
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR THESIS
Study program/specialization: Spring semester, 2021

Bachelor of engineering / Open

Data technology

Author: Joachim Andreassen

Subject manager: Erlend Tøssebro

Supervisor: Steve Jothen

Title of bachelor thesis:

World-wide cloud data compiled from satellite imagery

Credits: 20

Keywords: Number of pages: 105

clouds, satellites, wavelengths, + attachments/other: 4
projections, caching, world-wide,
image processing Stavanger - May 15, 2022

Contents

Contents i

Glossary vii

Summary x

1 Introduction 1

1.1 Problem . 1

1.2 About the Company . 2

1.3 Structure . 2

1.4 Technologies . 3

1.4.1 Programming language 3

1.4.2 Satpy . 3

2 Theory 5

2.1 Satellites . 5

i

CONTENTS

2.1.1 Weather satellites 5

2.1.2 Earth coverage . 6

2.1.3 Resolution verification 11

2.1.4 Scanning intervals 15

2.1.5 Future replacements 16

2.2 Satellite frequency bands 17

2.3 Obtaining satellite data . 19

2.3.1 Online resources . 19

2.3.2 Separation of data 20

2.4 Projections . 20

2.4.1 Projection selection 21

2.5 Creating world map . 23

2.5.1 Reading satellite data 23

2.5.2 Resampling . 24

2.5.3 Combining satellite images 28

2.6 Cloud detection . 30

2.6.1 Definition . 30

2.6.2 Challenges . 31

2.6.3 Methods considered 32

2.6.4 Solution . 33

ii

CONTENTS

2.7 Product generation . 34

2.7.1 Images . 35

2.7.2 Video . 35

2.7.3 Mapnik . 35

2.7.4 OpenCV . 36

2.8 Caching . 36

2.8.1 Storing downloaded data 36

2.8.2 Caching resampling calculations 36

2.8.3 Creating products from other products 37

3 Design and construction of software 38

3.1 File structure . 39

3.1.1 Files . 39

3.1.2 Data . 40

3.1.3 Data types . 40

3.1.4 Domains . 41

3.1.5 Helpers . 41

3.2 CLI . 42

3.2.1 Products . 43

3.2.2 Resolution . 43

iii

CONTENTS

3.2.3 Utctime . 43

3.2.4 Hours . 43

3.2.5 Iph . 43

3.2.6 Fps . 44

3.3 Product creation . 44

3.3.1 Data image . 46

3.3.2 Visual image . 47

3.3.3 Video . 49

3.4 Obtaining satellite data . 52

3.4.1 Satellite collection 52

3.4.2 Satellite enum . 54

3.4.3 Satellite type . 55

3.4.4 Downloaders . 55

3.5 Processing . 63

3.5.1 Loading . 64

3.5.2 Resampling . 65

3.5.3 Combining . 69

3.5.4 Cloud extracting . 84

4 Results and discussion 87

iv

CONTENTS

4.1 Image products . 87

4.1.1 Cloud accuracy . 89

4.1.2 Combining . 90

4.1.3 GOES-17 noise . 91

4.2 Video product . 92

4.2.1 Cloud movements 93

4.2.2 Day night cycle . 93

4.2.3 Consistent frame change 93

4.3 Resource usage . 94

4.3.1 Benchmark . 95

5 Economic overview 98

5.1 Direct expenses . 98

5.2 Indirect expenses . 99

5.3 Caching . 99

6 Environmental accounting 100

6.1 Emissions . 100

6.2 Benefits . 101

7 Conclusion 102

v

CONTENTS

Bibliography 103

A Email from The Norwegian Meteorological Institute 106

B External links 108

B.1 Source code . 108

B.2 Video product demonstration 108

C How to use 109

vi

Glossary

AWS Amazon Web Services. 19, 20, 55–61

band Wavelength portion, used for satellite imagery. 8, 10, 11, 17, 19, 20,
23, 24, 33, 46, 55, 58, 59, 61, 65, 66, 69, 71, 96

EQC Equidistant Cylindrical. 22–24, 28, 66, 67

ESA European Space Agency. 8, 10, 15, 19, 23, 55, 60

EUMETSAT European Organisation for the Exploitation of Meteorolog-
ical Satellites. 8, 15, 19, 20, 23, 31, 32, 34, 40, 55, 60, 61

geostationary Equatorial orbit at an altitude where satellite’s speed is
the same as the earth’s. 6, 8, 9, 14, 20, 21, 25, 33, 69, 106

GeoTIFF Image format that contains geographic data. 35, 37, 46, 86,
106

GOES-16 A geostationary satellite. 8, 16, 17, 19, 20, 55, 58, 92

GOES-17 A geostationary satellite. 8, 16, 19, 20, 55, 58, 91, 92

Himawari 8 A geostationary satellite. 8, 10–12, 16, 19, 20, 55, 58, 59, 92

HSD File format used for storing satellite data. 23

JMA Japan Meteorological Agency. 8, 15, 23, 55, 56, 59

latitude Geographic axis used to specify positions north or south. 21, 22,
48, 70, 75–77, 80–82

vii

Glossary

longitude Geographic axis used to specify positions east or west. 6, 8–11,
14, 21, 22, 28–30, 48, 67, 69, 70, 72–75, 79–82

LWIR Long-wavelength infrared. 18

Mapnik Software used for creating image of the earth. 35

Meteosat 11 A geostationary satellite. 8, 10, 11, 16, 19, 60

Meteosat 8 A geostationary satellite. 8, 10–13, 16, 19, 60

MWIR Mid-wavelength infrared. 17, 18

NASA National Aeronautics and Space Administration. 8, 15, 19, 23, 55

native format File format used for storing satellite data. 23

netCDF File format used for storing satellite data. 23, 106

NIR Short-wavelength infrared. 17, 18, 31

NOAA National Oceanic and Atmospheric Administration. 6–8, 15, 16,
19, 23, 55

NWCSAF Software for generating cloud data from satellite imagery. 33,
106, 107

OpenCV Open-source library that includes multiple computer vision al-
gorithms. 36, 51

opencv-python Python module for OpenCV. 36, 48, 51

projection Method used for showing three-dimensional objects in the two-
dimensional plane. 21–25, 28, 65

Satpy Python library for handling satellite data. 3, 4, 23–25, 27, 28, 33,
36, 54, 56, 64, 65, 69, 72, 83, 106

Scene Satpy object that handle satellite data. 3, 24, 54, 64–70, 72, 83, 84

SWIR Short-wavelength infrared. 17, 18, 31

thermal infrared light The infrared light with lower frequency. 18

viii

Glossary

TIR Thermal infrared. 17

VIS Visible light. 17

zenith angle Vertical angle of an object from straight above a position on
earth. 6, 31

ix

Summary

The goal of this project is to create visualizations of world-wide cloud cov-
erage, using satellite imagery. Visualizations created are being stored in
various formats, including images with raw cloud data, images with back-
ground of the earth, and videos showing the motion of the clouds. The
assignment is given by Time and Date AS, which is the company behind
the world’s top ranked website for time and time zones: timeanddate.com.

The visualizations of the world-wide cloud coverage are being created by
executing multiple consecutive steps. First satellite imagery is downloaded
from multiple sources. The imagery is then being resampled into having
similar attributes. With the resampled imagery, a combined image is being
made, which covers the whole globe. Using the intensity of different fre-
quencies of light, clouds are being detected and extracted, and then used
to create the final visualizations.

Due to the complexity of cloud detection, a simplified solution is being
used. This leads to reduced accuracy, as only some kinds of clouds are
detected. With further development, the cloud detection could be improved
and thereby increase the amount of clouds being detected.

x

https://www.timeanddate.com

Chapter 1

Introduction

1.1 Problem

Multiple governmental entities throughout the world provide publicly avail-
able images captured by weather satellites at regular intervals. Sourcing
these images, processing them, and storing them in a accessible formats
allows querying for cloud coverage for specific locations on Earth. The goal
of this project is to be able to render visualisations of world-wide cloud
coverage by combining and normalising partial satellite imagery provided
by different sources.

The produced world-wide visualisations should contain the most recent
satellite data available. It is therefore critical that the final program’s
execution time is kept low.

Static images at specified times should be made to visualize the global
cloud coverage. By combining these images, time-lapses should be made to
visualize the movement of the clouds.

This thesis is going to be a proof of concept, where the discovery of problems
and possibilities is in focus. Discoveries made in this thesis will later be used
as a foundation for the final program. Because this is a proof of concept,
the execution time is not as critical as it will be in the final program.

1

1.2 About the Company

1.2 About the Company

Time and Date AS is a company based just outside Stavanger, Norway.
The company operates timeanddate.com, which is the world’s top ranked
website for time and time zones. More than a million users access the web-
site every day. In addition to time and time zones, timeanddate.com also
provide services within weather, astronomy, calculators and much more.
[30]

1.3 Structure

This thesis starts off introducing the theory and decisions made in chapter 2.
The chapter includes assessments and explanations of why decisions where
made, as well as calculations supporting the different conclusions. Central
concepts that are used in this project is also explained in this chapter. A
lot of the work in this chapter is based on previous work from multiple
sources.

The design and construction of software is presented in chapter 3. This
chapter shows how the theory explained in chapter 2 is implemented, as
well as presenting design choices and algorithms.

Chapter 4 presents the results, and discusses what can be done to further
improve this project. This is followed by an economic overview in chapter 5,
and environmental accounting in chapter 6, which discusses the economic
and environmental consequences of the project’s result. Lastly, a short
conclusion is presented in chapter 7; following with the bibliography and
attachments.

2

https://www.timeanddate.com
https://www.timeanddate.com

1.4 Technologies

1.4 Technologies

1.4.1 Programming language

One of the programming languages considered for this project is Python.
Python benefits from the great amount of packages available for handling
satellite data, such as Satpy (see subsection 1.4.2 below). This reduces the
complexity and development time of the project. Speed is a concern though
when using Python, as it is a relatively slow language. Many of the libraries
that perform the heavy computations in this project reduce this concern,
as they use underlying libraries that are implemented in faster languages
like C.

Rust is another programming language that could be used in this project.
This is the language that is primarily used by Time and Date’s backend, and
therefore easily integrates with the rest of the backend. Rust is well suited
for programs that requires low runtime. Compiling directly to machine
code, and the memory management system is some of many features that
reduces Rust’s runtime. One of the disadvantages with Rust, compared to
Python, is that it has no library that handles satellite data as well as Satpy
does. The development time when using Rust will also be greater, due to
the fact that Rust is a low-level programming language.

Due to the fact that this project is a proof of concept, discovering possi-
bilities and potential problems is a greater focus than runtime. This leads
to Python being the natural choice when choosing programming language,
because of its low development time.

1.4.2 Satpy

A central technology in this project is Satpy. Satpy is a Python library for
reading, manipulating, and writing data from satellites. Satpy reduces the
concern of different file formats, as multiple file readers are implemented.
This allows reading satellite data from many different file formats into
Python objects called Scene. The satellite data in Scene objects can be
altered in multiple ways; including changing projection, image resolution

3

1.4 Technologies

and much more. Combinations of satellite frequencies can also be made
easily with Satpy. This is useful when extracting necessary data, based on
the differences between the different satellite frequencies (see 2.2 at page
17). [17]

4

Chapter 2

Theory

2.1 Satellites

Satellite imagery is used in this project to gather information about the
cloud coverage. To cover the whole earth, multiple satellites are needed.
The satellites utilized need to be designed for weather monitoring, so the
cloud cover can be extracted from the satellite images. Because of these
statements, it is important to choose the right satellites for this project’s
purpose.

2.1.1 Weather satellites

There are multiple satellites circling the earth in many different orbits.
The orbit is chosen based on the satellites’ intended applications. Figure
2.1 below contains two illustrations of orbits used by satellites monitoring
the earth’s weather:

5

2.1 Satellites

(a) Geostationary orbit (b) Polar orbit

Figure 2.1: Illustration of two different orbits obtained from NOAA [18]. The
red circles represents the orbit, while the yellow area on the earth represents the
satellite’s coverage.

Satellites in geostationary orbits are used in this project. Geostationary
satellites circle the earth at the exact same rate as the earth rotates. An
illustration of a geostationary orbit is shown above in figure 2.1a. This
makes the satellites stay above one particular location on earth. Because
of this feature, geostationary satellites are useful for obtaining weather
data, and analysing weather changes. [10]

One problem with geostationary satellites is the lack of the ability of mon-
itoring the poles. Physics makes it only possible to have geostationary
satellites above the equator. Due to the angle of the satellites, they do only
cover from 81.3◦ south to 81.3◦ north [28], which decreases at longitudes
that differs from the satellite’s. The resolution close to these latitudes is
also pretty low, as the satellite’s zenith angle is high. This problem is solved
by using polar orbiting satellites to monitor the weather at the poles. An
example of a polar orbit is illustrated in figure 2.1b above. The weather
data from the polar orbiting satellites is updated relatively rarely compared
to the geostationary weather satellites, due to their orbit [18]. Because of
this and the fact that there will be few queries on the weather at the poles,
this project will exclude the poles.

2.1.2 Earth coverage

As the geostationary satellites only cover one part of the earth, multiple
satellites must be used. Because of earth’s curvature, the resolution of the
satellite images will be lower near the edges. Figure 2.2 below show this

6

2.1 Satellites

phenomena, where the resolution is defined as square meters per pixel:

Figure 2.2: Illustration from NOAA showing the falling resolution of satellite
images near the edge [20]

.

As a consequence of the lower resolution near the edge of the satellite im-
ages (shown in figure 2.2 above), it’s beneficial to utilize other satellites for
these areas. The more satellites being used, the higher the mean resolution
will be. A downside of using more satellites, is that many of the satellite
images have to be downloaded from different places. There is also some dif-
ferences between the data the satellites provide. These differences includes
file format, resolution and other image attributes. Because of these facts,
each satellite implemented adds complexity and development time. The
number of satellites is therefore kept at a reasonable level. It is beneficial
to use satellites from the same operators, as the operators often use the
same solutions for their satellites . The satellites utilized in this project are

7

2.1 Satellites

shown in table 2.1 below:

Name Longitude Operator Bands Lowest band resolution
GOES-16 75.2◦W NASA/NOAA 16 2000m
GOES-17 137.2◦W NASA/NOAA 16 2000m

Himawari 8 140.7◦E JMA 16 2000m
Meteosat 8 41.5◦E EUMETSAT/ESA 12 3000m
Meteosat 11 0◦ EUMETSAT/ESA 12 3000m

Table 2.1: Overview over the satellites utilized in this project. Data for GOES-
16 and GOES-17 is obtained from NOAA [20]. Continuously the data for the
Himawari 8 satellite is obtained from JMA [22], while the EUMETSAT provided
the data for Meteosat 8 and Meteosat 11 [15]. Information about the bands is
received from the University of Twente. [23]

The chosen satellites shown in table 2.1 above are spread around the globe
at different longitudes. These satellites are chosen as a starting point, be-
cause they are all somewhat similar. They do all have 12 or 16 bands
(ranges of frequencies used for taking images), with pretty similar resolu-
tions. There are also similarities between the operators, which leads to
lower complexity. By drawing the tangents from each satellite to the earth,
it can be shown if all places at equator is reached with the chosen satel-
lites. To illustrate this, both earth’s radius and the satellites’ orbit altitude
is needed.

Earth’s radius is gotten from NASA Planetary Science Division [9]:

earthradius = 6371km (2.1)

Altitude of geostationary satellites is gotten from ESA [10]:

satellitealtitude = 35786km (2.2)

An illustration of the satellites from table 2.1 above with the correct mea-
surements of the earth and the satellites is shown in the figure below 2.3:

8

2.1 Satellites

Figure 2.3: Illustration made with GeoGebra showing earth with the chosen
satellites. The inner circle represents earth, while the outer represents the geo-
stationary orbit. The red dotted lines shows the outermost view of earth for each
satellite.

Figure 2.3 above reveal that every point on earth is covered using the five
chosen satellites. As illustrated in figure 2.2 at page 7 the resolution at
the outermost view each satellite have of the earth is greatly reduced. By
calculating the biggest longitude difference between two adjacent satellites,
the point on earth with the lowest resolution can be found. The biggest
longitude difference is calculated in the equations below:

9

2.1 Satellites

A = |metosat8long − metosat11long| = |41.5◦E − 0◦| = 41.5◦ (2.3)

B = |himawarilong − metosat8long| = |140.7◦E − 41.5◦E| = 99.2◦ (2.4)

C = |goes17long − himawarilong| = |137.2◦W − 140.7◦E| (2.5)
= 222.8◦E − 140.7◦E = 82.1◦

D = |goes16long − goes17long| = |75.2◦W − 137.2◦W | = 62.0◦ (2.6)

E = |metosat11long − goes16long| = |0◦ − 75.2◦W | = 75.2◦ (2.7)

By inspecting the equations above (2.3 - 2.7), it’s clear that B in equation
2.4 has the biggest angle. This is the longitude difference between the Hi-
mawari 8 and Meteosat 8 satellites. In contradiction to this, the difference
between Meteosat 8 and Meteosat 11 is the smallest. This means that it
would be beneficial if the Meteosat 8 satellite where exchanged with another
satellite that is closer to the Himawari 8 satellite. The optimal placement
of this satellite is calculated below:

optimal_longitude = (meteosat11long + himawarilong)/2 (2.8)
= (0 + 140.7◦E)/2
= 70.35◦E

Some satellites closer to 70.35◦E (from equation 2.8) than Meteosat 8 at
41.5◦E is listed below:

Name Longitude Operator Bands
INSAT-3D 82◦E ISRO 6

Electro-L N3 76◦E RosHydroMet/Roscosmos 10
FY-2H 79◦E China 5

Table 2.2: Overview over satellites considered in this project, that was not used.
Data for INSAT-3D is received from ESA [11]. The World Meteorological Or-
ganization [24] provided the data for Electro-L N3. Lastly, the data for FY-2H
was received from NSMC [6]. Information about the bands is received from the
University of Twente. [23]

10

2.1 Satellites

The satellites in table 2.2 above are all located in a longitude closer to
the center of Himawari 8 and Meteosat 11 than Meteosat 8. There are
some disadvantages with them though, compared to Meteosat 8. All of the
satellites listed has less bands than Meteosat 8. This leads to less data
being available for cloud recognition, and other potential products.

Electro-L N3 suffers the least from having a lower amount of bands, with
its 10 bands (compared 12 bands of Meteosat 8). This satellite is a Russian
satellite, which further leads to ethical issues, due to the recent invasion (at
the time of writing) of Ukraine. Insecurity of data availability and quality
is a concern due to potential sanctions that may occur.

An important benefit with the Meteosat 8 satellite, is that it is similar
to the Meteosat 11 satellite. As explained in page 7 this reduces both
complexity and development time of the program. Due to these facts, the
Meteosat 8 satellite is used, even though there exists satellites placed at
better longitudes.

2.1.3 Resolution verification

Table 2.1 at page 8 shows that the Meteosat satellites has 3000 metres as
the lowest resolution (at a perfect angle). This means that the part where
the Meteosat 8 satellite overlaps the Himawari 8 coverage is the covered
location that has the lowest resolution. The longitude with the lowest
resolution is calculated below:

worst_longitude = (meteosat8long + himawarilong)/2 (2.9)
= (41.5 + 140.7◦E)/2
= 91.1◦E

It is beneficial to calculate the resolution difference at the worst point, and
verify that it is good enough. A comparison between the resolution at a
perfect angle versus the worst angle at equator is illustrated in figure 2.4
below:

11

2.1 Satellites

Figure 2.4: Comparison made with GeoGebra of the resolution at a perfect angle
versus resolution at the worst point. Both measurement points is made of a vector
with two points that is 0.1◦ apart from each other, from Meteosat 8’s perspective.
[P, P1] is the vector from a perfect angle, while [Mid, Mid1] is the vector at the
worst point. The illustration also shows the length of these vectors.

In figure 2.4 above there exists two named vectors. These are named
[Mid, Mid1] and [P, P1], and represents Meteosat 8’s accuracy at the given
location. [Mid, Mid1] is the accuracy at the worst location, which is the lo-
cation in the middle of the edge of Meteosat 8 and the edge of Himawari 8.
These locations are marked as A and B in figure 2.4, respectively. [P, P1] is
the accuracy at the best location. With the use of GeoGebra, the lengths of
the two named vectors can be calculated and displayed. These are displayed
in the middle of figure 2.4 above. The following values are observed:

12

2.1 Satellites

|[Mid, Mid1]| = 120.4km (2.10)
|[P, P1]| = 62.5km (2.11)

With the values from equation 2.10 and 2.11, the drop in accuracy (ADP Mid)
from [P, P1] to [Mid, Mid1] can be calculated:

ADP Mid = |[P, P1]| / |[Mid, Mid1]| (2.12)
= 62.5km/120.4km

= 0.5191
= 51.91%

Equation 2.12 above shows that the accuracy of [Mid, Mid1] is 51.91% the
accuracy of [P, P1]. Dividing the resolution of Meteosat 8 with ADP Mid

gives the resolution at the location with the worst accuracy:

Midresolution = Presolution / ADP Mid (2.13)
= 3000m/0.5191
= 5779m

As calculated above in equation 2.13, the worst resolution at equator with
the satellites utilized is 5779m. The consideration of this accuracy being
good enough depends on the definition of which clouds are considered above
a specific coordinate. Clouds from 30◦ degrees vertically, relative to the
horizontal plane at any location, is in this case defined as clouds above
that location. Figure 2.5 below uses the distance from equation 2.13 above,
to show how low the measured clouds can be, before the measurement gets
too inaccurate:

13

2.1 Satellites

Figure 2.5: Illustration made with GeoGebra calculating the lowest cloud height
that is accurate with 5.78km resolution and an angle of 30◦ degrees.

By inspecting figure 2.5 above, it is noticeable that the lowest cloud height
at the location with the worst resolution at equator is 1.67km. This cloud
height represents the top of the cloud. As most cloud tops has an altitude
higher than 1.67km, this resolution is considered acceptable.

The calculations above only apply to the equator, as the satellites’ resolu-
tion decreases closer to the poles. As mentioned earlier (see page 2.1.1) the
geostationary satellites utilized in this project doesn’t cover the poles at all.
Because of this the locations above 81.3◦ north and below 81.3◦ south are
not covered at all. Latitudes close to these values will as a side effect have
lower resolution, due to the falling resolution close to the satellite images’
edges (illustrated in figure 2.2). A more practical upper limit is 75◦ north
and south, according to Planetary [25]. This applies to the points with
longitude equal to a satellite’s. To keep the upper limit good enough for
every longitude, a limit of 70◦ north and south is being used in this project.
By using this limit, the latitudes with low resolution close to the poles is
removed.

By using the upper limit of 70◦ north and south from last paragraph, with
the worst longitude of 91.1◦E from equation 2.9 at page 11, the points
with the worst resolution can be found. These points are 70.0◦N, 91.1◦E
and 70.0◦S, 91.1◦E. These points are located respectively in the north-
ern Siberia and Antarctica. Both of these point are in sparsely populated
regions, where the resolution is not that important. These regions will
therefore have good enough resolution.

14

2.1 Satellites

2.1.4 Scanning intervals

The satellites takes images of the earth at different intervals. The intervals
are often the same on satellites by the same operators. The table below
shows the scanning intervals that the chosen satellites’ operators use:

Operator Scanning interval
(minute)

EUMETSAT/ESA 15
NASA/NOAA 15

JMA 10

Table 2.3: Table showing what scanning intervals operators use for the chosen
satellites.

Table 2.3 above shows that two operators use scanning intervals of 15 min-
utes, while one scans every 10 minute. To find how often the program needs
to be run to always have the latest data, the union of the scanning minutes
in the hour of both scanning intervals must be found:

scanning_minutes = A ∪ B (2.14)
= {a ∈ 10N : a < 60} ∪ {b ∈ 15N : b < 60}
= {0, 10, 20, 30, 40, 50} ∪ {0, 15, 30, 45}
= {0, 10, 15, 20, 30, 40, 45, 50}

As seen in equation 2.14 above, the steps between the scanning minutes is
either 5 or 10 minutes. By using this information, it is known when the
program should be run, to keep the data updated at any time.

As the JMA operator with one satellite utilized in this project, has a scan-
ning interval of 10 minutes, it is not that important if the program is not
ran every time it is scanning. It could be considered to only use the scan-
ning times for the 15 minute intervals, which reduces executions per hour
from 8 (|scanning_minutes| from equation 2.14) to 4 (|B| from equation
2.14). By doing this, the program’s products will contain updated data for
4 out of 5 satellites at all times, while halving the number of executions.

15

2.1 Satellites

2.1.5 Future replacements

Because of different factors, satellites are replaced at regular intervals. The
satellites chosen in subsection 2.1 above are satellites that are operational
at the time of writing. The end of life of the satellites utilized in this
project, as well as planned replacements are listed in the table below:

Utilized End Replacement
satellite of life satellite
GOES-16 ≥ 2027 NA
GOES-17 ≥ 2029 GOES-18∗

Himawari 8 ≥ 2030 NA
Meteosat 8 Nov 2022 Meteosat 9
Meteosat 11 ≥ 2033 NA

∗GOES-18 is sent out to replace GOES-17, because of malfunctions.
The replacement is planned to happen in early 2023 [21].

Table 2.4: Table of utilized satellites with their end of life, as well as planned
replacements. Data is provided by The World Meteorological Organization [24].

As shown in table 2.4 above, satellites are replaced at regular intervals. The
Meteosat 8 satellite is for example replaced with Meteosat 9 in November
2022, which is months after the time this project carried out. Even though
the Meteosat 8 satellite is replaced in November 2022, its still being used
in standby. This makes it less crucial, as the satellite still can be used a
while after the replacement. Because of the frequent replacements, it is
important that a satellite easily can be replaced in the program, without
adding a lot of code.

As mentioned in the footnote of table 2.4, GOES-17 suffers from a mal-
function. According to NOAA the malfunction is in the cooling system,
which leads to the sensor providing imagery, not working optimally at high
temperatures. The problem is occurring during the warm season. The side
effect from this problem, is that some of the infrared imagery has reduced
operating time during the warm season. The solution to this problem is
the replacing GOES-17 with a new satellite named GOES-18. NOAA says
that GOES-18 will be operational early 2023, at the location of GOES-17.
[21]

16

2.2 Satellite frequency bands

2.2 Satellite frequency bands

Satellites used for monitoring the weather on earth take images using mul-
tiple frequency bands (ranges of frequencies). The frequencies used range
from visible to infrared light. An example of a satellite’s frequency bands
is shown in the table below:

Band Type Wavelength (µm) Resolution (m)
Band 1 VIS 0.45 to 0.49 1000
Band 2 VIS 0.59 to 0.69 500
Band 3 NIR 0.846 to 0.885 1000
Band 4 SWIR 1.371 to 1.386 2000
Band 5 SWIR 1.58 to 1.64 1000
Band 6 SWIR 2.225 to 2.275 2000
Band 7 MWIR 3.8 to 4 2000
Band 8 TIR 5.77 to 6.6 2000
Band 9 TIR 6.75 to 7.15 2000
Band 10 TIR 7.24 to 7.44 2000
Band 11 TIR 8.3 to 8.7 2000
Band 12 TIR 9.42 to 9.8 2000
Band 13 TIR 10.1 to 10.6 2000
Band 14 TIR 10.8 to 11.6 2000
Band 15 TIR 11.8 to 12.8 2000
Band 16 TIR 13 to 13.6 2000

Table 2.5: Table of the bands GOES-16 has. Received from the University of
Twente. [23]

The information in table 2.5 shows the frequency bands of the GOES-16
satellite. All the satellites utilized in this project, have similar frequency
bands, with some variations in wavelengths and resolutions. Each band
represents an image taken from the given satellite, capturing light in the
specified wavelength range. As shown in table 2.5 these frequencies ranges
from Visible light (VIS) to Thermal infrared (TIR). An illustration of the
light spectrum is shown the figure below:

17

2.2 Satellite frequency bands

Figure 2.6: Illustration that shows frequency ranges of different categories of
light. Obtained from Sunex [29].

As illustration in figure 2.6 above shows, the light spectrum is divided into
multiple categories. The categories used by the satellites in this project is
both visible and infrared light. Visible light is the light that is visible to
the human eye. Infrared light on the other hand is light that has a larger
wavelength, which the human eye cannot see.

The infrared light is divided into multiple categories: Short-wavelength in-
frared (NIR), Short-wavelength infrared (SWIR), Mid-wavelength infrared
(MWIR) and Long-wavelength infrared (LWIR). These categories are again
put into two sectors: reflected and thermal infrared. [29]

Reflected infrared light is photons reflected by an object. Both NIR and
SWIR is reflected infrared light. This leads to lower activity at night, as
the sun is not acting as a light source then. [29]

Thermal infrared light is according to Sunex all light ranging from MWIR
to LWIR. This light is often light that is emitted from a object, such as
thermal energy. As thermal energy is stored in objects over time, thermal
infrared light is not affected as much by the time of the day, as reflected
infrared light is. [29]

Using the information obtained in this subsection, it is clear that thermal

18

2.3 Obtaining satellite data

infrared light is more convenient than reflected infrared light when working
with global satellite imagery, as it is affected little by the time of the day.
Each frequency has different use cases though. Useful information can be
extracted by filtering specific brightness values of both single and combined
frequency sets. How the clouds are detected is explained in greater detail
in section 2.6.

2.3 Obtaining satellite data

As seen in table 2.1 at page 8, the satellites are managed by three different
operators. Satellites managed by the same operator can usually be imple-
mented using the same code. This is because operators typically put the
image data from satellites on the same site as the other satellites they man-
age. Other factors like file format and resolution is also often standardised
for the satellites managed by an operator. Multiple steps must be carried
out to obtain the necessary satellite data. The goal is to download the most
recent data with the highest available resolution. It is beneficial if the data
is separated into multiple files, so only the files needed can be downloaded.
An example of this is satellite images separated based on frequency bands
(explained in section 2.2 at page 17). Not every frequency band is needed,
which makes it superfluous to download them all.

2.3.1 Online resources

The two satellites operated by NASA/NOAA (GOES-16 and GOES-17)
and the Himawari 8 satellite have their data available on Amazon Web
Services (AWS). According to Amazon, AWS should provide the most re-
cent data that is available for these satellites, for free [2][3]. An advantage
of receiving the data from these three satellites out of the same resource, is
that a lot of the code can be used for all the satellites, which reduces the
time spent developing, as well as the complexity of the code. This leads to
the application being less prone to bugs.

Satisfying the reasoning above, the two satellites operated by EUMET-
SAT/ESA (Meteosat 8 and Meteosat 11) are also downloaded from the

19

2.4 Projections

same resource. Both of these satellites’ data is obtained directly from EU-
METSAT, as it is not available on AWS. The most recent data available
can be obtained without any cost [14]. The only requirement is that a user
is registered on EUMETSAT’s Earth Observation Portal.

2.3.2 Separation of data

Great separation of data at the online resource where it is received from is
beneficial to reduce the amount of data to be downloaded. This is important
to reduce download time. Download time is a concern, resulting from the
great amount of data needed for the high resolution images, that is gathered
from every satellites.

As mentioned earlier in the start of this section at page 19, not all frequency
bands are necessary when retrieving cloud data. The data from GOES-16,
GOES-17 and Himawari 8 is separated into multiple files, based on the
frequency bands. By only downloading the frequency bands needed, the
amount of data to be downloaded is greatly reduced.

Data from the Meteosat satellites is not separated in any way (except by
time). This results in superfluity when downloading the data, as even the
irrelevant frequency bands are downloaded. As there is no other resource
available to download this data from directly, there is no way to get past
this problem.

2.4 Projections

Satellite imagery from geostationary satellites is images taken of the earth,
where the earth is represented as a two-dimensional sphere. This represen-
tation of earth is called Geostationary Satellite View. A figure visualizing
the Geostationary Satellite View is shown below:

20

2.4 Projections

Figure 2.7: An illustration of Geostationary Satellite View, obtained from the
PROJ documentation [26].

Figure 2.7 above shows how the images retrieved from the satellites look
like. This is called a projection of the earth, as it is a method used for show-
ing the three-dimensional earth in the two-dimensional plane. According
to GISGeography this is exactly what a map projection does [16]. A pro-
jection is generally a representation of the earth in the two-dimensional
plane.

2.4.1 Projection selection

The produced products in this project needs to be represented in a con-
venient way. As the goal of this project is to show the world-wide cloud
coverage, a projection that shows the entire earth is needed. It is also
beneficial if the projection is ordered by latitude and longitude. This is
because it makes it simpler to work with programmatically. Cylindrical
projections are a group of projections that shows the entire earth, while
having the latitude and longitude ordered. The projection used to repre-
sent the final result in this project will therefore be a cylindrical projection.
A visualization of a cylindrical projection is shown below:

21

2.4 Projections

Figure 2.8: Cylindrical projection illustration by GISGeography [16].

A cylindrical projection is shown above in figure 2.8, where the spherical
earth is projected onto the cylinder as shown to the left. This results in
the projection shown to the right. Unlike the resulting projection shown in
figure 2.8 above, the projection utilized should have linear latitude changes.
This makes it simpler to find the latitudes mathematically. A cylindrical
projection that has linear latitude changes is shown below:

Figure 2.9: Equidistant Cylindrical projection received from the PROJ docu-
mentation [26]

The Equidistant Cylindrical (EQC) projection is shown above in figure 2.9.
This is a cylindrical projection that has linear latitude changes. In addition
to this, the latitude and longitude scale is equal, which makes it act like a

22

2.5 Creating world map

grid, where indexes is easily convertible to coordinates. This fact simplifies
calculations, and therefore the programmatic implementation. Because of
these features, Equidistant Cylindrical projection is chosen as the projection
for the final products.

2.5 Creating world map

The creation of the world map from the downloaded data is central in
this project. This includes both resampling individual satellite images (see
subsection 2.5.2), as well as combining the images into an image of the
entire earth (see subsection 2.5.3). As explained in section 2.2, starting
at page 17, not all frequency bands are needed. Both the resampling and
combination phase are performed for every frequency band utilized, as a
world map is needed for every frequency range that is used.

2.5.1 Reading satellite data

Before the satellite data can be used, the data must be read. A lot of code
is needed to perform this task, as the satellite data is provided in different
file formats. The file format is chosen by the operator, which means that it
is often similar for satellites that have the same operator. A table showing
the file format used by each operator is listed below:

Operator File type
EUMETSAT/ESA native format [13]

NASA/NOAA netCDF [1]
JMA HSD (bz2 compressed) [22]

Table 2.6: Table showing what file type operators use for their satellites.

The file types in table 2.6 above do all need separate readers. Reading
the satellite data in this project is straightforward thanks to the python
package Satpy (see section 1.4.2). Satpy provides multiple readers, where
all the file types from table 2.6 is supported. The readers read the satellite

23

2.5 Creating world map

data into Satpy objects called Scene, which act the same independent of
which reader was used.

Another benefit with Satpy’s Scene object is that it does not load the
frequency bands before it is told to. Which frequency bands being loaded
can also be chosen. These facts reduce unnecessary data loading, as only
the needed bands are the ones that are loaded.

2.5.2 Resampling

Before the world map can be generated, images from each satellite must
be resampled. This will alter the images so they are having the same
resolution and projection as the final world map. As concluded at page
23, Equidistant Cylindrical projection will be used. When all the satellite
images are resampled, the process of combining them into a world map will
be a lot simpler. The combining process is explained in detail in subsection
2.5.3 below.

Resampling is an advanced process that depends on multiple calculations
that needs to be accurate. As this process is as advanced as it is, potential
debugging is also harder. Resampling is straightforward in this project,
because of the usage of Satpy [27]. With few parameters, Satpy is able to
resample the satellite data into a wide range of projections at any resolu-
tion. This also reduces the concern of the hard debugging that follows with
mathematical errors.

Below is an illustration showing the satellite image before and after the
resampling:

24

2.5 Creating world map

(a) Before (b) After

Figure 2.10: Before and after resampling. Resampled from geostationary to
projection.

Choosing resample algorithm

One of the necessary parameters for Satpy resampling is the resampling
algorithm that is going to be used. Satpy provides multiple resampling al-
gorithms that each have their own benefits and disadvantages. Information
about these algorithms is documented in the Satpy documentation [17].
Some of the algorithms considered for this project are listed below:

• Nearest

• Bucket Average

• Bilinear

The nearest algorithm is the simplest of the ones listed above. An illustra-
tion of how it works is shown below:

25

2.5 Creating world map

Figure 2.11: 1 dimensional nearest neighbour sampling. The green point shows
the new value, made from point A and B.

The illustration in figure 2.11 above shows how the nearest algorithm works.
The new point’s value is found from the value of the point that is nearest
to the new point.

Another algorithm considered is the bucket average algorithm:

Figure 2.12: Bucket average sampling. The green point shows the new value,
made from point A and B.

As figure 2.12 illustrates above, the bucket average sampling sets the new
value to the average of the closest points’ values.

26

2.5 Creating world map

The bilinear algorithm is the last considered algorithm. The one dimen-
sional version of this algorithm is illustrated below:

Figure 2.13: Linear sampling. The green point shows the new value, made from
point A and B.

Figure 2.13 illustrates linear sampling, which shows the principle of bilinear
sampling, only in one dimension. Bilinear sampling calculates the new
point’s value based on the old points’ values and their distances from the
new point. Values at the old points closest to the new point have higher
influence on the new value.

The values in the satellite images contain pixels that has a value of the
average light coming from that direction. If the pixel were located a little
bit more to the left, it would contain more of the light that appears to
the left, and less of the light from the right. This is similar to what is
happening in bucket average and bilinear sampling. The value of a point
generated in these algorithms is in the same way the average of the light
coming from the close points. This does not apply to the nearest sampling.
Nearest sampling is therefore not used.

In this project bilinear sampling is used as the resample algorithm. This is
because of the fact that it also weightens how close it is to the old points,
unlike bucket average.

Another benefit with bilinear sampling is that Satpy has implemented the

27

2.5 Creating world map

ability to cache for it [17]. Caching is explained in detail in section 2.8.

2.5.3 Combining satellite images

Combining satellite images into one world-wide map is a central part of
this project. As mentioned in subsection 2.5.2 above, the resampled im-
ages is helpful when combining the images. The resampled images is all in
Equidistant Cylindrical projection, while having the same resolution as the
final products will have. Satpy has functionality built in that handles mul-
tiple satellite images. This does not include combination of satellite images
of different locations though. Because of this, the combining algorithm is
manually programmed.

General description of algorithm

The goal of this algorithm is to create a world-wide map from the satellite
images. Each point covered by any satellite should contain a value based
on the data available for that particular point. If multiple satellite provides
data for a point, all the relevant satellites should affect the resulting value,
based on the quality of the satellites’ imagery at that point. The algorithm
is only going to add data from locations at latitudes within 70◦ north and
south (explanation of this boundary in subsection 2.1.3).

Merging satellite imagery

As mentioned above, imagery from multiple satellites should be used if
available for any point. Because of the fact that data at longitudes closer to
a satellite’s longitude has better quality, these locations should be weighted
more than locations further away. As a consequence of this, only the two
satellites closest to the specific location is considered.

When choosing how much a satellite influence the final value at a point,
the sigmoid function is used together with the distance from the middle of
the two influencing satellites’ longitudes. The sigmoid function is expressed

28

2.5 Creating world map

mathematically as following:

S(x) = 1
1 + e−x

(2.15)

The sigmoid function from equation 2.15 above is shown graphically below:

Figure 2.14: Graph of the sigmoid function

Figure 2.14 above shows a graph of the sigmoid function. As shown in the
figure, S(x) converges towards 0 if x is less than 0, and towards 1 if x is
more than 0. S(x) is 0.5 when x is 0. This function is used to combine
values from two satellites. If a point’s longitude is in the middle of two
satellites’ longitudes, the sigmoid function will calculate the following:

x = 0 (2.16)

S(0) = 1
1 + e−0 = 0.5

Equation 2.16 above shows that the value from both satellites is going to
be used 50% each (from 0.5), if a points longitude is in the middle of the
satellites’ longitudes.

The equation below shows what happens if the satellite is closer to satellite
A than satellite B:

29

2.6 Cloud detection

x = 1 (2.17)

S(1) = 1
1 + e−1 = 0.73

In equation 2.17 x is bigger than 0, which means that it is closer to satellite
A than B. When this is put into the sigmoid function, 0.73 is returned,
which tell that the value from satellite A should count for 73% of the value,
while satellite B should count for the remaining 27%.

If x is big, the sigmoid function will return a number close to 1, which will
almost only weighten the closest satellite. This means that only the points
with longitudes that is close to the center of two satellites’ longitudes will
merge the satellites’ values in a noticeable scale. This leads to a smooth
transition between the weighing of satellites’ values.

2.6 Cloud detection

Detecting clouds from satellite imagery taken with multiple frequencies is
a central part of this project. By filtering light intensity between different
boundaries, clouds can be detected. Frequencies can also be used together,
where the differences between the light intensity is used to detect the clouds.
The time of the day, as well as variances in the temperature are factors that
increases the difficulty of detecting clouds. Clouds do also appear in dif-
ferent shapes and altitudes, which leads to their properties being different.
Because of this, handling clouds with different properties is needed to get
all the clouds.

2.6.1 Definition

What a cloud is does not have a clear definition. This has been defined
together with Time and Date (the company this project is done for). A
cloud is defined in this case as any cloud-like object that can be observed
from space. This includes clouds in the sky, as well as fog, which is closer
to the ground. The result is going to show how much cloud is at any point,

30

2.6 Cloud detection

instead of a boolean value. The final product is going to show an image of
the earth, with clouds as seen from space at daytime.

2.6.2 Challenges

As mentioned above, there are many challenges and factors that plays a
role in cloud detection. Some of these are mentioned below.

Detection based on time of day

As EUMETSAT describes, clouds behaves differently depending on the
time of day. This is due to the lack of sunlight and colder temperatures at
nighttime [12]. As mentioned in section 2.2 the lack of sunlight at nighttime
makes reflective light (visible, NIR and SWIR) not very useful. The thermal
light is still useful though, as it is not affected much by the time of day.
This means that thermal light is more straightforward to use.

When using reflected light, the amount reflected must be taken into ac-
count. The solar zenith angle can be used for this. EUMETSAT shows
that their calculations are using the solar zenith angle [12], which makes
it possible to gradually change the mathematical expression, based on the
amount of reflective light.

Detection over sea

Reflection and temperature differences between sea and land are other chal-
lenges that must be handled. Because of this, the earth’s seas must be
mapped, so it is known where to use algorithms for sea and land. EU-
METSAT mention another problem introduced with the high reflectivity
of water. Sunglints may disturb the result at some locations over water.
This means that it is necessary to detect these sunglints, and handle them
with respective algorithms. [12]

31

2.6 Cloud detection

Separating clouds from snow and ice

Snow and ice is made of the water and ice crystals, just like clouds. Ac-
cording to EUMETSAT, this leads to difficulties differentiating clouds from
snow and ice [12]. A solution to this, is mapping areas with snow and ice,
due to the fact that snow and ice usually remain in the same place over some
time. This can be done with light at wavelength 1.6µm, because snow/ice
absorbs this sunlight, in contrast to clouds [19]. The wavelength of 1.6µm
is reflective light (see section 2.2), which means that it is only usable at
daytime. To overcome this problem, three satellite images with 8 hours
between could be used to get imagery of the whole globe with daytime.

Other methods separating clouds from snow and ice do also exist. These
depends on texture difference, and the movement of clouds. These methods
are hard to implement programmatically though, as they cannot determine
based on single pixels.

Low clouds

Low clouds is another challenge. Low clouds do often have similar prop-
erties as cloud free areas at low altitudes. This means that they are more
affected by the environment changes at night, which again leads to the need
of different algorithms based on the time of day.

2.6.3 Methods considered

Machine learning

Because of the highly complex classification of clouds from satellite imagery,
machine learning is often used [7]. Machine learning is well suited for
problems like cloud detection, as there exists a lot of data that can be used
for training. The authors of this report has little knowledge of machine
learning. This method is therefore not considered, to reduce the scope of
the project.

32

2.6 Cloud detection

NWCSAF

While researching methods available for cloud detection, an email was sent
to The Norwegian Meteorological Institute, asking for tips (see attachment
A). The responsible for running the algorithms at The Norwegian Meteo-
rological Institute, Trygve Aspnes, responded by recommending a software
named NWCSAF. This software uses imagery from geostationary satellites
to detect cloud data. It has been decided together with Time and Date
that this software is not going to be used, as it raises some concerns. Copy-
right and licences is a potential issue when using external software like this.
Support for all current and future utilized satellites is also not guaranteed,
which could lead to an unusable program.

Algorithmic

Another method that is considered is algorithmic detection. This method
depends on manually filtering and combining of frequencies. Combining
frequencies is well supported by Satpy, as it supports arithmetic between
frequency bands. Subsection 2.6.2 above mentions some of the problems
that needs to be handled manually with the algorithmic detection method.
This introduces a great deal of manual work, where every factor that influ-
ence clouds, and satellite images in general, needs to be handled.

2.6.4 Solution

Detecting clouds from satellite imagery is a complex task, that is broad
for a project at this scale. Aspnes mention that The Norwegian Meteoro-
logical Institute has been developing their solution for more than 20 years
(see attachment A). Because of the great complexity of detecting clouds, a
simplified solution is used.

Many methods for detecting clouds from satellite imagery has been consid-
ered, which are mentioned above in subsection 2.6.3. As mentioned, both
machine learning and the NWCSAF software are methods that are decided
to not be put to use. Because of this the algorithmic method is chosen as

33

2.7 Product generation

the utilized method.

As the cloud detection is simplified, the challenges mentioned in subsection
2.6.2 above is avoided. This leads to multiple things:

• Reflective light will not be used, as it depends on the time of day

• Detection over sea is not handled differently than over land

• Sunglint is not considered

• Separating clouds from snow and ice is not done, which leads to snow
and ice being detected as clouds

• Low clouds is not detected

The program’s product is on the other hand containing high clouds. Ac-
cording to EUMETSAT high clouds may be detected at 10.8µm. To make
this wavelength fitting for every satellite, it is changed to 10.6µm.

Changing the cloud detection is made to be straightforward when designing
the program, as the algorithm may be changed in the future, so it is able
to detect more clouds. This also makes it straightforward to change the
program into producing information about e.g. cloud fires or gas emissions,
if this is wanted at some point.

2.7 Product generation

As mentioned in the problem description in section 1.1, the cloud coverage
is going to be visualized as static images, as well as time-lapse videos.
This can be done with just the cloud coverage data generated, or with a
background of the world showing the relative location of the clouds.

34

2.7 Product generation

2.7.1 Images

The static image is useful as a data-only image, as well as a visual image
with the background of the earth. The data-only image is useful when
extracting cloud data for a specific position, while the visual image is useful
for visualizing the cloud coverage.

As the data-only image is dependent of precise positions, it is stored in the
GeoTIFF format. GeoTIFF is an image format that contains geographic
data, which makes it useful for geographic uses. In addition to the GeoTIFF
format, the data-only image may also be stored as a PNG image, which is
used in the creation of the visual image. The GeoTIFF format does not
support transparency by default, which makes PNG images more suitable
for further use in the code.

The visual image is stored as a PNG image, as it is only used for visuals.
The PNG format has lossless compression, which makes the image’s file
size smaller, while retaining the quality.

2.7.2 Video

The time-lapse video is made from the visual image, as it is made to get
a visualization of the clouds movement, and not to extract data. By using
multiple visual images, a video can be made with a chosen amount of hours
with a chosen amount of images per hour. Number of frames per second
shown is also chosen when executing the program.

2.7.3 Mapnik

Creating the background image of the earth is done with the help of the
Mapnik software. Mapnik is software made for this purpose. As the image
is only going to be used for visualization, it is not created at every time
the background image is needed. Instead, one image is created, which is
being scaled to fit cloud data at any resolution, before the visual image is
created.

35

2.8 Caching

2.7.4 OpenCV

A lot of the creation of the visual image and the video product is done
with OpenCV. OpenCV is an open-source library that includes several
hundreds of computer vision algorithms [5]. To make it convenient to use
with Python, a module named opencv-python has been made. This is the
module that is being used in this project.

2.8 Caching

Caching is an important concept when dealing with great amount of data,
or time consuming procedures. By storing reusable data on the hard drive,
runtime may be minimized. Caching is used in many areas in this project.

2.8.1 Storing downloaded data

Downloading the satellite data is a time consuming process, as it is a great
amount of data that is downloaded. It is therefore beneficial to keep the
downloaded data stored for future uses.

2.8.2 Caching resampling calculations

As mentioned in subsection 2.5.2 about resampling, Satpy is using caching
when refactoring satellite imagery. Satpy saves a lot of the calculations
done when resampling, which can be used at a later time, when a similar
dataset at the same resolution is resampled. This reduces the resampling
runtime by a great deal.

36

2.8 Caching

2.8.3 Creating products from other products

When running the program, the products specified are produced. By stor-
ing the data-only product, regardless of what product is wanted, higher
level products can be made out of that lower data-only product. As the
GeoTIFF format is not officially supporting alpha values (transparency),
the data-only product is also stored in the PNG format. This makes it more
convenient to load the image later, when creating higher level products.

By creating higher level products from lower level products, most of the
heavy calculations are skipped. Runtime is especially reduced when creat-
ing videos, where lower level products are already made for the previous
time stamps. Situations where products are generated regularly, so recent
world-wide cloud data is always available, are predicted to be a regular use
case of the program. In these scenarios, video generation will be fast, as
lower level products are already generated.

37

Chapter 3

Design and construction of
software

This chapter shows and explains how the software is designed and con-
structed. Both code examples and diagrams are used to illustrate the
software’s structure. A lot of the software is based on theory explained
in chapter 2.

38

3.1 File structure

3.1 File structure

Understanding the file structure is a good place to start, to understand how
the software is constructed. The software is created in a directory named
wwclouds (short for world-wide clouds). The directory, as well as some of
its files and sub-folders is shown below:

wwclouds
__main__.py
config.py
credentials.ini
data/

downloads/
product/
satpy/

data_types/
Dockerfile
domains/

product/
satellite/
processing/

helpers/
requirements.txt

As shown in the directory tree above, the software is structured in sub-
folders. The sub-folders right below wwclouds is data, data_types,
domains and helpers. The files and sub-folders in the directory tree above
is explained in greater detail below.

3.1.1 Files

The files in the top-level of the wwclouds directory are files that are general
for the whole software. In the case of this project, the top-level files can be
categorized into three categories: entry point, configuration and setup.

The only file in the entry point category is __main__.py. This is the entry
point of the software. The filename given is a special filename for python

39

3.1 File structure

projects, which tells the interpreter that this is the file that is going to run
when the wwclouds directory is called on by the python interpreter.

The two files in the configuration category are config.py and
credentials.ini. The credentials.ini file contains credentials which
is specific for each user. The only content of this file is credentials for
the EUMETSAT API. In addition to this, the config.py file is also being
used for configuration. This file stores all configuration for the software,
including file paths, urls, and so on.

Files used for setting up the software are put in the setup category. This in-
cludes Dockerfile and requirements.txt. Dockerfile is used for build-
ing a docker image. This is useful, as the application has a lot of complexity
with dependencies. The docker image makes sure that the software is easy
to run. requirements.txt is the file that contains modules and packages
used in the project. This file simplifies the installation of modules and
packages.

3.1.2 Data

The data sub-folder is the directory responsible for storing cached data, as
well as products created. All the different types of cached data mentioned
in section 2.8 at page 36, are being stored in separate directories. Both
the desired products and the cached products are stored in the product
directory.

3.1.3 Data types

The data_types directory contains generic data types that are not directly
linked up to a specific domain. Data types that are linked to a specific
domain are placed in the directory with the associated domain, as this
increases separation of concerns.

40

3.1 File structure

3.1.4 Domains

The domains directory contains a sub-folder for each domain. Each domain
contains code for different concerns.

A central domain in this project is the product domain. This domain
handles product creation. An in-depth explanation of the product creation
can be found in section 3.3.

The satellite domain handles problems related to the satellites, which
includes downloading, as well as other satellite related problems (explained
in greater detail in section 3.4).

The problems related to processing of satellite data, happens in the
processing domain. This includes resampling (section 3.5.2, combining
(section 3.5.3) and cloud image creation (section 3.5.4).

3.1.5 Helpers

General classes that do not have a direct connection to a specific domain
are placed in the helpers folder. This includes classes helping with math,
lists and so on.

41

3.2 CLI

3.2 CLI

A CLI (command-line interface) has been developed to run the software. As
the program is intended to be executed by the backend, and not by the end
user, a simple and concise CLI is beneficial compared to a GUI. Information
about the CLI can be found by executing the following command:

$ python wwclouds --help
usage: wwclouds [-h] [--utctime UTCTIME] [--hours HOURS]

[--iph IPH] [--fps FPS]
{imagedata,imagevisual,video}
[{imagedata,imagevisual,video} ...]
resolution

positional arguments:
{imagedata,imagevisual,video}

the desired output
resolution resolution of the product

optional arguments:
-h, --help show this help message and exit
--utctime UTCTIME timestamp (defaults to current time)
--hours HOURS hours of video, going backwards (only

applicable to video output)
--iph IPH images per hour (only applicable to

video output)
--fps FPS frames per second (only applicable to

video output)

As shown above, there are two arguments required when executing the pro-
gram: products and resolution. Additionally there is one optional argu-
ment for specifying time. In addition to these arguments, there are three
more required arguments if video is one of the chosen products: hours,
iph (image per hour) and fps (frames per hour). These arguments are
explained in greater detail below.

42

3.2 CLI

3.2.1 Products

The products argument is one of the required arguments, which represents
the desired output. Multiple values are possible, which will lead to the pro-
gram producing multiple products. The available products are representing
the products introduced in section 2.7: imagedata, imagevisual and video.

3.2.2 Resolution

The second required argument is resolution. This argument accepts an
integer, which represents the resolution of the product. The resolution is
the products’ desired length and width in meters, of each pixel.

3.2.3 Utctime

Utctime is an optional argument, which represents what time the products
should be generated for. This time should be specified in unix time. If the
argument is not given, the program will use the current time. The program
do not support timestamps that goes beyond the satellites’ operating time.
This would lead to an exception being raised.

3.2.4 Hours

One of the three video arguments is hours. This argument is used for
specifying the number of hours the video should contain. The last frame in
the video will be at the time related to the utctime argument, while the
first frame is the specified number of hours before the last frame.

3.2.5 Iph

Iph (images per hour) is another argument required when creating the
video product. The number of images within each hour is specified by this
argument.

43

3.3 Product creation

3.2.6 Fps

To specify the speed of the video, the fps (frames per second) argument is
added. The update frequency of videos is usually specified by frames per
second. Frames per second describes how many frames there is within one
second of video. In the case of this project, the frames per second is also
specifying the speed of the video, as the total amount of frames is already
set by the hours and iph arguments.

3.3 Product creation

The software is centralized around creating various products, which are
chosen by the user through the command-line interface, mentioned above
in section 3.2. As mentioned in subsection 2.8.3, higher level products are
created out of lower level products, where lower level products are cached
for future requests. The logic of product creation is centralized around
creating the desired products from lower level products. The flowchart
below shows the product creation logic:

44

3.3 Product creation

Figure 3.1: Flowchart showing a general overview over the product creation

The flowchart in figure 3.1 above gives a general overview over how the
products are generated. This includes the logic where higher level products
are generated from lower level products. The code below shows how the
general product creation is implemented, excluding the handling of already
created products:

45

3.3 Product creation

Code 3.1: domains/product/product_creator.py. General product creation
177 print("Creating imagedata")
178 self.__create_imagedata_for_products()
179 if self.product_enum & (ProductEnum.IMAGEVISUAL | ...

ProductEnum.VIDEO):
180 print("Creating imagevisual")
181 self.__create_imagevisual()
182 if self.product_enum & ProductEnum.VIDEO:
183 print("Creating video")
184 self.__create_video()

Code 3.1 above and the flowchart in figure 3.1 shows that the GeoTIFF
data image is created, regardless of what products is specified (line 178). It
is only created if it does not exist though, for the given time. The reason
why it is created at all times, is because of the fact that it is the lowest level
product. Every other product depends on the GeoTIFF data image. Using
the same reasoning, it is shown that the visual image is created every time
the video product is desired (line 179-181). This is also only if the visual
image has still not been created for the given time. How each product is
created is explained in greater detail in subsection 3.3.1 to 3.3.3 below.

3.3.1 Data image

As explained in subsection 2.7.1, the data image is a product that contains
only the generated cloud data, without any background. Because this is
the lowest level product, the process of creating the image from scratch is
necessary. This process contains multiple sequentially executed steps:

1. Downloading the necessary satellite data (see 3.4).

2. Create a combined world-wide dataset, containing data for each satel-
lite band utilized (see 3.5.2 and 3.5.3).

3. Create cloud image from the world-wide dataset (see 3.5.4).

The process of creating the data image that is explained above, is a time
consuming process. This is the reason why it is beneficial to cache the data
image, as explained in subsection 2.8.3.

46

3.3 Product creation

3.3.2 Visual image

The visual image is, as mentioned in subsection 2.7.1, useful as a visualiza-
tion of the clouds. A background image of the earth is added to visualize
the relative position of the clouds. To create the visual image, both the
data image and the background image is needed. The data image is created
as described in 3.3.1 above, while the background image is being statically
available, as it has already been created (subsection 2.7.3 describes how the
background was initially created). The background image is shown below:

Figure 3.2: Image of the earth, used as a background image

The background image of the earth, shown in figure 3.2 above, shows the
earth’s landmass in dark green, and oceans/lakes in dark blue. Having the
image dark makes the white clouds more visible when they are added to
the image.

Essentially, what the creation of the visual image is doing, is adding the
data image on top of the background image. Before this can be done,
the background image must first be resized to match the data image’s
resolution. The following code shows how the background image is loaded
and resized:

Code 3.2: domains/product/image_visualimage_visual.py. Loading and resiz-
ing background image.
48 image = cv2.imread(self.world_map_filepath, ...

cv2.IMREAD_UNCHANGED)
49 image_resized = cv2.resize(image, self.resolution)
50 self.__image = image_resized

47

3.3 Product creation

As shown in code 3.2 above, the cv2 module (opencv-python) is being used
for both reading and resizing the background image. When reading the
image at line 48, IMREAD_UNCHANGED is used as read mode [5]. This tells
cv2 to read the image as it is. After loading the image, it is resized (at line
49) to have the same resolution the data image. When the image is resized
it is assigned to the self.__image attribute, which is the attribute that
contains the image used for the visual image creation.

After loading and resizing the background image, the data image is being
added. The code showing how the data image is added is shown below:

Code 3.3: domains/product/image_visualimage_visual.py. Adding data image
onto background image.
80 for c in range(0, 3):
81 self.__image[y1:y2, :, c] = (alpha_s * s_img[:, :, ...

c] + alpha_l * l_img[y1:y2, :, c])

The code in 3.3 is generalized to work with images of different resolutions.
Because of this, s_img and l_img is used to represent the smaller and
larger image. In this case, s_img is the data image, and l_img is the
background image. Line 80 start off by iterating over the indexes of the
three channels that contains colors. For each iteration, a channel is added
to the self.__image attribute. This is shown in line 81. As the l_img
variable may be larger vertically than the s_img, a range with the vertical
size of the s_img (y1 to y2) is used. This is not done horizontally on the
x-axis, as both images has previously been resized to have the same length
on the x-axis. The reason why the images has been resized to have the
same length horizontally, but not vertically, is because both images must
contain the whole range of longitudes, while it is acceptable if they do not
contain latitudes close to the poles.

As shown in line 81, the channels of each image is multiplied by alpha
matrices (alpha_s and alpha_l). These matrices represents the desired
alpha values (transparency) of each image. The alpha_l matrix is created
to be the inverted of the alpha_s, which is shown in the code below:

Code 3.4: domains/product/image_visualimage_visual.py. Creating alpha_l.
77 alpha_l = 1.0 - alpha_s

48

3.3 Product creation

The alpha matrices in code 3.4 contains floats between 0 and 1. As the
matrices is the inverted of each other, adding them together would make
a matrix containing only ones. Going back to code 3.3, it is noticeable
that each channel is being multiplied with the the alpha matrices. As the
alpha values adds up to ones, a image without any transparency is created,
where each value is weighted based on the associated alpha matrix. This
leads to a combined image where the data image, is added to the top of the
background image.

3.3.3 Video

The highest level product is the time-lapse video product, which is ex-
plained in subsection 2.7.2. As mentioned, the video product is a video
made for visualization purposes, created from visual images. The prop-
erties of the video is decided by the hours, iph and fps CLI arguments
(explained in section 3.2). Using the properties specified, the video creation
is done by executing the following method:

Code 3.5: domains/product/product_creator.py. Method that create video.
171 def __create_video(self) -> None:
172 image_paths = ...

self.__create_imagevisuals_for_video(...
self.hours, self.images_per_hour)

173 VideoMaker(self.__video_path, image_paths, ...
self.fps).create()

Code 3.5 shows a general overview over how the video is generated. As
seen in line 172, the visual images are first created. With the paths of
each visual image created, the video can be generated at line 173. These
methods are explained in greater detail below.

Creating visual images for video

As mentioned, the method __create_imagevisuals_for_video is respon-
sible of creating the images used in the video. This method is displayed
below:

49

3.3 Product creation

Code 3.6: domains/product/product_creator.py. Method that create visual im-
ages for video.

159 def __create_imagevisuals_for_video(self, hours: int, ...
frames_per_hour: int) -> list[str]:

160 image_paths = []
161 for hour in range(hours):
162 for hour_frame in range(frames_per_hour):
163 minute = int((60 / frames_per_hour) * ...

hour_frame)
164 time_stamp = self.utctime - ...

time∆(hours=hour, minutes=minute)
165 product_creator = self.__copy(...

product_enum=ProductEnum.IMAGEVISUAL, ...
utctime=time_stamp)

166 product_creator.create_products()
167 image_paths.append(...

product_creator.imagevisual_path)
168 image_paths.reverse()
169 return image_paths

The method shown in code 3.6 above starts of at line 161 by iterating over
a range with length equal to the desired number of hours. The same logic
continues on line 162, with the number of frames wanted per hour. Using
the position of both of these iterators, the time stamps going backwards, is
being calculated at line 163-164. The time stamp is traversing backwards
in time at a constant speed at each iteration.

For every time stamp, a product_creator object of the class
ProductCreator is created at line 165. The ProductCreator is the class
that handles the creation of product at a specific time. The new
product_creator object is made as a copy of the existing one, which
leads to attributes like the resolution being transferred. The utctime and
product_enum attributes are being changed in the new object though, as
it is only the visual image at the time of the time_stamp variable, that
needs to be created. Using the product_creator object, the visual image
product is being created with the method call on line 166.

After the visual image at a time has been created, its path is being added
at line 167 to a list containing all the paths of the newly created visual
images. When all the visual images has been created, the list containing
their paths is being reverted at line 168. This makes the list sorted after
the associated time of each ProductCreator object.

50

3.3 Product creation

Creation of the video itself

With the visual images created, the creation of the video itself is ready
to be started. This is done with the VideoMaker class, which is used in
code 3.5 on page 49. The VideoMaker class accepts three arguments: the
video’s destination path, the images’ source paths and the number of frames
per second. The object of the VideoMaker class is used with the create
method, which creates the video from the images’ source paths, and put
them into a video at the given destination path. The create method is
shown below:

Code 3.7: domains/product/video_maker/video_maker.py. Method that create
video from a list of images.
10 def create(self):
11 start_frame = cv2.imread(self.image_paths[0])
12 height, width , _ = start_frame.shape
13 fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', ...

'v')
14 video = cv2.VideoWriter(self.dest_path, fourcc, ...

self.fps, (width, height))
15 for image_path in self.image_paths:
16 frame = cv2.imread(image_path)
17 video.write(frame)

The method shown in code 3.7 above, starts of at line 11-12 to receive
the height and width of the first image. This will be the shape of the
created video. Line 13 continues with getting the opencv-python (see 2.7.4
for more information about OpenCV) object for writing mp4 videos. This
object is used together with the shape of the image, the specified fps and the
destination path, to create an object of the VideoWriter class. The video
object of the VideoWriter class is being used to write the image frames
into the video destination path. This is done at line 15-17. The source
image’ paths is iterated over, before they are read and finally written to
the destination path, using the video object of the VideoWriter class.

51

3.4 Obtaining satellite data

3.4 Obtaining satellite data

Obtaining the satellite data is necessary, before the creation of the data
image can begin. This is done in the satellite domain (see 3.1.4 at page 41).
The theory behind obtaining the satellite data is explained in section 2.3 on
page 19. The code is centralized around having the possibility of replacing
the utilized satellites, in a simple way. Why this is important is explained
in subsection 2.1.5. Another focus has been to keep the complexity of
obtaining satellite data hidden from other parts of the code. Doing this
makes the data easier to work with outside of the satellite domain. How
the cases mentioned above are handled is explained in detail in the following
subsections.

3.4.1 Satellite collection

As mentioned, keeping the complexity of obtaining the satellite data is a
priority in this domain. To collect the handling of all satellites collected, the
SatelliteCollection class has been created. The SatelliteCollection
class is working as a collection that interacts with multiple satellites.

To create a new SatelliteCollection object, the following __init__
method is being called:

Code 3.8: domains/satellite/satellite_collection.py. SatelliteCollection
__init__ method.
11 def __init__(self, satellite_enums: list[SatelliteEnum]):
12 self.satellites: [SatelliteType] = ...

list(map(SatelliteMapping.get_satellite_type, ...
satellite_enums))

The __init__ method of the SatelliteCollection class shown above in
code 3.8, accepts a list of SatelliteEnum enum objects. Each of these
enums represents different satellites (explained in subsection 3.4.2 below).
At line 12, these enums are used with the static SatelliteMapping class
to get an associated SatelliteType object. The SatelliteType class is a
class used for grouping satellites of the same type. This class is explained

52

3.4 Obtaining satellite data

in greater detail in subsection 3.4.3.

Using the self.satellites list containing SatelliteType objects (see
line 12 in code 3.8 above), the SatelliteCollection object can easily
interact with all the different satellites. Two public methods has been
created doing this.

One of the two public methods implemented for the SatelliteCollection
class is the get_scan_times_strings method shown below:

Code 3.9: domains/satellite/satellite_collection.py. Method for SatelliteCollec-
tion that retrieve strings representing the scanning start times.
22 def get_scan_times_strings(self, frequencies: ...

list[float], utctime: datetime) -> tuple[str, str]:

What the get_scan_times_strings method in code 3.9 above does, is
finding the times for when each satellite starts to scan (starts to take the
image). A tuple of two strings is then returned. The first string is repre-
senting the specific day, while the second string represents the times of the
day that each satellite started to create the imagery. Finding the times is
done by looking backwards from the time specified in the argument. The
strings returned by this method is useful when storing the downloaded data.
These strings can then later be used to identify downloaded satellite data.

The second public method the SatelliteCollection class has is called
download_all, and is shown below:

Code 3.10: domains/satellite/satellite_collection.py. Method for SatelliteCol-
lection that download satellite data for all utilized satellites.
30 def download_all(self, frequencies: ...

Optional[list[float]], utctime: datetime) -> ...
[downloader.FileReader]:

To make downloading of all the desired satellite data easier, the
download_all shown in code 3.10 above has been made. This method ac-
cepts time and a list of frequencies as arguments. Using these arguments,
the method is downloading satellite data of the given time and frequencies,
for every satellite specified in the constructor (see code 3.8). As described

53

3.4 Obtaining satellite data

in subsection 2.3.2 at page 20, the satellites separate the data in multiple
files, in different file formats (see subsection 2.5.1). This problem is handled
by returning a list of the FileReader class.

The FileReader class accepts file paths and the name of a file reader as
arguments. This class has one task: reading the file paths, with the reader
specified. It returns a Satpy Scene object, which is useful later when pro-
cessing the satellite data.

3.4.2 Satellite enum

The SatelliteEnum class is implemented to make satellite selection sim-
pler. This is a subclass of the Enum class, which makes it act like an enum.
As it is desirable to use every satellite, a class method named all has been
implemented:

Code 3.11: domains/satellite/satellite_enum.py. SatelliteEnum all method.
11 @classmethod
12 def all(cls) -> ["SatelliteEnum"]:
13 return [satellite_enum for satellite_enum in cls]

The all method shown above in code 3.11 iterates through SatelliteEnum,
and creates a list of every element in it. This method allows for cleaner
code in cases where every satellite is necessary. An example where the
SatelliteCollection class is used together with the all method is shown
below:

Code 3.12: domains/product/product_creator.py. SatelliteEnum all method,
used together with the SatelliteCollection class.
11 self._satellite_collection = ...

SatelliteCollection(SatelliteEnum.all())

As shown in code 3.12 above, the SatelliteCollection class and the
SatelliteEnum.all method makes it simple for other domains to initialize
a collection of satellites. It is then, as mentioned in subsection 3.4.1, easy
to use code that handles all satellites.

54

3.4 Obtaining satellite data

3.4.3 Satellite type

To group similar satellites, the SatelliteType class has been made. Group-
ing satellites is done with satellites from the same operator that have
similar properties, as well as similar ways to download its data. The
SatelliteType class acts as a superclass for underlying classes, which is
implemented for every group of satellites.

The subclasses of the SatelliteType class are useful for two things. This
includes mapping frequencies and bands, as well as creating a downloader
object which will be used for downloading data for the specific satellite
(explained in depth in subsection 3.4.4 below).

The mapping between frequencies and bands is being hard coded for ev-
ery subclass, even though this is usually considered bad practice. This is
because it will not change at any time for any satellite type. Mapping
frequencies and bands is necessary, as the bands are used to find the files
online. The bands are not something that should be exposed to domains
other than the satellite domain though, as the frequencies are what decides
what the data may be used for. The bands are therefore being found with
the mapping, before the bands are being used for anything. The code that
gets bands from frequencies are made in the SatelliteType superclass,
which makes them useful for every SatelliteType subclass.

In contrast to the subclasses for the satellites from NASA/NOAA and JMA,
mappings are not being implemented for the subclass for satellites from
EUMETSAT/ESA. The mappings are not necessary for these satellites as
the files are not separated by bands (see subsection 2.3.2 at page 20).

3.4.4 Downloaders

The actual downloading of the satellite data is done with help of the
Downloader class, and subclasses originating from it. As told in section
2.3 at page 19, the satellite data is received from two providers: AWS and
EUMETSAT. This is handled by creating a subclass of the Downloader
class for both of them. AWS provides data for both the GOES satellites
(GOES-16 and GOES-17) from NASA/NOAA and the Himawari 8 satellite

55

3.4 Obtaining satellite data

from JMA. A subclass from the AWS class is thereby created for both of
these operators. The structure of the downloader classes is shown below:

Downloader
Aws

Himawari
NoaaGoes

Meteosat

Splitting the downloaders into multiple classes is beneficial, as it increases
code reusability. Code reusability is important in this case, as satellites will
be replaced regularly (see subsection 2.1.5). Facilitating code reusability
makes it simple to replace satellites at later occasions. An explanation
of the classes shown in the tree above is provided in greater detail in the
following subsections.

Downloader superclass

The superclass of the downloaders is helpful as it provides a generic in-
terface for all the downloaders. This makes it more convenient to use the
downloaders. As shown below at line 13-16 in code 3.13, the arguments that
every downloader subclass needs to provide to the superclass’s constructor
is subdir, reader and update_frequency.

Code 3.13: domains/satellite/downloader/downloader.py. Downloader super-
class constructor.
12 class Downloader(metaclass=abc.ABCMeta):
13 def __init__(self,
14 subdir: str,
15 reader: str,
16 update_frequency: time∆):
17 self.subdir = subdir
18 self.reader = reader
19 self.update_frequency = update_frequency

The subdir argument is the sub directory, relative to the download direc-
tory (mentioned in section 3.1), that the data from the downloader is going
to be downloaded to. Which Satpy reader is going to be used is specified

56

3.4 Obtaining satellite data

with the reader argument. Lastly, the update frequency of the data is
being specified in the update_frequency argument.

Every subclass of the Downloader class must also implement two methods:

Code 3.14: domains/satellite/downloader/downloader.py. Downloader abstract
methods
21 @abc.abstractmethod
22 def _download(self, bands: Optional[List[str]], time: ...

datetime) -> [str]:
23 pass
24

25 @abc.abstractmethod
26 def _get_previous_scan_start_time_for_band(self, band: ...

str, time: datetime) -> datetime:
27 pass

As shown above in code 3.14 above, the methods named _download and
_get_previous_scan_start_time_for_band are abstract methods, which
must be implemented by every subclass. The abc.abstractmethod deco-
rator makes sure that these methods are implemented, as it raises an error
otherwise.

Aws

As mentioned, the Aws class is one of the subclasses of the Downloader
class. It is also the superclass of both the NoaaGoes and Himawari class.
This means that it acts as a layer between the Downloader and NoaaGoes/
Himawari classes. It provides both the two methods in code 3.14, as well
as methods interacting with its subclasses. The methods interacting with
its subclasses includes both abstract methods and methods that helps its
subclasses interact with Amazon Web Services (AWS). In addition to these
methods, it requires two more arguments in its constructor, in addition to
the ones that the Downloader superclass needs. These additional arguments
are the strings bucket and product.

57

3.4 Obtaining satellite data

The strings bucket and product are two variables that are used for finding
files in AWS. The illustration below gives a visualization of AWS stores
data:

Figure 3.3: Illustration of how data is stored in aws.

Figure 3.3 shows how the bucket and product is used to find data in AWS.
Every collection of data in AWS is stored in buckets. In the case of this
project, GOES-16, GOES-17 and Himawari 8 do all have their own bucket.
The buckets stores data in multiple variants. It is the variant of the full
disc that is needed for all the utilized satellites. This is therefore chosen
as the AWS product. The files are then stored in a hierarchy of directories
based on time, with filenames that reflect the products. How the hierarchy
is organized is different for the GOES-16/GOES-17 and Himawari 8 satel-
lites. Because of this, the following abstract method is being made for all
subclasses of the Aws class:

Code 3.15: domains/satellite/downloader/aws.py. Aws abstract method for ob-
taining prefix of files’ path in AWS.
27 @abc.abstractmethod
28 def _get_aws_prefix_for_band(self, band: str, time: ...

datetime) -> str:
29 pass

The abstract method introduced in code 3.15 above is implemented for both
the NoaaGoes and Himawari subclasses. It returns a string containing the
prefix of the path to files of the specified band, at the specified time. If no
file is found with the given arguments, the program is searching backwards
in time for matching files. This leads to searching for files becoming a time
consuming process. The results from the method that searches for files are
therefore being cached in memory, using lru_cache.

The prefixes received for specific bands at specific times, are extended into
receiving all the paths to files with that prefix. Using this further, paths

58

3.4 Obtaining satellite data

to files of all the utilized bands are found for the specified time. When all
the paths are found, the following code is executed:

Code 3.16: domains/satellite/downloader/aws.py. Code in Aws class that down-
loads the imagery from AWS
87 for key in keys:
88 file_path = self._get_local_file_path(key)
89 if not self._file_is_downloaded(key):
90 s3t.download(self.bucket, key, file_path)

The code in 3.16 above shows how files are downloaded from AWS. It starts
of by iterating through every key (Amazon Web Services (AWS) path) at
line 87. Continuing on line 88, the local file path is generated from the key.
Line 89 checks thereafter if the file has been downloaded before. If it is not
downloaded before, the code at line 90 starts the downloading.

As mentioned in table 2.6, the Himawari 8 satellite by JMA is compressed
as a bz2 file. Because of this, post handler method is being run after
downloading:

Code 3.17: domains/satellite/downloader/aws.py. Post handler method call in
the Aws class that runs on every downloaded file.
93 return list(map(self._file_posthandler, file_paths))

The post handler method, self._file_posthandler, in code 3.17 above
is executed on every downloaded file. If the method is not implemented in
any subclass, it is just returning the file path. This method is useful for
the Himawari subclass though. The method is being overwritten by the
subclass to decompress the bz2 files that is downloaded. It is then deleting
the compressed bz2 files, which at this point is not necessary anymore.
Doing this makes the subclasses more consistent. Now all the Aws subclasses
returns decompressed files.

59

3.4 Obtaining satellite data

As mentioned earlier, the Aws class implements two abstract methods. The
second one is shown below:

Code 3.18: domains/satellite/downloader/aws.py. Aws abstract method for get-
ting the scanning start time from object key
31 @abc.abstractmethod
32 def _get_scan_start_time_from_object_key(self, ...

object_key: str) -> datetime:
33 pass

The abstract method shown in code 3.18 above is getting the starting time
of the scan from keys (AWS paths). This is useful, as the staring time is nec-
essary when implementing the _get_previous_scan_start_time_for_band
method (shown in code 3.14) of the Downloader superclass. The starting
time is not available in any places other than in the key and the actual file.
As it is beneficial to not download the whole file, every time the starting
time is needed, the key is being parsed instead.

Meteosat

The second direct subclass of the Downloader class is the Meteosat down-
loader class. This class is responsible for downloading the satellite data for
the EUMETSAT/ESA satellites: Meteosat 8 and Meteosat 11. EUMET-
SAT has created an API for interacting with its satellites’ data, which is
being utilized. To download any data from EUMETSAT, a user account
at their systems is needed (mentioned in section 2.3 at page 19). The cre-
dentials for this user account is being stored in the credentials.ini file.
This file must be created manually by every user of the software, as it is
user specific (see subsection 3.1.1).

Before any data can be downloaded from the API, an access token is needed.
This token is fetched with the help of the credentials for the EUMETSAT
user. The method below shows how the access token is fetched:

60

3.4 Obtaining satellite data

Code 3.19: domains/satellite/downloader/meteosat.py. Start of method that
receives access token.
50 def __get_access_token(self) -> str:
51 response = requests.post(
52 url=config.METEOSAT_TOKEN_ENDPOINT,
53 auth=requests.auth.HTTPBasicAuth(...

config.METEOSAT_CONSUMER_KEY, ...
config.METEOSAT_CONSUMER_SECRET),

54 data={'grant_type': 'client_credentials'},
55 headers={"Content-Type": ...

"application/x-www-form-urlencoded"}
56)
57 response_json = response.json()
58 access_token = response_json.get('access_token')

Method __get_access_token in code 3.19 above, shows how the access
token for the EUMETSAT API is fetched. The API has a separate endpoint
(line 52) for receiving the token, which uses the user credentials (line 53)
to verify that the user is legitimate.

When the access token is fetched, the Meteosat API needs a collection id
to find the desired product. This collection id does the same as the bucket
and product in AWS (see figure 3.3). It describes which satellite is going
to be used, and that it is going to use the full disc product. In the same
way as with the Aws class’ data, the data is sorted on scanning start time.
By using the specified time, the path to the desired file can be found right
away. The only exception of this is for times that does not contain any
data yet. In these cases, the program is searching for data at other times,
going backwards, in the same way as the Aws class does. As the data is not
separated in multiple files by bands (see subsection 2.3.2), filtering unused
bands is not needed.

After the file path has been found, the url for downloading the given file is
being created. With the access token and download url, the data is ready
to be downloaded. A response steam is created for this purpose:

61

3.4 Obtaining satellite data

Code 3.20: domains/satellite/downloader/meteosat.py. Code that creates a
stream for downloading the satellite imagery in the Meteosat class.

101 if not self._file_is_downloaded(download_url):
102 access_token = self.__get_access_token()
103 stream_response = requests.get(
104 url=download_url,
105 params={"format": "json"},
106 stream=True,
107 headers={"Authorization": f"Bearer ...

{access_token}"})

Code 3.20 above shows how the downloading of data in the Meteosat class
starts off. This code starts at line 101 of by checking if the file has been
downloaded before, as it is not necessary to download it if it can be found
locally. The access token is then fetched at line 102. With the access to-
ken and download url, a response stream is created at line 103-107. As
shown in line 107, the access token is added to the header. A stream is cre-
ated, because it allows for downloading in chunks, which is beneficial when
downloading big amounts of data. This way, the data can be downloaded
without loading the entire file into memory.

The stream created in code 3.20 above is being written in iteration to a
local file path. This is shown in the following code:

Code 3.21: domains/satellite/downloader/meteosat.py. Code that reads the
stream created in code 3.20.

108 with open(filepath, "wb") as f:
109 for chunk in stream_response.iter_content(...

chunk_size=1024):
110 if chunk:
111 f.write(chunk)
112 f.flush()

The local file path of the file that is being downloaded, is at line 108 in
code 3.21 above being opened in write-binary mode. This makes it possible
to write the downloaded binary data to the file. Line 109 continues with
iterating through the stream. This downloads the file in chunks of 1024
bytes, in each iteration. These chunks are then being written to the local
file at line 111-112. After downloading the file, the file path is returned to
the Downloader superclass, which creates a file reader of the FileReader
class (mentioned in 3.4.1) for it. The file is then being ready for use outside
of the satellite domain.

62

3.5 Processing

3.5 Processing

As mentioned in subsection 3.3.1, the process of creating the data image
product, must be done by scratch, as this is the lowest level product. This
section explains how the processing is done. This includes, loading (sub-
section 3.5.1), resampling (subsection 3.5.2), combining (subsection 3.5.3)
and cloud extracting (subsection 3.5.4). Theory behind the processing of
image data is discussed in section 2.5 and 2.6 at page 23-34.

A general overview over the processes done when creating the data image
product is shown in the flowchart below:

Figure 3.4: Flowchart of the processing

63

3.5 Processing

The flowchart in figure 3.4 above shows a series of subsequent processes,
needed to create the data image product. The design and construction
behind the downloading of the satellite data is explained in section 3.4,
starting at page 52.

3.5.1 Loading

As visualized in figure 3.4, the first processes done after the downloading,
is reading and loading of the data. This is easily done, thanks to the
FileReader objects, and Satpy.

As mentioned in section 3.4, the satellite domain implements a class for
reading the satellite data. The file paths for the satellite data, as well as
the reader that Satpy uses for reading is stored in the FileReader objects.
Because of the fact that the objects returned when downloading the satellite
data is of the FileReader class, reading the satellite data can be done in
two lines of code:

Code 3.22: domains/product/product_creator. Code that shows the download-
ing and reading of satellite data.

111 file_readers = ...
self._satellite_collection.download_all(...
frequencies=self._frequencies, utctime=self.utctime)

112 scenes = [reader.read_to_scene() for reader in ...
file_readers]

The first line in code 3.22 above starts off by downloading satellite data
for all the utilized satellites, for the specified frequencies and time. The
returned FileReader objects can be then be read to a Satpy Scene object,
with the read_to_scene method. This is done for every FileReader object
at line 112.

Satpy contains a class named MultiScene, which is useful for handling
multiple Scene objects. The MultiScene class lacks some functionality
for Scene objects with satellites at different locations though. To add
functionality specific for this project, a subclass of the MultiScene has been
created. This subclass is named MultiSceneExt and acts as a extension of
the MultiScene class. An extension (subclass) has also been made for the

64

3.5 Processing

Scene class, named SceneExt. Using the Scene objects at line 112 in code
3.22, an object of the MultiSceneExt class is being constructed:

Code 3.23: domains/product/product_creator. Constructing object of the Mul-
tiSceneExt class.

113 multi_scn_ext = MultiSceneExt(scenes)

The constructor for the MultiSceneExt class shown above in code 3.23
accepts a list with objects of either the Scene or SceneExt class. If the
objects is of the Scene class, they are made into SceneExt class.

The MultiSceneExt object made in code 3.23 contains various data about
the utilized satellites. The bands which contains data has not been loaded
though. This has to be done manually. Loading the bands is done in the
following line code:

Code 3.24: domains/product/product_creator. Object of the MultiSceneExt
class loading bands for all Scene objects.

114 multi_scn_ext.load(self._frequencies, ...
resolution=self._legal_resolutions)

As seen in code 3.24 above, loading bands are done with the list of the
frequencies needed and a list of legal resolutions. The legal resolutions are
provided to filter out some unused bands. Because the Meteosat satellites
has every band available (see subsection 2.3.2), interfering bands needs to
be filtered out. The bands associated to each frequency are then found and
loaded for every SceneExt in the MultiSceneExt object.

3.5.2 Resampling

Resampling the satellite data is as mentioned in subsection 2.5.2, a complex
process. This is the process of changing the satellite imagery into having the
same resolutions in a given projection (see section 2.4 for an explanation
of projections). As mentioned in subsection 2.5.2, Satpy simplifies this
problem by a great deal. Resampling with Satpy can be done in one line.

65

3.5 Processing

The resampling done in this project is comprehensive. Because of this, the
resampling is being done with more than one line of code.

Resampling collection of Scene objects

To integrate the resampling process with the extended classes, SceneExt
and MultiSceneExt, multiple methods for the classes has been made. The
entry point of the resampling process is the resample_loaded_to_eqc
method. This method is shown in the following code:

Code 3.25: domains/processing/multiscene_ext. Resampling loaded bands to
EQC projection for MultiSceneExt

114 def resample_loaded_to_eqc(self, resolution=None, ...

**kwargs):
115 start_time = time.time()
116 groups = self.group_loaded()
117 eqc_mscn = self.resample_all_to_eqc(resolution, ...

**kwargs)
118 eqc_mscn.shared_dataset_ids = groups
119 print(f"Resampled scenes: {round(time.time() - ...

start_time, 4)} sec")
120 return eqc_mscn

The method shown above in code 3.25 resamples all the loaded Scene ob-
jects to Equidistant Cylindrical (EQC) projection, with the given resolu-
tion. It starts off at line 116 by grouping the loaded bands. The groups
created is grouping together bands with similar frequencies, which makes
the collection of Scene objects easier to work with. Every Scene is then
resampled at line 117 with the resample_all_to_eqc method. This is ex-
plained in greater detail in the next paragraph. This creates a new object
of the MultiSceneExt class, with the newly resampled data. At line 118
the previously created groups is added to the shared_dataset_ids vari-
able. This variable is storing information about which bands is grouped
together.

The actual resampling is done in the resample_all_to_eqc method. This
method is shown below:

66

3.5 Processing

Code 3.26: domains/processing/multiscene_ext. Resampling all scenes for Mul-
tiSceneExt

105 def resample_all_to_eqc(self, resolution=None, ...

**kwargs) -> "MultiSceneExt":
106 return MultiSceneExt([
107 scn.resample_to_eqc_area(resolution=resolution, ...

reduce_data=False, **kwargs) for scn in ...
self.scenes

108])

Resampling all the Scene objects with the desired resolution and projection,
is done by executing the method in code 3.26 is executed. This method
iterates through every Scene object at line 107 and resamples them one by
one. The resample_to_eqc_area method that is being called on at line
107 is the method in the SceneExt class that resamples that specific Scene.
This method is explained further below.

Resampling single Scene

Resampling of a single Scene is, as mentioned done with the
resample_to_eqc_area method in the SceneExt class. The method starts
off with the following lines of code:

Code 3.27: domains/processing/scene_ext. Resampling a single scene with Sce-
neExt, start
82 def resample_to_eqc_area(self, *, resolution=None, ...

**kwargs) -> "SceneExt":
83 projection = {"proj": "eqc", "lon_0": self.lon_0} ...

Equidistant cylindrical projection

To start off, the resampling method resample_to_eqc_area above in code
3.27 specifies the desired projection. The desired projection is as mentioned
Equidistant Cylindrical (EQC), which is specified in the dictionary at line
83 with "proj": "eqc". To keep the Scene’s longitude, the longitude is
also added to the projection dictionary, with "lon_0": self.lon_0.

Before the Scene’s resample method can be used, a AreaDefinition object
must be created. This object is created in the code below:

67

3.5 Processing

Code 3.28: domains/processing/scene_ext. Resampling a single scene with Sce-
neExt, AreaDefinition part.
85 area_def_args = dict()
86 if resolution is not None: resolution
87 area_def_args["resolution"] = resolution
88

89 area_def = create_area_def(
90 area_id="eqc_area",
91 projection=projection,
92 **area_def_args
93)

Code 3.28 above shows the lines of code in the resample_to_eqc_area
method that is executed after the lines in code 3.27. This part of the
method is as mentioned responsible for creating the AreaDefinition ob-
ject. The first thing that is happening is that a dictionary containing
the AreaDefinition object’s arguments is created. As seen in line 86-
87, the desired resolution is added to the dictionary, if the resolution ex-
ists. With the AreaDefinition objects arguments and the projection, the
AreaDefinition is created at line 89-93.

When the AreaDefinition object is created, the Scene is ready to be
resampled by its resample method:

Code 3.29: domains/processing/scene_ext. Resampling a single scene with Sce-
neExt, resampling part.
94 return self.resample(
95 destination=area_def,
96 resampler="bilinear",
97 cache_dir=DATA_PATH_SATPY_RESAMPLE_CACHE,
98 **kwargs
99)

As shown in code 3.29 above, the Scene is being resampled right after
the AreaDefinition object has been created. There is multiple argu-
ments added to the resample method shown: destination, resampler,
cache_dir and **kwargs.

The destination argument in the resample method in code 3.29, is where
the AreaDefinition object is provided. This tells what the desired result

68

3.5 Processing

of the resampling is. The resampler argument specifies the resampling al-
gorithm, which was discussed in section 2.5.2 at page 24. Caching directory
is added to the cache_dir argument. When this argument is set, caching
is enabled for resampling (explained in subsection 2.8.2). The **kwargs
argument is added in the end to allow for additional arguments to be added,
without changing the resample_to_eqc_area method.

To make sure that the returned Scene is of the class SceneExt, the resample
method is overwritten. The new resample method calls on the original
resample method, and creates an object of the SceneExt class out of the
returned Scene object. The object of the SceneExt class is what is being
returned by the new resample method.

3.5.3 Combining

When every Scene has been resampled, the next process executed is com-
bining the Scene objects into one combined Scene with imagery of the entire
earth. As mentioned in subsection 2.5.3 at page 28, Satpy is not providing
functionality to combine satellite imagery from different locations. This
means that the algorithm must be made manually. The theory of this
algorithm is explained in subsection 2.5.3.

In contrast to Scenes of different locations, combining Scenes with the same
location is supported by Satpy. This is being done with the MulitScene
object’s blend method. The blend method combines every grouped bands
(mentioned in subsection 3.5.2) by executing a specified function on the
group of bands. The blend method is being utilized in this software, by
creating a function that combines geostationary imagery, at different lon-
gitudes. A method named combine has been made in the MultiSceneExt
class, which utilizes the blend method to combine the different Scenes used:

Code 3.30: domains/processing/multiscene_ext. Part of the combine method in
MultiSceneExt, where the blend method is called

126 eqc_blend = EqcBlend(latitude_range=(-max_latitude, ...
max_latitude))

127 combined_scn = self.blend(eqc_blend)

69

3.5 Processing

As shown in code 3.30 above, the blend method at line 126 calls directly
on the EqcBlend class from line 127. Calling on a class like this executes its
__call__ method. The reason why a class was made, instead of a function,
is because it allows for greater code structure. The __call__ method is
what starts the combining algorithm explained in this section.

As shown at line 126 in code 3.30, the EqcBlend class is created with an
argument, specifying the latitude range. This range is set to (−70, 70),
which represents the max latitude explained in subsection 2.1.3 at page 14.
Data outside of this latitude range is excluded in the final combined Scene.

Because this software is created with python, speed is a concern when
combining the satellite imagery. To speed up the process, the combining
algorithm is being parallelized. Parallelism is well suited for image pro-
cessing like this, as images easily can be split into multiple smaller images.
Having every CPU processing one image part each speeds up the process by
a great deal. As all of these CPUs are working together to create a single
image, a matrix of shared memory is being made. Because the image parts
are separated and do not overlap anywhere, mutex locks are not necessary
when writing to the shared memory. Mutex locks are being used in this
project though, as python is not giving great enough control of the memory.
This results in a great deal of redundant processing.

The combining algorithm contains multiple consecutive steps:

1. Create empty shared memory matrix with the desired resolution of
the final product.

2. Create longitude sections on map based on longitude differences from
satellites.

3. Separate intersections into their own longitude sections.

4. Prepare the data for writing, by creating map portions.

5. Write each map portion to the shared memory matrix.

6. Create DataArray object from shared memory matrix.

As shown above, the algorithm for combining satellite images is quite com-
plex. How each step in the algorithm above is implemented is described in
detail below.

70

3.5 Processing

Create shared memory matrix

The first process that is done in the algorithm is the creation of the shared
memory matrix. As mentioned, this matrix is representing the final image
that is being created of the given band. The resolution of this matrix is
therefore of the same resolution as the final product, which is specified
when executing the program through the CLI. Before the matrix can be
created, the length and width must be known. These lengths is calculated
with the following equation:

axislength = axisdegree_count

axisdelta_step
(3.1)

The axisdegree_count in equation 3.1 above is the number of degrees on
that axis (e.g. 360 for longitude), while axisdelta_step is the number of
degrees between each pixel in that axis. The axisdelta_step is found from the
datasets of the bands provided. All datasets provides data of the locations
of its pixels. As some inaccuracies occur in the datasets, due to inaccurate
float values, the biggest delta step found for the given axis is being used.
This makes sure that every pixel in the matrix created has a pixel associated
to it. The method for creating the shared memory matrix is shown below:

Code 3.31: domains/processing/eqc_blend. Method for creating shared matrix
220 def __init_shared_earth_array(self) -> ...

(shared_memory.SharedMemory, np.ndarray):
221 size = np.dtype(self.__data_type).itemsize * ...

np.prod(self.lat_len * self.lon_len)
222 shm = shared_memory.SharedMemory(create=True, ...

size=size)
223 dst = np.ndarray(self.__shape, self.__data_type, ...

buffer=shm.buf)
224 dst[:] = np.nan
225 self.shared_earth_array, self.__earth_array = shm, ...

dst

The method above in code 3.31 shows that the shared memory matrix is
created utilizing multiple properties. These properties are in the same way
as the axislength from equation 3.1, created from the datasets of the bands

71

3.5 Processing

that are being combined. Starting at line 221, the size of the matrix is
being calculated, using its desired dimensions multiplied with the size of
the data type that is being used. The shared memory is then being created
on line 222, using the calculated size. This allocates a buffer of the desired
size. A variable pointing to this buffer is then created at line 223. As the
data is not initiated yet, every pixel is set to np.nan, which is the value
used by Satpy for pixels without any value. Finally, the shared memory
matrix and the variable pointing to it is returned. These variables are then
stored as attributes in the object at line 225.

Due to the way the shared memory works, it is not collected by the garbage
collector. It must therefore be freed manually. To make sure that this is
done whenever the shared memory is not being used anymore, the __del__
method of the EqcBlend class is being utilized:

Code 3.32: domains/processing/eqc_blend. EqcBlend class’s __del__ method.
130 def __del__(self):
131 self.shared_earth_array.close()
132 self.shared_earth_array.unlink()

The __del__ method shown in code 3.32 is a special method that is being
run whenever the associated object is being garbage collected. By freeing
the shared memory in the __del__ method, the shared memory is freed
when the object is not being used anymore. Freeing the shared memory is
done by first calling the close method, which closes access to it, then by
calling the unlink method, which starts the process of removing the object
from memory.

Create longitude sections

After creating the shared memory matrix, the process of creating sections
for each Scene’s dataset is executed. As explained in subsection 2.5.3, the
satellites with longitudes closer to a location’s longitude should have higher
influence on the final result at that location. Because of this, the middle
between every two adjacent satellite’s longitude is found. The longitudes
found are then used as the edges between the satellites’ sections. How the
sections turns out is illustrated below:

72

3.5 Processing

Figure 3.5: Illustration of how the longitude section is created. The red lines
represents the edges of the sections. The degrees on the x-axis represents longi-
tudes.

Figure 3.5 above shows an illustration of how the longitude sections turns
out. The red lines represents the edges of the longitude sections. Every
point in between any two adjacent edges is closest to the satellite in the
same section.

The longitude sections are created as a separate class in the code, named
LongitudeSection. As shown in its constructor, it accepts four arguments:

Code 3.33: domains/processing/eqc_blend. Constructor for the LongitudeSec-
tion class
20 def __init__(self,
21 data_array1: xr.DataArray,
22 from_longitude: float,
23 to_longitude: float,
24 *,
25 data_array2: Optional[xr.DataArray] = ...

None
26):

The constructor of the LongitudeSection class shown in code 3.33 above
accepts two arguments of the DataArray class, and two floats, which rep-
resents longitudes. The longitudes is the edges of the longitude section,
while data_array1 at line 21 and data_array2 at line 25 is the data that
is associated with the longitude section. The data_array2 argument is
optional, as it is not wanted unless specified.

73

3.5 Processing

As mentioned earlier, a longitude section contains the data that is closest
to the associated satellite, within a range of longitudes. This is only true
though if the LongitudeSection object does not contain the data_array2
attribute. If this attribute is set, a combination of the two DataArray
objects will be used. How this is combined is explained in subsection 2.5.3
at page 28.

Separate intersections

As told above, the LongitudeSection objects might contain more than
one DataArray object. Subsection 2.5.3 explains that locations close to the
intersection (edge) between two satellites should gradually transition from
one satellite’s data to the other’s. To prepare for this, LongitudeSection
objects with two set DataArray attributes is being made. The new
LongitudeSection objects is made so the middle of their longitude ranges
is exactly where the intersections is.

Combining the datasets is not being done in the LongitudeSection class.
There is multiple reasons for this. One is that it is faster to combine
the datasets when writing to the shared memory matrix, as the writing
happens in parallel. Iterating through the longitude section is also done
one less time, as is not being iterated through in the LongitudeSection.
Another benefit with combining when writing, is that the data arrays can
be removed from memory, right after it has been loaded.

The DataArray classes uses an underlying library named Dask. Dask is a
library that is useful for storing big amounts of data. Instead of storing the
whole dataset in memory, it stores it on the hard drive. This reduces the
memory usage of the program. A downside with storing the dataset on the
hard drive, is that it takes longer time to load. The loading of each dataset
is therefore only done once, to reduce execution time.

Preparing data for writing

After creating the longitude sections, the process of adding them to the
shared memory matrix is starting. This starts off by preparing the data.

74

3.5 Processing

The data is prepared by creating objects of the MapPortion class. The
MapPortion class contains geographical data that is going to be written to
the shared memory matrix. One MapPortion is containing data for only one
satellites dataset, with lists with data about its longitudes and latitudes.
The constructor for the MapPortion class is shown below:

Code 3.34: domains/processing/eqc_blend. Constructor for the MapPortion
class
89 def __init__(self, values: np.ndarray, lon_list: ...

list[float], lat_list: list[float],
90 lon_indexes: list[int], lat_indexes: ...

list[int]):

The values argument shown in code 3.34 above is the data of the associated
satellite’s dataset. The data has been loaded from the memory here, as the
process of adding the data has started. The longitudes and latitudes of the
values are provided by the lon_list and lat_list arguments. Which data
in the values attribute are being used, is described by the lon_indexes
and lat_indexes arguments. These arguments provides the indexes to
the data in the values attribute that is being applicable to the associated
MapPortion object.

The indexes in lon_list and lat_list are created from specified ranges.
The lon_list uses the range from a LongitudeSection object, while the
lat_list uses the range specified when constructing the EqcBlend object.
A method has been made, which receives a list of indexes from a list of axis
values, within a specified range:

Code 3.35: domains/processing/eqc_blend. Method in EqcBlend class that
creates list of indexes for axis

273 def __get_indexes_from_axis(self, axis_values: ...
list[float], from_axis_val: float, to_axis_val: float,

274 axis_helper: Type[AxisHelper],
275 edge_size: int = 0,
276 max_length: Optional[int] ...

= None) -> list[int]:

The method shown in code 3.35 above, accepts multiple arguments: some
required and some optional. The first required argument is axis_values.

75

3.5 Processing

This is a list of axis values in degrees, which the method is using for finding
the indexes. All axis values in between the value of from_axis_val and
to_axis_val are wanted as the return value of the method. Depending
on what axis the values are of, different functions are needed for calcula-
tions. These functions are collected in the axis_helper argument of the
AxisHelper class. The AxisHelper class is a superclass which requires its
subclasses to implement different methods for calculations on an axis.

The two optional arguments is edge_size and max_length. The edge_size
is adding additional indexes to each side of the final indexes. This is useful,
as it fixes issues related to imprecise floats. In contrast to the edge_size
argument, max_length is used for specifying the maximum length of the
returned indexes. It reduces equally on both sides, which leads to the
returned index list having the same center, as without the reduction.

Using the MapPortion class instead of the LongitudeSection class when
writing, is beneficial, as it contains more specific information about the data
that is going to be written, than the LongitudeSection class does. This
leads to the process of writing the data being simpler, which reduces the
complexity when writing. Another benefit is that the MapPortion objects
can easily be split into smaller parts, by changing the index lists.

Splitting the MapPortion objects is beneficial, as it creates equal portions to
handle for each CPU. By having every CPU available working on datasets
of the same size, the parallelization is being optimized. As the CPUs have
datasets of the same size, they are finishing at almost the same time. This
reduces the overall time spent writing to the shared memory.

Splitting a MapPortion is done with calling the following method:

Code 3.36: domains/processing/eqc_blend. Calling method in MapPortion that
split it by the latitude axis

327 map_portion_lists[index] = ...
map_portion.split_by_lat_axis(CPU_COUNT)

With the MapPortion class, splitting by the latitude axis can be done with
calling one method, as shown in code 3.36 above. This method accepts one
argument which tells how many parts the MapPortion is going to be split

76

3.5 Processing

to. This is the number of CPUs in this case. The method is shown in the
code below:

Code 3.37: domains/processing/eqc_blend. Method in MapPortion that split it
by the latitude axis

101 def split_by_lat_axis(self, count: int) -> ...
list["MapPortion"]:

102 lat_indexes_list = ...
ListHelper.split_list(self.lat_indexes, count)

103 map_portions = ...
[self.__copy(lat_indexes=lat_indexes) for ...
lat_indexes in lat_indexes_list]

104 return map_portions

As shown in code 3.37 above, splitting a MapPortion object by the latitude
axis is simple, because it is only the indexes that needs to change. What
happens is that the list of the latitude indexes (lat_indexes attribute)
is being split into parts of roughly the same size at line 102. Each list of
indexes is then being used together with a copy of the current MapPortion
object, to create a new MapPortion with less latitude data. The method is
ending by returning all of the newly created MapPortion objects.

From code 3.36 it is noticeable that the split MapPortion objects is being
assigned to a list named map_portion_lists. This is a list, containing two
lists of the MapPortion object. The first index is for the MapPortion objects
created from the data_array1 attribute in the LongitudeSection class,
while the second index is for the optional data_array2 attribute. By creat-
ing this list, the relationship between the data arrays in the
LongitudeSection is kept, which is needed when combining the values.
The MapPortion objects for every related data array is returned together
as a tuple, as shown below:

Code 3.38: domains/processing/eqc_blend. Line showing how the related Map-
Portion objects is returned as tuples.

329 return [tuple(map_tuples) for map_tuples in ...
zip(*map_portion_lists)]

The code in 3.38 above shows how related MapPortion objects of the
same geographical location is combined into tuples. If there is only one

77

3.5 Processing

MapPortion for the given geographical location, the second value is set to
None.

Write map portions

Before the MapPortion objects is written to the shared memory matrix,
the processes that does so is being created:

Code 3.39: domains/processing/eqc_blend. Creating processes for writing
375 processes = [
376 mp.Process(
377 target=self.__add_value_from_map_portions,
378 args=(map_portion1, map_portion2)
379) for map_portion1, map_portion2 in map_portions_list
380]

Code 3.39 above shows how the processes is being created. One process
is created for every tuple of MapPortion objects. The amount of tuples is
as mentioned, equal to the number of CPUs available. What method, as
well as its arguments, that the CPUs are going to run is specified in the
target and args arguments in line 377-378. With the processes created,
the following code is being executed:

Code 3.40: domains/processing/eqc_blend. Process methods
381 for methodname in ["start", "join", "close"]:
382 for process in processes:
383 getattr(process, methodname)()

The Process objects created does three things in their lifespan. As shown
in code 3.40 above, every process starts off by running their delegated jobs,
when the start method is being called. After every process has started
to run their jobs, the join method is called on every process. The join
method waits for the process to finish its job, before it lets the program pro-
ceed. Lastly, when every process has finished their job, the close method
is being called on every process, which closes the processes.

78

3.5 Processing

As mentioned, when the start methods of the processes is being called,
they start to run their designated tasks. It is noticeable in code 3.39 that
a method named __add_value_from_map_portions being run by every
process. This method is shown below:

Code 3.41: domains/processing/eqc_blend. Method that adds values from Map-
Portion objects to the shared memory matrix.

367 def __add_value_from_map_portions(self, map_portion1: ...
MapPortion, map_portion2: Optional[MapPortion]) -> ...
None:

368 if map_portion2 is None:
369 self.__add_value_from_single_map_portion(...

map_portion1)
370 else:
371 self.__add_value_from_two_map_portions(...

map_portion1, map_portion2)

As shown in code 3.41 above, the code is executed differently when there is
two MapPortion objects to be added, than if there is just one. If there is one
MapPortion, method __add_value_from_single_map_portion on line 369
is executed, while if there is two MapPortion objects, the
__add_value_from_two_map_portions method on line 371 is executed.
The difference between these two methods, is that the method that re-
quires two MapPortion objects, is combining the values. The value used is
gradually changed from the first MapPortion to the second, as the longitude
moves towards east.

The most basic of the two methods that writes to the shared memory matrix
is shown in the following code:

79

3.5 Processing

Code 3.42: domains/processing/eqc_blend. Method that adds single MapPor-
tion to the shared memory matrix

331 def __add_value_from_single_map_portion(self, map_portion: ...
MapPortion) -> None:

332 earth_array_lat_range = ...
self.__earth_array_latitude_index_range

333 for lat_index in map_portion.lat_indexes:
334 for lon_index in map_portion.lon_indexes:
335 value = map_portion.values[lat_index][lon_index]
336 new_lon_index, new_lat_index = ...

self.__translate_coords_to_earth_array_indexes(...

337 (map_portion.lon_list[lon_index], ...
map_portion.lat_list[lat_index])

338)
339 if np.isnan(value) or not ...

(earth_array_lat_range[0] ≤ new_lat_index ≤ ...
earth_array_lat_range[1]):

340 continue
341 self.__earth_array[new_lat_index][new_lon_index] ...

= value

The method shown in code 3.42 above shows the method used to add a
single MapPortion. The first thing that happens (line 332) is that the
indexes of the latitude edges for the shared matrix (__earth_array) is
retrieved. These indexes is found to provide a clean cut at the latitude
edges. Without these indexes, rounded floats may cause an inconsistent
cut.

The next thing that happens is that every latitude index and longitude
index is iterated over at line 333-334. By iterating over every longitude
indexes for every latitude index iterated over, every combination of the two
index lists is iterated through.

With the indexes obtained from lat_index and lon_index, an associated
value is retrieved on line 335. This is the value that is going to be written
to the shared matrix in the given iteration.

Continuing on line 336-338, the longitude and latitude is being used to
find the associated indexes in the shared matrix. This is done by the
__translate_coords_to_earth_array_indexes method, which uses cal-
culations based on the shared matrix dimensions and the axis’s properties.

80

3.5 Processing

Before the value is added to the shared matrix, some final checks is first
executed at line 339. If the value is of the nan type (is empty), or the the
latitude index is outside of the range found at line 332, the value is not
being added. If none of these expressions is true, the code writes the value
to the shared memory at line 341, using the calculated indexes.

The method for writing two MapPortion objects to the shared memory
matrix is a bit more complex than the method for adding one MapPortion.
As shown below, the iteration process starts off a bit different:

Code 3.43: domains/processing/eqc_blend. Iteration part in method that adds
two MapPortion objects to the shared memory matrix.

348 for lat_index1, lat_index2 in ...
zip(map_portion1.lat_indexes, ...
map_portion2.lat_indexes):

349 for i, (lon_index1, lon_index2) in ...
enumerate(zip(map_portion1.lon_indexes, ...
map_portion2.lon_indexes)):

Code 3.43 above, shows that iterating is done a bit differently when two
MapPortion objects is being added. The indexes of the two MapPortion
objects, is iterated over simultaneously. The iterations of the longitude
indexes is also being counted, in the i variable. This is being used later,
when combining the two values received from the MapPortion objects.

The indexes of the shared matrix is then being found using the
__translate_coords_to_earth_array_indexes method, in the same way
as in line 336 in code 3.42. The calculated indexes returned from this
method is the same independent of which MapPortion object’s longitude
and latitude index is being used.

The part that makes this method differ the most from the method that adds
one MapPortion, is the part where the two values are being combined:

81

3.5 Processing

Code 3.44: domains/processing/eqc_blend. Value calculation in method that
adds two MapPortion objects to the shared memory matrix.

355 values = [map_portion1.values[lat_index1][lon_index1], ...
map_portion2.values[lat_index2][lon_index2]]

356 values_filtered = list(filter(lambda val: not ...
np.isnan(val), values))

357 if len(values_filtered) == 0:
358 continue
359 elif len(values_filtered) == 1:
360 value = values_filtered[0]
361 else:
362 progress = ((i / lon_indexes_length) - 0.5) * ...

self.merge_intensity
363 weight = MathHelper.sigmoid(progress)
364 value = values_filtered[0] * (1 - weight) + ...

values_filtered[1] * weight

As shown at line 355 in code 3.44 above, the values of the two MapPortion
objects is retrieved in the same way as with the method for one MapPortion.
The longitude and latitude indexes for both the objects is used with their
associated values attribute, which returns the desired value. The list of
these values is then filtered at line 356, which removes any value that is
nan.

How the final value is created depends on how many values there are in
the values_filtered variable from line 356. If there is zero values, the
expression on line 357 becomes true, and line 358 ends up continuing to
the next iteration.

If the values_filtered variable contains one variable, the expression on
line 359 becomes true. This executes line 360, which sets the final value to
the only available value. This is useful for locations where only one of the
datasets (satellites) have data.

If both the expressions at line 357 and 359 is false, the code in line 362-364
is being used to get the final value. This means that values_filtered
is containing two values. The code executed in this case uses the theory
of merging two values explained in subsection 2.5.3. This subsection tells
that a function named sigmoid is being used to calculate the weight of
each MapPortion object’s value. It uses the distance from the center of the
area’s longitudes. When the longitude is west to the center, the value from

82

3.5 Processing

map_portion1 is weighted the most. If it is east to the center, the value
from map_portion2 is weighted the most.

A variable named progress is made at line 362. This calculates the relative
distance from the center, and ranges from −x to x. The progress is further
used with the sigmoid function in line 363, which calculates the weight for
the value from map_portion2. This weight is somewhere between 0 and 1.
It is then used in line 364 to calculate the final value. This value is then
added to the shared memory matrix in the same way as in line 341 in code
3.42.

Create DataArray

When all the processes has finished writing the values in the MapPortion
objects to the shared memory matrix, the matrix is not being written to
anymore. This means that the dataset of the Satpy Scenes with the given
frequency range has been combined. The last thing that needs to be done
before the blend method of the MultiSceneExt is finished, is to return
the shared memory matrix as a DataArray object. This is to satisfy the
return type of functions that may be added to the blend method. Useful
information about the data is also being provided by the DataArray class.
This includes scanning times, geographical data and projection information.
How the data array is created is shown in the method below:

Code 3.45: domains/processing/eqc_blend. Method that creates a DataArray
class from the EqcBlend class

406 def as_data_array(self) -> xr.DataArray:
407 start_time, end_time = self.time_range
408 attrs = {
409 "start_time": start_time,
410 "end_time": end_time,
411 "area": self.area_def
412 }
413 return xr.DataArray(
414 data=self.__earth_array.copy(),
415 dims=["y", "x"],
416 coords=self.coords,
417 attrs=attrs
418)

83

3.5 Processing

The method shown above in code 3.45 is used for creating a DataArray
object from the associated EqcBlend object. Line 407 starts of by getting
the start and end scanning times of the satellites that has provided the
data. These times are used together with a object of the AreaDefinition
class, to create a dictionary of attributes in line 408-412. The object of the
AreaDefinition class, is being created, based on the data’s projection, as
well as other data that describes the area.

Continuing on line 413-418, the DataArray object is created, with some
arguments. The first argument added is the data argument on line 414.
The variable provided to this argument is a copy of the __earth_array
attribute, which points to the buffer of the shared memory matrix. The
reason why this is copied, is because the shared memory matrix is being
freed when the EqcBlend object is not being used anymore. This leads to
the data that the __earth_array attribute points to being removed. This
issue is avoided by copying the matrix.

A matrix containing the coordinates of the data is being added at line 416
to the coords argument. The coordinates needs to be provided in metric
form, instead of in degrees. These coordinates is calculated in the coords
property.

The last two arguments provided is the dims and attrs. The dims argu-
ment is given a list with names of the two dimensions the data is in. Lastly
the attrs argument is given the object of the AreaDefinition class, cre-
ated in line 408-412.

3.5.4 Cloud extracting

Extracting the clouds from the combined Scene which creation is shown in
subsection 3.5.3, is as mentioned in section 2.6 a complex task. How this is
done is therefore simplified to the solution presented in subsection 2.6.4 at
page 33. This solution is algorithmic, and is based on finding every value in
a specified boundary for imagery of a specific frequency. Even though only
one frequency is being used to extract cloud data, the program is designed
to accept more, to support potential future improvements. The method
where the clouds are getting extracted is shown below:

84

3.5 Processing

Code 3.46: domains/processing/scene_ext. Method that creates image of clouds
from a SceneExt object

101 def create_cloud_image(self, frequencies: list[float]) ...
-> XRImage:

102 compositor = CloudCompositor(name="clouds", ...
transition_min=230.0, transition_max=298.15, ...
transition_gamma=1.5)

103 composite = compositor([self[frequency] for ...
frequency in frequencies])

104 return to_image(composite)

The method shown above in code 3.46 starts of by creating an object of
the CloudCompositor class, as shown in line 102. Its transition_min and
transition_max arguments decides what values should be considered as
clouds, and not. Values below transition_min is being created as clouds,
while value above transition_max is being created as cloud free. Values
in between transition_min and transition_max is created as a partially
cloudy. The transition arguments provided to the CloudCompositor con-
structor is chosen based on the values that gave the best visual result. The
image used as reference is obtained from The Meteo Company at sat24.com.
The image used is of the same frequency that is being used in this project:

Figure 3.6: Satellite image of Europe at 10.8µm. Obtained from sat24.com. [8]

Figure 3.6 shows the image of Europe taken at 10.8µm, which is used as
reference when extracting the cloud data. As mentioned in subsection 2.6.4

85

https://www.sat24.com/
https://www.sat24.com/

3.5 Processing

at page 33, the 10.8µm frequency is not giving an accurate image of the
clouds, as some clouds is not detected at this frequency. It is used as a
reference though, because of the fact that it is of the same frequency used
in this project.

When the CloudCompositor object has been created on line 102 in code
3.46, it is being called on at line 103 to create a composite. This composite
includes the cloud data, generated from bands of the specified frequency.

To create the XRImage object that is being returned from the method, the
to_image method is being used. This is shown in code 3.46 at line 104.
The XRImage object is useful, as it contains methods for saving the object
to various formats. The lines of code that shows this is in the following
code:

Code 3.47: domains/product/product_creator. Saving of XRImage to various
file formats.

140 for file_format in file_formats:
141 if os.path.exists(filepath := ...

self.__get_imagedata_path_for_format(file_format)):
142 continue
143 img.save(filepath)

As shown in code 3.47 above, the img variable of the XRImage class is easily
being saved to different file formats. The img variable above is the XRImage
object containing the cloud data. Line 143 shows the final process that is
being done before the data image product has been created. The image is
at this line being stored in the GeoTIFF format, and optionally the PNG
format, depending on which products are desired.

86

Chapter 4

Results and discussion

This chapter presents the results of the project, and discusses it. How the
various processes explained in chapter 3 affects the final product is shown.
Discussing what could be done to improve the various results is also done.

4.1 Image products

In this section the final image products are being presented and discussed.
This includes both the data image and the visual image. How the processing
domain process the image is also shown, and compared to images without
the various features.

87

4.1 Image products

The data image from 30 Apr 2022, 11:15 UTC is shown below, where clouds
is represented in black:

Figure 4.1: World-wide data image of clouds. Clouds is represented by black.

The visual image from 30 Apr 2022, 11:15 UTC is presented below:

Figure 4.2: World-wide visual image of the clouds.

88

4.1 Image products

As shown in the figure 4.1 and 4.2 on the previous page, the images do
contain cloud data. The clouds are also spread around the whole globe,
with no clear difference between land and ocean. These two images are
discussed further in the following subsections.

4.1.1 Cloud accuracy

As mentioned, figure 4.1 and 4.2 on page 88 do contain cloud data. A
comparison of the accuracy provided by this projects software is being done
with images obtained from The Meteo Company at sat24.com [8]:

(a) Visible light spectrum (b) Infrared 10.8µm

Figure 4.3: Images of Europe from sat24.com.

Figure 4.4: Zoomed in part of Europe from figure 4.2.

89

https://www.sat24.com/
https://www.sat24.com/

4.1 Image products

Using figure 4.3 and 4.4, the product’s accuracy can be discussed. Note
that figure 4.4 has a different projection than the images in figure 4.3.

It is noticeable that there is multiple similarities between the image in the
visible spectrum in figure 4.3a and the image in figure 4.4. The clouds
over Germany and Poland can be shown on both images. There is some
differences in the intensities though. The clouds over Poland appears very
intense in figure 4.4, while they are barely visible in figure 4.3a. The same
phenomena is happening in the ocean west for Great Britain. Figure 4.3a
shows that it is very cloudy there, while figure 4.4 only shows high intensity
in the middle of the cloud.

The differences between 4.3a and 4.4 comes from the simplification of cloud
detection mentioned in subsection 2.6.4. As mentioned, the only frequencies
used is the ones close to 10.6µm. This frequency contains similar data as
figure 4.3b does, with its 10.8µm imagery.

Comparing figure 4.4 with the infrared image in figure 4.3b makes it clear
that the similarities between these images is greater than the similarities
between the images in figure 4.4 and 4.3a. All the clouds in figure 4.3a can
be found in figure 4.4, (with some distortion) with similar intensities. This
shows that the cloud detection is working as intended.

As mentioned, the cloud accuracy is not perfect, when comparing to the vis-
ible light spectrum in figure 4.3a. Improving this would be one of priorities
if lack of time was not an issue. The difficulties of finding accurate cloud
products is as explained in section 2.6 comprehensive and time consuming,
as clouds behaves differently based on multiple factors.

4.1.2 Combining

Subsection 3.5.3 at page 69 shows that combining the imagery from the
utilized satellites is a extensive process. The figures on page 88, which is
showing the cloud products, do not show any clear sign of the intersection
between the different satellites’ imagery. This is because of the way inter-
sections between satellite imagery is handled. The images below shows the
effect of the intersection handling:

90

4.1 Image products

(a) Hard transition (b) Smooth transition

Figure 4.5: Comparison between intersections with and without smooth transi-
tion

As shown in figure 4.5 above, the way that the intersections between satel-
lite imagery is handled, makes the transition smooth. Figure 4.5a shows
how the intersection is without the smooth transition, while figure 4.5b
shows how it is with. The intersection is not being noticeable with smooth
transition, as shown in figure 4.5b. Accurate data is also being provided,
even though the transition blends the intersection. This is beneficial, as
the accuracy of the data is of great importance.

4.1.3 GOES-17 noise

As mentioned in subsection 2.1.5 at page 16, the GOES-17 satellite suffers
from some issues, which at some times leads to noise in its imagery:

91

4.2 Video product

Figure 4.6: Visual image, showing noise from GOES-17.

As shown in the left side of figure 4.6 above, the noise from GOES-17,
makes the whole area white. A solution to this problem could be to not
use the imagery from GOES-17 when it is noisy, and instead depend on
Himawari 8 and GOES-16 to cover its area. This is something that could
be implemented in the future.

Subsection 2.1.5 mentions that the GOES-17 satellite is being replaced in
early 2023, by the functioning GOES-18 satellite. This means that this
problem is only occurring until early 2023. If the software is being used
in production before then, the solution suggested above should be imple-
mented. If not used until then, it would not be as necessary to implement
this solution. An argument for implementing this solution, is that it would
help with other potential satellites that could observe noise. Noise could
occur from other sources than a defect satellite, as unforeseen events might
happen.

4.2 Video product

The video product is made from the visual images and is therefore having
similar results as the ones mentioned in section 4.1. Additional observations
that can be done with the video product is being discussed in this section.
A link to a YouTube video of the generated video product can be found in

92

https://www.youtube.com/watch?v=zcYJeCNK26E

4.2 Video product

appendix B.2. This video contains data starting from 13 December 2020,
19:00 UTC, going 24 hours forward. It contains 4 visual images for every
hour of data, which is presented with 15 frames per second.

4.2.1 Cloud movements

The video product shown on YouTube is showing the movement of the
clouds, with the background of the earth. As wanted, the clouds is moving
in a natural way. An example of this is the cyclone forming in the pacific,
west of Canada. It is also noticeable that clouds tend to move eastwards,
which is as expected, due to the earth’s rotation (The Coriolis Effect).
These observations reinforces the claims from subsection 4.1.1, that says
the cloud detection process is detecting actual clouds.

4.2.2 Day night cycle

By studying the provided YouTube video, it is noticeable that day and night
affects the cloud detection to some degree. Two seconds into the video,
the intensity of the clouds over Africa is being lowered. This is because
it is changing from day to night time. This is another result originating
from the decision of only using the 10.6µm frequency for cloud detection
(see subsection 2.6.4). This effect would therefore be lowered by using an
enhanced cloud detection algorithm.

4.2.3 Consistent frame change

The observations done of the video is showing that the video product itself is
working as intended. The movement of the clouds is changing gradually, to
some degree, which shows that the video have a somewhat consistent time
change between each provided image. Some imperfections are noticeable
though. As mentioned in subsection 2.1.4 at page 15, the utilized satellites
provides imagery in different intervals. By increasing the amount of images
included for every hour of imagery in the video, the time between each
provided image becomes close to consistent.

93

https://www.youtube.com/watch?v=zcYJeCNK26E
https://www.youtube.com/watch?v=zcYJeCNK26E
https://www.youtube.com/watch?v=zcYJeCNK26E

4.3 Resource usage

A video of 15 frames per second is not considered smooth. It is noticeable
in the YouTube video of the video product that the video could benefit
from being smoother. As mentioned, in subsection 2.1.4, four out of the
five utilized satellites is providing imagery only four times per hour. This
means that the images provided to the video for every hour of imagery
cannot be increased for more than one of the satellites. This is not that
helpful. Another solution to this problem could be to increase the speed of
the video, which is not optimal either.

There exists software that could help with increasing the frames per second.
Software like DAIN could be worth looking into, as it creating additional
frames out of the existing ones [4]. This would lead to an increased number
of frames shown per second, without speeding up the video.

4.3 Resource usage

Running the software created is a time consuming, as well as a compu-
tational heavy task. The runtime of the software do also increase expo-
nentially as the resolution increases, because of the fact that it is a two
dimensional image. The big runtime is therefore a great concern if the
product is created with the best resolution available, of 2km2 per pixel (see
table 2.1 at page 8).

Another concern is the memory usage of the software. As the data pro-
cessed is high resolution images, storing them in memory takes up a lot of
space. Running the software on hardware with to little memory will cause
unwanted events to occur, depending on which operating system is used.
On Linux, the operating system is stepping in and killing the process, which
leads to the program not being able to finish.

The concern of the resource usage can be reduced in multiple ways. Some
of these is discussed in this section.

94

https://www.youtube.com/watch?v=zcYJeCNK26E
https://github.com/baowenbo/DAIN

4.3 Resource usage

4.3.1 Benchmark

To analyze the software’s resource usage, a benchmark of the program
has been run. Because of caching, the runtime of the program depends
on multiple factors. If the data has been downloaded before, the process
of downloading is being skipped. This does also apply to products, as it
skips creating the product from scratch if any lower level product exists.
None of these mentioned cached items is usually being used though, when
creating a data image from scratch. What is being used though is caching
of resampling calculations, which reduces the runtime of resampling. The
figure below shows a benchmark of the most usual execution, where only
the resampling cache is being used:

Figure 4.7: Benchmark of creating data image, where resampling cache is being
used. The resolution used is 20km2.

Figure 4.7 above shows the runtimes of a execution of the program. These
runtimes do vary some, as the network connection and CPU resource usage
depend on multiple factors. Having a faster network connection or faster
CPU would decrease the runtime.

It is noticeable in figure 4.7 above, that downloading the satellite imagery

95

4.3 Resource usage

accounts for 90.07% of the runtime. This runtime does not increase as
the resolution increases though, as the amount of data downloaded is only
available in one resolution. As mentioned in subsection 2.3.2, the Meteosat
satellites do not have accessible data separated by bands available. This
leads to the files for Meteosat satellites being huge, which again leads to
great download time.

The benchmark shown in figure 4.7 above, is made from the creation of a
product with a resolution of 20km2. As mentioned, the runtime increases
exponentially as the resolution gets better. The benchmark below shows
the creation of a product with resolution of 2km2:

Figure 4.8: Benchmark of creating data image, where resampling, and down-
loading cache is being used. The resolution used is 2km2.

In contrast to the benchmark shown in figure 4.7, the benchmark in figure
4.8 above shows a runtime that uses more time on combining. This is
because the better resolution of 2km2. Note that the satellite data is being
cached here, which removes downloading from the runtime. It is shown in
figure 4.8 that the combining accounts for 511 seconds and 94.67% of the
runtime. This is an increase of 2120% relative to the 23 seconds of runtime
that was gotten in 4.7. This shows that the combining method has longer
runtime when the product is created with better resolution.

96

4.3 Resource usage

Digging deeper into the benchmark from figure 4.8 makes it clear that the
parallelization in the combining method is not working as intended. The
wait method that waits for other processors to finish, uses 80.55% (435
seconds) of the runtime. This may be because of the way that python
handles the shared memory.

To decrease the runtime of the combine method, lower level programming
languages with greater control of the memory could be used. An example
of this is the programming language Rust. As this project is a proof of
concept, this is not needed. Mapping out the possibilities and problems
with creating world-wide cloud coverage imagery, is what is important in
this project. Writing the program in a lower level programming language
would be useful for the final product though. The runtime could also be
lowered by creating an extension module in a lower level language for the
combine process. This way, the runtime would be lowered, while the other
code created in this project could still be used.

97

Chapter 5

Economic overview

When mapping out an economic overview, the software it self and the
hardware it runs on is taken into account. This includes the economic
consequences of downloading, processing and storing the data.

5.1 Direct expenses

The program created in this project does not have that many direct ex-
penses, as it is only using free third party software. This includes all the
Python packages and modules used, as well as the sources used for down-
loading. An expense that is tied to a single execution of the program is
storage expenses. Storage must be provided for both the downloaded satel-
lite data and the created products. If the downloaded data is not deleted
after some time, the storage needed will increase proportionally for every
execution. Where the data is stored also affect the expenses for storage.
Self hosting increases the expenses stepwise, while hosting on the cloud
increases it linearly.

98

5.2 Indirect expenses

5.2 Indirect expenses

Indirect expenses also affect the economy behind this product. There are
multiple indirect expenses, depending on where the software is being ex-
ecuted. Running the software on self provided hardware leads to higher
electricity expenses. The amount of processing power and memory avail-
able is also decreasing, as the software is both CPU and memory intensive
when it processes the data. This could lead to the necessity of upgrading
the hardware.

Downloading of the satellite data may also cause an indirect expense, as this
decreases the bandwidth available for other tasks. Upgrading the network
connection could be a solution to this, which would again increase expenses.

Running the software in the cloud leads to less indirect expenses. Cloud
providers prices often processing based on CPU and memory usage. This
leads to the execution of the software becoming more of a direct expense,
instead of an indirect. This may be beneficial, as the expenses are tied
directly to the processes that creates the expenses.

5.3 Caching

Using caching makes the software use less processing power, while the stor-
age needed is increasing. Reducing the amount of caching being used could
be done to lower the cost of storage. Old data could for example be deleted
frequently. Storage is cheap though, which should be reflected when decid-
ing how much of the cached data should be kept.

99

Chapter 6

Environmental accounting

Researching the environmental consequences of any product is important,
as every action done has an impact on earth’s climate. Being conservative
with environmental emissions is more important than ever, with the rapid
changes in the climate that is occurring.

6.1 Emissions

Environmental and economic consequences of software often come from the
same sources. Both processing and storage of data, which have an economic
impact (see chapter 5), also affect the environment. As mentioned, both
processing and storage needs hardware that satisfy the required demands.
This hardware is being produced in factories, which have a negative impact
on the environment. Keeping the processing and storage needed for the
software low, is therefore important. As discussed in section 2.8, the caching
that is implemented in this project may help with lowering the hardware
needed, which again leads to a lower environmental impact.

Caching is also reducing the energy needed to run the software. This is
because the CPU requires a lot of energy, which makes it environmentally
beneficial to reduce processing needed. In contrast to the CPU, the hard
drives that the cached data is stored on does not require that much energy.

100

6.2 Benefits

6.2 Benefits

The produced products that this software creates comes with some po-
tential for environmental benefits. If other imagery than clouds are being
produced, like imagery of gas emissions or forest fires, appropriate actions
could be taken faster, which reduces the negative environmental impact.
There exists a lot of software that creates products from satellite imagery
though. This means that this software will not provide any new infor-
mation. What this software could do though is to raise accessibility and
awareness of the environment, through Time and Date’s website. The scale
of this website would make the products provided by the software easily
accessible globally.

101

https://www.timeanddate.com/

Chapter 7

Conclusion

World-wide satellite imagery of clouds in various formats are being made
by the software created in this project. This does solve the given problem
presented in section 1.1. The software is downloading satellite data from
various satellites, combining them into one unified dataset, before it finally
detect and extracts the clouds from the imagery. The global cloud coverage
is presented as images containing only the cloud data, as well as visual
images which includes a background of the earth behind the clouds. A
video product of the cloud coverage may also be created, which shows the
motion of the clouds.

Processing and combining the separate satellite images results in an image
of the whole globe, with no clear sign of the individual satellite imagery.
Detecting clouds accurately from satellite imagery proved to be a complex
task though. Lack of time and expertise in this area lead to a simplified
cloud detection algorithm, which detects clouds with a moderate accuracy.
Time used downloading and processing is another weakness of the software.
Having products with the most recent data available are one of the key
focuses of this project. The project is a proof of concept though, which
leads to the importance of discovering issues and possibilities being more
important than the final product. Recreating the software in a lower level
language would be beneficial, as it reduces the execution time, which leads
to the possibility of having more updated products.

102

Bibliography

[1] Amazon. Noaa goes on aws. https://github.com/awslabs/open-data-
docs/tree/main/docs/noaa/noaa-goes16, 2021.

[2] Amazon. Jma himawari-8. https://registry.opendata.aws/noaa-
himawari/, 2022.

[3] Amazon. Noaa geostationary operational environmental satellites
(goes) 16 & 17. https://registry.opendata.aws/noaa-goes/, 2022.

[4] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao,
and Ming-Hsuan Yang. Depth-aware video frame interpolation. In
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[5] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[6] National Satellite Meteorological Center. Fengyun series satellites.
https://fy4.nsmc.org.cn/nsmc/en/satellite/index.html, 2022.

[7] cloudflight. Detecting clouds with machine learning.
https://www.cloudflight.io/en/project/detecting-clouds-with-
machine-learning/, 2022.

[8] The Meteo Company. sat24. https://www.sat24.com, 2022.

[9] NASA Planetary Science Division. Earth - nasa solar system explo-
ration. https://solarsystem.nasa.gov/planets/earth/in-depth/, 2018.

[10] ESA. Types of orbits. https://www.esa.int, 2020.

[11] ESA. Insat-3d. https://earth.esa.int/web/eoportal/satellite-
missions/i/insat-3d, 2022.

103

BIBLIOGRAPHY

[12] EUMENTSAT. Algorithm theoretical basis document for the cloud
product processors of the nwc/geo. 01 2019.

[13] eumetsat. Eumetsat api. https://api.eumetsat.int, 2022.

[14] Eumetsat. How to access our data. https://www.eumetsat.int/access-
our-data, 2022.

[15] Eumetsat. Metosat series. https://www.eumetsat.int/our-
satellites/meteosat-series, 2022.

[16] GISGeography. What are map projections? (and why they are deceiv-
ing to us). https://gisgeography.com/map-projections/, 2021.

[17] Pytroll group. Satpy documentation. https://satpy.readthedocs.io,
2021.

[18] NWS. Satellites. https://www.weather.gov/about/satellites, 2022.

[19] National Oceanic and Atmospheric Administration. Clouds
or snow? here are a few ways to tell the difference.
https://www.nesdis.noaa.gov/news/clouds-or-snow-here-are-few-
ways-tell-the-difference, 2018.

[20] National Oceanic and Atmospheric Administration. Goes-r series data
book. 08 2019.

[21] National Oceanic and Atmospheric Administration. Goes-17
abi performance. https://www.goes-r.gov/users/GOES-17-ABI-
Performance.html, 2022.

[22] Meteorological Satellite Center of JMA. Himawari-8/9 spacecraft
overview. https://www.data.jma.go.jp, 2022.

[23] University of Twente. Itc satellite and sensor
database. https://www.itc.nl/research/research-facilities/labs-
resources/satellite-sensor-database/, 2022.

[24] World Meteorological Organization. Observing systems capability
analysis and review tool. https://space.oscar.wmo.int/, 2022.

[25] Planetary. Coverage of a geostationary satellite at earth.
https://www.planetary.org/space-images/coverage-of-a-geostationary,
2022.

104

BIBLIOGRAPHY

[26] PROJ contributors. PROJ coordinate transformation software library.
Open Source Geospatial Foundation, 2022.

[27] Martin Raspaud, David Hoese, Panu Lahtinen, Stephan Finkensieper,
Gerrit Holl, Simon Proud, Adam Dybbroe, Andrea Meraner, Joleen
Feltz, Xin Zhang, strandgren, Sauli Joro, William Roberts, Lars Ørum
Rasmussen, BENR0, Jorge Humberto Bravo Méndez, Yufei Zhu, mher-
bertson, rdaruwala, Pierre de Buyl, Tommy Jasmin, Christian Kliche,
Talfan Barnie, Eysteinn Sigurðsson, Sebastian Brodehl, R.K.Garcia,
Thomas Leppelt, Taiga Tsukada, and ColinDuff. pytroll/satpy: Ver-
sion 0.36.0 (2022/04/14), April 2022.

[28] Tomas Soler and David Eisemann. Determination of look angles to
geostationary communication satellites. Journal of Surveying Engi-
neering, 120:122, 08 1994.

[29] Sunex. Swir imageing optics. https://sunex.com/2021/02/17/swir/,
2021.

[30] Time and Date AS. Timeanddate.
https://www.timeanddate.com/company/, 2022.

105

Attachment A

Email from The Norwegian
Meteorological Institute

From: Trygve Aspnes <trygveas@met.no>
Subject: Bachelor thesis in collection of cloud data
Date: Thu, 17 Feb 2022 16:23 +0200
To: Joachim Andreassen <jo.andreassen@stud.uis.no>

Hey Joachim

It is no small task you have started on.

I am responsible for running various algorithms that do what you describe.
These are algorithms that have been developed over more than 20 years.

So unfortunately I have no knowledge of the algorithms themselves.

For the geostationary data you use, you can register at nwcsaf.org and
download software that can do this. The result comes in netCDF, but can
relatively easily be stored as a GeoTIFF with pytroll / Satpy. NWCSAF
can handle Meteosat and I’m pretty sure it can handle GOES 16/17 and
Himawari 8 as well.

106

Email from The Norwegian Meteorological Institute

The disadvantage is that NWCSAF uses model data as input in GRIB
format and I am not sure if this is easy to obtain. It can be run without
model data as input, but then the quality will not be so good.

NWCSAF also has documentation that describes the various algorithms
used.

Trygve Aspenes

107

Attachment B

External links

B.1 Source code
https://github.com/joffe97/worldwide_cloud_data

B.2 Video product demonstration
https://www.youtube.com/watch?v=zcYJeCNK26E

108

https://github.com/joffe97/worldwide_cloud_data
https://www.youtube.com/watch?v=zcYJeCNK26E

Attachment C

How to use

1. Add credentials to credentials.ini.dummy file.

2. Rename credentials.ini.dummy to credentials.ini.

3. Build the docker image
docker build wwclouds/ -t wwclouds

4. Run the docker image
Note: The program is running with predefined arguments

docker run -it wwclouds:latest

5. Wait until the program is finished (this might take some time)

6. Get the container id by using the following command
docker container ls

7. Copy the products into a local directory
Note: The correct container id must be used

docker cp ...
<container_id>:/usr/src/wwclouds/data/products .

109

	Contents
	Glossary
	Summary
	Introduction
	Problem
	About the Company
	Structure
	Technologies
	Programming language
	Satpy

	Theory
	Satellites
	Weather satellites
	Earth coverage
	Resolution verification
	Scanning intervals
	Future replacements

	Satellite frequency bands
	Obtaining satellite data
	Online resources
	Separation of data

	Projections
	Projection selection

	Creating world map
	Reading satellite data
	Resampling
	Combining satellite images

	Cloud detection
	Definition
	Challenges
	Methods considered
	Solution

	Product generation
	Images
	Video
	Mapnik
	OpenCV

	Caching
	Storing downloaded data
	Caching resampling calculations
	Creating products from other products

	Design and construction of software
	File structure
	Files
	Data
	Data types
	Domains
	Helpers

	CLI
	Products
	Resolution
	Utctime
	Hours
	Iph
	Fps

	Product creation
	Data image
	Visual image
	Video

	Obtaining satellite data
	Satellite collection
	Satellite enum
	Satellite type
	Downloaders

	Processing
	Loading
	Resampling
	Combining
	Cloud extracting

	Results and discussion
	Image products
	Cloud accuracy
	Combining
	GOES-17 noise

	Video product
	Cloud movements
	Day night cycle
	Consistent frame change

	Resource usage
	Benchmark

	Economic overview
	Direct expenses
	Indirect expenses
	Caching

	Environmental accounting
	Emissions
	Benefits

	Conclusion
	Bibliography
	Email from The Norwegian Meteorological Institute
	External links
	Source code
	Video product demonstration

	How to use

