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Abstract

Inflation is a sudden and near exponential expansion of space in early universe. Infla-

tion solved flatness problem, horizon problem and monopole problem that persisted in

standard big bang cosmology. It was not only useful in solving these problem but also

accounted for origin of structure in universe that we observe today. Direct observation of

this phenomenon is not possible but its occurrence is confirmed by present cosmological

observation.

In this thesis we will investigate inflation driven by scalar field via equation of motion on

classical level and with quantum corrected ones as well.First we will solve classical and

quantum corrected evolution of field in different cosmological background and eventually

compare results using graphs.

Similarly we will explore some aspects of curvature perturbation.It is now widely ac-

cepted that curvature perturbation is dominant cause of structure formation in universe.

The field responsible for curvature mechanism is called curvaton. It evolves during in-

flation as sub-dominant field but is independent of field driving inflation. Curvaton is

subdominant during inflation so adiabatic (curvature) perturbation is first achieved by

isocurvature(entropy) perturbation.After the end of inflation curvaton starts to oscillate

during radiation dominated era and converts isocurvature perturbation into curvature

perturbation.We will examine various potential by taking into account all the constraints

and also use the fact that the model we use generates curvature perturbation of observed

limit ,ζ ∼ 10−5.
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Units and Convention

Throughout the thesis we will use following units and convention

We will use natural units where the speed of light ,the Boltzmann constant and the Planck

constant are set to unity i.e.

c ≡ kB ≡ h̄=1

Reduced Planck mass is defined as follows

M2
pl = h̄c

8πG
= 1

8πG

G is Newton’s constant

Sign convention for Minkowski metric is

ηµν=diag (1,-1,-1,-1)

Similarly Riemann tensor is defined as

Rδ
abc=Γδac,b-Γ

δ
ab,c+ΓδdbΓ

d
ca-Γ

δ
dcΓ

d
ba

where Γdca is called Christoffel symbol and is defined as

Γdca=
1
2
gdb(gbc,a + gba,c − gca,b)

Fourier convention

fk(t) =
∫

d3x
(2π)3

f(x, t)e−ik.x
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Chapter 1

Introduction

1.1 Inflation

Inflation is a sudden and near exponential expansion of space in early universe. The period

of inflation was quite short and lasted for about fraction of a second. Big Bang cosmology

successfully explained primordial abundances of elements, red shift of the distant galaxy

and origin of cosmic microwave background but it was unable to explain flatness problem

and horizon problem [1] . Introduction of idea of inflation made it possible to resolve

these issues.

1.2 Flatness Problem

Flatness problem is associated with standard big bang cosmology. Universe is balanced

between positively curved closed universe and negatively curved open universe resulting it

to be spatially flat. This balance was finer at the time of big bang. Small deviation would

have resulted in the different fate of universe. For example if it was not fined tuned and

was deviated by small value from being flat then the universe would have re-collapsed for

positively curved universe or would have expanded so rapidly that it seems to be devoid

of matter for negatively curved universe [2].

We have Friedmann eqution(refer section 2.4 for Friedmann Equation) for homogeneous

and isotropic universe as

H2 =
1

3M2
pl

ρ− k

a2
(1.1)

where

H is Hubble parameter

1



1.3. HORIZON PROBLEM CHAPTER 1. INTRODUCTION

Mpl is Planck mass

ρ is energy density of the universe

k is curvature of space

a is scale factor

If k = 0 i.e. universe is spatially flat then equation (1.1) reduces to

H2 =
ρc

3M2
pl

(1.2)

where ρc is called critical density.

Using equation (1.1) and (1.2)

1 =
ρ

ρc
− k

a2H2
(1.3)

where

H =
ȧ

a
(1.4)

Ω =
ρ

ρc
(1.5)

ȧ is rate of change of scale factor and Ω is relative density.So

1− Ω = − k

ȧ2
(1.6)

According to standard Big Bang cosmology rate of change of scale factor is decreasing

with time, which means universe is decelerating. This causes |Ω| to deviate away form

one.This known as Flatness problem.

1.3 Horizon Problem

This problem arises due to the fact that on large scale we measure universe to be homo-

geneous and isotropic.

Friedmann-Robertson-Walker metric for homogeneous and isotropic universe is [3]

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

]
(1.7)

2



1.3. HORIZON PROBLEM CHAPTER 1. INTRODUCTION

where a(t) is scale factor and k measures curvature of space.

k =


> 0 closed universe

< 0 open universe

= 0 spatially flat

For k = 0 equation (1.7) can be re-written as

ds2 = dt2 − a2(t)
[
dr2 + r2dθ2 + r2 sin2 θ dφ2

]
(1.8)

As light follow null geodesics i.e. ds = 0 and θ, φ are constant so

0 = dt2 − a2(t)
[
dr2
]

(1.9)

r =

∫
dt

a(t)
(1.10)

Then radius of the causally connected parts of the universe at the time of recombination

compared to co-moving radius at present is given by∫ tdec

0

dt

a(t)
<<

∫ t0

trec

dt

a(t)
(1.11)

This expression implies that much larger part of the universe is visible today than was

visible at the time of recombination.There was not enough time in the past for photon

to communicate between two opposite direction of the universe and maintain thermal

equilibrium. Today we measure temperature of background radiation as 2.73 K irrespec-

tive of direction in which we measure.Almost isotropic temperature and homogeneous

distribution of matter in universe is characterized by Horizon problem associated with

standard big bang cosmology.

Flatness and Horizon problem was solved by introduction of idea of inflation.According

to which early universe went through an accelerating phase and universe expanded by at

least factor of e60. Before inflation started universe was casually connected which resulted

in isotropy. Likewise enormous expansion of space during inflation washed out all the

inhomogenities.

Inflation not only solves flatness and horizon problem but also proven to be seed for

structure formation that we see in universe. Recently main aspect of inflation is that it

has provided mechanism of density perturbation which is root for structure formation [4].

Small variation in energy density due to quantum uncertainties was amplified by gravity

over billions of years to form galaxies, clusters and super cluster of galaxy. This perturba-

tion in energy density is imprinted in the cosmic microwave background radiation which

was first detected by COBE satellite [5]. Although it is successful in explaining various

3



1.3. HORIZON PROBLEM CHAPTER 1. INTRODUCTION

cosmological observations however its nature and origin is still unexplained [6].Most of

the model explaining inflation are based on scalar field φ called inflaton. Scalar field

dominated by potential energy creates negative pressure. This negative pressure makes

gravity to be repulsive. Gravitational repulsion is believed to have caused inflation. Den-

sity perturbation and tensor perturbation are generated by quantum fluctuation of this

scalar field (inflaton) [7].At the time of inflation physical scale grow faster than Hubble

radius. But in case of radiation and matter dominated era growth of physical scale is

slower. So quantum fluctuation generated during inflation cross horizon twice. Thus

quantum fluctuation generated during inflation undergo transition from quantum to clas-

sical [8].Wavelength of fluctuations which are smaller than Hubble radius cross horizon,

for first time, become classical and freeze out. Secondly, during decelerated stage both in

radiation dominated era or matter dominated era these fluctuation again re-enter horizon

and provide base for structure formation .Though there are number of models explain-

ing inflation but the common feature of these model is that the quantum fluctuation is

Gaussian and scale invariant spectrum. [9, 10].

Figure 1.1: Time line of universe

Reference http://wmap.gsfc.nasa.gov/media/060915/index.html (Accessed on 13-04-2015)
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1.4. LAYOUT OF THESIS CHAPTER 1. INTRODUCTION

1.4 Layout of thesis

Chapter two includes overview of cosmic microwave background radiation, slow roll infla-

tion with discussion of different parameter associated with it. Also we will take effective

action and equation of motion from paper by Markkanen and Anders Tranberg for two

scalar field model [11].Under the condition FRW space, minimal coupling to gravity, no

self interaction and allowing only one field to evolve (i.e. σ) we obtain quantum corrected

dynamics of spectator field,σ [12] . These equations of motion are solved under different

cosmological background. Finally the dynamics are compared graphically with classical

evolution of the field.

Chapter third is on curvature perturbation. It is now widely believed that curvature

mechanism is root for structure formation. Quantum fluctuation during inflation induces

adiabatic density perturbation and results in curvature perturbation. But quantum fluc-

tuations generated during inflation is independent of inflation. Its evolution is guided by

separate scalar field called curvaton. Cosmological observation show that the anisotropies

at decoupling was of order 10−5. Here we will explore different potential starting from

the quadratic one to potential with self interaction and figure out numerical range of

parameters which satisfies the observed value of curvature perturbation with underlying

constraints which are imposed by current precise measurement.

5



Chapter 2

Quantum corrected

field dynamics

2.1 History of universe

Present understanding of physics and our hypothesis claim that universe began some 14

billion years ago as a Big Bang scenario. In fact Big Bang theory does not reveal how

universe came to existence for the first time .Physical laws that we have today does not

probe nature beyond Planck time. So at the time of Big Bang space, time and energy

were already into existence [13]. Inflation followed after this which lasted for 10−34 sec-

onds. As inflaton field decayed universe was filled with radiation. Baryonic matter were

formed within first seconds and as the universe expanded, simultaneously cooled, these

baryonic matter combined to form nucleons which is termed as Nucleosynthesis [14].Af-

ter this it took nearly 380,000 years to form neutral atom. By this time temperature of

universe was about 3000k [15].This was followed by cosmic ”dark ages”.It is named so

because luminous stars and galaxies were not into existence and most of the matter in

universe was in the form of dark matter and few percentage of ordinary matter which was

mostly hydrogen and helium.After dark ages universe went through a phase called Epoch

of reionization.During this period gravitational attraction caused dark matter to collapse

to form halo-like structure and ordinary matter was also pulled into it to form first stars

and galaxy.High energy radiation was released during this process which caused normal

matter to ionize.This phenomenon is cosmic re-ionization.Presently universe is 13.8 bil-

lion years old and is dominated by dark energy.Short overview of History of universe is

presented in the table below.

6



2.2. COSMIC MICROWAVE
BACKGROUND RADIATION

CHAPTER 2. QUANTUM CORRECTED
FIELD DYNAMICS

Event Time Temperature

Inflation 10−34s -

Baryogenesis - -

EW phase transition 20 ps 100 GeV

QCD phase transition 20 µs 150 MeV

Dark Matter Freeze-out - -

Neutron Decoupling 1 s 1 MeV

Electron-positron annihilation 6 s 500 KeV

Big Bang Nucleosynthesis 3 min 100 Kev

Matter Radiation equality 60 Kyr 0.75 MeV

Recombination 260− 380 Kyr 0.26− 0.33 eV

Photon Decoupling 380 Kyr 0.23− 0.28 eV

Reionization 100− 400 Myr 2.6− 7.0 meV

Dark energy-matter equality 9 Gyr 0.33 meV

Present 13.8 Gyr 0.24 meV

Table 2.1: Thermal history of Universe [16]

2.2 Cosmic Microwave

Background Radiation

As we know early universe was hot, dense and full of particle and radiation. All the

fundamental particles of standard model were moving freely which is known as plasma.

Due to very high temperature, combination of these fundamental particles to form atoms

was impossible. As soon as they try to combine (i.e. if electron tries to orbit around the

nucleus) high energy photon would smash it apart. Due to this hot and dense universe

mean free path of photon was extremely short. So as we try look universe beyond the

surface of last scattering it is opaque. But as universe expanded , wavelength of radiation

also got stretched which resulted in decrease of temperature. When temperature was

about 3000 K nucleons and electrons combined to form neutral atoms. This made radia-

tion to decouple from the particle. After that radiation traveled freely but got stretched

as universe expanded. Presently we detect it in microwave range and entitled as cosmic

microwave background radiation. This has become fossil remnant of the universe. CMB

7



2.2. COSMIC MICROWAVE
BACKGROUND RADIATION

CHAPTER 2. QUANTUM CORRECTED
FIELD DYNAMICS

radiation has black body distribution which peaks at 2.73 K. This value is obtained by

subtracting all the radiation coming from the local sources like galaxy, sun, stars as well

as neglecting the radiation like x-ray, Gamma ray ,infrared radiation, dust etc. COBE,

WMAP, and Planck are the main satellite missions which are lunched to measure this

radiation.

Figure 2.1: Plank CMB

Credit, ESA and the Planck Collaboration (Released 21/03/2013 12:00 pm)(ESA, Euro-

pean space agency)

Web reference: http://www.esa.int/spaceinimages/Images/2013/03/Planck CMB (Ac-

cessed on 16-04-2015)

In the figure above blue and red regions (CMB anisotropy) are due to gravitational red-

shift also known as Sachs-Wolfe effect. It is dependent on the Newtonian Potential (φ).

Higher the value of φ more will be red-shift. So red regions represent a denser and higher

temperature region compared to blue region.For adiabatic perturbation, mathematically

it can be expressed as

∆T

T
=

1

3
φ (2.1)

(2.2)

On top of this smooth background there are small fluctuations , 1 out of 100,000.These

deviation in temperature is vital in formation of structure like galaxies, cluster of galaxy

and super cluster of galaxy [1]. From this fluctuation what we are trying to figure out is

a) What do these deviations really look like?

b) How do they come?

These deviations have origin way back from inflation. Quantum fluctuation of inflaton

8



2.3. CMB POWER SPECTRUM
CHAPTER 2. QUANTUM CORRECTED

FIELD DYNAMICS

field is believed to have produced these deviation. This also suggests that inflaton field

had different value at different point of universe. These fluctuations imprint themselves

in CMB map. These fluctuations in field couple through the gravitational field and

the gravitational field then determine through the Einstein equation how matter and

radiation move.

2.3 CMB Power Spectrum

Figure 2.2: The CMB power spectrum modeled with data from WMAP (2006), ACBAR
(2004), BOOMERanG (2005), CBI(2004), and VSA (2004) experiments.

Web Reference:http://physics.stackexchange.com/questions/155508/angular-power-spectrum-

of-cmb (Accessed on 18-04-2015)

In CMB map we are interested in temperature anisotropies. These anisotropies are pro-

jected in 2D spherical surface so can be expanded in spherical harmonics as [17]

∆T

T
= T (θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ) (2.3)

(2.4)

9



2.4. EINSTEIN AND FRIEDMANN
EQUATION

CHAPTER 2. QUANTUM CORRECTED
FIELD DYNAMICS

where alm are multipole coefficient and given by

alm =

∫ π

θ=−π

∫ 2π

φ=0

T (θ, φ)Y ∗lmdΩ (2.5)

l is multipole moment and measures angular scale and is given by

l =
π

θ
(2.6)

This shows that for higher value of l,θ is small. For each value of l there are (2l + 1)

values of m. So amount of anisotropy for multipole moment l is given by

Cl = |alm|2 (2.7)

Cl is known as power spectrum.

The plot between l and l(l+1)Cl is known as CMB power spectrum. Cl measures measures

temperature anisotropies of two point separated by an angle,θ. l = 0 corresponds to point

separated from itself by 3600 so it is zero.Similarly dipole term l = 1 i.e. (θ = 1800) is

effected by our motion across the space therefore CMB photon will suffer Doppler effect

and is discarded from power spectrum. So higher values of l are taken into account for

CMB power spectrum.

When photon got decoupled from the surface of last scattering there was temperature

in-homogeneity. Photons which got scattered by same electron when met each other,

scattered radiation was polarized. As this phenomenon occurred at very last seconds of

recombination quadrupole polarization of CMB is in small fraction. The peaks in the

CMB power spectrum depend on various factors like baryon density, Hubble constant,

density of matter and cosmological constant [18, 19] The plot is complex but reveals

much information about the universe. Careful examination of the spectrum gives the

information about the density, curvature and the matter content of the universe.

2.4 Einstein and Friedmann

Equation

Einstein equation can be obtained by using principle of least action.Rigorous derivation

of Einstein equation can be found in [11, 15, 20].We will consider scalar field ϕ which

couples to standard Einstein gravity with Freidmann-Robertson-Walker type metric.Line

element of FRW metric is given by

ds2 = gµνdx
µdxν = dt2 − a2(t)dx2 (2.8)

10



2.4. EINSTEIN AND FRIEDMANN
EQUATION

CHAPTER 2. QUANTUM CORRECTED
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Action integral for gravitation can be written as

SG =
1

2κ

∫
L[gµν ]

√
−gd4x (2.9)

where

L[gµν ] = R− 2Λ (2.10)

where R is called Ricci scalar and Λ is called cosmological constant.

Similarly action integral for matter and energy is given by

Sm =

∫
Lm[ϕ, gµν ]

√
−gd4x (2.11)

where Lm[ϕ, gµν ] is Lagrangian density of energy and matter given by

Lm[ϕ, gµν ] =
1

2
∂µϕ∂

µϕ+ V (ϕ, gµν) (2.12)

so total action is sum of SG and Sm i.e.

S = SG + Sm (2.13)

Now using principle of least action and varying with respect to metric gµν ,Einstein

equation can be obtained

δS[ϕ, gµν ]

δgµν
= 0 (2.14)

⇒ Rµν −
1

2
Rgµν + Λgµν = κTµν (2.15)

Also,

Gµν = Rµν −
1

2
Rgµν (2.16)

is called Einstein tensor.Similarly,

κ =
1

M2
pl

=
1

8πG
(2.17)

Rµν is called Ricci tensor

G is universal gravitational constant

Tµν is called energy momentum tensor.

Λ is cosmological constant

For perfect fluid in the orthonormal basis comoving with the fluid energy momentum

11



2.4. EINSTEIN AND FRIEDMANN
EQUATION

CHAPTER 2. QUANTUM CORRECTED
FIELD DYNAMICS

tensor takes the form

Tµν = diag(ρ,−p,−p,−p) (2.18)

where ρ is total energy density of fluid

p is pressure associated with fluid component.

Equation (2.15)can be reduced to two independent equations.Because of isotropy Einstein

tensor(Gµν) and Ricci tensor(Rµν) can be written as

R00 = −3
ä

a
(2.19)

Rij =

(
ä

a
+ 2

(
ȧ

a

)2

+ 2

(
k

a2

))
(2.20)

R =
6

a2

(
aä+ 2ȧ2 + k

)
(2.21)

Similary, Einstein tensor can be written as

G00 = 3

[(
ȧ

a

)2

+
k

a

2
]

(2.22)

G0i = 0 (2.23)

Gij = −

(
2
ä

a
+

(
ȧ

a

)2

+
k

a2

)
(2.24)

Using above sets of relations in Einstein equation we get Friedmann equation as

H2 +
k

a2
=

8πG

3
ρ+

Λ

3
(2.25)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.26)

For isotropic and homogeneous universe model which expands adiabatically and with

Λ = 0 above Friedmann equation can be reduced to

ρa3(ω+1) = ρ0 (2.27)

ρ0 is the present density of universe

ω = −1 corresponds to vacuum energy density. This also indicates that density of vacuum

energy is constant throughout the history of universe regardless of scale factor a. Similarly

ω = 0 corresponds to dust (pressure less matter) and matter density scales as a−3 as

universe expands. Likewise, ω = 1
3

corresponds to radiation and radiation density scales

as a−4 as universe expands. This also indicates that universe was radiation dominated

at the beginning and as universe expanded it was taken over by matter and now it is

12



2.5. SLOW-ROLL INFLATION MODEL
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FIELD DYNAMICS

dominated by vacuum energy. The variation of different composition of universe and

relative change with red shift is shown in graph below. At red-shift about 1100 radiation

was dominant energy component and at low value of red shift the dark energy is major

component of energy density

Figure 2.3: Variation of content of universe with red-shift

2.5 Slow-Roll inflation model

Gaussian, adiabatic and scale invariant spectrum of primordial fluctuation are generic

prediction of most inflationary models. These predictions are also supported by pre-

cise measurement from various experiments therefore inflation has set a firm ground in

cosmological evolution. Experimental observation is not only validating theory but also

constraining different models of inflation. Among wide variety of model for inflation slow-

roll inflation is robust to generic prediction. Flat potential of slow roll inflation leads to

slowly varying Hubble parameter which provides sufficient number of e-folds, scale in-

variant spectrum and gaussianity [7]. Simplest model of inflation can be explained in

term of single scalar field. Scalar field represent particle with zero spin. In homogeneous

universe scalar field is only function of time. Effective energy density and pressure of

homogeneous scalar field are obtained by comparing with energy momentum tensor of

13
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perfect fluid as follows [3]

ρ =
1

2
φ̇2 + V (φ) (2.28)

p =
1

2
φ̇2 − V (φ) (2.29)

First term of these equation can be termed as kinetic energy and second term can be

regarded as the potential energy.

When we substitute this equation in Friedmann equations with Λ = 0 and for flat universe

i.e κ = 0 we get

H2 =
1

3M2
pl

(
1

2
φ̇2 + V (φ)

)
(2.30)

φ̈+ 3Hφ̇ = −V ′(φ) (2.31)

where ′ denotes derivative with respect to φ. Similarly.

ä

a
= − 1

3M2
pl

(
φ̇2 − V (φ)

)
(2.32)

But for accelerating universe

ä > 0⇒ φ̇2 < V (φ) (2.33)

which leads to following condition

φ̈ << 3Hφ̇ (2.34)

Second term of equation (2.31) represents friction.This also slows down evolution of scalar

field.

With the aid of equation (2.33) and (2.34) equations (2.30) and (2.31) can be written as

H2 =
1

3M2
pl

V (φ) (2.35)

3Hφ̇ = −V ′(φ) (2.36)

Relation (2.33) shows that for inflation to occur potential energy must dominate the ki-

netic energy. This is realized in slow roll inflation where potential is flat such that scalar

field rolls slowly. This slow rolling flat potential helps in providing the quantum fluctua-

tion to scalar field. As field rolls down the hill it oscillates at minimum of potential with

release of energy and subsequent production of plasma.This phenomenon is commonly

known as Reheating. Now the theory again reunites with the original hot big-bang model
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and evolution of universe continues [21].

Figure 2.4: Slow Roll inflation model

Differentiating equation (2.36),we get

φ̈ = (−η + ε)Hφ̇ (2.37)

where,

η = M2
pl

V ′′(φ)

V (φ)
(2.38)

ε =
M2

pl

2

(
V ′(φ)

V (φ)

)
(2.39)

are called slow roll parameter and satisfy slow roll condition if |η|<< 1 , |ε|<< 1.

Slow roll parameter ε can also be related to rate of change of Hubble parameter as follows

Differentiating equation (2.35) with respect to time(t),we get

Ḣ =
V ′(φ)

3M2
pl

φ̇

2H
(2.40)

⇒ Ḣ

H
=
V ′(φ)

3M2
pl

φ̇

2H2
(2.41)
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Using relation (2.35) in equation (2.41)

Ḣ

H
=
V ′(φ)

V (φ)

φ̇

2
(2.42)

⇒ Ḣ

H2
=
V ′(φ)

V (φ)

φ̇

2H
(2.43)

Substituting value of φ̇ from equation (2.36) in equation (2.43)

Ḣ

H2
= −

M2
pl

2

(
V ′(φ)

V (φ)

)2

(2.44)

From relation (2.39) equation (2.44) can be rewritten as

Ḣ = −εH2 (2.45)

(2.46)

As |ε|<< 1,this shows that Hubble parameter changes slowly during slow roll inflation.

2.6 Amount of Inflation

Slow roll parameter can be used to calculate amount of inflation required to solve flatness

problem and horizon problem. This is defined as [22]

N = log

[
a(t)

a(t0)

]
(2.47)

where a(t) and a(t0) represent final and initial value of scale factor respectively. In slow

roll approximation , potential is almost constant so relation (2.35) shows that the value

of Hubble parameter is also constant.Constant Hubble parameter during inflation implies

that equation (1.4) has exponential solution . This leads to exponential expansion and

number of e-folding is given by

N =

∫ t

t0

Hdt (2.48)

N =
1

M2
pl

∫ φ(t0)

φ(t)

V (φ)

V ′(φ)
dφ (2.49)

Using relation (2.39) in equation (2.49)

N =
1

M2
pl

∫ φ(t0)

φ(t)

dφ√
2ε

(2.50)
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60 e-folding of inflation is required to solve horizon problem.

2.7 Classical and Quantum

Corrected field Dynamics

Quantum field theory in curved space-time (QFTCST) is the theory of quantum fields

propagating in a background classical curved space-time. QFTCST is expected to provide

to some extent a reasonable description of quantum phenomenon in area where the effect

of curved space time may be significant but effect of quantum gravity itself may be

neglected. So, quantum field theory in curved space time is applicable in describing early

universe. As quantum theory of gravity does not exist presently therefore basic principle

of quantum field theory in classical general theory of relativity is adopted [12, 23]. The

action for the two scalar field model as calculated in [12] as follows

(2.51)
Sm[φ, σ, gµν ] =

∫
d4x
√
g

[
−1

2
gµν∂µφ∂νφ+ ηφ�φ

2 − mφ

2
φ2 − 1

2
ξφRφ

2

− 1

2
gµν∂µσ∂νσ+ ησ�σ

2− mσ

2
σ2− 1

2
ξσRσ

2− gφ2σ2

4
− λσσ

4

4!
− λφφ

4

4!

]
where,

� = ∆µ∆µ = |g|−
1
2∂µ(|g|

1
2∂µ) (2.52)

For special case of FRW ,minimal coupling to gravity ,no self interaction and using

symmetry of the potential so that only one field evolves the effective Lagrangian is given

by

(2.53)
Leff = −1

2
∂µ∂

µ − m2
σ

2
σ2 + Λ + αR +

1

64π2
{ 1

24
(R− 3gσ2)(R− 3gσ2 − 4m2

φ)

+

[
−(m2

φ −
R

6
+
gσ2

2
)2 +

G

180

]
log

(
m2
φ − R

6
+ gσ2

2

m2
σ

)
}

Here G is called Gauss-Bonnet density and is defined as

G = R2 − 4RµνRµν +RµνρσRµνρσ (2.54)

where, R is Ricci scalar

Rµν is Ricci Tensor

Rµνρσ is Riemann tensor and

α = 1
16πGN

,GN is Newton Gravitational constant

Equation of motion is derived using principle of least action. Now equation of motion
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is solved for matter domination, radiation domination and in de- sitter space (i.e. the

positive value of the cosmological constant). The equation of motion thus obtained is

(2.55)

σ̈ + 3Hσ̇ +m2
σσ =

1

64π2

[
gσ

2
(2m2

φ −R− 3gσ2) + gσ

(
G

180
− (m2

φ − R
6

+ gσ2

2
)2

m2
φ − R

6
+ gσ2

2

)

− 2gσ(m2
φ −

R

6
+
gσ2

2
)log

(
m2
φ − R

6
+ gσ2

2

m2
φ

)]

Classical evolution of field is obtained if all terms in right side of equation are neglected

2.7.1 Classical Solution

i)De Sitter space

σ̈ + 3Hσ̇ +m2
σσ = 0 (2.56)

H is Hubble parameter defined as H = ȧd[t]
ad[t]

For de Sitter space the scale factor evolves as

ad(t) = a0e
H0t (2.57)

So for de Sitter space Hubble parameter is

H = H0 (2.58)

In order to solve equation (2.56) we set H0

mσ
= 1√

2
and initial condition as σ[0]

mσ
= n and

σ̇[0] = 0 where n = 1, 10, 20, 30, 40. The resultng solution will then be

σ[t]

mσ

= ne−
√

2mσt
(
−1 + 2e

mσt√
2

)
(2.59)

(2.60)
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Figure 2.5: Evolution of scalar field ,σ[t] in de Sitter space

ii)Radiation Domination

In case of radiation domination scale factor evolves as

ar(t) = a0

(
t+ t0
t0

) 1
2

(2.61)

So Hubble parameter is

Hr =
1

2(t+ t0)
(2.62)

Now solution to equation (2.56) under initial condition σ[0]
mσ

= n and σ̇[0] = 0 is

σ[t] = n
21/4m

3/4
σ J 1

4
[mσt]Γ[5

4
]

t
1
4

(2.63)

where n = 1, 10, 20, 30, 40
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Figure 2.6: Evolution of scalar field, σ[t] in radiation domination

iii)Matter Domination

In case of matter domination scale factor evolves as

ar(t) = a0

(
t+ t0
t0

) 2
3

(2.64)

So Hubble parameter is

Hr =
2

3(t+ t0)
(2.65)

Now solution to equation (2.56) under initial condition σ[0]
mσ

= n and σ̇[0] = 0 is

σ[t] = n
e−
√
−m2

σt
(
−1 + e2

√
−m2

σt
)
mσ

−2
√
−m2

σt
(2.66)

where n = 1, 10, 20, 30, 40
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Figure 2.7: Evolution of scalar field ,σ[t] in matter domination

2.7.2 Quantum Corrected Solution

i)De Sitter space

For Quantum corrected dynamics in case of de Sitter space we take equation (2.55)

and solve it numerically in different cosmological background with underlying following

assumption.

mφ

mσ

= 2, g = 1,
H0

mσ

=
1√
2

(2.67)

Equation (2.55) also has logarithmic term which cannot be negative.This is ensured by

following condition.

R

6m2
φ

=
1

4
(2.68)
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Also higher order operator R and G are defined as

R =

(
ȧ2

a2
+
ä

a

)
(2.69)

G =
24ȧ2ä

a3
(2.70)

Using relation (2.57),(2.69),(2.70) we can relate higher order operator R and G with

Hubble parameter in De Sitter space as

Rd = 12H2
0 (2.71)

Gd = 24H4
0 (2.72)

Now applying relation (2.67),(2.68),(2.71),(2.72) to equation (2.55) and solving it numeri-

cally under the initial condition σ[o]
mσ

= n and σ′[0] = 0,where n = 1, 10, 20, 30, 40,following

plot is obtained

0 5 10 15 20
t0

10

20

30

40

σ(t )

mσ

Figure 2.8: Quantum corrected evolution of field, σ[t] in De Sitter space

Now we can superimpose classical evolution of field with quantum corrected ones and fol-

lowing plot is obtained. Blue lines represent classical solutions and black lines represent

quantum corrected ones.
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Figure 2.9: Classical and quantum corrected evolution of field, σ[t] in de-sitter space.

ii) Radiation Domination

Making use of relation (2.61),(2.69) and (2.70), higher order operator R and G can be

written as

Rr = 0, Gr = − 3

2(t+ t0)4
(2.73)

Finally using relations (2.73) and (2.62) in equation (2.55) along with initial conditions
σ[0]
mσ

= n and σ′[0] = 0, where n = 1, 10, 20, 30, 40 following plot is obtained.
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Figure 2.10: Quantum corrected evolution of field,σ[t] in radiation domination

Also we can superimpose both classical and quantum corrected evolution of field to

generate following plots.
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Figure 2.11: Classical and quantum corrected evolution of field, σ[t] in radiation domi-
nated universe

Blue lines represent classical ones and black lines that of quantum corrected ones.

iii) Matter Domination

In case of matter domination higher order operators Rm and Gm can be calculated by

making use of equations (2.64),(2.69) and (2.70).

Rm =
4

3(t+ t0)2
, Gm = − 64

27(t+ t0)2
(2.74)

Now using relation (2.65) and (2.74) in equation (2.55) ,we get differential equation which

can be solved numerically under initial condition σ[0]/mσ = n and σ′[0] = 0 to obtain

following plot.

25



2.7. CLASSICAL AND QUANTUM
CORRECTED FIELD DYNAMICS

CHAPTER 2. QUANTUM CORRECTED
FIELD DYNAMICS

5 10 15 20
t

-20

-10

0

10

20

30

40

σ(t )

mσ

Figure 2.12: Quantum corrected evolution of field ,σ[t] in matter dominated universe.

Now the classical and quantum corrected evolution of field can be combined and is

realized as follows.
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Figure 2.13: Classical and quantum corrected evolution of field, σ[t] in matter dominated
universe.

Blue lines represent classical ones and black lines that of quantum corrected ones.
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Chapter 3

Curvature Mechanism

3.1 Introduction

Basic principle of cosmology states that on very large scale (>100Mpc) universe is ho-

mogenous and isotropic. But on small scale (1Kpc to 100Mpc) there are in-homogeneities.

CMB observation suggest that during decoupling anisotropies was one part in 105. If this

is so then amplitude of in-homogeneities were smaller in early epoch of the universe. In

order to explain this issue of anisotropy seen in CMB spatial curvature perturbation was

introduced.Curvature perturbation during inflation is completely independent of slowly

rolling inflation field. It was sub-dominant during inflation.This field is called curvaton,σ.

Curvaton creates curvature perturbation in two different stages. First, during inflation

Hubble parameter is almost constant so wavelength of fluctuation generated during infla-

tion cross the horizon become classical and decouple from microphysical processes. Upon

re-entering the horizon as universe undergoes through various cosmological phases these

classical perturbations seed in-homogeneities which generate structure during gravita-

tional collapse [7, 24–26].

Initial density fluctuation can be written as combination of curvature perturbation and

iso-curvature perturbation i.e. these two perturbation are orthogonal to each other [27].

Curvature perturbation is also known as adiabatic perturbation and isocurvature pertur-

bation is called entropy perturbation.Both of these perturbation can be generated during

inflation which involves one and more than one scalar field. Adiabatic perturbation is

associated with perturbation in total energy density whereas isocurvature perturbation

is related to relative number density fluctuations in different particle species present in

the system [28,29].

Adiabatic perturbation can be written as [30]

δρi
ρi

=
3

4

δργ
ργ

(3.1)
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where i represent any non-relativistic matter and γ represents radiation .Adiabatic cur-

vature perturbation is generated by both inflaton and curvaton. But with the curvaton

present, this is achieved first by an isocurvature perturbation.

Isocurvature perturbation can be stated as

δρB
ρB
− 3

4

δργ
ργ
6= 0 (3.2)

The simplest case of generating curvature perturbaiton is by fluctuation of inflaton itself

but this puts constraint in models of inflation.So the concept of curvaton was purposed by

David H Lyth and David Wands.As curvaton is independent of model of inflation and is

subdominant during inflation so it can only produce isocurvature perturbation. After the

end of inflation curvaton starts to oscillate during radiation dominated era and converts

isocurvature perturbation into curvature perturbation [26]

Consider a curvaton field σ coupled to another to another field φ, with the action

S =

∫
d4xa3

[
1

2
∂µσ∂

µσ +
m2
σσ

2

2
+
g

4
σ2φ2 +

1

2
∂µφ∂

µφ+
m2
φφ

2

2

]
(3.3)

Where a is the scale factor of FRW metric .Ignoring quantum and thermal correction

lead to an effective action of the form

S =

∫
d4xa3

[
1

2
∂µσ∂

µσ +
m2
σσ

2

2

]
(3.4)

The classical equation of motion for this action is

σ̈ + 3Hσ̇ +
dV [σ]

dσ
= 0 (3.5)

We are interested in the perturbation of σ so

σ(x) = σ + δσ(x) (3.6)

σ is the unperturbed part whose evolution is guided by equation (3.5) .The perturbed

field obeys the equation

δσ̈k + 3H ˙δσk +

((
k

a

)2

+ Vσσ

)
δσk = 0 (3.7)

Here subscript, σ= ∂
∂σ

Let curvaton potential be sufficiently flat during inflation i.e.

Vσσ << H2 (3.8)
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This condition when applied to equation (3.7) leads to

δσ̈k + 3H ˙δσk +

((
k

a

)2
)
δσk = 0 (3.9)

Now if the wavelength of the fluctuation is within the horizon i.e.

λ << H−1 ⇐⇒ k >> aH then equation (3.9) reduces to

δσ̈k +

((
k

a

)2
)
δσk = 0 (3.10)

This equation is similar to harmonic oscillator and solution to this equation is some

oscillating function. So as long as the fluctuations are within horizon they oscillate.

Now consider the case when wavelength of fluctuations crosses the horizon i.e.

λ >> H−1 ⇐⇒ k << aH then equation (3.9) reduces to

δσ̈k + 3H ˙δσk = 0 (3.11)

Here due to frictional term solution of δσk is constant. This implies that as modes cross

horizon they freeze.

The power spectrum associated with the fluctuations δσk is given by

P
1
2
δσ =

H∗
2π

(3.12)

here * represent horizon exit

If condition (3.8) is applied then H∗ is almost constant so the observed spectrum is almost

scale invariant.

Now as the curvaton field starts to oscillate in some radiation dominated era then total

energy density is given by

ρ = 3H2M2
pl (3.13)

Also decay rate of curvaton is given by

Γ = γ
g2m

64π2
(3.14)

Where g is coupling constant and γ represents number of available channel to which

curvaton may couple. For our calculation we have taken it to be unity.
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Curvature perturbation on uniform slices of radiation and matter is separately given by

ζr =
1

4

δρr
ρr

(3.15)

ζσ =
1

3

δρσ
ρσ

(3.16)

Using these relations the curvature perturbation can be written as

ζ =
4ρσζr + 3ρσζσ

4ρr + 3ρσ
(3.17)

If ζr is considered negligible then

ζ = δr (3.18)

where δ = δρσ
ρσ

is called density contrast and

r =
ρσ

4ρr + 3ρσ
(3.19)

Finally we get the curvature perturbation as

ζ =
H∗r

3πσ∗
(3.20)

also further approximate that

r =
ρσ

4M2
plH

2
(3.21)

where,ρσ is given by

ρσ =
1

2
σ̇2 + V [σ] (3.22)

3.2 Curvaton Perturbation

with Different Potential

We have the classical evolution of curvaton as

σ̈ + 3Hσ̇ +
dV [σ]

dσ
= 0 (3.23)
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If we assume that the expansion of the universe is determined by a separate radiation

energy density component ργ, in which case

ργ(t) = ρ∗γ

(
a(t∗)

a(t)

)4

, a(t) =

(
1 +

t

t0

) 1
2

, H(t) =
H∗
a2(t)

(3.24)

where ∗ label refers to the initial time t∗ = 0 and H∗ = 1
2t

. We define number of e-fold

as N = log
[
a(t)
a(0)

]
then we can deduce that

H(N) = H∗e
−2N , H(N)

d

dN
=

d

dt
(3.25)

This relation can be used to rewrite equation (3.23) as differential equation in N instead

of t

σ′′ + 3σ′ +
dV [σ]

dσ

e4N

H2
∗

= 0 (3.26)

where ′ represents d
dN

We choose a starting value σ = σ∗ , H = H∗ , N = 0 and an end point Nend defined by

the decay time of the curvaton

Γ = Hend = H∗e
−2N =⇒ Nend = −log

[
Γ

H∗

]
(3.27)

Using the Friedmann equation and the fraction r

3M2
plH

2 = ργ, r(σend) ≡ rdec '
ρendσ

4M2
plH

2
end

(3.28)

where,

ρendσ =

(
1

2
σ̇2 + V [σ]

)
|end=

Γ2

2
σ′(Nend)

2 + V [σend] (3.29)

the curvature perturbation is now given by

ζ =
H∗rdec
3πσ∗

=
H∗

(
Γ2

2
σ′(Nend)

2 + V [σend]
)

12Γ2M2
plπσ∗

(3.30)

Now further we will explore different potential, V [σ]. Using various form of potential in

equation (3.23) we will solve for σ from initial σ∗ ,σ′ = 0 until σ(Nend) and compute ζ

using (3.30). Also we pick value of H∗, Γ and σ∗ to solve equation (3.23). Finally we

solve for ζ = 10−5 to find value of σ∗ that works. Following constraint are applied while

picking up different values of H∗, Γ and σ∗
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1) Initial field value must be less than Planck mass i.e. σ∗ << Mpl

2) Curvaton must be light during inflation i.e. d2V
dσ2 << H∗

3) Initially energy density of the curvaton should be negligible i.e.rdec < 1

4) Curvaton should decay before nucleosynthesis i.e. Γ > 10−22

5) Non-Gaussianity should be less than current observed value i.e.
4

5rdec

74
< 1

This also insures that σ∗ >> H∗

6) The decay of the curvaton must satisfy the condition 10−3 m3
σ

ΓM2
pl
< 1

7) It must generate the curvature perturbation of ζ = 10−5

3.2.1 Free Theory

Let us take the simplest case where

V [σ] =
1

2
m2
σσ

2 (3.31)

Using this in equation (3.5),we get

σ′′ + 3σ′ +
m2
σ

H2
∗
e4Nσ = 0 (3.32)

ζ =
H∗

(
Γ2

2
σ′(Nend)

2 + m2
σ

2
σ2
)

12Γ2M2
plπσ∗

(3.33)

Solution to equation (3.32) under the initial condition σ[0] = σ∗,σ
′ = 0 yields

σ(N) =

e−
3N
2

(
σ∗

((
mσJ 1

4
P + (−mσ) J− 7

4
P + 3H∗J− 3

4
P
)
J 3

4
(Q) +

(
−3J 3

4
P −mσJ 7

4
P +mσJ− 1

4
P
)
J− 3

4
(Q)
))

√
m2
σ

((
J 1

4
P − J− 7

4
P
)
J 3

4
P +

(
J− 1

4
P − J 7

4
P
)
J− 3

4
P
)

(3.34)

where P =
(√

m
2
σ

2H∗

)
and Q =

√
e4NP

From the equation above derivative of σ[N ] is calculated and value at N → Nend is

obtained. Now using the relation (3.33) we can solve for ζ = 10−5 to find value of σ∗.
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Figure 3.1: Plot between mσ and Γ for H∗ = 10−8

[Note all the values are re-scaled with respect to reduced Planck mass]

Figure (3.1) represent all the value of mσ and Γ that are used for solving equation (3.33).

When above stated constraints are applied then plot looks as follows
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Figure 3.2: Plot between mσ and Γ for H∗ = 10−8 when subjected to constraint.

The region only within blue dots satisfy constraint required for curvature perturbation.

3.2.2 Self Interaction

Consider the potential

V [σ] =
1

2
m2
σσ

2 +4V [σ] + V (σ, T ) (3.35)

where,

4V [σ] =
βg2σ4

64π2

[
log

(
gσ2

µ2

)
− 3

2

]
(3.36)

Here g is coupling constant, β is some number which depends on number of field to which

curvaton is coupled. While calculating we have taken β = 1 and the term
[
log
(
gσ2

µ2

)
− 3

2

]
is also approximated by unity due to its negligible effect.

Similarly

V (σ, T ) = αg2T 2σ2 (3.37)

After the end of inflation universe was dominated by radiation. Hence this term is

introduced to account for thermal correction to potential. g is coupling constant and

α depends on the number of field to which inflaton is coupled. It is taken as unity for
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calculation. Temperature after inflation i.e. in radiation domination is given by

T 2(N) = T∗e
−2N , T∗ =

√
H∗Mpl (3.38)

We also use the relation

Γ

mσ

= γ
g2

64π2
→ αg2 =

α

γ
64π2 Γ

mσ

≡ ᾱ
Γ

mσ

(3.39)

Now equation of motion reduces to

σ′′ + σ′ +
m2
σ

H2
∗
e4N

(
1 + 2ᾱ

ΓH∗Mpl

m3
σ

e−2N + 4β̄
Γσ2

m3
σ

)
σ = 0 (3.40)

where, β̄ = β
γ

Exact solution to this equation was not possible so numerical solution was done by using

same values of parameter as used in free theory. Here instead of solving for σ∗ we

took range of it (values re-scaled with respect to reduced Planck mass) satisfying the

constraints mσ < H∗ << σ∗ < Mpl.Then we checked for values which gave curvature

perturbation (ζ) in the order of 10−5. But none of these values were able to generate the

required value of curvature perturbation. This means the region marked with blue as in

figure (3.2 ) was not achieved in this condition

3.2.3 Self Interaction All

Similarly, for the potential used by Markkanen in his paper is (see [12]) simplified by

assuming that in radiation domination R=0 and neglecting the purely gravitation part

and the forth order operator G we get

V [σ] =
m2
σ

2

(
1 + 2αg2 T

2

m2
σ

)
σ2+

1

64π2

[
3gσ2(3gσ2 + 4m2

φ)

24
−
(
m2
φ −

gσ2

2

)2

log

(
1 +

gσ2

2m2
φ

)]
(3.41)

Let us define

g2 = 64π2 Γ

γmσ

→ g

2m2
φ

=
4π

γ
1
2m2

φ

(
Γ

mσ

) 1
2

≡ 1

m̄2
φ

(
Γ

mσ

) 1
2

≡ C (3.42)
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Using potential (3.41) and relation (3.42) equation (3.26) reduces to

σ′′ + 3σ′ +
m2
σ

H2
∗
e4N

(
1 + 2ᾱ

ΓH∗Mpl

m3
σ

e−2N +
m̄φ

2Γ
1
2

γm
5
2
σ

(
Cσ2 − (1 + Cσ2)log[1 + Cσ2]

))
σ = 0

(3.43)

Following the same procedure as followed in self interaction and using same values of

parameter as used in free theory, we can determine parameter space which satisfies the

condition for curvature perturbation.
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Chapter 4

Result and Discussion

First chapter of this thesis was introduction to inflation. In second chapter we took equa-

tion of motion as defined by equation (2.55) and solved it under different cosmological

background. This equation contains higher order operators R and G which appears due

to quantum corrections to inflation and treating inflation in terms of scalar field. Clas-

sical equation of motion corresponds to setting right hand side of the equation to zero.

First we solved classical equation of motion in case of De-Sitter space (this corresponds to

positive cosmological constant), radiation dominated universe and matter dominated uni-

verse. Scale factor being dependent on time takes different values in these three different

epoch of universe. Hence value of Hubble parameter ,H and higher order operators R and

G will have different value of in different cosmological background. This also resulted in

different solutions to equation (2.55) at classical and quantum level for the cosmological

background we take into account.

Figure (2.5), (2.6), and (2.7) corresponds to classical evolution of field in case of De-

sitter space, radiation dominated and matter dominated background respectively. Light

blue ,yellow, green, red and blue corresponds to choosing initial value of field as σ0
mσ

=

1, 10, 20, 30, 40 and σ̇[0] = 0 We can see from figure that in case of De-Sitter space evo-

lution of field is over-damped (exponentially decreasing) and in case of radiation and

matter domination oscillation is damped. Quantum corrected evolution of field is charac-

terized by figures (2.8), (2.9) and (2.10).Exact solution of (2.55) was not possible and was

solved numerically under same initial field as in case of classical one but with parameter
mφ
mσ

= 2, H0

mσ
=
√

1
2
, g = 1 and R0

6m2
φ

= 1
4
. Behavior of field is almost same in this case as

well but are deviated from classical ones which can be observed in figure (2.11), (2.12)

and (2.13). Blues lines represent classical ones and black lines that of quantum corrected

ones.

In third chapter we studied curvature mechanism using different potential. Curvature

mechanism is considered as root cause for structure that we see in universe today. At

first we took simple potential with no interaction at all i.e V [σ] = 1
2
m2
σσ

2 and solved for

σ[N ]. From cosmological observation we know that value of curvature perturbation(ζ) is
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of order 10−5. Using this fact we solve equation (3.20) and determine value of σ∗ that

works under the constraint mσ < H∗ << σ∗ < Mpl. For H∗ = 10−8Mpl the allowed

parameter space which satisfies all the constraint is represented by region within blue

dotted spots as in figure (3.2). Similarly we took potential given by equation (3.35) but

the region disappeared in this case for same value of parameter we choose to solve free

theory.

In second chapter of the thesis we developed classical and quantum evolution of the field

with choice of parameter as
mφ
mσ

= 2, H0

mσ
=
√

1
2
, g = 1 and R0

6m2
φ

= 1
4
. With these choice

of parameter and factor of 1
64π2 made quantum corrections are relatively small. So it

would be interesting to see the effects of quantum corrections with different choice of pa-

rameter.Similarly in chapter 3 on curvature perturbation we solved for simple potential

without interaction.In this case differential equation had exact solution but when po-

tential as described equation (3.41) was used equation became non-linear and numerical

approach is required.Due to lack of time I was not able to analyze it completely. This is

also next part where further computation can be done.
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