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Abstract

Remote sensing instruments are changing the nature of archaeological work.
No longer are archaeological discoveries done by field work alone. Light
Detection and Ranging, or LiDAR, optical imagery and different types of
satellite data are giving opportunities for archaeological discoveries in areas
which might be inaccessible to archaeologists. Different types of machine
learning and deep learning methods are also being applied to remote sensing
data, which enables automatic searches to large scale areas for detection of
archaeological remains.

In this thesis faster R-CNN object detection deep learning frameworks were
used to train models and apply these to three types of archaeological re-
mains. LiDAR based Digital Terrain Models were used to identify burial
mounds in Norway. Optical imagery was used to identify fortress struc-
tures in Central Asia. Synthetic Aperture Radar data, or SAR, was used to
detect archaeological settlement mounds in Central Asia. The success and
limitations of these models are presented.
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Chapter 1

Introduction

1.1 Remote Sensing in Archaeology

Remote sensing instruments are becoming increasingly advanced. Light
Detection and Ranging instruments, LiDAR, can scan large areas in short
amounts of time from airplanes, helicopters and even drones giving the abil-
ity to create very high resolution digital terrain models which are not af-
fected by forest canopy and other vegetation. Satellite Very High Resolution
optical imagery is becoming vastly available with more spectral bands like
near infra-red. Synthetic Aperture Radar satellite data using electromag-
netic micro-waves can scan the earth independent of time of day, penetrate
clouds, and dependent on frequencies and polarization, can even penetrate
the ground if the ground conditions are right.[1]

Remote sensing instruments have given opportunities for archaeologists that
was previously not available. It has become possible to do large-area studies
and view the landscape in a way that is not possible to do within the time
and financial constraints of regular archaeological field work. It also give
archaeologists the ability study areas that are not accessible to them.[2][3]
Remote sensing data can also be used to monitor known archaeological sites
for potential risk and damage to these sites.[2]

Deep learning and machine learning techniques are also being applied to ar-
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1.2 Thesis Introduction

chaeological studies to automatically detect potential archaeological struc-
tures from remote sensing data.[2][4] Manually scanning remote sensing data
over large-scale areas is time consuming. Deep learning techniques applied
to this data can dramatically improve the time usage by giving archaeolo-
gists positive hits for archaeological structures which can be then manually
examined.

A lot of recorded remote sensing data of interest for archaeological work
is not publicly available, particularly high resolution data. There is still
a large amount of data publicly available, giving anyone with the interest
and capability the opportunity to search for undiscovered archaeological
features.

1.2 Thesis Introduction

The first aim of this thesis is to document methods of using remote sensing
data for mapping and discovery of archaeological structures and areas where
these methods can be used. Also, the thesis will map the available free
and open remote sensing data sources found. The second aim is to apply
remote sensing data together with deep learning methods to detect selected
archaeological structures.

For the thesis, three archaeological structures have been selected that are
suitable for detection with faster R-CNN object detection deep learning
methods. The first is ancient fortress structures in Central Asia. The
second is tumuli/burial mounds in parts of Norway. The third is detec-
tion of settlement mounds in Central Asia. For fortress structures high
resolution freely available Mapbox images, up to 0.47m per pixel, will be
used.[5] For burial mounds high resolution, 0.25m per pixel, Digital Terrain
Models, DTMs, will be used. The DTMs and raw LiDAR data and freely
available through the Norwegian Mapping Authority.[6] For potential set-
tlement mounds Synthetic Aperture Radar Sentinel-1 satellite data will be
used, composited and created through Google Earth Engine.
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1.3 Problem Definition and Research Questions

1.3 Problem Definition and Research Questions

This thesis attempts to solve the following questions:

• Can ancient fortress structures effectively be detected using high res-
olution optical imagery using faster R-CNN object detection?

• Can partial ancient fortress structures effectively be detected?

• How effective is detection of burial mounds/tumuli using faster R-
CNN object detection using high resolution LiDAR based Digital Ter-
rain Models?

• Will Multi-Scale Relief Model treatment of LiDAR based DTMs im-
prove the detection of burial mounds in Norway compared to other
standard relief models? Will it improve the detection of smaller burial
mounds?

• How will applying the faster R-CNN model on lower resolution LiDAR
based DTMs affect the detection results?

• Can Synthetic Aperture Radar Sentinel-1 data, SAR, be used with
faster R-CNN object detection to detect potential settlement mounds
and what are the limitations?

1.4 Use Cases

The authors have found very little information of deep learning or machine
learning methods being applied to find fortress structures. Should the the-
sis provide a method for effectively finding potential fortress structures,
without a large amount of false positives, this could be a big help for the
detection and mapping of similar fortress structures in areas where optical
imagery is available.

Successful attempts have been made, using deep learning and machine learn-
ing methods, to map burial mounds/tumuli.[3] However, the information
the authors have found on detection of burial mounds in Norway, do only

3



1.5 Challenges

apply the simpler relief models to prepare DTM data used for learning
and detection with deep learning methods.[4] Should more advanced relief
models show an improvement in the detection of burial mounds in Norway,
this could be applied in future work in areas where burial mound sizes are
comparable with those of Norway.

Settlement mounds have been successfully identified by using SAR data
and creating Digital Elevation Models, DEMs.[2] Settlement mounds have
also been successfully identified using a combination of Sentinel-1 satellite
SAR data and Sentinel-2 multi-spectral data and combining this with a
Random Forrest machine learning algorithm.[7] No information has been
found where deep learning and object detection have been used with SAR
data to detect settlement mounds. If the SAR data alone can effectively
detect settlement mounds, without the need for creating Digital Elevation
models, this would simplify the process of detecting potential settlement
mounds and enable large area scans without much additional work, apart
from creating the SAR input data in Google Earth Engine.

1.5 Challenges

One of the main challenges for fortress detection is the fact that only optical
imagery is available with a very good resolution for the areas in Central
Asia, from free sources. No LiDAR data or high resolution satellite SAR
or Multi-Spectral imagery data with high resolution has been found to be
freely available. This limits the detection in areas where fortresses are not
covered by vegetation and the identification of any height differences with
other background. In optical imagery for example, these differences are
only indicated by varying pixel colors. Additionally, the types of fortress
structures vary greatly in shape and size. The challenge is to identify and
distinct the structures from other non-fortress type structures.

For burial mound detection the main challenge is to differentiate burial
mounds from natural mound like structure and other round man-made
structures in the LiDAR based DTMs. Many of the burial mounds found
in Norway are relatively small, giving them a less distinct signature than
larger mounds. The main challenge is to apply methods to increase the
effectiveness of detection and discover the effectiveness towards the false
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1.6 Outline

positive metric. Another challenge is that the terrain the mounds are in
can have a high effect on the number of false positives and how distinct the
mounds signature is to the surrounding terrain.

Detection of settlement mounds using SAR data has several challenges.
One challenge is the effect of type of terrain and soil of the areas of interest,
which can affect the SAR signal response. Another is the size and height of
the settlement mounds which affects the SAR signal response. Furthermore
other types of archaeological remains, like some fortress remains, are likely
to have a similar SAR signal response to settlement mounds. Another
challenge is how effective SAR data is at detecting actual archaeological
settlement mounds and separating them from other types of mounds. The
latter problem is unlikely to be resolved using SAR data.

1.6 Outline

Chapter 2 - Background: This chapter presents technical and theoretical
background information which is used in this thesis, to solve the thesis
problem definition as stated in section 1.3. Relevant related work to the
problems this thesis is attempting to solve is presented in section 2.2.

Chapter 3 - Proposed Method: This chapter explains the approach
taken to apply deep learning to detecting the ancient archaeological struc-
tures as defined in section 1.3.

Chapter 4 - Implementation: This chapter explains the implementation
of the deep learning methods, from acquisition of training data to imple-
mentation of the trained models in a final application.

Chapter 5 - Results and Discussion: This chapter presents the results
acquired from the implementation of the deep learning methods to selected
archaeological structures. Discussion of the results and evaluation of suit-
ability for practical use. Limitations of the work and possible improvements
are discussed.

Chapter 6 - Conclusion: This chapter gives the conclusion of the work
done in the thesis and answers the question stated in section 1.3, in addition
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1.7 Former Work

to proposing improvements the work done.

Appendices: The appendices will contain Github repository information
and information about the data and areas used for training and testing
models. In addition the appendices will contain information regarding re-
mote sensing instruments and satellite technical information, sources of free
remote sensing data gathered and uses of remote sensing data in archaeol-
ogy that is not related to the specific problems attempted to be solved in
this thesis.

1.7 Former Work

This thesis is partly a continuation of the work previously done at the
University of Stavanger. The previous work applied convolutional neural
networks, CNN, to automatically detect Quanat water systems and also at-
tempted to apply these same principles to detect ancient fortress structures
in Iran and areas around Iran. This thesis will attempt to more effectively
detect ancient fortress structures in Central Asia, using faster R-CNN object
detection, in addition to applying these methods to detecting tumuli/burial
mounds from LiDAR data in Norway and archaeological settlement mounds
using Sentinel-1 SAR data.
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Chapter 2

Background

2.1 Technical and Theoretical Background

2.1.1 Fortresses, Tumuli/Burial Mounds and Archaeological
Settlement Mounds

In Norway burial mounds are common features in areas of bronze age to
viking age settlements. They vary in size from as small as 2m up to 77m,
which is the size of the Rakne mound, the largest burial mound in Scandi-
navia. In the bronze age it was common to build the burial mounds mainly
from stone, without any use of sand or earth material. In the Roman era
from 0-400 AD, larger mounds became more common, with sizes up to 40m
in diameter and height up to 6-7m, while in the period between 550-800
AD the burial customs became simpler, and fewer burial mounds where
built. That changed in the Viking era, after 800 AD, where larger mounds
was again becoming more common. Typical grave mounds where built by
adding rocks around the grave and adding earth and sand above the rocks,
after the bronze age period, although the customs for building the mounds
where varied, depending on region and period. Grave fields can often be
found around settlement areas of the period they belong to, with the burial
field in Vang in Oppdal county being one of the largest, containing around
900 individual grave mounds in a less than 1km2 area.
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2.1 Technical and Theoretical Background

Figure 2.1: Oseberg Burial Mound

Fortresses are common archaeological features in many parts of Central
Asia. Throughout the historical periods, fortresses where built in many ar-
eas as defensive structures at strategical places important for the time. The
Great Wall of Gorgan in the Golestan province in Northern Iran, which was
built between 420-530 AD, is one example of a defensive line which contains
many fortress structures along it.[8] Fortresses vary in size and shape, from
square or rectangular fortresses to round fortresses and other shapes which
suited the terrain upon which they were built. Today, a lot of the ancient
fortress structures are only partial remains of the original structure. Some
fortresses might have only partial remains of the walls. Other fortresses
might only have an outline of its original structure remaining visible. The
size of fortresses ranges can range from as small as a few meters to several
kilometers in size.
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2.1 Technical and Theoretical Background

Figure 2.2: Fortress Structure

Archaeological settlement mounds are common throughout the Middle East
and Central Asia. They are mounds created over large time periods, perhaps
thousands of years, due to deposition of anthropogenic materials, like broken
mud bricks and other building material, in periods of settlement. The height
of the settlement mounds vary a lot in size and height. Mounds above 40m
in height have been registered.

Figure 2.3: Tell Uqair Settlement Mound in Irak
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2.1 Technical and Theoretical Background

2.1.2 Satellite and Airborne Optical Imagery

Satellite and airborne optical imagery is widely available through many
sources, including Google Earth and MapBox.[5] These services often uses
a combination of satellite and airborne imagery sources for their global op-
tical imagery data. Optical imagery satellites provides the bands visible to
the human eye, red, green and blue. In addition, many of the satellites pro-
viding optical satellite imagery has additional bands, including near-infrared
and panchromatic. These satellites are often termed as multi-spectral satel-
lites. A panchromatic image is a single band image that combines the
red, green and blue bands allowing for greater spatial resolution.[9] Corona
images, available through the US Geographical Survey, is an example of
Panchromatic imagery. Panchromatic bands can be used to enhance the
lower resolution spectral bands of multi-spectral satellite data.

For this thesis the MapBox service was used to obtain optical images for
the Central Asia region, as it is a free service, providing a resolution as low
as 0.46m per pixel at zoom level 17.

2.1.3 LiDAR Digital Terrain Models and Relief Models

LiDAR, or Light Detection and Ranging, is a remote sensing method that
uses light, or pulsed laser, to measure distances to the earth surface. The
sensor typically consists of a laser, a scanner and a GPS receiver.[10] There
are two types of LiDAR, topographic and bathymetric. The topographic
used near-infrared laser to map land, while the bathymetric uses green light
which can penetrate water, to measure seabeds and riverbeds. LiDAR data
can typically be gathered from helicopters, airplanes and even drones.

The LiDAR data is presented as point cloud data where each measurement
has 3D spatial coordinates - longitude, latitude and height. Point clouds
can contain many different returns, and the returns gets classified based on
the intensity of the returns.

The LiDAR data can be used to create Digital Elevation Models and Digital
Terrain Models, DEM and DTM. By using the last returns or returns clas-
sified as ground returns from the LiDAR sensor, it is possible to measure
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2.1 Technical and Theoretical Background

the earths surface, removing vegetation.

Relief models are 3D representations of part of the earths topography.

A Simplified Local Relief Model, SLRM, is a common visualisation tech-
nique used for LiDAR Digital Terrain Models. The technique uses a low-
pass filter on the DTM, with a fixed size area around each data point, to
create a smoothed averaged DTM. The SLRM model is created by subtract-
ing this smoothed DTM from the original DTM, creating a height difference
from average visualisation.

Figure 2.4: Simple Local Relief Model representation of LiDAR based Digital
Terrain Model

A Slope model is another common visualisation technique used for LiDAR
DTMs. It calculates the slope values, for example in degrees, between each
LiDAR DTM pixel.

11



2.1 Technical and Theoretical Background

Figure 2.5: Slope representation of LiDAR based Digital Terrain Model

A Multi-Scale Relief Model, MSRM, is a visualization technique which aims
to create a micro-relief to multi-scale features.[11] The technique applies
several low-pass filters of different area sizes on the original DTM. The
difference between low pass filtered DTMs are summed together and then
averaged by the number of differences calculated, as defined by formula 2.1

MSRM =

∑n−1
i LPr(ix)− LPr((i+ 1)x)

n− i
(2.1)

x is the scaling factor applied, giving the spacing between the radii of the
filtering applied to the surface, starting at ix.

The i and n values are calculated from equation 2.2 and 2.3.

i = ⌊((fmin − rr)/2rr)
1
x ⌋ (2.2)

n = ⌈((fmax − rr)/2rr)
1
x ⌉ (2.3)

fmin is the minimum feature size of interest, while fmax is the maximum
feature size of interest. rr is the resolution of the DTM.
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2.1 Technical and Theoretical Background

Figure 2.6: Multi-Scale Relief Model representation of LiDAR based Digital
Terrain Model

None of the relief models explained here are actual representations of height
in the original DTM, but methods of visualizing variation in height.

For this thesis DTM data freely available through the Norwegian Mapping
Authority is used.[6] Point cloud LiDAR data is provided together with
1m resolution DTMs covering most of Norway, called the National Height
Model. In addition, several higher resolution DTMs produced from differ-
ent projects are being offered. The DTM data used has a spatial 0.25m
resolution. 1m spatial resolution data is also used for testing faster R-CNN
models, to detect the difference in results compared to the 0.25m spatial
resolution data.

2.1.4 Synthetic Aperture Radar - SAR

Synthetic Aperture Radar, SAR, is a concept in which a sequence of acqui-
sitions from a short antenna are combined to simulate the single acquisition
of a larger antenna. For example, for a wavelength of 5cm a single acquisi-
tion from a satellite orbit could need as much as a 4250m long antenna to
get a 10m resolution.[12].

Unlike optical satellite measurements, the SAR sensor have the ability to
acquire data independent of time of day and cloud cover. The typical bands,
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2.1 Technical and Theoretical Background

frequencies and wavelengths of SAR instruments are listed in table 2.1

Figure 2.7: SAR Bands. Credit: NASA SAR Handbook

The electromagnetic waves that SAR instruments propagate have to some
degree the ability to penetrate vegetation cover, dependent on the wave-
length. The longer the wavelength, the better the ability to penetrate the
vegetation cover. In dry environments, where the soil has a low dielectric
constant, the electromagnetic wave can also penetrate the soil. Hence, SAR
satellite data can have archaeological applications in certain environments
like sand deserts and arid areas, and could detect archaeological features or
structures that are buried or partially buried.

The polarization of the SAR acquisitions refers to the plane of which orien-
tation of plane in which the electromagnetic wave oscillates. SAR satellites
typically transmits linearly polarized.[12]. Depending on the satellite and
data processing, one can get 4 main types of polarized acquisitions, VV,
VH, HV and HH, where V stands for vertical and H stands for horizontal.
The first letter represents the transmission of the electromagnetic wave and
the last letter represents the reading of the wave return. Scattering of the
electromagnetic wave when it hits a surface will be more visible in certain
acquisition modes, dependant on the type of scattering present. Rough sur-
face scattering, or relief scattering, will be more visible in VV acquisition
mode. Volume scattering, like scattering from forest cover, will be more

14



2.1 Technical and Theoretical Background

visible in VH and HV acquisition modes. Double bounce scattering, which
can be caused by buildings, walls or tree trunks for example, is more visible
in HH acquisition mode.

Figure 2.8: Examples of SAR scattering. Credit: NASA SAR Handbook

One major use of SAR data is to perform interferometry, or InSAR. In-
terferometry uses two acquisitions of the same area and combines them to
produce an interferogram, which is a function of the phase difference of
the returning waves for the acquisitions. The interferogram can be used
to measure very accurately deformation of the surface, and typical applica-
tions are to measure deformation from earthquakes, volcanic eruptions and
changes in ice sheets. Interferometry can also be used to create Digital El-
evation Maps, with better spatial resolution than the freely available 30m
spatial resolution STRM DEM created by NASA.[2] The Sentinel-1 SAR
data has the best spatial resolution of the freely available SAR data with
global coverage. However, even though it is possible to create DEMs from
the data, care should be taken when producing these, as the quality is not
necessarily better than the STRM DEM, due to too high time difference
between acquisition or lack of proper distance between the two acquisitions
required to produce the DEMs.[13]

For this thesis Sentinel-1 SAR data was used and was generated from Google
Earth Engine, GEE. SAR acquisitions from October 2014 to June 2020 was
composited and averaged for each area. The spatial resolution of the SAR
data is 10m. Google Earth Engine provides a Level-1 Ground Range De-
tected product, GRD, processed to back-scatter coefficient in decibels.[14].
The data is acquired in Interferometric Wide mode.
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2.1 Technical and Theoretical Background

The following pre-processing steps are used on the GEE SAR data:

• Apply orbit file

• GRD border noise removal

• Thermal noise removal

• Radiometric calibration

• Terrain correction

16



2.1 Technical and Theoretical Background

Table 2.1: NASA SAR Band Information[12]

Band Frequency(s) Wavelength Typical Application

Ka 27-40 GHz 1.1-0.8 cm Rarely used for SAR
K 18-27 GHz 1.7-1.1 cm Rarely used for SAR
Ku 12-18 GHz 2.4-17 cm Rarely used for SAR
X 8-12 GHz 3.8-2.4 cm High Resolution SAR. Of-

ten used for urban moni-
toring. Has little penetra-
tion into vegetation cover.

C 4-8 GHz 7.5-3.8 cm Most common SAR band
used. Used for global
mapping, like ice and land
monitoring. Low to mod-
erate vegetation penetra-
tion

S 2-4 GHz 15-7.5 cm Increasing use for appli-
cations like global agricul-
ture monitoring. Expands
C-band applications to
higher density vegetation
cover.

L 1-2 GHz 30-15 cm Medium resolution SAR.
Used for geophysical mon-
itoring, biomass and vege-
tation mapping. High veg-
etation penetration.

P 0.3-1 GHz 100-30 cm Biomass mapping. High-
est vegetation penetra-
tion.
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2.1 Technical and Theoretical Background

2.1.5 Deep Learning

Figure 2.9: Artificial Intelligence - Machine Learning - Deep Learning relation

Artificial intelligence is a broad term referring to advanced machine intel-
ligence. In 1956, at a conference on artificial intelligence in Dartmouth,
this technology was described as follows: "Every aspect of learning or any
other feature of intelligence can be so precisely described that a machine
can be made to simulate it."[15] Machine learning is one of the branches
of Artificial Intelligence. Basic principle of ML is the improvement of ex-
isting algorithms through various statistical methods by analysing a set of
given data. Unlike programs which perform specific tasks with help of hard-
coded instructions, machine learning allows the system to learn to recognize
patterns and make predictions on its own.
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2.1 Technical and Theoretical Background

Deep learning is a subset of machine learning and is currently becoming
one of the most popular approaches. Deep neural networks show better
results than alternative methods in areas such as speech recognition, pro-
cessing natural language and computer vision.[16] One of the reasons for
the successful application of deep neural networks is that the network au-
tomatically extracts important features from the data that are necessary
to solve the problem. In alternative machine learning algorithms, features
should be distinguished by people, there is a specialized area of research for
that which is called feature engineering. However, when processing large
amounts of data, the neural network handles with selection of features much
better than a person. On the other hand, deep learning can become a very
expensive operation and requires a relatively big amount of processing data
for training.

2.1.6 Neural Networks

The model of artificial neural network was firstly introduced by McCulloch
and Pitts in 1943. As a base for their work the authors used biological
neurons.[17]. The neural network has N binary entry values x1, ..., xn which
are being summed with multiplication of weights w1, ..., wn

Figure 2.10: Neural network by McCulloch and Pitts

The output neural signal is defined by the function:

a = φ(

N∑
i=1

wi ∗ xi) (2.4)

where φ is the non-linear activation function. Initially, in their neural func-

19



2.1 Technical and Theoretical Background

tion as activation function was used the Heaviside step function 2.5

f(x) =

{
1 x > 0

0 x ≤ 0
(2.5)

In the following years however it has been recommended to use other acti-
vation functions such as sigmoid function 2.6, hyperbolic tangent 2.7 and
Rectified linear unit (ReLU) 2.8 [18]

σ(x) =
1

1 + e−x
(2.6)

tanh(x) =
ex − e−x

ex + e−x
(2.7)

f(x) =

{
x x > 0

0 x ≤ 0
= max{0, x} (2.8)

Deep neural networks consist of multiple neural layers. A neural network
receives an input, calculates the resulted value and passes it along to the
next layer and so on until calculated value has reached to the final output.
There does not exist a clear definition of how many layers a network must
consist to be considered "deep", but a minimum requirement would be that
there is at least one input/output layer and a hidden layer.
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2.1 Technical and Theoretical Background

Figure 2.11: Deep neural network with one hidden layer

2.1.7 Neural Networks Training

Training of a neural network is the process of weight determination in a way
that will enhance the accuracy of the function. Three approaches exist for
training [19]:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

During supervised learning the network receives sets of labeled input data
with the correct predictions. During the training process the weights shift
depending if the network’s prediction coincides with the received labels. In
the case of unsupervised learning the training happens without the labels.
Reinforcement learning involves the existence of an external environment
with which the network interacts. Learning takes place on the basis of
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signals received from this environment. Those signals can be of form reward-
punishment. The model starts to learn through sequential trial and error.
McCulloch-Pitts neural network were not trainable. Weights for all neuron
inputs had to be pre-configured beforehand.

Nowadays, error backpropagation algorithm is used for training of neural
networks. The algorithm is based on the gradient decent method. The
algorithm uses supervised learning which requires a labeled set as an input.
During the training process in order to adjust correctly the weights of the
neurons the results from the network have to be evaluated. A loss function
calculates an error measurement which determines how much the output
values of the network differ from the correct answers. The error value is
then minimized using the gradient descent method by changes in weight
values in the network. In order to assess how strongly each weight affects
the output value, the partial derivatives of the error with respect to the
weights are calculated. Then the weights are being adjusted with the help
of the gradient and the process repeats until the output error is reduced to
an acceptable value. The initial values of the weights in the network are set
randomly.

2.1.8 Object recognition

Deep learning is gradually gaining popularity in object recognition. The
capability of a machine identifying various objects on images or videos.
Object detection tasks can be grouped into three categories.

Object classification

In object classification the neural network receives an image as an input
and gives us output a list with pairs of classes and their probability scores
(a percentage metric for a class to be accurate). Classification tasks can be
either binary or multi-class.

22



2.1 Technical and Theoretical Background

Object detection

In object detection the model must identify the position and classification of
the object on the image and correctly classify it. During the training process
the model receives as input a list of images and coordinates which are used
for locating the object of interest. During the evaluation step of an image
a list of labeled bounding boxes is returned. The efficiency of the model in
object detection tasks tends to be better than in classification tasks. The
provided bounding boxes assist the model to identify the region of interest
as opposed to image classification’s training process. In the current thesis
this methodology has been mainly used.

Figure 2.12: Object detection

Object segmentation

In object segmentation the model has to predict the exact pixel position of
the object. Masks with pixel-wise indicators and images are being provided
as input during the training process. Similar masks are given as output
upon evaluation. In this case as well, the masks assist the model identifying
precisely the position of the object by providing the ability to precisely to
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the pixel filter target from noise.

Figure 2.13: Object segmentation

2.1.9 Convolutional Neural Network (CNN)

In figure 2.11 is shown a neural network with a property called "fully con-
nected". This means that each and every single neuron is directly connected
to all previous and following neurons. Due to the high amount of incoming
parameters however, computations may become expensive and also ineffi-
cient.
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Figure 2.14: Convolutional Neural Network

CNN is an alternative architectural approach. In the early 1960s, Hubel
and Wiesel studied the functionality of cat’s visual cortex. One of the pur-
pose of the experiment’s was to detect neuron activity by showing different
images to the cat. They found out that different neurons were responding
differently, depending on the angle and placement of a line on the screen.2.15
The conclusion was that the virtual cortex has different levels of neural cells
which are being activated based on the region of interest of each neuron.
That means that there are simple neural cells that are being activated to
individual indicators, such as angle or placement of the line, but there are
also complex neural cells that are being activated based on a combination
of different indicators.[20] From this was inspired the proposed CNN called
neocognitron by Fukushima in 1980. They used the analogy of simple and
complex cells where the former corresponds to convolution layers and the
latter to sub sampling layers.[21]
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Figure 2.15: Neuron activations based on position and angle

Convolution Layers

In image processing the convolution is an operation of filtering on the image
to extract various characteristics. During the process new values for each
pixel of the image are being calculated taking in consideration the surround-
ing pixels. This calculation is done through multiplication of the pixel and
the surrounding ones with a n x n matrix which often is called kernel. The
values in the kernel vary and depend on the desired filtering.

2.1.10 Performance Metrics

In order to be able somehow to compare two neural networks, one must ini-
tially evaluate them. Different evaluation methods exist for different tasks
and most of the times one metric is simply not enough. The classification
associated metrics are being calculated from four variables.

• True positives - successful prediction of a positive classification
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• False positives - unsuccessful prediction of a positive classification

• True negatives - successful prediction of a negative classification

• False negatives - unsuccessful prediction of a negative classification

Precision - it is an important metric with which it is possible to evaluate
the accuracy of the neural network. However in some cases precision by
itself can be a poor evaluator of the efficiency of the trained neural model.
One of those cases is when the training dataset has a bad class distribution.
In those cases precision should be measured for each class individually.

Precision =
TruePositive

TruePositive+ FalsePositive
(2.9)

Recall is another important metric. It is used to see the effectiveness of the
neural network to find all the objects. In other words, the percentage of the
successful predictions of positive classifications.

Recall =
TruePositive

TruePositive+ FalseNegative
(2.10)

In some cases, depending on the task, recall and precision can be suffi-
cient metrics on their own. Sometimes however those metrics are equally
important and one combined value is easier to argue about. F1 metric com-
bines precision and recall and provides a meaningful value for performance
measurement.

Precision = 2 ∗ Precision ∗Recall

Precision+Recall
(2.11)

It is worth mentioning that sometimes precision and recall can have a dif-
ferent weight on the desired result and that weight can be adjusted by
adjusting the value β. In 2.11 the β values equals to one which indicates
that precision and recall are equally important.

27



2.2 Related Work

F1 = (1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall
(2.12)

2.1.11 Geographical Information Systems

A Geographical Information System, GIS, can be defined as:

A computer system for storing, checking and displaying data
related to positions on the Earth’s surface.[22]

There are several GIS software packages available which can be used to
process LiDAR data, do work on DTM data, create relief models DTM
data, work with satellite data and has a large range of other functionality.

Probably the most popular GIS software package is ArcGIS Pro. ArcGIS
Pro is however not a free software. QGIS is another GIS software pack-
age which is free and open source, and supports scripting of tasks through
Python.

Google Earth Engine[23] is an online service provided for free by Google.
It provides GIS functionality and Javascript/Python scripting for task au-
tomation. A large range of free satellite data with imagery and other data,
including Landsat, Sentinel and MODIS satellite data.

For this thesis, the ArcGIS Pro software package was used to work on LiDAR
DTM data and SAR data.

2.2 Related Work

Many approaches are used to detect archaeological structures and features
using remote sensing instruments. Machine learning and deep learning
methods are also being used together with remote sensing data to auto-
mate detection of these structures and features.
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As part of this thesis an overview of freely available remote sensing data,
useful resources, technical specifications of common free satellite data and
an overview of the use of the data in archaeology is presented. In this
section is presented work related to the detection of tumuli/burial mounds,
ancient fortress structures and archaeological uses for Synthetic Aperture
Radar. The rest of the information is presented in the appendices.

2.2.1 Tumuli/Burial Mounds

A lot of work has been done on the detection and mapping of tumuli/burial
mounds, using different AI techniques. Detection of burial mounds is mostly
applicable to Digital Terrain Models created from LiDAR data.

Ø.D.Trier Et al.[4] used mostly 5 points per m2 LiDAR data to create DTMs
used in detection of burial mounds, charcoal kilns and deer hunting traps.
They used faster R-CNN with a VGG16 pre-trained deep neural network.
The DTMs were pre-processed using a Simple Local Relief model, before
being used for training, validation and testing. In a larger testing area were
correctly identified 38% of burial mounds with a false positive rate was 86%.
For charcoal kilns in a different vast area results were improved. 90% of the
charcoal kilns were correctly identified with the false positive rate at 38%.

I. Berganzo-Besga Et al.[3] used a hybrid approach to the detection of tu-
muli in north-western Iberia. Their approach used 1m spatial resolution
DTMs. The DTMs were pre-processed using both a Simple Local Relief
Model, Slope model and a Multi-Scale Relief model. Yolo v3 was used with
a Darknet-53 backbone. The average precision(AP) for the Slope model and
Simple Local Relief model was approximately at 53%. The Multi-Scale Re-
lief Model, taking into account the multi-scale nature of mounds increased
the AP to about 63%. The Multi-Scale Relief Model is a visualisation tech-
nique which can be applied to any type of DTM data. See section 2.6.
Furthermore, Sentinel-2 multi-spectral data was used to reduce the number
of false positives. With Google Earth Engine 10-band composites were cre-
ated from the Sentinel-2 data. Areas in this composite were marked that
were impossible to contain mounds, like urban areas. This was used for
training of a Random Forrest algorithm which excluded areas of the DTMs
that should not have mounds, hence reducing the number of false positives.
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W.B. Verschoof-van der Vaart Et al.[24] introduce a workflow for multi-
object detection, named WODAN, which consists of three steps, pre-processing,
object detection and post-processing. Burial mounds, celtic fields and char-
coal kilns were the target experiment objects. The team pre-processed 0.5m
spatial resolution DTM data using a Simple Local Relief Model. The object
detection is faster R-CNN with a VGG16 pre-trained model. The post-
processing part consisted of conversion from bounding box conversion for
found objects to real-world coordinates which can be used with GIS soft-
ware. They performed several experiments with different parameters, giving
variable results. Overall, they conclude that faster R-CNN is one of the top
performers for detection of mounds, when compared to certain other tech-
niques used in the past. However, they did not have any success at detecting
charcoal kilns, which they attribute to the lack of training data in their data
set.

W.B. Verschoof-van der Vaart Et al.[25] also introduces a workflow called
WODAN 2.0. The new step in the WODAN 2.0 workflow compared to their
approach in the WODAN workflow, is the introduction of a location-based
ranking system to help exclude false positives. This step makes the assump-
tion that the location of archaeological features in the current terrain is not
random. Effects like current land-use, erosion, drift-sand areas and other
influences affects the likelihood of archaeological features being present. By
taking these effects into account in a ranking system, they created a map of
their test area, which categorised areas of the map between 1 and 3, 1 being
the highest likelihood for finding a certain archaeological feature. By only
including the highest ranking areas, they could exclude areas which likely
had a higher rate of false positives.

A. Guyot Et al.[26] used a multi-scale relief approach together with a Ran-
dom Forrest machine learning algorithm to detect burial mounds in parts
the Bay of Quiberon and the Gulf of Morbihan in Frace. They processed
high resolution LiDAR data into a 0.25m spatial resolution DTM. They
present an approach called Multi-Scale Topographic Position, MSTP, which
is inspired by the Integral Image algorithm, to pre-process the DTM data.
They create three intermediate DTM rasters, which they call micro, meso
and macro, each calculating the topographic deviation at that scale. Their
scales were 1-10m, 10-100m and 100-100m, which corresponds to micro,
meso and macro respectively. The mound sizes of interest in their work was
between 10-100m. The micro, meso and macro rasters were combined into
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a final composite raster. The MSTP composite raster was used to train
a 120 tree Random Forrest algorithm. This algorithm was used to create
a probability map giving the likelihood of the presence of burial mounds.
Their results were good, predicting all of the known existing megalithic
burial mounds in their testing area.

T.Freeland Et al.[27] used two automated feature extraction machine learn-
ing techniques from LiDAR based DTM data to detect burial mounds on the
Tongatapu island in Tonga. The DTMs had a spatial resolution of 1m. The
first feature extraction technique they used was object-based image analysis
and the second was an inverted mound algorithm that was produced for the
project, termed iMound, which uses a combination of existing visualisation
techniques to create a map of mound heights. Their techniques yielded
good results, with the iMound technique giving slightly better results, with
a F1-score of 0.84, detecting over 10000 mounds. Their own conclusions
state that the methods are "coarse", and better at identifying distribution
of mounds rather than identifying all individual mounds.
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Table 2.2: Overview of articles on tumuli/burial mound related work

Reference Sensor Type(s) Type of ML/DL Description

[4] LiDAR Faster R-CNN DL Mapping and detection of
burial mounds, charcoal
kilns and hunting traps in
Norway.

[3] LiDAR and
Sentinel-2 Multi-
spectral imagery

Yolo v3 DL and
Random Forrest
classifier

Mapping and detection of
burial mounds in Northen
Iberia using Multi-Scale
Relief Model and Sentinel-
2 data to exclude ar-
eas which should have no
mounds.

[24] LiDAR Faster R-CNN DL Mapping and detection
of burial mounds, celtic
fields and charcoal kilns in
the Netherlands

[27] LiDAR Automated Feature
Extraction ML

Detection of monumen-
tal earthworks/burial
mounds in Tongatapu,
Tonga

[26] LiDAR Random Forrest
classifier

Detection of Neolithic
burial mounds in France
using multi-scale ap-
proach.

[25] LiDAR Faster R-CNN Detection of burial
mounds, charcoal kilns
and celtic fields in the
Netherlands, applying a
location-based ranking
system to predict like-
lihood of archaeological
feature being present.

[11] N/A. N/A Multi-Scale Relief Model.
An algorithm for creating
a relief model for features
of multi-scale nature for
any type of Digital Ele-
vation Models and Digital
Terrain Models.
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2.2.2 Fortress Structures

The authors have found no information of previous work done with deep
learning for detecting fortress structures. Only one article describing finding
potential viking ring fortress sites with machine learning have been found.
Table 2.3 shows an overview of relevant material found.

A. Monterroso-Checa Et al.[28] used LiDAR data to analyze the El Viandar
Castle remains and the surrounding settlement, in the Cordoba region of
Spain. The castle is placed on a hilltop and the castle and settlement
ruins are in large parts covered by forest. They scanned the area with
LiDAR creating 50 points per m2 point clouds, which were converted to
DTMs. The data was analysed using slope and shadow maps visualization
techniques in the QGIS software package. With the very high resolution
data they were able to determine the castles exact location , main structures
and dimensions, which would not be possible with much lower resolution
LiDAR data.

D. Stott Et al.[29] used LiDAR data from the danish national airborne
laser scanning project to identify possible candidate sites for viking ring
fortresses in Denmark. Due to the low number of existing ring fortress
structures, deep learning techniques were not viable for their task. They
pre-processed the DTM data with residual relief at the scale of the expected
ring fortress sizes. For identifying possible ring structures in the data, they
used both template matching and a Hough circle transform. This gave them
over 200000 circular features. Using several different criteria they could
reduce this number, for example by excluding any circular feature with a
diameter less than 45m and by comparing the maximum and minimum
diameter, which would be the expected rampart width of the fortress. In
addition they employed mapping data of Denmark before any large scale
land reclamation and drainage altered the the environment, adding features
like main communication routes and other information from the Viking era
of likely terrain in which fortresses could be built. The information was
used to train a Random Forest classifier that reduced the original number
of circular features found. By using these techniques they identified 199
circular features that could be candidates for viking ring fortresses and
reduced these down to 2 two likely candidates.

33



2.2 Related Work

Table 2.3: Overview of articles on fortress structure detection

Reference Sensor Type(s) Type of ML/DL Description

[28] LiDAR N/A Detection of remains of
El Viandar Castle in El
Hoyo, Spain. High resolu-
tion LiDAR data was ac-
quired by drone to detect
remains of the castle on a
forest covered hill.

[29] LiDAR Hough Circle
Transform, tem-
plate matching and
Random Forest
classifier

Use of machine learning
techniques to search ar-
eas for potential sites for
viking ring fortresses.

2.2.3 Synthetic Aperture Radar uses in Archaeology

D. Tapete Et al. used SAR data acquired by the italian Cosmo-SkyMed
satellite to detect and monitor archaeological mounds.[2] So-called Tells are
archaeological mounds generated deposition of anthropogenic material and
sediments over large time periods. Tells are common archaeological features
in the Middle East. They used the SAR data to create Digital Elevation
Models, DEMs, for the governate of Wasit in Iraq. The DEMs are created
by combining two acquisitions of the same area, using interferometry. They
used the StripMap HH-polarized acquisition images with a 3m spatial res-
olution, creating a final DEM with a 10m spatial resolution. This spatial
resolution is significantly better than globally available SRTM DEMs, which
has a 30m resolution. They effectively mapped the Tells in the research area
based on knowledge of their presence from other data sources, like Corona
imagery, Sentinel-2 data and Soviet maps from the 1950s. 12% of the total
tells found were however not possible to detect from the other sources of
comparison. Tells standing out as low as 4m above the background ter-
rain could be detected. In addition to mapping Tells, the project also used
1m resolution Enhanced Spotlight mode acquisitions to create time-series
DEMs, providing a method to monitor damage to the Tells, indicating loot-
ing.. The survey was mainly performed to demonstrate the capabilities
of the Cosmo-SkyMed SAR data, and not specifically as an archaeological
study, but demonstrates how high resolution SAR data can be an effective
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tool for archaeological monitoring and mapping.

C. Stewart Et al. used L-band SAR data from the PALSAR-1 and 2 satel-
lites to find anthropogenic features in the North Sinai desert.[30] The study
created multi-temporal filtered sigma nought back-scatter images of the
study area from the SAR data. The sigma nought is also called a back-
scatter coefficient, a normalized parameter indicating the strength of back-
scatter.[31] Of two regions studied, one contained a large amount of linear
features of interest defined by strong back-scatter, while the second region a
low back-scatter anomaly of interest, near three well known archaeological
sites. To extract linear features from the first area of interest an algo-
rithm was implemented to extract the man made linear features from the
back-scatter images. Standard linear feature extraction machine learning
methods were not found to be good enough. The SRTM DEM was used to
calculate an incidence angles for the sand dunes, and hence excluding these
features. By experimentation the use of average coherence between the
consecutive SAR acquisitions was found to be better at distinguishing the
linear features, as the stood out more compared the the background with
lower coherence. By comparing the resulting man made linear features to
known existing features, the study managed to find partially buried roads
and infrastructure not visible in optical imagery or other non-SAR data.
For the second area of interest, the study created time-series imagery from
the PALSAR-2 satellite, with a 2m spatial resolution. By looking at the
De Grandi filtered intensities of the SAR attenuation from both PALSAR-
1 and 2 data in different variants, the low back-scatter anomalies became
more visible. By studying the area with previous archaeological work the
study gave an interpretation that the anomalies might be areas of settle-
ment that might have been surrounded by lagoons, rivers and swampland
in the past, and the difference in soil moisture might be the reason for the
anomalies.

D. Tapete Et al. used ENVISAT ASAR data for detection and monitoring
of archaeological heritage in the Nasca region in southern Peru.[32]. The
ENVISAT ASAR satellite has a 30m spatial resolution and is a C-band
SAR satellite with a 5.33 GHz frequency. They created temporal averaged
images if the sigma nought back-scatter coefficient. They also created fil-
tered time series data of the back-scatter coefficient, and calculated the
image ratios between each filtered image in the time series to enhance the
back-scatter coefficient. By looking at this data in RGB, they could identify
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back-scatter that changed from the constant back-scatter. In addition, a
normalized difference vegetation index, NVDI, and a water index, NWDI,
was produced from the ASTER satellite multi-spectral data to complement
the SAR data. With the back-scatter coefficient data they were able to de-
tect known Nasca lines, even with the poor resolution of the data. Puquios,
which are underground water systems, similar to qanats common in the
Middle East and Central Asia, were also studied using the SAR data to-
gether with the multi-spectral data. By looking at changes over time, the
difference in back-scattering of the puquio paths could be observerd. The
soil around functioning puquios are affected by moisture to a larger degree
than the dry areas without puquios. They could observe how the back-
scatter changed over time, and identify the puquios where water likely had
been flowing in the period of observation. The SAR data was also used
to observe the Cahuachi archaeological site, which was a major ceremonial
center of the Nasca culture. The site contains large pyramid and temple
structures. While the structures themselves were not very well identified
with the 30m resolution SAR data, they could observe changes in the SAR
data over time, and identify changes to the site. The changes were indica-
tive of damage and looting of the site, showing that even low resolution
SAR data could potentially be used for site monitoring of cultural heritage.

H.A. Orengo Et. al. performed a study of the Cholistan desert in Pakistan,
using multi-temporal SAR and multi-spectral data to identify archaeological
mounds from ancient settlements.[7] The area is believed to be an impor-
tant settlement area in the period between 2500 and 1900 BC, called the
Mature Harappan period. The study used a 5 year multi-temporal data
set of Sentinel-1 SAR data and Sentinel-2 multi-spectral data, which was
created in Google Earth Engine. The multi-spectral data tagged as affected
by clouds were excluded when combining the data, and the data set con-
sisted of 14 bands with VV and VH polarization in both ascending and
descending mode for the SAR data and B2-B8A, B11 and B12 bands for
the multi-spectral data. Creating a multi-temporal data set excludes many
problems poor visibility conditions and environmental effects on the SAR
data. The spatial resolution of the SAR data is 10m while the 10 bands of
the multi-spectral data has spatial resolutions of 10m and 20m, deemed to
be sufficient to detect the mounds. By using 25 previously mapped mounds
the multi-temporal data for these mounds were used to train a 128 tree Ran-
dom Forrest algorithm. The study effectively mapped the desert, finding a
large number of previously unknown settlement mounds and finding settle-
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ment patterns in the area. The mounds have a lot of clay material. The
authors conclude that SAR signatures or multi-spectral signatures alone
are not able to distinguish a mound from other areas containing naturally
containing clay material. However, they believe the combination of these
are enough to distinguish settlement mounds from non-anthropogenic fea-
tures. Specifically they attribute the effectiveness of their method to the
combination of high contrast in the SAR bands, the SAR bands ability to
penetrate loose dry sand and the specific reflectance of the multi/spectral
Red edge, NIR and SWIR bands for the mounds.

F.Chen Et al. present an overview of synthetic aperture radar remote sens-
ing information for archaeology.[33] While at the time of writing, their ar-
ticle is 7 years old, their information is still valid. Newer SAR satellites
with other SAR bands and better spatial resolution has become available,
but their discussions in the article still applies to freely available SAR data.
They discuss their opinions on how SAR data can be used in archaeology,
and emphasizes heritage monitoring and analysis in addition to new heritage
detection as the main two uses of SAR data in archaeology.
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Table 2.4: Overview of articles on SAR uses in archaeology

Reference Satellite - Band Type of ML/DL Description

[2] Cosmo-SkyMed -
X-band

N/A Mapping and monitoring
of "Tells", archaeologi-
cal mounds from settle-
ments, using Digital El-
evation Models created
from Cosmo-Skymed SAR
data of variable resolu-
tion.

[30] PALSAR 1 and 2 -
L-band

N/A Extraction of different
archaeological features
in SAR data, including
archaeological settlements
and roads in the Sinai
desert.

[32] ENVISAT ASAR -
C-band

N/A Mapping and monitoring
of cultural heritage in the
Nasca Region in southern
Peru.

[33] N/A N/A A discussion on use of
SAR data in archaeology.
Discusses approaches for
reconnaissance of archae-
ological signs and how
SAR interferometry can
be used for the monitoring
of cultural heritage sites.

[7] Sentinel-1 - C-Band
and Sentinel-2
Multi-spectral

Random Forrest
classifier

Mapping and discovery
of settlement mounds in
the Cholistan desert using
multi-temporal SAR and
multi-spectral data and
training a Random Forrest
algorithm for generating a
probability map of likely
settlement mounds.
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Chapter 3

Proposed Methods

3.1 Burial Mounds - Norway

For detection of burial mounds in Norway LiDAR based Digital Terrain
Models is used. The Norwegian Mapping Service has over several years
created a country wide 1m spatial resolution DTM which is available for
download through their websites.[6] There are other projects which provide
large areas of higher spatial resolution DTMs, as low as 0.25m resolution.
In addition, the Norwegian Directorate for Cultural Heritage maintains
a database for Norwegian cultural heritage, including positions of known
burial mounds. This database is available in different formats usable with
GIS software, through GeoNorge.[34].

The proposed method is to use the LiDAR based DTMs and cultural her-
itage database to generate training and testing data for the learning model.
4 different relief models of the DTM data will be made, Slope, Simple Lo-
cal Relief Model and two Multi-Scale Relief Models with a scaling factor
of 1 and 2. Once a model is trained and tested, it can be used to scan a
large area by feeding a large composite image of an area identifying poten-
tial burial mounds. A user option of excluding results below and below a
certain size will also be added, in addition to an option to exclude results
where the bounding box ratio of the longest side against shortest side is
above a certain user-defined threshold. If scanning a large area with more
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than one model, the user can also compare the results between the models.
The user will chose an input model result to compare and if results from
this model are found in one of the other models selected, the results are
kept.

Final result csv files with UTM coordinates can be used to create an ESRI
shape file in QGIS (Python script) or ArcGIS Pro (Jupyter Notebok). The
ESRI shape files can then be used with any GIS software supporting this
format.
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Figure 3.1: Proposed workflow for creating faster R-CNN models and applying
trained models for burial mound detection.
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3.2 Fortress Detection - Central Asia

The proposed method for detecting archaeological fortress structure is to use
the Mapbox optical imagery to train a faster R-CNN object detection model.
Fortress structures and their coordinates will be identified using vici.org.
Mapbox will be used to download image tiles, which will be composited, for
each fortress. Each image will be annotated and used to train the faster R-
CNN object detection model. The trained model can then be used to scan
a large image. A final CSV file with the resulting bounding boxes from
the model will be produced with WGS1984 coordinates in decimal degrees.
An ESRI shape file can be created in QGIS (Python script) or ArcGIS Pro
(Jupyter Notebok) from this the results csv file. The ESRI shape files can
then be used with any GIS software supporting this format.

Figure 3.2: Proposed workflow for creating faster R-CNN models and applying
trained models for fortress detection.

42

https://vici.org/


3.3 Settlement Mound Detection - Central Asia

3.3 Settlement Mound Detection - Central Asia

H.A.Orengo Et. al. used multi-temporal Sentinel-1 SAR data and Sentinel-
2 multi-spectral data to detect settlement mounds in the Cholistan desert
in Pakistan.[7] By using their approach to generating data in Google Earth
Engine, several areas in Central Asia was studied. By using vici.org, a
website which maps a lot of archaeological remains identified throughout
the region, the response of the data for these remains could be studied. The
data is composited and averaged from acquisitions taken between October
2014 and June 2020. For SAR data in particular, this composited data
removes a lot of noise and any kind of seasonal effects on the data, which
might occur using only a very few acquisitions.

It was found that the SAR data in particular gave a relatively distinct
response to a lot of the archaeological settlement mounds, many of which
are classified as "unidentified site" in the vici.org website. By using an
RGB display of the data, where red used VV polarized data in ascending
mode, green used VH polarized data in ascending mode and blue used VV
polarized data in descending mode, many of the mounds gave the response
as seen in figure 3.3 and 3.4.

The sides of the mounds was found to give higher scattering effects than the
surrounding background. One can see from observation that the left side
of the mounds gave scattering more prominent in ascending mode, giving
anywhere from yellow, orange through red color, while the right side of
the mounds gave scattering more prominent in descending mode, giving a
blue color. The intensity of the scattering, based on observation, seems to
be related to the slope of the mound edges more than the actual height
of the mounds. Some of the scattering response could also be related to
the compaction of the soil in the mounds. Observation shows that a lot
of the smaller mounds gets a dark yellow, orange through red color and
transitioning to blue color immediately, as there is not much flat area in
the middle of the mounds, as seen in figure 3.3. Larger mounds with more
flat area, often gives a darker colour in-between the edges of the mound, as
the flat area does not give as much scattering of the SAR signal. Figure 3.5
shows the SAR response and the optical image of the same square settlement
mound.
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3.3 Settlement Mound Detection - Central Asia

Figure 3.3: Example of SAR RGB response on settlement mounds west of
Bukhara, Uzbekistan.

Figure 3.4: Example of SAR RGB response on settlement mounds near Masar-
i-Sharif, Afghanistan.
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3.3 Settlement Mound Detection - Central Asia

(a) SAR RGB response of settlement
mound.

(b) Optical image of same settlement
mound.

Figure 3.5: SAR response and optical image of settlement mound near She-
berghan, Afghanistan.

(a) SAR RGB response (b) Optical image

Figure 3.6: SAR RGB response and optical image of same area in Masar-i-Sharif,
Afghanistan.

Modern buildings and structures generally gave a completely different SAR
response than the observed settlement mounds, and very few modern build-
ings and structures would be confused with the response of a settlement
mound. Examples are shown in figure 3.6.

It is important to note that the SAR data itself might not be able to distin-
guish a natural mound from an archaeological mound. Also, some ancient
fortress structures or partial remains of those might also give a SAR response
similar to that of a settlement mound. Hence, using faster R-CNN object
detection on the SAR data, looking for SAR responses similar to those
shown in this section, will find possible archaeological settlement mounds
and other possible archaeological structures giving a similar response. If the
model finds a SAR signature similar to those shown, which happens to be
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3.3 Settlement Mound Detection - Central Asia

something else than an archaeological settlement mound, the model has ac-
tually worked. The 10m spatial resolution of the SAR data sets limitations
to how well a model can be trained to distinguish a small fortress from a
settlement mound.

The proposed method for detecting archaeological settlement mounds is
to use the SAR RGB response, as described above, to train a faster R-
CNN object detection model. Multitemporal composited Sentinel-1 SAR
Geotiff data will be created in Google Earth Engine. Using ArcGIS Pro,
selected areas will be exported to png format and split into 448x448 pixel
images. Using vici.org for the selected areas, archaeological features giving
the expected SAR signature will be annotated and used to train the faster
R-CNN object detection model. The trained model can then be used to
scan a large image. A final CSV file with the resulting bounding boxes
from the model will be produced with WGS1984 coordinates in decimal
degrees. This csv file can be used to create an ESRI shape file in QGIS
(Python script) or ArcGIS Pro (Jupyter Notebok). The ESRI shape files
can then be used with any GIS software supporting this format.
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Figure 3.7: Proposed workflow for creating faster R-CNN models and applying
trained models for settlement mound detection.
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Chapter 4

Implementation

4.1 Data Gathering and Image Preparation

4.1.1 Burial Mounds - Norway

Data for for burial mounds in Norway was produced from 0.25m spatial res-
olution Digital Terrain Models downloaded from høydedata.no, which are
available as part of different projects, mostly used to create the national
coverage 1m spatial resolution DTM data, called NDH. All the DTMs are
produced from LiDAR measurements, and were downloaded in GeoTiff for-
mat in UTM coordinates. In addition, a geospatial database in FGDB
format was downloaded from GeoNorge, containing the individual cultural
heritage markings maintained by the Directorate for Cultural Heritage. The
process for generating training, validation and testing data for the faster R-
CNN object detection training using Google Colab is shown in figure 4.1.
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4.1 Data Gathering and Image Preparation

Figure 4.1: Process for generating training, validation and testing data for faster
R-CNN model training in Google Colab.

The Multi-Scale Relief models were originally calculated using a python
script, using the arcpy library which contains a lot of the ArcGIS Pro func-
tionality. Due to the large space requirements and low speed of calculation
(several hours per data set), a Google Earth Engine Javascript is available in
the Github repository for this thesis, which can calculate and create MSRM
GeoTiff files.

Once each of the 4 types of relief models were generated, burial mounds
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4.1 Data Gathering and Image Preparation

were found from the database of cultural heritage, by overlaying these on
the rasters. The database contains two different classifications of burial
mounds, called "gravhaug" with id 1702 and "gravrøys" with id 1703. The
markers were found to be inexact in many places, and often marking more
than one burial mound, so visual identification of mounds were needed in
some areas. In addition, several mound markers indicated mounds that were
severely damaged or completely removed. The database often contained
descriptions of the mounds gathered through surveys throughout the years.

Figure 4.2: Slope display in ArcGIS Pro with burial bound markers from Cultural
Heritage database.

Since many of the burial mounds are in burial fields and close together, care
was taken not to have partial burial mounds at the edges of the images.
The Export Raster functionality in ArcGIS Pro exports the images with
the original pixel spacing as is contained in the raster, which is important.
When exploring the QGIS software package as an alternative to ArcGIS
Pro, export of png images seems to be dependent on zoom level and is not
preserving the original 0.25m per pixel quality.
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4.1 Data Gathering and Image Preparation

Figure 4.3: Export of png image with specific coordinates forcing RGB coloring
according to scale.

To test the usage of the final trained model, a png file for each of the 4 relief
types were created manually in ArcGIS Pro, for a 9km2 test area. The final
application consumes this large png file, and automatically splits the image,
with or without overlap and does a complete scan of the area.
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4.1 Data Gathering and Image Preparation

4.1.2 Fortresses - Central Asia

To gather data for training of a faster R-CNN object detection model for
fortresses in Central Asia, the vici.org webpage was used to find placement
of fortresses throughout the region. Mapbox was used to download image
tiles for the area at selected zoom levels, which was then combined to a
composite image for the selected fortress and surrounding area. Each image
was annotated using the myvision.ai webpage, and the annotations were
exported in csv format. The data was split into training, validation and
testing data for use with the faster R-CNN object detection training process
in Google Colab.

4.1.3 Archaeological Settlement Mounds - Central Asia

Google Earth Engine was used to generate GeoTiff data for the Sentinel-
1 Synthetic Aperture Radar, SAR. Using Javascript in GEE, SAR data
acquisitions for a 5 year period was combined into 4-band composite, and
exported to Google Cloud and downloaded for use in ArcGIS Pro. Figure
4.4 shows the process for creating the training and testing data used for the
faster R-CNN object detection model training in Google Colab.
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4.2 Faster R-CNN Model Training

Figure 4.4: Process for generating training and testing data for faster R-CNN
model training in Google Colab.

To test the usage of the final trained model, a png file for two test areas
were created manually in ArcGIS Pro. The final application consumes these
large png files, and automatically splits the image, with or without overlap
and does a complete scan of the area.

4.2 Faster R-CNN Model Training

For the thesis, faster R-CNN object detection models were trained. The
deep learning framework used was PyTorch.
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4.3 Final Application

The backbone of the faster R-CNN models was ResNet-50-FPN. All models
were trained using Stochastic Gradient Decent optimizer, apart from the
training of the fortress model, which used the ADAM optimizer.

Using Jupyter notebooks, all training was done in Google Colab. All the
notebooks are available in the thesis Github repository.

4.3 Final Application

The web-based application built for applying conveniently the model was
built with Python/Flask and JavaScript. The application supports scanning
of large images splitting the images into selected pixel size, and a selection of
overlap to use. Download of optical imagery from Mapbox is also supported.
Functionality for result filtering and model cross-validation of burial mound
results is available. In addition, the application supports upload of newly
trained object detection models.
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Chapter 5

Results and Discussion

5.1 Results for Tumuli/Burial Mounds

The faster R-CNN object detection models were trained with a learning
rate scheduler, reducing the learning rate after a fixed number of epochs
of training. All models were trained using a fixed training, validation and
testing data sets. The details of the training, validation and testing splits
are shown in table B.2. Additional training and validation images was
added by rotating the images listed in the table B.2 180 and 270 degrees,
increasing the number of images by a factor of 3.

The training parameters for the Slope, Simple Local Relief Model and the
two Multi-Scale Relief Model are shown in table 5.1.

The two metrics found to be most relevant for evaluating the quality of the
models were found to be the precision (equation 2.9) and recall (equation
2.10).

The results of the testing data is shown in table 5.2. The Slope model gives
clearly the best precision and recall, while the Multi-Scale Relief models
give a recall closer to the Slope model, but with a much worse precision.
33 of the 46 total images (50x50m images) used for the testing had burial
mounds in them, while the remaining 13 had no mounds in them. Using
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5.1 Results for Tumuli/Burial Mounds

Table 5.1: Training Parameters for faster R-CNN Burial Mound Models

Model # of Epochs Starting LR LR Reduction
Factor

# of Epochs Be-
fore LR Reduc-
tion

Slope 120 0.005 0.1 30
SLRM 200 0.005 0.1 50
MSRM Scaling
Factor 1

200 0.005 0.1 50

MSRM Scaling
Factor 2

200 0.005 0.1 50

Table 5.2: Faster R-CNN Burial Mound Model Results for Testing Set

Model Total
Mounds

TP FP FN Precision Recall

Slope 79 60 17 19 0.78 0.76
SLRM 79 38 21 37 0.64 0.51
MSRM Scaling
Factor 1

79 54 54 25 0.50 0.68

MSRM Scaling
Factor 2

79 54 102 25 0.35 0.68

more images without any burial mounds in them in the testing data set,
would affect the precision of all models and likely decrease the precision
values for the testing.

To do a more practical evaluation of the final models, a 9km2 area around
Klepp in Rogaland was used. Known burial mounds for the area was found
using the Cultural Heritage database. The database, as in many areas,
did not map individual mounds very well and some markers indicated more
than one mound. The Cultural Heritage search website of the Department of
Cultural Heritage, "Kulturminnesøk", was used to identify as many ground
truth mounds as possible, giving a total of 76 burial mounds. Part of the
area is shown in figure 5.1, with boxes showing placement of confirmed
burial mounds. The area could contain more burial mounds that are not
properly marked. For almost all tests, two potential burial mounds were
consistently found, and are likely burial mounds and not counted as false
positives in the results. These two can bee seen in figure 5.2.
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5.1 Results for Tumuli/Burial Mounds

Figure 5.1: Part of Klepp test area displayed with Slope and confirmed burial
mound markers.

Figure 5.2: Two likely burial mounds indicated with red boxes. Data presented
with Slope.
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5.1 Results for Tumuli/Burial Mounds

Table 5.3: Faster R-CNN Burial Mound Model Results for Klepp Test Area

Model Total
Mounds

TP FP Possible
Burial
Mounds

Precision Recall

Slope 200px 76 38 338 2 0.10 0.50
Slope 400px 76 35 54 2 0.39 0.46
Slope 600px 76 25 23 2 0.52 0.33

SLRM 200px 76 48 1083 2 0.04 0.63
SLRM 400px 76 16 52 2 0.24 0.21
SLRM 600px 76 4 6 1 0.4 0.05

MSRM Scaling
Factor 1 200pxx

76 47 1708 2 0.03 0.62

MSRM Scaling
Factor 1 400pxx

76 30 533 1 0.05 0.40

MSRM Scaling
Factor 1 600px

76 25 358 1 0.07 0.33

MSRM Scaling
Factor 2 200px

76 49 4325 2 0.01 0.65

MSRM Scaling
Factor 2 400px

76 42 1522 2 0.03 0.55

MSRM Scaling
Factor 2 600px

76 30 884 2 0.03 0.40

The area was scanned with each of the 4 models, automatically splitting
the large 9km2 input png format image into 200x200, 400x400 and 600x600
pixels parts, which is the equivalent of 50x50m, 100x100m and 150x150m
sizes respectively. While the input images for training used 200x200 pixel
images, this size increases the likelihood of a mound going across more than
one image. Also, ideally a feature being searched for by the models, should
not be more than 25% of the image size.

The results are shown in table 5.3. Of the 4 models, only the slope model
gives a high precision while having decent recall values.
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5.1 Results for Tumuli/Burial Mounds

Table 5.4: Results for Klepp Test Area with Exclusion of Result Size and Shape

Model Total
Mounds

TP FP Possible
Burial
Mounds

Precision Recall

Slope 200px 76 38 268 2 0.12 0.50
Slope 400px 76 35 52 2 0.40 0.46
Slope 600px 76 23 23 2 0.50 0.32

SLRM 200px 76 48 1009 2 0.04 0.63
SLRM 400px 76 16 50 2 0.24 0.21
SLRM 600px 76 4 4 1 0.5 0.04

MSRM Scaling
Factor 1 200pxx

76 47 1518 2 0.03 0.62

MSRM Scaling
Factor 1 400pxx

76 28 499 1 0.05 0.37

MSRM Scaling
Factor 1 600px

76 23 295 1 0.07 0.30

MSRM Scaling
Factor 2 200px

76 49 4095 2 0.01 0.65

MSRM Scaling
Factor 2 400px

76 42 1300 1 0.03 0.55

MSRM Scaling
Factor 2 600px

76 25 563 1 0.04 0.33

The majority of burial mounds are fairly round in shape, larger than 5m
in diameter with very few burial mounds in Norway larger than 50m. To
attempt to reduce the number of false positives, any mound larger than
50m and smaller than 6m were excluded from the results. The diameter
was calculated as the largest of the width and height of the model bounding
box result. In addition, any bounding box result with a width to height or
height to width ratio above 1.7 was excluded, due to the round nature of the
majority of mounds. The results are shown in table 5.4. The exclusion has
very little effect on number of true positives. The maximum number of true
positives removed, was from the Multi-Scale Relief model with a scaling
factor of 2 with a 600 pixel size scan, where 5 true positives ended up being
removed. The models with high precision had few false positives removed,
while the exclusion removed many more false positives from models with
poor precision.
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5.1 Results for Tumuli/Burial Mounds

Table 5.5: Results with Exclusion of Result Size and Shape and Common hits
between Slope and other Models

Model Total
Mounds

TP FP Possible
Burial
Mounds

Precision Recall

Slope 200px 76 36 195 2 0.16 0.47
Slope 400px 76 32 37 2 0.46 0.42

Another approach to reduce false positives metric is to cross-validate models
with respect to the best model. According to the results the Slope model
is considered to be the best due to it’s higher precision. This calculation
was done for scan of 200 and 400 pixel size, after excluding mound hits
of the same sizes and ratios as presented in table 5.4 before comparison of
the models. The 600 pixel scan for the 4 models was found to have a too
low recall value to be relevant, although the precision was higher than the
200 and 400 pixel scans. The results are shown in table 5.5. For the 200
pixel scan, the number of false positives is reduced from 268 to 195, while
removing two true positives. For the 400 pixel scan, the number of false
positives is reduced from 52 to 37, while removing three true positives.

The effect of scanning the 9km2 area using overlap was also tested. Ad-
ditional images overlapping the original 200x200 or 400x400 pixel size by
50% was tested. Scanning with overlap caused duplicates of bounding boxes
which were excluded by added functionality. The center of each model re-
sult bounding box was compared to the other result bounding boxes and
removed if the center was within one of the other bounding boxes. The over-
lap scans for 200 and 400 pixel size was done on the best model, which was
the Slope relief model. Both were tested with and without excluding bound-
ing boxes below 6m and above 50m size and width/height or height/width
ratio above 1.7. The results can bee seen in table 5.6. The effect of using
overlap is that the number of false positives are increased, but the number
of true positives also increases significantly. Hence, increasing the recall and
reducing the precision of the model results. Results for parts of the area
using overlap and excluding bounding boxes is shown in figure 5.3
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5.1 Results for Tumuli/Burial Mounds

Table 5.6: Results Using Overlap

Model Total
Mounds

TP FP Possible
Burial
Mounds

Precision Recall

Slope 200px 76 53 707 2 0.07 0.70
Slope 200px
w/exclusion

76 53 558 2 0.09 0.70

Slope 400px 76 50 122 2 0.29 0.66
Slope 400px
w/exclusion

76 50 117 2 0.30 0.66

Figure 5.3: Result bounding boxes (green) overlaid Slope relief and ground truth
markers. 400 pixel scan of Slope with exclusion.

All results discussed so far are based on a 0.25m spatial resolution Digital
Terrain Model data. Data with this resolution is not available for all of
Norway so a final test was done on the Klepp test area using 1m spatial
resolution from the National Height Model DTM data. The Slope model
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5.1 Results for Tumuli/Burial Mounds

Table 5.7: Results Using Overlap and 1m Spatial Resolution Data

Model Total
Mounds

TP FP Possible
Burial
Mounds

Precision Recall

Slope 0.25m
w/exclusion

76 50 117 2 0.30 0.66

Slope 1m w/ex-
clusion

76 50 215 2 0.19 0.66

was used to compare the results between the spatial resolution. The results
are shown in table 5.7. The scan of the test area was done by splitting the
area into 100x100 pixels which is the equivalent of 400x400 pixels for the
0.25m spatial resolution data using a 50% overlap. The results shows that
the model finds the same number of ground truth burial mounds, but the
number of false positives almost doubles.
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5.2 Discussion of Results for Tumuli/Burial Mounds

The testing data from model training process indicates that of the 4 models,
the Slope model is the most accurate, giving the lowest number of false
positives and the highest number of actual burial mounds found. The Multi-
Scale Relief models have a higher recall value than the Simple Local Relief
model but with a lower precision based on the same test data. The test
data does not have a large amount of images without burial mounds and
the numbers might not reflect accurately the precision when applying the
models to larger areas.

The trends are however similar when looking at the Klepp 9km2 test area.
The precision of the Slope model is much better than the SLRM and MSRM
models. While the recall values might be better for SLRM and MSRM than
for Slope in this test area, the precision is so low, that the actual recall values
are not particularly relevant. The SLRM and MSRM models seems to be
finding a huge amount of features which has some height difference above
the surroundings, but not really differentiating burial mounds from other
features.

As explained in section 2.1.3, the Slope model shows distinct slope changes
calculated between pixels. The SLRM and MSRM models however, uses low
pass filtering to enhance height differences in the Digital Terrain Models.
These low pass filters are removing important details in the data which
the Slope relief does not, and hence making it harder for a deep learning
model to distinguish details of some burial mounds from other non-burial
mound features. This can bee seen in figure 5.4. The other issue with using
SLRM and MSRM relief models is that when the mound heights above
the background is very low, as is the case for a lot of smaller mounds, the
height difference scales of the relief models for the area calculated affects
how visible the mounds are in the resulting display. For the Klepp test
area, the SLRM has a height difference range about 73m and the MSRM
with scaling factor 1 and 2 has height difference range which is about 2.1m
and 14m respectively. The Slope model is completely independent of height
range and height difference range for the area in which the slope relief is
calculated. It uses a fixed scale of 0 to 90 degrees.
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5.2 Discussion of Results for Tumuli/Burial Mounds

(a) Slope Relief (b) SLRM Relief

(c) MSRM Scaling Factor 1 Relief (d) MSRM Scaling Factor 2 Relief

Figure 5.4: Comparison of Relief Models
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5.2 Discussion of Results for Tumuli/Burial Mounds

I. Berganzo-Besga Et. al. reported in their study of tumuli in Spain that
their use of the Multi-Scale Relief model with a scaling factor of 2, and
calculating this relief model with a minimum and maximum feature range
between 1m and 19m respectively, improved their results compared to their
use of Slope and SLRM relief models.[3] In their study the SLRM relief
model gave a recall of 0.42 and precision of 0.85, the Slope model gave a
recall of 0.46 and a precision of 0.91 and the MSRM relief model gave a
recall of 0.58 and precision of 0.95, showing that the MSRM relief model
had a large effect on the results. In their study, Yolo v3 was used as a object
detection algorithm, which is different from the faster R-CNN used in this
thesis. The results using faster R-CNN object detection on burial mounds in
Norway shows a different trend for the results when comparing the models,
clearly showing that the Multi-Scale Relief model is not improving results.
Also, the SLRM model gives worse results than the Slope model, while in
the results from Spain they give similar results. One reason for this large
difference can be that over 90% of the mounds used for training in the
Spanish study had a diameter over 18m, which is significantly higher than
the average diameter of 9.7m of the mounds used for training in this thesis.
The size distribution of mounds used for training, calculated from annotated
bounding boxes, can be seen in table B.2. The much larger average diameter
also makes it likely that the average height of the mounds is much higher
in the Spanish study than the mounds used in this thesis. In addition, the
Spanish study augmented images, using larger mounds to simulate smaller
mounds due to lack of training data. This approach would not really be
valid, based on the observation of burial mounds in Norway, as a signature
of a large mound and small mound in Norway can be quite different in many
cases.

Excluding model results where the resulting bounding boxes is above and
below a certain size, and the ratio of the width/height or height/width
is above a certain ratio, does have a small effect on the number of false
positives for the Slope model, but is most effective when being applied to
the other models with very low precision.

Using multiple models and comparing the most accurate, Slope, with the
others, gives a small improvement on the precision and number of false
positives, but also reduces the recall and number of true positives.

Considering the most accurate model, the Slope model, the major effect on
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results is scanning a large area with or without overlap and the size of the
area splitting. When excluding mounds of certain sizes and ratio, the 400
pixel scan with overlap increased the recall value from 0.46 to to 0.66 percent
while reducing the precision from 0.4 to 0.29. The number of ground truth
mounds found increased from 35 to 50, while the number of false positives
increased from 52 to 117. The selection of parameters to use for scanning
larger areas with the Slope model has a large effect on the results. Based on
the results, the conclusion is that using the Slope relief model and scanning
an area with overlap, splitting the area into 400x400 pixel images, gives the
best results. It identifies the highest number of actual burial mounds, while
keeping the number of false positives relatively low.

Ø.D.Trier Et. al. used faster R-CNN object detection for detection of burial
mounds on a 67km2 area in Larvik municipality. Their results for this area
was that they detected 38% of the burial mounds, finding 102 of 269 mounds.
The false positive rate was 86%, having 610 false positives. Their results
are based on using a Simple Local Relief Model. Comparing this to the
Slope relief model and 400 pixel scan when excluding mound results with
certain sizes and ratio, the Slope model gives almost a 30% improvement of
the recall and a 15% improvement of the precision. However, their results
are based on a different and larger area containing on average 4 mounds
per km2, while the Klepp test area used in this thesis contains on average
8.4 mounds per km2, which likely affects the numbers somewhat. Due to
the fact that the burial mound distribution in their test area is not known
to us, a direct quantitative comparison of the models is not possible. To
compare the results a manual check of each mound in the area would have
to be done, and in their study they have corrected a lot of burial mound
markers from the Cultural Heritage database. Another difference between
their study and this thesis is that they used a VGG16 deep neural network
as the backbone of faster R-CNN, while this thesis uses ResNet-50-FPN.

The comparison of 1m and 0.25m spatial resolution data shows that the
number of burial mounds found might not be that highly affected, but that
reducing the resolution will increase the number of false positives. If an area
contains a lot of smaller burial mounds though, it is likely that using lower
spatial resolution data will affect the recall value, as a lot of the important
details of the smaller mounds will become less clear.

In conclusion, the Slope model gives the best results. The major problem
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with detecting burial mounds using faster R-CNN object detection, is the
number of false positives. A too low precision value renders the model
too poor to be of any practical use, even though the recall value is high.
The training data has a large variety in the burial mound signatures, and
improving the models would require additional training data. Also, a lot of
man-made features, like stone gathered together from farm fields, can give
signatures similar to certain types of burial mounds and false positives are
to be expected.

5.3 Results for Fortresses

The object detection model was trained with Adam optimizer. Adam opti-
mizer is usually used in the initial cycles of model training process due to
it’s ability to give decent results without any hyper-parameter fine-tuning,
like learning rate and decay.

The training process included aggregation of 300 fortresses from various
countries in Central Asia and the Middle East. Their coordinates were
retrieved from vici.org

Table 5.8: Results From Scan of Fortresses from various countries in Middle East

Total Images Total
Fortresses

TP FP Precision Recall

54 35 12 65 0.15 0.34

5.4 Discussion of Results for Fortresses

The results were not good enough to progress towards the research of fortress
detection. Due to that, the focus was turned to other methodologies to
detect archaeological structures, which gave better results.
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5.5 Results for Archaeological Settlement Mounds

The faster R-CNN object detection model was trained with a learning rate
scheduler, reducing the learning rate after a fixed number of epochs of train-
ing. The model was trained using 120 epochs, with a starting learning rate
of 0.005. The learning rate was reduced by a factor of 0.1 every 30 epochs.
Due to the nature of the SAR responses for the settlement mounds, which
is explained in section 3.3, no rotation augmentation was done on the im-
ages used for training, as this would change the expected SAR signal RGB
response.

A total of 410 SAR signatures were used for training and validation, were
20% of these were randomly selected for validation. 70 SAR signatures
were used for testing. A total of 769 448x448 pixels images were used for
the training and validation, each image covering 4.48kmx4.48km. The SAR
signatures are generally a very small part of the images, and areas of varied
background were selected. The total area of the images that was part of
training was 15435km2, while the total area used for testing was 2970km2.
The details can be seen in table B.5.

The results for the testing data used during training found 54 true positives,
32 false positives and 16 false negatives. This gave a recall of 0.77 and
precision of 0.63.

To further test the finished model, two test areas with quite different back-
ground SAR responses were selected. Each area was scanned by automat-
ically splitting a png file of the entire area into 448x448 pixel images, con-
sumed by the model. The first area was around Kandahar in Afghanistan
and the second was around Bukhara in Uzbekistan. The Bukhara area is
fairly flat and has a lot of populated areas, in addition to farm areas. The
Kandahar area has hills and less populated areas, while containing a lot of
farm land. The overall SAR RGB response in the Kandahar area is also
much darker than the Bukhara area.
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Figure 5.5: Kandahar area scanned. Green boxes are results from trained model.

Figure 5.6: Bukhara area scanned. Green boxes are results from trained model.
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Table 5.9: Results from Scans of Bukhara and Kandahar Test Areas

Area Total
Mounds

TP FP Precision Recall

Kandahar 120 20 66 0.23 0.17
Bukhara 82 44 23 0.66 0.54

Table 5.10: Results from Scans of Bukhara and Kandahar Test Areas when
Including Potential Settlement Mounds

Area Total
Mounds

TP FP Precision Recall

Kandahar 129 29 57 0.33 0.22
Bukhara 101 63 4 0.94 0.62

For the Bukhara test area ground truth settlement mounds were found using
vici.org. It should be noted that the vici.org website tags all these mounds as
unidentified sites. For the Kandahar area ground truth settlement mounds
were found from listings of archaeological and cultural heritage of the area
made available by M.Karaucak Et. al.[35]. The results for both test areas
are shown in table 5.9.

When evaluating the results from the model, the Kandahar area had 9 hits
which could be potential settlement mounds not part of the ground truth
data, while the Bukhara area had 19. This evaluation is of course subjective,
and not an evaluation by a qualified archaeologist. Table 5.10 shows the
results if these are added as actual settlement mounds.

No research has been found which uses a SAR RGB response alone to find
archaeological settlement mounds. Hence, the model can not be tested di-
rectly against other research results. However, H.A.Orengo Et. al. used the
same multi-temporal composite method to identify settlement mounds in
the Cholistan desert in Pakistan. They combined Sentinel-1 SAR data and
Sentinel-2 multi-spectral data into a 14 band composite. Using a Random
Forrest classifier in Google Earth Engine, they marked 25 known mounds
and areas that was not mounds to create a probability map. By using this
method they identified a large number of settlement mounds throughout
the desert. This same approach was used on the Bukhara test area, to see
give a comparison to faster R-CNN model results. Instead of combining
14 bands, only the three SAR bands used in the RGB composite used for
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5.5 Results for Archaeological Settlement Mounds

training of the faster R-CNN model was used in a Random Forrest classifier
in Google Earth Engine. The test area was extended further south, and 23
features from this additional area with a clear SAR RGB mound signature
was marked. In addition, 20 areas without any SAR RGB signature was
marked, including farm areas, modern structures and roads. The resulting
probability map of the Bukhara test area is shown in figure 5.7, where the
red color is a high probability close to 1, and green is a low probability close
to 0.

Figure 5.7: Bukhara area Random Forrest Probability Map with Ground Truth
Mound Markers

From the probability map, a visual analysis was done, which is quite subjec-
tive, identifying high probability features which could be mounds. By doing
this, 59 of the ground truth settlement mounds were identified, which is 15
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5.5 Results for Archaeological Settlement Mounds

(a) RF Probability Map (b) Optical Image

(c) RF Probability Map (d) Optical Image

Figure 5.8: Random Forrest Probability vs Optical Image

more than the faster R-CNN object detection model. Probable mounds,
not part of the ground truth mound set, were not counted. Parts of the
probability map is giving a high probability (red) for large continuous ar-
eas, in which possible mounds can not be identified. There are also a large
number of high probability features which are not mounds, and a lot of
high probability "noise" in the map. In addition, the probability map has
to be visually analysed by a person, to identify any likely mounds, unlike
the faster R-CNN object detection model. The probability map can not
give a precision value for comparison with the object detection model. Two
examples of high probability features which are not mounds are shown in
figure 5.8
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5.6 Discussion of Results for Archaeological Settlement Mounds

5.6 Discussion of Results for Archaeological Set-
tlement Mounds

The results of the SAR RGB model is very different for the two areas tested,
with the results from the Bukhara test area being clearly better. Of the
RGB SAR features annotated and used in training and validation, only 57
of the 410 total features were from areas which gives an overall background
SAR response similar to the Kandahar test area. Hence, part of the reason
for the poor results for the Kandahar area is that the model could be biased.
A lot of the ground truth mounds in the Kandahar area is also quite small.
52 of the 120 mounds are smaller than 0.4 ha. By evaluating each of the
ground truth mound SAR RGB responses, it was found that 68 of the 120
ground truth mounds had a low likelihood of being detected, due to their
size or lack of response. Doing the same evaluation of the Bukhara test area
ground truth mounds it was found that only 5 had a low likelihood of being
detected. This evaluation is subjective.

Figure 5.9 shows examples of mounds from the Kandahar test area con-
sidered to have a low probability of detection and a higher probability of
detection. As can be seen the two mounds with low probability does not
give any transition from yellow through red color on the left to a blue color
on the right side of the mounds. This is very likely due to the low height
of the settlement mounds creating less scattering effects than mounds with
higher slope.
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5.6 Discussion of Results for Archaeological Settlement Mounds

Figure 5.9: Ground Truth Mounds with Subjective Probability of Detection by
Model. Red Box - Low Probability. Green Box - Higher Probability.

In conclusion, the model gives good results and detects potential archaeo-
logical settlement mounds well, dependant on type of area scanned. The
model seems to give better results in fairly flat areas, where the slope of
the mounds stand out from the background. Also, a brighter background
SAR RGB response seems to give better results, although the testing done
is limited. Areas with a darker background, like Kandahar seems to worsen
results. The model is not adept at finding small mounds, with a small
height above the background, giving a smaller slope on the mound sides.
While precision numbers from the test areas might seem low, the amount of
false positives are actually not prohibitive due to the large areas scanned.
Counting both test areas, a total of 3091km2 was scanned and only 89 false
positives was found, of which 28 could potentially be settlement mounds.
A manual check of results for this large an area is not too time consuming.

Due to the limited amount of training data used, and the lack of training
data from areas similar to the Kandahar test area, the model could likely be
improved by adding more training data. The fact that additional augmen-
tation by rotating the images is not possible, this also increases the need
for additional training data.
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Chapter 6

Conclusion

6.1 Conclusion and Answers to Research Questions

For burial mounds, one of the main research questions, as listed in section
1.3, was how effective a faster R-CNN object detection model was at detect-
ing burial mounds. Another question was if the Multi-Scale Relief Model
could improve results compared to other model, considering the relatively
large number of smaller burial mounds in Norway compared to other places
were this relief model has been applied.

The best result comes from using a Slope model for displaying the Digital
Terrain Models. Up to 66% of the burial mounds were detected using this
model. The number of mounds detected is however only part of the problem
when using object detection for finding burial mounds. The number of false
positives is the main problem, and although the Multi-Scale Relief Model
and Simple Local Relief Model could give results approaching the recall
values of the Slope model, the precision became very low, due to the very
high number of false positives. The conclusion is that for finding burial
mounds in Norway, displaying DTM data with a Slope display is the best
method, as it does not remove details in the data, as the other three relief
models do. This is important, as many of the burial mounds are small, and
does not have much height above the background terrain. The number of
false positives with a Slope model is still high, but not so high that it’s use
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becomes prohibitive in the detection of mounds.

The last research question for burial mounds, was if reducing the spatial
resolution of the LiDAR DTM data from 0.25m to 1m would affect the
detection of burial mounds. From the limited test done, it did not affect
the detection of the actual burial mounds, but did affect the number of false
positives, giving an 11% worse precision value.

Due to the mound sizes in the test area being fairly large, based on observa-
tion, the results could be worse than presented, in areas containing smaller
mounds.

Due to the variability in mound signatures in the data, the models produced
could be improved by adding more significantly more training data. The
shapes and sizes of the burial mounds vary a lot.

For the detection of settlement mounds in Central Asia, the research ques-
tion was if Synthetic Aperture Radar satellite data could be used to detect
these mounds, and what the limitations are. Using the SAR data from the
Sentinel-1 satellite, which has a 10m spatial resolution, it was from shown
that it was possible to detect these mounds with a faster R-CNN object
detection model.

One of the main limitations of using the SAR data, is that the height of
the mounds, or rather the slope of the mound sides, seems to affect the
amount of the scattering of the SAR signal. The overall background SAR
signal signature might also have some effect on the results. Based on the
limited testing, it is believed that the model is effective at finding potential
settlement mounds given that the height and slope of the mound sides are
not too small. The total area of the mounds seems to have less effect, as
long as they are not so small that the resolution of the SAR data becomes
an issue. Also, the model seems to work best in areas that are fairly flat
and giving a brighter background SAR signal signature.

The model could likely be improved by adding more training data, partic-
ularly from areas with a different overall background SAR signature than
the majority of training data used.

Detecting fortresses using optical imagery proved to be very challenging

76



6.2 Improvements

and gave very poor results. The fortresses varied a lot in size and shape,
and many of the fortress structures used were only partial remains. This
variability and the lack of common features between the fortresses was the
main problem. Ideally, several hundreds of images of fortresses of similar
types should be used during training, and the lack of training data was the
main reason for the poor results. To improve the results significantly, it
is likely that several hundreds, if not thousands, more images of fortress
structures are needed. Another possible approach may be using object
segmentation rather than object detection due to the importance of pixel
point precision to the model.

6.2 Improvements

One of the main improvements that could be done is to add more training
data to the models. This applies to all the models, and in particular for
training of the model for fortress detection.

Another issue, which was found after the training data had been created,
was that for training the faster R-CNN object detection models, the features
annotated in the images should ideally not take up more than 25% of each
image. For burial mounds, many of the larger mounds take up much more
than 50% of the 50x50m images. Increasing the image sizes to 100x100m
or 150x150m, 400x400 pixels or 600x600 pixels respectively, could improve
the training of the models.

A lot of the data gathering to create training data was manual work, and
the possibility of improving this process through some automation using the
arcpy python library, which contains a lot of the ArcGIS Pro functionality,
could improve this process.
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Appendix A

Github Repository and
Dataset

The data sets, results and code used for this thesis is available on Github,
including Google Earth Engine Javascripts and Jupyter notebooks for faster
R-CNN model training used in Google Colab.

Space Arachaeology Thesis Github Repository

IMPORTANT: The Github repository contains large files requiring LFS
support. Install Git LFS support and clone repository using "git lfs clone"
command.

Raw GeoTiff files used for generating data sets have been shared with Dr.
Naeem Khademi through the thesis Teams channel, due to the large size of
these raw files (450 GB).
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Appendix B

Areas and Data for Training
and Testing of Models

B.1 Norway Burial Mound Data

Table B.1 contains the project data set names downloaded from Hoyde-
data.no and the corresponding coordinates used for area selection. The
project data sets can be found by selecting Projects instead of the standard
height model, termed NDH. All data sets a created from 5 point per m2
LiDAR datat and has a spatial resolution of 0.25m. The data sets returned
from hoydedata.no does not necessarily contain data for the entire area de-
fined, but only what has been measured as part of the project within the
area.

Table B.2 contains a breakdown of the number of images and burial mounds
used for training, validation and testing of the faster R-CNN object detec-
tion models. The mound sizes are calculated from the bounding boxes
added to the burial mound images and is an approximation. The mound
sizes are taken as the largest of the width or height. The vast majority of
mounds are considered to be round. Only 13 of the total of 595 mounds
annotated have a height/width or width/height ratio larger than 1.5. Table
B.3 contains an overview of the number of burial mounds taken from each
data set. Table B.4 contains the coordinates for the 9km2 test area used
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B.1 Norway Burial Mound Data

for the trained model finished models. These are the UTM coordinates, as
listed in the ArcGIS Pro project (32V).

Images without burial mounds are sampled from various different areas, in-
cluding populated areas, roads, roundabouts, hilly terrain, farms and farm-
land.

Table B.1: Burial Mound Data set Coordinates for Kartverket.no DTM Down-
load

Project Dataset Coordinate
System

West (m) East (m) North (m) South (m)

NDH Jæren-
Randaberg-Sola
5pkt 2017

UTM 33N −44,000 −36,000 6,545,400 6,531,800

NDH Vestfold
5pkt 2016

UTM 33N 238,400 243,200 6,593,400 6,588,000

NDH Østfold 5
pkt 2015

UTM 33N 274,400 280,000 6,583,800 6,576,000

NDH Larvik 5pkt
2017

UTM 33N 206,400 220,800 6,563,400 6,547,800

NDH Steinkjer
5pkt 2017

UTM 33N 317,022 329,462 7,076,270 7,092,983

NDH Rogaland
5pkt 2016

UTM 33N −49,789 −-34,895 6,559,168 6,549,733

Table B.2: Breakdown of Training, Validation and Testing Data

Type # Images # Images
with Mounds

# Mounds Average
Mound
Size (m)

Less
than
10m

Between
10 and
20m

Above
20m

Training 304 130 439 9.7 284 129 26
Validation 68 28 77 9.4 44 32 1
Testing 46 33 79 13.8 37 29 13
Total 418 191 595 10.2 365 190 40
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B.2 Central Asia Archaeological Mound SAR Data

Table B.3: Breakdown of Mounds from Project Datasets

Project Data set Mounds Training Valdiation Testing

NDH Jæren-Randaberg-Sola 5pkt
2017

239 207 32 0

NDH Larvik 5pkt 2017 239 201 38 0
NDH Steinkjer 5pkt 2017 38 31 7 0
NDH Vestfold 5pkt 2016 41 0 0 41
NDH Østfold 5 pkt 2015 38 0 0 38

Table B.4: Coordinates of Test Area from Rogaland Dataset

Project Data set East
UTM
32V (m)

West
UTM 32V
(m)

North
UTM 32V
(m)

South
UTM 32V
(m)

Area Size
(km2)

NDH Rogaland 5pkt
2016

304,345 307,345 6,5202,26 6,517,226 9

B.2 Central Asia Archaeological Mound SAR Data

Table B.5 contains an overview of the SAR data sets used for training,
validation and testing of the SAR faster R-CNN object detection model.
The number of features annotated, which gives an expected SAR response
to archaeological settlement mounds, are listed. Not all features annotated
are necessarily archaeological settlement mounds, but features giving the
expected SAR response. Table B.6 shows the coordinates in decimal degrees
of the areas used for generating the training data and the test areas.
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B.2 Central Asia Archaeological Mound SAR Data

Table B.5: Central Asia Archaeological Mound SAR Datasets

Area Country Number of
Features

Number of
Images

Model Use Area Size

Masar-i-
Sharif

Afghanistan 300 308 Training 6182km2

Farah Afghanistan 28 168 Training 3372km2
Sheberghan Afghanistan 27 60 Testing 1204km2
Bukhara Uzbekistan 43 88 Testing 1766km2
Merv Turkmenistan 52 173 Training 3472km2
Bojnurd Iran 30 120 Training 2409km2
Kandahar Afghanistan 120 Composite

Image
Test of Final
Model

1967km2

Bukhara Uzbekistan 82 Composite
Image

Test of Final
Model

1124km2

Table B.6: SAR Datasets - Coordinates in Decimal Degrees

Area Coordinate
System

West (dd) East (dd) North (dd) South (dd)

Masar-i-
Sharif

WGS 1984 66.1766 67.223858 37.173785 36.6906

Farah WGS 1984 61.853258 62.4166 32.5763 32.093392
Sheberghan WGS 1984 65.5912 65.9533 36.79165 36.51
Bukhara WGS 1984 63.69035 64.1329 40.046707 39.7248
Merv WGS 1984 61.8631 62.4666 37.9745 37.4917
Bojnurd WGS 1984 56.6845 57.288 37.7619 37.442
Kandahar
Composite

WGS 1984 65.188 65.7513 31.6807 31.399

Bukhara
Composite

WGS 1984 64.3206 64.64245 402453 39.9637
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Appendix C

Multi-Spectral Satellite
Imagery Uses in Archaeology

C.1 Multi-Spectral Satellite Imagery Technical In-
formation

Multi-spectral satellite imagery sensors measures light intensity within a
specific wavelength range in the electromagnetic spectrum. Typically satel-
lites with multi-spectral sensors measures 15 or less bands, although more
advanced satellite sensors are being deployed. Hyper-spectral sensors can
provide more than 100 different bands.[36] In addition to the visible light
in the red, green and blue bands, visible and near-infrared and short wave
infrared spectral bands can be available from some satellite sensors. In
addition, some satellites have panchromatic sensors, which measures the
total light intensity of the red, green and blue bands. The exact wave-
length range in which the satellite sensors measure bands like near-infrared
and other bands might vary somewhat, and is not standardized. Often the
wavelengths are chosen for the main task the satellite is built for. Hence, in
terms of using the bands in for example a Normalized Difference Vegetation
Index, might produce slightly different results, based on the satellite data
used. The spatial resolution of different satellite multi-spectral sensor vary,
from very high resolution below 1m up to 10-60m, dependant on the bands.
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C.1 Multi-Spectral Satellite Imagery Technical Information

Pan-sharpening, also called intensity substitution, is a process which uses
both the panchromatic and multi-spectral bands to enhance the resolution
of an image. By combining, or fusing, 3 bands of the multi-spectral data
with the higher resolution panchromatic data, a RGB composite of the data
with enhanced spatial resolution can be created.

One of the main sources of free multi-spectral satellite imagery is the Sentinel-
2 satellites, which contains 13 spectral bands. The satellite is part of the
Copernicus program, and whose one of the main tasks is land monitoring
and can used for crop monitoring. A list of some freely available multi-
spectral satellite imagery and satellite technical specifications can be found
in table D.1 and appendix E respectively.

For archaeology, multi-spectral data can have many uses, as some of the ar-
ticles listed in table C.1 shows. One use is to identify so-called "crop marks",
which are areas where vegetation is affected by possible archaeological re-
mains right beneath the surface, which affects the growth of vegetation.
These crop marks are not as pronounced in the visible spectrum as it is in
the near-infrared spectrum. Healthy vegetation (chlorophyll) reflects more
in the near-infrared and green spectrum and is absorbed more in the red and
blue spectrum.[37] The Normalized Difference Vegetation Index, or variants
of this index, can be used to identify crop marks, which might become more
pronounced by studying a time series of the index over a growth period.

NDV I =
NIR−Red

NIR+Red
(C.1)

Attempts have also been made to create a archaeological index, based on
multi-spectral data. A.Agapiou Et. al. studies conclude that crop marks
are more pronounced in the red edge and near-infra-red in the 700nm to
800nm spectrum.[38]

S.Sanni Et al. used a Normalized Archaeological Index, NAI, based on
Agapiou’s research, in an attempt to identify identify crop marks.[39]

NDV I =
800nm− 700nm

800nm+ 700nm
(C.2)
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C.2 Use of Multi-Spectral Imagery in Archaeology

There is no universal index or use of multi-spectral data that fits into all
archaeological work applying the data. Multi-spectral data might be used
different ways depending on the specific use case. The Sentinel-Hub Custom
Scripts web page and Remote Sensing Indices database, which is linked in
table D.2, contains a large set of indices that can be used with multi-spectral
data. The indices are not specific to archaeological uses.

C.2 Use of Multi-Spectral Imagery in Archaeology

S.Zanni Et al. used Sentinel-2 multi-spectral satellite data to help discover
the path of a Roman road that ran from what is today Belgrade to northern
Italy.[39] Parts of the path of the road was known, but several parts were
not. Their research for was focused on the Srem region of Serbia, where
the path of the Roman road was completely different than the modern road
network, and much of the road is buried beneath farm fields. To develop a
methodology for detecting the buried road, they focused on a 10km2 area
using 4 acquisitions from the Sentinel-2 satellite between June and August
in 2016. By using combinations of bands they attempted to identify crop
marks, which are areas of poorer or different crop or vegetation growth.
These crop marks can be an indication of potential archaeological features
right beneath the soil, which can affect the growth of the crops. Their first
attempts used the Normalized Difference Vegetation Index, NDVI, and the
and the Normalized Archaeological Index, NAI. The NDVI uses the Near-
Infrared (B8) and Red (B8) bands, while the NAI uses the Vegetation Red
Edge bands B5 and B7. Neither approach worked satisfactory, and crop
marks did not become visible. The NAI uses 20m spatial resolution bands,
and the Roman road was expected to be 10-15m wide. By adding the Red
(B4) and NIR (B8) bands, they same data gave a better results, and crop
marks started to become visible in some areas. In addition, the Tasseled Cap
transformation, a set of equations known to be good to detect archaeological
remains, was also used on the data. Specifically, the Crop Coefficient 3
equation was used, and modified to fit the Sentinel-2 data, in addition to
using variants of this formula. The detection of crop marks did not improve
much with the Crop Coefficient 3 equations applied to the Sentinel-2 data.
The study concludes that the Sentinel-2 multi-spectral data has too low
resolution to be applied effectively to it’s specific use case. By using higher
resolution WorldView-2 data, with a spatial resolution close to 2m and
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applying the Crop Coefficient 3 equations, they were able to identify crop
marks and map a 70km stretch of the Roman road, where the path of the
road was previously unknown.

M.B. Rajani Et al. used multi-spectral data to analyse three well know
settlements in South India which had fortress walls and moats as defensive
structures around them during the Hoysala period from the 12th to the 14th
century AD.[40] The study used 5.8m spatial resolution multi-spectral data
from the IRS-P6 satellite. Their first area studied was the Belur settlement.
By looking at the individual bands and combination of bands they found
that the moat around the settlement most prominent when combining the
Red and NIR bands, by projecting the Red band as green and blue and the
NIR band as red in an RGB composite. Looking at the individual bands
the moat was less prominent. The second area studied was the Halebidu
settlement. In this area parts of the moat was clearly visible and well defined
by using an RGB composite of Red and NIR bands. However, other parts of
the moat could not be clearly defined without using complementary data like
Normalized Difference Vegetation Index and panchromatic imagery. The
third site studied was Somanathapura. According to the authors, it is very
difficult to identify the placement of the ancient defensive walls and moat
around this settlement by traditional archaeological methods. By using the
Red and NIR bands in an RGB composite, as with the Belur site, parts of
the placement of the walls and moat could be found, as the walls became
visible in a square around the settlement’s central temple, as expected from
the typical settlement layouts of the time period.

V. De Laet Et. al. performed a study of ancient road systems and quarries
in the Greater Dayr al-Barsha region of Egypt, using very high resolution
imagery and multi-spectral data.[41] Their aim was to study the logistics of
the area in ancient Egypt, and create a road typology for the area, requiring
very high resolution imagery. The study used Quickbird-2 satellite data
with a spatial resolution of 0.61m. The panchromatic and multi-spectral
data was fused using Gram-Schmidt spectral sharpening. This fused data
allowed many more roads to be discerned than the regular multi-spectral
data. However, the fused data did not did not show as many roads as the
panchromatic alone could, and the authors conclusion is that the multi-
spectral data, with lower spatial resolution, is of less importance when it
comes to identifying the roads. For their study area they found that using
Gaussian stretching and histogram equalization on the images proved most
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valuable to enhance the detection of the road systems. The histogram
equalization reduces contrast in the very light and very dark areas of the
images, while the Gaussian stretching redistributes the pixels between the
minimum and maximum values with a Gaussian distribution. The roads
where put into 7 categories, identified by their spectral response in the
satellite images, their width and other characteristics like the slope. The
road categories were used to assess the usage of the road network for the
area, identifying the likely use of them, either for transport from quarries,
walking paths or other uses. With this information they study was able
to put together likely transport routes and road network usage through
different time periods.

Table C.1: Overview of articles on multi-spectral uses in archaeology

Reference Satellite Type of ML/DL Description

[39] Sentinel-2 N/A Mapping of an ancient Ro-
man road in Srem region
of Serbia. Sentinel-2 multi-
spectral data was used to
identify crop marks which
indicated the placement of
the road beneath the soil.

[40] IRS-P6 N/A Analysis of three ancient set-
tlements in South India and
their surrounding moats and
defensive walls using multi-
spectral imagery.

[41] Quickbird-2 N/A Mapping and classification
of ancient road systems con-
nected to limestone quarries
in Eqypt, using Quickbird-
2 very high resolution im-
agery. Road were catego-
rized by their spectral signa-
tures, width, slope and other
parameters.

92



Appendix D

Sources of Free Remote
Sensing Data

There are many sources of free remote sensing data available. The main
sources found during this thesis are listed here.

Google Earth Engine is a free service which offers the ability to download
and produce data from multiple sources, upon registration. It offers some
GIS capability and has scripting capability in JavaScript and Python, which
allows for assembling multiple satellite data acquisitions and chosen bands
from different satellites into products which can be exported to Google Drive
or Google Cloud for download. It also offers machine learning options,
like a Random Forrest algorithm, through APIs. The advantage of the
website is that the satellite data, like the Sentinel-1 SAR data is already
processed with standard parameters, and users don’t have to go through this
processing, which can be time consuming. Many of the data sets available
are finished products of different types.

The Copernicus Services Data Hub is a free service offering the data ac-
quired from the Copernicus program, upon registration. The data hub has
an Open Data Protocol (OData) based on top of HTTPS/REST transfer
protocols which allows for batch scripting of data of product download. The
hub gives access to Sentinel satellite data.
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The European Space Agency, ESA, offers free satellite data, which is part of
the ESA charter. The data should be free for all. However, apart from the
Sentinel mission data, the majority of data available is 3rd party data, and
they offer only limited global coverage for much of this data. An approval
process is also necessary to get access to a lot of the data, which might
vary for the different 3rd party data catalogues. Sentinel data can be found
through the Copernicus Services Data Hub.

The US Geographical Survey Earth explorer website contains a large selec-
tion of both satellite data and other data like declassified US government
aerial imagery and Digital Elevation data, which are free upon registration.
Some of the data is 3rd party data which has limited global coverage, and
some data has limited access.

The NASA Earthdata website has over 33,000 data collections available,
which are all open data sets and freely available, upon registration This
includes a large collections of earth observation satellite data, but also data
sets collected from air-based platforms.

OpenTopography is a website that offers high resolution LiDAR point clouds.
Their data sets are limited in extent, and covers mostly parts of the United
States. The point clouds can be used to produce high resolution Digital
Elevation Maps, DEMs.

Hoydedata.no is a web page run by the Norwegian Mapping Service, which
allows free access to 1m spatial resolution LiDAR based Digital Elevation
Models for all of Norway. The website also contains a large number of
project data, which can offer as good as 0.25m spatial resolution DEMs, all
delivered as GeoTiff files. Raw point cloud data used to create the DEMs
can also be requested.

Several European countries have had or are in the process of making high
resolution map data based on LiDAR data. This includes The Netherlands
which has 0.5m spatial resolution data, which is freely available through
Google Earth Engine, Sweden and the United Kingdom, which should have
least 1m spatial resolution data available. For a specific European country
it is advised to search for Digital Elevation data through government web-
sites. The data is very often freely available through these, if a country has
mapped or is mapping their a large portion of their country.
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For non-European countries, there seems to be limited amounts of free Li-
DAR data available, as the majority is acquired for specific projects and
not made available through government or free data sources.

Some other useful remote sensing resources are shown in table D.2

Table D.1: Sources of Free Remote Sensing Data

Name Link Data Available

Google Earth Engine GEE Collection of DEMs, ASTER
multi-spectral, Sentinel-1 SAR,
Sentinel-2 multi-spectral, Sentinel-
3 and 5 data, EO-1 Hyperspectral
data, Landsat program collections,
MODIS mulsti-spectral data and
more.

Copernicus Services
Data Hub

Copernicus Data Service
Hub

Sentinel-1 SCopernicusAR data,
Sentinel-2 multi-spectral data,
Sentinel-3 and Sentinel-5P data

ESA European Space Agency Cosmo-SkyMED, TerraSAR-X,
PALSAR and Radarsat-2 SAR
data. KOMPSAT-3 multi-spectral
data. Contains a large selection
of 3rd party data, but most data
needs approval.

US Geological Sur-
vey - Earth Explorer

EarthExplorer Landsat collection, OrbView-3,
IKONOS-2, Sentinel-2, ISRO Re-
sourcesat, ASTER, MODIS, SIR
and many other satellite data sets.
Also contains aerial photography,
declassified US goverment data and
elevation data, like DEMs.

NASA - Earthdata Earthdata Sentinel, ASTER, MODIS and
many other satellite datasets. Also
has datasets from air-based plat-
tforms.

Hoydedata.no Hoydedata.no LiDAR based DTMs and point
cloud data with 1m or better spa-
tial resolution for all of Norway.

OpenTopography OpenTopography LiDAR high resolution point cloud.
Mostly covering parts of the US.
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Sources of Free Remote Sensing Data

Table D.2: Useful Resources

Name Link Description

Sentinel-Hub Custom
Scripts

Custom Scripts Collection of scripts calculating dif-
ferent indices like NDVI and others
from various common satellite data
sources, which can be used in EO
Browser. Also contains other use-
ful information.

University of Twente Satel-
lite and Sensor Database

Satellite and Sensor
Database

Database of existing satellites and
satellite sensors database. Can
search for senor type or satellite.

Remote Sensing Indices
Database

RS Indices Database Database of remote sensing indices.
Can search by sensor or application
or application for a specific index.
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Appendix E

Free Satellite Data Technical
Specifications

Table E.1 contains an overview of technical information of some SAR satel-
lite data. SIR-A and B, and also SRTM, are SAR sensors used by NASA
on space shuttle missions. Newer SAR satellites with higher resolution, like
Cosmo-SkyMed and TerraSAR-X are not listed, as the data freely avail-
able is limited. RADARSAT-1 and 2 information is not listed for the same
reason.

Tables E.2,E.3,E.4,E.5 and E.6 shows the technical details of multi-spectral
satellite sensors, for which the data is freely available.

The tables uses the following abbreviations:

• VIS - Visible

• NIR - Near-Infrared

• SWIR - Short-wave Infrared

• TIR - Thermal

• MIR - Mid-Infrared
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• PAN - Panchromatic

The University of Twente Satellite and Sensor database, which has a link
in table D.2, can be used to find technical details and information links for
a large number of satellites and sensors.

Table E.1: SAR Satellite Technical Information

Satellite Sensor Band Polarization Resolution Swath
Width

Organisation

Sentinel-1 Strip Map
Mode

C Dual
HH+HV,
VV+VH,
Single HH,
VV

5m 80km ESA

Sentinel-1 Interfero-
metric Wide Mode

C Dual
HH+HV,
VV+VH,
Single HH,
VV

5x20m 250km ESA

Sentinel-1 Extra
Wide Mode

C Dual
HH+HV,
VV+VH,
Single HH,
VV

20x40m 410km ESA

Sentinel-1 Wave
Mode

C Single HH,
VV

5m 60km ESA

ENVISAT ASAR C All 30m 20 km ESA
ALOS PALSAR-1 L HH, VV, HV,

VH
10-100m 70-250km JAXA

ALOS PALSAR-2
Spotlight Mode

L H, VV, HV 1-3m 25km JAXA

ALOS PALSAR-2
Strip Map Mode

L HH, VV, HV,
(HH + HV),
(VV+VH),
(HH +
HV+VV+VH)

3,6,9m 50-70km JAXA

ALOS PALSAR-2
ScanSAR Mode

L HH, VV, HV,
(HH + HV),
(VV+VH)

100m 350-
490km

JAXA

SIR-A and B L HH 30m 60km NIMA/NASA
SRTM C HH 30m 50km NASA
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Table E.2: Sentinel-2 Satellite Multi-spectral Imager Technical Information -
ESA

Satellite Sensor Band Resolution Wavelength
(µm)

Bandwidth
(µm)

MSI 1 (VIS) 60m 0.443 0.02
MSI 2-Blue (VIS) 10m 0.49 0.065
MSI 3-Green (VIS) 10m 0.56 0.035
MSI 4-Red (VIS) 10m 0.665 0.03
MSI 5 (VIS) 20m 0.705 0.015
MSI 6 (VIS) 20m 0.74 0.015
MSI 7 (VIS) 20m 0.7753 0.02
MSI 8 (NIR) 10m 0.842 0.115
MSI 8A (NIR) 20m 0.865 0.02
MSI 9 (NIR) 60m 0.943 0.02
MSI 10 (SWIR) 60m 1.375 0.02
MSI 11 (SWIR) 20m 1.61 0.09
MSI 12 (SWIR) 20m 2.193 0.18

Table E.3: Landsat-7 Satellite Enhanced Thematic Mapper Technical Informa-
tion - NASA

Satellite Sensor Band Resolution Wavelength
(µm)

ETM 1 (VIS) 30m 0.45-0.515
ETM 2 (VIS) 30m 0.525-0.605
ETM 3 (VIS) 30m 0.63-0.69
ETM 4 (NIR) 30m 0.75-0.9
ETM 5 (SWIR) 30m 1.55-1.75
ETM 6 (TIR) 60m 10.4-12.5
ETM 7 (MWIR) 30m 2.08-2.35
ETM PAN 15m 0.52-0.9
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Table E.4: Landsat-8 and 9 Satellite Operational Land Imager Technical Infor-
mation - NASA

Satellite Sensor Band Resolution Wavelength
(µm)

OLI 1-
Coastal/Aerosol

30m 0.43-0.45

OLI 2-Blue (VIS) 30m 0.45-0.51
OLI 3-Green (VIS) 30m 0.53-0.59
OLI 4-Red (VIS) 30m 0.64-0.67
OLI 5 (NIR) 30m 0.55-0.88
OLI 6 (SWIR) 30m 1.57-1.65
OLI 7 (SWIR) 30m 2.11-2.29
OLI 8 (PAN) 15m 0.5-0.68
OLI 8-Cirrus 30m 1.36-1.38

Table E.5: Terra Satellite Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Technical Information - NASA

Satellite Sensor Band Resolution Wavelength
(µm)

ASTER 1 (VIS) 15m 0.52-0.6
ASTER 2 (VIS) 15m 0.63-0.69
ASTER 3n (NIR) 15m 0.76-0.86
ASTER 3b (NIR) 15m 0.76-0.86
ASTER 4 (SWIR) 30m 1.6-1.7
ASTER 5 (SWIR) 30m 2.145-2.185
ASTER 6 (SWIR) 30m 2.185-2.225
ASTER 7 (SWIR) 30m 2.235-2.285
ASTER 8 (SWIR) 30m 2.295-2.365
ASTER 9 (SWIR) 30m 2.36-2.43
ASTER 10 (TIR) 90m 8.125-8.475
ASTER 11 (TIR) 90m 8.475-8.825
ASTER 12 (TIR) 90m 8.925-9.275
ASTER 13 (TIR) 90m 10.25-10.95
ASTER 14 (TIR) 90m 10.95-11.65
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Table E.6: Orbview-3 Technical Information - Orbital Imaging Corporation

Satellite Sensor Band Resolution Wavelength
(µm)

Orbview-3 1 (VIS) 4m 0.45-0.52
Orbview-3 2 (VIS) 4m 0.52-0.6
Orbview-3 3 (VIS) 4m 0.625-0.695
Orbview-3 4 (NIR) 4m 0.76-0.9
Orbview-3 PAN 1m 0.45-0.9
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