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Abstract

The objective of this thesis was to develop the digital architecture for a
small-scale drill rig intended for use by the Drillbotics team at the Uni-
versity of Stavanger, for an international student competition by the same
name. The main goals of the project has been to develop a robust software
architecture, data acquisition system, data management system and graphi-
cal user interface. The main criteria are the guidelines given by competition
organisers, criteria given in the thesis description, and criteria given by the
Drillbotics team.

We created a system for communication between the computer, programmable
logic controller and the drill rig such that we can communicate between
platforms using the CAN protocol. With this communication in place,
both the data acquisition logging and control system can operate without
delay. Any data retrieved is stored in a data management system, as per
competition guidelines. The database has been stress tested and has a 15x
safety margin between operation- and top speed, ensuring the database will
not be a bottleneck.

The main human machine interface for the drill rig, the graphical user
interface, on the computer was developed using principles researched in
advance to ensure an interface that was based on good industry practices.
The big focus on researching proper methods of making the interface is due
to the competition recently adding human machine interface as a major
judging criteria in the competition.

A system has also been developed that covers models used for steering the
directional drilling according to the industry standard minimum curvature
method. The path given by the minimum curvature method is the ideal
path that we try to follow. The path also has safety margins given to it to
ensure the rig never strays too far from the path.

The systems created in this project have had a side-goal of being scalable
and using good abstractions such that it is able to be used by future Drill-
botics teams, for both future computer science bachelor groups, or the rest
of the team as well.
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Chapter 1

Introduction

Every year since 2017, the University of Stavanger has participated in a
global student competition designed to have students worldwide develop a
small-scale drill rig to drill a provided rock sample. The competition aims
to teach students important industry methods, as well as hoping to find
new interesting approaches to existing problems that exist in the petroleum
industry.

The 2022 competition is the first competition that UiS participates in since
2020 due to covid-19 affecting the organisers ability to have the competition
run in 2021. From the former competition to the 2022 competition there
has been a complete redesign in the control-system architecture. It now
uses a programmable logic controller (PLC) as opposed to a set of Arduino
microcontrollers to communicate with the rig and control the drilling pro-
cess. The project’s goals is to develop the systems and code to steer the
rig, creating the interface and data acquisition systems.

1.1 Thesis

The objective of this project was to produce the components to control the
rig as desired, where following the competition requirements was our main
priority. This thesis describes a complete set of software components devel-

1



1.1 Thesis

oped to enable a drill rig to drill in of sample of rock or concrete. The main
objectives were to develop a robust data collection system between machine
and drill rig, design a graphical user interface (GUI) for live drilling, create
a proper software architecture, and database management for all the data
that gets handled.

In prior years of UiS participating in the competition, code has been made
with similar goals to what was given to our project. Therefore we also
reviewed the codebase that already existed, and gauged whether this was
valuable for the this project. As the Drillbotics competition is held annu-
ally there was also a side goal that was deemed important and was given
some priority, which was to make the created code and eventual thesis ap-
proachable and usable by the rest of the Drillbotics team, for both present
and future groups.

The Drillbotics competition is set to be held in the summer, roughly two
months after the deadline of this thesis. The physical rig is scheduled
to be completed, and tested in the weeks following the thesis submission
deadline, and testing of the code on the physical rig can therefore not be
fully described in this thesis. This situation necessitates certain precautions
and principles to be used in the development of the logical components
which this thesis focuses on. There was an emphasis that the system was
to be developed as robust as possible, and is able to swiftly accommodate
modules that are removed or added depending on the requirements of the
team as the competition deadline draws nearer. The other necessity is
that we have a healthy and robust testing methodology such that physical
testing goes without issue.

At the beginning of the project it was decided together with UiS Drillbotics
and our supervisor that the tasks for this thesis would be extended such
that a larger focus could be put on the highest priority features. The reason
for the extension was due to there not being a group for the electrical
engineering side of the project as originally intended, and our group was
most qualified to handle the more important parts that was supposed to
go to the electrical group. This means that the data acquisition system,
and partially the sensor installation and calibration would fall under this
thesis. Mainly it meant that this thesis also entails having to develop most
of the data acquisition system as well, both on the PLC and computer side.
As mentioned in sub-chapter 1.1 the main focus was software architecture,

2



1.2 The Competition

GUI development, database management and data acquisition, as these
were all the largest priorities to get a working system.

1.2 The Competition

To better understand the motivation for our work, here is some background
on the competition. Drillbotics is an international annual competition or-
ganised by the Society of Petroleum Engineers (SPE). The objective of the
competition is to design and create an autonomous lab-scale drilling rig
that leverages sensors and control algorithms to drill into a rock sample
provided by the competition.

The aim for the competition is for students to "Design a drilling rig and
related equipment to autonomously drill a vertical well as quickly as possible
while maintaining borehole quality and integrity of the drilling rig and drill
string." [4]. Points are granted based on how well the aforementioned points
are done. This year is the 8th year the competition is held, and the 6th year
that the University of Stavanger participates. The participating teams have
to build the rig from the ground up and implement all the software needed
to operate it themselves. Up until now the only necessary function for the
competition has in theory been a to start/stop the autonomous part of the
drilling.

Competition guidelines frequently change to better reflect current industry
problems, giving students practical insight into how things work in the
industry. This year the newly added change is that the drill operators
should be able have more interaction in the drilling interface, to better be
able to respond to unforeseen situations, and human machine interfaces
(HMI) has a big focus. These guidelines and recently new editions to it
will be one of the primary factors leading our design choices.
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Chapter 2

The Drilling Rig

The objective for this thesis as mentioned in chapter 1.1 is to develop
the logical architecture around a small-scale autonomous drilling rig for
a international student competition named Drillbotics. While these tasks
mainly lie in creating code and designing interface elements, it’s helpful to
have a good overview on the piece of physical equipment that the code is
developed for. The assignment text described the goals and objectives:

The following is part of the assignment text:

A small-scale autonomous drilling rig has been constructed and tested from
May 2017 at UiS. The work is based on a multi-disciplinary approach to de-
velop, optimize, and capitalize on a variety of research areas such as mathe-
matical modelling, mechatronics, information technology, cybernetics, soft-
ware, and petroleum engineering. An important objective is to strengthen
the understanding of the control system design for drilling systems in terms
of performance optimization, drilling problems management, data analysis,
and model calibration and validation, etc. The goal has been to use this
fall and spring to construct a new drilling robot, as the second generation
of our UiS drilling robot. This new robot will be used for an international
university competition organized by SPE.

See image and descriptions below to get a better view into how the rig
looks, and its individual pieces:
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2.1 Top Drive

Figure 2.1: Drawn illustration of
the drill rig.

• 1. Top drive

• 2. Load cells

• 3. Drill string

• 4. Laser sensor (distance)

• 5. Electric hoist/elevator

• 6. Bottom hole assembly

• 7. Water and electric cables

• 8. Electric box

• 9. Pump

• 10. Engine for pump

The above illustration is a good pointer for how the rig looks and the
components that go into making it work. See below for a bit more detail
into what each part individually is responsible for.

2.1 Top Drive

Formerly the top drive has been used to make a "pilot" hole in the block
we are drilling into, making the entire drill string rotate with a set RPM
(revolutions per minute). A change from former designs to the current one
is the use of a positive displacement motor (PDM) to control RPM on the
bit, meaning the pilot hole cannot be driller with the top drive. The top
drive is now then used primarily together with the rotary steerable system
(RSS) to rotate the drill string to decide downhole drilling direction.

5



2.2 Load Cells

2.2 Load Cells

The load cells are there to be able to determine the weight on bit (WOB),
which is the amount of downward force exerted on the drill bit. Normally
the weight is expressed in thousands of pounds, but for our case we use
Newtons.

2.3 Hoisting System

The rig uses a Bosch Rexroth R036050000 to raise and lower the drilling
assembly. It’s speed will be adjusted to apply the required weight on bit.

2.4 Bottom Hole Assembly

The bottom hole assembly (BHA) is the main component that allows for
drilling. The responsibility of the BHA is to provide RPM to the drill bit,
or more precisely the positive displacement motor (PDM) that’s a part of
the BHA. The positive displacement motor works by pushing some form
of drilling fluid through it, converting the hydraulic power of the fluid into
mechanical power to make the drill bit rotate. In this specific case, water
will be pumped with sufficient force through the PDM to make the bit
rotate.

The BHA also has a rotary steerable system (RSS) that is connected be-
tween the PDM and the drilling bit. It controls steering and goes between
straight and deviated steering, meaning it either goes straight down, or is
bent in one direction. The direction is determined by 2 steel cables that
gets pulled to drag the directional part of the RSS back and forth. It has a
drilling cable through the middle that controls rotation between the PDM
and the bit.

6



2.4 Bottom Hole Assembly

(a) Interior view (b) Exterior view

Figure 2.2: Exterior and Interior view of the Bottom Hole Assembly used. Per-
mission given by Drillbotics for use in thesis.

Figure 2.2 is a illustration of the insides of the BHA used at UiS. The
upper threaded section is the PDM, it functions by pushing water into it
with sufficient pressure to make it turn around, converting hydraulic power
into mechanical power. The PDM is connected to a drilling cable that goes
all the way down through the RSS and to the bit, and is the part that

7



2.5 Pump

makes the bit rotate. The RSS is located between the PDM and bit and is
there to steer the direction that the bit is pointed, either being positioned
straight down, or deviated in one direction. The best curve to reach any
given point in a block is the curve between 2 points on a circle essentially,
so it only needs to be able to go straight or in that one direction. See below
for an image of the exterior of the BHA.

2.5 Pump

The pump is powered by a 400V electric motor and will supply pressure to
the circulation system. The pump is capable of operating at up to 200 bar,
but in this application it will be supply pressure in the 50 bar range. The
high pressure water is used to supply hydraulic energy to the PDM which
will rotate the drill bit.

2.6 Other Parts

The electrical box contains the connections to the programmable logic con-
troller (PLC), and handles sending and receiving signals to/from the PLC.
The Water and electric cables supply water and electricity to the PDM and
top drive respectively. The drill string holds the BHA, and is hollow to
allow water to flow through it. The laser sensor is used to control how
far down the drill is, and is used both while drilling, and while setting up
drilling. Connected to the rig are also a number of limit switches, two of
which are used to tell if the hosting system is in the top or bottom position.

8



Chapter 3

Software Architecture

3.1 Introduction

The automated drill needs some form of communication to operate. This
communication needs to have relatively high throughput and most impor-
tantly, low latency. Data will have to travel from sensors to the PLC and
PC fast enough that the drilling process is able to be automated. Creating
a system like this proposes a number of challenges, most of which simply
boil down to a producer-consumer problem.

The architecture of the existing code is based around a microservice based
approach. This might have been a good solution for a setup with a lot of
Arduino microcontrollers, but for the current setup with a single PLC it is
much too complicated. The codebase also has a complete lack of unit and
integration tests, so it will be very difficult to port over to a new solution.
Therefore we have elected to build a new codebase from scratch.

The project will as before use the Python programming language, and the
codebase will be relying on object-oriented programming techniques such
as encapsulation, abstractions, inheritance, etc. As a large priority of this
thesis will be to make a proper user interface, Python was convenient due
to its PyQt5 library making it fairly trivial to make a graphical user inter-
face according to our needs. While it is not necessarily a perfect language,
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3.2 The Producers and The Consumers

since techniques like information hiding are enforced only by naming con-
ventions [7], it does have the features that are needed for the project and
is fairly simple to write.

3.2 The Producers and The Consumers

On the drill itself, there are two independent systems that produce data,
the PLC and the DHS (downhole sensor). These two will produce data at
different rates, so acquiring data from these sources cannot be done effec-
tively with a synchronous approach. On the PC, one producer of data is the
user inputs from the GUI. The GUI must be able to effectively collect user
input while the data acquisition from the drill rig is still active. The data
which is collected from the GUI inputs will be passed on to the controller
which will then be passed on to the PLC to control the drilling process.
As well as being a producer, the GUI is also a consumer as it picks up the
data that will be displayed on screen.

3.3 Why It Cannot Be Done Synchronously

When building a basic implementation of the GUI it became obvious that
there were performance implications with updating the GUI inline with a
data intensive system. Simply running a while True: loop in Python
made user interface unusable. This is caused by the fact that if a loop is
run in the GUI process, it will not allow the PyQt5 event loop to function
properly, thereby grinding the UI to a halt.

On the communication side there were also problems. When reading data
from the CAN bus, the read function will block execution until it has
received a message. The library did not allow for the program to just
continue if there were no messages, and no message could be skipped either.
This meant that if there was a delay, for instance when updating the GUI,
there would be a huge backlog of unread messages on the bus.

10



3.4 The Tools Used

3.4 The Tools Used

To solve the producer–consumer problems, the system relies heavily on
the multiprocessing module in Python. This module can be used to
spawn separate processes which will allow for parallelism in the program.
It also provides classes which which can handle thread safe communication
between the processes such as the Queue class.

The PyQt5 library also has classes and functions for handling long-running
processes. One of these classes are for instance used for creating the loop
that acquires data from the main process. These solve the aforementioned
problem with the event loop not working.

The PLC and DHS is connected to the PC over a CAN interface, the
python-can module together with the Kvaser driver (a dependency needed
to operate with the add-in card) is used to allow reading from these inter-
faces in Python.
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3.5 Architectural Decisions

3.5 Architectural Decisions

Figure 3.1: Architecture

Figure 3.1 shows a general overview of the information flow from the soft-
ware perspective.

3.5.1 General Project Structure

At the core of program is the Main class. This is the class that contains all
the processes, the queues for inter-process communication, the controller
and the highest level abstraction of the CAN communication. This class
also contains the main loop of the program, which is responsible for col-
lecting the data from the various processes and passing them on to where
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3.5 Architectural Decisions

it will be processed.

3.5.2 GUI

The first part of the program that was separated out was the graphical
user interface. This is done by creating a new process and giving it several
queues that it shares with the main part of the program. One of these
queues is the display queue, the queue used for sending data that will be
displayed on screen. The GUI process will sit and wait for data to arrive
on this queue and update the data on screen when it arrives. Data will not
be sent onto this queue on every iteration of the main loop however. As the
system receives thousands of messages every second it would be impossible
for the GUI to keep up. The display data is therefore sent onto the queue
every x iterations of the main loop, where x is adjusted automatically based
on the how fast the GUI is able to handle the data. This is explained in
detail in chapter 7.2.5.

When receiving input from the user, this data will also be put onto a
queue. This will happen as often as the GUI inputs are updated by setting
up events in the GUI. The input data will be picked up from the queue by
the main function, but rather than waiting for it, the main function will
just check if the queue is not empty and pick up whatever is there. This is
done to avoid a potential deadlock. Using this event base approach in the
GUI also made sure that user inputs are working, albeit with a slight but
consistent delay even if the display logic if overloaded. This was tested by
trying to update a plot much faster than the GUI was capable of, and then
turning the hoisting mechanism on the drill rig on and off repeatedly.

Separating the user interface and the control logic parts of the program
has a number of benefits. The most obvious one is modularity. It would
be fairly simple to write a different frontend for the application as they are
only connected by a couple of queues in Python’s multiprocessing module.
Similarly, the user interface could also be connected to a different controller
since this naturally is also just dependent on a couple of queues to function.
Another benefit is the speed increase that comes along with running parts
of the program in different processes. Separate processes will allow Python
to utilise multiple CPU cores, but it will also prevent having to wait for
the display logic to collect more data from the acquisition system.

13



3.5 Architectural Decisions

3.5.3 Class Design

When designing the classes for the classes, it was put in effort to adhere to
the single responsibility principle. Abstraction layers are created to simplify
both the development process, but also the maintainability in the long term.
An example of this is that the Main class “knows” of the existence of a
controller and it’s methods, but not the implementation. The Main class
can give data to it and receive data from it, but the processing that is done
by the controller is not it’s concern. All of this means that as long as the
same methods in the controller can be called, the controller implementation
can be changed without affecting the Main class.

For classes that will have similar functionality, but will contain different
data fields and structure, a base class is created. This base class will contain
the methods that will be the same regardless of the other data fields, while
the child classes will contain the methods and fields that are unique in
implementation.

3.5.4 Main Loop

The main loop (code block 3.1) of the program is located in the Main class
and is sort of the centre hub of the application. The loop runs until the
program is exited, and it consists mostly of high level method calls to the
main class’ objects.

3.5.5 Drill Controller

The controller part of the system is responsible for collecting and routing
the different types of data that is acquired by the acquisition system. An
example of this is the collecting of data that will be displayed in the GUI
from the different sources. The controller is also intended to process the
data that is collected from the downhole sensor and from there estimate the
bit position. Code block 3.2 shows the method that is called from the main
loop to handle the incoming data from the PLC. The incoming object gets
stored in the controller and added to the relevant fields in the display data

14



3.5 Architectural Decisions

� �
1 while running:
2 # Read data from PLC and pass to controller
3 plc_data = self.PLC_CAN_conn.read()
4 self._logger.log_PLC(plc_data)
5 self.drill_controller.plc_sensor_input(plc_data)
6

7 self.read_DHS()
8 self.read_user_input()
9

10 # Read from management queue for closing program and
for controlling update interval

11 if self.GUI_management_queue.qsize() > 0:
12 msg = self.GUI_management_queue.get()
13 if msg == -1:
14 break
15 if msg == 1:
16 self.GUI_flow_controller.slow_down()
17

18 if self.GUI_flow_controller.run():
19 # Update the GUI when the flow controller allows it
20 self.display_queue.put(
21 self.drill_controller.gui_output()
22 )
23

24 # Send control data to plc
25 self.PLC_CAN_conn.send(
26 self.drill_controller.generate_control_output()
27 .get_can_output()
28 )� �

Code Block 3.1: Main loop

object. The display data object can then be extracted and sent to the GUI
at any time as the controller will always have a copy. Similar functions to
this can be written for the DHS and for other data sources in the future.
This makes it so that new incoming data also can be added at any time
from different sources. The relevant data from these sources can then be
sent to the GUI in one go, rather than having one for each source. This
reduces complexity on both sides of the communication between the GUI
and the controller.
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3.5 Architectural Decisions

� �
1 def plc_sensor_input(self, sensor_data: PLCSensorData):
2 self._display_data.refresh_rate.PLC =

self.PLC_refresh_rate_calc.update()
3 self._plc_sensor_data = sensor_data
4 self._display_data.temp_circulation_system =

sensor_data.temp_circulation_system
5 self._display_data.pressure_circulation_system =

sensor_data.pressure_circulation_system
6 self._display_data.hoisting_height =

sensor_data.hoisting_height
7 self._display_data.interlock = sensor_data.interlock
8 self._display_data.wob = sensor_data.wob� �

Code Block 3.2: Receive data from PLC

3.5.6 CAN Connections

Communication over CAN from the PLC and DHS to the PC will happen
over two different channels running at different bandwidths. Because of
this, data will arrive asynchronously and the acquisition of data from the
different channels are therefore separated. Channel 0 which receives data
from the PLC will run inline with the main loop, but Channel 1 will run
in a separate process. This process will have a queue that it can send data
over similar to the GUI. The Main class’ loop will read data from this
queue whenever there is data on it. The CAN communication is described
in depth in chapter 4.
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Chapter 4

Data Acquisition

4.1 CAN

The data acquisition system uses CAN as the main protocol. Pythons
python-can module and Kvaser’s SDK is used to communicate with the
CAN interfaces. The system uses two different CAN channels, channel
0 which runs at 1000 kbps and channel 1 which runs at 500 kbps. The
communication between the PC and PLC runs at channel 0 while channel
1 is used by the DHS (downhole sensor) and the PC. Channel 1 is run at a
lower bandwidth because it uses a much longer cable and also has to run
through a slip ring.

Each message is assigned an ID and this is used to categorise the message.
To make the ID assignments more clear, the messages sent from the PLC
to the PC have IDs in the range 100 - 199, the messages from PC to PLC
200 - 299 and the ones from the DHS to the PC have IDs in the range
300 - 399. As an example, the pressure and temperature of the circulation
system gets sent from the PLC in a message with ID 130. The full list can
be found in the GitHub repository, see appendix A.
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4.2 Receiving

4.1.1 Conversion of Data Types

The CAN messages have a max size of 8 bytes. The values sent will vary
in size, some will only need 1 byte, while some will use 4. To simplify the
send and receive process, all values utilise 4 bytes of the message.

Both the CAN implementation on the PLC and in Python requires that
the messages are formatted as an array of bytes. This required conversion
of floating point numbers and integers to make them fit in a byte array.
On the PC this is handled by Python’s struct package, while the PLC
required a lot more low level trickery. The conversion of REAL (32 bit
floating point) to 4 bytes of a byte array when sending from the PLC is
accomplished by creating a pointer to an array of 4 bytes and pointing it
to the REAL variable. This is demonstrated in code block 4.1. The 4 bytes
in the CAN message are then assigned to the value of this pointer, thus
writing a REAL to 4 bytes. When receiving a REAL in form of a byte-array
on the PLC the same procedure is performed, only in reverse. Conversion
from byte-array to DINT (32 bit INT) and reverse on the PLC is done by
shifting the byte values by a multiple of 8 bits according to its position
in the array. On the PC a combination of the struct package and int
type’s methods to accomplish the same.

4.2 Receiving

Code block 4.2 shows how the CAN bus is read from. The self._bus.recv
function call is set to a timeout of two seconds so that the program can
continue even if no message is received. If so, the CAN connection is set to
a timed out state where the it will not attempt to receive data unless it is
reactivated by the operator.

To avoid enormous classes and functions for receiving and parsing mes-
sages, Python’s duck typing feature is used. This enables the functions for
receiving a message to be written only once, while the methods defining
how the message is structured is defined in the message’s class. The ideal
approach for this would be to use interfaces, but Python does not allow
for this. Interfaces would make it so that an object in one of the class’s
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4.2 Receiving

� �
1 FUNCTION RealToByteArray
2 VAR_OUTPUT
3 msg : ARRAY[0..7] OF USINT;
4 END_VAR
5 VAR_INPUT
6 value1 : REAL;
7 value2 : REAL;
8 END_VAR
9 VAR

10 pt1 : POINTER TO ARRAY[0..3] OF USINT;
11 pt2 : POINTER TO ARRAY[0..3] OF USINT;
12 i : INT;
13 END_VAR
14

15 pt1 := ADR(value1);
16 pt2 := ADR(value2);
17 FOR i:=0 TO 3 DO
18 msg[i] := pt1^[i];
19 msg[i+4] := pt2^[i];
20 END_FOR;� �

Code Block 4.1: Write REAL to byte-array
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4.2 Receiving

� �
1 def read_from_bus(self) -> can.Message:
2 if not self._timed_out and self._bus:
3 m = self._bus.recv(timeout=2.0)
4 if m is None:
5 logging.error(f"Reading from CAN channel

{self._channel} timed out, reading disabled")
6 self._timed_out = True
7 return m
8 if self._timed_out or not self._bus:
9 time.sleep(0.01)

10 return None� �
Code Block 4.2: Read from bus

fields could be swapped with an object of another class as long as this class
implemented the same interface. Code block 4.3 contains the function in
the CANConnection class that is used to pass a received message on to
the appropriate mapper.� �

1 def read(self):
2 self.last = False
3 # reads until the last message in the
4 #iteration is received
5 while not self.last:
6 msg: can.Message = self.read_from_bus()
7 if msg is not None:
8 # the message_mapper returns true if it
9 # receives the last message

10 self.last = self.sensor_data.message_matcher(msg)
11 else:
12 self.last = True
13

14 self.sensor_data.timestamp = time.time()
15 self.sensor_data.timed_out = self._timed_out
16 return self.sensor_data� �

Code Block 4.3: Read CAN

The message mapper for the data that is received from the PLC is displayed
in code block 4.4. The mapper places the received values in the correct field
in the object based on the id of the message.
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4.3 Sending

� �
1 def message_matcher(self, msg: Message) -> bool:
2 match msg.arbitration_id:
3 case 100:
4 self.plc_state = byte_to_int(msg.data[0:4])
5 case 110:
6 self.wob.sensor_1 = byte_to_float(msg.data[0:4])
7 self.wob.sensor_2 = byte_to_float(msg.data[4:8])
8 case 120:
9 self.wob.sensor_3 = byte_to_float(msg.data[0:4])

10 self.wob.avg = byte_to_float(msg.data[4:8])
11 case 130:
12 self.pressure_circulation_system =

byte_to_float(msg.data[0:4])
13 self.temp_circulation_system =

byte_to_float(msg.data[4:8])
14 case 140:
15 self.interlock.switch_mapper(byte_to_int(
16 msg.data[0:4]))
17 case 150:
18 self.pump_set_point = byte_to_float(msg.data[0:4])
19 self.hoisting_height =

byte_to_float(msg.data[4:8])
20 case 160:
21 self.top_drive_rpm = byte_to_float(msg.data[0:4])
22 self.top_drive_torque =

byte_to_float(msg.data[4:8])
23 case 170:
24 self.top_drive_rpm_set_point =

byte_to_float(msg.data[0:4])
25 self.top_drive_torque_set_point =

byte_to_float(msg.data[4:8])
26 case 199:
27 return True
28 return False� �

Code Block 4.4: Message mapper

4.3 Sending

Preparing messages for sending is handled in much the same way as re-
ceiving. The class for the CAN connection has no idea how to structure
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4.3 Sending

the message for sending, but the object that is to be sent does. The CAN
connection will call on this function to structure the new message.� �

1 # Base class for data that is sent to the plc
2 class BaseControlData:
3 def __init__(self):
4 self._control_mode: int = 1
5 self._can_list = []
6

7 @property
8 def control_mode(self):
9 return self._control_mode

10

11 @control_mode.setter
12 def control_mode(self, value):
13 if self._control_mode != value:
14 self._control_mode = value
15 a = bytearray(8)
16 self.write_int_to_byte_array(a,

self.control_mode, 0)
17 self._can_list.append((200, a))
18

19 # Creates a new message list and returns the old one
20 def to_can(self) -> list[tuple[int, bytearray]]:
21 values = self._can_list
22 self._can_list: list[(int, bytearray)] = []
23 return values� �

Code Block 4.5: Control Data

In code block 4.5 the updated values gets added to the can_list when
they are different from the previous value. The list gets cleared when the
to_can function is called. This makes sure that when the drill rig is con-
trolled manually, the commands only gets sent once. Use of bandwidth is
therefore reduced, and this behaviour is also required when starting pro-
cesses that are solely controlled by the PLC, such as activating the stabiliser
(a mechanism holding the BHA in the initial phase of the drilling). It would
not make sense to send a message for running the stabiliser on every iter-
ation. As shown in code block 4.5 when the control_mode gets set, the
setter functions gets called. The setter checks the new value against the
old value and stages a message for sending in the can_list.
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4.4 Interlocks and Limit Switches

4.4 Interlocks and Limit Switches

The drill rig has a number of switches that will indicate if something is
wrong in the drilling process, for example that a door is open. These
boolean values need to get transmitted from the PLC on each iteration,
but it would be quite wasteful to send each of them in a separate message.
All of these values are therefore put into a single integer by shifting the bit
into the appropriate place in the integer. The code for converting an integer
back to multiple boolean values is displayed in code block 4.6. Logical AND
is used for separating out the correct bit, and is shifted right to make the
result 0” or1”. The conversion to a boolean type happens if needed at a
later stage.� �

1 class Interlock:
2 def __init__(self):
3 self.front_door: int = DoorSensor.CLOSED
4 self.rear_door: int = DoorSensor.CLOSED
5 self.limit_hoisting_bottom: int =

LimitSwitch.INACTIVE
6 self.limit_hoisting_top: int = LimitSwitch.INACTIVE
7 self.limit_stabilizer_hoist_side: int =

LimitSwitch.INACTIVE
8 self.limit_stabilizer_opposite_hoist: int =

LimitSwitch.INACTIVE
9 self.hoisting: int = DeviceState.DISABLED

10 self.pump: int = DeviceState.DISABLED
11

12 def switch_mapper(self, switch_values: int):
13 self.front_door = switch_values & 1
14 self.rear_door = (switch_values & 2) >> 1
15 self.limit_hoisting_bottom = (switch_values & 4) >> 2
16 self.limit_hoisting_top = (switch_values & 8) >> 3
17 self.limit_stabilizer_hoist_side = (switch_values &

16) >> 4
18 self.limit_stabilizer_opposite_hoist =

(switch_values & 32) >> 5
19 self.hoisting = (switch_values & 64) >> 6
20 self.pump = (switch_values & 128) >> 7� �

Code Block 4.6: Interlock class
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4.5 Downhole Sensor

The process for writing boolean values to a single integer is almost the
exact opposite of the process described in code block 4.6. Bits get shifted
left into their corresponding place in the integer.

4.5 Downhole Sensor

The DHS is able to produce new sensor values much faster than they can
be processed by the PC. The values that are received from the DHS are
therefore the average of the 25 last measurements. This is shown in code
block 4.7 and 4.8.� �

1 if (icm20948.quatDataIsReady() &&
icm20948.accelDataIsReady()) {

2 icm20948.readAccelData(&now_accel.x, &now_accel.y,
&now_accel.z);

3 avg_accel.x += now_accel.x;
4 avg_accel.y += now_accel.y;
5 avg_accel.z += now_accel.z;
6

7 icm20948.readQuatData(&now_quat.w, &now_quat.x,
&now_quat.y, &now_quat.z);

8 avg_quat.w += now_quat.w;
9 avg_quat.x += now_quat.x;

10 avg_quat.y += now_quat.y;
11 avg_quat.z += now_quat.z;
12 numQuatAccel++;
13

14 if (icm20948.magDataIsReady()) {
15 icm20948.readMagData(&now_mag.x, &now_mag.y,

&now_mag.z);
16 avg_mag.x += now_mag.x;
17 avg_mag.y += now_mag.y;
18 avg_mag.z += now_mag.z;
19 numMag++;
20 }
21

22 }� �
Code Block 4.7: DHS read current values
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4.5 Downhole Sensor

� �
1 //Write to CAN every 25 iterations
2 if (numQuatAccel >= numberOfValues) {
3 send_float_can(300, avg_accel.x /

(float)numQuatAccel);
4 send_float_can(301, avg_accel.y /

(float)numQuatAccel);
5 send_float_can(302, avg_accel.z /

(float)numQuatAccel);
6

7 send_float_can(310, avg_quat.w /
(float)numQuatAccel);

8 send_float_can(311, avg_quat.x /
(float)numQuatAccel);

9 send_float_can(312, avg_quat.y /
(float)numQuatAccel);

10 send_float_can(313, avg_quat.z /
(float)numQuatAccel);

11

12 send_float_can(320, avg_mag.x / (float)numMag);
13 send_float_can(321, avg_mag.y / (float)numMag);
14 send_float_can(322, avg_mag.z / (float)numMag);
15 send_float_can(399, 0.0);
16 numMag = 0;
17 numQuatAccel = 0;
18 avg_accel.clear();
19 avg_mag.clear();
20 avg_quat.clear();
21

22 }� �
Code Block 4.8: DHS sending of average values

Taking the average of the last 25 values when sending resulted in 100 mes-
sages being sent per second. This means that a complete set of values is
processed by the PC approximately every 100 ms.
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Chapter 5

Logging

Logging of data from the DHS is a requirement for the competition and is
done using an SQLite database. This chapter will go through the implemen-
tation of a logger in Python, including design choices and considerations.
It will cover how it interacts with the rest of the software architecture, as
well as how it was stress tested to ensure that it can cope with logging
intensities at or exceeding the needs of the application.

5.1 Implementation

5.1.1 Technology Considerations

The logger uses SQLite as its database management system (DBMS). We
chose this DBMS due to its ease of use, and because our application does not
need a custom-tailored engine with pre-eminent performance. The results
from the stress test, which are found in chapter 5.2.2, show that SQLite
also is suitable for our logging purposes.
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5.1 Implementation

5.1.2 Python Implementation

The logging functionality of the application is implemented in its own class,
of which a single object is instantiated inside the main application. This
logger object has methods corresponding to each data object we want to log
in the database. Using an SQL schema, we create the three tables in which
the database log entries are stored. The information that is logged in the
database is the values from either a PLC sensor data object, a downhole
sensor object, or a user input data object. The data objects’ value fields,
stored as instance variables, correspond to their own column in the SQLite
database.

Logging is done through the main application object. Downhole sensor and
user input logging is done inside the read_DHS() and read_user_input()
methods respectively, through a call to the Logger object that is initialised
when an object of the Main class is instantiated. PLC data logging is done
immediately following the reading of PLC data from the CAN bus. Each
of the data objects has its own log method in the Logger class.

Interacting with the SQLite database is not instantaneous, and we there-
fore optimise the methods responsible for logging data by adding a buffer.
This is done because calling the SQLite library every time the logger is
called, combined with the frequency at which we receive data, would make
time spent on logging longer. This would each event loop run cycle take
longer, which runs the risk of the system becoming unresponsive. Each of
the methods has its own buffer, and when the buffer count exceeds a set
maximum buffer size, all buffer entries are stored on disk by inserting them
into the database.

The main methods for the Logger class are shown in code snippet 5.1.
The logger is run by setting the boolean run_logger instance variable
to True. The logging speed and log buffer size are set in the config file.
Logging speed is a way to limit the number of entries that are put in the
database. For instance, if the logging speed is 10, it will only log every 10
data sets. The log method flushes the buffer when the buffer exceeds the
log buffer size. The method that flushes the buffer stores the buffer data to
disk by spawning the static method write_to_db() in its own thread.
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5.1 Implementation

� �
1 class Logger:
2 def log_PLC(self, item: PLCSensorData):
3 if not self._run_logger:
4 return
5 if self._PLC_counter >= self._logging_speed:
6 self._PLC_counter = 0
7 self._PLC_buffer.append(copy.copy(item))
8 if len(self._PLC_buffer) >= self.buff_size:
9 self.flush_PLC_buffer()

10

11 self._PLC_counter += 1
12 def flush_DHS_buffer(self):
13 values = self._DHS_buffer
14 self._DHS_buffer = []
15 t = threading.Thread(target=self.write_to_db,

args=(values, self.filename))
16 t.start()
17

18 @staticmethod
19 def write_to_db(values: list, filename: str):
20 try:
21 conn = connect(filename)
22 for value in values:
23 value.write_to_db(conn)
24 conn.commit()
25 conn.close()
26 except OperationalError as e:
27 logging.error("Database cannot sustain logging

speed")
28 logging.error(e)� �

Code Block 5.1: Code for logging.

5.1.3 Log File Management and Export

The application has start/stop functionality, and each time the application
is started, it creates a new database file. This causes the data from the
different drilling runs to be stored separately. The name of the file is the
time at which the run commenced.

The log file management tab is the application’s interface with these log
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5.2 Stress Testing the Logger

files. The user interacts with this interface through a tab in the main
window, as shown in figure 5.1. A record of all the database log files is
displayed, and the user can also delete or export files. Export functionality
is handled by a custom SQLite-to-CSV converter, as shown in code snippet
5.2.

Figure 5.1: GUI log management tab

� �
1 def write_db_rows(filename: str, column_names: list[str],

rows: list[sqlite3.Row]):
2 with open(filename, "w", newline=’’) as f:
3 writer = csv.writer(f, delimiter=’;’)
4 writer.writerow(column_names)
5 writer.writerows(rows)� �

Code Block 5.2: Export to CSV file.

5.2 Stress Testing the Logger

As with any logging solution, it was required that the logger was stress
tested to ensure that there is not any data loss that can end up obscuring
the data. The tests were run under different conditions, including with
high speed, various durations, and different-sized databases.
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5.2 Stress Testing the Logger

5.2.1 Stress Testing Methodology

For inserting data into the database, the logger can expect to insert 10 data
sets from the downhole sensor, and 10 data sets from the the rest of the
sensors per second. For the stress testing, it is necessary to simulate as close
to actual production load for the computer simulating, and we will want to
try a set of various amount of data sets per second, over a various different
time ranges. While it is not expected that the rig will be running for very
long at a time, and will not be getting more than a total of 20 values per
second, the logger will be tested far beyond its required operating speed to
ensure that we have good margins.

5.2.2 Results

Below you can see table 5.1 detailing the results of the stress testing. The
logger was run at frequencies between 10Hz and 300Hz, and duration be-
tween 10s and 12h to test a wide array of conditions to figure out where the
bottleneck would be when run beyond its operating speed. In reality it will
end up running for 10–30 minutes at around 20Hz under normal operating
conditions.

10s 60s 10m 1h 3h 12h
10Hz Success Success Success Success Success Success
20Hz Success Success Success Success Success Success
50Hz Success Success Success Success Success Success
100Hz Success Success Success Success Success Success
200Hz Success Success Success Success Success Partial
300Hz Success Success Success Partial Fail Fail

Table 5.1: Results from stress testing the logger.

The only conditions under which the test was unable to finish as intended
was when it attempted to run the test for 300 Hz over 3 and 12 hours,
where it then failed after 97 % completion. 2.6 % of logging entries were
dropped. When running the database with a 200 Hz load for 12 hours,
the database managed 99.8 % completion, missing .18 % of entries after
12 hours. Similar results occurred when attempting to run at 300Hz for 1
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5.2 Stress Testing the Logger

� �
1 with open(os.path.join("logger", "schema.sql")) as file:
2 conn.executescript(file.read())
3 conn.commit()
4

5 s, = conn.execute("SELECT COUNT(did) FROM
dh_sensor").fetchone()

6 messages_count = frequency * seconds
7

8 start_time = time.time()
9 wanted_end_time = time.time() + seconds

10 for i in range(messages_count):
11 lg.log_DHS(generate_dh_data())
12 time.sleep(max(0, (wanted_end_time -

time.time())/(messages_count - i)))
13 end_time = time.time()
14 time.sleep(0.5)
15

16 n, = conn.execute("SELECT COUNT(did) FROM
dh_sensor").fetchone()

17

18 print(f"logged {n-s} entries in
{end_time-start_time:.2f} seconds.")� �

Code Block 5.3: Test query & method

hour where it was missing a small amount of data, and finished less than
a minute later. These tests were also run with databases that were empty,
and databases that had 1 GB or more data in them, and we got similar
results between both, concluding that the sizes that we are dealing with
will not be a problem for the logging.

From this, it can be concluded that the bottlenecks start appearing at 15
times the speed that is going to be expected when run for more than one
hour. The test running at 200Hz for 12 hours was also slightly too slow,
albeit it ended up logging everything a short time after the 12 hours had
gone. As the margins between what the stress test concluded and the actual
operating speed are this large, it can be assumed that there will not be any
bottlenecks with the logging during operating conditions.

See code block 5.3 for how we ran our tests.
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Chapter 6

Control System

A major part of making the rig operate is to design and implement a control
system, both automatic and manual. As the rig remains unfinished by this
thesis deadline, automatic drilling is yet to be implemented, but all the
pieces are in place for it. Sending and receiving data is working, and there
is a manual steering page in place for all available values.

6.1 The Control Process

Figure 6.1 shows the interface for controlling some parts that can be con-
trolled manually. It is created to allow for testing of both the installed
equipment and the control system itself, but is not needed for actually run-
ning the drilling process. See chapter 9.1 for plans to implement automatic
control.
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6.1 The Control Process

Figure 6.1: Manual control

When a value is adjusted in the GUI, it triggers an event that will pass
the message on to the controller part of the system. Code block 6.1 shows
how the different values in the GUI are collected and put into an object
and then onto a Queue. All of the different inputs on the manual page
are connected to this method so that if one input changes, all of them get
read. This makes for more code to execute for a single button press, but it
prevents having to write separate logic for each button.

At the other end of the Queue, the object is picked up and placed into the
controller. When called for, the controller will place this object’s values
into a new object of the class ManualControlData. This class inherits
from BaseControlData shown in code block 4.5 and is extended with the
functionality required to generate CAN messages containing the data for
manual control. When the CAN message has been generated, the message
is handled by the CANPLCConnection and sent to the PLC.
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6.2 PLC

� �
1 def get_inputs(self):
2 self.inputs.hoisting_enable =

self.hoisting_enable.isChecked()
3 self.inputs.hoisting_demand_value =

self.hoisting_demand_value.value()
4

5 self.inputs.pump_open = self.pump_open.isChecked()
6 self.inputs.pump_enable = self.pump_enable.isChecked()
7 self.inputs.pump_PID = self.pump_PID.value()
8

9 self.inputs.top_drive_enable =
self.top_drive_enable.isChecked()

10 self.inputs.top_drive_rpm_set_point =
self.top_drive_rpm_set_point.value()

11 self.inputs.top_drive_torque_set_point =
self.top_drive_torque_set_point.value()

12

13 self.input_queue.put(self.inputs)� �
Code Block 6.1: Read inputs in GUI

6.2 PLC

When the PLC picks up the data that is received from the CAN interface,
it first gets converted back to the more useful data types like integers and
floating-point numbers. This process is described in chapter 4.1.1. The
values are then assigned to the appropriate variables.

Control of the different motors and actuators is accomplished by linking
variables in the PLC code to the outputs that are connected to these de-
vices.� �

1 Outputs.DO_PumpEnable := DINT_TO_BOOL(Process.PumpEnable);
2 Outputs.AO_PUMP :=

REAL_TO_INT(Process.PumpPID/PumpScaling*IntMax);� �
Code Block 6.2: Set output variable

Code block 6.2 shows how the motor for the pump is controlled. The
variable Process.PumpEnable is the value that has been received from
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6.2 PLC

the PC and thereafter validated. Outputs.AO_PUMP is the variable that
is linked to the electric output on the PLC that is connected to the motor
controller. To set the voltage of the analog output the Process.PumpPID
value is first divided by the maximum value that can be received from the
PC. This value is then multiplied the maximum value of an integer. The
resulting value is then used by the PLC to determine what voltage to send
to the output.� �

1 //Only downwards when top switch is pressed
2 IF (Inputs.DI_HOISTING_LIM_TOP = FALSE) AND

(Process.HoistingDemandValue > 0) THEN
3 Outputs.AO_HOISTING := 0;
4 //Only upwards when bottom switch is pressed
5 ELSIF (Inputs.DI_HOISTING_LIM_BOTTOM = FALSE) AND

(Process.HoistingDemandValue < 0) THEN
6 Outputs.AO_HOISTING := 0;
7 ELSE
8 Outputs.AO_HOISTING :=

REAL_TO_INT(Process.HoistingDemandValue /
HoistingScaling * IntMax);

9 END_IF� �
Code Block 6.3: Set hoisting speed

To prevent damage to equipment and/or people it is necessary to implement
certain safety mechanisms. Code block 6.3 shows how the PLC only allows
the hoisting mechanism to travel upwards if the bottom limit switch is
pressed and opposite. It is impossible for an operator using the GUI to
override this.
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Chapter 7

Graphical User Interface

The GUI was a central component of our thesis and something we wanted
to focus quite a bit of effort on. It was important from the beginning to
be able to design a proper GUI built with the operator in mind, and being
as efficient as possible. Much of the motivation to do a good GUI where
we follow industry principles is due to the competition organiser adding
human machine interfaces (HMI) as a judging criteria, motivating students
to learn about this, and creating good interfaces. To further this goal,
we conducted a literature review in which we reviewed both companies in
the industry, but also Drillbotics’ own guidelines, as well as various other
sources for both design and alarm management. In this chapter we’ll begin
with doing a structured literature review, before designing a GUI using the
principles and information learnt from the review.

7.1 Literature Review: GUI

The drill for which the graphical user interface (GUI) will be developed
for is a scaled-down version of a type of machine used in the industry,
namely a drill rig. Therefore this demands a need to consider how GUIs
are made properly in the industry. The drill and the data from it will
come continuously while it’s running, and it is required that all of the
relevant information is displayed properly to the operator. This includes
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7.1 Literature Review: GUI

how to display any and all incoming values, figuring out which values are
more relevant, designing a way for the system to alert the operator in
unforeseeable situations and more. Another consideration in the design
will be the “human vs automation” factor, e.g. how much automation
there should be as opposed to systems where human intervention should
be possible.

Looking at the guidelines for the competition it states the following: “Vi-
sualisation of the processes (automation, optimisation, drilling state, etc.)
should be intuitive and easily understood by the judges, who will view this
from the perspective of the driller operating a rig equipped with automated
controls.” [5] This means figuring out how this is done in the industry for
drilling operators is important, and the GUI will take inspiration from that.
We’ll also conduct some short surveys with the petroleum students at the
University of Stavanger on how they’d like to final product to look like.

In the past, the only method for drilling has been with automated control.
A new element for the competition this time around is the human factor
component. Marcin Nazaruk, chair of the SPE Human Factors Technical
section had this to say about the inclusion of the human factor: “Asking
students to not only read about human factors but actually to integrate HF
requirements into their designs is an important milestone for the drilling
industry. When things go wrong on a rig, too often we see examples of
the operator getting blamed for what HF practitioners may consider poor
system design that leads to the equipment operator not having the needed
information to diagnose a problem and intervene effectively” [12]. Finding
the correct balance between automation and human involvement means
fewer problems and better long-term operation of any system. While au-
tomation and automated systems excel at finely tuned tasks, they have no
way to tackle unforeseen issues. You can program your system to have
exceptions for as many issues as possible, but often there will be problems
that nobody foresees, especially with mechanical hardware.

7.1.1 Defining Research Questions

In particular, the focus in this review will be these three research questions
(RQ):
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7.1 Literature Review: GUI

• RQ 1: How do existing GUIs look, and what could be learnt from
them?

• RQ 2: What design principles should be used when designing the
GUI?

• RQ 3: How much automation as opposed to human interaction should
be implemented?

Methodology and Review Protocol

For identifying sources for this literature review, a few different sources of
information are used. Mainly we will review the recommended resources
given in the Drillbotics Guidelines [5], which will be our primary studies.
Other relevant searches and studies we’ll review are: on recommendation
from our thesis supervisor we will review a former student’s bachelor thesis
on Human Machine Interfaces, and lastly, we will also be reviewing various
articles and studies found from Google and Google Scholar on the topic. As
we have a primary source of information through Drillbotics, the rest of the
sources we’ll review will be secondary. Therefore in choosing which sources
to use, we’ll try to find information that strengthens or builds upon what
we learn through our primary studies. Along with this, we’ll also review
most sources that seem specifically relevant to our RQs through searches
using keywords and formulations taken directly from our RQs. For full
disclosure, due to time constraints, long sources (e.g. 25+ pages long will
be “scanned” for relevant content, and not reviewed in their entirety. We
will systematically go through each source and take out any relevant info,
and consolidate what was learned in the conclusion. See some of the sources
used below.

Automation vs Manual Operation

Taking a look at Fitts’ list from 1951 there are a few items that are relevant
to consider for the GUI to be best utilised in actual scenarios from a human–
machine interface perspective. In particular, there are three main points
from Fitts’ list that one could argue would make long-time performance
better, and make it worthwhile having an operator. These three points are
Ability to improvise and use flexible procedures, Ability to reason inductively

38



7.1 Literature Review: GUI

and lastly Ability to exercise judgement. The other items on Fitts’ list
have become more outdated as the list was originally made in 1951. [17]
During normal operation, most industrial systems are most efficient when
automated. However what the three previously mentioned points elude
to is the benefit of having someone to rapidly tackle unexpected scenarios
that slow down, or halt operation completely. The human also exists in the
operation to monitor and improve upon the operation. While machines are
increasingly able to do these things better due to machine learning and AI,
humans still have an advantage in these areas for most systems. See the
complete Fitts’ list from 1951 below.

Humans appear to surpass
present-day machines in respect
to the following:

Present-day machines appear to
surpass humans in respect to the
following:

1. Ability to detect a small
amount of visual or acoustic en-
ergy

7. Ability to respond quickly to
control signals and to apply great
force smoothly and precisely

2. Ability to perceive patterns of
light or sound

8. Ability to perform repetitive,
routine tasks

3. Ability to improvise and use
flexible procedures

9. Ability to store information
briefly and then to erase it com-
pletely

4. Ability to store very large
amounts of information for long
periods and to recall relevant facts
at the appropriate time

10. Ability to reason deductively,
including computational ability

5. Ability to reason inductively 11. Ability to handle highly com-
plex operations, i.e. to do many
different things at once

6. Ability to exercise judgement

Table 7.1: Fitts’ List

Designing for humans with automation principles is not easy as it’s not an
either/or distribution of work between the two. While pure automation
has been the desired configuration for the Drillbotics competition for the
previous eight years, switching over now to a hybrid human automation
format, requires thorough thinking and review. The design should be based
on convention and researched principles. In 2017, John D. Lee et al, laid
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out fifteen principles of human automation in their book, “Designing for
People: An Introduction to Human Factors Engineering”. The principles
laid out here give a good foundation of knowledge into the essentials for
human factor engineering.

The list is as follows [11]:

1. Define and communicate the purpose of automation.
2. Define and communicate the operating domain.
3. Design the role of the person and automation.
4. Simplify the mode structure.
5. Make trustable and polite.
6. Signal inability to satisfy role.
7. Transparency - Keep the person informed.
8. Avoid accidental activation and deactivation.
9. Keep the person in the loop.

10. Support smooth re-entry into the loop.
11. Make automation directable.
12. Make the automation flexible and adaptable.
13. Consider adaptive automation.
14. Keep people trained
15. Consider organizational consequences.

Many of these make intuitive sense, while others seem intended for more
specific cases. However, they all give valuable insight into principles that
should followed for the design. What is clear after going through many
sources is that one of the main driving factors of our design should be the
importance of having a user-centred design. As stated in “Automation and
autonomous systems: Human-centred design in drilling and well” on com-
mission by the Petroleum Safety Authority Norway [15], “Experiences from
the industry and the investigations strengthen the need for user-centred de-
velopment and a focus on HF”. Another vital part they point out is that
“IEA/ILO should be a key reference concerning the introduction of new
technology such as automation and digitalisation.”

IEA/ILO (2020) refers to a report called “Principles and guidelines for hu-
man factors/ergonomics (HFE) design and management of work systems”
and is made by the International Labour Organization (ILO) and the In-
ternational Ergonomics Association (IEA). [10] The report also lists five
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principles for HFE design and management of work systems:

1. Ensure worker safety, health, and wellbeing in the optimization of
work systems as a top priority.

2. Design and manage work systems to ensure organizational and worker
alignment, continuous evaluation and learning, and sustainability.

3. Create a safe, healthy, and sustainable work environment from a holis-
tic perspective, understanding and providing for human needs.

4. Account for individual differences and organizational contingencies in
the design of work.

5. Make use of collective, trans-disciplinary knowledge and full partic-
ipation of workers for designing systems, detecting problems, and
creating solutions for HFE in work systems.

The focus of these principles and what should always be the main focus of
the design is as mentioned the paramount importance of the human being
in the centre of any design, and safety always being the first priority. While
the system might be autonomous, the human should be aware of anything
going on and be able to intervene and interact with the system to help
lessen the impact of eventual issues.

There are of course always drawbacks and eventualities and ironies to con-
sider. In the book Ironies of Automation, by L.D. Bainbridge [1] lists some
ironies in the design of automated systems. While most are worried about
human error and use automation to mitigate this, we need to consider the
fact that the system designer(s) are human as well, which is something
called “human-induced errors”. What this essentially means is that human
error can occur at the design stage, making the skills of the operator irrel-
evant, and making the need for robust testing of the design an important
factor.

Another important thing to note is that if you automate too much, the
remaining work left for the human operator may be so unsatisfying, and
seemingly uninteresting that the operator’s skill set would diminish over
time, as well as the lack of enthusiasm to want to do the job well. There
are also many factors to consider when considering that the human oper-
ator would unexpectedly have to take over. As mentioned if the system is
designed to be automated, with human intervention only with unexpected
error, the skills of the human operator will deteriorate over time, this is es-
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pecially important when realising that the situation where the automation
fails will likely be difficult to handle and requires a sharp skill set. Any
operator no matter how skilled will always need some time to "switch over"
from monitoring "mode" to active control "mode". We also know that it
is difficult to monitor effectively over an extended amount of time, which
is the same reason air traffic controllers generally work short amounts of
time, with many breaks during their shifts, to keep efficiency up, and er-
rors down. Depending on how critical a rig is to run without failure, one
should consider the cost-efficiency and whether a similar system should be
deployed, even if it ends up costing more in salary, although strictly not a
factor for our purposes.

Alarm Management

Proper alarm management, the art of making sure that an operator is
immediately aware of unexpected operations is also of utmost importance.
Ensuring that we facilitate accurate and timely fault prompting and diagno-
sis to operators is vital to any actively running system, especially industrial
[9]. Poor design is a large cause of many major incidents. The Health and
Safety Executive from the UK points out five principles to ensure proper
alarm management and workplace safety.

• Alarms should direct the operator’s attention towards plant condi-
tions requiring timely assessment or action;

• Alarms should alert, inform and guide required operator action;
• Every alarm should be useful and relevant to the operator, and have

a defined response;
• Alarm levels should be set such that the operators have sufficient

time to carry out their defined response before the plant condition
escalates;

• The alarm system to accommodate human capabilities and limita-
tions;

Alarm management is one of the primary concerns when designing an in-
dustrial system. Any time you have a system with moving parts, high
amounts of pressure, running engines, etc. you need to be very sure that
you’re properly warned about unintentional operation as it can potentially
be very dangerous. Depending on the system running autonomously it can
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lead to anything from improper operation to potentially being fatal.

The principles listed above also go quite hand-in-hand with more general
design principles. Keeping an as aesthetic and as minimal design as possible
ensures that there is less clutter for an operator to get lost in while trying
to get an accurate idea of the situation. The implication here is that while
you may have a lot of information available to display as a designer, more
is not necessarily better, and you need to carefully consider what is more
important. An alternative is to have a lot of information in front of you, but
then your alarm management system needs to be of such quality that you’ll
easily be able to swiftly navigate your interface towards what is important,
as suggested above. Alarms should be as infrequent as possible so that when
important alarms actually do come in, it gets reacted on more swiftly.

General Design Heuristics

There is also the general design to consider for creating a good interface.
Over 25 years ago, Jakob Nielsen at Nielsen Norman Group listed ten us-
ability heuristics for user interface design. While the world has advanced
rapidly and at an unprecedented rate since then, most of the principles he
made back then are still as valid and relevant as they were then. While
the heuristics he made were intended for general design, many of them are
relevant for industrial usage on a drilling rig. The ten Usability Heuristics
for User Interface Design are as follows: [13]

1. Visibility of system status:
• Perhaps particularly relevant for anyone monitoring mechanical

equipment, visibility of status, and eventually visibility of alarms
is of particular importance as seconds can matter a lot.

2. Match between system and the real world
• The design should use typical conventions and stick to words,

phrases and concepts known to any operator, and not difficult
to understand internal wordings. Most relevant for us here is
the keep a normal layout with easily discernible sections.

3. User control and freedom
• For actions done by mistake, users need a clearly marked "exit"

like undo/redo.
4. Consistency and standards
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• Refer to point number 2. Follow industry and platform stan-
dards.

5. Error prevention
• Good error messages are nice, but error prevention is nicer.

Warnings when things start going wrong, but before it has gone
wrong is desired. Stuff like yellow warning lights could be an
example of something we can implement.

6. Recognition rather than recall
• The user should not need to recall something from one part

of the interface to another. Necessary information should be
readily available and easily visible.

7. Flexibility and efficiency of use
• Eludes to having shortcuts that can make an experienced user/-

expert more efficient. Not very relevant here.
8. Aesthetic and minimalist design

• Keep irrelevant information out of the GUI design. "Extra" in-
formation competes with the relevant information in drawing the
users attention.

9. Help users recognise, diagnose, and recover from errors
• Express error messages in easily discernible, plain language such

that no one has to search for an error code. Offer a solution.
10. Help and documentation

• No explanation needed.

Some are more important than others, and some we have already discussed.
But use conventions, make things as easily readable as possible, such that
someone inexperienced could use it.

Real World Example

There are not a lot of examples of real-world drilling interfaces available
online, however, some companies release more specific specs and interface
designs. Schlumberger through their daughter company Cameron has a
brochure showcasing their digital drilling control system. While a Drill-
botics project is nowhere near as sophisticated and complicated as a real
control system used by one of the oil giants, there is still knowledge to take
from them. What is immediately noticeable when looking at their design is
how much everything pops out, as long as the operator is paying attention,
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they will immediately notice the change in a light coming on, i.e. turning
from green to red to indicate an error, due to contrast. [2]

More sophisticated control systems like the ones used in the industry usually
have control systems similar to the one above which is not realistic to
have for a small-scale project like Drillbotics. Their principles are still
present as we can see throughout their design which we can take inspiration
from. Mainly we want to give the operator maximum freedom and a good
user experience. Improved user experience leads to happier workers, and
better production and helps ease down the number of mistakes in a system.
We can see these principles clearly implemented in the design used by
Schlumberger.

Conclusion

There are a lot of important principles, heuristics, and observations to
consider when attempting to design the ideal interface. Generally, there
are a lot of good rules to follow to create a good design, if the interface
can check off all the boxes when finally implemented, it should in theory
be good. Of particular importance is the idea that the operator/worker
is in the centre of the design, and their wishes, granted they are realistic,
are paramount. Therefore keeping the worker in the design loop so we can
ensure good design both from a designer’s and an operator’s point of view.

The most important system in the design will be how we communicate
things running in non-ideal conditions, and having proper alarm manage-
ment to manage it.

7.2 Designing and Implementing The GUI

7.2.1 Former University of Stavanger Drillbotics GUI

The large focus and motivation on doing this part will originate from the
former GUI designed for University of Stavanger’s Drillbotics rig in previous
years. The former GUI was cluttered, non-intuitive and confusing for the
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user. On running the drilling application/GUI it would open four separate
windows for managing from the operators perspective, and 22 terminal
windows to run everything, giving the user a sign that it’s poorly designed.
Due to the shortcomings of the former codebase and GUI design, the group
desided to redesign everything in a way we felt was more appropriate, and
using proper principles for good design. The main window of the old GUI
is shown in 7.1

Figure 7.1: This was the main page of the application.

After discussing with other members of the Drillbotics team, as well as
talking to other petroleum students, we found that this design was sub-
optimal. It has some important features, but it is clear that the operator
is not the first consideration when looking at this design, as nothing is op-
timised towards a human being able to see things fast and respond quickly.
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Figure 7.2: Additional windows for manual control

The "Rig State" window has text that gets cut off, and it is difficult to
understand what its purpose is for a drill operator.
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Figure 7.3: Drilling values

This 3rd window contains all the current values for each of the sensors on
the drilling rig. While it’s nice to have all the numbers available there
is still lots of room for improvement here. As a rig operator you have a
limited amount of time to detect when a value goes too far. While some of
this could be detected in the main window, the lack of contrast, and lack of
design makes it difficult for an operator to keep focused for longer lengths
of time.
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Figure 7.4: CMD windows opening on running the Python program

Although it is not necessarily problematic to have all these windows open-
ing, it does not give the user a lot of confidence in the program either. It is
a lot of processes running at once, and all of them are running in separate
windows. The preferred method for doing this would just be having the
GUI open alone, and if you need to have more information through logs, a
single window should suffice.

As mentioned after discussing the former interface with the other Drillbotics
members, other petroleum students and our supervisor we all agreed there
was tons of room for improvement here and thus we decided to rework the
entire interface from scratch.

7.2.2 Design Process

As we had already completed a literature review on Graphical User Inter-
face design (GUI), and had gotten some inspiration from the former GUI,
we already had a rough idea of what we wanted to accomplish with the
GUI, and how we wanted it to look. We reviewed the relevant sources
given to us by Drillbotics in detail, and researched how major actors in the
oil industry does it. We also reviewed the automation vs manual control

49



7.2 Designing and Implementing The GUI

problem on how to best design a system with an operator in its centre.
The design process continued directly following the review, and we started
working on a rough draft and basic ideas for what to include, and where to
put it. The first very rough draft looked like this:

Figure 7.5: A rough first draft for how we would like the GUI to look

Figure 7.5 is our initial idea for how we wanted the GUI to look. We tried
to consider the principles we researched in our literature review in chapter
7.1, to create a principled application with all the fundamental principles,
and with the operator in the forefront. Essential to our GUI is the ease
of use for the operator. This for us means giving the right amount of info
in the correct way. It also means have proper alarm management so that
the operator can respond quickly to unforeseen operations. This means
having alarms (e.g. red lights flashing) and using colors to better warn
if something is wrong (e.g. having the color of the numbers change given
certain thresholds are exceeded).

Thanks to some help from Drillbotics member and petroleum engineer Mya
Chordar we were able to take our right first draft to further develop a more
complete idea. As she has experience operating industrial drill rigs she had
valuable input on the design of our interface through actual experience.
Together with Chordar we iterated over our sketch to provide a 2nd version
of our draft, and together we proposed the design below:
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Figure 7.6: Second draft for how we would like the GUI to look made with help
from Mya Chordar

This was largely the design we ended up using when starting to put the
pieces together in a PyQT5 application. More explanation into each section:

• Upper left: This Drilling section will contain values for all the sensors
that are relevant for drilling. The initial idea was to have each of these
values have certain thresholds and change colour based on whether
they exceed these thresholds to easily warn the operator if some values
are getting too high.

• Upper middle: These are the drilling parameters we have. The “auto
driller” is to stop/start the autonomous process of finding coordinate
X,Y,Z. Each of the gauges/meters below (WOB, Torque and Pres-
sure) were there so that the operator could set their own levels using
a meter next to them, and the colours would be our own pre-defined
thresholds suggesting warning- and critical levels of operation.

• Upper right: These are our sensor status lights. Each sensor would
have a light associated, and will turn red if we lose them, and green
if they are active.

• Lower left: This is our 3D Plot where we will first place our minimum
curvature path, which is the industry standard method to find the
best path to a given 3-dimensional coordinate. Layered on top of this
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preliminary path, will be the current position and actual path the
drill has used.

• Lower middle: This is the well log containing all the information a
drill rig operator would want to have available history for. As the Y-
axis here is the depth into the ground/block, it serves as a history for
what has happened to get to the current position, and is important
for a drill rig operator to know.

• Lower right: This is a 2D graph of the tension for the cables that we
pull to steer the RSS.

Through discussing this with other members of the Drillbotics team and
our supervisor we agreed that this would be a good design for the main
window of our application. The remaining challenge here was to design
this in a way that is aesthetically pleasing, while applying the knowledge
from the literature review in chapter 7.1. As was discussed in the review,
the interface is made for the operator, and is supposed to be as easy to
use as possible. It was opted to have a dark interface to make contrasting
colours easier to see for any changes in status. See the end result in figure
7.7.
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Figure 7.7: Final result

This interface accomplishes its goals, considering what was learned in chap-
ter 7.1, and what has been discussed together with the rest of the team.
Here the operator has been in the centre of the development of the GUI,
and the GUI has been made so an operator can easily spot any errors or if
the system is operation outside set parameters. We also allow the operator
to decide whether they want dark or light mode, although this currently
has to be changed by making a change in a config. The result looks can be
seen in figure 7.8
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Figure 7.8: Final result: Dark mode

Other general design decisions have also been largely decided through infor-
mation learned in the review. This is points such as system status visibility,
use of known conventions, consistency, error prevention and others. While
a lot of what was reviewed is implemented, it is also important to remember
which parts are not implemented and keep those in mind. In the case of
this small-scale rig, most of the considerations not included are based on
length of operation. A good example as was mentioned in chapter 7.1.1, air
traffic controllers need tons of breaks during their shifts as keeping focus
is not really feasible. In this case however, each time the rig is run for op-
eration it will not be running for more than 20–30 minutes, meaning some
of what was learnt in chapter 7.1 is not necessary for this project, due to
other time-constraints.
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7.2.3 PyQt5

PyQt5 is the GUI framework that is used for the application. Its ease of
use in creating the kind of interface that was needed was one of the primary
reasons for choosing this Python library in the project.

QT Designer

QT Designer is a graphical tool to set up QT applications. It is used to
setup the layout and most of the display elements in the user interface. It
allows us to set up grids and list so that the interface scales automatically
to the size of the window. When the design process is completed, the result
gets transpiled into a Python class which our application will inherit from.

Custom Elements

When the integrated elements in QT are not sufficient for the application
we designed our own. These elements are created by inheriting from QT
elements that are similar enough to the end result that they will be easy
to work with. They are then extended with the required functionality or
design and added to the GUI.

CSS

When styling custom QT elements we use QT style sheets. These style
sheets are very similar to CSS [3]. This functionality is used for designing
the indicator LEDs.

7.1 shows how the colour of the indicator is updated if it is different from
the previous colour. The __generate_css method will update the style
sheet of the element according to the objects properties.

55



7.2 Designing and Implementing The GUI

� �
1 @property
2 def color(self):
3 return self._color
4

5 @color.setter
6 def color(self, value):
7 if self._color != value:
8 self._color = value
9 self.__generate_css()

10

11 def __generate_css(self):
12 self.setStyleSheet(
13 f"max-width: {self.size}px;\n"
14 f"max-height: {self.size}px;\n"
15 f"min-width: {self.size}px;\n"
16 f"min-height: {self.size}px;\n"
17 f"border-radius: {self.border_radius}px;\n"
18 f"border-style: solid;\n"
19 f"border-color: black;\n"
20 f"border-width: 2px;\n"
21 f"background-color: {self._color.value}\n"
22 )� �

Code Block 7.1: Indicator LED

7.2.4 Well Log Plots

The well log plots in the application is made using pyplot in the matplotlib
library for Python. When the values that will be plotted are transmitted
to the GUI, they are added to a field in an object of the PlotPath2d class
shown in 7.2

The class is used to store the x and y axis of the plot. When new values are
added to the NumPy arrays, they are automatically expanded if needed. If
expanded, the arrays double in size.

When a new point is added, the lines in the plot are updated using the
__update_plot_lines method in the plotter’s class. This is displayed
in code block 7.3. This method updates the individual plot lines, instead
of calling the plot function each time. This makes for a dramatic perfor-
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� �
1 class PlotPath2d:
2 def __init__(self, buffsize=2):
3 self.x = numpy.empty(buffsize)
4 self.x[:] = numpy.nan
5 self.y = numpy.empty(buffsize)
6 self.y[:] = numpy.nan
7 self.index = 0
8

9 def add_point(self,x,y):
10 self.x[self.index] = x
11 self.y[self.index] = y
12

13 self.index += 1
14

15 if self.index == len(self.x):
16 self.__expand_arrays()
17

18 def __expand_arrays(self):
19 old_size = len(self.x)
20 new_size = old_size * 2
21 self.x = numpy.resize(self.x, new_size)
22 self.y = numpy.resize(self.y, new_size)
23 self.x[old_size:] = numpy.nan
24 self.y[old_size:] = numpy.nan
25 logging.info(f"Expanded array to {new_size}

elements")� �
Code Block 7.2: PlotPath2d class

mance improvement, especially when the plot contains many points.� �
1 def __update_plot_lines(self):
2 for i, line in enumerate(self.line_list):
3 line.set_xdata(self.plot_paths[i].x)
4 line.set_ydata(self.plot_paths[i].y)
5 self.figure.canvas.update()
6 self.figure.canvas.flush_events()� �

Code Block 7.3: Update plot lines method
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3D Plot

Execution

The 3D plot of the drill path is plotted using using built-in functions from
the pyplot package in the matplotlib library for Python. The 3D
plotter object is instantiated inside the main window class, and the class
Plotter3D inherits GraphicsScene, making it behave like a Qt widget.
The plotted points are stored inside a PlotPath3d object, which is iden-
tical to PlotPath2d described in 7.2, only being extended to work with
three dimensions. The code for the 3D plotter class is shown in code block
7.4.� �

1 class Plotter3D(QGraphicsScene):
2 def __init__(self):
3 super().__init__()
4 self.figure = plt.figure()
5 self.ax = self.figure.add_subplot(111,

projection="3d")
6 self.ax.axes.set_xlim3d(-30, 30)
7 self.ax.axes.set_ylim3d(-30, 30)
8 self.ax.axes.set_zlim3d(-60, 0)
9 canvas = FigureCanvasQTAgg(self.figure)

10 self.proxy_widget = self.addWidget(canvas)
11 self.drill_path = PlotPath3d()
12 self.line, = self.ax.plot(self.drill_path.x,

self.drill_path.y, self.drill_path.z)
13

14 def __update_plot_line(self):
15 self.line.set_xdata(self.drill_path.x)
16 self.line.set_ydata(self.drill_path.y)
17 self.line.set_3d_properties(self.drill_path.z)
18 self.figure.canvas.update()
19 self.figure.canvas.flush_events()
20

21 def update_plot(self, x, y, z):
22 self.drill_path.add_point(x, y, z)
23 self.__update_plot_line()� �

Code Block 7.4: Code for the 3D plotter
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Testing

Since it is established that we will not be able to test the 3D plot using
real bit position data, we had to make up our own data for testing the 3D
visualisation. Since we have a start point and a point inside the block (drill
targets) that we need to drill towards, the simplest would be a straight line
path connecting the three points in question. However, this is not a suitable
realistic drill path for our drill bit. Therefore, we decided on creating a path
based on a minimum curvature path. This would not only be ideal for our
testing purposes, but is also a requirement for the competition, to have an
ideal path before we start drilling. This will be more thoroughly explained
in chapter 8 about drill path modelling.

Basis for model

We consider an idealistic version of the concrete block which is to be drilled
as a perfect cube with each edge of the cube measuring 60 cm. The start
point for drilling is in the centre of the top face of the cube, and will be
chosen as the origin (0, 0, 0) in accordance with Competition Guidelines.
Further, a target point is given. These are chosen randomly with deltas
given by constraints found in the Drillbotics Competition Guidelines.

The Guidelines specify that the maximum accumulated inclination angle
with the vertical should not exceed 30◦, and that the displacement from
the block’s centre vertical should not exceed 10 inches, or 25.4 centimetres.
Given these specifications, the domain of adequate target values can be
worked out as follows: To get x and y values, a set of polar coordinates
(r, θ) is chosen where r ∈ (0, 25.4) and θ ∈ (0, 2π), and convert to Cartesian
values. We can work out the minimum displacement in the z direction by
using the maximum values of r and θ,

|(∆z)min| = rmax · cot θmax = 25.4 · cot 30◦ ≈ 44.0.

We then choose a value z ∈ (−60,−44). The sign is negative because in the
plot, 0 on the coordinate system’s z axis corresponds to the the top face of
the cube (i.e. the origin). x and y are found using the formulae x = r cos θ
and y = r sin θ. Further descriptions of the model which is plotted will be
given in the subsequent chapter about drill path modelling.
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7.2.5 Runtime Efficiency and Optimisation

One of the problems that occurred during the development phase was that
the user interface crashed when the plots were updated too often. This was
caused by the way PyQt5 handles the events for updating the user interface.
A new event would be handled before the previous one had returned, and
this caused the plots to crash. The solution to this problem ended up being
to ignore the incoming data if the previous update of the GUI was yet to be
completed. This approach alone is quite inefficient since all of the data that
gets sent to the GUI process, but not displayed is wasted. The processing
that is needed to transfer the data is therefore wasted.

A solution to this problem is to use some form of flow control and the imple-
mentation in this program draws inspiration from how congestion control is
handled in TCP. The speed of the data transmission is increased for every
iteration until some of the traffic has to be dropped. The GUI process will
inform the acquisition system of this over a management queue. The acqui-
sition system will then drop the transmission speed by a percentage of the
current speed plus a fixed amount. The fixed amount is needed to ensure
the desired speed decrease even at very high speeds. If the transmission
speed is plotted over time, it would resemble a sawtooth wave, an example
of which is shown in figure 7.9.

Code block 7.5 shows how the flow control is implemented on the data acqui-
sition side of the program. The instance variable _interval refers to how
many sets of data is collected from the PLC before one of them is sent to the
GUI, while the run method decides whether new values should be trans-
mitted to the GUI. If a code 1 is received from GUI_management_queue
as shown in code block 7.6, this means that the GUI has dropped one of
the data objects that were transmitted, and _interval is increased by
calling the slow_down method. The speed will therefore decrease. For ev-
ery time a data object is put onto the display_queue, the _interval
is decreased and transmission speed is therefore increased. This is handled
in the aforementioned run method.

60



7.2 Designing and Implementing The GUI

� �
1 class FlowController:
2 def __init__(self, max_value=300, min_value=25):
3 self._max = max_value
4 self._min = min_value
5 self._n = 0
6 self._interval = math.ceil((max_value + min_value) /

2)
7

8 def run(self) -> bool:
9 if self._n >= self._interval - 1:

10 logging.debug(f"GUI interval: {self._interval}")
11 self._interval = int(self._interval * 0.95)
12 if self._interval > self._max:
13 self._interval = self._max
14 elif self._interval < self._min:
15 self._interval = self._min
16 self._n = 0
17 return True
18

19 self._n += 1
20 return False
21

22 def slow_down(self):
23 prev_interval = self._interval
24 self._interval = int(self._interval * 1.05) + 10
25 logging.info(f"GUI interval changed from

{prev_interval} to {self._interval}")� �
Code Block 7.5: Flow control
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� �
1 # Read from management queue for closing program and for

controlling update interval
2 if self.GUI_management_queue.qsize() > 0:
3 msg = self.GUI_management_queue.get()
4 if msg == -1:
5 break
6 if msg == 1:
7 self.GUI_flow_controller.slow_down()
8

9 if self.GUI_flow_controller.run():
10 # Update the GUI when the flow controller allows it
11 self.display_queue.put(self.drill_controller.gui_output())� �

Code Block 7.6: Use of flow control in the main loop

Figure 7.9: Example of sawtooth wave

The automatic speed adjustments mean that the software is able to be
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run on a wide range of hardware. It will slow down when run on a slower
machine or using a display with higher screen resolution, and will speed up
when run on fast hardware and a low screen resolution.
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Chapter 8

Drill Path Modelling

Being able to suggest a path for the drilling is a required part of the com-
petition. The standard way, and way that is recommended by the compe-
tition is the minimum curvature method. It is stated in the competition
guidelines that “minimum curvature calculated trajectory (to represent the
drilled wellbore position)” is a minimum requirement for the competition.
To best do this we figured representing the trajectory in 3D and overlying
the actual position and path on top of the minimum curved trajectory (best
path) would be a good way to do this. The minimum curvature method is
widely accepted as the industry standard for 3D directional surveys/esti-
mations. [14]

The following is directly from the Drillbotics Guidelines:

All teams are required to provide plan vs. actual plots containing the fol-
lowing minimum requirements:

• As-drilled trajectory and original planned trajectory shown on same
TVD vs. Vertical Section plot

– Vertical section direction to be determined by well center-to-
target bearing

• As-drilled trajectory and original planned trajectory shown on same
X/Y plot

– Grid north reference to block north
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– [0,0] at well center

Interpreting the above requirements, it can be concluded that all these
requirements can be satisfied by creating a 3-dimensional plot.

8.1 Theory

In the preliminary phase of the GUI design process, a path based on a
sine curve was sufficient for testing purposes. However, as described in the
previous subchapter, this is not representative of the actual path which
will be used for drilling. For drilling purposes, the basis for the path model
needs to be calculated according to the minimum curvature method.

8.1.1 Minimum Curvature Path

A sketch for a typical minimum curvature path is given in figure 8.1. The
starting point is the origin A(0, 0, 0), and the target point is B(x, y, z). The
given constraint is that B is no further than 10 inches from the centre z
axis, i.e. ∆xy =

√
x2 + y2 < 25.4. Further information on the selection of

the target point B(x, y, z) is given in chapter 7.2.4 about the basis for the
3D plot model.
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Figure 8.1: An illustration of the minimum curve path

To calculate the minimum curvature path, the radius of the circle on which
the arc lies must first be computed. Using the top right-angled triangle in
figure 8.1, the circle radius CR has a relationship given by

sin γ =
AB/2

CR
⇔ CR =

AB

2 sin γ

Using the other right-angled triangle, whose smallest cathetus is ∆xy and
with hypotenuse AB, the angle γ is worked out:

tan γ =
∆xy

|z|
⇔ γ = tan−1 ∆xy

|z|

Substituting this into the formula for CR, as well as using AB =
√
x2 + y2 + z2

and ∆xy =
√
x2 + y2, the following is found:

CR =
AB

2 sin
(
tan−1 ∆xy

|z|

) =

√
x2 + y2 + z2

2

√
x2+y2

|z|√√√√1+

(√
x2+y2

|z|

)2

=
1

2
√
x2 + y2

(
x2 + y2 + z2

)
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When the value CR is given, the circle’s midpoint can worked in relation
to the path’s starting point by first finding the angle α between A and B
in the xy-plane, and then multiplying by the radius:

α = atan2 (y, x)
circlex = Ax + CR cosα

circley = Ay + CR sinα

In order to make a paramterisation of the minimum curvature path, the
angle φ is varied along the path. This will be varied in the range [0, φmax].
The value φmax is calculated using trigonometry along with the displace-
ment in the xy-plane and z direction between the circle midpoint and the
path’s endpoint (B):

φmax = tan−1 |z|√
(circlex −Bx)2 + (circley −By)2

A parameterisation for t ∈ [0, 1] can now be given by

x(t) = circlex − CR cosα cos(φmaxt)

y(t) = circley − CR sinα cos(φmaxt)

z(t) = Az − CR sin(φmaxt)

A more general version of the minimum curvature path used in industry
is given in [6]. However, given our case where I1 = 0, I2 = 2γ and
A1 = A2 = atan2(y, x), confer figure 8.1, the formulae in [6] turn out to
be identical to the ones that have been derived out from scratch.

8.1.2 Random Walk

After having discussed discussed the 3D plot and path model with our
supervisor, it was decided to implement a random walk algorithm in order
to simulate real data coming from the rig. [16]

The idea behind a random walk algorithm is to introduce some uncertainty
in the ideal path that otherwise would be plotted. This would be similar
to a phenomenon known as tortuosity in real-life drilling, which is defined
as “the obvious deviation of the wellbore trajectory in drilling direction”.
In figure 8.2, an example is given as to how this deviation might look like,
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looking like a so-called dogleg. The random walk algorithm aims to recreate
this kind om randomness.

Figure 8.2: An example illustration of the randomness in the drill path caused
by tortuosity in the medium.

The random walk model aims to introduce deviations in the x and y values
of the model. This is done by finding some points evenly spaced in the z
direction which the path will go through. The points are chosen a random
angle from the path, while the radii are chosen from a range of predefined
allowed values. The reasoning behind this, is so that the points should
not lie too close to the path, while also not too far away. After the points
have been chosen randomly, interpolation is used to string them together.
The points only give deltas which are to be added to the path’s positional
arrays.

8.1.3 Safety Margin Surface

The safety margin surface is shaped like a curved cylinder around the ideal
minimum curvature drill path. This is so that it can be easily identified
when the drill path ends up outside of this predefined margin. The main
idea for this visualisation was to plot an opaque cylinder around the ideal
minimum curvature path. Given a Minimum Curvature Path parameteri-
sation, the points (x, y, z) points needed to plot the cylinder can be worked
out as described in this subchapter.

The general idea of the implementation is based vectors and vector rota-
tions. A vector perpendicular to the path is found and rotated all the way
around the path. Given lists Px, Py, Pz of points (x, y, z), they are shifted
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by one in order to find a list of tangential vectors Tx, Ty, Tz:

tangy,n = Py,n+1 − Py,n

tangy,n = Py,n+1 − Py,n

tangz,n = Pz,n+1 − Pz,n

Figure 8.3: An illustration of the perpendicular and tangent vector calculation.

When the resolution of the lists P is sufficiently high, it can be argued that
T is a good enough approximation for the derivative of the path function,
i.e. the true tangential vector. From figure 8.3, it can be seen that the
perpendicular vector will be found by multiplying the x and y values of the
tangential vector by the factor −tangz/tangxy, while the z value is simply
tangxy. Further, the list of vectors perpendicular to the path is found by
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using the following formulae:

perpx = − tangxtangz√
tang2x + tang2y

perpy = −
tangytangz√
tang2x + tang2y

perpz =
√

tang2x + tang2y

From equation 20 in Three-Dimensional Rotation Matrices [8], a general
rotation matrix for rotation an angle θ about a normal vector n̂ is given by

R(n̂, θ) = cos θ + n2
1(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2
2(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ) + n3 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2
3(1− cos θ)



This is used in order to rotate −−→perp in order to get a vector ~v rotated by
an angle θ:

~v = R(
−−→tang, θ) · −−→perp

These vectors, rotating theta a set number of points to cover the region
θ ∈ (0, 2π), along with the position vectors of the minimum curvature gives
the points that form the basis of the safety margin surface in the 3D plot.
An interpolation is used to cut down the resolution of the safety marigin
surface, as the surface doesn’t need to be as detailed as the minimum
curvature path itself. We then use a method in matplotlib to plot the
surface as a mesh of the (x, y, z) points, and this will be described in greater
detail in subchapter 8.2.3.

8.2 Python Implementation

This subchapter will describe how the mathematics found in subchapter
8.1 has been implemented into Python code. This will be done using code
snippets and screenshots from the GUI.
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8.2.1 Minimum Curvature Path

The minimum curvature path is implemented as its own class object, with
the result being the parametersation made up by the instance variables
self.par_x, self.par_y and self.par_z. These are NumPy arrays
of floats. The code for the minimum curvature path is given in code block
8.1.� �

1 class MinimumCurvaturePath:
2 def __init__(self, startpoint: tuple[float, ...],

endpoint: tuple[float, ...], resolution: int =
1000) -> None:

3 self.startpoint = startpoint
4 self.endpoint = endpoint
5 self.resolution = resolution
6 self.dx = self.endpoint[0] - self.startpoint[0]
7 self.dy = self.endpoint[1] - self.startpoint[1]
8 self.dz = self.endpoint[2] - self.startpoint[2]
9

10 circle_radius = 0.5 * (self.dx**2 + self.dy**2 +
self.dz**2) / numpy.sqrt(self.dx**2 + self.dy**2)

11 azimuth_angle = numpy.arctan2(self.dy, self.dx)
12 circle_x = circle_radius * numpy.cos(azimuth_angle)
13 circle_y = circle_radius * numpy.sin(azimuth_angle)
14 center = (circle_x + self.startpoint[0], circle_y +

self.startpoint[1], self.startpoint[2])
15 t_values = numpy.linspace(0, 1, self.resolution)
16 phi_max = numpy.arctan(numpy.abs(self.dz)/

numpy.sqrt((center[0]-self.endpoint[0])**2 +
(center[1]-self.endpoint[1])**2))

17 phi = phi_max * t_values
18

19 self.par_x = center[0] - circle_radius *
numpy.cos(azimuth_angle) * numpy.cos(phi)

20 self.par_y = center[1] - circle_radius *
numpy.sin(azimuth_angle) * numpy.cos(phi)

21 self.par_z = center[2] - circle_radius *
numpy.sin(phi)� �

Code Block 8.1: Python code for minimum curvature path

The drill controller will give the GUI front end one data set at a time, with
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each data set corresponding to one (x, y, z). As such, the class needs to be
adapted to be able to give one point at a time, and also keep track of where
it is along the path. This is done with an extra instance variable index
and a method get_next_point, as shown in code block 8.2.� �

1 class MinimumCurvaturePath:
2 def __init__(self, (...)) -> None:
3 (...)
4

5 self.index = 0
6

7 def get_next_point(self) -> tuple[float, ...]:
8 point = (self.par_x[self.index],

self.par_y[self.index], self.par_z[self.index])
9 self.index += 1

10 self.index %= self.resolution
11 return point� �

Code Block 8.2: Python code for the get next point functionality.

8.2.2 Random Walk

The random walk is implemented in Python as described in subchapter
8.1.2. As with the minimum curvature path, it is added as its own class
object, see code block 8.3. The __init__ method of the RandomWalk
class takes in a resolution, which is the length of the array of points that
generate_arrays method returns. This length should correspond with
the length of the path that the random walk is applied to. It also takes in
the number of points that the random walk path should go through. When
generating points, the number is subtracted by two, because the random
path should always begin and end at (0, 0) deviation in the x and y axes.

A range of radii is also specified, forming a band from which the random
point can be chosen. Using random angles, the points are chosen and
converted from polar to Cartesian coordinates. Lastly, the random points
are stringed together to match the resolution argument.

In order to add random walk capability to the minimum curvature path,
the __init__ method will be extended slightly, see code block 8.3. The
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� �
1 class RandomWalk:
2 def __init__(self, resolution: int, radius_range:

tuple[float, float], num_of_points: int) -> None:
3 (...)
4

5 def generate_arrays(self) -> tuple[numpy.ndarray,
numpy.ndarray]:

6 radii = numpy.random.uniform(*self.radius_range,
self.num_of_points - 2)

7 thetas = numpy.random.uniform(0, 2*numpy.pi,
self.num_of_points - 2)

8 x_points = numpy.r_[0, radii * numpy.cos(thetas), 0]
9 y_points = numpy.r_[0, radii * numpy.sin(thetas), 0]

10 x_interpolated = numpy.interp(numpy.linspace(1,
self.num_of_points, self.resolution),
numpy.linspace(1, self.num_of_points,
self.num_of_points), x_points)

11 y_interpolated = numpy.interp(numpy.linspace(1,
self.num_of_points, self.resolution),
numpy.linspace(1, self.num_of_points,
self.num_of_points), y_points)

12 return x_interpolated, y_interpolated
13

14 class MinimumCurvaturePath:
15 def __init__(self, (...), random_walk_radius_range:

tuple[float, float] = (0.3, 0.6),
random_walk_points: int = 50) -> None:

16 (...)
17

18 random_walk_x, random_walk_y =
RandomWalk(self.resolution,
random_walk_radius_range,
random_walk_points).arrays

19 self.par_x += random_walk_x
20 self.par_y += random_walk_y� �

Code Block 8.3: Python code for random walk

__init__ method of MinimumCurvaturePath is extended to also take
in arguments radius_range and num_of_points which it uses for
instantiating the RandomWalk object. The default parameters of r ∈
(0.3, 0.6) and n = 50 points work well with the scale that the application
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uses, but can be changed as required. For instance, using a random walk
radius range of (0, 0) will give a perfect minimum curvature path without
any randomness.

8.2.3 Safety Margin Surface

The safety margin surface used in the 3D plot is generated as specified
in subchapter 8.1.3. The Python code for this is given in the following
code snippets. The first code block 8.4 shows the __init__ method and
the arguments that it takes. it is based on a MinimumCurvaturePath,
which should use random_walk_radius_range=(0,0). It also takes
an argument margin, which specifies how far from the path the surface
should lie. The resolution can also be adjusted by passing a corresponding
argument. THETA_RESOLUTION is an internal constant value for the safety
margin surface class, and specifies how many angles around the path should
be used. This corresponds to the angle θ in the rotation matrix R(n̂, θ)
described in subchapter 8.1.3.� �

1 class SafetyMarginSurface:
2 def __init__(self, mcp: MinimumCurvaturePath, margin=1,

resolution=50) -> None:
3 THETA_RESOLUTION = 24
4 # shift all values by one and calculate tangent

vectors
5 dx = mcp.par_x[1:] - mcp.par_x[:-1]
6 dy = mcp.par_y[1:] - mcp.par_y[:-1]
7 dz = mcp.par_z[1:] - mcp.par_z[:-1]
8 dxy = numpy.sqrt(dx ** 2 + dy ** 2)
9

10 #calculate perpendicular vectors
11 perp_x = -dx * dz / dxy
12 perp_y = -dy * dz / dxy
13 perp_z = dxy� �

Code Block 8.4: Part 1 of the python code for the safety margin surface

With the tangential vectors calculated in code block 8.4, the perpendicular
vectors can be calculated as shown in code block. The perpendicular vec-
tors and tangent vectors are normalised so that they can be used in later
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calculations. We also initialise separate x, y and z matrices which will be
used to plot the surface.

Next, in code block 8.5, the calculation of all the points is done. This
is done by creating an appropriate rotation matrix for the point where
the path along the curve for every angle theta, and calculating the dot
product with a vector. After this is done, the points are added to the
respective matrix that was initialised earlier, see code block 8.6. The three
matrices are stored in the instance variable tuple self.to_plot which
will be given to the matplotlib’s surface plot function.� �

1 for k, theta in enumerate(numpy.linspace(-numpy.pi/2,
3*numpy.pi/2, THETA_RESOLUTION)):

2 for i in range(length):
3 n1, n2, n3 = tang_x[i], tang_y[i], tang_z[i]
4 p1, p2, p3 = perp_x[i], perp_y[i], perp_z[i]
5 rot_matrix = numpy.array((
6 ( numpy.cos(theta) + n1**2 * (1-numpy.cos(theta))

,
n1*n2*(1-numpy.cos(theta))-n3*numpy.sin(theta),
n1*n2*(1-numpy.cos(theta))+n2*numpy.sin(theta)
),

7 ( n1*n2*(1-numpy.cos(theta))+n3*numpy.sin(theta),
numpy.cos(theta) + n2**2 *
(1-numpy.cos(theta)) ,
n2*n3*(1-numpy.cos(theta))-n1*numpy.sin(theta)
),

8 ( n1*n3*(1-numpy.cos(theta))-n2*numpy.sin(theta),
n2*n3*(1-numpy.cos(theta))+n1*numpy.sin(theta),
numpy.cos(theta) + n3**2 *
(1-numpy.cos(theta)) ),

9 ))
10 r1, r2, r3 = rot_matrix.dot(numpy.array((p1, p2,

p3)))
11

12 # append to lists
13 (...)
14

15 # normalise and multiply by length ("margin" argument)
16 (...)� �

Code Block 8.5: Part 2 of the python code for the safety margin surface
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8.2 Python Implementation

� �
1 point_x = numpy.interp(numpy.linspace(1, length,

resolution), numpy.linspace(1, length, length),
rot_x + px)

2 point_y = numpy.interp(numpy.linspace(1, length,
resolution), numpy.linspace(1, length, length),
rot_y + py)

3 point_z = numpy.interp(numpy.linspace(1, length,
resolution), numpy.linspace(1, length, length),
rot_z + pz)

4

5 # add points to matrices x_mat, y_mat and z_mat
6 (...)
7

8 self.to_plot = x_mat, y_mat, z_mat� �
Code Block 8.6: Part 3, interpolation to get wanted number of points.

Lastly, to make the safety margin surface, the Plotter3D class is extended
with the method plot_safety_margin_surface(). This is shown in
code block 8.7.� �

1 class Plotter3D(QGraphicsScene):
2 (...)
3 def plot_safety_margin_surface(self, sms:

SafetyMarginSurface):
4 self.ax.plot_surface(*sms.to_plot, alpha=0.5)� �

Code Block 8.7: Part 4, adding the point matrices to the 3D plotter.
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Chapter 9

Conclusion & Future Work

When the University needed a computer science group to help with this
years Drillbotics competition, this was seen by our group as a brilliant
project to do our thesis on. With a complete architectural redesign it
meant we got to design things with our own standards and got to dictate
quality. While certainly interesting, it has also given us a lot of challenges
that have all been overcome. All the parts described in chapter 1 have all
been implemented to varying degrees. These parts include data acquisition
system, data management system, drill control system, graphical user inter-
face, a well-designed software architecture and a system for using industry
standard methods for drilling deciding paths. Most of the yet-to-be-added
features are all related to the unusually late testing of the rig, although
they are eventually going to be needed for this to be a complete product.

The first major section that was worked on was to complete a good design
for the software architecture of UiS’ Drillbotics drill rig. This was never
intended to just have implications for this project, but the intention was
from the very beginning to create everything we did so it would be scalable
and could be used in future editions of Drillbotics by UiS. Therefore a lot
of time was spent into creating good abstractions and class design so it
would be relatively straight forward for any future Drillbotics teams at this
university.

As was mentioned above, our priorities had to be re-aligned when we learned
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we had no accompanying bachelor group to handle the sections for au-
tomation and electronics-design, thus the data acquisition system had to
be started as a major priority by our group instead. Many of the other fea-
tures relied on us having data from the rig through this system, and thus
it had to be robust. Thanks to Drillbotics member Magnus Wersland the
development for the data acquisition system went seamlessly both on com-
puter and PLC side of things. He filled in most of the blanks and helped
us where we were inexperienced due to PLC programming being something
that was taught in the automation and electronics-design bachelor. The
system itself is done, but there are quite a few sensors that have yet to be
added due to the rig being unfinished. More about this in 9.1. This system
is responsible for both sending data between rig/PLC to the computer both
ways.

Another competition requirement and feature that is nice to have is the
data management system, or logger. Our database is a SQLite3 database.
SQLite3 was chosen as it was the ideal option for our specific use as it didn’t
require to be very data-intensive. The requirement for our system was to be
able to insert roughly 20 data sets per second, and the running time being
at maximum 30 minutes. With this configuration in mind we also stress-
tested the database to ensure we had comfortable margin between required
speed and top speed. As can be read in chapter 5.2, the implemented
logging system has potential to work at 15x faster than is required when
running for 12 hours straight, giving us comfortable margins. Our choice
of database depended on comfortable margins, so having margins as wide
as they are was very important.

The control system is deciding how inputs from the user are turned into
actions performed by the rig. It controls what is happening in the program
before the data is picked up by the data acquisition system for sending over
the CAN channels, essentially just making the messages ready to be sent
from the computer, via the PLC and to the equipment on the rig. The
system for this is finished, and we have manual control over the equipment
that has been added. However, as the rig is planned to be finished in
the weeks following the deadline, there are still pieces of the rig missing
and therefore there is still equipment that is yet to be added. Using good
abstractions has made it easy to add control over new pieces as they are
added. Automatic drilling is yet to be added, more about this in chapter
9.1.
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The most time-intensive section of our project was the literature review-
and subsequent implementation of the GUI. A primary reason for us spend-
ing much time with the GUI, was the organiser implementing human ma-
chine interface (HMI) as another central judging criterion that we wanted
to do well. It was recommended that we perform a literature review prior
to creating the GUI such that we knew which principles were important
when designing our system, especially when keeping HMI in mind. We
reviewed material provided by the Drillbotics hosts, formed UiS interfaces,
along with many separate sources to get some baseline ideas that could
be further developed on. After the review was finished and we had gotten
some conclusions from it we started the development of the GUI. The de-
sign process of the GUI, from first draft to implementation can be seen in
chapter 7.2.2. The final result of the GUI is satisfactory when comparing
to our goals, however there are more features we would like to add to it
as soon as the rig has been tested, and we are receiving real data. The
reason we need real data is because we’d need to be able to set thresholds
to certain sensor output such that if these thresholds were exceeded it’d
give alarms. Read more about our proposed future work in chapter 9.1.1.

Last major feature we worked on was related to being able to estimate what
the best possible path would be from any given position given 2 points. The
major idea here is to put the assembly on the block, set coordinates to (0,
0, 0) and from there getting to any given (x, y, z). The industry standard
method, and the method we use, is called minimum curvature path, which
is just essentially the arc of a circle to have as little curving as possible. In
addition to adding minimum curvature path, with some random walk for
simulation purposes, we also give the path a certain safety margin around
the entire curved path, both visually and in the program, so it can warn
the operator if it steps outside the pre-defined boundaries.

When we learned early on that one of the intended groups for the project
could not be assigned, i.e. the automation and electronics-design group, our
priorities were swiftly altered such that a larger focus could be on critical
components, as opposed to features that are not critical for the system to
work. While tough, this reorganisation reflects what happens every day
in the industry, both on the computer science side, but also in most fields.
Attempting to have good project management has helped a ton with getting
decent results where we needed them.
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9.1 Future Work

As has been outlined in this chapter, and that we’ll look at in chapter 9.1,
there are still features to be added. Looking at the competition guidelines
we’ve also been able to complete the requirements which were relevant
to this project. See chapter 9.1 for more information into what features
should- and can be added in the future.

9.1 Future Work

A project like this one is the type of project where features can be added
and the code improved almost indefinitely. However, it is clear what the
rig could use the most out of the things that are not implemented. As was
mentioned in chapter 1.1, much of the physical testing has been planned for
the weeks following the thesis deadline, after this eventual physical testing
there are a few things that take priority.

9.1.1 GUI

The highest priority would be to adjoin the yet-to-be-added sensor-data into
the GUI as soon as they are in place physically. Several of the displayed
values are currently not directly tied into the drill rig itself, although the
architecture is in place to allow then to be swiftly added as soon as they’re
in place. For the data coming into the GUI we’d also like to add thresholds
so we can define safe operating ranges and have the numbers, or background
of the numbers change colours representing certain thresholds.

There are also some lower priority features for the GUI that were consid-
ered, and could be future work. The first of which is to add a more proper
design to the manual steering page. It is strictly not necessary for the com-
petition, nor for normal use (as automatic control is the de-facto standard),
but would be a good addition. Another feature that was discussed was to
have a drilling finished screen after we stopped drilling. This screen would
contain information for actual vs planned drill path and highlighting how
far off it was, average values for ROP, WOB, Torque and Pump Pressure,
display total time, final coordinate and lastly a button to export the logs
for the session.
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Eventually the GUI will also need to have a field where the operator can
enter in the target (x, y, z) coordinate we want to hit with the drill, and
redraw the canvas to include the proposed path to it.

9.1.2 Downhole Sensor

The data from the downhole sensor needs to be converted to a format that is
easy to use (could be a direction vector) for further processing and plotting.

9.1.3 Automatic Steering

Automatic steering is one of the features missing that has the highest prior-
ity to be implemented. However automatic steering can’t be implemented
before all of the control system is made, and all the components are added
to the rig physically. As soon as this is done, to implement automatic con-
trol you’d have to make an algorithm to control each of the states of the
rig.

9.1.4 Estimation of Bit Position

After automatic drilling has been implemented and testing can start, im-
plementing estimation of bit position would be next on the list of things
to prioritise. This estimation has to be actively calculated based on the
vectors mentioned in 9.1.2.

9.1.5 Alarm Management and Fault Prevention

Our alarm management is already functional and alerts properly if certain
thresholds are exceeded in the form of typical alarm colours. However
we can improve upon the current system by having more describing text
alarms, e.g. “pump pressure at critical value” and similar so it becomes
marginally easier for the operator to know immediately what error has
occurred. This could also be taken a step further where you could detect
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and inform if certain errors occur, such as “stuck pipe” and “water leakage”
are examples of alerts that could be derived just with our data, if we have
the alarms trigger if certain sets of alarms exceed the thresholds. Also
implementing an alarm if the drill path escapes the safety margins given
would be preferable.

In the future there could also be time put into improving on these aspects
by using machine learning to help with both fault detection and trend
prediction.

82



Bibliography

[1] Martin Anderson. The Ironies of Automation. 1983. url: https:
//humanfactors101.com/2020/05/24/the-ironies-of-
automation/ (visited on 05/11/2022).

[2] Cameron. Digital Drilling Control System. 2014. url: https://
www.slb.com/-/media/files/cam-drlg-re/brochure/
digital-drilling-control-system-br.ashx (visited on
05/11/2022).

[3] The QT Company. Qt Style Sheets. url: https://doc.qt.io/
qt-5/stylesheet.html (visited on 03/31/2022).

[4] Drillbotics. Drillbotics: Autonomous Drilling with a Miniature Drilling
Rig. 2022. url: https://drillbotics.com/ (visited on 02/02/2022).

[5] Drillbotics. Drillboticső Guidelines Group B. 2022. url: https://
drillbotics.com/wp-content/uploads/simple-file-
list/Guidelines/Guidelines-2022/2022-Drillbotics-
Guidelines-Rev-2-Group-B.pdf (visited on 03/07/2022).

[6] DrillingFormulas.com. Minimum Curvature Method. 2010. url: https:
//www.drillingformulas.com/minimum-curvature-method/
(visited on 05/01/2022).

[7] Python Software Foundation. Private Variables. 2021. url: https:
//docs.python.org/3/tutorial/classes.html#private-
variables (visited on 03/31/2022).

[8] Howard Haber. Three-Dimensional Rotation Matrices. 2012. url:
http://scipp.ucsc.edu/~haber/ph216/rotation_12.
pdf (visited on 05/01/2022).

83

https://humanfactors101.com/2020/05/24/the-ironies-of-automation/
https://humanfactors101.com/2020/05/24/the-ironies-of-automation/
https://humanfactors101.com/2020/05/24/the-ironies-of-automation/
https://www.slb.com/-/media/files/cam-drlg-re/brochure/digital-drilling-control-system-br.ashx
https://www.slb.com/-/media/files/cam-drlg-re/brochure/digital-drilling-control-system-br.ashx
https://www.slb.com/-/media/files/cam-drlg-re/brochure/digital-drilling-control-system-br.ashx
https://doc.qt.io/qt-5/stylesheet.html
https://doc.qt.io/qt-5/stylesheet.html
https://drillbotics.com/
https://drillbotics.com/wp-content/uploads/simple-file-list/Guidelines/Guidelines-2022/2022-Drillbotics-Guidelines-Rev-2-Group-B.pdf
https://drillbotics.com/wp-content/uploads/simple-file-list/Guidelines/Guidelines-2022/2022-Drillbotics-Guidelines-Rev-2-Group-B.pdf
https://drillbotics.com/wp-content/uploads/simple-file-list/Guidelines/Guidelines-2022/2022-Drillbotics-Guidelines-Rev-2-Group-B.pdf
https://drillbotics.com/wp-content/uploads/simple-file-list/Guidelines/Guidelines-2022/2022-Drillbotics-Guidelines-Rev-2-Group-B.pdf
https://www.drillingformulas.com/minimum-curvature-method/
https://www.drillingformulas.com/minimum-curvature-method/
https://docs.python.org/3/tutorial/classes.html#private-variables
https://docs.python.org/3/tutorial/classes.html#private-variables
https://docs.python.org/3/tutorial/classes.html#private-variables
http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf
http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf


BIBLIOGRAPHY

[9] Health and Safety Executive. Human factors: Alarm management.
url: https://www.hse.gov.uk/humanfactors/topics/
alarm-management.htm (visited on 03/29/2022).

[10] IEA/ILO. Principles and Guidelines for Human Factors/Ergonomics
(HF/E) Design and Management of Work Systems. May 1, 2020.
url: https://www.sintef.no/globalassets/project/
hfc/documents/principles-and-guidelines_may2020-
1-1_ilo_iea.pdf (visited on 05/14/2022).

[11] John D. Lee et al. Designing for People: An introduction to human
factors engineering. 2017. url: https://www.researchgate.
net/publication/319402797_Designing_for_People_
An_introduction_to_human_factors_engineering (visited
on 03/22/2022).

[12] Marcin Nazaruk, Peter Gibson, and Fred Florence. Drillbotics Compe-
tition Adds Human Factors Requirements. Nov. 9, 2021. url: https:
//jpt.spe.org/drillbotics-competition-adds-human-
factors-requirements (visited on 03/07/2022).

[13] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. 1994.
url: https://www.nngroup.com/articles/ten-usability-
heuristics/ (visited on 04/04/2022).

[14] S. J. Sawaryn and J. L. Thorogood. A Compendium of Directional
Calculations Based on the Minimum Curvature Method. Mar. 15,
2005. url: https://onepetro.org/DC/article/20/01/24/
112554/A-Compendium-of-Directional-Calculations-
Based-on (visited on 04/27/2022).

[15] Sintef. Automation and autonomous systems: Human-centred design
in drilling and well. Dec. 15, 2020. url: https://www.ptil.no/
contentassets/72cdb2badf19412da21fc318696b14a6/2020_
automatisering_og_autonome_systemermenneskesentrert_
design-eng-2.pdf (visited on 05/14/2022).

[16] Wikipedia contributors. Random walk — Wikipedia, The Free Ency-
clopedia. Mar. 1, 2022. url: https://en.wikipedia.org/w/
index.php?title=Random_walk&oldid=1074697533 (visited
on 05/14/2022).

84

https://www.hse.gov.uk/humanfactors/topics/alarm-management.htm
https://www.hse.gov.uk/humanfactors/topics/alarm-management.htm
https://www.sintef.no/globalassets/project/hfc/documents/principles-and-guidelines_may2020-1-1_ilo_iea.pdf
https://www.sintef.no/globalassets/project/hfc/documents/principles-and-guidelines_may2020-1-1_ilo_iea.pdf
https://www.sintef.no/globalassets/project/hfc/documents/principles-and-guidelines_may2020-1-1_ilo_iea.pdf
https://www.researchgate.net/publication/319402797_Designing_for_People_An_introduction_to_human_factors_engineering
https://www.researchgate.net/publication/319402797_Designing_for_People_An_introduction_to_human_factors_engineering
https://www.researchgate.net/publication/319402797_Designing_for_People_An_introduction_to_human_factors_engineering
https://jpt.spe.org/drillbotics-competition-adds-human-factors-requirements
https://jpt.spe.org/drillbotics-competition-adds-human-factors-requirements
https://jpt.spe.org/drillbotics-competition-adds-human-factors-requirements
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://onepetro.org/DC/article/20/01/24/112554/A-Compendium-of-Directional-Calculations-Based-on
https://onepetro.org/DC/article/20/01/24/112554/A-Compendium-of-Directional-Calculations-Based-on
https://onepetro.org/DC/article/20/01/24/112554/A-Compendium-of-Directional-Calculations-Based-on
https://www.ptil.no/contentassets/72cdb2badf19412da21fc318696b14a6/2020_automatisering_og_autonome_systemermenneskesentrert_design-eng-2.pdf
https://www.ptil.no/contentassets/72cdb2badf19412da21fc318696b14a6/2020_automatisering_og_autonome_systemermenneskesentrert_design-eng-2.pdf
https://www.ptil.no/contentassets/72cdb2badf19412da21fc318696b14a6/2020_automatisering_og_autonome_systemermenneskesentrert_design-eng-2.pdf
https://www.ptil.no/contentassets/72cdb2badf19412da21fc318696b14a6/2020_automatisering_og_autonome_systemermenneskesentrert_design-eng-2.pdf
https://en.wikipedia.org/w/index.php?title=Random_walk&oldid=1074697533
https://en.wikipedia.org/w/index.php?title=Random_walk&oldid=1074697533


BIBLIOGRAPHY

[17] Joost de Winter and Peter A. Hancock. Reflections on the 1951
Fitts List: Do Humans Believe Now that Machines Surpass them?
2015. url: https://www.researchgate.net/publication/
281587449_Reflections_on_the_1951_Fitts_List_Do_
Humans_Believe_Now_that_Machines_Surpass_them (vis-
ited on 03/10/2022).

85

https://www.researchgate.net/publication/281587449_Reflections_on_the_1951_Fitts_List_Do_Humans_Believe_Now_that_Machines_Surpass_them
https://www.researchgate.net/publication/281587449_Reflections_on_the_1951_Fitts_List_Do_Humans_Believe_Now_that_Machines_Surpass_them
https://www.researchgate.net/publication/281587449_Reflections_on_the_1951_Fitts_List_Do_Humans_Believe_Now_that_Machines_Surpass_them


Appendix A

Source Code

The source code of our project is published as a GitHub release, and can be
found by following this URL: https://github.com/Drillbotics-UiS/
control-system-2022/tree/v1.0
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