
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/ Specialization:
Spring semester, 2022

Open / Restricted access

Writer:
…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS): 20

Key words:

+

 Stavanger, 15.05.2022

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Pre-Study of Deep Learning Based Automatic Incident Detection in
Road Tunnels using Video Surveillance Cameras

Naeem Khademi

Aleksander Vedvik

deep learning, deep neural networks,
convolutional neural networks,
automatic incident detection, road
tunnels, object detection, object
tracking, image enhancement,
CCTV cameras

Computer Science - Bachelor's degree
programme in computer science

 enclosure:

 Pages: ……………59 ……

Date/year

 …………40

Aleks
Cross-Out

1

Abstract

Vehicular incidents in road tunnels can have severe consequences. Automatic
incident detection (AID) systems can help reduce the severity and ensure a
quick response from road authorities. Hence AID is a highly requested, but
also a difficult task.

The focus of this thesis has been to provide recommendations and reduce
false alarms related to AID systems using video surveillance cameras and
deep neural networks. These systems mainly comprise three steps: object
detection, object tracking, and incident evaluation. Hence, several state-
of-the-art object detection algorithms have been evaluated, together with
a state-of-the-art and a simple object tracking algorithm. Lastly, a simple
incident evaluation algorithm was employed to test the whole AID pipeline.

Due to the complexity of AID systems, only the incident classes ”stopped
vehicle”, ”pedestrian” and ”wrong-way drivers” were evaluated. There are
not many publicly available annotated datasets containing incidents, and
thus videos obtained from the internet have been annotated and used in
testing.

Lastly, several image enhancement algorithms were tested and their utility
assessed. Enhancing the images before the object detection step can help
combat some of the challenges related to automatic incident detection in
road tunnels.

Contents

1 Introduction 4
1.1 Background . 4
1.2 Automatic Incident Detection (AID) 4

1.2.1 Comparative . 5
1.2.2 Statistical . 5
1.2.3 Traffic-model-based . 6
1.2.4 Artificial intelligence based 6
1.2.5 Mixed models . 7

1.3 Challenges of AID in Road Tunnels 8
1.4 Objectives . 8

2 Related work 10

3 Theory 13
3.1 Image enhancement methods 13

3.1.1 Gray transformation 13
3.1.2 Histogram equalization 14
3.1.3 Retinex . 14

3.2 Artificial Neural Networks . 15
3.3 Convolutional Neural Networks 16
3.4 Transfer learning . 19
3.5 Object detection . 20

3.5.1 Faster RCNN . 20
3.5.2 Single Shot Detector (SSD) 22
3.5.3 EfficientDet . 22
3.5.4 YOLOv5 . 23

3.6 Object tracking . 23
3.6.1 SORT . 24
3.6.2 Deep SORT . 25

2

CONTENTS 3

4 Approach 27
4.1 Tools . 27
4.2 Limitations and simplifications 28

4.2.1 Datasets . 28
4.2.2 GPU resources . 28
4.2.3 Code availability . 29

4.3 Datasets . 29
4.4 Preparation of data . 30
4.5 Image enhancement . 31
4.6 Object Detection . 31

4.6.1 TensorFlowAPI . 31
4.6.2 YOLOv5 . 34

4.7 Tracking . 34
4.7.1 Simple tracking . 34
4.7.2 Deep Sort . 35

4.8 Incident evaluation . 35
4.9 Performance evaluation . 36

5 Discussion 40
5.1 Image Enhancement . 40
5.2 Detection . 44
5.3 Tracking . 47
5.4 Incident evaluation . 48
5.5 Performance . 49
5.6 Model- and Analytical Improvements 50
5.7 Further work . 51

6 Conclusion 52

References 54

A Github repository 63

B Code excerpts 64

Chapter 1

Introduction

1.1 Background

Norwegian road authorities set a 0-goal regarding incidents in road tunnels
in 2017 [1]. Incidents in road tunnels can have severe consequences due to
confined spaces and thus lead to larger accidents. Hence, to achieve the 0-
goal, it is important to have robust and high-level technology systems in the
tunnels [2].

According to ”Tunnelsikkerhetforskriften” §8 appendix 1, tunnels of length
3000m or longer with more than 2000 vehicles per lane may install a control
center. All tunnels with a control center may also be equipped with CCTVs
and an automatic incident detection (AID) system [3].

A detected incident from the AID system is sent to operators at the
road authorities. Camera operators are given the responsibility to monitor
several tunnels containing many cameras. Hence, a well-performing AID
system is paramount to ensure effective monitoring and a quick response
when incidents occur. [4, p. 5]

1.2 Automatic Incident Detection (AID)

Automatic incident detection (AID) systems are systems that incur alarms
and notify camera operators when a traffic incident has occurred. Many
automatic incident detection systems use traffic data, such as flow, conges-
tion, vehicle speed, etc, to determine if there has been an incident. These
traffic parameters can be obtained by using inductive loops, radars, CCTV,
ultrasound, Bluetooth, etc.

A well-performing AID system should be able to detect most of the in-
cidents that occur in road tunnels. Incidents in road tunnels can mainly be

4

CHAPTER 1. INTRODUCTION 5

divided into these classes:

• Stopped vehicles

• Pedestrians

• Queue

• Vehicles moving in a wrong direction

• Animals

• Stationary objects

• Smoke or fire

Furthermore, AID systems are generally divided into five categories: com-
parative, statistical, traffic-model-based, artificial intelligence-based, and mixed
models. [5, p. 1]

1.2.1 Comparative

Comparative incident detection algorithms use several thresholds based on
traffic occupancy to determine if there is an incident. [6, p. 1] Algorithms in
this category often use the data from an upstream and a downstream loop
detector. Popular algorithms in this category are the California algorithms
and filtering algorithms. The California Algorithm uses three tests on the
measured occupancy from two detectors to determine if there is an incident.
[7, p. 10] An increase in upstream occupancy and a decrease in downstream
occupancy will often signify that an incident has occurred. When these values
exceed predetermined thresholds an incident is declared. [8, p. 1-2]

1.2.2 Statistical

Algorithms in this category perform short-term predictions of traffic vari-
ables, such as volume, speed, occupancy, etc. The implementation can be
divided into two steps, where it first predicts values of traffic-flow parame-
ters based on historical data and then compares the predicted values with the
current data. [8, p. 1-2] An incident is identified if the observed values devi-
ate enough from the predicted values. The standard normal deviate model is
one of the first algorithms in this category. Based on the mean and standard
deviation of the input data, the standard normal deviate algorithm calcu-
lates standardized values for the traffic. When traffic values deviate more

CHAPTER 1. INTRODUCTION 6

than a certain threshold an incident alarm is declared. [5, p. 1] Other major
algorithms in this category include time-series and filtering algorithms. [8,
p. 1-2]

Standard Normal Deviate Algorithm

The Standard Normal Deviate (SND) Algorithm has proven to be effective
in AID systems, due to it having good transferability and not being too
difficult to calibrate. The algorithm works by indicating a traffic incident if
there is a sudden change in a particular traffic parameter. This particular
traffic parameter, e.g. traffic occupancy, is given an SND value, and a traffic
incident is identified when this value exceeds a predetermined threshold. The
method comprises two parts: First, a time interval with preliminary detected
incidents, and second, a time interval as a persistence test to confirm the
detected incidents. [9, p. 841]

Newer algorithms have been built upon the original SND algorithm, such
as the one used in [9]. This new algorithm has added two extensions to
the previous SND algorithm. The first extension focuses on improving the
reliability of detection results by adopting the weighting method. Traffic pa-
rameter values vary in different time intervals because they are derived at
different data points, which in turn makes the original SND algorithm inac-
curate and thus produces false alarms. The second extension addresses this
problem by restricting the variation of input data within sampling periods.
[9, p. 841-842]

1.2.3 Traffic-model-based

Traffic-model-based algorithms model the traffic flow by using the relation-
ship between volume and occupancy to classify the upstream and downstream
traffic measures into traffic states. (e.g. uncongested, congested, and inci-
dent). [8, p. 2], [6, p. 1]. The McMaster Algorithm is in this category.

It is difficult to describe traffic flow due to it being nonlinear, stochastic,
time-variant, and a complicated dynamic system. Hence it is not common
to use model-based detection algorithms to detect incidents. [8, p. 2]

1.2.4 Artificial intelligence based

Artificial intelligence-based algorithms use historic traffic data of normal and
incident conditions to classify traffic patterns. Video-based incident detec-
tion systems using artificial intelligence have become increasingly popular in
recent years [6, p. 1].

CHAPTER 1. INTRODUCTION 7

Fuzzy Algorithms

Fuzzy algorithms are based on fuzzy logic, fuzzy boundaries, and the change
of occupancy or speed-density of two adjacent detector stations. These al-
gorithms are effective when traffic data is difficult to collect or when there is
not enough traffic data. This is because they have high robustness and can
overcome the boundary condition problem that conventional threshold-based
methods suffer from. [8, p. 2]

Neural-Network Algorithms

Neural network algorithms are trained on large datasets to recognize patterns
in the traffic flow and identify incident or incident-free states. These algo-
rithms are easier to use and are better suited for real-time implementation
compared to model-based detection algorithms. However, there are a few
drawbacks [8, p. 2]:

• Performance: The rate of convergence can be slow.

• Black-box approach: It could be difficult to understand the meanings
of the neural network operations.

• Large datasets: Neural networks require large datasets that are wide
enough to accurately identify incidents.

Image-Based Processing Algorithms

Algorithms using computer vision and image-based technology to detect in-
cidents based on information of traffic parameters from video footage are
categorized into image-based processing algorithms. Many tunnels are al-
ready equipped with video traffic surveillance, hence making this approach
relatively cost-effective and available. Generally, these algorithms have a
high detection rate, low false alarm rate, and a short time to detection. [8,
p. 2]

1.2.5 Mixed models

Mixed models algorithms combine different types of methods. A popular
algorithm in this category is the Minnesota algorithm, which is a combination
of statistical and comparative algorithms. [5, p. 1]

CHAPTER 1. INTRODUCTION 8

1.3 Challenges of AID in Road Tunnels

There are several challenges related to AID systems in tunnels. Lighting
conditions in the tunnel can greatly affect the detection accuracy and false
alarm rate. Also, poor lighting conditions can introduce shadows and noise in
images, due to ISO compensation, which can be falsely identified as vehicles
or pedestrians. Furthermore, the technical specifications, such as resolution,
frame rate, and ISO, and the physical conditions of the cameras can also
have a great effect on the accuracy of an AID system. Dirty camera lenses,
low-resolution images, and low frame rates all contribute to decreasing the
detection accuracy. [4, p. 8-9]

Many AID systems are dependent on a manual configuration in order
to function properly. Defining upstream and downstream directions and
detection zones can be a time expensive, and therefore costly, job. Queues
and rush traffic are known to produce many false alarms in a short amount
of time, and thus filtering techniques have been used in order to reduce the
false alarms. However, this also decreases the incident detection accuracy.
This also makes detecting stopped vehicles in queues a challenge. [4, p. 11]

Another challenge related to AID systems is the weather conditions, and
then especially near the entrance and exit of the tunnels. Weather conditions
such as rain and snow can introduce false detections and alarms related to
glare, fog, and water on the walls of the tunnel. [10]

1.4 Objectives

Automatic incident detection systems have been consistently developed and
machine learning and computer vision have proven their success in auto-
matic incident detection tasks until recently. Much of the research on AID
systems has been focused on analyzing traffic parameters extracted from e.g.
inductive loops, thus making vision-based AID systems not fully explored
and utilized. Also, a lot of the research has been focused on highways and
intersections, rather than road tunnels.

Vision-based detection of road accidents using traffic surveillance cameras
is a highly desirable, but challenging task [11]. The computer-vision and
neural network-based AID systems currently in use mainly comprise three
steps: object detection, object tracking, and then incident evaluation. These
systems are generally good at detecting incidents, but the main problem
is the high rate of false alarms. This study will therefore be focused on
improving the systems by providing recommendations on how to reduce false
alarms, and increase detection and performance. Several image enhancement

CHAPTER 1. INTRODUCTION 9

methods and object detection algorithms together with a state-of-the-art
object tracking algorithm will be analyzed, where pros and cons will be stated
and their utility assessed.

Chapter 2

Related work

There are many different approaches and methods for automatic incident
detection systems. Data needed for AID systems are usually collected from
static sensors, dynamic sensors, and traffic cameras. Static sensors mainly
include inductive loops, while dynamic sensors are usually installed on probe
vehicles, which in return can provide a continuous stream of measurements
of the streets they pass by. [12, p. 1-2] The most common incident detection
algorithms have primarily been developed to use data from inductive loops
[5, p. 1]. Furthermore, artificial neural networks have proven to yield good
performance and result in the field of incident detection. Newer and better
methods are constantly being tested and published.

Automatic incident detection systems can also be treated as an anomaly
detection problem. Using video-surveillance cameras for anomaly detection,
the different approaches can be categorized into six categories: Model-based,
proximity-based, classification-based, prediction-based, reconstruction-based,
and other approaches [13, p. 5]. Gaussian mixture models, regression models,
Bayesian networks, and deep neural networks are classified as model-based
approaches [13, p. 4].

In [5] they are using link travel speed data collected from the Korean
traffic information system, which is then fed to a fully connected neural
network to determine if there has been an accident. The authors of the paper
determined that an incident will likely create congestion in the upstream
station and reduce flow in the downstream station, leading to a high-velocity
difference between the two stations. They achieved good results on their new
method compared to the popular California 7 algorithm, and the method is
also capable of providing real-time crash warnings to the operators [5, p. 5].

The method in [12] is based on an algorithm comprising a time-series anal-
ysis (TSA) of the traffic data collected from two adjacent detectors, where
features describing the instance are generated and fed to a machine-learning

10

CHAPTER 2. RELATED WORK 11

classifier [12, p. 2]. The algorithm is made up of three parts: data preprocess-
ing, normal traffic forecasting, and incident classification. The preprocessing
part filters out noise and fills out missing data, TSA is used in the traffic
forecasting part, and a support vector machine model with a radial basis
function is used in the incident classification stage. [12, p. 4] They achieved
better mean time to detection and detection rates with similar false alarm
rates as the Minnesota and CODE algorithms. [12, p. 9]

The authors of [14] proposed a vision-based framework for detecting vari-
ous crash types in a mixed traffic flow environment considering low-visibility
conditions. First, they used a Retinex image enhancer algorithm to im-
prove the images, and then fed them to the object detection algorithm.
YOLOv3 with Darknet-53 as the feature extractor was used for object detec-
tion. Lastly, a decision tree was used to determine if there was an incident
based on the features obtained from the object detection stage. The dataset
used was CCTV videos from online which the authors collected and anno-
tated themselves. They achieved a detection rate of 92.5% and a false alarm
rate of 7.5% with relatively low computational requirements [14].

A CCTV-based method using Yolov3 and an updated linear quadratic
equation was used to detect and track vehicles in [15]. The authors created
a unique ”entry-exit” method to identify wrong-way driving vehicles, which
performed well under different lighting conditions. The method works by
defining entry and exit lines in the video frame. They achieved 91.98%
accuracy on their self-collected dataset, while also working in real-time at
about 30 frames per second. [15]

Nvidia’s DeepStream model TrafficCamNet and YOLOv3 with SORT was
used to detect wrong-way drivers in [16]. The system developed in the paper
is also able to self-calibrate, meaning it can identify different bands on a
roadway and recognize the behavior of drivers in each band. This was done
by dividing each video frame into a 50 x 50 px grid and fitting a Gaussian
mixture model (GMM) to the location of each grid cell and the velocity of the
vehicles that had passed through that cell [16, p. 5]. The GMM could then
attribute a label to each cell showing which side of the road the cell belonged.
Afterward, a trained support vector machine was used to predict which side
of the road a particular cell belonged, and thus filter out the noise produced
from the GMM [16, p. 6]. The DeepStream model had good performance
in detecting and tracking vehicles while also having low inference cost. The
proposed method is highly scalable due to the self-calibration and low cost,
but it suffers from a weak performance in different weather conditions and
low-light conditions [16, p. 12].

By using a semi-supervised algorithm together with object detection and
tracking, the authors of [17] aimed to detect incidents by classifying the

CHAPTER 2. RELATED WORK 12

trajectories of the vehicles. They used Yolov3 and SORT for the object
detection and tracking part, and Contrastive Pessimistic Likelihood Esti-
mation (CLPE) based on Maximum Likelihood Estimation for the semi-
supervised trajectory classification. [17, p. 1841] The method was able to
outperform traditional semi-supervised techniques, such as Self Learning and
Label Spreading, and also its supervised counterpart by a significant margin.
[17, p. 1844]

The method used in [18] is based on an adaptive boosting classifier trained
to detect outliers in traffic data, and a support vector machine (SVM) based
method to identify the categories of the outliers. Based on their findings,
SVMs can generate better AID performance than neural networks and are
hence used in the proposed method. The method uses data acquired from
traffic surveillance systems. Spatio-temporal signals are extracted from the
video footage and smoothed with a local averaging filter to decrease training
complexity. The adaptive boosting SVM then detects outliers from the ST
signals. The proposed method achieves high classification accuracy, and it is
also expected that slight traffic jams would be discerned with higher accuracy.
[18]

In conclusion, there have been advancements in the deep learning and
computer-vision-based approaches for AID systems. The YOLOv3 algorithm
is popular and yields relatively good results, with Nvidia’s DeepStream model
TraffiCamNet as a good alternative. All methods have in common that they
perform worse in terms of accuracy and false alarm rate when there are low-
light or different weather conditions. Different machine learning methods
have been utilized in the literature to determine incidents, based on both
videos and extracted traffic parameters from road detectors. Some of these
methods are only concerned with a few incident classes, while others with all
incidents. Similarly, I will also only look into a few incident classes, but I will
explore and compare popular image enhancement methods, object detection
methods, and object tracking methods, and thus provide recommendations
on how to improve detection and reduce false alarms.

Chapter 3

Theory

3.1 Image enhancement methods

3.1.1 Gray transformation

A gray transformation is an image enhancement algorithm where the gray
values of single pixels are transformed into other gray values by using a
mathematical function. This is usually called a mapping-based approach,
and it enhances the image by modifying the distribution and dynamic range
of the gray values of the pixels. [19, p. 3]

Gray transformations are generally divided into two groups: linear trans-
formation and nonlinear transformation. A linear transformation, also known
as linear stretching, transforms the dynamic range in an image resulting in
enhanced brightness and contrast. This is done by adjusting the values of
the coefficients of the linear transformation formula given in equation 3.1.
[19, p. 3]

g(x, y) = C · f(x, y) +R (3.1)

On the other hand, a nonlinear transformation uses a nonlinear function,
such as e.g. logarithmic or gamma functions, to transform the gray values of
an image. Logarithmic functions are suitable for very dark images because
they can stretch the lower gray values while compressing the dynamic range of
the pixels with higher gray values. Gamma functions rely on a single gamma
value, which can be adjusted to selectively stretch different gray regions of
an image. [19, p. 4]

13

CHAPTER 3. THEORY 14

Figure 3.1: Examples of histograms [19, p. 5]

3.1.2 Histogram equalization

Histograms are a plot of pixel values ranging from 0 to 255 on the x-axis
and the corresponding number of pixels in the image on the y-axis. The
histogram can give us information about the contrast, brightness, and inten-
sity distribution of the image. [20] Figure 3.1 shows two pictures with their
corresponding histograms. If the pixel values are evenly distributed in the
histogram, then the image shows high contrast and a wide dynamic range.
This is the basis for the Histogram Equalization algorithm, which uses the
cumulative distribution function to adjust the output gray levels to have
a probability density function that corresponds to a uniform distribution.
Hence details in the dark parts of the image can be made more visible. [19,
p. 5]

3.1.3 Retinex

The Retinex algorithm is based on Retinex theory and the illumination-
reflection model shown in figure 3.2. By removing the effects of the illumi-
nating light from the image, the Retinex theory can determine the reflective
nature of an object. According to the model in figure 3.2, an image can
be expressed as the product of a reflection component and an illumination
component as stated in equation 3.2. [19, p. 8]

I(x, y) = R(x, y) · L(x, y) (3.2)

In equation 3.2, R(x, y) is the reflection component that determines the
inherent nature of the image. L(x, y) is the illumination component and it
determines the dynamic range of the image. Lastly, I(x, y) is the received
image. The reflection component can be separated from the total amount of
light, and the influence of the illumination component on the image can be
reduced if L(x, y) can be estimated from I(x, y). As a result, this will enhance
the image. Figure 3.3 shows the general process of the Retinex algorithm,

CHAPTER 3. THEORY 15

Figure 3.2: Light reflection model [19, p. 8]

Figure 3.3: Retinex algorithm process [19, p. 8]

where Log denotes the logarithmic operation and Exp the exponential oper-
ation. The Retinex algorithm can enhance images by featuring sharpening
capability, color constancy, large dynamic range compression, and high color
fidelity. [19, p. 8]

3.2 Artificial Neural Networks

Neural networks are learning machines, comprising a large number of neu-
rons, which are connected in a layered fashion. The human brain has been a
significant inspiration to the development of neural networks, and thus these
networks are built and behave similarly to the human brain. Neurons are
the basic building blocks of the human brain and they are connected via
synapses. [21, p. 902] This idea was borrowed in the development of neural
networks, which resulted in connected nodes and synaptic weights represent-
ing the neurons and their function. Learning is thus achieved by adjusting
these synaptic weights to minimize a preselected cost function. [21, p. 903]

A feed-forward neural network consists of several layers of neurons, and
each neuron is determined by the corresponding set of synaptic weights and
its bias term. From this point of view, a neural network realizes a nonlinear
parametric function, ŷ = fθ(x), where θ stands for all the weights/biases

CHAPTER 3. THEORY 16

Figure 3.4: Example of a three layer feed forward network. [21, p. 911]

present in the network. All that is needed is a set of training samples, a
loss function, L(y, ŷ), and an iterative scheme, such as gradient descent, to
perform the optimization of the associated cost function: [21, p. 913]

J(θ) = ΣN
n=1L(yn, fθ(xn)) (3.3)

Figure 3.4 shows the basic structure of the feed-forward neural network. It
is a fully connected network, which means every node in one layer is directly
connected to every node in the next layer. Inner products are calculated for
each node, which can be defined as:

zjr = θrTj yr−1 (3.4)

where j denotes the node in layer r, and θ denotes the vector containing the
synaptic weights. T signifies that θ is a transposed vector. [21, p. 912]

3.3 Convolutional Neural Networks

Convolutional neural networks (CNN) are another type of neural network
where the network is trained to learn the features from the data together
with the parameters of the neural networks. Whereas in a fully connected

CHAPTER 3. THEORY 17

neural network, feature vectors used in training are generated from the raw
data to compact the relevant information. The reason it is called a convo-
lutional neural network is that the network performs convolutions instead of
inner products. [21, p. 956] At the heart of the CNN architecture lies the
weight-sharing rationale, where a set of parameters are shared among several
connections. [21, p. 913] This allows the network to easily scale to images of
different dimensions. [21, p. 976] Interestingly, there is also strong evidence
from the visual neuroscience field that similar computations to that of a CNN
are performed in the human brain. [21, p. 961]

The need for convolutions is especially evident when images are used as
input in the neural network. Images comprise an array of pixel values which
must be converted into a feature vector when used as input in a fully con-
nected neural network. Every pixel in the image will then produce an input
node in the network for each color channel. Since every node in one layer is
connected to every node in the next layer in a fully connected network, even
a small image will produce a huge amount of parameters. This results in
increased computational load issues and challenges related to generalization
performance. A network with large amounts of parameters is vulnerable to
overfitting and would require a very large training dataset. Instead, convo-
lutions are used in a CNN, effectively reducing the number of parameters
needed and also preserving any correlations between different parts of the
image. [21, p. 956]

Convolutional neural networks introduces a new method which includes
three steps [21, p. 957]:

• The convolution step

• The nonlinearity step

• The pooling step

The convolution step in a neural network leverages filters or kernel ma-
trices to produce feature maps. The nodes in a fully neural network are
replaced by filters in a CNN. A filter matrix is an NxN matrix that is used
to perform dot products on an input array. Figure 3.5 shows an example
where a 2x2 filter (B) is used to perform a convolution on a 3x3 input array
(A). The convolution step involves sliding the filter matrix across the input
matrix and performing dot products, resulting in this case in a smaller 2x2
result matrix which is called a ”feature map”. The different dot products
performed in the convolution are signified with different colors and line types
in the figure. [21, p. 959] After each convolution a bias term is added to each
pixel in the feature map. This term is computed under training and is in line

CHAPTER 3. THEORY 18

Figure 3.5: Example of a convolution on a 3x3 input matrix (A) with a 2x2
filter matrix (B) [21, p. 957]

with the weight-sharing rationale. When performing convolution the border
pixels of the image matrix may contribute less to the output compared to
the pixels in the center, and thus it is common to increase the size of the
input matrix. The operation used in this process is called zero padding and
involves padding the input matrix with zeroes around the border pixels. [21,
p. 962] Figure 3.6 shows an example of zero padding a 5x5 input matrix.

The translation invariance is a significant characteristic of a CNN. A
small change in e.g. position of an object in the input image would result in
the same output, but with a contribution of the object moved in the same

Figure 3.6: Example of zero padding a 5x5 input matrix [21, p. 962]

CHAPTER 3. THEORY 19

Figure 3.7: Example of a pooling step. The original matrix (A) is a 6x6
matrix. A window of size 2x2 and stride 2 is chosen when performing max
pooling. The resulting matrix is a 3x3 matrix (B). [21, p. 964]

direction in the output. [21, p. 961]
After the convolution step, the nonlinearity or activation function is ap-

plied to every feature map array. The activation function is normally rectified
linear activation function, ReLU, but other functions can be used as well. [21,
p. 963]

The pooling step reduces the dimensionality of each feature map. This is
done by defining a window and a stride value and then sliding the window over
the feature maps. Figure 3.7 shows an example of performing max pooling
on a 6x6 matrix with a 2x2 window and stride 2. The window is applied to
each element of the original matrix and moved by 2 elements. Max pooling
is a technique where the largest value in the window area is kept, but average
pooling is also a popular alternative. When reducing the size, the information
loss must be as small as possible. Pooling can be considered a special type of
filtering, that acts as a summary of the information in the pooling area. This
also makes the representation approximately invariant to small translations
of the input. [21, p. 964]

3.4 Transfer learning

Transfer learning is a concept where a new model is leveraging an already
trained model to improve accuracy, reduce training time and minimize the
amount of data required to train the model. Deep neural networks require
large amounts of labeled data to perform well and have a good generalization.

CHAPTER 3. THEORY 20

However, it is not always possible to collect such large labeled datasets, due
to many being proprietary or expensive to collect, or they can be restricted
due to laws and regulations such as GDPR. Limited available data, e.g.
X-ray imaging of cancerous tumors, is also one of the factors that make
datasets difficult to obtain. Transfer learning was thus developed to reduce
these problems, and it is greatly inspired by how humans learn new things.
The human brain is capable of transferring knowledge from one situation to
another similar situation and hence does not need to learn new things from
scratch every time it is faced with a new situation. [21, p. 1013]

The way transfer learning works is by freezing the weights of an already
trained CNN model and adjusting the weights in the fully connected layer.
The pre-trained model has learned to detect different shapes and features
in an image, which it presents as input to the fully connected part of the
network. By fixing the parameters and filters related to the feature detection
and only updating the weights in the fully connected layer when training the
new model, it is possible to transfer the knowledge from the pre-trained
model to the new model. This way, it is possible to further develop models
that are trained on large datasets to accomplish greater accuracy in more
specific tasks and situations. [21, p. 1014]

3.5 Object detection

Support vector machines were used in most of the object detection tasks be-
fore 2012. This was when CNNs were reintroduced and proved their success
in object detection tasks. [22, p. 1] Object detection is based on image classi-
fication, where image classification in computer-vision tasks predicts the class
of an object in an image, while object detection also predicts the bounding
boxes of the object representing its location in the image. Figure 3.8 shows
an example of a swimming pool, where the left represents image classification
and the right picture represents object detection with a bounding box drawn
on the picture. [23]

3.5.1 Faster RCNN

Regions with CNN features (R-CNN) are pioneering approaches that use
deep models for object detection. R-CNN models work by first selecting
several proposed regions (about two thousand) from an image, such as in
step 2 in figure 3.9, and then labeling their categories and bounding boxes.
These labels are created based on predefined classes. Then, a convolutional
neural network is used to perform forward computation to extract features

CHAPTER 3. THEORY 21

Figure 3.8: Object classification vs object detection. [23]

Figure 3.9: Regions with CNN features [22, p. 1]

from each proposed area (step 3 in figure 3.9). Training time is significant
because it classifies and creates bounding boxes individually and a neural
network is applied to one region at a time. [24]

Faster RCNN was developed to increase the speed and reduce the training
time of the regions with CNN features algorithm. Instead of running a neural
network on each region, the Faster RCNN algorithm only runs the neural
network once on the whole image. It uses Region Proposal Network (RPN)
for generating Regions of Interest. RPN takes image feature maps as an
input and generates a set of object proposals, each with an objectness score
as output [25].

CHAPTER 3. THEORY 22

Figure 3.10: Architecture of a convolutional neural network with a SSD
detector. [23]

3.5.2 Single Shot Detector (SSD)

The single-shot detector (SSD) is a popular one-stage detector that can pre-
dict multiple classes. It detects objects using a single deep neural network by
discretizing the output space of bounding boxes into a set of default boxes
over different aspect ratios and scales per feature map location. The scores
are generated for the presence of each object category in each default box
and then the object detector adjusts the box to better fit the object shape.
Additionally, the network combines predictions from multiple feature maps
with different resolutions to handle objects of different sizes. The model
architecture is shown in figure 3.10. [24]

3.5.3 EfficientDet

The Google Brain team released their convolutional neural network called
EfficientNet, which forms the backbone of the EfficientDet architecture. Ef-
ficientNet set out to define an automatic procedure for scaling CNN model
architectures and optimize downstream performance given free range over
depth, width, and resolution while staying within the constraints of target
memory and target FLOPs.

The neural architecture search optimizes for accuracy, given a certain
number of FLOPS, and results in the creation of a baseline CNN called
EfficientNet-B0. Using the scaling search, EfficientNet-B0 is scaled up to
EfficientNet-B1. The scaling function from EfficientNet-B0 to EfficientNet-
B1 is saved and applied to subsequent scalings through EfficientNet-B7 be-
cause additional search becomes prohibitively expensive. [26]

The EfficientDet Model is evaluated on the COCO dataset, which is con-

CHAPTER 3. THEORY 23

sidered to be the general-purpose challenge for object detection. EfficientDet
outperforms many of the previous object detection models under several con-
straints. [26]

3.5.4 YOLOv5

You Only Look Once (YOLO) is a single-stage object detection algorithm.
It is popular for its speed and accuracy, and it detects objects in a single
forward propagation through a neural network. This makes it suitable for
real-time applications. The YOLOv5 implementation is different from the
previous releases. Instead of utilizing Darknet, YOLOv5 uses PyTorch and
CSPDarknet53 as the backbone. This backbone solves the repetitive gradient
information in large backbones and integrates gradient change into a feature
map that reduces the inference speed, increases accuracy, and reduces the
model size by decreasing the information flow. YOLOv5 uses a path aggre-
gation network as the neck to boost the information flow, which improves the
propagation of low-level features in the model. It also improves the localiza-
tion in lower levels, which enhances the localization accuracy of the object.
The head in YOLOv5 is the same as YOLOv4 and YOLOv3 which generated
three different output of feature maps to achieve multi-scale prediction. The
Focus layer in YOLOv5 evolved from the YOLOv3 structure by replacing the
first three layers with a single layer in YOLOv5. The YOLOv5 architecture
is shown in figure 3.11. [27, p. 7-8]

3.6 Object tracking

Object tracking algorithms can be categorized into these bullet points: [28,
p. 2]

• Single-object vs multiple-object trackers

• Generative vs discriminative

• Context-aware vs non-aware

• Online vs offline learning algorithms

Some of the most common challenges related to tracking problems include
occlusion, clutter, variation illumination, scale variations, low-resolution tar-
gets, target deformation, target re-identification, fast motion, motion blur,
in-plane and out-of-plane rotations, and target tracking in the presence of
noise. [28, p. 1] The SORT algorithms are online multi-object trackers that

CHAPTER 3. THEORY 24

Figure 3.11: The YOLOv5 architecthure. [27, p. 8]

leverage Kalman filtering and the Hungarian algorithm to combat these chal-
lenges.

Kalman filtering is widely used in engineering problems involving tempo-
ral or time series prediction. The core idea behind the algorithm is to use
the available detections and previous detection to arrive at the best guess of
the current state while keeping the possibility of error in the process. [29]
The Hungarian algorithm is a combinatorial optimization algorithm that can
be used to find maximum-weight sharing matchings in bipartite graphs, also
called the assignment problem [29].

3.6.1 SORT

Simple Online Realtime Tracking is an online, multiple object tracker with
strong emphasis placed on efficiency for facilitating real-time tracking. Some
of the state-of-the-art tracking algorithms are relatively slow and thus are
not suitable for real-time tracking. [30, p. 1]

The SORT algorithm focuses on efficient and reliable handling of the
common frame-to-frame associations. Rather than performing the object
detection task itself, the SORT algorithm works together with separate object
detection algorithms such as YOLOv5 or Faster RCNN. Additionally, SORT
employs Kalman filtering and the Hungarian algorithm to handle the motion

CHAPTER 3. THEORY 25

prediction and data association components of the tracking problem. [30,
p. 2]

The way SORT works is by approximating the inter-frame displacements
of each object with a linear constant velocity model which is independent of
other objects and camera motion. Each detected object is modeled as:

x = [u, v, s, r, u̇, v̇, ṡ]T

The center pixel location is represented by u (horizontal) and v (vertical).
Scale and aspect ratio of the target’s bounding box are represented by s and
r, respectively. When there is a detection associated with a target, its state
is updated by the detected bounding box, where the velocity components
are solved by the Kalman filter framework. Otherwise, the state is simply
predicted without correcting the linear velocity model. [30, p. 3]

Each target’s bounding box is estimated by predicting its new location in
the current frame when assigning detections to existing targets. The assign-
ment cost matrix is computed as the intersection-over-union (IOU) between
the detection and all predicted bounding boxes and then solved optimally
by the Hungarian algorithm. To prevent target overlap, a minimum IOU is
imposed to reject assignments with higher overlap than the threshold. [30,
p. 3]

Unique identifiers are given to each object, which needs to either be cre-
ated or destroyed. When an object is first detected, its tracker is initialized
with a velocity set to zero. Since the velocity is unobserved, the covariance
of the velocity component is initialized with large values. The new tracker
also undergoes a probationary period where the target is associated with
more detections to prevent false positives. On the other hand, tracks are
removed when they are not detected for a set period TLost to prevent un-
bounded growth of trackers. TLost is normally set to 1 because the constant
velocity model is a poor predictor of the true dynamics and early deletion of
the tracks increased efficiency. [30, p. 3]

3.6.2 Deep SORT

Deep SORT is a tracking algorithm based on the SORT algorithm, but with
an added deep association metric. The SORT algorithm is achieving good
performance in terms of tracking precision and accuracy, but it also suffers
from a lot of identity switches. The reason for this is that the employed
association metric is only accurate when state estimation uncertainty is low.
The deep SORT algorithm employs a convolutional neural network that re-
places the association metric and appearance information. This increases the

CHAPTER 3. THEORY 26

robustness against misses and occlusions while keeping the system easy to
implement. [31, p. 1]

Deep SORT is an extension of the SORT algorithm and thus the Kalman
filtering framework is almost identical to the original. The tracking algorithm
is based on a general tracking scenario where the camera is uncalibrated and
no ego-motion information is available. Even though it is not optimal, this
is the most common setup for multiple object tracking scenarios. Similar to
the SORT algorithm, the tracking scenario uses the eight-dimensional state
space containing the bounding box center position, aspect ratio, height, and
their respective velocities in image coordinates. A standard Kalman filter
with constant velocity motion and linear observation model is used, where
the bounding coordinates are taken as direct observations of the object state.
[31, p. 2]

The Hungarian algorithm is also used in deep SORT to solve the as-
signment problem, where motion and appearance information is integrated
through a combination of two appropriate metrics. The first metric is found
by using the (squared) Mahalanobis distance between predicted Kalman
states and newly arrived measurements and then excluding unlikely asso-
ciations by thresholding the distance at a 95% confidence interval from the
inverse χ2 distribution. Unaccounted camera motion can introduce rapid
displacements in the image plane, making the Mahalanobis distance an unin-
formed metric when there are occlusions. Thus a second metric is integrated,
which is obtained by computing an appearance descriptor for each bounding
box detection. A gallery of the last 100 associated descriptors is kept, and
then the smallest cosine distance between the tracks is measured and com-
pared to a threshold to see if the association is admissible. In practice, a
pre-trained CNN is used to compute the bounding box appearance descrip-
tors. Combined, these two metrics complement each other. The Mahalanobis
distance provides information about possible object locations, and the cosine
distance considers appearance information that is useful to recover identities
after long-term occlusions. [31, p. 2]

Instead of solving for measurement-to-track associations in a global as-
signment problem, deep SORT uses a matching cascade that solves a series of
subproblems. This is done by giving priority to more frequently seen objects
to encode the notion of probability spread in the association likelihood. The
matching cascade gives priority to tracks that have been seen more recently.
To account for sudden appearance changes due to e.g. partial occlusion and
to increase robustness against erroneous initialization, intersection over union
association is run as in the original SORT algorithm. [31, p. 3]

Chapter 4

Approach

This chapter will give an overview of how the project has been implemented.
The code snippets in this chapter have been provided as pseudo-code to make
them easily readable. A link to the Github repository has been provided in
appendix A, while the main code excerpts have been provided in appendix
B.

4.1 Tools

TensorFlow

TensorFlow is an open-source platform for machine learning. It has a com-
prehensive, flexible ecosystem of tools, libraries, and community resources
that lets researchers push the state-of-the-art in ML and developers easily
build and deploy ML-powered applications. It is very fast and offers support
for Python. TensorFlow also offers GPU support, which greatly increases
the speed and performance. [32] Hence, TensorFlow has been used as the
machine learning library in this thesis.

OpenCV

The Open Source Computer Vision Library (OpenCV) was used in this the-
sis to visualize and process images and videos. OpenCV is an open-source
computer vision and machine learning software library. OpenCV was built
to provide a common infrastructure for computer vision applications and to
accelerate the use of machine perception. The library has more than 2500
optimized algorithms, which includes a comprehensive set of both classic
and state-of-the-art computer vision and machine learning algorithms. It

27

CHAPTER 4. APPROACH 28

supports Python and Windows, and it leans mostly towards real-time vision
applications. [33]

Superannotate

Superannotate was used to annotate footage that was used in training and
tests. Superannotate is an end-to-end platform used to annotate, version,
and manage ground truth data for AI projects. It offers robust and user-
friendly image, video, and text annotation tools. This makes it fast and it is
feature-rich [34].

Test system

A personal computer with Windows 11 as operating system, i7-8700K as
CPU, 32 GB RAM, and GTX 1080 Ti (Titanium) 11 GB VRAM have been
used in the analysis of all AID methods. The Nvidia toolkit for machine
learning was used such that the GPU could be used for model training and
inference [35].

4.2 Limitations and simplifications

4.2.1 Datasets

The datasets used are a mixture of publicly available and self-annotated in-
cident footage obtained from YouTube. A more specific dataset with images
from Norwegian road tunnels would benefit the research, and could thus
lead to providing more accurate and local recommendations for Norwegian
tunnels.

Self-annotating images take a lot of time and thus only a limited amount
of videos were annotated. Neural networks are very data-dependent, and
would thus greatly benefit from being trained on a large dataset of actual
incident footage. Due to the limitation of available annotated footage, the
models were trained on a relatively small dataset.

4.2.2 GPU resources

Due to relatively low GPU VRAM, it was necessary to lower the batch size
and resolution to train the models. Larger resolution models would increase
the accuracy of the models, and a faster GPU would decrease the inference
times.

CHAPTER 4. APPROACH 29

4.2.3 Code availability

The code for most of the incident evaluation methods was not publicly pub-
lished, and thus a simple incident evaluation method was developed due to
limitations on time.

4.3 Datasets

The datasets used in the training and testing phase of this thesis are a com-
bination of publicly available and self-annotated datasets. Only the classes
car, truck, person, motorbike, bike, and bus are regarded from each dataset.

All the models used in this thesis were pre-trained on the COCO dataset,
and thus the feature extraction part of the models is based on this dataset.
The COCO dataset is a large-scale object detection, segmentation, and cap-
tioning dataset, containing over 200 000 annotated images and 80 object
categories [36].

The dataset used in [37] has also been used to train the models. Data was
collected from publicly available webcams located in Rogaland and manually
annotated. Bounding boxes were drawn on vehicles of interest and labeled,
and saved in an Extensible Markup Language (XML) file along with the
source image [37, p. 29-30]. Most of the images were 800x600 pixels in RGB
format [37, p. 42].

The Kitti dataset contains a suite of vision tasks built using an au-
tonomous driving platform. The dataset contains about 15 000 annotated
images and over 80 000 labeled objects [38]. Images from four classes in this
dataset were used to train the models [37, p. 30].

The test dataset used consists of self-annotated videos obtained from
YouTube [39]. In total there are 12 videos of tunnel incidents comprising 904
images, and 3379 objects distributed as in Table 4.1. Each video lasts be-
tween 10 and 60 seconds and is in RGB format with a resolution of 1280x720
pixels and 5 frames per second. Bounding boxes were drawn over the objects
in each frame. Each object was given a class and additional information such
as the type of incident, if it was in incident status or OK status, and if the
object was occluded. The occluded field was used for hard to detect objects
as well, e.g. vehicles that were far from the camera. Since only the incident
classes stopped-vehicle, wrong-way driver, and pedestrian is regarded in this
thesis, the status field was made to tell if a vehicle was involved in an incident
outside of these classes. This field can thus be used in further research.

CHAPTER 4. APPROACH 30

car person truck motorbike
2524 551 264 40

Table 4.1: Distribution of objects in the test dataset

car person truck bus bike motorbike
67 470 13 314 4252 671 13 34

Table 4.2: Distribution of objects in the training dataset

4.4 Preparation of data

To prepare all the datasets for training, I had to make a script to extract
the information from both .json files and .xml files. The self-annotated data
was stored in .json files, while the other datasets stored information in .xml
files. After all the files were parsed, they were split in a 90-10 train-validation
distribution. However, the validation dataset was not used in the actual tests.
Listing 4.1 shows pseudo-code for the implementation on how to generate the
tensor flow records.

Table 4.2 shows the distribution of objects in each class used in the train-
ing dataset and table 4.3 shows the validation dataset. In total there were
12 742 files and 85 754 objects in the training dataset, and 1410 files with
6653 objects in the validation dataset.

Data augmentation is used when training the models to compensate for
the lack of data and thus increasing the generalization performance. The
image augmentation done on the dataset includes horizontal flip, adjustments
to brightness, contrast, hue, saturation, color distortion, and cropping.

1 datasets = [{"dataset1": dataset1}, {"dataset2": dataset2 }]

2 data = Prepare(datasets)

3

4 for entry in data.get_training_entries ():

5 tf_example = create_tf_example(entry)

6 write(tf_example)

7

8 for entry in data.get_test_entries ():

9 tf_example = create_tf_example(entry)

car person truck bus motorbike
5126 924 550 47 6

Table 4.3: Distribution of objects in the validation dataset

CHAPTER 4. APPROACH 31

10 write(tf_example)

Listing 4.1: Pseudo-code on how to generate .tfrecords

4.5 Image enhancement

The image enhancement methods implemented in this thesis are as follows:

• Linear gray transformation

• Nonlinear gray transformation

• Histogram Equalization

• Retinex SSR

• Retinex MSR

• Masks

The OpenCV library provides a linear gray transformation and histogram
equalization functions. A gamma function with γ = 2.0 was used in the
nonlinear gray transformation. The implementation in [40] was used as the
Retinex SSR and MSR image enhancement methods. Custom masks for each
video clip were made using Adobe Photoshop and applied to the frames.

4.6 Object Detection

Four object detection models were tested and compared in this thesis. After
the image enhancement step, the image was fed to the object detector class
to obtain the model detections.

4.6.1 TensorFlowAPI

A selection of pre-trained object detection models from the TensorFlowAPI
model zoo has been used in this thesis. The TensorFlow Model Garden is a
repository with several different implementations of state-of-the-art models,
such that Tensorflow users can take full advantage of Tensorflow for their
research and product development [41]. The models used in this thesis in-
clude SSD MobileNet, EfficientDet, and Faster-RCNN, which all are trained
on the COCO 2017 dataset [36]. In the transfer learning process only the
classes car, truck, bus, person, bike, and motorbike were evaluated.

CHAPTER 4. APPROACH 32

These models are among the state-of-the-art object detection algorithm,
in terms of both speed and performance. Because incident detection systems
should run in real-time, the system would benefit from lower inference times
and thus faster object detection models. Hence, smaller resolution object
detection models have been chosen because they are faster, but also less
accurate than their larger resolution counterparts.

During the training phase of the models, I encountered out-of-memory
exceptions. This was because of too large batch size and resolution of the
images. Hence I lowered the batch size and resolution on some of the models.
The configuration for each model is listed below:

• SSD MobileNet

– Modelname: SSD MobileNet v2 320x320

– Speed: 19 ms

– COCO mAP: 20.2

– Training config:

∗ Batch size: 64

∗ Resolution: 320x320 px

∗ Figure 4.1 shows convergence after about 10 000 steps.

• EfficientDet

– Modelname: EfficientDet D0 512x512

– Speed: 39 ms

– COCO mAP: 33.6

– Training config:

∗ Batch size: 8

∗ Resolution: 512x512 px

∗ Figure 4.2 shows convergence after about 15 000 steps.

• Faster-RCNN

– Modelname: Faster-RCNN ResNet50 V1 640x640

– Speed: 53 ms

– COCO mAP: 29.3

– Training config:

∗ Batch size: 4

∗ Resolution: 512x512 px

∗ Figure 4.3 shows convergence after about 20 000 steps.

CHAPTER 4. APPROACH 33

Figure 4.1: Total loss graph for SSD MobileNet.

Figure 4.2: Total loss graph for EfficientDet.

Figure 4.3: Total loss graph for Faster-RCNN.

CHAPTER 4. APPROACH 34

4.6.2 YOLOv5

Ultralytics has released YOLOv5, which is a family of compound-scaled ob-
ject detection models trained on the COCO 2017 dataset [42], [36]. The
YOLOv5x implementation was used in this thesis because it offers excellent
performance while also being fast. On the COCO benchmark dataset the
YOLOv5x implementation managed this performance [42]:

• Resolution: 640x640px

• COCO mAP: 50.7

• Speed: 12.1 ms (Tesla V100 b1 GPU)

YOLOv5 is an improvement of the YOLOv4 implementation, as men-
tioned in section 3.5.4. Hence only the YOLOv5 object detection algorithm
from the YOLO family was tested in this thesis.

The YOLOv5x algorithm was tested both with and without fine-tuning.
The implementation without fine-tuning is used as a baseline for all models
and to test the effectiveness of the image enhancement methods. The fine-
tuned model was trained with this configuration:

• Batch size: 4

• Resolution: 640x640 px

• Figure 4.4 shows convergence after about 30 epochs.

4.7 Tracking

4.7.1 Simple tracking

A very simple tracking algorithm was implemented to make a baseline track-
ing model that could be comparable to the more advanced tracking algorithm
used. The simple tracking algorithm leverages intersection over union (IoU)
to determine if new detections correspond to previous detections. If IoU is
greater than 0.5, then the new detection is assigned the same ID as the pre-
vious detection. Otherwise, it will be assigned a new ID. Psuedo-code for
the algorithm is provided in listing 4.2.

1 for new_detection in new_detections:

2 for old_detection in old_detections:

3 IoU = calculate_IoU(new_detection , old_detection)

4 if IoU > 0.5:

CHAPTER 4. APPROACH 35

Figure 4.4: Training results from the YOLOv5 model.

5 track = old_track # Assign old track object to

current track

6 else:

7 track = new_track # Create a new track object

Listing 4.2: Pseudo-code on how the simple tracker works

4.7.2 Deep Sort

The deep SORT algorithm is a state-of-the-art object tracking algorithm,
which offers real-time multi-object tracking performance. The algorithm used
in this thesis is based on the implementation in [43], which is a version of the
original deep SORT model [44].

4.8 Incident evaluation

Three incident classes were considered in this thesis:

• Pedestrians

• Stopped vehicles

• Opposite-driving vehicles

CHAPTER 4. APPROACH 36

Incidents in road tunnels usually lead to stopped vehicles or pedestrians
walking out of the vehicles.

Opposite-driving vehicles

None of the videos in the test datasets included incidents where there were
any wrong-way drivers. Hence this algorithm was not comprehensively de-
veloped. However, each vehicle was given a direction after two frames. This
could then be used to determine wrong-way drivers or anomalous vehicle
trajectories. Manual setup is needed, where upstream and downstream di-
rections must be determined in advance.

Stopped vehicles

To determine if a vehicle has stopped, the tracks from the tracking algorithm
were used. If a vehicle was at the same position for more than 2 frames, then
it was classified as a stopped vehicle.

Pedestrians

There should not be any pedestrians in road tunnels, and thus any detections
of pedestrians were determined as incidents.

4.9 Performance evaluation

Many performance evaluation metrics were considered to compare the differ-
ent algorithms and methods used in this thesis.

Detection Accuracy

Intersection over Union (IoU, see figure 4.5) was calculated for each track
and the real object, where the real object signifies a vehicle that has been
annotated by a human and the track is a detection fed to the tracking algo-
rithm. The highest IoU above 0.4 was selected for each track, resulting in
the pseudo-code in listing 4.3.

1 for track in tracks:

2 for real_object in real_objects:

3 IoU = calculate_IoU(track , real_object)

4 if IoU > 0.4 and IoU > max_IoU:

5 max_IoU = IoU

6 track[’id’] = real_object[’id’]

Listing 4.3: Pseudo-code on how tracks are assigned to real objects

CHAPTER 4. APPROACH 37

Figure 4.5: Intersection over union. [45]

The detection accuracy is then calculated as the average IoU for all valid
detections. A valid detection means a detection that corresponds to a real
object, and therefore is not a false positive.

DA =
avg(IoU(real object, detected object))

number of valid detections
(4.1)

where DA denotes Detection Accuracy.
Because some of the detection was either occluded or hard to detect due

to e.g. smoke or if it was truncated, all objects were annotated with a class
called occluded. An object was therefore annotated with either false or true
on the occluded class. Also, because these objects were particularly hard to
detect, another performance metric was added to show how well an algorithm
performed on rather easily detectable objects:

DAA =
avg(IoU(real object, detected object))

number of valid detections− number of occluded objects
(4.2)

where DAA denotes Detection Accuracy Adjusted.

Tracking Accuracy

Tracking accuracy is divided into three parts: correct tracks, duplicate tracks,
and lost tracks. A track is deemed correct if the track corresponds to the same
vehicle as to the last detection of that vehicle. Sometimes several detections
can overlap and thus have an IoU over 0.4 with the same real vehicle. Hence
some of the tracks can correspond to the same ID, resulting in duplicate

CHAPTER 4. APPROACH 38

tracks corresponding to the same real vehicle. Lost tracks are counted as the
number of ID switches on the detections, which is a result of lost tracks in
the deep SORT model.

TA =
correct tracks

total number of tracks
(4.3)

where TA denotes Tracking Accuracy.
Mean tracking time (MTT) and maximum tracking time (Max TT) were

also measured for both object tracking algorithms.

Time measurements

The mean time (MT) was calculated for each of the image enhancement
methods, while the mean total time to detection (MTTD) was calculated for
all systems. The MTTD metric measures how long the AID system takes
from the start of image enhancement to the end of the incident evaluation
algorithm. This way, the real-time performance of each method could be
measured and compared.

Detection Rate

The incident detection rate (DR) is calculated as the number of correctly
detected incidents per frame divided by the number of tracks corresponding
to a real incident in the frame. As a result, the detection rate is relatively
low. The detection rate metric could have been adjusted such that it counted
the number of correctly detected incidents per video instead. However, it
was chosen because it is interesting to see how well the incident evaluation
algorithm was able to detect incidents from tracks on a frame by frame level.

DR =
number of detected incidents

number of detected incidents+ number of missed incidents
(4.4)

False alarms

The false alarm rate (FAR) was measured by comparing the incident status
of each track to the actual incident status of the real vehicle corresponding
to the track. If the track had a positive incident status while the real vehicle
did not, then it was counted as a false alarm.

FAR =
number of false alarms

total number of detections
(4.5)

CHAPTER 4. APPROACH 39

where the total number of detections means all valid detections plus all false
positives.

Missed and false positive detections

As mentioned above, the intersection over union is calculated for each real
object and each track. After all detections have been assigned to a real
object, missed detections are counted. This is done by comparing the number
of real objects in the image to the number of tracks corresponding to real
objects, and calculating the difference. On the other hand, if a detection is
not assigned to a real object, it is counted as a false positive detection.

MD =
number of real objects− number of detections

number of real objects
(4.6)

FP =
number of false positives

total number of detections
(4.7)

Chapter 5

Discussion

In the previous chapter several image enhancement methods, object detection
models, and a tracking algorithm was tested. In this chapter, the results
will be presented and discussed. All methods have been tested on a custom
dataset, and thus the results should only give a relative performance between
the algorithms, and not necessarily be comparable to other algorithms not
used in this thesis.

5.1 Image Enhancement

Image enhancement (IE) could lead to big improvements in detection and
tracking accuracy, and reduce false alarms. Poor image quality and lighting
conditions often lead to fewer object detections. It is possible to upgrade the
camera and lighting equipment in tunnels in order to improve image quality,
but this is often costly and time expensive to do. Hence, algorithms have
been developed to enhance images. Several image enhancement algorithms
have been tested by using a pre-trained YOLOv5 object detection algorithm,
called YOLOv5x, and deep SORT as the object tracking algorithm. Figures
5.1 and 5.2 show two examples with the image enhancement methods applied.
The results are shown in table 5.1.

The gray transformation algorithms did not improve the overall accuracy
and performance significantly. Both algorithms produce very low overhead
and work best for relatively dark images, but because the test dataset com-
prised both dark and bright images, the overall performance went down, as
can be seen from table 5.1. The gray linear transformation slightly increased
the contrast in the image, but overall brightness stayed the same, while the
nonlinear transformation gamma function brightened the image, but also re-
duced the contrast slightly. This helped detection in the darker parts of the

40

CHAPTER 5. DISCUSSION 41

IE method DA DAA TA DR MT FAR MD FP
Original 75.1% 78.2% 73.9% 61.4% 0 ms 16.9% 45.0% 19.6%

Gray linear 76.0% 78.5% 72.4% 59.0% 0 ms 19.2% 41.0% 23.5%
Gray nonlinear 76.1% 78.6% 71.2% 63.1% 1 ms 17.8% 43.9% 22.6%

Histogram Equalization 74.3% 76.5% 71.6% 63.4% 1 ms 20.6% 46.9% 25.2%
Retinex SSR 73.1% 75.1% 75.7% 60.4% 5491 ms 11.9% 49.2% 16.3%
Retinex MSR 73.7% 75.6% 74.3% 61.5% 11606 ms 12.9% 50.8% 18.1%

Mask 76.5% 78.6% 73.3% 67.2% 1 ms 6.5% 56.2% 10.5%

Table 5.1: Image enhancement methods comparison. Pre-trained YOLOv5x
with deep SORT was used.

image, such as at the sides of the road, but it lowered the detection rates in
the brighter parts of the image, such as on the road. By converting the image
to gray, color noise can be reduced, such as chromatic aberrations, and thus
reduce false positive detections. On the other hand, information is also lost,
which can affect object detection performance and thus lead to both missed
detections and false-positive detections. In table 5.1 the gray transformation
algorithms had higher false-positive detections, but also had fewer missed
detections. However, the false alarm rates increased significantly. Hence
these enhancement methods should only be used in darker tunnels where
fast image enhancement is important.

Similar to the gray transformation algorithms, the histogram equalization
(HE) algorithm works better for darker images. The HE algorithm increased
brightness in all parts of the images, which led to a brighter overall image,
but it also overexposed the highlights. Because the middle of the road is
normally brighter than the sides, the middle became overexposed while the
sides were nicely lit, which can easily be seen in figure 5.1. As a result,
the image quality normally goes down and thus negatively affects most of
the video clips. This can also be seen in table 5.1 where the HE algorithm
performed worse on almost all metrics compared to the original image.

Applying masks to the video clips can improve the overall detection per-
formance in road tunnels, by helping the AID system only focus on important
parts. Lights and other appliances on the ceiling and the tunnel walls can
be detected as vehicles because these can resemble vehicles, as seen in figure
5.3. Water dripping down on walls and ceilings is also known to produce
false alarms. By masking away walls and ceilings, the system can effectively
reduce false-positive detections and false alarms. Table 5.1 shows that missed
detections and false positives decreased significantly without significantly af-
fecting the detection accuracy. However, masking the image can also lead

CHAPTER 5. DISCUSSION 42

Figure 5.1: Image enhancements methods

Figure 5.2: Image enhancement methods

CHAPTER 5. DISCUSSION 43

Figure 5.3: Example of false positive detections.

Figure 5.4: Masked image: Camera mounted on the ceiling.

to the loss of important detections, which can also be seen from the large
increase of missed detections in table 5.1. E.g. a vehicle or pedestrian can
extend outside of the mask region, as seen in figure 5.4 and 5.5, and thus be
truncated which leads to a missed detection. Also, if a vehicle crashes into
one of the walls of the tunnels, then the vehicle can be masked out of the
image. For the masks to be effective, the cameras should be mounted on the
ceiling directly above the road and only considered the closest part of the
image, such that a simple mask of the road does not truncate any vehicles
or exclude important regions of the road. Using masks on videos from wall-
mounted cameras and cameras with a shallow angle, have a high probability
of truncating vehicles, such as trucks and buses. As a last remark, masks
reduce the number of pixels that need to be evaluated by the object detection
system, which makes the object detection slightly faster.

The Retinex SSR and MSR algorithms improve the quality of the im-

CHAPTER 5. DISCUSSION 44

Figure 5.5: Masked image: Camera mounted in the wall.

ages, by increasing the contrast and brightness in shadow areas while also
not overexposing the highlights. Also, the algorithms improve the white
balance making the colors more accurate. Both algorithms improved the
performance of the AID system by lowering both false-positive detections
and the false alarm rate by a significant amount. However, the algorithms
are computationally expensive, meaning they could not perform real-time
detections, as table 5.1 shows.

It is possible to use deep neural networks to improve image quality, such
as in [46] and [19]. Compared to other image-enhancing algorithms, this
has proven to be significantly better. However, it is also significantly slower
due to high computational complexity. Furthermore, deep neural network
approaches also have a strong dependence on the datasets [19, p. 26]. As
a result, deep neural networks are generally not fast enough for real-time
detection applications [46, p. 8].

One image enhancement method may work for one clip but worsen an-
other clip. Each clip must therefore be evaluated and relevant enhancement
methods applied. E.g. the nonlinear gray transformation in 5.2 works well
for that tunnel scene, but worsen the image in 5.1 by lowering the contrast
to much. Computational speed is also important to evaluate because AID
systems are dependent on being able to perform in real-time.

5.2 Detection

A well-performing object detection algorithm is imperative in an AID system.
The results of four of the most common object detection algorithms are listed
in table 5.2.

A pattern present in all methods is that vehicles located far from the
camera are harder to detect than vehicles closer to the camera. Many of
the missed detections, false alarms, and inaccuracies were due to this. E.g.
vehicles far from the camera would move slowly relative to the camera and
thus be classified as stopped vehicles. Hence it would be beneficial to define

CHAPTER 5. DISCUSSION 45

Algorithm DA DAA TA DR MTTD FAR MD FP
SSD MobileNET 80.7% 82.3% 90.8% 63.8% 62 ms 2.5% 55.2% 3.7%

YOLOv5x pre-trained 75.1% 78.2% 73.9% 61.4% 58 ms 16.9% 45.0% 19.6%
YOLOv5x fine-tuned 82.3% 83.8% 90.6% 71.8% 56 ms 7.7% 15.8% 6.3%

EfficientDet 80.2% 81.3% 90.8% 64.6% 79 ms 1.3% 65.4% 1.3%
Faster RCNN 74.7% 77.1% 88.7% 69.5% 126 ms 9.8% 28.0% 9.4%

Table 5.2: Performance evaluation. Deep SORT was used with all models.

an object detection area close to the camera and ignore detections outside
this area. This way, the system can ensure good and reliable detections, with
fewer false alarms and false positives. On the other hand, it is important to
have enough cameras to cover the whole tunnel and not leave any blind spots.

Vehicles involved in incidents often lead to smoke and damaged vehicles,
which obstructs the view of the cameras, as shown in figure 5.6. This can
lead to the loss of important detections. The pre-trained YOLOv5 imple-
mentation has not been trained on damaged vehicles, and thus struggled to
detect the vehicles figure 5.6. The other object detection models were trained
on incident footage containing damaged vehicles and vehicles partially ob-
scured by smoke. These models were therefore able to easier detect vehicles
obstructed by smoke or damaged vehicles, which can be seen by the slightly
higher detection rates in table 5.2. Figure 5.7 also shows an example where
the SSD MobileNet algorithm was able to detect an upside-down vehicle,
while the pre-trained YOLOv5 model could not.

All models performed close to real-time with relatively high detection and
tracking accuracy. The Faster RCNN model had the highest inference time
and performance measures should therefore be evaluated, such as reducing
input resolution or skipping frames, in order to be able to perform in real-
time. The SSD MobileNet and EfficientDet systems had by far the lowest
false alarm rates and false positives. However, they also had much higher
missed detections compared to the other models. This could be a problem in
an AID system because it could lead to the loss of important detections. The
Faster RCNN model, on the other hand, provided a better trade-off between
missed detections and false alarms. The false alarms incurred by the model
can instead be reduced by other means, such as masks. A confidence level
of 60% was used on the models from the TensorFlowAPI. Allowing lower
confidence levels can lead to more false positives and false alarms, and an
excessive confidence level can lead to missed detections. The confidence level
chosen provided a decent trade-off.

The YOLOv5 algorithm performed very well without being trained on the

CHAPTER 5. DISCUSSION 46

Figure 5.6: Crashed vehicles produce smoke which obstructs the view of the
camera.

Figure 5.7: Comparison between pre-trained YOLOv5x and trained SSD
Mobnet .

CHAPTER 5. DISCUSSION 47

incident footage from tunnels. It had more false positive detections, but it
was faster and provided similar detection rates as the other models. Allowing
the models to be trained on specific datasets that represent the road tunnels
where the AID system should be used, greatly improves false alarms, false
positives, detection rate, and missed detections. This is evident from the
fine-tuned YOLOv5x implementation, which outperformed the other models
in terms of speed, missed detection, and detection rate. Hence, the YOLOv5
model proves to be a good object detection algorithm for use in an AID
system.

5.3 Tracking

Similar to object detection, a well-performing tracking algorithm is also very
important in order for the AID system to correctly identify incidents. As can
be seen from the missed detections in table 5.2, the object detection systems
are not able to detect every vehicle in every image. In many cases, vehicle
detections are lost for a few frames. A good tracking algorithm should still be
able to keep the tracks and assign the same ID to the detected vehicles. De-
tecting stopped vehicles and wrong-way drivers heavily depends on whether
the system is able to keep track of different vehicles and their IDs.

Different positions and angles of the CCTV cameras may have an impact
on the tracking performance. Cameras that are mounted low and thus have
a shallow angle, have a higher chance of getting occluded vehicles. Less ad-
vanced trackers will easily lose occluded tracks, making incident evaluation
less accurate. Also, a longer duration of occluded vehicles could obstruct the
view of the vehicles involved in incidents, leading to slower incident evalu-
ation times. Cameras mounted on the wall of the tunnel can also lead to
worse tracking performance due to occlusion, compared to ceiling-mounted
cameras. This is shown in figure 5.8.

Cameras are mounted differently in many tunnels concerning position and
camera angles, which means that the tracking algorithm must have a good
generalization performance. From table 5.3 it is evident that the deep SORT
algorithm has a much higher tracking accuracy and higher mean tracking
time compared to the simple tracking algorithm. Furthermore, it is inter-
esting to see that there are fewer initial detections that were kept after the
deep SORT algorithm had evaluated them. This is because the algorithm
tries to remove duplicate and false tracks. We thus can conclude that the
deep SORT algorithm proved to be fast and very accurate, and thus gen-
erally suitable for real-time multi-object tracking. However, the algorithm
did not perform in real-time when there were many tracks. This could be

CHAPTER 5. DISCUSSION 48

Figure 5.8: The white truck obstructs the view of the wall mounted camera,
leading to occlusions and thus less detections.

Algorithm TA MTT Max TT Valid detections
Deep SORT 90.8% 12 ms 455 ms 1473

Simple tracking algorithm 66.1% 0 ms 7 ms 1800

Table 5.3: Performance evaluation of deep SORT and a simple tracking al-
gorithm using SSD MobileNet as detection algorithm.

a problem in congested traffic, and skipping frames would most probably
be needed. The simple tracking algorithm was very fast, but suffered from
many ID switches and duplicate IDs, making it less suitable for general ob-
ject tracking problems. Hence the simple tracking algorithm would need to
be customized for each tracking problem.

5.4 Incident evaluation

In almost all incidents in road tunnels, vehicles will eventually stop and peo-
ple may exit their vehicles. This makes evaluating stopped vehicles or pedes-
trians a good option but could lead to slower detection times and missed
detections. More advanced algorithms that can detect damaged vehicles,
anomalous vehicle trajectories, smoke, fire, and crashes would make the in-
cident detections more accurate and copious.

CHAPTER 5. DISCUSSION 49

As can be seen from the result in table 5.2, there were many missed inci-
dent detections. Due to how the detection rate is calculated, it is relatively
low for all models. Most of the methods were able to correctly identify if there
had been an incident in all video clips, but only a few of the incidents were
detected on a frame-by-frame level. Hence, it is evident from the results that
the incident evaluation algorithm used can be significantly improved, and it
is also not sufficient to only consider stopped vehicles, wrong-way drivers,
and pedestrians as incident classes.

False alarms could be reduced by evaluating longer parts of the videos
before incurring alarms. In the tests, every false alarm in every frame was
counted. Some of these false alarms were due to temporary shadows or light
reflecting on the ground or walls, but these detections were only lasting for
a few frames. Evaluating longer parts of the video would increase incident
detection time, but would also increase the confidence of the system, resulting
in fewer false alarms.

5.5 Performance

All detection algorithms, except faster RCNN, combined with the deep SORT
algorithm can currently handle about 20-25 frames per second on the test
system used in this thesis, which is close to real-time. This means that there is
little overhead for computationally expensive image enhancement algorithms
or incident evaluation methods. A solution could be to skip frames, e.g.
every second or third frame. Unless it is a high-speed tunnel, vehicles do not
move very far in a few frames, which makes skipping frames a viable option.
As seen from the test results, the detection and tracking algorithms were able
to keep most of the tracks with a frame rate as low as 5 fps.

The object detection speed was not affected much when scaling down the
input images, but the image enhancement methods had a large improvement
which can be seen in table 5.4. However, the number of missed detections is
prohibitively high when reducing the image resolution by 50%. Less aggres-
sive resize parameters could be considered to increase speed.

Smaller resolution object detection models are faster than larger mod-
els. Furthermore, single-stage object detectors are faster than two-stage
detectors. Hence, smaller single-stage object detectors would be preferred
in weaker or lower-end systems. Larger object detection models are more
accurate than the smaller detectors, and should thus be used if the system
can handle them in real-time.

CHAPTER 5. DISCUSSION 50

Algorithm MT MD Valid detections
Retinex SSR 50% 1197 ms 82.8% 549
Retinex SSR 100% 5491 ms 49.2% 1820
Retinex MSR 50% 2380 ms 83.0% 547
Retinex SSR 100% 11 606 ms 50.8% 1765

Table 5.4: Differences in speed and missed detections using different res-
olution. The number next to the names signifies the scale percent used.
Pre-trained YOLOv5x was used as object detection model.

5.6 Model- and Analytical Improvements

The datasets used in this thesis could have consisted of more footage from
actual incidents and preferably from Norwegian tunnels. Also, the dataset
could have been larger and included more incidents in more classes. E.g. none
of the datasets contained videos of wrong-way drivers. With more data, the
models could also have been trained on a completely different dataset than
the test dataset, and therefore the generalization performance could have
been evaluated more accurately.

The test dataset should have contained more frames per video clip. The
video clips were down-sampled to 5 frames per second, instead of the regular
24 or 30 frames per second. The accuracy and performance of an AID sys-
tem could have been tested in more detail, with more headroom to fine-tune
performance metrics. Also, longer clips of the incidents would be beneficial.
Most of the clips ended shortly after the incident occurred, and thus some-
times it did not show that vehicles arriving later stopped. Longer clips would
also mean that the system could have had more frames to analyze before de-
ciding on whether it was an incident or not. E.g. it could spend another
2 seconds to evaluate an incident and thus reduce false alarms. Further-
more, footage from several cameras within the same tunnel would be better
in terms of testing the extent of AID systems. Then it would be possible
to make more distinct detection zones for all cameras and determine more
accurately the effect camera positions and angles have on the AID system.

The incident evaluation method used was not particularly good, which
can be seen from the detection rate. More advanced incident evaluation
algorithms should be tested, compared, and assessed to determine the best
AID systems. E.g. neural networks, SVMs, and decision trees could have
been tested as the incident evaluation algorithm, but due to limitations on
time these options were not explored.

The object detection and tracking models could have been more fine-
tuned, by e.g. using different resolutions, batch sizes, image augmentations,

CHAPTER 5. DISCUSSION 51

balancing the datasets, etc. The deep SORT association metric could also
be trained on a more specific dataset containing damaged vehicles, in order
to improve tracking accuracy. Another way of detecting incidents could be
to extract traffic parameters from the detection and tracking results, which
could then be analyzed to evaluate incidents. This method would allow
testing of the majority of the different AID algorithms developed (such as
e.g. statistical or comparative algorithms), as mentioned in the introduction.

The models could also have been tested on different equipment, both
worse and better, to test the limits of a real-time AID system. The systems
could e.g. be tested on a raspberry pi or higher-end GPUs such as a Tesla
P100, in order to see the economic impact an AID system can impose.

5.7 Further work

Evaluating more incident classes would be a natural next step. In this thesis,
only the classes ”stopped vehicle”, ”wrong-way driver” and ”pedestrian” have
been evaluated. Stationary objects, anomalous trajectories, smoke, fire, and
stopped vehicles in queues would increase the overall AID performance.

Another improvement would be to look into other algorithms and meth-
ods. The Nvidia Deepstream toolkit looks promising, due to excellent detec-
tion, tracking, and computation performance. Better occlusion handling for
object tracking, such as the algorithm proposed in [47], could be implemented
to test the performance in e.g. queues.

Automatic lane detection and configuration, similar to the one proposed
in [16], that can decide the upstream and downstream direction would de-
crease a lot of the initial manual work needed to set up an AID system.
Some of the manual work needed include defining masks, and upstream and
downstream direction to detect wrong-way drivers.

Finally, more image enhancement methods could also be explored, such as
the deep neural network image enhancing method used in [46]. Because deep
neural networks are computationally expensive, it would also be necessary
to look into methods that decrease detection, tracking, and evaluation time.
Otherwise, the AID system would struggle to be able to operate in real-time.

Chapter 6

Conclusion

There has been a large demand for good AID systems that can help reduce
vehicular incidents on roads. Hence there has been a lot of research on AID
systems throughout the years. Most of the systems are based on analysis
of traffic parameters extracted by e.g. inductive loops. Recently, machine
learning techniques and computer-vision approaches have been developed and
tested in AID systems. This thesis has therefore looked at how to improve
AID systems using computer-vision and neural networks.

Deep neural network-based AID systems using traffic surveillance cam-
eras can achieve great performance in detecting incidents in road tunnels
accurately and fast. However, these systems also often produce a lot of false
alarms which reduces their effectiveness.

Image enhancement methods have the potential to increase detection ac-
curacy and reduce false alarms. A downside to this is that one image en-
hancement method may work for one clip, but worsen another clip. Therefore
it is necessary to evaluate each clip and determine which image enhancement
method works the best. Some image enhancement methods, such as the
Retinex algorithms or neural network-based methods, have better general-
ization performance but also add computational complexity to the system.

All object detection models tested, performed close to real-time with
relatively high detection and tracking accuracy. The Faster RCNN model
had fewer missed detections, but also slightly higher false positives and false
alarms compared to the other models. The fine-tuned YOLOv5x algorithm
was the best model in terms of detection accuracy, detection rate, missed
detection, and speed. By defining masks and detection zones, the object
detection algorithms could perform better. This way only vehicles closer to
the camera would be evaluated, and thus false positives and alarms related
to walls, ceilings, and objects in the distance would be reduced. Overall
the YOLOv5 algorithm offered a good trade-off between speed, detection

52

CHAPTER 6. CONCLUSION 53

accuracy, and false alarms, making it well suited for use in an AID system.
The deep SORT algorithm is fast and very accurate, and thus generally

suitable for real-time multi-object tracking. However, the algorithm did not
perform in real-time when there were many tracks, and performance measures
should be taken. A simpler tracking algorithm could be used in specific
scenarios but would need customization for each scenario.

The incident evaluation algorithm was mostly capable of detecting in-
cidents in the incident classes ”stopped vehicle”, ”wrong-way driver” and
”pedestrian”. However, it is evident from the results that more advanced
methods and algorithms should be used. Incidents in more classes should
also be considered to increase the detection rates. As a final remark, the
incident evaluation algorithm should evaluate longer parts, e.g. 2 seconds, of
the video before incurring an alarm. This measure would further reduce the
number of false alarms.

Computational speed is important to evaluate because an AID system
should be able to operate in real-time. An important factor to evaluate is
congestion and queues because these increase the latency due to the track-
ing algorithm not being able to perform in real-time when there were many
tracks. Reduction of latency can be achieved by using smaller object detec-
tion models, less advanced tracking algorithms, simpler image enhancement
methods, or less advanced incident evaluation algorithms. However, this af-
fects the incident detection accuracy and is thus not preferable. Another
way is to either skip frames or lower the resolution of the input images. The
more advanced tracking algorithms can keep tracks even with several skipped
frames. It is thus a better option to skip frames than to use less advanced en-
hancement, detection, tracking, and incident evaluation methods. Lowering
the resolution of the input images greatly affects the detection by increas-
ing the missed detections. Hence, the resolution should only be reduced by a
small amount and used if the image enhancement method is computationally
expensive.

References

[1] “Nullvisjonen i norske vegtunneler,” Statens vegvesen. (2022), [On-
line]. Available: https://www.vegvesen.no/fag/fokusomrader/
forskning-innovasjon-og-utvikling/innovasjonspartnerskap/

nullvisjonen-i-norske-vegtunneler/ (visited on 05/01/2022).

[2] “Utfordring,” Statens vegvesen. (2022), [Online]. Available: https://
www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-

utvikling / innovasjonspartnerskap / nullvisjonen - i - norske -

vegtunneler/utfordring/ (visited on 05/01/2022).

[3] “Forskrift om minimum sikkerhetskrav til visse vegtunneler (tunnel-
sikkerhetsforskriften),” Lovdata. (2007), [Online]. Available: https:
//lovdata.no/dokument/LTI/forskrift/2007-05-15-517 (visited
on 05/01/2022).

[4] “AID i tunnel teknologisammenligning,” ViaNova. (2013), [Online].
Available: https : / / docplayer . me / 17583116 - Aid - i - tunnel -

teknologisammenligning.html (visited on 05/01/2022).

[5] Y.-K. Ki, W.-T. Jeong, H.-J. Kwon, and M.-R. Kim, “An Algorithm
for Incident Detection Using Artificial Neural Networks,” in 2019 25th
Conference of Open Innovations Association (FRUCT), ISSN: 2305-
7254, Nov. 2019, pp. 162–167. doi: 10.23919/FRUCT48121.2019.
8981509.

[6] R. Browne, S. Foo, S. Huynh, B. Abdulhai, and F. Hall, “Comparison
and analysis tool for automatic incident detection,” Transportation Re-
search Record: Journal of the Transportation Research Board, vol. 1925,
pp. 58–65, Jan. 1, 2005. doi: 10.1177/0361198105192500107.

[7] D. P. T. Martin, J. Perrin, B. Hansen, R. Kump, and D. Moore, “IN-
CIDENT DETECTION ALGORITHM EVALUATION,” p. 54, [On-
line]. Available: https : / / www . ugpti . org / resources / reports /
downloads/mpc01-122.pdf.

54

https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/utfordring/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/utfordring/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/utfordring/
https://www.vegvesen.no/fag/fokusomrader/forskning-innovasjon-og-utvikling/innovasjonspartnerskap/nullvisjonen-i-norske-vegtunneler/utfordring/
https://lovdata.no/dokument/LTI/forskrift/2007-05-15-517
https://lovdata.no/dokument/LTI/forskrift/2007-05-15-517
https://docplayer.me/17583116-Aid-i-tunnel-teknologisammenligning.html
https://docplayer.me/17583116-Aid-i-tunnel-teknologisammenligning.html
https://doi.org/10.23919/FRUCT48121.2019.8981509
https://doi.org/10.23919/FRUCT48121.2019.8981509
https://doi.org/10.1177/0361198105192500107
https://www.ugpti.org/resources/reports/downloads/mpc01-122.pdf
https://www.ugpti.org/resources/reports/downloads/mpc01-122.pdf

REFERENCES 55

[8] S. Tang and H. Gao, “Traffic-incident detection-algorithm based on
nonparametric regression,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 6, no. 1, pp. 38–42, Mar. 2005, Conference
Name: IEEE Transactions on Intelligent Transportation Systems, issn:
1558-0016. doi: 10.1109/TITS.2004.843112.

[9] X. Li, W. Lam, and M. Tam, “New automatic incident detection al-
gorithm based on traffic data collected for journey time estimation,”
Journal of Transportation Engineering, vol. 139, pp. 840–847, Aug. 1,
2013. doi: 10.1061/(ASCE)TE.1943-5436.0000566.

[10] M. S. Shehata, J. Cai, W. M. Badawy, et al., “Video-based auto-
matic incident detection for smart roads: The outdoor environmental
challenges regarding false alarms,” IEEE Transactions on Intelligent
Transportation Systems, vol. 9, no. 2, pp. 349–360, Jun. 2008, Confer-
ence Name: IEEE Transactions on Intelligent Transportation Systems,
issn: 1558-0016. doi: 10.1109/TITS.2008.915644.

[11] D. Singh and C. K. Mohan, “Deep spatio-temporal representation for
detection of road accidents using stacked autoencoder,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 20, no. 3, pp. 879–
887, Mar. 2019, Conference Name: IEEE Transactions on Intelligent
Transportation Systems, issn: 1558-0016. doi: 10.1109/TITS.2018.
2835308.

[12] J. Wang, X. Li, S. S. Liao, and Z. Hua, “A Hybrid Approach for Au-
tomatic Incident Detection,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 3, pp. 1176–1185, Sep. 2013, Conference
Name: IEEE Transactions on Intelligent Transportation Systems, issn:
1558-0016. doi: 10.1109/TITS.2013.2255594.

[13] S. K. Kumaran, D. P. Dogra, and P. P. Roy, “Anomaly Detection
in Road Traffic Using Visual Surveillance: A Survey,” ACM Comput-
ing Surveys, vol. 53, no. 6, pp. 1–26, Nov. 2021, arXiv: 1901.08292,
issn: 0360-0300, 1557-7341. doi: 10.1145/3417989. [Online]. Avail-
able: http://arxiv.org/abs/1901.08292 (visited on 04/19/2022).

[14] C. Wang, Y. Dai, W. Zhou, and Y. Geng, “A Vision-Based Video Crash
Detection Framework for Mixed Traffic Flow Environment Consider-
ing Low-Visibility Condition,” en, Journal of Advanced Transportation,
vol. 2020, e9194028, Jan. 2020, Publisher: Hindawi, issn: 0197-6729.
doi: 10.1155/2020/9194028. [Online]. Available: https://www.
hindawi.com/journals/jat/2020/9194028/ (visited on 03/15/2022).

https://doi.org/10.1109/TITS.2004.843112
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000566
https://doi.org/10.1109/TITS.2008.915644
https://doi.org/10.1109/TITS.2018.2835308
https://doi.org/10.1109/TITS.2018.2835308
https://doi.org/10.1109/TITS.2013.2255594
https://doi.org/10.1145/3417989
http://arxiv.org/abs/1901.08292
https://doi.org/10.1155/2020/9194028
https://www.hindawi.com/journals/jat/2020/9194028/
https://www.hindawi.com/journals/jat/2020/9194028/

REFERENCES 56

[15] S. Usmankhujaev, S. Baydadaev, and K. J. Woo, “Real-Time, Deep
Learning BasedWrong Direction Detection,” en,Applied Sciences, vol. 10,
no. 7, p. 2453, Jan. 2020, Number: 7 Publisher: Multidisciplinary Digi-
tal Publishing Institute, issn: 2076-3417. doi: 10.3390/app10072453.
[Online]. Available: https://www.mdpi.com/2076-3417/10/7/2453
(visited on 04/19/2022).

[16] A. Haghighat and A. Sharma, “A computer vision-based deep learn-
ing model to detect wrong-way driving using pan–tilt–zoom traffic
cameras,” en, Computer-Aided Civil and Infrastructure Engineering,
vol. n/a, no. n/a, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12819,
issn: 1467-8667. doi: 10.1111/mice.12819. [Online]. Available: http:
//onlinelibrary.wiley.com/doi/abs/10.1111/mice.12819 (vis-
ited on 03/15/2022).

[17] P. Chakraborty, A. Sharma, and C. Hegde, “Freeway Traffic Incident
Detection from Cameras: A Semi-Supervised Learning Approach,” in
2018 21st International Conference on Intelligent Transportation Sys-
tems (ITSC), ISSN: 2153-0017, Nov. 2018, pp. 1840–1845. doi: 10.
1109/ITSC.2018.8569426.

[18] L.-L. Wang, H. Y. T. Ngan, and N. H. C. Yung, “Automatic incident
classification for large-scale traffic data by adaptive boosting SVM,” en,
Information Sciences, vol. 467, pp. 59–73, Oct. 2018, issn: 0020-0255.
doi: 10.1016/j.ins.2018.07.044. [Online]. Available: https://www.
sciencedirect . com / science / article / pii / S0020025518305681

(visited on 03/15/2022).

[19] W. Wang, X. Wu, X. Yuan, and Z. Gao, “An experiment-based re-
view of low-light image enhancement methods,” IEEE Access, vol. 8,
pp. 87 884–87 917, 2020, Conference Name: IEEE Access, issn: 2169-
3536. doi: 10.1109/ACCESS.2020.2992749.

[20] “Histograms - 1 : Find, plot, analyze,” OpenCV. (), [Online]. Available:
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_

begins.html (visited on 05/04/2022).

[21] S. Theodoridis, Machine learning: a Bayesian and optimization per-
spective, 2nd edition. London: Elsevier, Academic Press, 2020, 1131 pp.,
isbn: 978-0-12-818803-3.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,”
arXiv:1311.2524 [cs], Oct. 22, 2014. arXiv: 1311.2524. [Online]. Avail-
able: http://arxiv.org/abs/1311.2524 (visited on 05/04/2022).

https://doi.org/10.3390/app10072453
https://www.mdpi.com/2076-3417/10/7/2453
https://doi.org/10.1111/mice.12819
http://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12819
http://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12819
https://doi.org/10.1109/ITSC.2018.8569426
https://doi.org/10.1109/ITSC.2018.8569426
https://doi.org/10.1016/j.ins.2018.07.044
https://www.sciencedirect.com/science/article/pii/S0020025518305681
https://www.sciencedirect.com/science/article/pii/S0020025518305681
https://doi.org/10.1109/ACCESS.2020.2992749
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_begins.html
https://docs.opencv.org/4.x/d1/db7/tutorial_py_histogram_begins.html
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524

REFERENCES 57

[23] “How single-shot detector (SSD) works?” ArcGIS Developer. (2019),
[Online]. Available: https : / / developers . arcgis . com / python /

guide/how-ssd-works/ (visited on 05/04/2022).

[24] G. Boesch. “Object detection in 2022: The definitive guide,” viso.ai.
(2022), [Online]. Available: https : / / viso . ai / deep - learning /

object-detection/ (visited on 05/04/2022).

[25] PulkitS. “A step-by-step introduction to the basic object detection
algorithms,” Analytics Vidhya. (Oct. 11, 2018), [Online]. Available:
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-

step-introduction-to-the-basic-object-detection-algorithms-

part-1/ (visited on 05/04/2022).

[26] J. Solawetz. “A thorough breakdown of EfficientDet for object de-
tection,” Medium. (Apr. 30, 2020), [Online]. Available: https : / /

towardsdatascience.com/a-thorough-breakdown-of-efficientdet-

for-object-detection-dc6a15788b73 (visited on 05/04/2022).

[27] U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5
for autonomous landing spot detection in faulty UAVs,” Sensors, vol. 22,
no. 2, p. 464, Jan. 2022, Number: 2 Publisher: Multidisciplinary Dig-
ital Publishing Institute, issn: 1424-8220. doi: 10.3390/s22020464.
[Online]. Available: https://www.mdpi.com/1424-8220/22/2/464
(visited on 05/04/2022).

[28] M. Fiaz, A. Mahmood, and S. K. Jung, “Tracking noisy targets: A
review of recent object tracking approaches,” arXiv:1802.03098 [cs],
Feb. 13, 2018. arXiv: 1802.03098. [Online]. Available: http://arxiv.
org/abs/1802.03098 (visited on 03/11/2022).

[29] S. R. Maiya. “DeepSORT: Deep learning to track custom objects in
a video,” Nanonets. (2019), [Online]. Available: https://nanonets.
com/blog/object-tracking-deepsort/ (visited on 05/04/2022).

[30] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple Online
and Realtime Tracking,” 2016 IEEE International Conference on Im-
age Processing (ICIP), pp. 3464–3468, Sep. 2016, arXiv: 1602.00763.
doi: 10.1109/ICIP.2016.7533003. [Online]. Available: http://
arxiv.org/abs/1602.00763 (visited on 04/20/2022).

[31] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime
Tracking with a Deep Association Metric,” arXiv:1703.07402 [cs], Mar.
2017, arXiv: 1703.07402. [Online]. Available: http://arxiv.org/abs/
1703.07402 (visited on 04/20/2022).

https://developers.arcgis.com/python/guide/how-ssd-works/
https://developers.arcgis.com/python/guide/how-ssd-works/
https://viso.ai/deep-learning/object-detection/
https://viso.ai/deep-learning/object-detection/
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/
https://towardsdatascience.com/a-thorough-breakdown-of-efficientdet-for-object-detection-dc6a15788b73
https://towardsdatascience.com/a-thorough-breakdown-of-efficientdet-for-object-detection-dc6a15788b73
https://towardsdatascience.com/a-thorough-breakdown-of-efficientdet-for-object-detection-dc6a15788b73
https://doi.org/10.3390/s22020464
https://www.mdpi.com/1424-8220/22/2/464
https://arxiv.org/abs/1802.03098
http://arxiv.org/abs/1802.03098
http://arxiv.org/abs/1802.03098
https://nanonets.com/blog/object-tracking-deepsort/
https://nanonets.com/blog/object-tracking-deepsort/
https://doi.org/10.1109/ICIP.2016.7533003
http://arxiv.org/abs/1602.00763
http://arxiv.org/abs/1602.00763
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402

REFERENCES 58

[32] “TensorFlow.” (2022), [Online]. Available: https://www.tensorflow.
org/ (visited on 05/04/2022).

[33] “About,” OpenCV. (2022), [Online]. Available: https://opencv.org/
about/ (visited on 05/04/2022).

[34] “Build SuperData for your AI,” SuperAnnotate. (2022), [Online]. Avail-
able: https://www.superannotate.com/ (visited on 05/04/2022).

[35] “CUDA Toolkit,” NVIDIA Developer. (Jul. 2, 2013), [Online]. Avail-
able: https://developer.nvidia.com/cuda-toolkit (visited on
05/04/2022).

[36] “COCO - common objects in context.” (2022), [Online]. Available:
https://cocodataset.org/#home (visited on 05/01/2022).

[37] B. A. Eide, “Detecting and classifying vehicles entering and exiting
a tunnel,” 2021, Accepted: 2021-09-29T16:26:48Z Publisher: uis. [On-
line]. Available: https://uis.brage.unit.no/uis-xmlui/handle/
11250/2786181 (visited on 05/02/2022).

[38] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” The KITTI Vision Bench-
mark Suite, in Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2012. [Online]. Available: http://www.cvlibs.net/
datasets/kitti/eval_object.php?obj_benchmark=2d (visited on
05/04/2022).

[39] Red D Film, Tunnel crash compilation! over 19 minutes! Nov. 7, 2015.
[Online]. Available: https://www.youtube.com/watch?v=IOxxEJpXZGU
(visited on 05/04/2022).

[40] A. S. Krishnan, Retinex image enhancement, Apr. 5, 2022. [Online].
Available: https://github.com/aravindskrishnan/Retinex-Image-
Enhancement (visited on 05/01/2022).

[41] H. Yu, C. Chen, X. Du, et al., Tensorflow model garden, https://
github.com/tensorflow/models, 2022.

[42] YOLOv5, May 1, 2022. [Online]. Available: https://github.com/
ultralytics/yolov5 (visited on 05/01/2022).

[43] T. A. Guy, Yolov4-deepsort, Apr. 29, 2022. [Online]. Available: https:
//github.com/theAIGuysCode/yolov4-deepsort (visited on 05/01/2022).

[44] N. Wojke and A. Bewley, “Deep cosine metric learning for person re-
identification,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, 2018, pp. 748–756. doi: 10.1109/
WACV.2018.00087.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://opencv.org/about/
https://opencv.org/about/
https://www.superannotate.com/
https://developer.nvidia.com/cuda-toolkit
https://cocodataset.org/#home
https://uis.brage.unit.no/uis-xmlui/handle/11250/2786181
https://uis.brage.unit.no/uis-xmlui/handle/11250/2786181
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
https://www.youtube.com/watch?v=IOxxEJpXZGU
https://github.com/aravindskrishnan/Retinex-Image-Enhancement
https://github.com/aravindskrishnan/Retinex-Image-Enhancement
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/theAIGuysCode/yolov4-deepsort
https://github.com/theAIGuysCode/yolov4-deepsort
https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.1109/WACV.2018.00087

REFERENCES 59

[45] “Intersection over union (IoU) for object detection,” PyImageSearch.
(Nov. 7, 2016), [Online]. Available: https://pyimagesearch.com/
2016/11/07/intersection-over-union-iou-for-object-detection/

(visited on 05/04/2022).

[46] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
dark,” arXiv:1805.01934 [cs], May 4, 2018. arXiv: 1805.01934. [On-
line]. Available: http://arxiv.org/abs/1805.01934 (visited on
04/30/2022).

[47] M. H. Nasseri, H. Moradi, R. Hosseini, and M. Babaee, “Simple online
and real-time tracking with occlusion handling,” arXiv:2103.04147 [cs],
Mar. 6, 2021. arXiv: 2103.04147. [Online]. Available: http://arxiv.
org/abs/2103.04147 (visited on 05/05/2022).

https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://arxiv.org/abs/1805.01934
http://arxiv.org/abs/1805.01934
https://arxiv.org/abs/2103.04147
http://arxiv.org/abs/2103.04147
http://arxiv.org/abs/2103.04147

List of Figures

3.1 Examples of histograms [19, p. 5] 14
3.2 Light reflection model [19, p. 8] 15
3.3 Retinex algorithm process [19, p. 8] 15
3.4 Example of a three layer feed forward network. [21, p. 911] . . 16
3.5 Example of a convolution on a 3x3 input matrix (A) with a

2x2 filter matrix (B) [21, p. 957] 18
3.6 Example of zero padding a 5x5 input matrix [21, p. 962] . . . 18
3.7 Example of a pooling step. The original matrix (A) is a 6x6

matrix. A window of size 2x2 and stride 2 is chosen when
performing max pooling. The resulting matrix is a 3x3 matrix
(B). [21, p. 964] . 19

3.8 Object classification vs object detection. [23] 21
3.9 Regions with CNN features [22, p. 1] 21
3.10 Architecture of a convolutional neural network with a SSD

detector. [23] . 22
3.11 The YOLOv5 architecthure. [27, p. 8] 24

4.1 Total loss graph for SSD MobileNet. 33
4.2 Total loss graph for EfficientDet. 33
4.3 Total loss graph for Faster-RCNN. 33
4.4 Training results from the YOLOv5 model. 35
4.5 Intersection over union. [45] 37

5.1 Image enhancements methods 42
5.2 Image enhancement methods 42
5.3 Example of false positive detections. 43
5.4 Masked image: Camera mounted on the ceiling. 43
5.5 Masked image: Camera mounted in the wall. 44
5.6 Crashed vehicles produce smoke which obstructs the view of

the camera. 46

60

LIST OF FIGURES 61

5.7 Comparison between pre-trained YOLOv5x and trained SSD
Mobnet . 46

5.8 The white truck obstructs the view of the wall mounted cam-
era, leading to occlusions and thus less detections. 48

List of Tables

4.1 Distribution of objects in the test dataset 30
4.2 Distribution of objects in the training dataset 30
4.3 Distribution of objects in the validation dataset 30

5.1 Image enhancement methods comparison. Pre-trained YOLOv5x
with deep SORT was used. 41

5.2 Performance evaluation. Deep SORT was used with all models. 45
5.3 Performance evaluation of deep SORT and a simple tracking

algorithm using SSD MobileNet as detection algorithm. 48
5.4 Differences in speed and missed detections using different res-

olution. The number next to the names signifies the scale
percent used. Pre-trained YOLOv5x was used as object de-
tection model. 50

62

Appendix A

Github repository

All code has been uploaded to this Github repository:

• Github: https://github.com/aleksander-vedvik/Bachelor

• Datasets

An explanation of the code and how to run is provided in the README.md
file in the repository. A link to the datasets is also provided in the repository.

63

https://github.com/aleksander-vedvik/Bachelor
https://github.com/aleksander-vedvik/Bachelor
https://drive.google.com/drive/folders/1hNMBL2MNyz5dWZdi1BR1o1X-3yypdCkJ?usp=sharing

Appendix B

Code excerpts

1 import os

2 import sys

3

4 PATH_TO_THIS_FILE = os.path.dirname(os.path.abspath(__file__)

)

5 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ tools\\’)

6 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ tools\\ deep_sort ’)

7 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\’)

8 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ training \\’)

9 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ training \\

tensorflowapi \\’)

10 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ training \\

tensorflowapi \\ research \\’)

11 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\ training \\

tensorflowapi \\ research \\ object_detection ’)

12

13 import cv2

14 import numpy as np

15 from tools.detection_model import Detection_Model

16 from tools.tracking_model import Tracking_Model

17 from tools.incident_evaluator import Evaluate_Incidents

18 from tools.performance_evaluator import Evaluate_Performance

19 import argparse

20 from tools.visualize_objects import draw_rectangle , draw_text

, draw_line

21

22 parser = argparse.ArgumentParser(

23 description="Real -time detection")

24 parser.add_argument("-m",

25 "--model",

26 help="Choose what model to use. If not

provided , SSD will be used as default.",

27 type=str)

64

APPENDIX B. CODE EXCERPTS 65

28

29 parser.add_argument("-c",

30 "--checkpoint",

31 help="Choose what checkpoint number to

use. If not provided , 3 will be used as default.",

32 type=str)

33

34 parser.add_argument("-p",

35 "--pretrained",

36 help="Choose whether to use a pre -trained

model or not. 1 = True , 0 = False (0 is default).",

37 type=str)

38

39 parser.add_argument("-s",

40 "--skip_frames",

41 help="Choose how many frames should be

skipped.",

42 type=int)

43

44 parser.add_argument("-r",

45 "--resize",

46 help="Define a scale factor to resize the

input image.",

47 type=float)

48

49 parser.add_argument("-t",

50 "--tracking",

51 help="Choose what model to use. If not

provided , DeepSort will be used as default.",

52 type=str)

53

54 parser.add_argument("-f",

55 "--file",

56 help="A file will be saved with the

filename provided. Default is no file saved.",

57 type=str)

58

59 parser.add_argument("-i",

60 "--img_enh",

61 help="Specify which image enhancement

method. Default is none.",

62 type=str)

63

64 args = parser.parse_args ()

65

66

67 def main():

68 datasets = []

69 org_path = r’.\\ data\\ Incidents \\Video ’

APPENDIX B. CODE EXCERPTS 66

70 for i in range(1, 13):

71 image_dir1 = org_path + str(i) + "\\ images \\"

72 anno_path1 = org_path + str(i) + "\\ annotations.json"

73 dataset_name = "self_annotated" + str(i)

74 datasets.append ({"dataset": dataset_name , "images":

image_dir1 , "annotations": anno_path1 })

75

76 model_filename = os.path.join(PATH_TO_THIS_FILE , ’tools/

model_data/mars -small128.pb’)

77

78 paths = {

79 "CHECKPOINT_PATH": "./ training/models/ssd_mobnet/",

80 "PIPELINE_CONFIG": "./ training/models/ssd_mobnet/

pipeline.config",

81 "LABELMAP": "./ training/annotations/label_map.pbtxt",

82 "DEEPSORT_MODEL": model_filename

83 }

84

85 image_enhancement_methods = ["gray_linear", "

gray_nonlinear", "he", "retinex_ssr", "retinex_msr", "mask

"]

86 models = ["ssd_mobnet", "faster_rcnn", "yolov5", "

yolov5_trained", "efficientdet"]

87 classes = {"car": "1", "truck": "2", "bus": "3", "bike":

"4", "person": "5", "motorbike": "6"}

88

89 model_name = "yolov5"

90 if args.model in models:

91 paths["CHECKPOINT_PATH"] = "./ training/models/" +

args.model + "/"

92 paths["PIPELINE_CONFIG"] = "./ training/models/" +

args.model + "/pipeline.config"

93 model_name = args.model

94

95 tracking_model_name = "DeepSort"

96 if args.tracking:

97 tracking_model_name = args.tracking

98

99 ckpt_number = "3"

100 if args.checkpoint is not None:

101 ckpt_number = args.checkpoint

102

103 filename = ""

104 if args.file is not None:

105 filename = args.file

106

107 image_enhancement = "None"

108 if args.img_enh is not None and args.img_enh in

image_enhancement_methods:

APPENDIX B. CODE EXCERPTS 67

109 image_enhancement = args.img_enh

110

111 if args.pretrained == "1":

112 paths["CHECKPOINT_PATH"] = "./ training/pre -trained -

models/" + args.model + "/checkpoint/"

113 paths["PIPELINE_CONFIG"] = "./ training/pre -trained -

models/" + args.model + "/pipeline.config"

114 paths["LABELMAP"] = "./ training/annotations/

mscoco_label_map.pbtxt"

115 model_name = "Pretrained"

116 ckpt_number = "0"

117 classes = {"car": "3", "truck": "8", "bus": "6", "

bike": "2", "person": "1", "motorbike": "4"}

118

119 skip_frames = 1

120 if args.skip_frames:

121 skip_frames = int(args.skip_frames)

122

123 resize = 1

124 if args.resize:

125 resize = float(args.resize)

126

127 model = Detection_Model(model_name , classes , paths ,

ckpt_number)

128 tracker_model = Tracking_Model(paths["DEEPSORT_MODEL"],

tracker_type=tracking_model_name)

129 evaluater = Evaluate_Incidents(classes)

130 pe = Evaluate_Performance("Images", datasets , classes ,

model , tracker_model)

131

132 frame_number = 0

133 while True:

134 ret , frame , new_video , mask = pe.read(resize)

135 frame_number +=1

136 if frame_number % skip_frames != 0:

137 continue

138

139 if ret:

140 frame = pe.image_enhancement(frame ,

image_enhancement , mask)

141 else:

142 print(’Video has ended!’)

143 break

144

145 if new_video:

146 new_tracking_model = Tracking_Model(paths["

DEEPSORT_MODEL"], tracker_type=tracking_model_name)

147 pe.tracking_model = new_tracking_model

148

APPENDIX B. CODE EXCERPTS 68

149 pe.detect_and_track(frame)

150

151 evaluater.purge(frame_number)

152

153 for track in pe.get_tracks ():

154 if not track.is_confirmed () or track.

time_since_update > 1:

155 continue

156

157 color , text , current_point , next_point =

evaluater.evaluate(track , frame_number)

158

159 pe.performance(track , text)

160

161 draw_rectangle(frame , track , color)

162 draw_text(frame , track , text)

163 if current_point and next_point:

164 draw_line(frame , current_point , next_point)

165

166

167 pe.status ()

168

169 result = np.asarray(frame)

170 result = cv2.cvtColor(frame , cv2.COLOR_RGB2BGR)

171 cv2.imshow("Output Video", result)

172

173 if cv2.waitKey (1) & 0xFF == ord(’q’):

174 break

175 cv2.destroyAllWindows ()

176

177 summary = pe.summary ()

178 print(summary)

179 if filename != "":

180 output_file = "./data/output/" + filename + ".txt"

181 with open(output_file , "w") as file:

182 output = f"Image enhancement: {image_enhancement

}\n"

183 output += f"Detection: {model_name }\n"

184 output += f"Tracking: {tracking_model_name }\n"

185 output += summary

186 file.write(output)

187

188 if __name__ == ’__main__ ’:

189 main()

Listing B.1: Code excerpt from the file run.py

1 import os

2 import tensorflow as tf

3 import torch

APPENDIX B. CODE EXCERPTS 69

4

5 import numpy as np

6 from object_detection.utils import label_map_util

7 #from object_detection.utils import visualization_utils as

viz_utils

8 from object_detection.builders import model_builder

9 from object_detection.utils import config_util

10

11

12 """

13 **

14 The function "detect_fn" below is taken from the source below

:

15

16 Title: TFODCourse

17 File: 2. Training and Detection.ipynb

18 Author: Nicholas Renotte

19 Date: 03.04.2021

20 Code version: 1.0

21 Availability: https :// github.com/nicknochnack/TFODCourse

22

23 **

24 """

25 @tf.function

26 def detect_fn(image , detection_model):

27 image , shapes = detection_model.preprocess(image)

28 prediction_dict = detection_model.predict(image , shapes)

29 detections = detection_model.postprocess(prediction_dict ,

shapes)

30 return detections

31

32

33 class Detection_Model:

34 def __init__(self , model_type , classes , paths={},

ckpt_number =3):

35 self.model_type = model_type

36 self.classes = classes

37 self.class_ids = classes

38 self.paths = paths

39 self.ckpt_no = ’ckpt -’ + str(ckpt_number)

40 self.configs = None

41 self.ckpt = None

42 self.category_index = None

43 self.CONFIDENCE_LEVEL = 0.6 # Confidence level for

the TensorFlowAPI models

44

45 self.model = None

APPENDIX B. CODE EXCERPTS 70

46 self.init_model ()

47

48 @property

49 def class_ids(self):

50 return self._class_ids

51

52 @class_ids.setter

53 def class_ids(self , classes):

54 class_ids = {}

55 for class_name in classes:

56 id = classes[class_name]

57 class_ids[id] = class_name

58 self._class_ids = class_ids

59

60 def init_model(self):

61 if self.model_type == "yolov5":

62 model = torch.hub.load(’ultralytics/yolov5 ’, ’

yolov5x ’)

63 # YOLOv5 stores and use cache by default. Use the

line below instead if there are any problems with cache.

64 # model = torch.hub.load(’ultralytics/yolov5 ’, ’

yolov5x ’, force_reload=True)

65 self.model = model

66 elif self.model_type == "yolov5_trained":

67 model = torch.hub.load(’ultralytics/yolov5 ’, ’

custom ’, path=’training/yolov5/yolov5/runs/train/

yolov5x_trained/weights/best.pt’)

68 self.model = model

69 else:

70 """

71

**

72 The code below until the END statement is taken

from the source below:

73

74 Title: TFODCourse

75 File: 2. Training and Detection.ipynb

76 Author: Nicholas Renotte

77 Date: 03.04.2021

78 Code version: 1.0

79 Availability: https :// github.com/nicknochnack/

TFODCourse

80

81

**

82 """

83 gpus = tf.config.experimental.

APPENDIX B. CODE EXCERPTS 71

list_physical_devices(’GPU’)

84 for gpu in gpus:

85 tf.config.experimental.set_memory_growth(gpu ,

True)

86

87 self.configs = config_util.

get_configs_from_pipeline_file(self.paths[’PIPELINE_CONFIG

’])

88 self.model = model_builder.build(model_config=

self.configs[’model’], is_training=False)

89

90 self.ckpt = tf.compat.v2.train.Checkpoint(model=

self.model)

91 self.ckpt.restore(os.path.join(self.paths[’

CHECKPOINT_PATH ’], self.ckpt_no)).expect_partial ()

92 self.category_index = label_map_util.

create_category_index_from_labelmap(self.paths[’LABELMAP ’

])

93 """

94 END

95 """

96

97 def detect(self , frame , w=0, h=0):

98 return_object = {"frame": frame , "boxes": [], "scores

": [], "object_classes": []}

99

100 if self.model_type == "yolov5" or self.model_type ==

"yolov5_trained":

101 results = self.model(frame)

102 df = results.pandas ().xyxy [0]

103 for row in df.itertuples ():

104 obj_class = str(row [7]).lower ()

105 if obj_class not in self.classes:

106 continue

107 return_object["boxes"]. append ([float(row [1]),

float(row [2]), (float(row [3])-float(row [1])), (float(row

[4])-float(row [2]))])

108 return_object["scores"]. append(float(row [5]))

109 return_object["object_classes"]. append(

obj_class)

110 else:

111 image_np = np.array(frame)

112 input_tensor = tf.convert_to_tensor(np.

expand_dims(image_np , 0), dtype=tf.float32)

113 detections = detect_fn(input_tensor , self.model)

114

115 num_detections = int(detections.pop(’

num_detections ’))

116 detections = {key: value[0, :num_detections].

APPENDIX B. CODE EXCERPTS 72

numpy ()

117 for key , value in detections.items()}

118 detections[’num_detections ’] = num_detections

119

120 detections[’detection_classes ’] = detections[’

detection_classes ’]. astype(np.int64)

121

122 for i, score in enumerate(detections["

detection_scores"]):

123 if float(score) >= self.CONFIDENCE_LEVEL:

124 x1 = float(detections[’detection_boxes ’][

i][1]) * float(w)

125 x2 = float(detections[’detection_boxes ’][

i][3]) * float(w)

126 y1 = float(detections[’detection_boxes ’][

i][0]) * float(h)

127 y2 = float(detections[’detection_boxes ’][

i][2]) * float(h)

128 class_id = str(int(detections[’

detection_classes ’][i]) + 1)

129 obj_class = self.class_ids.get(class_id)

130

131 return_object["boxes"]. append ([x1, y1, (

x2 -x1), (y2 -y1)])

132 return_object["scores"]. append(float(

score))

133 return_object["object_classes"]. append(

obj_class)

134

135 return return_object

Listing B.2: Code excerpt from the file detection model.py

1 import os

2

3 os.environ[’TF_CPP_MIN_LOG_LEVEL ’] = ’3’

4 import tensorflow as tf

5 physical_devices = tf.config.experimental.

list_physical_devices(’GPU’)

6 if len(physical_devices) > 0:

7 tf.config.experimental.set_memory_growth(physical_devices

[0], True)

8 import numpy as np

9

10 from deep_sort import preprocessing , nn_matching

11 from deep_sort.detection import Detection

12 from deep_sort.tracker import Tracker

13 from helpers import generate_detections as gdet

14

15

APPENDIX B. CODE EXCERPTS 73

16 class Tracking_Model:

17 def __init__(self , model_filename , tracker_type="DeepSort

", max_cosine_distance =0.4, nn_budget=None ,

nms_max_overlap =1.0):

18 self.model_filename = model_filename

19 self.max_cosine_distance = max_cosine_distance

20 self.nn_budget = nn_budget

21 self.nms_max_overlap = nms_max_overlap

22 self.encoder = None

23 self.tracker = None

24 self.tracker_type = tracker_type

25 self.init_tracker ()

26

27 def init_tracker(self):

28 if self.tracker_type == "DeepSort":

29 """

30

**

31 The code below until the END statement is taken

from the source below:

32

33 Title: yolov4 -deepsort

34 File: preprocessing.py

35 Author: The AI Guy

36 Date: 21.08.2021

37 Code version: 1.0

38 Availability: https :// github.com/theAIGuysCode/

yolov4 -deepsort

39

40

**

41 """

42 encoder = gdet.create_box_encoder(self.

model_filename , batch_size =1)

43 self.encoder = encoder

44 metric = nn_matching.

NearestNeighborDistanceMetric("cosine", self.

max_cosine_distance , self.nn_budget)

45 tracker = Tracker(metric)

46 """

47 END

48 """

49 else:

50 tracker = Simple_Tracker ()

51 self.tracker = tracker

52

53 def track(self , model_detections):

APPENDIX B. CODE EXCERPTS 74

54 if self.tracker_type == "DeepSort":

55 """

56

**

57 The code below until the END statement is taken

from the source below:

58

59 Title: yolov4 -deepsort

60 File: preprocessing.py

61 Author: The AI Guy

62 Date: 21.08.2021

63 Code version: 1.0

64 Availability: https :// github.com/theAIGuysCode/

yolov4 -deepsort

65

66

**

67 """

68 frame , boxes , scores , object_classes =

model_detections["frame"], model_detections["boxes"],

model_detections["scores"], model_detections["

object_classes"]

69 bboxes = np.array(boxes)

70 scores = np.array(scores)

71 object_classes = np.array(object_classes)

72

73 features = self.encoder(frame , bboxes)

74 detections = [Detection(bbox , score , class_name ,

feature) for bbox , score , class_name , feature in zip(

bboxes , scores , object_classes , features)]

75

76 boxes = np.array ([d.tlwh for d in detections])

77 scores = np.array([d.confidence for d in

detections])

78 classes = np.array([d.class_name for d in

detections])

79 indices = preprocessing.non_max_suppression(boxes

, classes , self.nms_max_overlap , scores)

80 detections = [detections[i] for i in indices]

81

82 self.tracker.predict ()

83 self.tracker.update(detections)

84 """

85 END

86 """

87 else:

88 self.tracker.update(model_detections)

APPENDIX B. CODE EXCERPTS 75

89

90 def get_tracks(self):

91 return self.tracker.tracks

92

93

94 class Simple_Tracker:

95 def __init__(self):

96 self.vehicle_count = 0

97 self.all_tracks = []

98 self.tracks = []

99 self.age = 0

100

101 def calculate_IoU(self , new_detection , old_detection):

102 if new_detection [0] > old_detection [0]:

103 x_min = new_detection [0]

104 else:

105 x_min = old_detection [0]

106 if new_detection [1] > old_detection [1]:

107 y_min = new_detection [1]

108 else:

109 y_min = old_detection [1]

110 if new_detection [2] < old_detection [2]:

111 x_max = new_detection [2]

112 else:

113 x_max = old_detection [2]

114 if new_detection [3] < old_detection [3]:

115 y_max = new_detection [3]

116 else:

117 y_max = old_detection [3]

118

119 intersection_area = (x_max - x_min) * (y_max - y_min)

120 if intersection_area < 0 or (x_max - x_min) < 0 or (

y_max - y_min) < 0:

121 return 0

122

123 union_area = ((old_detection [2] - old_detection [0]) *

(old_detection [3] - old_detection [1])) + ((new_detection

[2] - new_detection [0]) * (new_detection [3] -

new_detection [1])) - intersection_area

124

125 IoU = intersection_area / union_area

126 return IoU

127

128 def update(self , model_detections):

129 detected_objects , object_classes = model_detections["

boxes"], model_detections["object_classes"]

130

131 self.tracks = []

132 for detected_object , object_class in zip(

APPENDIX B. CODE EXCERPTS 76

detected_objects , object_classes):

133 detected_object = [detected_object [0],

detected_object [1], detected_object [0]+ detected_object [2],

detected_object [1]+ detected_object [3]]

134 for track in self.all_tracks:

135 bboxes = track.to_tlbr ()

136 IoU = self.calculate_IoU(detected_object ,

bboxes)

137 if IoU > 0.5:

138 track.boxes = detected_object

139 track.class_name = object_class

140 track.age = self.age

141 break

142 else:

143 self.vehicle_count += 1

144 track = Simple_Track(detected_object , self.

vehicle_count , object_class , self.age)

145 self.all_tracks.append(track)

146 self.tracks.append(track)

147

148 for track in self.all_tracks:

149 if self.age - track.age > 10:

150 del track

151 self.age += 1

152

153

154 class Simple_Track:

155 def __init__(self , boxes , track_id , class_name , age):

156 self.time_since_update = 0

157 self.boxes = boxes

158 self.track_id = track_id

159 self.class_name = class_name

160 self.age = age

161

162 def get_class(self):

163 return self.class_name

164

165 def is_confirmed(self):

166 return True

167

168 def to_tlbr(self):

169 return self.boxes

Listing B.3: Code excerpt from the file tracking model.py

1 import math

2

3

4 class Evaluate_Incidents:

APPENDIX B. CODE EXCERPTS 77

5 def __init__(self , classes , colors=None ,

driving_direction=None):

6 self.classes = classes

7 self.colors = colors

8 self.objects = {}

9 self.driving_direction = driving_direction

10 self.TTL = 240 # Number of frames before a track is

removed

11 self.PF = 2#7 # PF = Previous Frame: Number of

frames used to determine direction

12 self.STOPPED_DISTANCE = 3 # Distance in number of

pixels from current to previous frame to determine stopped

vehicle

13 self.DIRECTION_THRESHOLD = 10 # Amount the x and y

vectors can deviate when determining if vehicle is wrong -

way driving

14 self.min_number_of_frames = 2#24 # How many frames

must there be to evaluate stopped vehicle

15 self.update_number_of_frames = 2#12 # How often

stopped vehicle should be evaluated

16

17 @property

18 def colors(self):

19 return self._colors

20

21 @colors.setter

22 def colors(self , colors):

23 colors_default = {"alarm": (255 ,128 ,128), "ok":

(128 ,128 ,255)}

24 if colors and colors.get("alarm") and colors.get("ok"

):

25 colors_default = colors

26 self._colors = colors_default

27

28 @property

29 def driving_direction(self):

30 return self._driving_direction

31

32 @driving_direction.setter

33 def driving_direction(self , driving_direction):

34 # Driving direction should be defined with an

upstream and downstream direction

35 # Each direction should be defined as a vector: [x, y

]

36 if driving_direction is None:

37 driving_direction = {"Upstream": [], "Downstream"

: []}

38 if driving_direction.get("Upstream") is None:

39 driving_direction["Upstream"] = []

APPENDIX B. CODE EXCERPTS 78

40 if driving_direction.get("Downstream") is None:

41 driving_direction["Downstream"] = []

42 self._driving_direction = driving_direction

43

44 def purge(self , frame_number):

45 if frame_number % 24 != 0:

46 return

47 dict_of_objects = self.objects.copy()

48 for object in dict_of_objects:

49 if dict_of_objects[object]["last_frame"] <

frame_number - self.TTL:

50 del self.objects[object]

51

52 # Can be used to calculate direction based on center

points from several frames

53 def simple_linear_regression(self , track_id , frame_number

):

54 track = self.objects[track_id]

55 n = len(track["center_points"])

56 if n <= 5:

57 return None , None

58

59 current_point = (int(track["center_points"][-1][0]),

int(track["center_points"][-1][1]))

60 if frame_number % 12 != 0:

61 direction = self.objects[track_id].get("direction

")

62 if direction:

63 next_point_x = current_point [0] + direction["

distance"]

64 next_point_y = direction["alpha"] + direction

["beta"] * next_point_x

65 next_point = (int(next_point_x), int(

next_point_y))

66

67 return current_point , next_point

68

69 if n > 10:

70 n = 10

71 center_points = track["center_points"][-n:]

72

73 x_sum = 0

74 y_sum = 0

75 for center_point in center_points:

76 x_sum += center_point [0]

77 y_sum += center_point [1]

78

79 x_mean = x_sum / n

80 y_mean = y_sum / n

APPENDIX B. CODE EXCERPTS 79

81

82 numerator = 0

83 denominator = 0

84 for center_point in center_points:

85 x = center_point [0]

86 y = center_point [1]

87 numerator = (x - x_mean) * (y - y_mean)

88 denominator = (x - x_mean) ** 2

89

90 try:

91 beta = numerator / denominator

92 except Exception as e:

93 print(e)

94 beta = 0

95

96 alpha = y_mean - beta * x_mean

97

98 d = 1

99 if (center_points [-1][0] - center_points [-2][0]) < 0:

100 d = -1

101 distance = d * math.sqrt((center_points [-1][0] -

center_points [-2][0]) **2 + (center_points [-1][1] -

center_points [-2][1]) **2)

102 next_point_x = center_points [-1][0] + distance

103 next_point_y = alpha + beta * next_point_x

104 next_point = (int(next_point_x), int(next_point_y))

105

106 self.objects[track_id]["direction"] = {"alpha": alpha

, "beta": beta , "distance": distance}

107 return current_point , next_point

108

109 # Can be used to calculate direction based on center

points from current and previous frame

110 def simple_direction(self , track_id , frame_number):

111 track = self.objects[track_id]

112 n = len(track["center_points"])

113 if n <= 8:

114 return None , None

115

116 current_point = (int(track["center_points"][-1][0]),

int(track["center_points"][-1][1]))

117 if frame_number % 12 != 0:

118 direction = self.objects[track_id].get("direction

")

119 if direction:

120 x_vector = direction["x_vector"]

121 y_vector = direction["y_vector"]

122 length = direction["length"]

123 next_point = (int(current_point [0] + x_vector

APPENDIX B. CODE EXCERPTS 80

* length), int(current_point [1] + y_vector * length))

124

125 return current_point , next_point

126

127 previous_point = track["center_points"][-self.PF]

128

129 x_vector = current_point [0] - previous_point [0]

130 y_vector = current_point [1] - previous_point [1]

131 length_vector = math.sqrt(x_vector **2 + y_vector **2)

132 try:

133 x_vector /= length_vector

134 y_vector /= length_vector

135 except Exception as e:

136 print(e)

137 return None , None

138

139 length= 50

140

141 next_point = (int(current_point [0] + x_vector *

length), int(current_point [1] + y_vector * length))

142

143 self.objects[track_id]["direction"] = {"length":

length , "x_vector": x_vector , "y_vector": y_vector}

144 return current_point , next_point

145

146 def pedestrian(self , class_name):

147 if class_name == "person":

148 return True

149 return False

150

151 def stopped_vehicle(self , track_id , frame_number):

152 track = self.objects[track_id]

153 n = len(track["center_points"])

154 if n <= self.min_number_of_frames:

155 return False

156

157 if frame_number % self.update_number_of_frames != 0:

158 stopped = self.objects[track_id].get("stopped")

159 if stopped:

160 return True

161 return False

162

163 current_point = (int(track["center_points"][-1][0]),

int(track["center_points"][-1][1]))

164 previous_point = track["center_points"][-self.PF]

165

166 distance = math.sqrt((current_point [0] -

previous_point [0]) **2 + (current_point [1] - previous_point

[1]) **2)

APPENDIX B. CODE EXCERPTS 81

167

168 if distance <= self.STOPPED_DISTANCE:

169 self.objects[track_id]["stopped"] = True

170 return True

171 self.objects[track_id]["stopped"] = False

172 return False

173

174 def wrong_way_driving(self , track_id , frame_number ,

current_point , next_point , lane="Upstream"):

175 if len(self.driving_direction.get(lane)) <= 0:

176 return False

177

178 track = self.objects[track_id]

179 n = len(track["center_points"])

180 if n <= self.min_number_of_frames:

181 return False

182

183 if frame_number % self.update_number_of_frames != 0:

184 wrong_way = self.objects[track_id].get("wrong_way

")

185 if wrong_way:

186 return True

187 return False

188

189 vehicle_direction = [next_point [0] - current_point

[0], next_point [1] - current_point [1]]

190 lane_direction = self.driving_direction.get(lane)

191

192 if abs(lane_direction [0] - vehicle_direction [0]) <

self.DIRECTION_THRESHOLD and abs(lane_direction [1] -

vehicle_direction [1]) < self.DIRECTION_THRESHOLD:

193 self.objects[track_id]["wrong_way"] = False

194 return False

195 self.objects[track_id]["wrong_way"] = True

196 return True

197

198 def evaluate(self , track , frame_number):

199 class_name = track.get_class ()

200 text = f"{class_name} - {track.track_id}"

201 color = self.colors["ok"]

202 bbox = track.to_tlbr ()

203 center_point = ((int(bbox [0]) + (int(bbox [2]) - int(

bbox [0])) / 2), int(bbox [1]) + (int(bbox [3]) - int(bbox

[1])) / 2)

204 if track.track_id in self.objects:

205 self.objects[track.track_id]["center_points"].

append(center_point)

206 self.objects[track.track_id]["last_frame"] =

frame_number

APPENDIX B. CODE EXCERPTS 82

207 else:

208 self.objects[track.track_id] = {"center_points":

[center_point], "last_frame": frame_number}

209

210 # Used to determine vehicle direction:

211 # Current_point is the current center location of

the vehicle

212 # Next point is calculated by creating a vector

from the current center point and the previous center

point , and then multiplying it with a length. (Used to

draw an arrow in the vehicle direction)

213 current_point , next_point = self.simple_direction(

track.track_id , frame_number)

214

215 if self.pedestrian(class_name):

216 color = self.colors["alarm"]

217 text = "INCIDENT: Pedestrian"

218 current_point , next_point = None , None

219 elif self.stopped_vehicle(track.track_id ,

frame_number):

220 color = self.colors["alarm"]

221 text = "INCIDENT: Stopped vehicle"

222 current_point , next_point = None , None

223 elif self.wrong_way_driving(track.track_id ,

frame_number , current_point , next_point):

224 color = self.colors["alarm"]

225 text = "INCIDENT: Wrong -way driver"

226

227 return color , text , current_point , next_point

Listing B.4: Code excerpt from the file incident evaluator.py

1 import json

2 import cv2

3 import os

4 import time

5 import numpy as np

6 from helpers.retinex import SSR

7 from helpers.retinex import MSR

8

9 class Evaluate_Performance:

10 def __init__(self , type , dataset_path , classes ,

detection_model , tracking_model):

11 self.vid = None

12 self.width = 0

13 self.height = 0

14 self.scale = 1

15 self.entries = []

16 self.next_entry_index = 0

17 self.type = type

APPENDIX B. CODE EXCERPTS 83

18 self.detected_objects = []

19 self.detected_objects_previous = {}

20 self.dataset_paths = dataset_path

21 self.datasets = {}

22 self.classes = classes

23 self.detection_model = detection_model

24 self.tracking_model = tracking_model

25 self.current_video = ""

26 self.prepare ()

27

28 self.detection_time_current = 0

29 self.tracking_time_current = 0

30 self.total_time_current = 0

31 self.fps_current = 0

32

33 self.image_enhancement_current = 0

34 self.mean_image_enhancement_time = 0

35

36 self.mean_detection_time = 0

37 self.min_detection_time = -1

38 self.max_detection_time = 0

39

40 self.mean_tracking_time = 0

41 self.min_tracking_time = -1

42 self.max_tracking_time = 0

43

44 self.mean_total_time = 0

45 self.min_total_time = -1

46 self.max_total_time = 0

47

48 self.missed_detections = 0

49 self.total_number_of_real_detections = 0

50 self.total_number_of_valid_detections = 0

51 self.total_number_of_valid_detections_adjusted = 0

52 self.false_positives_detections = 0

53 self.false_positives_detections_previous = 0

54

55 self.missed_tracks = 0

56

57 self.detection_accuracy = 0

58 self.detection_accuracy_adjusted = 0

59 self.tracking_accuracy = 0

60 self.tracking_id_switches = 0

61 self.tracking_id_duplicates = 0

62 self.incident_accuracy = 0

63 self.missed_incidents = 0

64 self.false_alarms = 0

65

66 self.mean_fps = 0

APPENDIX B. CODE EXCERPTS 84

67 self.min_fps = -1

68 self.max_fps = 0

69

70 self.number_of_frames = 0

71

72 @property

73 def dataset_paths(self):

74 return self._dataset_paths

75

76 @dataset_paths.setter

77 def dataset_paths(self , datasets):

78 dataset_paths = {}

79 for dataset in datasets:

80 images = dataset.get("images")

81 annotations = dataset.get("annotations")

82 dataset_name = dataset.get("dataset")

83

84 video = dataset.get("video")

85 if video:

86 dataset_paths["video"] = video

87 elif images is None or annotations is None or

dataset_name is None:

88 continue

89 else:

90 dataset_paths[dataset_name] = {"images":

images , "annotations": annotations}

91

92 self._dataset_paths = dataset_paths

93

94 def prepare(self):

95 if self.type == "Video":

96 self.vid = cv2.VideoCapture(self.dataset_paths.

get("video"))

97 self.width = int(self.vid.get(cv2.

CAP_PROP_FRAME_WIDTH))

98 self.height = int(self.vid.get(cv2.

CAP_PROP_FRAME_HEIGHT))

99 elif self.type == "Images":

100 for dataset_name in self.dataset_paths:

101 try:

102 if "self_annotated" in dataset_name:

103 self.prepare_self_annotated(

dataset_name)

104 except Exception as e:

105 print(e)

106 self.datasets[dataset_name] = {"entries":

[]}

107 self.prepare_all_entries ()

108

APPENDIX B. CODE EXCERPTS 85

109 def prepare_self_annotated(self , dataset_name="

self_annotated"):

110 dataset = self.dataset_paths.get(dataset_name)

111 if dataset is None:

112 return

113 anno_path = dataset.get("annotations")

114 img_path = dataset.get("images")

115 mask_path = anno_path.replace("annotations.json", "

mask.png")

116

117 if anno_path is None:

118 return

119

120 with open(anno_path , "r") as annotations:

121 data = json.load(annotations)

122

123 annotation_classes_path = anno_path.replace("

annotations", "classes")

124 with open(annotation_classes_path , "r") as

annotation_classes:

125 annotation_classes = json.load(annotation_classes

)

126

127 images_list = {"entries": []}

128 for i, img in enumerate(data):

129 if i <= 0:

130 continue

131 filename = img

132 row = {"images_path": img_path , "filename":

filename , "objects": [], "mask_path": mask_path }

133

134 for object in data[img][’instances ’]:

135

136 info = {}

137 for class_ in annotation_classes:

138 if class_["id"] == object["classId"]:

139 class_name = class_["name"]

140

141 for object_attribute in object["

attributes"]:

142 for attribute_group in class_["

attribute_groups"]:

143 if object_attribute["groupId"

] == attribute_group["id"]:

144 for attribute_ in

attribute_group["attributes"]:

145 if attribute_["id"]

== object_attribute["id"]:

146 info[

APPENDIX B. CODE EXCERPTS 86

attribute_group["name"]] = attribute_["name"]

147

148 if class_name == "people":

149 class_name = "person"

150

151 if class_name not in self.classes:

152 continue

153

154 x1 = float(object["points"]["x1"])

155 y1 = float(object["points"]["y1"])

156 x2 = float(object["points"]["x2"])

157 y2 = float(object["points"]["y2"])

158

159 row["objects"]. append ({"class": class_name , "

class_id": self.classes.get(class_name), "x1": x1, "y1":

y1 , "x2": x2 , "y2": y2 , "info": info})

160

161 images_list["entries"]. append(row)

162

163 images_list[’entries ’] = sorted(images_list[’entries ’

], key = lambda i: i[’filename ’])

164 self.datasets[dataset_name] = images_list

165

166 def prepare_all_entries(self):

167 if self.type != "Images":

168 return

169

170 print("\nEntries:")

171 classes = {}

172 number_of_objects = 0

173 entries = []

174 for dataset in self.datasets:

175 for entry in self.datasets[dataset]["entries"]:

176 entries.append(entry)

177 number_of_objects += len(entry["objects"])

178 for obj in entry["objects"]:

179 if obj["class"] in classes:

180 classes[obj["class"]] += 1

181 else:

182 classes[obj["class"]] = 1

183

184 print(f"Number of files: {len(entries)}")

185 print(f"Number of objects: {number_of_objects}")

186 for obj_class in classes:

187 print(f" - {obj_class }: {classes[obj_class]}")

188 self.entries = entries

189

190 def performance(self , track , text):

191 bbox = track.to_tlbr ()

APPENDIX B. CODE EXCERPTS 87

192 object_class = track.get_class ()

193 track_id = track.track_id

194

195 x1 = bbox [0]

196 y1 = bbox [1]

197 x2 = bbox [2]

198 y2 = bbox [3]

199

200 incident = False

201 best_IoU = {"score": 0, "object": None , "real_object"

: None}

202 for real_object in self.entries[self.next_entry_index

-1]["objects"]:

203 real_object["x1"] *= self.scale

204 real_object["y1"] *= self.scale

205 real_object["x2"] *= self.scale

206 real_object["y2"] *= self.scale

207 if x1 > real_object["x1"]:

208 x_min = x1

209 else:

210 x_min = real_object["x1"]

211 if y1 > real_object["y1"]:

212 y_min = y1

213 else:

214 y_min = real_object["y1"]

215 if x2 < real_object["x2"]:

216 x_max = x2

217 else:

218 x_max = real_object["x2"]

219 if y2 < real_object["y2"]:

220 y_max = y2

221 else:

222 y_max = real_object["y2"]

223

224 intersection_area = (x_max - x_min) * (y_max -

y_min)

225 if intersection_area < 0 or (x_max - x_min) < 0

or (y_max - y_min) < 0:

226 continue

227

228 union_area = ((real_object["x2"] - real_object["

x1"]) * (real_object["y2"] - real_object["y1"])) + ((x2 -

x1) * (y2 - y1)) - intersection_area

229 if union_area < 0:

230 print(f"IA: {intersection_area}")

231 print(f"UA: {union_area}")

232 print(f"RO: x1 = {real_object[’x1 ’]}, y1 = {

real_object[’y1 ’]}, x2 = {real_object[’x2 ’]}, y2 = {

real_object[’y2 ’]}")

APPENDIX B. CODE EXCERPTS 88

233 print(f"DO: x1 = {x1}, y1 = {y1}, x2 = {x2},

y2 = {y2}")

234 raise ValueError

235

236 IoU = intersection_area / union_area

237

238 if (IoU - 1)**2 < (best_IoU["score"] - 1)**2:

239 best_IoU["object"] = {"bbox": bbox , "class":

object_class , "ID": track_id}

240 best_IoU["real_object"] = real_object

241 best_IoU["score"] = IoU

242

243 if best_IoU["object"] is not None and best_IoU["score

"] > 0.4:

244 if best_IoU["real_object"][’info’][’status ’] == "

Incident":

245 incident = True

246 self.detected_objects.append(best_IoU)

247 else:

248 self.false_positives_detections += 1

249

250 if incident and ("Stopped vehicle" in text or "

Pedestrian" in text):

251 self.incident_accuracy += 1

252 elif incident:

253 self.missed_incidents += 1

254 elif "Stopped vehicle" in text or "Pedestrian" in

text:

255 self.false_alarms += 1

256

257 def image_enhancement(self , frame , image_enhancement="",

mask=None):

258 img_enh_start = time.time()

259 if image_enhancement == "gray_linear":

260 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2GRAY)

261 frame = cv2.cvtColor(frame , cv2.COLOR_GRAY2RGB)

262 elif image_enhancement == "gray_nonlinear":

263 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2GRAY)

264 gamma =2.0

265 invGamma = 1.0 / gamma

266 table = np.array ([((i / 255.0) ** invGamma) * 255

267 for i in np.arange(0, 256)]).astype("uint8")

268 frame = cv2.LUT(frame , table)

269 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2RGB)

270 elif image_enhancement == "he":

271 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2GRAY)

272 frame = cv2.equalizeHist(frame)

273 frame = cv2.cvtColor(frame , cv2.COLOR_GRAY2RGB)

274 elif image_enhancement == "retinex_ssr":

APPENDIX B. CODE EXCERPTS 89

275 variance =300

276 img_ssr=SSR(frame , variance)

277 frame = cv2.cvtColor(img_ssr , cv2.COLOR_BGR2RGB)

278 elif image_enhancement == "retinex_msr":

279 variance_list =[200 , 200, 200]

280 img_msr=MSR(frame , variance_list)

281 frame = cv2.cvtColor(img_msr , cv2.COLOR_BGR2RGB)

282 elif image_enhancement == "mask":

283 frame = cv2.bitwise_and(frame , frame , mask=mask)

284 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2RGB)

285 else:

286 frame = cv2.cvtColor(frame , cv2.COLOR_BGR2RGB)

287

288 img_enh_end = time.time()

289 self.image_enhancement_current = img_enh_end -

img_enh_start

290 self.mean_image_enhancement_time += self.

image_enhancement_current

291

292 return frame

293

294 def detect(self , frame):

295 detection_start = time.time()

296 model_detections = self.detection_model.detect(frame ,

self.width , self.height)

297 detection_end = time.time()

298 self.detection_time_current = detection_end -

detection_start

299

300 if self.detection_time_current < 10:

301 self.mean_detection_time += self.

detection_time_current

302

303 if self.min_detection_time == -1 or (self.

detection_time_current < self.min_detection_time and self.

detection_time_current > 0):

304 self.min_detection_time = self.

detection_time_current

305 if self.detection_time_current > self.

max_detection_time and self.detection_time_current < 10:

306 self.max_detection_time = self.

detection_time_current

307

308 return model_detections

309

310 def track(self , model_detections):

311 track_start = time.time()

312 self.tracking_model.track(model_detections)

313 track_end = time.time()

APPENDIX B. CODE EXCERPTS 90

314 self.tracking_time_current = track_end - track_start

315

316 self.mean_tracking_time += self.tracking_time_current

317

318 if (self.min_tracking_time == -1 or self.

tracking_time_current < self.min_tracking_time) and self.

tracking_time_current > 0:

319 self.min_tracking_time = self.

tracking_time_current

320 if self.tracking_time_current > self.

max_tracking_time:

321 self.max_tracking_time = self.

tracking_time_current

322

323 def detect_and_track(self , frame):

324 self.number_of_frames += 1

325 model_detections = self.detect(frame)

326 self.track(model_detections)

327

328 self.total_time_current = self.detection_time_current

+ self.tracking_time_current + self.

image_enhancement_current

329 self.mean_total_time += self.total_time_current

330

331 if (self.min_total_time == -1 or self.

total_time_current < self.min_total_time) and self.

total_time_current > 0:

332 self.min_total_time = self.total_time_current

333 if self.total_time_current > self.max_total_time:

334 self.max_total_time = self.total_time_current

335

336 self.fps_current = 1.0 / (self.total_time_current)

337 self.fps_current = round(self.fps_current , 3)

338

339 self.mean_fps += self.fps_current

340 if (self.min_fps == -1 or self.fps_current < self.

min_fps) and self.fps_current > 0:

341 self.min_fps = self.fps_current

342 if self.fps_current > self.max_fps:

343 self.max_fps = self.fps_current

344

345 def read(self , resize =1):

346 if self.type == "Video":

347 return True , self.vid.read(), False , None

348 else:

349 frame = None

350 ret = False

351 new_video = False

352 mask = None

APPENDIX B. CODE EXCERPTS 91

353 try:

354 entry = self.entries[self.next_entry_index]

355 path = entry["images_path"]

356 mask_path = entry["mask_path"]

357 image_path = os.path.join(path , ’{}’.format(

entry["filename"]))

358 frame = cv2.imread(image_path)

359 self.height , self.width , _ = frame.shape

360 mask = cv2.imread(mask_path , 0)

361 ret = True

362

363 if resize <= 1:

364 self.scale = resize

365 self.width = int(self.width * self.scale)

366 self.height = int(self.height * self.

scale)

367 frame = cv2.resize(frame , (self.width ,

self.height), interpolation = cv2.INTER_AREA)

368 mask = cv2.resize(mask , (self.width , self

.height), interpolation = cv2.INTER_AREA)

369

370 if self.current_video != entry[’images_path ’]

and self.current_video != "":

371 new_video = True

372 self.current_video = entry[’images_path ’]

373 except IndexError as e:

374 print(e)

375 self.next_entry_index += 1

376

377 return ret , frame , new_video , mask

378

379 def get_tracks(self):

380 return self.tracking_model.get_tracks ()

381

382 def status(self):

383 detection_time = int((self.detection_time_current) *

1000)

384 track_time = int(self.tracking_time_current * 1000)

385 print(f"\nFrame: {self.number_of_frames}")

386 print(f"FPS: {self.fps_current}")

387 print(f"IE time: {int(self.image_enhancement_current*

1000)} ms")

388 print(f"Detection time: {detection_time} ms")

389 print(f"Tracking time: {track_time} ms")

390 print(f"Total time: {int(self.total_time_current*

1000)} ms")

391

392 avg_score = 0

393 avg_score_adjusted = 0

APPENDIX B. CODE EXCERPTS 92

394 number_of_detections_adjusted = 0

395 number_of_correct_classes = 0

396 number_of_wrong_classes = 0

397 number_of_correct_ids = 0

398 number_of_wrong_ids = 0

399 number_of_duplicate_ids = 0

400 object_ids = []

401 print("Detected objects:")

402 for detected_object in self.detected_objects:

403 print(f"\t- {detected_object[’object ’][’class ’]},

{round(detected_object[’score ’]*100, 2)} %")

404 avg_score += detected_object[’score ’]

405 if detected_object["real_object"][’info’][’

occluded ’] == "False":

406 avg_score_adjusted += detected_object[’score ’

]

407 number_of_detections_adjusted += 1

408 if detected_object["object"]["class"] ==

detected_object["real_object"]["class"]:

409 print("\t\t- Correct Class")

410 number_of_correct_classes += 1

411 else:

412 print("\t\t- Wrong Class")

413 number_of_wrong_classes += 1

414

415 if detected_object[’real_object ’][’info’][’ID’]

in self.detected_objects_previous:

416 if self.detected_objects_previous[

detected_object[’real_object ’][’info’][’ID’]] ==

detected_object[’object ’][’ID’]:

417 if detected_object[’real_object ’][’info’

][’ID’] in object_ids:

418 print("\t\t- Duplicate ID")

419 number_of_duplicate_ids += 1

420 else:

421 print("\t\t- Correct ID")

422 number_of_correct_ids += 1

423 else:

424 print("\t\t- Wrong ID")

425 if detected_object["real_object"]["class"

] != "person":

426 number_of_wrong_ids += 1

427 self.detected_objects_previous[

detected_object[’real_object ’][’info’][’ID’]] =

detected_object[’object ’][’ID’]

428 else:

429 self.detected_objects_previous[

detected_object[’real_object ’][’info’][’ID’]] =

detected_object[’object ’][’ID’]

APPENDIX B. CODE EXCERPTS 93

430 object_ids.append(detected_object[’real_object ’][

’info’][’ID’])

431

432 self.tracking_accuracy += number_of_correct_ids

433 self.tracking_id_switches += number_of_wrong_ids

434 self.tracking_id_duplicates +=

number_of_duplicate_ids

435

436 self.detection_accuracy += avg_score

437 self.detection_accuracy_adjusted +=

avg_score_adjusted

438 self.total_number_of_valid_detections += len(self.

detected_objects)

439 self.total_number_of_valid_detections_adjusted +=

number_of_detections_adjusted

440 if len(self.detected_objects): avg_score /= len(self.

detected_objects)

441 if number_of_detections_adjusted > 0:

avg_score_adjusted /= number_of_detections_adjusted

442 print(f"Average score: {round(avg_score *100, 2)} %")

443 print(f"Average score adjusted: {round(

avg_score_adjusted *100, 2)} %")

444

445 tmp_missed = 0

446 for real_object in self.entries[self.next_entry_index

-1]["objects"]:

447 if real_object[’info’][’ID’] not in object_ids:

448 self.missed_detections += 1

449 tmp_missed += 1

450 self.total_number_of_real_detections += len(self.

entries[self.next_entry_index -1]["objects"])

451

452 print(f"Missed detections: {tmp_missed}")

453 try:

454 print(f"Missed detections: {round (100* tmp_missed/

len(self.entries[self.next_entry_index -1][’ objects ’]), 1)}

%")

455 except Exception as e:

456 print(e)

457 print(f"False positive detections: {self.

false_positives_detections - self.

false_positives_detections_previous}")

458

459 self.detected_objects = []

460

461 self.false_positives_detections_previous = self.

false_positives_detections

462

463 def summary(self):

APPENDIX B. CODE EXCERPTS 94

464 text = "\n"

465 try:

466 total_detections = self.

total_number_of_valid_detections + self.

false_positives_detections

467 text += f"Scale: {int(self.scale *100)} %\n"

468 text += f"Resolution: {int(self.width*self.scale)

}x{int(self.height*self.scale)} px\n"

469 text += f"Mean image enhancement time: {int (1000

* self.mean_image_enhancement_time / self.number_of_frames

)} ms\n"

470 text += "\n"

471 text += f"Mean detection time: \t{int (1000 * self

.mean_detection_time / self.number_of_frames)} ms\n"

472 text += f"Min detection time: \t{int (1000 * self.

min_detection_time)} ms\n"

473 text += f"Max detection time: \t{int (1000 * self.

max_detection_time)} ms\n"

474 text += "\n"

475 text += f"Mean tracking time: \t{int (1000 * self.

mean_tracking_time / self.number_of_frames)} ms\n"

476 text += f"Min tracking time: \t\t{int (1000 * self

.min_tracking_time)} ms\n"

477 text += f"Max tracking time: \t\t{int (1000 * self

.max_tracking_time)} ms\n"

478 text += "\n"

479 text += f"Mean total time: \t{int (1000 * self.

mean_total_time / self.number_of_frames)} ms\n"

480 text += f"Min total time: \t{int (1000 * self.

min_total_time)} ms\n"

481 text += f"Max total time: \t{int (1000 * self.

max_total_time)} ms\n"

482 text += "\n"

483 text += f"Mean fps: \t{round(self.mean_fps / self

.number_of_frames , 1)}\n"

484 text += f"Min fps: \t{int(self.min_fps)}\n"

485 text += f"Max fps: \t{int(self.max_fps)}\n"

486 text += "\n"

487 text += f"False positive detections: \t{round

(100* self.false_positives_detections/total_detections , 1)}

%\n"

488 text += f"Missed detections: \t\t\t{round (100*

self.missed_detections/self.

total_number_of_real_detections , 1)} %\n"

489 text += "\n"

490 text += f"Detection accuracy: \t\t\t{round (100*

self.detection_accuracy/self.

total_number_of_valid_detections , 1)} %\n"

491 text += f"Detection accuracy adjusted: \t{round

APPENDIX B. CODE EXCERPTS 95

(100* self.detection_accuracy_adjusted/self.

total_number_of_valid_detections_adjusted , 1)} %\n"

492 text += f"Tracking accuracy: \t\t\t\t{round (100*

self.tracking_accuracy /(self.tracking_accuracy+self.

tracking_id_switches+self.tracking_id_duplicates), 1)} %\n

"

493 text += f"Tracking ID duplicates: \t\t{round (100*

self.tracking_id_duplicates /(self.tracking_accuracy+self.

tracking_id_switches+self.tracking_id_duplicates), 1)} %\n

"

494 text += f"Tracking ID switches: \t\t\t{round (100*

self.tracking_id_switches /(self.tracking_accuracy+self.

tracking_id_switches+self.tracking_id_duplicates), 1)} %\n

"

495 text += "\n"

496 text += f"Incident accuracy: \t{round (100* self.

incident_accuracy /(self.incident_accuracy+self.

missed_incidents), 1)} %\n"

497 text += f"Missed incidents: \t{round (100* self.

missed_incidents /(self.incident_accuracy+self.

missed_incidents), 1)} %\n"

498 text += f"False alarms: \t\t{round (100* self.

false_alarms/total_detections , 1)} %\n"

499 text += "\n"

500 text += f"Total number of valid detections: {self

.total_number_of_valid_detections }\n"

501 text += f"Total number of detections: {

total_detections }\n"

502

503 except Exception as e:

504 print(e)

505

506 return text

Listing B.5: Code excerpt from the file performance evaluator.py

1 import os

2 import io

3 import sys

4

5 PATH_TO_THIS_FILE = os.path.dirname(os.path.abspath(__file__)

)

6 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\’)

7 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\..\\ ’)

8 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\..\\ tensorflowapi \\

’)

9 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\..\\ tensorflowapi \\

research \\’)

10 sys.path.insert(0, PATH_TO_THIS_FILE + ’\\..\\ tensorflowapi \\

research \\ object_detection ’)

APPENDIX B. CODE EXCERPTS 96

11

12 os.environ[’TF_CPP_MIN_LOG_LEVEL ’] = ’2’

13 import tensorflow.compat.v1 as tf

14 from PIL import Image

15 from object_detection.utils import dataset_util

16

17 from prepare_data import Prepare

18

19 def create_tf_example(example):

20 path = example["images_path"]

21 image_path = os.path.join(path , ’{}’.format(example["

filename"]))

22 with tf.gfile.GFile(image_path , ’rb’) as fid:

23 encoded_jpg = fid.read()

24 encoded_jpg_io = io.BytesIO(encoded_jpg)

25 image = Image.open(encoded_jpg_io)

26 width , height = image.size

27

28 filename = example["filename"]. encode(’utf8’)

29 image_format = b’jpg’

30

31 x1s = []

32 x2s = []

33 y1s = []

34 y2s = []

35 classes = []

36

37 for obj in example["objects"]:

38 x1s.append(obj[’x1’] / width)

39 x2s.append(obj[’x2’] / width)

40 y1s.append(obj[’y1’] / height)

41 y2s.append(obj[’y2’] / height)

42 classes.append(obj[’class’]. encode(’utf8’))

43

44 tf_example = tf.train.Example(features=tf.train.Features(

feature ={

45 ’image/height ’: dataset_util.int64_feature(height),

46 ’image/width’: dataset_util.int64_feature(width),

47 ’image/filename ’: dataset_util.bytes_feature(filename

),

48 ’image/source_id ’: dataset_util.bytes_feature(

filename),

49 ’image/encoded ’: dataset_util.bytes_feature(

encoded_jpg),

50 ’image/format ’: dataset_util.bytes_feature(

image_format),

51 ’image/object/bbox/xmin’: dataset_util.

float_list_feature(x1s),

52 ’image/object/bbox/xmax’: dataset_util.

APPENDIX B. CODE EXCERPTS 97

float_list_feature(x2s),

53 ’image/object/bbox/ymin’: dataset_util.

float_list_feature(y1s),

54 ’image/object/bbox/ymax’: dataset_util.

float_list_feature(y2s),

55 ’image/object/class/text’: dataset_util.

bytes_list_feature(classes),

56 ’image/object/class/label’: dataset_util.

int64_list_feature ([1]) ,

57 }))

58 return tf_example

59

60

61 def main(_):

62 image_dir_night = r’..\\..\\ data\\ Training \\ raw_night \\’

63 anno_path_night = r’..\\..\\ data\\ Training \\ raw_night \\’

64

65 image_dir_raw = r’..\\..\\ data\\ Training \\raw\\’

66 anno_path_raw = r’..\\..\\ data\\ Training \\raw\\’

67

68 image_dir_kitti = r’..\\..\\ data\\ Training \\kitti \\’

69 anno_path_kitti = r’..\\..\\ data\\ Training \\kitti \\’

70

71 datasets = [{"dataset": "other1", "images":

image_dir_night , "annotations": anno_path_night},

72 {"dataset": "other2", "images":

image_dir_raw , "annotations": anno_path_raw},

73 {"dataset": "other3", "images":

image_dir_kitti , "annotations": anno_path_kitti }]

74

75 org_path = r’..\\..\\ data\\ Incidents \\Video ’

76 for i in range(1, 13):

77 image_dir1 = org_path + str(i) + "\\ images \\"

78 anno_path1 = org_path + str(i) + "\\ annotations.json"

79 dataset_name = "self_annotated" + str(i)

80 datasets.append ({"dataset": dataset_name , "images":

image_dir1 , "annotations": anno_path1 })

81

82 train_test_distribution = 0.9

83 classes = {"car": "1", "truck": "2", "bus": "3", "bike":

"4", "person": "5", "motorbike": "6"}

84

85 preparer = Prepare(train_test_distribution , datasets ,

classes)

86

87 output_path = "../ annotations/"

88

89 train_output = output_path + "train.record"

90 writer = tf.python_io.TFRecordWriter(train_output)

APPENDIX B. CODE EXCERPTS 98

91 for example in preparer.get_all_train_entries ():

92 tf_example = create_tf_example(example)

93 writer.write(tf_example.SerializeToString ())

94 writer.close ()

95 print(f’Successfully created the TFRecord file: {

train_output}’)

96

97 test_output = output_path + "test.record"

98 writer = tf.python_io.TFRecordWriter(test_output)

99 for example in preparer.get_all_test_entries ():

100 tf_example = create_tf_example(example)

101 writer.write(tf_example.SerializeToString ())

102

103 print(f’Successfully created the TFRecord file: {

test_output}’)

104

105 if __name__ == ’__main__ ’:

106 tf.app.run()

Listing B.6: Code excerpt from the file generate records.py

	front
	Bachelor___Datateknologi (32)
	Introduction
	Background
	Automatic Incident Detection (AID)
	Comparative
	Statistical
	Traffic-model-based
	Artificial intelligence based
	Mixed models

	Challenges of AID in Road Tunnels
	Objectives

	Related work
	Theory
	Image enhancement methods
	Gray transformation
	Histogram equalization
	Retinex

	Artificial Neural Networks
	Convolutional Neural Networks
	Transfer learning
	Object detection
	Faster RCNN
	Single Shot Detector (SSD)
	EfficientDet
	YOLOv5

	Object tracking
	SORT
	Deep SORT

	Approach
	Tools
	Limitations and simplifications
	Datasets
	GPU resources
	Code availability

	Datasets
	Preparation of data
	Image enhancement
	Object Detection
	TensorFlowAPI
	YOLOv5

	Tracking
	Simple tracking
	Deep Sort

	Incident evaluation
	Performance evaluation

	Discussion
	Image Enhancement
	Detection
	Tracking
	Incident evaluation
	Performance
	Model- and Analytical Improvements
	Further work

	Conclusion
	References
	Github repository
	Code excerpts

