction without back-loops 
connections. A good example of feed forward networks is backpropagation, which 
will be discussed later. In contrast, recurrent artificial neural network allow the 
information to transmit backward. This feed back loop creates the internal stable state 
of the network, which allows the network to exhibit dynamic behavior. 
 
The main distinctions between both networks: feed forward (FNN) and recurrent 
(RNN), are shown in Figure 15. 
 

Figure 14 Five of the activation functions: a) the linear function, b) the step function, c) the ramp 
function, d) the sigmoid function, e) the Gaussian function (Eberhart and Shi, 2007). 
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2.3.1.4. Training of artificial neural networks 
 
Irrespective of which topology is used or how big the model is, it will have to learn to 
respond to inputs given by the environment. This task can be achieved by the training 
process, which will enable an ANN to become a valuable solution tool. The way to 
train the network is to provide teaching patterns to the model, then letting it adjust the 
values of weight and biases (Alavala, 2008). The two major training paradigms are: 
 
Supervised learning – the network is trained by providing the pairs of input and 
desired output values. The performance of the network is limited by the range and 
quality of training data. This paradigm is mostly used in the area of pattern 
recognition problems. 
 
Unsupervised learning – this is the machine learning technique that allows the system 
to be trained and to develop its own performance. Every time the network (with 
unsupervised learning) corrects the new input, the model will learn and adapt itself 
automatically. This paradigm is mostly used in the area of estimation problems. 
 
 
2.3.2. The backpropagation algorithm 
 
There are hundreds of artificial neural network types that have been introduced over 
the last few years, such as the Hopfield network, the Bi-directional network, and the 
Self-Organizing Map (SOM). However, there is a small group of classic networks, 
which are well known and widely used in many applications. One of them is the feed 
forward backpropagation neural network or backpropagation network. This network 
will be explained here as it is deployed in this study. 

Figure 15 Feed forward neural network and recurrent neural network (Krenker et al., 2011). 
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The popularity of using backpropagation networks arises from its simple architecture 
combined with a basic learning process. The architecture of backpropagation is feed 
forward network and multilayer perceptron (MLP). The multilayer perceptron 
architecture has to consist of at least 2 layers: one hidden layer and one output layer. 
Apart from this criterion, a MLP can have any number of layers, units per layer, 
inputs and outputs. Actually, the name ‘backpropagation’ does not refer to the 
architecture with feed forward network, but it rather represents the learning or training 
algorithms. The backpropagation scheme is a supervised learning approach, which 
consists of two major steps: the forward activation and the backward error flows. 
These two steps will occur every time when a training pair is fed into the training 
process. (Moustafa et al., 2011).  
 
The basic working process of backpropagation algorithm can be briefly described like 
this (The IDEAS Research Institute, n.d.): 
 

1.) Providing the input and its corresponding target (output). Both of them are 
called a training pair. The training pair is a representative of what we want the 
network to perform. 

2.) Once the training pair is provided, the network initializes all its weight values. 
Next, input from the training pair is used to calculate the output (this is called 
the forward pass). In addition, this initial output could be any value, as all 
weight values are randomly defined. 

3.) Calculating the error of each neuron by solving the difference between an 
actual output and calculated output (target – actual output). This error is then 
processed by mathematical method to change the weights in order to reduce 
the error. This results in outputs of each neuron, which closely approximate 
outputs collected in the field (this part is called the backward error flows or 
backpropagate). 

4.) Repeating step 2 to 4 until the error is minimal or reaching the stopping 
criteria. 

 
 
 
 
 
 
 
 
 
 
 
 Figure 16 The working process of backpropagation neural network 

(Demuth et al., 2013) 
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The process above indicates that a backpropagation algorithm corrects the mistakes 
made by the network in the training process as it will be sending the information 
backward through the network in order to correct weight value as is shown in Figure 
16. In addition, a backpropagation algorithm use the concept of a gradient descent to 
reduce errors between the actual output and the desired output of the network 
(Moustafa et al., 2011).  
 
 
2.3.3. Neural Network Toolbox 
 
As artificial neural networks are mathematical models we can comprehend the 
concept behind the algorithms, which are relatively easy to calculate. However, this is 
only practical for problems that contain relatively short mathematical equations, such 
as the artificial neural network with two or three neurons. Therefore, in order to solve 
more complex problems, it is advantageous to use computers and software to build 
the model as well as optimize any parameters of the artificial neural network. An 
artificial neural network can be created from scratch based on computer language 
such as C/C++, Java, and Python. However, there are several specialized commercial 
programs or toolboxes that can support the artificial neural network development. 
One toolbox, which has been used here, is the  “Neural Network Toolbox”. It is a one 
of several extension toolboxes, which are provided by Matlab. 
 
The Neural Network Toolbox is a useful tool to design, train, visualize, and simulate 
neural networks, as well as providing several features such as supervised and 
unsupervised learning, parallel computing to reduce calculating time, and Simulink 
block to connect neural networks with other systems or applications (Demuth et al., 
2013a). This allows researchers to evaluate the neural network with minimal effort.  
  
In addition, there are two major ways to use this toolbox depending on the levels of 
users from novice to expert. The easiest way to operate the program is through the 
Graphical User Interface (GUIs) as it provides a quick and easy way to solve the 
problem, although it is limited to only a few specific problems. A more advanced way 
to use the toolbox is through the command-line. It offers more flexibility than the 
GUIs and has the advantage of being able to create custom neural networks based on 
any of the functions contained in the toolbox. In addition, this way also offers the 
ability to modify every computational component contained in the toolbox, however 
Matlab code is required (Demuth et al., 2013a). 
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2.4. Computational fluid dynamics (CFD) concept and tool 
 
 
2.4.1. Computational fluid dynamics (CFD) 
 
The basic way to calculate fluid (gas and liquid) flows is by using governing 
equations or partial differential equations (PDE), which represent conservation laws 
for the mass, momentum, and energy. However, in certain circumstances the flow 
governing equations can be extremely complex for solving and validating the results. 
Therefore, computation fluid dynamics (CFD) is introduced to replace the governing 
partial differential equation systems with a set of algebraic equations. It is much 
easier to solve with computers and cheaper in terms of testing fluid flow systems. In 
addition, CFD provides the ability to run and test any hypothesis in severe conditions, 
which would otherwise be impossible or extremely difficult to set up, such as the 
measurement of complex flows in chemical reactors or furnaces (Kuzmin, n.d.). 
 
Computational fluid dynamics (CFD) provides a qualitative and quantitative estimate 
of fluid flows by using three basic concepts of knowledge. Those are a mathematical 
modeling (partial differential equations), a numerical method (discretization) and 
software tools (solvers, pre- and post-processing utilities) (Versteeg and 
Malalasekera, 2007). That means CFD enables scientists and engineers to perform 
numerical experiments in a virtual flow laboratory based on coding.  
 
The three main steps of CFD working process (which relate to coding) are: 
 

1.) Pre-processor  
After determining a problem statement, the mathematical model and all relevant 
parameters as well as its values have to be carefully defined (Kuzmin, n.d.). This 
could include: 

- Selecting a suitable flow model and reference frame. 
- Identifying any forces, which cause and influence the fluid motion. 
- Defining the geometry (computational domain), which will be solved.  
- Simplifying the governing equation to reduce the computational efforts. 
- Determining the fluid properties as well as specify initial condition and 

boundary conditions. 
 
In addition, grid size (or mesh size) in the area under consideration has to be well 
defined in this step. The finer the grid, the more accurate the solution obtained.  
 

2.) Solver 
CFD applies a numerical method to develop approximations of the governing 
equations. This is called the discretization process. This process starts with integrating 
the governing equations over each cell of the grid set. CFD solves flow field variables 



44 

at each cell to provide absolute solution (Bakker, 2002). The process of discretizing is 
the key element of CFD or Finite Element Method. 
 

3.) Post-processor 
The simulated results obtained from the discretization process are generated. The 
results can be presented in two formats:  

- Raw data (number) from calculation of integral parameters such as lift 
force and drag force. 

- Visualization, which represent numbers as images and animation. This can 
be shown in 1D, 2D and 3D, for example function values connected by 
straight lines, contour levels and cut planes respectively. 

 
The CFD (simulation) method is today quickly replacing testing methods (e.g. 
sensory data capture) in several analysis applications, as it is far cheaper and faster to 
implement. However, results of a CFD simulation are subject to a certain amount of 
prediction or imprecision as the input data can bias the output (Sayma, 2009). To take 
these potential weaknesses into account, a good understanding of physical 
characteristics and systems is required in order to obtain a reliable result. 
 
2.4.2. OpenFOAM 
 
Most CFD packages used in industry and the academic environment are now largely 
commercial programs such as ANSYS and ABAQUS. The implication is that CFD 
packages might be costly, the implementations of models in these packages are 
limited, and their source codes are not provided. Potentially OpenFOAM or Open 
Source Field Operation and Manipulation, which are open source applications, could 
act as alternative high-performance CFD tools. 
 
OpenFOAM is a free and open source software under the GNU General Public 
License, which operates for the Linux platform. It basically uses C++ toolbox for the 
development of customized numerical solvers, and pre-/post-processing utilities for 
the solution of continuum mechanics problems, including CFD (Hjertager, 2009). 
This offers several advantages for developers. The advantages of OpenFOAM are 
summarized below (Silva and Lage, 2011): 
 

- It offers numerous pre-configured solvers, utilities, and libraries, 
especially to solve fluid flow problems with a large variety of turbulence 
models for RANS and LES integrated, similar to any commercial 
simulation packages. The OpenFOAM Structure is shown in Figure 17. It 
is supplied with solver, pre- and post-processing environments. 

- OpenFOAM is open in terms of source code and its structure and 
hierarchical design. The new solvers, utilities and libraries can be created 
by users and shared with others to cover a wide range of problems and also 
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creates a range of new possibilities. This enables OpenFOAM to become a 
fully flexible and extensible program.  

- This program is free of charge for all users. Hence, capex cost can be 
reduced. 

 

 
 
 
 
2.4.2.1. OpenFOAM case structure 
 
OpenFOAM is a program that is based on coding rather than graphical user interfaces 
(GUIs). Each case is saved as a directory on the computer. Therefore, to adjust, edit or 
set all parameters, users have to manually code before solving the equation.  
 
The case directory includes as the minimum the following directories (Hjertager, 
2009):  

1.) Constant – which control mesh characteristics, material properties, and 
turbulence properties that correspond to each problem.  

2.) System – which defines number of iterations, time step size, and solution 
controls. 

3.) 0 – which determines initial flow fields and boundary conditions. 
 
The case structure is shown in Figure 18. 
 
Within the OpenFOAM toolbox, there are several different solvers, which are 
designed to solve various specific problems. Only two solvers are selected to solve 
the problem regarding the experiment in this thesis. These are: 
 
pisoFoam – which is a transient solver for incompressible flow. It was deployed to 
simulate the flow field of seawater and turbulences over the considered area. 
 

Figure 17 Overview of OpenFOAM structure (Hjertager, 2009) 
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scalarTranportFoam – which is used to solve a transport equation for a passive 
scalar. It was used to simulate the dispersion of methane from different leakage 
locations within subsea conditions. 
 
 

 
 
 
 
 
 
2.4.3. PisoFoam 
 
The pisoFoam is a transient solver for incompressible fluid flows for both laminar and 
turbulent conditions. The pisoFoam is based on the PISO algorithm, which stands for 
Pressure Implicit with Splitting of Operators. This algorithm was introduced by Issa 
in 1995. The pisoFoam is a pressure-velocity calculation process, which basically 
involves one predictor step and two corrector steps. The predictor step uses the 
momentum equations in order to solve an intermediate pressure field (It is the concept 
of the SIMPLE algorithm.). While two corrector steps are used to correct and ensure 
values of relevant parameters in a way to satisfy the momentum and continuity 
equations (Versteeg and Malalasekera, 2007). The pisoFoam can therefore be 
described as an extension of the SIMPLE algorithm by adding corrector steps in order 
to ensure the calculated values. 
 
The PISO algorithm (or PISO loops) consists of the following steps (Versteeg and 
Malalasekera, 2007): 
 

Figure 18 OpenFoam case structure (Hjertager, 2009) 



 47 

Predictor step  
 

1.) Initiate guess 𝑝∗ 
2.) Solve discretize momentum equations: 
 

𝑎!,ℐ𝑢!,ℐ∗ =    𝑎!"𝑢!"∗ +    𝑝!!!,ℐ∗ −   𝑝!,ℐ∗ 𝐴!,ℐ + 𝑏!,ℐ 

 

𝑎!,!𝑣!,!∗ =    𝑎!"𝑣!"∗ +    𝑝!!!,ℐ∗ −   𝑝!,ℐ∗ 𝐴!,ℐ + 𝑏!,ℐ 

 
The results obtained from this equations are 𝑢∗and 𝑣∗. 

 
3.) Solve pressure correction equation below to obtain value of 𝑝! 

 
𝑎!,ℐ𝑝!,ℐ! =   𝑎!!!,ℐ𝑝!!!,ℐ! +   𝑎!!!,ℐ𝑝!!!,ℐ! +   𝑎!,ℐ!!𝑝!,ℐ!!! +   𝑎!,ℐ!!𝑝!,ℐ!!! + 𝑏!,ℐ!  

 
Where;  𝑎!,ℐ =   𝑎!!!,ℐ + 𝑎!!!,ℐ + 𝑎!,ℐ!! + 𝑎!,ℐ!!  
 
And the coefficients are given below: 
 
𝑎!!!,ℐ = 𝜌𝑑𝐴 !!!,ℐ    
𝑎!!!,ℐ = 𝜌𝑑𝐴 !,ℐ 
𝑎!,ℐ!! = 𝜌𝑑𝐴 !,!!! 
𝑎!,ℐ!! = 𝜌𝑑𝐴 !,! 
𝑏!,ℐ! = 𝜌𝑢∗𝐴 !,ℐ − 𝜌𝑢∗𝐴 !!!,ℐ + 𝜌𝑣∗𝐴 !,! − 𝜌𝑣∗𝐴 !,!!! 
 
The value 𝑝! 𝑢∗and 𝑣∗are used to calculate with following equations to obtain the new 
values (𝑝∗, 𝑢∗ and 𝑣∗). These values are more accurate compared to the initial values.  
 

𝑝!,ℐ(!"#)∗ = 𝑝!,ℐ∗ + 𝑝!,ℐ!  
 

𝑢!,ℐ(!"#)∗ =   𝑢!,ℐ∗ + 𝑑!,ℐ 𝑝!!!,ℐ! − 𝑝!,ℐ!  
 

𝑣!,ℐ(!"#)∗ =   𝑣!,ℐ∗ + 𝑑!,ℐ 𝑝!!!,ℐ! − 𝑝!,ℐ!  
 
Corrector Step 1 
 

4.) Repeating step 3 again with the new values obtained by the previous steps. 
Therefore the new values (𝑝!!,𝑝∗∗ 𝑢∗∗and 𝑣∗∗) are usually closer to the real 
value.  
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Corrector step 2  
 

5.) Correcting the values of pressure and velocities by calculating the following 
equations: 

 
𝑝!,ℐ∗∗∗ = 𝑝!,ℐ∗∗ + 𝑝!,ℐ! +   𝑝!,ℐ!!  

 

𝑢!,ℐ∗∗∗ =   𝑢!,ℐ∗ + 𝑑!,ℐ 𝑝!!!,ℐ! − 𝑝!,ℐ! +   
𝑎!" 𝑢!"∗∗ − 𝑢!"∗

𝑎!,ℐ
+   𝑑!,ℐ 𝑝!!!,ℐ!! − 𝑝!,ℐ!!  

 

𝑣!,ℐ∗∗∗ =   𝑣!,ℐ∗ + 𝑑!,ℐ 𝑝!!!,ℐ! − 𝑝!,ℐ! +   
𝑎!" 𝑣!"∗∗ − 𝑣!"∗

𝑎!,ℐ
+   𝑑!,ℐ 𝑝!!!,ℐ!! − 𝑝!,ℐ!!  

 
 
The result obtained from this PISO algorithm represents fluid flow at only one time 
step. Therefore this PISO loop will repeat again for the next time step until it reaches 
the termination time (stopping criteria). The full explanations of the PISO algorithm 
can be referenced in the book An Introduction to Computational Fluid Dynamics: The 
finite volume method written by Versteeg and Malalasekera, (2007). 
 
The PISO algorithm solves the pressure correction equation twice to be able to 
represent the flow field as close to as it occurs in a real environment. In order to 
achieve this however, the PISO algorithm requires additional storage and 
computational effort. However, Issa (1986) research found this PISO algorithm is 
more efficient and faster compared to the standard SIMPLE algorithm. 
 
 
2.4.4. ScalarTransportFoam 
 
In this study ScalarTransportFoam was used to simulate the dispersion of methane 
based on the flow field obtained by PisoFoam.  
 
The general transport equation starts from substitution both convective and diffusive 
effects (Equation 2-3) 
 

𝑓 𝑥, 𝑡 =   𝑣 𝑥, 𝑡 𝑢 −   𝒟(𝑥, 𝑡)𝜌∇𝑐 
 
 
 Into the partial differential equation of mass conversation (Equation 2-4) 
 
 

!"(!,!)
!"

+   ∇ ∙ 𝑓 𝑥, 𝑡 =   𝑠(𝑥, 𝑡) 
 

Equation 2-3 

Equation 2-4 
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Then generic transport equation is: 
 

𝜕𝜌𝑐
𝜕𝑡 +   ∇ ∙ 𝑣𝜌𝑐 − ∇ ∙ (𝒟𝜌∇𝑐)   =   𝑠 

 
If the density 𝜌 is constant and the velocity is redefined as v: = v + (D ∇ρ)/ρ, then the 
generic transport equation is a convection-diffusion reaction (CDR) equation for the 
mass variable u (𝑢 =   𝜌𝑐) is: 
 

!!
!"
+   ∇ ∙ 𝑣𝑢 − ∇ ∙ (𝒟∇u)   =   𝑠 

 
In the case of the velocity field v is incompressible, that is, ∇ · v = 0, then the vector 
identity is 
 

∇ ∙ 𝑣𝑢 =   𝑣 ∙ ∇𝑢 + ∇ ∙ 𝑣 𝑢 
 
Assembling the vector identity (Equation 2-6) with CDR equation (Equation 2-5), 
therefore the generic transport equation in the standard form is: 
 

𝜕𝑢
𝜕𝑡 +   𝑣 ∙ ∇𝑢 − ∇ ∙ (𝒟∇u)   =   𝑠 

 
The terms that appear in this equation are explained as the following physical 
interpretation (Kuzmin, 2010) and (Jasak, 2007): 
 

- The rate of change term !!
!"

 or sometimes called temporal derivative. It 
demonstrates the net gain or loss of mass per unit volume and time. This 
term represents inertia of the system 

- The convection term 𝑣 ∙ ∇𝑢 represents the convective transport of u by the 
prescribed velocity field (the existence of the velocity field). 

- The diffusive term ∇ ∙   (𝒟∇u) accounts for the transport of u due to its 
gradients. 

- The source or sink term s is the non-transport factor, which contains all 
effects that can both create or destroy u. In addition, any extra terms that 
cannot be incorporated into the convection or diffusion terms are 
considered as a source or sink term. 

 
Once this equation is applied to all control volumes in given meshes and has solved 
the equation, the result will demonstrate the transport and the revolution of pollutants 
in the specific condition (i.e. air, water, or soil), as well as its temperature 
fluctuations. 
  

Equation 2-5 

Equation 2-6 
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CHAPTER 3 EXPERIMENTAL DESIGNS 
 
3. Experimental Designs 
 
 
3.1. Problem definitions  
 
In order to improve the performance of the leakage detection system, Stinger 
Technology would like to enable the use of the point sensors (methane sniffers) to 
identify the leakage source, since they are more sensitive than traditional sonars; 
performing well even with low concentrations of methane dissolved in the water and 
able to detect even very small leakages and provide early warning to the operator. 
 
Unfortunately, the measurement of methane sniffers is limited to the very local area in 
which they are mounted. Hence, this study will focus on concepts that aim to extend 
the ability of the methane sniffers (in the use of leakage source identifications) to be 
able to pinpoint such leakages. Based on the literature review ANNs and CFD have 
been selected for the experiments, as the ANN provides fast calculation times and 
performs well in complex systems and CFD offers an alternative way to simulate each 
incident without the need to set up real-environment experiments. 
 
Therefore, this chapter is of key importance to examine the hypotheses that the 
selected techniques combined with point sensors have potential in identifying the 
leakage sources in oil platform structures in subsea conditions. It summarises in detail 
the approaches taken, experiments conducted and assumptions applied, as well as the 
design of experiments. However, the evaluation of results and a discussion will be 
provided in later chapters. 
 
 
3.2. Experimental guideline 
 
Experiments have been broadly separated into two different groups with two different 
modelling approaches:  
 

1) Computational fluid dynamics (CFD) using OpenFOAM – This programme 
analyses all fluid behaviour in conditions of flow. OpenFOAM has been 
employed as a support tool to generate essential data sets required by the 
artificial neural network model. The advantage of using OpenFOAM is the 
relatively easy generation of data sets and the ability to visualise fluid flows. 
The use of CFD and all related parameters pertaining to this issue are 
demonstrated in the Experiment 1. 
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2) Artificial Neural Network using Matlab - This is the area that this master 
thesis mainly focuses on. An ANN using Matlab is a system capable of 
recognising relationships and patterns of input and output data. However, the 
performance of ANNs depends on its architecture; a well-defined architecture 
enables ANNs to pro-actively adapt and learn trough the training process. 
Experiments 2 and 3 show the methodology to define the value of each of the 
related parameters and to optimize the neural network, used in this instance to 
predict the source of subsea leakages more accurately. 

 
The Experiment 4 shows the procedure to evaluate the performance of the selected 
model, in order to prove that ANNs have a potential to help point sensors to identify 
the leakage locations. Lastly, due to the fact that in a real-world environment there are 
many factors, which can interfere with a system, The experiment 5 has been added to 
assess how well this model operates in unusual environmental conditions. 
 
 
3.3. Experiment 1 Generating input/output patterns to train/test 

the ANN with CFD 
 
 
3.3.1. Assumptions 
 
ANNs ideally require large datasets; however these are expensive and time 
consuming to produce and companies typically face resource and financial 
constraints. This data would need to be collected through sensors and real-world 
simulations of leakage incidents. For the purpose and expedience of this study, I have 
employed computational fluid dynamics or CFD (as forward models) to generate 
experimental data based on different locations of methane leakages around the 
considered area that comparatively easily provides a large number of input/output 
patterns to train and test the ANN.  
 
OpenFOAM, an open source program to model CFD, is employed to simulate the 
water current and also leakage sources with numerical conditions such as 0.1 m/s for 
velocity of water, 1200 square metre for the whole area, and other related parameters. 
The model also represents the real-world case of the leak detection systems, with the 
same number of methane sniffers relative to the same distance to the considered area 
and other relevant parameters. However, there are some factors, which have been 
adjusted to reduce the complexity of the model; the simulation was run in 2D instead 
of 3D, which preserves computational resources and delivers significant timesaving. 
In addition, turbulence in this model was increased for evaluations in order to 
demonstrate the ability of ANN in source identification applications.  
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3.3.2. Objectives 
 
We are using the forward models (CFD) to simulate 323 different locations of 
methane leakage, which are deployed for training the neural network, and another 500 
different leakage locations for testing the neural network performance. Table 1 
provides the details of each set of data generated by CFD in this experiment. 
 

 
 
 
3.3.3. Solution Strategy 
 
The procedure of input/output pattern generation (for both testing and training 
process) has been split up into a number of steps. 
 

1.) Modelling and Mesh generation  
 

The outputs of CFD models are highly dependent on both the quality of information 
inputs and the design and structure of the mesh prior to any actual CFD modelling. 
 
We have created a model that represents the area for which leak detection systems 
were installed. The dimensions and area of the computational domain are 50 metres in 
length and 24 metres in width (1200 square meter in total for area). This area contains 
eight square pillars, which are submerged at the bottom of the seabed and obstruct the 
normal flow of sea currents. They create turbulences or vortices behind the 
obstructions. However, turbulence or vortex depends on a structure’s design and 

Table 1 The format and details of the data generated by CFD 
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external environment such as current velocities, density, and kinetic viscosity. The 
dimensions of the study area are shown in Figure 19. 
 

 
 
 
The next stage, after the model has been well defined, is the meshing process. This 
process basically discretises the total area into several small grids that can be used in 
finite element analysis. According to Versteeg and Malalasekera (2007), the 
definition of the mesh (including size, shape, connections, etc.) is important to the 
success of the experiment and the accuracy of the results. Fortunately, there are now 
many meshing tools that cover a range from basic, moderately complex to a very high 
complexity of meshing tasks such as the blockMesh function from OpenFOAM, 
NetGen, and Lagrit software respectively. In this case a simple blockMesh function 
from OpenFOAM has been deployed, because it is easy to use and simpler to 
determine the coordinates of each cell, which makes it more compatible with Matlab 
in the later evaluation. 
 
The computational domain of this area (50m x 24m length/width) is meshed into 
29200 square boxes (cells) connected by 59466 nodes. The size of each cell in the 
computational domain is constant at 0.20 metres for both length and width and the 
average number of cells in X and Y directions are 260 and 120 respectively. In 
addition, the discretized grids are also indexed based on coordinates (x, y) starting 
from (0, 0) up to (50, 24) along x and y directions and the distance between each 
coordinate is 0.2 increments. The total mesh of this area and mesh coordinates are 
shown in Figure 20 and Figure 21 respectively. 
 
 

Figure 19 dimensions for study area 
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Figure 21 Mesh coordinate 

Figure 20 Mesh of the computational domain 
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2.) Set up the parameters 

 
In this step, all related parameters are defined and fed into the program in order to 
create the flow field and turbulence in the considered area. In addition, (Dreyfus, 
2010) states that the ANN could be used to solve both linear and nonlinear problems, 
however, the benefit for linear systems are very limited and insignificant. The 
implication is that artificial neural networks should be used to solve problems, which 
are not lending themselves to simple explanations based on equations. Therefore the 
flow field and turbulence in this evaluation was generated in order to create high 
complexity of the area rather than using normal conditions. These create greater 
challenges for the ANN and also allow us to assess the potential of using ANNs in 
severe conditions. The velocity of current and turbulence in the considered area is 
shown in Figure 22.  
 
 

 
 
 

3.) Solving the case 
 

Once the flow field and turbulence are defined, the parameters and conditions to 
simulate the leakage of methane are exported to OpenFOAM, which will 
automatically run to solve the case.  
 
The parameters and conditions to solve the case are listed in Table 2.  In addition, 
even the possible leakage locations used were scaled down to 288 square metres 

Figure 22 current path and turbulence, which calculated by CFD method around considered area 
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instead of the whole area (1200 square metres) in order to save simulation time and 
increase efficiency as shown in Figure 23. This is sufficient to represent the probable 
leakage sources in order to answer the research’s main questions as well as prove or 
disprove the hypothesis. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
3.4. Experiment 2 Artificial neural network training function 

selection. 
 
 
3.4.1. Assumptions 
 
Within the body of knowledge on artificial neural network, there are many different 
types of ANN architectures and several methodologies implemented in various 
applications such as data analysis, pattern recognition, and control functions. Here we 
have used backpropagation or backprop to solve the specific issues evaluated, as it is 
the most popular and widely implemented of all neural network paradigms.  
 
The main advantage of artificial neural networks is the ability to solve a non-linear 
problem. However the limitation of backpropagation is that it only converges to local 
minima (the smallest error in one specific area), which may or may not be global 
minima (the smallest error in the total system)(Chester, 1993) (The basic explanation 
of convergence, local minima, and global minima are shown in Appendix B). 
Therefore, choosing a suitable architecture and also parameters of the artificial neural 
network for each application (to ensure it converges to global minima) can be a 
critical issue. In addition, there are no prescribed solutions or even fully theoretical 
guidance for backpropagation in order to provide instructions on setting up the ANN 
model (Zheng and Chen, 2011). 

Table 2 Parameters and conditions for 
experiment 

Figure 23 Leakage area for experiment 
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Therefore, the main focus is on customising different parameters and architectures to 
find out which settings are the most suitable for a certain problem. Moustafa et al., 
(2011) pointed that the following parameters should be defined carefully to achieve a 
good ANN model: The input and target sets, the ANN architecture, the number of 
iterations used to train the network, training rate, number of hidden nodes and the 
training function. The latter parameter is examined in this experiment. 
 
In simple terms, artificial neural network training functions (training function or 
training algorithm) are used to update the ANN parameters: weights and bias values, 
reducing the overall error rate of the total system as quickly as possible. Weights and 
biases are updated until the ANN converges reaching a steady state of the system.  
Generally there are two different ways to update weights and biases. Firstly, 
incremental mode, in which the weights and biases are updated suddenly after each 
input is applied. Secondly, batch mode which all of the inputs have to be introduced 
into the network before the weights and biases are updated (Demuth et al., 2008) 
 
Currently, there are many algorithms, which have been created and developed to 
establish a new training function, that can work well with wider applications and offer 
fast convergence. A list of the training algorithms available in the Neural Network 
Toolbox software and comments are shown in Table 3. In addition, the performance 
of each training algorithm also relies on the complexity of the given problem such as 
the number of inputs in the training set, number of weights and biases in the network, 
and whether related parameters are used in the model. The theory behind this 
approach is that one algorithm might work best in a few specific problems but not in 
others. 
 
 
3.4.2. Objectives 
 
The key objective for this experiment is to find the training function is the best suited 
for deployment in subsea leakage source identification applications. 
 
 
3.4.3. Solution Strategy 
 
This exercise compares all the various training functions provided by Matlab’s Neural 
Network Toolbox except ‘trainbr’. The main reason to exempt it in this benchmarking 
is that Demuth et al., (2008) stated that ANN’s with trainbr are highly recommended 
for use with 1-20-1 networks (1 input layer- 1 hidden layer (with 20 hidden nodes) - 1 
output layer) no matter how large the total number of parameters in the network are, 
to ensure convergence of the ANN. Moreover, the method to stop a training process 
of trainbr (used ‘regularization’ method) is completely different from the other twelve 
algorithms (which use ‘early stopping’ method). However, trainbr will be brought 
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back again in the next experiment to verify a network performance along with one 
algorithm selected from this experiment. 
 
The comparisons of the various training algorithms (12 cases) can be evaluated by 
following these steps: 
 

1.) Feedforward backpropagation 1-5-1 network, initial weight and biases value 
are determined as a constant for all trials for all different twelve training 
functions. This ensures that those factors will not interfere with the 
performance of training algorithm, 

2.) Supplying 323 input/output patterns generated by CFD to all artificial neural 
network for training. The set of input/output patterns is constituted by a set of 
input values together with the corresponding target. The input values are 
simulating the methane concentration measured by methane sniffers, and the 
target values represent the methane leakage sources. Therefore, 323 
input/output patterns mean that there are 323 consequences of 323 different 
leakage cases. In addition, before the ANN training process was started, those 
323 patterns data were be randomly separated into three sets: training set, 
validation set, and testing set2. By using 70%-15%-15% proportion, out of 
total, 227 patterns were used for training, 48 patterns were used for validation, 
and another 48 patterns were used for testing. 

3.) In each trial, the network is trained until the network begins to overfit the data 
(see Appendix C.), when it stops training. Once the training process has 
finished, 323 inputs (which were used earlier for training) will be fed into the 
ANN again to generate calculated outputs. 

4.) Compare the result between actual outputs (from CFD) and calculated outputs 
(from ANN)  

5.) Select only the most promising methodology amongst the various algorithms. 
 
To verify the performance of each algorithm, it is necessary to define the indicator, 
which provides a quantitative score describing either the degree of similarity or the 
level of error between two kind of data; pristine original data and contaminated data 
by error (Wang and Bovik, 2009). Therefore, the well known statistical tools Mean 
Square Errors (MSE) is used for this benchmarking. 
 
Mean Square Errors are defined as the sum of the squared difference between the 
output of the network and the target values over all samples (Anguita et al., 1994).The 
smaller the value of MSE, the better the performance of training function is, that the 
total system can obtain.  
 

                                                
2 Training Set is used to adjust the weights and biases of the ANN, Validation Set is only used to 
minimize overfitting, and Testing Set is used only for testing the final solution ensuring the predictive 
power of the ANN network 
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The equation is shown below. 
 

𝑀𝑆𝐸 =   
1
𝑁 𝑋! − 𝑌! !

!

!!!

 

 
 where, N = total number of samples; 𝑋!   = actual value; and 𝑌! = calculated value 
from model 
 
 
 
 

 
 

Table 3 Training algorithms specification (Demuth et al., 2008)(TechSource Systems, 2005)(Torrecilla et 
al., 2008) 
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3.5. Experiment 3 Architecture (Hidden layer) optimization and 
Network performance verification 

 
 
3.5.1. Assumptions 
 
The information flows from input layer to output layer though the artificial neural 
network is typically determined by the ANN architecture; meaning that it directly 
affects the accuracy of output produced by the artificial neural network. Therefore, 
specifying the appropriate artificial neural network architecture is one of the key 
factors of applying ANN in tasks. Moreover, lack of suggested solutions for the 
optimisation process makes ANN design more complex. 
 
To overcome this challenge a good starting point is to train the ANN from several 
different initial conditions and then select one ANN model, which generates the most 
useful results for a specific application. This can verify the performance of each ANN 
among various different ANN network architectures.  
 
For an ANN model, there are many different types of ANN architectures from a very 
simple network to high-complexity network for use in challenging scenarios as shown 
in Figure 24 (MathWorks, 2015). For this thesis, a simple backpropagation 
architecture had been selected to implement.  
 

 

 

 Figure 24 example of custom network for dramatic purpose (MathWorks, 2015) 
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However, backpropagation itself consists of many properties that could be set in order 
to specify the behaviour of the network. Based on Figure 25, the process of 
backpropagation artificial neuron network is defined as follows (MathWorks, 2015) 
 

1.) The process of neurons (hidden nodes) in each hidden layer start when hidden 
layer receives a number of inputs (either from original data, or other neurons 
from other layers in the network). 

2.) The neurons compose the activation signal of the neuron by forming the 
weighted sum of the inputs then subtracted with threshold.  

3.) Lastly network passes the activation signal through a transfer function to 
produce the output.  

 
It can be observed that the property and behaviour of the ANN could be affected by 
many essential properties such as the number of inputs and outputs, number of hidden 
nodes (typically equal to number of weight and threshold), number of hidden layers, 
the initial value of each weight and threshold, and transfer function. 
 
 
 
 
 
 
 
 
 
 

 
However, as we have already decided to use a backpropagation model to be the main 
ANN architecture and Levenberg-Marquard BP algorithm to be a training tool in the 
earlier experiment, the main experiments here are about trialling different options to 
identify the specific architecture and customisation option that work best for an ANN 
model with regard to a specific question. Especially the numbers of hidden nodes, 
which is the main component of hidden layers to define the performance of a total 
system; too few or too many hidden nodes do not necessarily produce better of worst 
result of an ANN model. 
 
Therefore, the following sections will explain the process of network architecture 
determination used in this study.  
 
 
 

Figure 25  Back propagation algorithm with 120 inputs, 1 hidden layer with 10 neurons, and 2 outputs, 
where w = weight; b = threshold or bias; and ∫  = transfer function. 
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3.5.2. Objectives 
 
To create several different architectures of ANNs and then train each ANN model 
with several different initial conditions. Lastly, select one ANN model, which 
generates the most useful results for a specific application. This can be employed to 
verify the performance of each ANN amongst various different ANN network 
architectures.  
 
 
3.5.3. Solution Strategy 
 
Basically, the value of several parameters used in this experiment has been derived 
from two different sources: suggestions from related articles, books, and forums, and 
results from the evaluation process.   
 

1.) Number of Inputs and Outputs – 120 inputs and 2 outputs were defined based 
on a specific scenario. The 120 inputs represent the methane concentration 
measured by methane sniffers at six different locations every hundred seconds 
for twenty time steps from gas releases (6 sensors * 20 times = 120 inputs). 
The 2 outputs represent the location in coordinate systems (x, y), for example 
the model prediction (3, 5.6) mean that the leakage source located in 3 and 5.6 
meter away from reference point (0,0) in X and Y directions respectively.  
 

2.) Number of hidden layers – Singh et al., (2004) stated that in tasks with a high 
complexity and involving nonlinearity, two hidden layers performed better 
than ANNs with a single hidden layer. However Moustafa et al., (2011)’s 
research shows that there was no difference in improvement in the accuracy of 
the solution between using single or two hidden layers for simple tasks, but 
they require more training time. As a result, one hidden layer was selected for 
the purpose of this study, to minimise complexity.  

 
3.) Initial value of weights and biases – weights and biases initialization is the one 

of the most effective approaches to speed up the training process of neural 
networks. There are many new algorithms that have been created such as 
statically controlled activation weight initialization (SCAWI), optimal initial 
value setting (OIVS) (Yam and Chow, 2000). In addition, in cases of simple 
applications, functions such as RAND in Matlab can be implemented as well. 
However, in this study each layer's weights and biases are initialized by 
Nguyen-Widrow’s randomization method. This method was selected because 
it is widely used and well known as well as the one of the most effective 
weight initialization methods available since the 1990s.  

 
4.) Transfer function – As mentioned the functionality of transfer functions is to 

create outputs from each layer of neuron. Generally there are many 
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differentiable transfer functions to be used in backpropagation algorithm for 
example log-sigmoid transfer function which generates output between 0 to 1 
(before de-normalise the value), or hyperbolic tangent sigmoid transfer 
function which generates output between -1 to 1 (Demuth et al., 2013b). The 
latter transfer function was selected to use in this experiment as it is often used 
for pattern recognition problems, and (Singh and Datta, 2006) also mentions 
that this transfer function makes backpropagation perform better. 

 
Therefore, in most situations, the experiment has to be created and evaluated to 
determine the best number of hidden nodes by training the artificial neural networks 
with a variety of different settings, until the ANN obtains acceptable results. This 
experiment separates the number of hidden nodes for training and testing processes 
into five groups: 30, 60, 90, and 120 hidden nodes with Levenberg-Marquardt training 
algorithm, and 20 hidden nodes with Bayesian regularization training algorithm.  
 
The main reason to use this numbers: 30, 60, 90 and 120 for Levenberg-Marquardt 
training algorithm is based on suggestions from Blum (1992) stating that the size of 
hidden layer (number of hidden nodes) should be somewhere between the input layer 
size and output layer size. The concept behind this is that fewer numbers of hidden 
units will generate more training errors, as the network does not have enough capacity 
to manage all data. Contrastingly, for too high a number of nodes, “your network 
becomes a memory bank that can recall the training set to perfection, but does not 
perform well on samples that were not part of the training set” (Petersen, 2013). This 
effect is called overfitting. 
 
In addition, there are many articles quoting the superior performance of artificial 
neural network model by using Bayesian regularization algorithm (trainbr), such as 
Singh et al. (2010)’s research comparing trainbfg with trainbr for predicting the value 
of heat capacity in refrigeration systems. Its conclusion showed that the trainbr 
training function offers more appropriate results compared to other functions used 
with the same ANN. Therefore, in this study Bayesian regularization backpropagation 
with 20 nodes in hidden layers (strongly suggest by Demuth et al., (2008)) will be 
additionally examined in order to compare with four different settings of artificial 
neural network architectures evaluated earlier 
 
The results of this experiment provide us with the completed ANN model 
architecture, which is ready to be implemented for use in real case simulation (the 
experiment 4). The steps to run this evaluation are: 
 

1.) Define all controlled parameters as well as independent parameters (five 
different numbers of node) as mentioned earlier. The weights and biases of 
artificial neural network with four different hidden nodes (30, 60, 90 and 120) 
are updated with Levenberg-Marquardt algorithm (trainlm) that produced a 
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very good result in the previous experiment. The ANN with 20 hidden nodes 
is trained with Bayesian regularization algorithm (trainbr). 

2.) Supplying 323 input/output patterns generated by CFD to neural network for 
training process. Similarly as with the second experiment, those 323 patterns 
of data are randomly separated into three sets 70%-15%-15% for training, 
validation, and testing respectively.  

3.) In each trial, the network is trained until the network begins to overfit the data 
and then stop training. Once the training process had been finished, 323 inputs 
(which be used earlier for training) are to be fed into the ANN again to 
generate calculated outputs. 

4.) Compare the result between actual outputs (from CFD) and simulated outputs 
(from ANN)  

5.) Carefully select a good architecture. The criteria used for selecting ANN 
architecture is based on Mean Square Errors (MSE), which demonstrates the 
differences between actual and calculated sources locations (in both x and y 
axis). The lower the value the better the performance. In this experiment, only 
models which MSE values of less than 0.05 will be verified. 

 
 
3.6. Experiment 4 Source identification by using the selected model 
 
 
3.6.1. Assumptions 
 
In the real-world subsea condition, the methane concentration levels are measured by 
six methane sniffers in different locations after the leak sources start emitting 
methane. This data will be delivered to the well-optimised ANN network, in order to 
calculate the output. This output is expected to identify the location of leakage source 
(in coordinate x - y system). 
 
 
3.6.2. Objectives 
 
To simulate such a real case scenario, the source identification model (selected 
network from previous experiment) was run with 500 sets of unseen data generated by 
CFD (500 different leakage sources). This can verify the performance of selected 
ANNs to deal with unseen data. 
 
 
3.6.3. Solution Strategy 
 
This set of inputs represents the methane concentration at six different locations from 
each of 500 different source locations around the study area. Moreover, these 500 
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inputs have not been used previously for training purposes, and can therefore be 
classified as unseen input data. 
 
The procedures to run this evaluation are: 
 

1.) Preparing unseen input data and actual unseen output data (the output data 
would be used to validate the model performance).  

2.) Presenting 500 unseen input data points generated by CFD for the artificial 
neural network, which are subsequently converted by the ANN into calculated 
output. 

3.) Compare the result between actual unseen outputs (from CFD) and simulated 
outputs (from ANN). Apart from the previously mentioned Mean Square 
Errors (MSE), we have added the Normalized Error (NE) here, to measure the 
misfit of both actual outputs and calculated output in percentage. This makes 
the result easier and more straightforward to read and compare. 

 
This normalized error criterion is defined as (Mahar and Datta, 2000): 
 

𝑁𝐸 =   
𝑌! − 𝑋!!

!!!

𝑋!!
!!!

  ×  100 

 
where, N = total number of samples; 𝑋!   = actual value; and 𝑌! = calculated value 
 
 
 
3.7. Experiment 5 Robustness test 
 
 
3.7.1. Assumptions 
 
Due to the fact that only steady state conditions of water current flows were 
considered for this thesis, the results could be seen a little bit too optimistic. In a real-
world environment there are many factors either controllable or uncontrollable, which 
can interfere with a system. For example, high water contamination and malfunction 
of sensors that might result in faulty readings or data loss respectively. This may 
impact the estimated performance of the leakage source location identification, 
depending on the models assumptions and complexity (robustness).  
 
 
3.7.2. Objectives 
 
The robustness test is introduced in this part to assess how this model operates in 
unusual environmental conditions and in the presence of exceptional inputs. 



66 

3.7.3. Solution Strategy 
 
To demonstrate the robustness of this mode, white noise is added to the set of inputs 
measured by six sensors. Each new input was expressed as the following equations. 
 
 

𝐼𝑛𝑝𝑢𝑡!"# = 𝐼𝑛𝑝𝑢𝑡!"#$#%&' + 𝑁𝑜𝑖𝑠𝑒 

 
 
where, the value of the noise was calculated by following equation (Nunnari et al., 
2001): 
 
 

𝑁𝑜𝑖𝑠𝑒 = 𝑋𝑟𝑎𝑛   ∙   
𝑉𝑎𝑙𝑢𝑒!!

!!!

𝑁    ∙   
𝑃𝑒𝑟𝑐
100  

 
Where:  
 Xran  = Uniformly distributed random variable created in the interval [-1:1] 
 Value  = Value of the considered input set (methane concentration) 
 N  = Number of elements making up the input set for every leakage point 
 Perc = Percentage of noise 
 
For this experiment, percentages of noise were set at 1%, 5%, 10%, and 20%. The 
new inputs with noise added can be seen on Figure 26. The higher the percentage of 
noise added, the greater the amount of fractured data that is provided to the network. 
 
The procedures to run this robustness test are: 
 

1.) Providing the trained ANN with noise-free input/output patterns (The selected 
artificial neural network from previous evaluation would be used in this 
experiment). 

2.) Preparing noise added unseen input sets and their actual outputs (for validating 
the model performance). 

3.) Testing the network with noise added inputs starting from noise-free, noise at 
1%, noise at 5%, noise at 10%, and noise at 20%.  

4.) Collecting all calculated outputs from the artificial neural network from every 
test groups. 

5.) Evaluate the robustness of the network by comparing the result between actual 
unseen outputs (from CFD) and simulated outputs (from ANN). The criterion 
used here is normalized error (NE). 
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Figure 26 New input with different percentage of noise from t = 100 to 2000 second. (These value read 
by sensor number six of which methane source was set at position (6, 16.4) from origin point.) 
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CHAPTER 4 Experimental results and Analysis 
 
4. Experimental results and Analysis 
 
 
4.1. Experiment 1 Generating input/output patterns to train/test 

the ANN with CFD 
 
By simulating the leakage source in each different location using CFD, we can 
visualise and provide an overview of how methane disperses into the water phase, the 
direction, the methane concentration of each point, and traveling time. The latter two 
sets of simulated values (methane concentration and traveling time) are measured and 
collected at six different points around the computational domain area, which 
represent behaviours of the six different locations of methane sniffers around the 
seabed in real-world conditions. This kind of data will be manipulated and used as 
input/output patterns and also unseen inputs/outputs for neural network training and 
testing processes respectively. The concentration fields at different times (t.) from the 
different sources are shown in Figure 27 and Figure 28. 
 
 
 

 
 
 

Figure 27 Concentration fields (case of steady state flow) for the source is at location (6, 8), (a) at t = 1 sec. 
obtained by CFD; (b) at t = 120 sec. obtained by CFD; (c) at t = 600 sec. obtained by CFD; (d) at t = 1200 sec. 

obtained by CFD. 
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To decide which kind of data has to be collected and in which form is one of the most 
important parts that have to be considered carefully. For example, less input/output 
patterns for the training process would decrease the performance of the artificial 
neural network in terms of predicting the possible outcome. On the other hand, too 
many patterns would demand longer processing times and higher memory capacity of 
computers for training processes, as well as possibly resulting in a dramatic drop in 
performance if the sets of data/data structures are too complex. 
 
For the specific problem of leakage source identification features, there are three main 
factors which should be considered; sea current velocity, sea current direction, and 
methane concentrations. However, as this evaluation only uses a steady state flow 
field to frame the problem, sea current velocity and directions at the different time (t.) 
can be eliminated here. Therefore, only the levels of methane concentration at 20 
different time steps measured by all six different locations were selected for use in 
this ANN model. 
 
Basically, there are two different types of data sets required by an artificial neural 
network model.  
 

1.) Input/output patterns – artificial neural network are typically considered a 
black box process, meaning that the system considers only input and output 
without accounting for any concept or knowledge of its internal workings. 

Figure 28 Concentration fields (case of steady state flow) for the source is at location (20, 50), (a) at t = 1 
sec. obtained by CFD; (b) at t = 120 sec. obtained by CFD; (c) at t = 600 sec. obtained by CFD; (d) at t = 

1200 sec. obtained by CFD. 
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Therefor only input and output patterns are required for training/learning 
processes. During the training/learning process the black box (model) adjusts 
its mechanism (weight and bias values) by itself, to represent the relationship 
between stimuli inputs and output reactions, which were fed as an input/output 
pattern. That increases the ANN’s ability to predict the possible output from 
unseen data based on its perception and understanding of the input/output 
pattern used to train the ANN. 

2.) Unseen (input/output) data – This type of data set was generated in order to 
represent the scenarios that the neural network up until that time had not 
experienced. This type of data is normally used to measure the performance of 
the ANN model as to how precise it is in terms of prediction, by comparing 
the outcomes between the calculated output from the ANN model and the 
unseen output data from the simulation (CFD). 
 

In simple terms, input/output patterns are used to make models smarter and unseen 
data is used as a measurement tools to identify the performance of a model; both data 
sets are generated by CFD.  The flow chart of the data collection process (including 
the use of data) is shown in Figure 29. 
 

Figure 29 The flow chart of data collection process 
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4.2. Experiment 2 Artificial neural network training function 
selection. 

 
The following table summarizes the results of the network using twelve different 
training algorithms; running10 trials per algorithms. 
 

 
 
According to Table 4, there are several algorithm characteristics, which can be 
deduced from the experiments. Powell-Beale Restarts algorithm or traincgb (CGB) is 
able to provide relatively low mean square errors with the highest precision (std. is 
about 1.1) compared to any of the other algorithms tested. However, the advantage of 
high precision training (to provide almost the same results no matter how different the 
initial value is) is not especially necessary for this specific problem, but the possibility 
of the lowest mean square errors the ANN model can obtain (the model, which is able 
to find the optimum point of the system – highest accuracy) is of greater interest. The 
concept behind this is that once the best preforming network is found (1 out of 120 
models in this experiment for instance), all parameter values in this selected artificial 
neural network would be fixed as a constant and used to simulate an output until the 
model owner is willing to start a new training process. 
 
Therefore, for this benchmarking, the Levenberg-Marquardt algorithm (trainlm) is the 
most interesting training function when compared to the others. Firstly, it provides the 
lowest Mean Square Errors for this experiment. That means trainlm has a higher 
potential to provide the best solution (less errors) compared to other algorithms. 
Secondly, the lowest Mean Square Errors of trainlm is over ten times smaller than 
Resillian backpropogation (trainrp) which generally were recommended by (Demuth 
et al., 2008), for using in pattern recognition applications.  

Table 4 the results of the network using twelve different training algorithms. Each algorithm is tested ten 
times.  
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4.3. Experiment 3 Architecture (Hidden layer) optimization and 
Network performance verification 

 
The Table 5, Table 6, Table 7 and Table 8 summarize the training results of 
Levenberg-Marquardt backpropagation network with a variety of different 
architectures and initial weight and bias values.  
 
 

 
 
 

 
 
 
 

Table 5 Performance evaluation of trainlm backpropagation network with 30 hidden nodes 

Table 6 Performance evaluation of trainlm backpropagation network with 60 hidden nodes 
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Table 7 Performance evaluation of trainlm backpropagation network with 90 hidden nodes 

Table 8 Performance evaluation of trainlm backpropagation network with 120 hidden nodes 

* Network was running into same optimal point.  
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Table 9 summarizes the results of the Bayesian regularization backpropagation 
network with 10 different initial weight and bias values (10 trials).  
 
 

 
 
After training the artificial neural network with a variety of different architectures and 
complexities with 323 input/output patterns, only seven models have MSE values less 
than 0.05 as shown in Table 10 (sorted by min to max of MSE value).  
 

 
  
However, only one model will be selected to test with unseen data in the next 
experiment, which is model number 9. The reason for its selection is quite 
straightforward; firstly, model number 9 provided the lowest MSE values compared 
to other models. Secondly, trainlm works better and easier to avoid data overfit 
compared to trainbr in training process. Lastly, as with reference to Petersen's (2013) 

Table 9 Performance evaluation of trainbr backpropagation network with 20 hidden nodes 

Table 10 Networks with MSE value less than 0.05 
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recommendation to secure the ability of the network the number of nodes should be 
kept as low as possible, and Model number 9 consists of only 30 hidden nodes which 
is the smallest number among trainlm backpropagation network evaluated here.  
 
In addition, the performance of this model in the training process could also be 
described using the correlation coefficient (R), whose expression is: 
 
 

𝑅 =
𝐶𝑜𝑣(𝑋,𝑌)

𝐶𝑜𝑣 𝑋 𝐶𝑜𝑣(𝑌)
 

 
where, X = actual value; and Y = calculated value 
 
 
This formula always returns a value between -1 and 1, due to the standardizing 
procedure of dividing by square roots of the two covariances. 1 indicates a strong 
positive relationship, whereas -1 indicates a strong negative relationship, and 0 
indicates no relationship at all (Ross, 2011). 
 
In this study, larger values of R represent better performance. 
 
The correlation coefficient after the training process of model number 9 is given in 
Figure 30. It consists of four sub-figures which demonstrate the model performance 
using four different groups of inputs; training set, validation set, test set, and all three 
sets combined, in order to be used as unseen data. 
 
 

 
 
 
 
 

Figure 30 Correlation coefficient of model number 9 
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4.4. Experiment 4 Source identification by using the selected model 
 
After introducing 500 unseen input data points (500 leakage locations) into the ANN, 
errors (the difference between calculated outputs and actual outputs) will be 
calculated and plotted as shown in Figure 31. The results indicate a well performing 
model; almost all points were plotted very close to the centre of the graph (which 
indicates a low error rate), and they were all in close proximity to each other. Overall 
the model showed a high level of accuracy in predicting the location of methane 
leakage sources, despite the fact that it also generated a number of false outliers, with 
results with a deviation of about 1 metres from the actual location and one other 
output that had an error value of more than 1.5 metres.  Data visualisation is an 
excellent method to make data easier and simpler to understand (as shown in Figure 
31); however, in order to compare individual data sets and outcome, quantitative data 
showing the model performance in greater detail should also considered. The 
distribution plot of the results is shown in Figure 32. 
 

 
 
 
 
For all 500 leakage source scenarios run in the ANN, the average of the MSE (Mean 
Square Error) value is 0.0534 metres. This value was calculated from the average 
MSE of all outputs, which represent leakage positions on both x-axis and y-axis; 
those are 0.0583 and 0.0486 respectively. The correlation coefficient is 0.99783 for 
total ANN model runs as shown in Figure 33. 
 

Figure 31 Error between calculated output and actual output after 
presented 500 unseen input data to the network 
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The final criterion presented here is Normalize Error (NE). This is very useful by 
providing error values in percentage terms. This helps the understandability in 
general, and also can eliminate the different scales from several source parameters. In 
this study the Normalize Error of this ANN is 1.29%, meaning that on the average 
calculated outputs are deviating from actual outputs by 1.29%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 33 Correlation coefficient of the ANN 

Figure 32 The distribution plot of the error between calculated output and actual 
output after presented 500 unseen input data to the network 
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4.5. Experiment 5 Robustness test 
 
The robustness of the network (trained with noise-free input/output pattern) was 
evaluated by testing with different noise levels, based on Perc values from 1% to 
20%. The output from the network showing the prediction error is demonstrated in 
Figure 34. And summaries of the network performance from four different noised 
levels are shown in Table 11 and Figure 35 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 34 Error (in metre) between calculated output and actual output after presented 500 
unseen input data points to the network with different noise levels added. 

Table 11 Performance indexes MSE and NE for 5 different noise levels 
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From the table and figure above, the normalised error performance index increases 
with the percentage of noise introduced in unseen inputs. The most significant 
amplification errors are observed in noise level of 5% and above. There are about 
twenty outputs that indicate an estimated error of more than 5 metres (in the –x and –
y direction) from the target, and this number increases along with noise added in the 
input. As seen from Figure 34, the errors seem to be separated into two groups (centre 
at (0,0) and about (-10, -10)) rather than staying only at the centre at point (0,0) with 
lower accuracy and precision. The reason for this trend is at this point not clear, but 
may include factors such as data pollution and the lack of data cleaning filters. To 
identify precisely the real root cause would be beyond the scope of this study.  
 
 
4.6. Summary and Discussion of the results 
 
Artificial neural networks try to mimic the concept of human cognition; the way 
humans learn and respond to any situations they encounter. This makes the use of 
neural networks very attractive for addressing and solving complex and non-linear 
problems. However, there are many different types of analysis artificial neural 
network employ, based on their architecture and training processes. Therefore, it is 
better to look at each individual type of network to evaluate their usefulness for use in 
leak detection systems. A backpropagation neural network is the principal analysis 
methodology employed to address the objectives of this thesis. Hence, the artificial 

Figure 35 Normalise errors NE% of source position estimation for each axis using different levels of 
noisy input at the inputs of the ANN model. 
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neural networks or ANNs, which are mentioned in this part, are typically referred to 
as backpropagation neural networks. 
 
The problem solving methodology of the neural network is defined as a soft 
computing method. This tries to understand the relationship between input and output 
of training pairs during the ANN’s training process, unlike conventional solving 
methods, which use mathematical equations to create the outputs. Therefore, the 
accuracy of the output obtained by ANNs is reliant on both the quality and the 
quantity of the training data. Firstly, high quality here means that the data must fully 
represent real incidental events as well as eliminating any contaminated data, such as 
low confidence data and data extracted from poor performing sensors. Secondly, 
optimal quantity of training data here means that the data has to be sufficiently 
scattered over a range of possible accident scenarios. That means a comprehensive 
database (which contains the sets of training data) requires various combinations of 
modifying parameters and covers as many real incidents as possible. In addition the 
quantity of training data should be minimised to as little as is required to produce 
acceptable outputs, as large amounts of training data can require high computational 
efforts during the training process.  
 
In this study the backpropagation network was employed to estimate the leakage 
location based on measurement data (the concentration of dissolved methane in the 
sea water) from six different sensors locations. Setting up the exercise to obtain the 
training data (leakage location and the methane concentration in six different 
locations) in real subsea condition is extremely challenging due to constraints such as 
the difficult environment, costs and time.  
 
A computational fluid dynamic model was deployed to create a comprehensive 
database by simulating all possible causes and their consequences as it was shown in 
the experiment 1. It was used to generate two required data sets for artificial neural 
network models. These are: 
 

1.) Input/output patterns – each leakage source and its outcomes in 323 different 
locations over the considered area were simulated and used in the training 
process. In addition, to ensure a well running training process and incremental 
increases to the ANN model performance, all simulated leakage source 
locations used for input/output patterns must be carefully defined, such that 
new input/output data should be separately added in the area where there is a 
high complexity of turbulence or conditions, and possible to reduce in the 
smooth and calm area. However, in this experiment, the density of generated 
leakage sources (as an input/output pattern for training) were constant at every 
one metre along x and y directions, no matter the severity of conditions in 
each area. 
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2.) Unseen input/output data – 500 different leakage locations and each of their 
outcomes were created and used for testing the model performance. This 
unseen data was not defined by the model owner but created using a 
randomizing function instead. Uniform distribution with non-repeat values 
was deployed in this random function. This ensures the leakage location of 
unseen data is covering all considered areas and providing a new location that 
had not been used for training before. Therefore the data used in the testing 
process is new, fresh, and raw in order for the artificial neural network model 
to perform its ability to predict an output from unseen input data. The unseen 
output data was used to compare with the calculated output obtained by the 
model. 

 
The input data represent the methane concentration levels, which are measured by six 
methane sniffers after the sources start leaking methane, whereas the output data 
represent the leakage location which led to this outcome.  
 
Typically, the output format of CFD does not match the input format for artificial 
neural network models and sometimes data from CFD can either be not sufficient or 
too numerous. A functional data manipulation process has to be applied and deployed 
throughout the system in order ensure compatibility between CFD and the neural 
network model. The data manipulation process in this master thesis was created by 
myself using visual basic. This program selects 120 out of 12000 data points 
generated by CFD of each case (leakage location), and then arranges this selected data 
in the format required by ANN. This step is required and helpful to create a valid 
system with high performance and high reliability, as it can reduce the human error of 
dealing with too many data points and the configuration can be changed easily to 
match the different types of required data. Moreover, this is an automatic process, 
which can run continuously and fast, as all 823 different cases had been manipulated 
and finished in approximately 5 minutes. 
 
By using CFD, the simulation of all 823 different cases was completed and ready for 
the ANN model within a few days. In addition, the number of cases or any new 
scenarios defined by to users needs, can be extracted from the program easily by only 
changing numerical values. This tool is extremely useful to simulate, demonstrate, 
visualise, and provide information of fluid dynamics scenarios in conditions where 
humans find it difficult to be involved. However, to simulate a case approximating 
real-world conditions as closely as possible, many factors such as mesh size, related 
equation, related parameters, validation method and interval of calculation have to be 
carefully considered and optimised. The more accurate the training data can represent 
the real-world conditions, the more accurate and better performing the model will be 
and the easier it is to deploy in an operational leak detection system. This can lead to 
high demands for more resource, time, and money from companies and organisations 
wanting to undertake these kinds of simulations.  
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However, even the best set of training data can become useless, if the architecture of 
the neural networks is not appropriate for the provisioned training data. The neural 
network and all its relevant parameters have to be well defined in order to fully 
extract patterns or identify suitable features of the training data. In themselves, the 
neural networks have no established criteria to determine a value of each parameter in 
order to extend the fit of the data by the model. This lack of concrete guidelines can 
be an issue in the implementation of an ANN. Therefore, the alternative solution is to 
run several experiments to determine the best or optimal network architecture for each 
specific problem. The parameters that are involved in the experiments carried out for 
this thesis were the training function, the number of hidden nodes, and the optimum 
values of both weights and biases. The training function optimization was 
demonstrated in the experiment 2, while the others were shown in the experiment 3. 
 
The training function or training algorithm is the mathematical function that is used to 
update the ANN parameters (weights and bias values), reducing the overall error rate 
of the total system as quickly as possible. There are several training functions 
provided by Matlab’s Artificial Neural Network Toolbox. All of them have their own 
specific features as earlier shown in Table 3. Therefore, to find out which training 
function is the most suitable to deploy in leakage source identification, I have 
undertaken benchmarking by determining all related parameters as a constant and for 
all twelve different training functions as shown in experiment 2. This ensures that 
those factors will not interfere with the performance of the training algorithm. In 
addition, to select the most suitable training function, the key is to find a balance 
between time and results; slow rates of learning require a large number of iterations to 
understand the training data, whereas a high rate of learning may result in missing the 
minimum on the error surface. 
 
For this benchmarking the Levenberg-Marquardt algorithm (trainlm) is the most 
interesting training function when compared with others. This is due to the fact that 
one model in trainlm group obtains the lowest Mean Square Errors for this 
experiment. These results indirectly imply that for using this specific set of training 
data (simulated leakage point and its consequences) combined with Levenberg-
Marquardt algorithm (trainlm) for training the ANN, there is a likelihood to provide 
the best outcome (global minima), compared to another algorithms. Even though it 
required longer training times compared to other algorithms, the longer training times 
need not be taken into the account, as it is pre-processed before the network is 
implemented within real operational circumstances. 
 
There are no firm rules to create a well performing artificial neural network, but only 
suggestions based on books, articles, forums, and other relevant sources. These 
suggestions still cannot provide full explanations for all potential problems, as well as 
not being able to guarantee success in each application. For example Levenberg-
Marquardt is supposed to be the fastest training algorithm and more efficient than 
other technique when the network contains no more than a few hundred weights 
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(Torrecilla et al., 2008) (Hagan and Menhaj, 1994). Unfortunately this is not 
applicable for this specific problem as Levenberg-Marquardt algorithm (trainlm) took 
longer training times compared to other algorithms. 
 
Even if the training function evaluation process did not create any new insights or 
may obtain the same results as other sources suggest, it is still advantageous to run 
this benchmarking, at least to confirm that the selected training functions have a high 
probability to provide a good result in this specific scenario. From the results of this 
experiment, Levenberg-Marquardt algorithm (trainlm) was selected, and it was also 
assumed that its performance would be improved if its number of weights and biases 
were well optimised for this training data set (a leakage identification scenario). 
 
Therefore, experiment 3 had to be created and evaluated to determine the best number 
of hidden nodes by training the artificial neural network with a variety of different 
settings, until the ANN obtains acceptable results. This experiment separates the 
number of hidden nodes for training and testing processes into five groups: 30, 60, 90, 
and 120 hidden nodes with Levenberg-Marquardt and a one extra group: 20 hidden 
nodes with Bayesian regularization backpropagation. Each group consists of ten 
models, where each model contains the different initial values of weights and biases. 
 
Theoretically, these initial values are automatically adjusted after feeding the new pair 
of training data into the training process. When this process is finished, the final 
values of both weights and biases are fixed as a constant to estimate the output. 
Therefore, the total performance of the neural network model is determined by the 
final values of weights and biases of each individual neuron in the system. 
Unfortunately, the weight and bias values can be another issues with ANNs. This is 
because of the synaptic weight and bias values of each neuron are only real numbers 
without physical meaning. This means that to associate the numerical values of the 
weights and biases with any physical phenomena or knowledge is impossible. 
Therefore, selecting the optimum values of the weights and biases are based on trial 
and errors of different initial values of both weights and biases. 
 
In addition, this training process of neural networks can be described as a black box 
process; we know very little of what the system is actually doing due to the fact that 
the system is learning by itself and progresses on its own. The users have no other 
role than to feed the training data and watch it train and await the outputs. This is very 
simple in term of operation. However, it becomes more complicated for 
troubleshooting the network problems or understanding the concept behind the 
network. That is because the final product of the training process is a trained network 
that provides no mathematical equations or any coefficient numbers. The network 
itself is the final equation of the relationship.  
 
In order to finalize the best suitable architecture for application in leakage source 
identification, the 323 input/output patterns were used for training all 50 models of 
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the artificial neural network. Later, these input/output patterns were used as an unseen 
data, in order to examine the model performances. All models have their performance 
evaluated by MSE, which represents the deviation between the actual and the 
calculated outputs.  
 
The result from these experiments shows that out of the 50 considered model, the 
ninth was the most promising (we refer to is subsequently as Model 9). It should be 
considered for testing with unseen data for the following reasons:  
 

1.) The neural network architecture of model 9 consists of 30 hidden neurons, 
which is the smallest number amongst all models within Levenberg-Marquardt 
training algorithm. This can help to boost the performance of the network, as 
the number of hidden nodes should be kept as low as possible, and also be 
able to reduce the training time. 

2.) The model number 9 contains a reasonable and useful number of related 
parameters, which enables the model to obtain the smallest MSE value 
(0.03842). This MSE value indicates how well each model performs in this 
training process, it also indirectly implies the performance of the model in 
terms of dealing with unseen or unknown data. The lower MSE the values, the 
higher the potential of success in predictions.  

3.) The correlation coefficient values present better performance of this model, 
since the R value is close to 1. Therefore, apart from having a high accuracy of 
prediction, this selected model also provides a strong positive relationship 
between calculated and actual outputs. 

 
To simulate such a real-world scenario the source identification model (the trained 
model 9) was tested with unseen input data sets (500 different leakage locations) 
generated by CFD, as was shown in experiment 4. 
 
These 500 unseen input data sets were subsequently converted by the ANN (the 
trained model 9) into 500 calculated outputs and compared with actual unseen 
outputs.  The analysis of the two criteria mean square errors (MSE) and correlation (R 
value) indicates that this ANN is able to approximate leakage source identification 
with good accuracy (based on low MSE value). Also, the value between actual and 
calculated leakage location are well correlated (based on R value close to 1). 
 
In addition, the Normalized Error (NE) is introduced to measure the misfit of both 
actual outputs and calculated output as a percentage. This makes the result easier and 
more straightforward to read and compare. The Normalize Error of this ANN model 
is 1.29%, meaning that on average calculated outputs are deviating from actual 
outputs by 1.29%. However, in each leakage source scenario, an error can be less or 
more than 1.29% depending on the quality of inputs. For example, a set of inputs, 
which contains only methane concentration from two sensors has a higher chance of 
providing less good predictions than a set of inputs with full data from six sensors. 
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Therefore the optimal design of the locations for methane measurement on the seabed 
is important. This can be an opportunity for improving the model.  
 
The experimental error rates of around 1% are unlikely to be replicable in real world 
conditions. That is because of the subsea conditions employed in this experiment 
being comparatively simple, as I considered only the steady state of 2-D sea current 
flow; no changing or disturbance from external factors during the dispersion of 
released methane.  This is one gap that should be addressed in future studies (using 
ANN in dynamic conditions for subsea source identification). In addition, this model 
still needs to be validated using realistic field experiments that may incorporate many 
operational uncertainties. However, the results are nevertheless valuable, important 
and necessary, as they demonstrate the potential and the advantages of the use of 
ANN in leakages identification. These are specifically: 
 

1.) Even though the neural networks in this study only used steady state 
conditions, it provided a powerful modelling tool to identify leakage locations. 
This becomes a strong indication that with greater amounts of source and 
research data and more detailed modelling performance improvements, ANNs 
are highly feasible for use in real world subsea leakage systems. 

2.) It has also shown that the neural network can reduce or eliminate the need for 
specific knowledge of related parameter such as turbulence or vortices 
occurring in the considered area to be taken into account. That can be an 
advantage to implement ANNs in any high complexity system. Based on the 
research in this thesis, the neural network requires only two parameters during 
the training process. These are the causes (leakage locations) and its 
consequences (values from methane sniffers).  

3.) The neural network can predict the output almost in real time in operational 
conditions; the model generated the 500 calculated outputs within a few 
seconds. However, the main time-investment for the ANN approach occurs 
during the training process, specifically where very large networks and a large 
amount of data is involved. The model number 9 (the backpropagation neural 
network with 120 input nodes, 30 hidden nodes, and 2 output nodes) took 
approximately 30 minutes for training. This is because of the CPU computes 
the function of each neural node and connection separately. This issue is not 
really a big problem if the model runs on a parallel computer system. 

 
In a real-world environment there are many factors either controllable or 
uncontrollable, which can interfere with a system, such as high water contamination 
and malfunction of sensors that could result in faulty readings or missing data. This 
may impact on the performance of leakage source location identification. Therefore, 
the robustness test is introduced in experiment 5 to assess how this model operates in 
unusual environmental conditions and in the presence of erroneous inputs. To 
demonstrate this, white noise is added to the set of inputs to examine the model’s 
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performance.  There are four different sets of contaminated unseen inputs, which are 
separated by the percentage of added noise: 1%, 5%, 10% and 20%.  
 
The result of the robustness test shows that the performance index increases with the 
percentage of noise introduced in unseen input. Significant amplification errors are 
observed in noise levels of 5% and above. We can see that the selected ANN can 
tolerate contaminated data only up to a certain level (approximately 1%– 4%). The 
reasons for this deteriorating performance may lie with the contaminated input data 
where a high percentage of noise was located in the area outside the range of variables 
in the training data set. To find out the real root cause is considered to be outside the 
scope of this study.  
 
Typically, the robustness testing is part of any quality assurance methodology by 
developing test cases and test environments, which can be used to assess and verify 
the overall system performance dealing with unusual events. The more robust the 
system, the more extreme environmental conditions it can tolerate. In addition, 
developers can also use this information to find any root causes that degrade a 
system’s robustness, and then explore the solution to overcome these challenges. 
However, the research and modelling results at this stage can not provide a definitive 
answer on the final validity of this approach due to the lack of scientific standards 
around the accuracy of estimation of leakage source position identification (i.e. is a 
standard above 90% acceptable, or does it require 95% +, etc.) in both presence of 
noise and without noise. 
 
As the results obtained from the robustness demonstrated that the selected model can 
tolerate contaminated data only up to approximately 4%, performance degradation of 
the system could occur, once it deployed in real-world environments, which are 
highly dynamic and contain many different and various influences. However, there 
are a variety of approaches and techniques from different disciplines to overcome 
these issues. The alternative solutions can include: 
 

1.) The training data will have to be carefully selected, especially in the case of 
the neural network with supervised training method. This is due to the fact that 
the performance of prediction obtained by these networks are limited by the 
range of training data. Therefore, this training data should address the exact 
level of noise; the uncertainty of the system. This applies to all scenarios that 
possibly occur in the considered area and should be captured and use as 
training data. This enables the neural network to respond in several 
environments: different sea current speeds/directions and various levels of 
disturbed flow fields. However, the minimum quantity of data required should 
be taken into account, as the model will demand less resource: time for data 
cleaning, calculating time, and computer and storage requirements. 

2.) Introducing filters, either mechanical or electronic. They can help to eliminate 
any noises in the input data. For example, for unseen data with 20% noise 
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(which is very vibrant and fluctuating) the use of a Kalman filter can make the 
input smoother as this filter has an ability to predict an optimal estimate input 
by operating recursively noisy input data. 

3.) Changing the learning method of the artificial neural network from supervised 
training to unsupervised training. This unsupervised training enables the 
neural network to adapt and respond to the new inputs on its own; making this 
system more intelligent to work in a dynamic environment. 

 
No attempt was made to evaluate the above techniques for the purpose of this study. 
 
Lastly, based on all experiments in this thesis we found one additional interesting 
ability of artificial neural networks, which is their high flexibility. This makes them 
suitable and adaptable to address a variety of pattern recognition challenges; there is 
basically no right or wrong solution (model) for each application but only those 
suitable or unsuitable. Because of this characteristic, ANNs have been widely used to 
solve non-linear problems that can rarely be explained by equations. Moreover, this 
high flexibility enables ANNs to easily be combined with other methodologies and 
technologies. This can result in the improvement of the current ANN performance and 
also the ability to solve a wide range of specific problems. Some of the techniques 
suitable for combination have been identified in several articles, amongst them 
Neuro-Fuzzy, Neuro-PID, and Markov chain-Neural Network for instance. They are 
integration of the ANN concepts with Fuzzy logic, PID control and Markov chain 
respectively.  
 
Those are the main reason why I personally believe that application of ANNs (both 
conventional ANNs or improved ANNs) have significant potential to deal with the 
dynamic environments that apply to this specific problem too (i.e. subsea oil and gas 
leakage source identification).   



88 

CHAPTER 5 CONCLUSION 
 
5. Conclusion 
 
 
5.1. Conclusion 
 
As the concerns of severe consequences of the accidents from oil and gas exploration 
and production activities rise, the safety and protection systems are required to 
provide higher performance and greater reliability to avoid or at least mitigate a 
potential disaster. Part of a range of improvements and technological advances that 
are introduced by the industry and its suppliers are more sophisticated subsea leak 
detection systems, in particular those using point sensors (methane sniffers), which 
have a high sensitivity to detect contaminants. These subsea leak detection systems 
employing methane sniffers have been the basis on which to evaluate the potential for 
additional neural network-based detection functionality that may be introduced in 
such systems.  
 
In order to provide extra functionality (identification) for the methane sniffers, there 
are four main usable approaches, which have been reviewed in this study. Each 
technique has its own advantages and drawbacks. The analytical approach is simple 
but not able to simulate the complexity of subsea leak detection scenarios. The 
probabilistic approach requires large amounts of accurate historical data. This is often 
not practical in an operational environment. The optimization approach can work in 
almost real-time but requires significant investment in building a database. Lastly, the 
direct inverse modelling approach, which can operate with comparatively little 
information, but required longer calculating times. As a rule of thumb that applies to 
all approaches, the more accurate the results, the more resources are required. 
  
In case of a serious incident, real-or-near-real-time prediction is one of the most 
important tools for successful crisis management.  I have identified and selected 
artificial neural networks (classified as an optimization approach) for supporting the 
methane sniffers used in today’s state-of-the-art leak source identification systems. 
However, as this approach requires a database, I did combine this method with CFD 
modeling. Therefore, the basic characteristic of this combined approach is to present 
the methane leakage models obtained by CFD, taking the ability of an ANN to learn 
several complex non-linear behaviours in these models, in order to estimate the 
leakage location in subsea oil and gas production environments. This combined 
approach has been demonstrated to be an appropriate and useful tool to potentially 
enhance these systems’ performances. 
 
Firstly, the ANN approach is very straightforward; it generates the output based on 
what it has learnt in the training process. That implies that in-depth knowledge of the 
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physical phenomena (which are often hard to explain and describe) is not required, 
but only a relevant and high-quality set of training data. Even though an ANN seems 
a very simple approach in terms of creation and usage, it sometimes can appear 
complicated with regards to the optimisation required to make the model perform 
well.  
 
The selected model was used to identify the leakage locations based on the reading 
from six methane sniffers around the area under consideration. The results revealed 
that the basic backpropagation neural network (the selected model which is trained 
using patterns obtained by CFD) could identify the leakage source in calm 
environmental conditions (steady state) with satisfactory accuracy. Moreover, the 
neural network offers other benefits to the total system, as was demonstrated in the 
robustness test.  It can operate and provide an acceptable estimation of leakage 
location in the presence of noise (up to certain levels). The noise represents the 
contaminated data either from the environment or the system, missing measurement 
data, or unusual events occurring in the area.  
 
Secondly, CFD demonstrated an alternative solution to obtaining information required 
by the ANN without incurring the considerable costs of real environmental sampling 
and testing. It provides a realistic description of the characteristics and behaviours of 
fluid flow in as many scenarios as the ANN required.  However, this comes at the cost 
of the high computational time usually necessary to run the CFD model, especially 
several models which are needed to build a sufficiently large database (for training 
process). Fortunately, the ANN can reduce the size of the database. This is due to the 
fact that ANNs do not essentially require the high similarity of the matching (between 
unseen input and database) to calculate the outputs. Therefore, the high computational 
time requirements are also reduced. 
 
Lastly, the overall results show that the combined approach (CFD and ANN) is a 
promising tool to support pinpoint sensors (methane sniffers) to be more efficiently 
used for identifying leakages in calm condition. However, more efforts are required to 
overcome issues related to the dynamics and uncertainty of several parameters in real 
world scenarios, such as temperature, sea current directions and velocities, and surge 
currents. This will makes the subsea leak detection system more attractive to 
operators, smarter, as it can provide real time monitoring with high sensitivity of 
detection, as well as more accurately pinpointing the leakage source locations. This in 
turn enables the operator to respond faster to stop any incidents before they develop 
into critical events. 
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5.2. Recommendations to the Industry 
 
Because this thesis is essentially a feasibility study using the combination of CFD and 
ANN to identify the leakage source, the results obtained principally come from the 
simulations conducted. That means this study lacks some of the operational data to 
support its use in industrial environments such as investment costs, rate of return, 
customer satisfactions, and so on. Therefore, to adapt and develop this study for 
implementation in an operational environment, I strongly recommend stakeholders to 
investigate the following topics as a matter of priority: 
 

1.) As the results in this study have been obtained by computer simulation only, it 
has not been possible to take all operational uncertainties and related 
parameters into account; some parameters can be identified and detected, 
whereas others cannot. Therefore, one step required before deploying this 
approach is to carry out realistic field experiments; testing in real sea 
conditions or something similar (simulated pools). The data generated by this 
more realistic performance evaluation of ANN models in real-time and real-
world scenarios can be collected and may be used as a reference source. 

2.) Optimising the number and location of methane sniffers on the seabed is 
encouraged. This can ensure that a subsea leak detection system installed 
would use the minimum number of sensors while remaining accurate and fast 
at the same time. In addition, the sensor locations as well as the number of 
sensors installed are very important to ensure reliable and accurate outputs in 
this combined sensoring/modeling approach. The higher the number of inputs 
(i.e. the data from all six sensors), the better a prediction we can obtain. 
Vukovic and Srebric, (2007) mentioned two alternative methods that have 
been inspired by the artificial neural network theory: “optimal brain damage” 
or “pruning algorithm”. This starts the optimization with a large number of 
sensors and then reduces the sensor count until reaching the optimal value. 
Contrastingly, the “growing algorithm” performs in the inverse direction. 

3.) This combined approach requires a large amount of computational time, in 
terms of training the ANN model and creating the database using CFD in 
particular. A potential user should balance the time and resources spent on the 
project with the anticipated obtainable outcome and shift the balance in favour 
of business goals and requirement.  For example, utilising the ANN to identify 
the leakage zone instead of pinpointing the precise location of the leakage. 
This can definitely reduce the efforts used in the development phase of the 
project, as the size of database will be smaller. However, the model can still 
achieve adequate performance and might provide a more robust solution. 
Moreover, the ANN based methodology in this thesis is developed and 
evaluated for identification of unknown leakage sources in terms of locations 
only. Other features such as magnitude and timing of leakages should be 



 91 

considered and added into the model, in order to respond to stakeholder 
requirements.  

 
Lastly, there are undoubtedly other suggestions that are worth considering. A good 
way to bring out new ideas is to undertake brainstorming sessions with people with 
different (but relevant) expertise and backgrounds, covering the breadth and depth of 
experience and need to generate potentially useful ideas as well as feedback and 
recommendation from different perspectives. This can improve the performance, 
reliability and relevance as well as reduce the errors of such systems, once this 
approach is fed to prototyping or the deployment phase. 
 
 
5.3. Future Scope 
 
Even though this research work is a feasibility study only and the experiment cases 
are quite simple, the success of the results shown in this thesis support the idea of 
applying this approach in an operational environment. However, further studies need 
to be conducted. This may include:  
 

1. Further study, experimentation and design of the ANN model to provide 
acceptable results identifying the leakage location in more dynamic 
conditions. For example, taking into account the constant changes in sea 
current velocities and their direction would enable the model to learn how to 
deal with greater uncertainty and unexpected situations. This would result in a 
model much more suitable for real-world application. 

2. To make this optimization approach perform with a higher accuracy of 
prediction, it would be advantageous to capture and collect historical data in 
areas under consideration and feed that into the current ANN model. In 
addition related data sources, which affect the characteristic and behaviour of 
methane dispersion, should be taken into account. The related data sources 
might be the sea temperature, current direction, current speed, and saltiness for 
instance. These sources have to be further investigated and applied to the 
system to significantly increase the performance of identification. 

3. There are two training topologies in ANNs: supervised and unsupervised. For 
the future scope of work, I strongly suggest to look at neural networks with 
unsupervised training instead. Firstly, the time required to simulate multiple 
cases for training can be decreased or sometimes eliminated, as only small 
additional databases are required. Secondly, this approach has been widely 
used in actual projects in various application fields, for example web 
searching, which contain very large dimensions of data. That indirectly 
implies that neural networks with unsupervised training have been proven to 
deal with such a high complexity system. 
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4. As ANNs are by their nature problem dependent, this model is only suitable 
for this specific scenario. Therefore the next steps may include the design of a 
universally compatible system (based on this approach) that can be deployed 
on oil platforms in any location (where the subsea leak detection system is 
installed) and is also suitable for various types of sensor arrays (different 
number of sensors and different sensors allocations). This should result in the 
efforts and related costs required for each project decreasing. 

5. Whilst it is currently not explicitly required, solutions identifying non-point or 
multiple leakage sources, may well be of interest in the future, despite clearly 
posing a significant challenge. 

 
The above are only high-level suggestions to make subsea leak detection systems 
smarter, more practical, more reliable and more attractive to operators. On their own, 
the concept of ANN and CFD are probably insufficient to implement all the 
suggestions and meet all the challenges. Therefore a combination of techniques and 
methodologies in conjunction with the application of artificial neural networks and 
their underlying principles may hold the best prospect for delivering a future-facing, 
operational and cost-effective leak detection system. 
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Appendix A: Franatech METS methane sensors specifications 
 
 
 

Table 12 Franatech METS methane sensors specifications (Franatech, n.d.) 
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Figure 36 Local and global maximum and minimum (Anonymous, 2015). 

Appendix B: Maxima and minima of a function 
 
The maxima and the minima (the plural form of maximum and minimum 
respectively) of a function are the largest and smallest value(s) of the function. These 
values can be either the local or the global values (Anonymous, 2015). 
 

1. A local minima (maxima) is defined as a point from a given domain that all 
points in a neighbourhood have a value greater (smaller) than or equal to the 
value at that point, when a specific function is applied.  

2. A global minima (maxima) is a value from an entire domain of a function, 
which offers the lowest value (highest value).  

 
For example, the function, as shown in Figure 36, is cos 3𝜋𝑥 𝑥. If the given domain 
is the value between 0.5 and 0.8, the local maximum point is approximate x = 0.649 
and this is also the global maximum of this specific domain. However, the main goal 
of the optimization method is to find a global maxima or minima of a specific 
function. The implication is that the values have to be defined over the whole domain. 
Therefore, x = 0.649 will become only the local maximum, while the global 
maximum point is x = 0.1. 
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To obtain the best outcome from an optimization approach can be difficult, as there 
are many different sorts of errors embedded in each calculation algorithms. One major 
error in the training algorithm for the purpose of ANNs is called the local minima 
error. It can cause the optimal solution to deviate from the true (global) solution (Jeraj 
et al., 2003).  
 
The main root causes of the local minima error in the ANNs, especially in the 
backpropagation network, derives from two major sources. Those are an objective 
function of each specific problem and a characteristic of the learning algorithm in 
ANNs.  
 
This problem (the local minima error) does not occur when the objective function is 
convex, such as the function    𝑥  or the parabola’s equation. Unfortunately, the 
selected system (methane leakages in a subsea environment) in this master thesis is a 
non-linear problem with a high complexity, and also difficult to explain by equations. 
The implication is that the error surface of this problem has a high number of regions 
with local minima. Therefore, the optimal solution (values of bias and weight) might 
get trapped in one of the local minima instead of the global minima. 
 
In addition, most learning methodologies of ANNs in backpropagation belong to the 
class of algorithms that perform gradient descent; finding a minimum point by taking 
steps in the negative direction of the function gradient. The implication is that the 
value may get stuck in one minima, with little or no chance to get out of this point and 
continue the calculation process. Therefore, the different initial bias and weight values 
can lead to the different outcome, especially in the presence of high complexity 
objective functions. 
 
For example, based on Figure 36, three different initial values: x = 0.12, x = 0.8, and 
x = 1.1, which are provided to the objective function y = (cos 3𝜋𝑥 𝑥), then apply 
the gradient descent algorithm to optimise the problem. The optimized outputs (x) are 
0.296, 0.988, and 0.988 respectively. The first x provides the global minimum (y = -
3.17152), while the latter two provide the local minimum (y = -1.005). 
 
We can see that, in order to avoid the problem of local minima in backpropagation 
algorithm, the different randomised initial bias and weight values have to be 
introduced. That can increase the chance to obtain the output (final values of both 
weights and biases), which is located in the global minima. That results in better 
performance of the model.  
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Appendix C: Overfitting of artificial neural networks 
 
The main concept of ANNs is to build a model that is able to generate accurate 
predictions from unseen data. Apart from a high quality set of training data and the 
well-defined model architecture, the training process is also a key factor which 
determines the performance of ANNs. However, to train the model too hard does not 
guarantee the predictive powers of the model. Therefore, an essential step in modeling 
the ANN network process is to ensure that there has not been an overfit of the training 
data, which can lead to sub-optimal predictions from unseen data (Kaggle, 2011). 
Moreover, there is another problem in the training process, regarding a lack of 
training data. This problem is named the underfit. However, underfit is more unlikely 
to occur in ANNs as the model owners always aims to provide as much training data 
as possible.  
 
The phrase “to overfit” (in machine learning or ANNs area) is synonymous with the 
expression of reading too much. The implication is that during the ANNs training 
process the model learns all characteristics of the training data (i.e. errors, noise, etc.) 
instead of learning the bigger pictures or underlying relationship. Therefore, the 
overfiting problem happens when a model begins to memorise the training data rather 
than learning to establish a trend. The concrete example of underfit, right fit and 
overfit are demonstrated below (Bishop, 2007). 
 

 
 
 
 

Figure 37 The regression on the data points (adapted from (Bishop, 2007)). 
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Based on the Figure 37, there are nine data points (blue circles) in the graph. After 
fitting these nine sample data points with a linear function (linear regression), the 
result showed that the linear line (gray) does not fit with the data anymore. This is 
called underfit. Introducing a sine curve (polynomial function of degree 3) instead 
will match the nine data points (green) reasonably accurately. This is called right fit. 
In order to match each data point perfectly, the result ended up as shown in the red 
curve in Figure 37. This curve is a 9-degree polynomial, which can reduce the 
deviation between nine data points and predictor function close to zero. However, the 
complexity of 9-degree polynomial makes it likely for the model to result in 
overfitting.  
 
The root cause of this overfitting is that the model was trained with the same training 
set too many times, as it show in the Figure 38; the model will become overfitted if it 
was trained more than 9 times. The consequence of overfitting is that the model only 
performs well on the training data (decreasing the errors), but deteriorates in the test 
(unseen) data. That results in poor predictive performance of the model.  
 
 

 
Figure 38 The error obtained by the model, which was trained by the same training data for nine times  
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Appendix D : blockMeshDict File 
 
/*--------------------------------*- C++ -*--------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      blockMeshDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
convertToMeters 1; 
 
vertices 
( 
 (0 0 0)   
 (4 0 0)   
 (4 2 0)   
 (0 2 0)   
 (0 0 0.1)  
 (4 0 0.1)  
 (4 2 0.1)  
 (0 2 0.1)  
 (0 4 0)  
 (4 4 0)   
 (0 4 0.1)  
 (4 4 0.1)  
 (0 20 0)  
 (4 20 0)  
 (0 20 0.1)  
 (4 20 0.1)  
 (0 22 0)  
 (4 22 0)  
 (0 22 0.1)  
 (4 22 0.1)  
 (0 24 0)  
 (4 24 0)  
 (0 24 0.1)  
 (4 24 0.1)   
 (6 0 0)   
 (6 2 0)   
 (6 0 0.1) 
 (6 2 0.1)  
 (6 4 0)   
 (6 20 0)  
 (6 4 0.1)  
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 (6 20 0.1)  
 (6 22 0)  
 (6 24 0)  
 (6 22 0.1)  
 (6 24 0.1)  
 (24 0 0)  
 (24 2 0)  
 (24 0 0.1)  
 (24 2 0.1)  
 (24 4 0)  
 (24 4 0.1)  
 (24 20 0)  
 (24 20 0.1)  
 (24 22 0)  
 (24 22 0.1)  
 (24 24 0)  
 (24 24 0.1)  
 (26 0 0)  
 (26 2 0)  
 (26 0 0.1)  
 (26 2 0.1)  
 (26 4 0)  
 (26 20 0)  
 (26 4 0.1)  
 (26 20 0.1) 
 (26 22 0)  
 (26 24 0)  
 (26 22 0.1)  
 (26 24 0.1)  
 (29 0 0)  
 (29 2 0)  
 (29 0 0.1)  
 (29 2 0.1)  
 (29 4 0)  
 (29 4 0.1)  
 (29 20 0)  
 (29 20 0.1)  
 (29 22 0)  
 (29 22 0.1)  
 (29 24 0)  
 (29 24 0.1)  
 (31 0 0)  
 (31 2 0)  
 (31 0 0.1)  
 (31 2 0.1)  
 (31 4 0)  
 (31 20 0)  
 (31 4 0.1)  
 (31 20 0.1) 
 (31 22 0)  
 (31 24 0)  
 (31 22 0.1)  
 (31 24 0.1)  
 (45 0 0)  
 (45 2 0)  
 (45 0 0.1)  
 (45 2 0.1)  
 (45 4 0)  
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 (45 4 0.1)  
 (45 20 0)  
 (45 20 0.1)  
 (45 22 0)  
 (45 22 0.1)  
 (45 24 0)  
 (45 24 0.1)  
 (47 0 0)  
 (47 2 0)  
 (47 0 0.1)  
 (47 2 0.1)  
 (47 4 0)  
 (47 20 0)  
 (47 4 0.1)  
 (47 20 0.1)  
 (47 22 0)  
 (47 24 0)  
 (47 22 0.1)  
 (47 24 0.1)  
 (50 0 0)  
 (50 2 0)  
 (50 0 0.1)  
 (50 2 0.1)  
 (50 4 0)  
 (50 4 0.1)  
 (50 20 0)  
 (50 20 0.1)  
 (50 22 0)  
 (50 22 0.1)  
 (50 24 0)  
 (50 24 0.1)  
); 
 
blocks 
( 
hex (0 1 2 3 4 5 6 7)(20 10 1) simpleGrading (1 1 1)  
hex (3 2 9 8 7 6 11 10)(20 10 1) simpleGrading (1 1 1)  
hex (8 9 13 12 10 11 15 14)(20 80 1) simpleGrading (1 1 1) 
hex (12 13 17 16 14 15 19 18)(20 10 1) simpleGrading (1 1 1) 
hex (16 17 21 20 18 19 23 22)(20 10 1) simpleGrading (1 1 1) 
hex (1 24 25 2 5 26 27 6)(10 10 1) simpleGrading (1 1 1)  
hex (9 28 29 13 11 30 31 15)(10 80 1) simpleGrading (1 1 1) 
hex (17 32 33 21 19 34 35 23)(10 10 1) simpleGrading (1 1 1) 
hex (24 36 37 25 26 38 39 27)(90 10 1) simpleGrading (1 1 1) 
hex (25 37 40 28 27 39 41 30)(90 10 1) simpleGrading (1 1 1) 
hex (28 40 42 29 30 41 43 31)(90 80 1) simpleGrading (1 1 1) 
hex (29 42 44 32 31 43 45 34)(90 10 1) simpleGrading (1 1 1) 
hex (32 44 46 33 34 45 47 35)(90 10 1) simpleGrading (1 1 1) 
hex (36 48 49 37 38 50 51 39)(10 10 1) simpleGrading (1 1 1) 
hex (40 52 53 42 41 54 55 43)(10 80 1) simpleGrading (1 1 1) 
hex (44 56 57 46 45 58 59 47)(10 10 1) simpleGrading (1 1 1) 
hex (48 60 61 49 50 62 63 51)(15 10 1) simpleGrading (1 1 1) 
hex (49 61 64 52 51 63 65 54)(15 10 1) simpleGrading (1 1 1) 
hex (52 64 66 53 54 65 67 55)(15 80 1) simpleGrading (1 1 1) 
hex (53 66 68 56 55 67 69 58)(15 10 1) simpleGrading (1 1 1) 
hex (56 68 70 57 58 69 71 59)(15 10 1) simpleGrading (1 1 1) 
hex (60 72 73 61 62 74 75 63)(10 10 1) simpleGrading (1 1 1) 
hex (64 76 77 66 65 78 79 67)(10 80 1) simpleGrading (1 1 1) 
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hex (68 80 81 70 69 82 83 71)(10 10 1) simpleGrading (1 1 1) 
hex (72 84 85 73 74 86 87 75)(70 10 1) simpleGrading (1 1 1) 
hex (73 85 88 76 75 87 89 78)(70 10 1) simpleGrading (1 1 1) 
hex (76 88 90 77 78 89 91 79)(70 80 1) simpleGrading (1 1 1) 
hex (77 90 92 80 79 91 93 82)(70 10 1) simpleGrading (1 1 1) 
hex (80 92 94 81 82 93 95 83)(70 10 1) simpleGrading (1 1 1) 
hex (84 96 97 85 86 98 99 87)(10 10 1) simpleGrading (1 1 1) 
hex (88 100 101 90 89 102 103 91)(10 80 1)simpleGrading(1 1 1) 
hex (92 104 105 94 93 106 107 95)(10 10 1) simpleGrading (1 1 1) 
hex (96 108 109 97 98 110 111 99)(15 10 1) simpleGrading (1 1 1) 
hex (97 109 112 100 99 111 113 102)(15 10 1)simpleGrading(1 1 1) 
hex (100 112 114 101 102 113 115 103)(15 80 1)simpleGrading(1 1 
1) 
hex (101 114 116 104 103 115 117 106)(15 10 1)simpleGrading(1 1 
1) 
hex (104 116 118 105 106 117 119 107)(15 10 1)simpleGrading(1 1 
1)  
); 
 
edges 
( 
); 
 
boundary 
( 
    inlet 
    { 
        type patch; 
        faces 
        ( 
  (0 4 7 3)   
        ); 
    } 
    inlet2 
    { 
        type patch; 
        faces 
        ( 
         (0 1 5 4)   
        ); 
    } 
    inlet3 
    { 
        type patch; 
        faces 
        ( 
         (1 24 26 5) 
        ); 
    } 
    inlet4 
    { 
        type patch; 
        faces 
        (         
  (8 10 14 12)   
        ); 
    } 
     inlet5 
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    { 
        type patch; 
        faces 
        (    
  (24 36 38 26) 
        ); 
    } 
    outlet 
    { 
        type patch; 
        faces 
        ( 
  (116 118 119 117) 
        ); 
    } 
    outlet2 
    { 
        type patch; 
        faces 
        ( 
         (81 83 95 94) 
        ); 
    } 
    outlet3 
    { 
        type patch; 
        faces 
        ( 
         (114 116 117 115) 
        ); 
    } 
    outlet4 
    { 
        type patch; 
        faces 
        ( 
         (105 107 119 118) 
        ); 
    } 
    upperWall 
    { 
        type wall; 
        faces 
        ( 
         (20 22 23 21) 
  (21 23 35 33) 
  (33 35 47 46) 
  (46 47 59 57) 
  (57 59 71 70) 
  (70 71 83 81) 
  (94 95 107 105) 
  (3 7 10 8) 
  (12 14 18 16) 
  (16 18 22 20)  
         ); 
    } 
    lowerWall 
    { 
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        type wall; 
        faces 
        ( 
  (36 48 50 38) 
  (48 60 62 50) 
  (60 72 74 62) 
  (72 84 86 74) 
  (84 96 98 86) 
  (96 108 110 98) 
  (108 109 111 110) 
  (109 112 113 111) 
  (112 114 115 113)  
        ); 
    } 
    frontAndBack 
    { 
        type empty; 
        faces 
        ( 
         (4 5 6 7)  
  (0 3 2 1) 
  (7 6 11 10) 
  (3 8 9 2) 
  (10 11 15 14)  
  (8 12 13 9) 
  (14 15 19 18)  
  (12 16 17 13) 
  (18 19 23 22)  
  (16 20 21 17) 
  (1 2 25 24) 
  (5 26 27 6) 
  (9 13 29 28)  
  (11 30 31 15) 
  (17 21 33 32)  
  (19 34 35 23) 
  (24 25 37 36)  
  (26 38 39 27) 
  (25 28 40 37)  
  (27 39 41 30) 
  (28 29 42 40)  
  (30 41 43 31) 
  (29 32 44 42)  
  (31 43 45 34) 
  (32 33 46 44)  
  (34 45 47 35) 
  (36 37 49 48)  
  (38 50 51 39) 
  (40 42 53 52)  
  (41 54 55 43) 
  (44 46 57 56)  
  (45 47 59 58) 
  (48 49 61 60)  
  (50 62 63 51) 
  (49 52 64 61)  
  (51 63 65 54) 
  (52 53 66 64)  
  (54 65 67 55) 
  (53 56 68 66)  
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  (55 67 69 58) 
  (56 57 70 68)  
  (58 69 71 59) 
  (60 61 73 72) 
  (62 74 75 63) 
  (64 66 77 76)  
  (65 78 79 67) 
  (68 70 81 80)  
  (69 82 83 71) 
  (72 73 85 84)  
  (74 86 87 75) 
  (73 76 88 85)  
  (75 87 89 78) 
  (76 77 90 88)  
  (78 89 91 79) 
  (77 80 92 90)  
  (79 91 93 82) 
  (80 81 94 92)  
  (82 83 95 93) 
  (84 85 97 96)  
  (86 98 99 87) 
  (88 90 101 100)  
  (89 102 103 91) 
  (92 94 105 104)  
  (93 106 107 95) 
  (96 97 109 108)  
  (98 110 111 99) 
  (97 100 112 109)  
  (99 111 113 102) 
  (100 101 114 112)  
  (102 113 115 103) 
  (101 104 116 114)  
  (103 115 117 106) 
  (104 105 118 116)  
  (106 117 119 107) 
        ); 
    } 
 
    box1 
    { 
 type wall; 
 faces 
 ( 
  (2 9 11 6) 
  (2 6 27 25) 
  (9 28 30 11) 
  (25 27 30 28) 
 ); 
    }  
 
    box2 
    { 
 type wall; 
 faces 
 ( 
  (13 15 31 29) 
  (13 17 19 15) 
  (17 32 34 19) 
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  (29 31 34 32) 
 ); 
    }  
 
    box3 
    { 
 type wall; 
 faces 
 ( 
  (37 39 51 49) 
  (37 40 41 39) 
  (40 52 54 41) 
  (49 51 54 52) 
 ); 
    }  
 
    box4 
    { 
 type wall; 
 faces 
 ( 
  (42 43 55 53) 
  (42 44 45 43) 
  (44 56 58 45) 
  (53 55 58 56) 
 ); 
    }  
 
     box5 
    { 
 type wall; 
 faces 
 ( 
  (61 63 75 73) 
  (61 64 65 63) 
  (64 76 78 65) 
  (73 75 78 76) 
 ); 
    }  
 
    box6 
    { 
 type wall; 
 faces 
 ( 
  (66 67 79 77) 
  (66 68 69 67) 
  (68 80 82 69) 
  (77 79 82 80) 
 ); 
    }  
 
    box7 
    { 
 type wall; 
 faces 
 ( 
  (85 87 99 97) 
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  (85 88 89 87) 
  (88 100 102 89) 
  (97 99 102 100) 
 ); 
    }  
 
    box8 
    { 
 type wall; 
 faces 
 ( 
  (90 91 103 101) 
  (90 92 93 91) 
  (92 104 106 93) 
  (101 103 106 104) 
 ); 
    }  
); 
 
mergePatchPairs 
( 
); 
 
// ************************************************************** 
// 
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Appendix E: controlDict (pisoFoam) 
 
/*--------------------------------*- C++ -*--------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | foam-extend: Open Source CFD                    
| 
|  \\    /   O peration     | Version:     3.1                                
| 
|   \\  /    A nd           | Web:         http://www.extend-
project.de       | 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      controlDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
application     pisoFoam; 
 
startFrom       FirstTime; 
 
startTime       0; 
 
stopAt          endTime; 
 
endTime         1600; 
 
deltaT          0.0005; 
 
writeControl    timeStep; 
 
writeInterval   20000; 
 
purgeWrite      0; 
 
writeFormat     ascii; 
 
writePrecision  6; 
 
writeCompression uncompressed; 
 
timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable yes; 
); 
 
// *********************************************************** // 
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Appendix F: epsilon File (pisoFoam) 
 
 
/*--------------------------------*- C++ -*--------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      epsilon; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -3 0 0 0 0]; 
 
internalField   uniform 14.855; 
 
boundaryField 
{ 
    inlet 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet2 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet3 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet4 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    }  
    inlet5 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    outlet 
    { 
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        type            inletOutlet; 
        inletValue      uniform 14.855; 
        value           uniform 14.855; 
    } 
    outlet2 
    { 
        type            inletOutlet; 
        inletValue      uniform 14.855; 
        value           uniform 14.855; 
    } 
    outlet3 
    { 
        type            inletOutlet; 
        inletValue      uniform 14.855; 
        value           uniform 14.855; 
    } 
    outlet4 
    { 
        type            inletOutlet; 
        inletValue      uniform 14.855; 
        value           uniform 14.855; 
    } 
    upperWall 
    { 
        type            epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 14.855; 
    } 
    lowerWall 
    { 
        type            epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 14.855; 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box2 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
           kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 



 xix 

 box3 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box4 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box5 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box6 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box7 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
 box8 
  { 
          type            epsilonWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 14.855; 
      } 
} 
 
 
// *********************************************************** // 
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Appendix	  G:	  k	  File	  (pisoFoam) 
 
/*----------------------------*- C++ -*------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      k; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform 0.375; 
 
boundaryField 
{ 
    inlet 
    { 
        type            fixedValue; 
        value           uniform 0.375; 
    } 
    inlet2 
    { 
        type            fixedValue; 
        value           uniform 0.375; 
    } 
    inlet3 
    { 
        type            fixedValue; 
        value           uniform 0.375; 
    } 
     inlet4 
    { 
        type            fixedValue; 
        value           uniform 0.375; 
    } 
    inlet5 
    { 
        type            fixedValue; 
        value           uniform 0.375; 
    } 
    outlet 
    { 
        type            inletOutlet; 
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        inletValue      uniform 0.375; 
        value           uniform 0.375; 
    } 
    outlet2 
    { 
        type            inletOutlet; 
        inletValue      uniform 0.375; 
        value           uniform 0.375; 
    } 
    outlet3 
    { 
        type            inletOutlet; 
        inletValue      uniform 0.375; 
        value           uniform 0.375; 
    } 
    outlet4 
    { 
        type            inletOutlet; 
        inletValue      uniform 0.375; 
        value           uniform 0.375; 
    } 
    upperWall 
    { 
        type            kqRWallFunction; 
        value           uniform 0.375; 
    } 
    lowerWall 
    { 
        type            kqRWallFunction; 
        value           uniform 0.375; 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box2 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box3 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box4 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box5 
  { 
          type            kqRWallFunction; 
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          value           uniform 0.375; 
      } 
 box6 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box7 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
 box8 
  { 
          type            kqRWallFunction; 
          value           uniform 0.375; 
      } 
} 
 
 
// *********************************************************** // 
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Appendix H: nut File (pisoFoam) 
 
/*--------------------------*- C++ -*--------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      nut; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -1 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    inlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet2 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet3 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet4 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet5 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    outlet 
    { 
        type            calculated; 
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        value           uniform 0; 
    } 
    outlet2 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    outlet3 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    outlet4 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    upperWall 
    { 
        type            nutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0; 
    } 
    lowerWall 
    { 
        type            nutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0; 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box2 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
         kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box3 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
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          E               9.8; 
          value           uniform 0; 
      } 
 box4 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
         kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box5 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box6 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
         kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box7 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
          kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
 box8 
  { 
          type            nutkWallFunction; 
          Cmu             0.09; 
         kappa           0.41; 
          E               9.8; 
          value           uniform 0; 
      } 
} 
 
 
// *********************************************************** // 
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Appendix I: nuTilda File (pisoFoam) 
 
/*-----------------------------*- C++ -*-----------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    object      nuTilda; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
dimensions      [0 2 -1 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
   inlet 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet2 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet3 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet4 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    inlet5 
    { 
        type            fixedValue; 
        value           uniform 14.855; 
    } 
    outlet 
    { 
        type           zeroGradient; 
    } 
    outlet2 
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    { 
        type           zeroGradient; 
    } 
    outlet3 
    { 
        type           zeroGradient; 
    } 
    outlet4 
    { 
        type           zeroGradient; 
    } 
    upperWall 
    { 
        type           zeroGradient; 
    } 
    lowerWall 
    { 
        type            zeroGradient; 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            zeroGradient; 
      } 
 box2 
  { 
          type            zeroGradient; 
      } 
 box3 
  { 
          type            zeroGradient; 
      } 
 box4 
  { 
          type            zeroGradient; 
      } 
 box5 
  { 
          type            zeroGradient; 
      } 
 box6 
  { 
          type            zeroGradient; 
      } 
 box7 
  { 
          type            zeroGradient; 
      } 
 box8 
  { 
          type            zeroGradient; 
      } 
 
} 
// *********************************************************** //  
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Appendix J: p File (pisoFoam) 
 
/*-----------------------------*- C++ -*-----------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      http://www.openfoam.org               
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object p; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    inlet 
    { 
        type            zeroGradient; 
    } 
    inlet2 
    { 
        type            zeroGradient; 
    } 
    inlet3 
    { 
        type            zeroGradient; 
    } 
    inlet4 
    { 
        type            zeroGradient; 
    } 
    inlet5 
    { 
        type            zeroGradient; 
    } 
    outlet 
    { 
        type            fixedValue; 
        value           uniform 0; 
    } 
    outlet2 
    { 
        type            fixedValue; 
        value           uniform 0; 
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    } 
    outlet3 
    { 
        type            fixedValue; 
        value           uniform 0; 
    } 
    outlet4 
    { 
        type            fixedValue; 
        value           uniform 0; 
    } 
    upperWall 
    { 
        type            zeroGradient; 
    } 
    lowerWall 
    { 
        type            zeroGradient; 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            zeroGradient; 
      } 
 box2 
  { 
          type            zeroGradient; 
      } 
 box3 
  { 
          type            zeroGradient; 
      } 
 box4 
  { 
          type            zeroGradient; 
      } 
 box5 
  { 
          type            zeroGradient; 
      } 
 box6 
  { 
          type            zeroGradient; 
      } 
 box7 
  { 
          type            zeroGradient; 
      } 
 box8 
  { 
          type            zeroGradient; 
      } 
} 
 
// *********************************************************** //  
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Appendix K: U File (pisoFoam) 
 
/*--------------------------*- C++ -*--------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      http://www.openfoam.org               
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volVectorField; 
    location    "0"; 
    object U; 
} 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    inlet 
    { 
        type            fixedValue; 
        value           uniform (0.0642 0.0766 0); 
    } 
    inlet2 
    { 
        type            fixedValue; 
        value           uniform (0.0642 0.0766 0); 
    } 
    inlet3 
    { 
        type            fixedValue; 
        value           uniform (0.01736 0.09848 0); 
    } 
    inlet4 
    { 
        type            fixedValue; 
        value           uniform (0.001 0 0); 
    } 
    inlet5 
    { 
        type            fixedValue; 
        value           uniform (0.0689 0.0121 0); 
    } 
    outlet 
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    { 
        type            inletOutlet; 
        inletValue      uniform (0 0 0); 
        value           uniform (0 0 0); 
    } 
    outlet2 
    { 
        type            inletOutlet; 
        inletValue      uniform (0 0 0); 
        value           uniform (0 0 0); 
    } 
    outlet3 
    { 
        type            inletOutlet; 
        inletValue      uniform (0 0 0); 
        value           uniform (0 0 0); 
    } 
    outlet4 
    { 
        type            inletOutlet; 
        inletValue      uniform (0 0 0); 
        value           uniform (0 0 0); 
    } 
    upperWall 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    lowerWall 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
    frontAndBack 
    { 
        type            empty; 
    } 
 box1 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box2 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box3 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box4 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box5 
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  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box6 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box7 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
 box8 
  { 
          type            fixedValue; 
          value           uniform (0 0 0); 
      } 
} 
 
 
// *********************************************************** //  
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Appendix L: fvSchemes File (pisoFoam) 
 
/*-------------------------------------------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      http://www.openfoam.org               
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
 
FoamFile 
{ 
    version         2.0; 
    format          ascii; 
    class           dictionary; 
    location        "system"; 
    object          fvSchemes; 
} 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default Euler; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
    grad(p)         Gauss linear; 
    grad(U)         Gauss linear; 
} 
 
divSchemes 
{ 
    default         none; 
    
     
    div(phi,U)      Gauss upwind; 
    div(phi,k)      Gauss upwind; 
    div(phi,epsilon) Gauss upwind; 
    div(phi,R)      Gauss upwind; 
    div(R)          Gauss linear; 
    div(phi,nuTilda) Gauss upwind; 
 
  div((nuEff*dev(T(grad(U))))) Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default         none; 
    laplacian(nuEff,U) Gauss linear corrected; 
    laplacian((1|A(U)),p) Gauss linear corrected; 
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    laplacian(DkEff,k) Gauss linear corrected; 
    laplacian(DepsilonEff,epsilon) Gauss linear corrected; 
    laplacian(DREff,R) Gauss linear corrected; 
    laplacian(DnuTildaEff,nuTilda) Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
    interpolate(U)  linear; 
} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 
fluxRequired 
{ 
    default         no; 
    p; 
} 
 
 
// *********************************************************** //  
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Appendix M: fvSolution File (pisoFoam) 
 
/*-------------------------------------------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  1.6                                   
| 
|   \\  /    A nd           | Web:      http://www.openfoam.org               
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
 
FoamFile 
{ 
    version         2.0; 
    format          ascii; 
    class           dictionary; 
    location        "system"; 
    object          fvSolution; 
} 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
     p 
    { 
        solver           PCG; 
        preconditioner   DIC; 
        tolerance        1e-06; 
        relTol           0.01; 
    }; 
 

pFinal 
    { 
        $p; 
        tolerance       1e-06; 
        relTol          0; 
    } 
 
 
     U 
    { 
        solver           PBiCG; 
        preconditioner   DILU;         
        tolerance        1e-05; 
        relTol           0; 
    }; 
 
     k 
    { 
        solver           PBiCG; 
        preconditioner   DILU; 
        tolerance        1e-05; 
        relTol           0; 
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    }; 
     epsilon 
    { 
        solver           PBiCG; 
        preconditioner   DILU; 
        tolerance        1e-05; 
        relTol           0; 
    }; 
} 
 
PISO 
{ 
    nCorrectors 2; 
    nNonOrthogonalCorrectors 0; 
} 
 
/* 
relaxationFactors 
{ 
    p               0.3; 
    U               0.7; 
    k               0.7; 
    epsilon         0.7; 
    R               0.7; 
    nuTilda         0.7; 
} 
*/ 
 
// *********************************************************** //  
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Appendix N: controlDictFile (scalarTransportFoam) 
 
/*-------------------------*- C++ -*---------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      controlDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
application     scalarTransportFoam; 
 
startFrom       startTime; 
 
startTime       0; 
 
stopAt          endTime; 
 
endTime         2000; 
 
deltaT          1; 
 
writeControl    timeStep; 
 
writeInterval   60; 
 
purgeWrite      0; 
 
writeFormat     ascii; 
 
writePrecision  6; 
 
writeCompression off; 
 
timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable true; 
 
 
functions 
( 
    probes 
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    { 
        type            probes; 
        functionObjectLibs ("libsampling.so"); 
        enabled         true; 
        outputControl   timeStep; 
        outputInterval  10; 
        probeLocations 
        ( 
           
 
  (8 6 0) //sensor 1 
  (8 18 0) //sensor 2 
  (25 6 0) //sensor 3 
  (25 18 0) //sensor 4 
  (41 6 0) //sensor 5 
  (41 18 0) //sensor6 
  
        ); 
 
        fields 
        ( 
            T U 
        ); 
    } 
 
    fieldAverage1 
    { 
        type            fieldAverage; 
        functionObjectLibs ("libfieldFunctionObjects.so"); 
        enabled         true; 
        outputControl   outputTime; 
        fields 
        ( 
            U 
            { 
                mean        on; 
                prime2Mean  on; 
                base        time; 
            } 
 
            p 
            { 
                mean        on; 
                prime2Mean  on; 
                base        time; 
            } 
        ); 
    } 
); 
 
//************************************************************ //  
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Appendix O: T File (scalarTransportFoam) 
 
/*-------------------------*- C++ -*---------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    object      T; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 0 1 0 0]; 
 
internalField   nonuniform List<scalar>  
 
29200 
( 
0 
0 
0 
0 
0 
0 
0 
0 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
 
) 
; 
 
boundaryField 
{ 
    inlet 
    { 
       type            zeroGradient; 
    } 
inlet2 
    { 
       type            zeroGradient; 
    } 
inlet3 
    { 
        type            zeroGradient; 
    } 
inlet4 
    { 
        type            zeroGradient; 
    } 
inlet5 
    { 
        type            zeroGradient; 
    } 
 
    outlet 
    { 
        type            zeroGradient; 
    } 
 outlet2 
    { 
        type            zeroGradient; 
    } 
 outlet3 
    { 
        type            zeroGradient; 
    } 
 outlet4 
    { 
        type            zeroGradient; 
    } 
 
    upperWall 
    { 
        type            zeroGradient; 
    } 
 
    lowerWall 
    { 
        type            zeroGradient; 
    } 
 
    frontAndBack 
    { 
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        type            empty; 
    } 
 
     box1 
    { 
        type            zeroGradient; 
    } 
    box2 
    { 
        type            zeroGradient; 
    } 
    box3 
    { 
        type            zeroGradient; 
    } 
    box4 
    { 
        type            zeroGradient; 
    } 
    box5 
    { 
       type            zeroGradient; 
    } 
    box6 
    { 
        type            zeroGradient; 
    } 
    box7 
    { 
        type            zeroGradient; 
    } 
    box8 
    { 
        type            zeroGradient; 
    } 
} 
 
// *********************************************************** //  
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Appendix P: U File (scalarTransportFoam) 
 
/*--------------------------*- C++ -*--------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volVectorField; 
    object      U; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   nonuniform List<vector> 
29200 
( 
(0.0640453 0.0767247 0) 
(0.0636308 0.0767734 0) 
(0.0630427 0.0767731 0) 
(0.0624811 0.0767581 0) 
(0.0619399 0.0767384 0) 
(0.0614639 0.0767222 0) 
(0.0610252 0.0767085 0) 
(0.0606287 0.0767 0) 
(0.0602542 0.0766955 0) 
. 
. 
. 
. 
. 
. 
. 
. 
//All data points can be seen in enclosed CD. 
. 
. 
. 
. 
. 
. 
. 
. 
(0.0274134 0.0217885 0) 
(0.0227766 0.0279405 0) 
(0.0196123 0.0341081 0) 
(0.0184627 0.0406624 0) 
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(0.0184526 0.0468388 0) 
(0.0187847 0.0518495 0) 
(0.0193677 0.0557131 0) 
(0.0198265 0.0582856 0) 
(0.0204271 0.0601698 0) 
(0.0206874 0.0609575 0) 
(0.0213007 0.0616511 0) 
 
 
) 
; 
 
 
boundaryField 
{ 
    inlet 
    { 
       type            zeroGradient; 
    } 
inlet2 
    { 
        type            zeroGradient; 
    } 
inlet3 
    { 
        type            zeroGradient; 
    } 
inlet4 
    { 
       type            zeroGradient; 
    } 
inlet5 
    { 
        type            zeroGradient; 
    } 
outlet 
    { 
        type            zeroGradient; 
    } 
outlet2 
    { 
        type            zeroGradient; 
    } 
outlet3 
    { 
        type            zeroGradient; 
    } 
outlet4 
    { 
        type            zeroGradient; 
    } 
upperWall 
    { 
        type            zeroGradient; 
    } 
lowerWall 
    { 
       type            zeroGradient; 
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    } 
frontAndBack 
    { 
        type            empty; 
    } 
box1 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box2 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box3 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box4 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box5 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box6 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box7 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
box8 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
} 
 
// *********************************************************** //  
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Appendix Q: fvSchemes File (scalarTransportFoam) 
 
/*--------------------------*- C++ -*--------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default         Euler; 
} 
gradSchemes 
{ 
    default         Gauss linear; 
} 
divSchemes 
{ 
    default         none; 
    div(phi,T)      Gauss linearUpwind grad(T); 
} 
laplacianSchemes 
{ 
    default         none; 
    laplacian(DT,T) Gauss linear corrected; 
} 
interpolationSchemes 
{ 
    default         linear; 
} 
snGradSchemes 
{ 
    default         corrected; 
} 
fluxRequired 
{ 
    default         no; 
    T               ; 
} 
 
 
// *********************************************************** //  
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Appendix R: fvSolution File (scalarTransportFoam) 
 
/*--------------------------*- C++ -*--------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
    T 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-06; 
        relTol          0; 
    } 
} 
 
SIMPLE 
{ 
    nNonOrthogonalCorrectors 0; 
} 
 
 
// *********************************************************** //  
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Appendix S: fvOptions File (scalarTransportFoam) 
 
/*-------------------------*- C++ -*---------------------------*\ 
| =========                 |                                                 
| 
| \\      /  F ield         | OpenFOAM: The Open Source CFD 
Toolbox           | 
|  \\    /   O peration     | Version:  2.3.0                                 
| 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
| 
|    \\/     M anipulation  |                                                 
| 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvOptions; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
scalarTracer          //this is only the name of the object 
{ 
   type                  scalarSemiImplicitSource;                               
   active                true;     //turns on and off the source 
   timeStart             0;        //starting time 
   duration              12000;        //duration in seconds 
   selectionMode         points;   //it could be also a cellZone 
   //selectionMode       cellSet 
 
   points              //list of coordinates of the source terms 
   ( 
       
(20 5 0) //source term at 20 50 0 meters in x y z axis from 
reference point (0,0,0) 
  
   ); 
 
   scalarSemiImplicitSourceCoeffs 
   { 
      volumeMode            absolute;    
//     - absolute: values are given as \<quantity\>  
//  - specific: values are given as \<quantity\>/m3 
      injectionRateSuSp                 
      { 
         T         (2e-9 0); // T - scalar variable. 
//First value = S_u (explicit source term); Second value = S_p.   
      } 
    } 
} 
 
// *********************************************************** //  
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Appendix T: Content of enclosed CD 
 
The enclosed CD consists of three different folders. These are: 
 

1.) PDF version of the thesis. 
2.) CFD case file of both pisoFoam and scalarTransportFoam - This includes 

subdirectories 0, constant and system. 
3.) ANN case file - This consists of all ANN models and data, which are used for 

training and testing.  All models in this folder can be opened and the outputs 
can be manipulated in Matlab (application). 

 
 
 


