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Abstract 
 

 

This project will aim to unveil the subcellular localization of PP4-2 and two of its believed 

regulators; PP4R2L and PP4R3L/PSY2L. To achieve this, two fusion-proteins were prepared 

from each of the genes to be examined. This was done by using molecular cloning. One 

fusion-protein was designed to carry the EYFP tag on N-terminus and the other fusion-protein 

carried the EYFP tag on the C-terminus. Molecular cloning was not successful for the PSY2L 

gene, possibly due to its large size. The two PP4-2 fusion-proteins; PP4-2-EYFP and EYFP-

PP4-2, appear to be cytosolic with clusters of protein aggregation and the two PP4R2L fusion-

proteins also displayed cytosolic localization. No aggregation was observed for the PP4R2L 

fusion proteins.  

 

This thesis also wishes to examine the effect of artificial micro RNA (amiRNA) on PP4-2. 

Two different amiRNAs were used each with two different vectors; the inducible pER10 

vector and the constitutive pBA002 vector. The goal was to do expression studies, and 

observe the phenotypes of the different mutant plants. Expression studies were not done due 

to a lack of time. No significant difference in phenotype was observed for the different mutant 

plants. They did however display slower growth rate than that of the wild type. 

Finally, one more study was performed to observe the effect of disrupting the PSY2L gene 

and the PP4R2L gene. This was done by studying plants with a T-DNA insert at specific 

locations in regards to the gene (see table 1), then observing the resulting phenotype and 

studying expression of the disrupted gene. For the PSY2L gene, mutants with T-DNA inserts 

at two different locations were used (one with the insert in exon 3, and one with the insert 

downstream of the gene) and T-DNA insert at only one location was performed for the 

PP4R2L gene (insert in exon 7). Expression study was to be preformed on homozygous 

individuals. At the time of the expression study, homozygous plants were found solely for the 

PSY2L Salk 125872 mutant. The expression study was performed on a homozygous PSY2L 

Salk 125872 mutant as well as one heterozygous PSY2L Salk 048064 mutant. The 

homozygous PSY2L Salk 125872 mutant displayed reduced expression when compared to the 

wild type. The heterozygous PSY2L Salk 048064 mutant displayed an expression level close 

to that of the wild type. At a later time, after the expression study had taken place, 

homozygous individuals for the PP4R2L Salk 093041 mutants were also found. No 

expression analysis was done on the PP4R2L Salk 093041 mutants, due to time restrictions.  

 

All mutant plants (T-DNA mutants and amiRNA mutants) displayed a reduced growth rate, as 

well as being shorter and bearing fewer stems than what is commonly observed for the wild 

type. The time taken for them to produce seeds was also about one month longer than what is 

observed for the wild type. 
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1   INTRODUCTION 

 
Protein phosphatases are responsible for a myriad of cellular processes. Studying these 

processes can give useful information about the workings of a biological system. Not much is 

known about the phosphoprotein phosphatase 4 (PP4 also referred to as PPX or ppp4) in 

plants. This thesis will try to shed some light on the workings of PP4-2 and two of its putative 

regulators, namely PP4R2L and PSY2L in Arabidopsis thaliana.  

 
When studying a protein of which not much is known, finding the localization of said protein 

can be a good place to start. Knowing where in the cell the protein is present gives a good 

indication as to where it acts and what processes it can be involved in. Finding a protein’s 

subcellular localization can be achieved using microscopy. Proteins are usually not visible in 

a microscope, so the protein to be studied can be visualized by tagging it with a fluorescent 

tag, often in the form of a protein tag such as green fluorescent protein (GFP) or yellow 

fluorescent protein (YFP). The protein to be studied is tagged using enhanced yellow 

fluorescent protein (EYFP) with a technique called molecular cloning, followed by 

visualization of the fusion-protein using confocal microscopy. Molecular cloning is a 

technique that aims to introduce recombinant DNA to a host organism, to produce large 

amounts of the recombinant DNA. E. coli is often used as a host organism. The recombinant 

DNA is produced by amplification of the gene to be studied, followed by digestion of both the 

gene and the vector to be used by corresponding restriction enzymes. Ligation of the gene into 

the vector is then preformed, and the host cells are transformed using the vector with the gene 

in place. Large amounts of the recombinant DNA can then be procured by cultivation of the 

successfully transformed bacterial colonies. To make sure the colonies are in possession of 

the recombinant DNA, screening is done with a corresponding screening agent. Most vectors 

are in possession of a gene for resistance to a certain antibiotic. Spreading the bacterial 

colonies out on plates containing a growth medium with the antibiotic will result in survival 

of only transformed bacterial cells. After successful molecular cloning, the gene product can 

be used for further studies, such as microscopy to check the subcellular localization of the 

protein.  

 

MicroRNA’s are non coding RNA segments acting as post transcriptional regulators of gene 

expression. This is achieved by gene silencing either by the suppression of mRNA translation 

or by degrading of the mRNA molecule. MicroRNA’s are short, single stranded molecules 

and their target site is located at the 3´ UTR of the target mRNA. In theory, the production of 

artificial microRNA’s (amiRNA) designed to act upon PP4-2 will give a basis for further 

study of the role of PP4-2 in plants, by giving information about what happens to the plant in 

the protein’s absence. To achieve this, amiRNA is introduced to the plants by use of a 

plasmid. For this experiment two different plasmids were used, one constitutive plasmid 

(continuous production of the amiRNA) and one inducible plasmid (amiRNA production 

induced by estradiol). The constitutive plasmid; pBA002 and the inducible plasmid; pER10 

were introduced to the plants by agrobacterium. Screening of the transformed plants was 

achieved by utilizing the plasmids resistance to antibiotics/herbicides. The pER10 vector 

contains a segment encoding kanamycin resistance whereas the pBA002 vector has resistance 

to the herbicide, BASTA. By sowing seeds on plates with nutrient medium containing the 

antibiotic or herbicide, only plants containing the vector will survive. These plants can then be 

used for genotyping and expression studies of the PP4-2 protein. Due to the presence of plants 

with an inducible amiRNA production, any differences in the phenotype with varying degrees 

of amiRNA production can be studied.  
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When studying a protein whose role is not yet fully understood, studying what it takes to 

disrupt the protein in question can give useful information about the workings of the protein. 

This can be achieved by studying the genetic expression and phenotype of mutant plants 

whose DNA has been altered to contain a non-coding T-DNA insert at specific locations. The 

gene to be studied can thus be disrupted by the T-DNA if it is placed at locations that interfere 

with the complete expression of the gene. To be able to say something about the expression 

and importance of the gene to be studied, homozygous plants should be procured for further 

studies. Finding both homozygous and heterozygous plants is ideal, to compare the two and 

check for any noticeable differences. For heterozygous plants with only one allele for the 

disrupted gene, the “healthy” allele might make up for the disrupted one, leading to a 

phenotype and expression level close to that observed for the wild type. Genotyping the plants 

will lead to mapping out which individuals are homozygous and which are not. This can be 

followed by observations on phenotype and studying the genetic expression of the gene in 

question. The T-DNA is as mentioned a non-coding sequence, inserted into the sequence for 

the genes to be studied or in close proximity to it. This is done to be able to draw any 

conclusions as to the importance of the sequence being intact for the gene being studied.   

 
1.1 Protein Phosphatases 

 

Protein phosphatases are enzymes responsible for the dephosphorylation of a peptide 

substrate.  Kinases are a group of enzymes that have the antagonistic effect of the 

phosphatases, namely phosphorylation.  In general it is believed that the kinases acting upon a 

protein will turn said protein on, in essence, altering the proteins activity and making it more 

active. Protein phosphatases, having the opposite effect, can decrease the activity of a protein. 

This way a cell can carefully control the activity of its proteins and regulate its cellular 

processes to a high degree. Protein phosphatases and kinases are regulators of protein activity 

that act on a post-translational level. The protein phosphatases are grouped together based on 

what substrate they dephosphorylate.  The protein phosphatases can be grouped as follows; 

Tyrosine-specific phosphatases (Zhang 2002). Serine/threonine –specific phosphatases 

(Mumby and Walter 1993),  Dual specificity phosphatases (Camps, Nichols et al. 2000) and 

Histidine phosphatases (Kowluru, Klumpp et al. 2011).  
 

1.1.1 Ser/Trh phosphatases 

 
The serine/threonine phosphatases in plants will act upon serine and threonine residues and 

the family can further be divided into two groups; the Plant Ser/Thr phosphoprotein 

phosphatases (plant PPP family) (Farkas, Dombradi et al. 2007) and the Metal-ion-dependent 

protein phosphatases (PPM family) (Barford, Das et al. 1998)  

PP4 belongs to the PPP family. Proteins from both the PPP and PPM family will 

dehposhporylate serine or threonine amino acid residues.  

It is within the plant PPP family that the major plant phosphatases are found. The proteins of 

this family are reported to play a part in regulation of the target rapamycin pathway, the auxin 

and brassinosteroid signalling, in phototropism as well as the cell stress response activity. 

Understanding the roles of these proteins is laborious work, and only recently has the focus 

moved over from the widely studied kinases to the phosphatases. The function of the PPP 

phosphatases is now described as being equally regulated and varied as their kinase 

counterparts. (Uhrig, Labandera et al. 2013) 
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The PPP family enzymes in humans are involved in cellular processes connected to conditions 

such as diabetes, cancer and Alzheimer’s disease. These cellular processes include: DNA 

replication, apoptosis, gene expression, glycogen metabolism, synaptic transmission and 

morphogenesis, and they are reported to be regulated by enzymes from the PPP family 

(Pereira, Vasconcelos et al. 2011).  

1.1.2 PP4/PPX 

 

PP4 is sometimes also referred to as PPX or ppp4. Not much is known about the function or 

localization of PP4 in plants, most research available on PP4 has been done on mammalian 

cells. It has been reported that in mammalian cells, PP4 is localized at the centrosomes during 

mitosis, the nucleus and somewhat in the cytoplasm (Sumiyoshi, Sugimoto et al. 2002; 

Hastie, Carnegie et al. 2000; Helps, Brewis et al. 1998). It is indicated that the phosphatase 

might play a role in microtubule organization. The mammalian PP4 is reported to display 65% 

identity to PP2A  (Brewis, Street et al. 1993).   

PP4 has been reported to be involved in processes that facilitate DNA repair by 

dephosphorylation of RPA2 in eukaryotic cells (Lee, Pan et al. 2010). The enzyme has also 

been reported to act upon γH2AX, a histone  and KAP-1, a regulator of chromatin structure, 

both of which are involved in repair of DNA (Nakada, Chen et al. 2008; Lee, Goodarzi et al. 

2012; Iyengar and Farnham 2011). It is indicated that PP4 along with PP2A could have a 

regulatory effect upon hedgehog signalling, a signalling pathway associated with the 

development of embryos and with maintenance of tissue (Jia, Liu et al. 2009).   

Overexpression of the catalytic subunit of PP4; PP4C, has been found samples taken from 

patients suffering from Pancreatic ductal adenocarcinoma (PDAC) in amounts that are 

regarded to be higher than that of healthy individuals (Weng, Wang et al. 2012).  

There is also reported to be overexpression of the catalytic subunit of PP4 (PP4C) in breast 

and lung tumor tissue taken from humans (Wang, Zhao et al. 2008).   

 

1.1.3 PP4 regulators 

 
PP4 is active in many processes, and regulation of PP4 is needed in the cell to maintain 

control of its activity. Two main putative regulators of PP4-2 has been identified in 

Arabidopsis thaliana by in silico analysis; PP4R2L and PP4R3L/PSY2L.  

PP4 in mammals has been shown to be inhibited by the antitumor drus by the name of 

fostriecin and cantharidin. Fostriecin has also been shown to inhibit the catalytic subunit of 

PP2A (Hastie and Cohen 1998). Okadaic acid as well as microcystin also has inhibitory 

effects on PP4. This effect on PP4 is not the same as PP2AC, although the effect is similar  

(Brewis, Street et al. 1993). 
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2   MATERIALS AND METHODS 

 
2.1 Materials 
 

2.1.1 Plant Material 

 
 Arabidopsis thaliana is a commonly used model organism for laboratory work with plants.  

For this study, two types of plant mutants were used; t-DNA plants and amiRNA plants. All 

work was done on plants of the species Arabidopsis thaliana. Plants sown on soil were 

watered using 1x Hoagland solution (Tables 31 and 32). 

 
2.1.1.1 T-DNA plants 

 

Mature plant material (Arabidopsis thaliana) used for this study was received from a former 

employee Zek Ginbot. The genes to be examined in this study were the PSY2L gene and the 

PP4R2L gene. Two Salk lines were used for the PSY2L gene, and one for the PP4R2L gene 

(Table 1). 

Mature plants already available in the lab were to be tested to find homozygous individuals. 

Identification of homozygous individuals was achieved by PCR followed by agarose 

electrophoresis.  
 

Table 1. Overview of T-DNA insert in the plant material 
 

Name Location Salk line T-DNA location 

PSY2L At3g06670 Salk 048064 Insert in exon 3 of 

25, segregating 

PSY2L At3g06670 Salk 125872 Flank-tagged 

downstream of 

translation, 

segregating 

PP4R2 At5g17070 Salk 093041 Insert in exon 7 of 

8, segregating 

 

A more detailed overview is made available in the appendix (A1 and A2). 

 
2.1.1.2 MicroRNA plants 

 
Mutant plants (Arabidopsis thaliana) transformed using either the inducible pER10 vector or 

the constitutive pBA002 vector carrying artificial micro RNA (amiRNA) were already 

available in the lab when this study started. These plants had been treated using agrobacterium 

by former employee Zek Ginbot. Two different amiRNAs were introduced to the plants with 

the following sequence:  

amiRNA1:                        TAATGAGAGTTATACGGTCTA 

amiRNA2:                          TTAAAAGACGTAACAACGCTG  

Both microRNAs are designed to target PP4-2 as well as PP4-1.  

Two plants were used for each amiRNA, giving rise to the following classification: RNA 1-1 

being amiRNA 1-plant 1, Rna 1-2 being amiRNA 1-plant 2, RNA 2-1 being amiRNA 2-plant 

1, and RNA 2-2 being amiRNA 2-plant 2. Plants transformed with only the vector with no 

amiRNA present were also available for this study (PBA002 only and pER10 only).  
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2.1.2 Vectors 

 

The following vectors were used for molecular cloning: pCAT-EYFP, pCAT-DECR-EYFP 

and pWEN25.  Both pCAT-EYFP and pCAT-DECR-EYFP vectors share the same nucleotide 

sequence with the exception that pCAT-EYFP will ensure that the resulting fusion-protein 

will carry the EYFP tag on the N–Terminus, whereas the pCAT-DECR-EYFP will give the 

resulting fusion-protein an EYFP tag at the C–terminus (see figure 1 for a vector map of the 

pCAT-EYFP vector). 

 

 
Figure 1. Vector map of pCAT-EYFP. The vector was used for molecular cloning and the vector map was designed by Dr. Amr 

Kataya (Ma, Haslbeck et al.2006). 

A vecotor map of the pWEN25 vector is shown in figure 2. 

EcoRI (7 7 4)

pCAT-YFP

4502 bp

double p35S

AMPr

35S-pA

Ava I (7 69)

NcoI (909)

XbaI (1644)

NotI (1636)

Hin dIII (2)

Hin dIII (187 0)

Apa LI (2088)

Apa LI (2585)

Apa LI (3831)

Pst I (18)

Pst I (1123)

Pst I (1862)

YFP
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Figure 2. Vector map of the pWEN25 vector used for molecular cloning. The vector map for pWEN25 was designed by Dr. 
Amr Kataya (Matre, Meyer et al. 2009). 

When studying the effect of amiRNA on plants, the following vectors were used to introduce 

the amiRNA to the plants: pER10 and pBA002. Figures 3 and 4 shows vector maps of pER10 

and pBA002, respectively. 

pWEN25

4515 bp

ampR

EYFP (no stop)

CaMV 35S promoter

pUC Rep origin

NOS terminator

Acc 65I (1612)

Apa I (1634)

Bsr GI (1592)

Eco RV (765)

HindIII (2)

Kpn I (1616)

Nae I (1602)

Pac I (1917)

Sac I (1640)

Sac II (1621)

Sal I (1606)

Sma I (1626)

Sph I (12)

Xho I (877)

Xma I (1624)



7 
 

 
Figure 3. Vector map of pER10 vector (Moller and Chua 2002). The pER10 vector contains resistance against the antibiotic, 
Kanamycin. It is an inducible vector for the production of amiRNA.  
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Figure 4. Vector map of pBA002 (Moller, Kim et al. 2003). The pBA002 vector contains resistance against the herbicide 
BASTA. It is a constitutive vector for the amiRNA. 

 

2.1.3 Bacterial cells 

 
For the molecular cloning, bacterial cells were used and transformed. The bacterial cells used 

for this study were competent Escherichia coli JM109 from Promega.  

 
2.1.4  Kits 

 
Kits are made available for easy and rapid reactions and processes. For this study, PCR 

cleanup kit was used to isolate DNA after PCR and after digestion. This was done to remove 

any reagents from the PCR/digestion mixture. When isolating amplified DNA from a PCR 

reaction where the PCR product was run on gel (high fidelity PCR), a kit for gel extraction 

was used. This kit ensured that all gel was removed from the sample so that the purified DNA 

could be used for cloning. Plasmid isolation performed to isolate plasmids from transformed 

bacterial cells was also done using a kit, namely plasmid miniprep kit. Genotyping of plants 

was performed using the Phire ® Plant Direct PCR Kit from New England Biolabs. 

The RNeasy kit from QIAGEN was used when isolating RNA to be used for the expression 

study for T-DNA plants. 
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2.1.5  Chemical list 

 
Table 2 gives an overview of the enzymes and buffers used during this thesis. 
 

Table 2. Overview of all chemicals, enzymes and buffers used 
 

Reagent Classification Supplier 

BSA, Purified BSA 100x  

(10 mg/ml) 

Protein New England Biolabs 

NcoI Restriction enzyme New England Biolabs 

NotI Restriction enzyme New England Biolabs 

SacII Restriction enzyme New England Biolabs 

KpnI Restriction enzyme New England Biolabs 

SalI Restriction enzyme New England Biolabs 

Taq polymerase(Aug-Dec) Enzyme Invitrogen 

Taq polymerase(Jan-Apr) Enzyme SIGMA-ALDRICH 

High fidelity polymerase Enzyme ROCHE 

T4 DNA Ligase Enzyme Promega 

rSap Enzyme New England Biolabs 

NeBuffer1 Buffer New England Biolabs 

NeBuffer2 Buffer New England Biolabs 

NeBuffer3  Buffer New England Biolabs 

PCR buffer, 10X PCR rxn 

buffer  

-MgCl2 

Buffer Invitrogen 

High fidelity PCR buffer, 

Expand high fidelity PlusPCR 

system Reaction Buffer (5x) 

with MgCl2 

Buffer ROCHE 

T4 DNA Ligase 10X buffer Buffer Promega 

rSap buffer Buffer New England Biolabs 

dNTP’s, 2.5 mM of each 

NTP, total 10 mM 

Chemical Bioline 

 
2.2 Methods 
 

2.2.1 PCR 
 

The PCR is performed to amplify DNA based on a template strand. A thermocycler is utilized 

to make sure the sample will go through the correct amplification step at the correct time. For 

this study, PCR was used when genotyping T-DNA plants to find homozygous individuals, it 

was used to amplify genes used for molecular cloning (high fidelity PCR), and the technique 

was additionally used to check if any transformed bacterial colonies from the molecular 

cloning contained the insert in question (colony PCR).  
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2.2.1.1 Genotyping of individual plants to identify homozygous mutants 

 
Genotyping was performed on individual plants of Arabidopsis thaliana T-DNA plants for the 

following Salk lines: PSY2L Salk 125872, PSY2L Salk 048064 and PP4R2L Salk 093041, T-

DNA plants. 
Two types of mastermix was prepared, one designed using primers that would amplify only 

T-DNA, the other using primers that would amplify the wild type DNA. Finding bands in 

both series means the plant in question is heterozygous; it being in possession of both TDNA 

and that of the wild type. Finding a band only in one of the two, means the plant is 

homozygous for that particular gene. Here, the samples using primers to detect TDNA was 

denoted series A, whereas the wild type detection samples was denoted series B. Plants 

exhibiting a band only for series A were confirmed to be homozygous for the T-DNA. 

Any homozygous plants found were genotyped at least twice. 
 

2.2.1.1.1 Primer working solution 

A ten-fold dilution of the primer stock solution was used as the primer working solution,      

10 µl primer stock solution was added to 90 µl dH2O. 

2.2.1.1.2 Primers used for genotyping 

Table 3 gives an overview of all the primers used when genotyping the T-DNA plants. 

 

Table 3. Overview of primers used for genotyping of T-DNA plants 

 

Type Salk line Nucleotide sequence 

TDNA    LB    LBb1.3 Used on all lines ATTTTGCCGATTTCGGAAC 

PSY2L    RP 125872 AAARGAATATGGCTTTTGGGG 

PSY2L    LP 125872 AAGCCTCTGAGGATGAGGAAG 

PSY2L    RP 048064 TGTTGAATTGAGATGGAAGGG 

PSY2L    LP 048064 ATGTTTCGCCTGTTCAATCAC 

PP4R2   RP 093041 TGTTCAACAGATCCTTTTGGC 

PP4R2   LP  093041 CAACATATTTGGCATTTTGGC 

 

2.2.1.1.3 PCR mix and PCR program used when genotyping 
 

The PCR mix was prepared following the below table, table 4, and the PCR program used is 

shown in table 5.  
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Table 4. PCR mix used for genotyping of T-DNA plants 

 

Reagent Amount (µl) Final concentration 

dH2O 3.3 - 

Buffer 5 1x 

Primer 1 0.5 0.5 µM 

Primer 2 0.5 0.5 µM 

Enzyme 0.2 - 

Plant material 0.5 - 

Total volume 10 NA 

 

Table 5. PCR program used for genotyping of T-DNA plants 

 

Step Temperature Time 

1, Initial denaturation 98˚C 5 min 

2, Denaturation* 98˚C 5 sec 

3, Annealing* 60˚C 10 sec 

4, Extension* 70˚C 40 sec 

5, Final extension 72˚C 1 min 

6, Hold 12˚C ∞ 

 

Steps 2, 3 and 4 were repeated 40 times in order. 

 

2.2.1.2 High fidelity PCR, Amplification of constructs to be used for  molecular cloning 

High fidelity PCR was performed to ensure that the amplified constructs were correct in 

regards to the original sequence. The following genes were amplified using high fidelity PCR: 

PP4-2, PSY2L and PP4R2L.  

 

2.2.1.2.1 Primers used for High fidelity PCR 

 

The following primers were used when amplifying PP4-2, PP4R2L and PSY2L to be used for 

molecular cloning (table 6. For the nucleotide sequence of each primer, see table 7).  

 

Table 6. Overview of primers used, High fidelity PCR for cloning 

 

Gene Destination vector Forward 

Primer 

Revers 

Primer 

PP4-2    pCAT-DECR-EYFP AK77F AK75R 

PSY2L    pCAT-EYFP EYFPPSY2Lf EYFPPSY2Lr 

PSY2L   pCAT-DECR-EYFP PSY2LEYFPf PSY2LEYFPr 

PP4R2L pCAT-EYFP EYFPPP4R2Lf EYFPPP4R2Lr 

PP4R2L pCAT-DECR-EYFP PP4R2LEYFPf PP4R2LEYFPr 

NA-Vector specific  pCAT-EYFP c.term.EYFPf AK92r 

NA-Vector specific pCAT-DECR-EYFP AK93f AK94r 

NA-Vector specific pWEN25 c.term.EYFPf NOS 
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Table 7. Nucleotide sequence of primers used, High fidelity PCR for cloning 

 

Primer Nucelotide sequence 

AK77F ATCCATGGGTATGTCAGACCTAGACAAGCA 

AK75R ATGCGGCCGCTATGTCAGACCTAGACAAGCAA 

EYFPPSY2Lf AAAGCGGCCGCTTATGGGCGCTCCGGAAAAGTCT 

EYFPPSY2Lr ATTGCGGCCGCTCAGGATCCATTTACAGCCAT 

PSY2LEYFPf ATCCATGGGTATGGGCGCTCCGGAAAAGTCT 

PSY2LEYFPr ATTGCGGCCGCTCAGGATCCATTTACAGCCAT 

PSY2L kpnI AAGGTACCTCAGGATCCATTTACAGCCAT 

PSY2L SalI AAAGTCGACCCATGGGCGCTCCGGAAAAGTCT 

EYFPPP4R2Lf AAAGCGGCCGCTATGGAGAATCCGTCATCATCG 

EYFPPP4R2Lr ATTCCGCGGCTAGGCACACGTTGTAGGCAA 

PP4R2LEYFPf ATCCATGGGTATGGAGAATCCGTCATCATCG 

PP4R2LEYFPr AAGCGGCCGCGGCACACGTTGTAGGCAACCG 

C.Term.EYFPf ACTACCTGAGCTACCAGTCC 

AK92r CCTTATCTGGGAACTACTCAC 

AK93f GCATTCTACTTCTATTGCAGC 

AK94r AACTTCAGGGTCAGCTTGCCGT 

NOS GATAATCATCGCAAGACCGGCAACAGGA 

 

2.2.1.2.2 PCR mix and PCR program used for high fidelity PCR 

 

Table 8 shows the amount of reagents used when performing high fidelity PRC to amplify 

constructs used for molecular cloning. 

 

Table 8. PCR mix used, High fidelity PCR for cloning 

 

Reagent Amount (µl) Final conc. 

dH2O 30.5 - 

Buffer (5x Exp.Hifi. buffer) 10 1x 

dNTP 4 0.8 mM 

Primer 1 2 0.16 µM 

Primer 2 2 0.16 µM 

Enzyme 0.5 2.5 U 

Template DNA 1 5-500 ng (genomic DNA) 

100 pg-10 ng (plasmid 

DNA) 

Total volume 50 - 

 

The above table (table 8) shows the amount of reagents used for one PCR reaction. 

The concentration of template DNA was altered to ensure that 1 µl template solution was 

within the range of 100 pg-10 ng plasmid concentration. The PCR program used follows in 

table 9. 
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Table 9. High fidelity PCR program, cloning 

 

Step Temperature Time  

1, Initial 

denaturation 

98˚C 5 min 

2, Denaturation* 98˚C 5 s 

3, Annealing* 60˚C 10 s 

4, Extension* 70˚C 40 s 

5, Final extension 72˚C 1 min 

6, Hold 12˚C ∞ 

 

Steps 2, 3 and 4 were repeated 40 times in order. The resulting PCR mixture was run on 

agarose-gel followed by cleanup of the DNA using the gel extraction kit from SIGMA-

ALDRICH. 

 

2.2.1.3 Colony PCR for molecular cloning 

 

Colony PCR was performed on transformed bacterial colonies using both vector-specific 

primers and gene-specific primers. It was discovered that using one vector-specific primer and 

one gene specific primer gave the best results in regards to the visualization of the PCR 

product. Using vector-specific primers gave rise to two clear bands, one band being the empty 

vector or the vector with insert, and the other band believed to be primer-dimer product. 

 

2.2.1.3.1 Primers used for colony PCR  

 

When screening colonies for the correct insert, both the vector specific and gene-specific 

primers were used. The gene-specific primers are listed in table 6, and the vector-specific 

primers are found below, in table 10. 

 

Table 10. Overview of primers used to determine the presence of transformed bacterial 

cells 

Vector specific primers 

Name Vector 

AK93f pCAT-DECR-EYFP 

AK94r pCAT-DECR-EYFP 

c.term.EYFPf pCAT-EYFP 

AK92r pCAT-EYFP 

NOS pWEN 25 

 

c.term.EYFPf 

pWEN 25 

 

Due to ineffective molecular cloning, colony PCR was performed throughout the entirety of 

this project. Acquisition of a new Taq polymerase gave rise to two different protocols being 

used; one protocol was followed from August through December and a new protocol was 

followed from January throughout April. 

 

2.2.1.3.2 Colony PCR performed on bacterial colonies (August-December 2014) 
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Colony PCR performed from August through December was done with a taq polymerase from 

Invitrogen, following the procedure described below. 

 

2.2.1.3.2.1 PCR mix and PCR program used for colony PCR (August-December 2014) 
 

Tables 11 and 12 gives an overview of the PCR mix and PCR program used for colony PCR 

performed from August to December 2014. 

 

 Table 11. Colony PCR mastermix (August-December 2014) 

Reagent Amount (µl) 

PCR buffer (-MgCl2) 2 

MgCl2 (50mM) 0.6 

dNTP mix 0.4 

Primer 1 1 

Primer 2 1 

Taq polymerase 0.1 

dH2O 14.9 

 

Masttermix was prepared using the above table and template DNA was added by transferring 

a tiny amount of bacteria from one bacterial colony using the tip of a pipette/ toothpick. The 

pipette tip/toothpick was placed tip down in the PCR tube then stirred around a bit before 

removing it from the PCR tube. Whether a pipette tip or a toothpick was used did not 

influence the PCR results.  

Table 12. Colony PCR program (August-December 2014) 

Step Temperature Time 

1, Initial denaturation 94˚C 3.00 min 

2, Denaturation* 94 ˚C 45 s 

3, Annealing* 60 ˚C 30 s 

4, Extension* 72 ˚C 2 min 30 s 

5, Final extension 72 ˚C 10.00 min 

6, Hold 4 ˚C ∞ 

*Steps 2 through 4 were repeated 35/32 times. 

2.2.1.3.3 Colony PCR performed on bacterial colonies (January- April 2015) 

Due to the acquisition of a new Taq polymerase from a new supplier, SIGMA-ALDRICH, the 

procedure for colony PCR had to be altered for any colony PCR performed after December 

2014. Some optimization of the PCR program was needed before finding the preferred 

program.  

 

2.2.1.3.3.1 PCR mix and PCR program used for colony PCR (January- April 2015) 

 

Below follows table 13; an overview of the PCR mix and the optimal PCR program used after 

the acquisition of the new Taq polymerase. 
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Table 13. Colony PCR mastermix (January- April 2015) 

Reagent Amount (µl) Final concentration 

10x rxn buffer 2 1x 

DNA template (bacterial colonies) 200 pg 

dNTP mix 1.6 800 µM 

Primer 1 0.8 0.1 µM 

Primer 2 0.8 0.1 µM 

Taq polymerase 0.2 0.05 U 

dH2O 14.6 - 

 

Mastermix was prepared using the above table and bacterial colonies were transferred using 

the tip of a pipette/toothpick. Table 14 gives an overview of the PCR program used. 

Table 14. Colony PCR program (January- April 2015) 

Step Temperature Time, minutes 

1, Initial denaturation 94˚C 4.00 

2, Denaturation* 94 ˚C 1.00 

3, Annealing* 60 ˚C 1.00 

4, Extension* 72 ˚C 4.00 

5, Final extension 72 ˚C 5.00 

6, Hold 4 ˚C ∞ 

*Steps 2 through 4 were repeated 27 times. 

2.2.1.4 cDNA synthesis, Expression study for T-DNA plants 

 

The following plant material was used for expression studies; PSY2L Salk 048064 and 

PSY2L Salk 125872. 

Plants were first genotyped to find homozygous individuals. 

The seeds harvested from the homozygous plants were sown directly on soil and placed in 

darkness at 4˚C for 72 h. The plants were then moved to a growth incubator and genotyped 

when large enough to withstand the removal of leaves. Leaves were harvested from two of the 

plants believed to be homozygous, one PSY2L Salk 048064 mutant, (later confirmed to be 

heterozygous) and one PSY2L 125872 mutant (confirmed to be homozygous at a later time).  

The plant material harvested from the two believed homozygous individuals (PSY2L Salk 

048064 and PSY2L Salk 125872) was used to isolate RNA to be used for cDNA production.    

To isolate RNA from the plant material, the RNeasy kit from QIAGEN was used. The 

protocol given with the product was followed. 

2.2.1.4.1 Protocol for production of cDNA, T-DNA plants 

The RNA samples obtained using the RNeasy kit were diluted to give a final concentration of 

20ng/µl. 

All chemicals to be used were vortexed and centrifuged briefly before use. Two chemical 

mixes were prepared in two Eppendorf tubes, RNA mix (table 15) and Revers transcriptase 

mix (table 16). 
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The samples containing RNA mix were heated in a PCR machine to 70˚C for 5 min., then 

placed on ice for >5 min. They were then centrifuged briefly (5000prm, <1 min.) to make sure 

any condensation was removed from the inner surface of the lids. The reverse transcriptase 

mix was added (4,25µl pr. sample) before they were placed back into the PCR machine. The 

full program for the PCR machine is found in table 17. 

 

Table 15. RNA mix for cDNA production, T-DNA plants PSY2L Salk 048064 and Salk 

125872 

 

Reagent Amount, µl Final concentration 

Experimental RNA 4.75 95 ng/µl 

Primer, RT_PSY2L_RP 1 10 µM 

Total volume 5.75 NA 

 

Table 16. Reverse transcriptase mix for cDNA production, T-DNA plants 

  

Reagent Amount, µl 

Goscript 5x reaction buffer 201 

MgCl2  1.25 

dNTP 0.5 

Reverse transcriptase 0.5 

Total volume 4.25 

 

 

Table 17. PCR program for cDNA production, T-DNA plants 

 

Temperature Time 

70˚C 15 min. 

25˚C 1 min. 

42˚C 1 h. 

70˚C 15 min. 

12˚C ∞ 

 

The samples were kept on ice until the expression analysis was started.  

 

To analyse the expression, the amount of cDNA was measured using PCR followed by 

agarose gel electrophoresis. The protocol follows. 

 

2.2.1.4.2 Protocol for expression analysis, T-DNA plants 

 

The DNA content of the cDNA samples was amplified using the PCR protocol for colony 

PCR with some alterations. 

To find out the optimal amount of template DNA as well as the optimal amount of cycles, 

four mixes for each sample was prepared; 1µl/25 cycles, 3µl/25 cycles, 1µl/30 cycles, 3µl/30 

cycles. The amount of reagents used is given in table 18, and the PCR program for cDNA 

analysis is given in table 19. 
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Table 18. Overview of PCR for cDNA analysis, T-DNA plants 

 

Reagent  Amount for 1 µl 

cDNA samples, 

µl 

Amount for 3 µl 

cDNA samples, 

µl 

Buffer 2 2 

MgCl2 0.6 0.6 

dNTP 0.4 0.4 

Primer 1 1 1 

Primer 2 1 1 

cDNA 1 3 

Taq polymerase 0.1 0.1 

dH2O 13.9 10.9 

 

Table 19. PCR program for cDNA analysis, T-DNA plants 

Step Temperature Time 

1, Initial denaturation 94˚C 3.00 min 

2, Denaturation* 94 ˚C 45 s 

3, Annealing* 60 ˚C 30 s 

4, Extension* 72 ˚C 2.00 min 

5, Final extension 72 ˚C 10.00 min 

6, Hold 4 ˚C ∞ 

*Steps 2 through 4 were repeated 25/30 times. 

 

2.2.2 Agarose gel electrophoresis protocol 

 

1g agarose was used for every 100 ml 1xTAE buffer. 

The agarose-buffer mixture was heated until all agarose was solved, then poured into the cast 

to solidify. To visualize the DNA bands, gel-red (1:50 Gel-red:water ratio) was used. Loading 

buffer was added to ensure that the sample maintained its position in the correct well. 

Hyperladder I (4 µl) mixed with Gel-red (2 µl) was used to ascertain the size of the PCR 

product. Loading buffer (2 µl) and Gel-red (2 µl, 1:50) was added to each sample before 

running it on agarose gel. The gel was run for 40 minutes at 80V, and then analyzed using UV 

light to visualize the DNA bands. 

 

2.2.3 Molecular cloning of fusion-proteins   

 

The following fusion-proteins were attempted to produce; PP4-2-EYFP, EYFP-PSY2L, 

PSY2L-EYFP, PP4R2L-EYFP and EYFP-PP4R2L. 

Cloning was performed on constructs to be used in localization studies. Three genes were to 

be examined, and each of the three genes were cloned into two different vectors; pCAT-EYFP 

and pCAT-DECR-EYFP. Cloning into pCAT-EYFP resulted in the protein being tagged on 

the N-terminus, and cloning into pCAT-DECR-EYFP resulted in the protein being tagged on 

the C-terminus. For the PSY2L gene, a third vector was also used. See table 20 for a full 

overview of the genes and vectors used. 
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Table 20. Overview of genes to be cloned 

 

Gene Template 

plasmid 

Destination 

Vector 

Restriction 

site 

EYFP 

tag at 

terminus 

Expected 

size 

including 

primer 

nucleotides 

PP4-2 U83558 pCAT- 

EYFP 

NotI/SacII N 932 

PP4-2 U83558 pCAT-

DECR-

EYFP 

NotI/NcoI C 929 

PSY2L U21916 pCAT- 

EYFP 

NotI N 2621 

PSY2L U21916 pWEN 25 KpnI/SalI N 2621  

PSY2L U21916 pCAT-

DECR-

EYFP 

NotI/NcoI C 2619 

PP4R2L U24915 pCAT- 

EYFP 

NotI/SacII N 857 

PP4R2L U24915 pCAT-

DECR-

EYFP 

NotI/NcoI C 855 

 

The one marked in red was already provided for transformation into protoplasts, all work 

done on them by Dr. Amr Kataya. The one marked in blue proved to be difficult due to the 

large size of the insert combined with the fact that only one restriction enzyme could be used. 

After multiple failed attempts, it was decided to proceed with the cloning but using a different 

vector, namely pWEN25, marked green.  

 

2.2.3.1 Molecular cloning overview 

 

Below follows an overview of the entire molecular cloning procedure. 

 

Overview of the entire molecular cloning procedure 

 Constructs were amplified using high fidelity PCR. 

 They were then analysed using agarose gel electrophoresis. 

 The PCR product was cleaned using gel extraction kit from sigma Aldrich, and 

concentration was measured using Nanodrop. 

 A small amount of sample was then run on gel to check that the gel extraction worked 

well. 

 The vectors and genes were then digested using the corresponding restriction 

enzymes, before the samples were cleaned using PCR cleanup kit from sigma Aldrich. 

  A small amount of the samples was run on gel to ensure that the PCR cleanup worked 

as intended, and the concentration was measured using Nanodrop. 

 The genes were ligated into the vectors. 

 Competent cells were transformed, using the ligation mix, and incubated overnight at 

37˚C. 
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 Any surviving colonies were checked by colony PCR, then analysed on agarose. 

 Overnight cultures were made from any positive colonies, and plasmids were isolated 

using plasmid isolation kit from sigma Aldrich. 

 A small portion of the plasmid sample were digested using the corresponding 

restriction enzymes to check that both the insert and vector were present in the sample. 

 The digested portion of the sample was analysed on agarose. 

 Any positive samples were then sent to sequencing. 

 

2.2.3.2 Digestion, molecular cloning 

 

The following tables give an overview of the reagents and restriction enzymes used for the 

vectors and inserts (tables 21, 22, 23, 24and 25). 

 

Table 21. Digestion of pCAT-EYFP and PP4R2 

Reagent Amount (µl) 

BSA 1 

Buffer 2 2 

NotI 1 

SacII 1 

Template  15 

 

Table 22. Digestion of pCAT-EYFP and PSY2L 

Reagent Amount used for pCAT-

EYFP (µl) 

Amout used for PSY2L 

(µl) 

BSA 2 2 

Buffer 3 2 2.5 

NotI 1.5 1.5 

Template  13 25 

H2O 2 0 

 

Table 23. Digestion of pCAT-DECR-EYFP and PSY2L 

Reagent Amount used for pCAT-

DECR-EYFP (µl) 

Amount used for PSY2L 

(µl) 

BSA 1 2 

Buffer 3 2 2 

NotI 1 1 

NcoI 1 1 

Template  15 25 
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Table 24. First digestion of PSY2L to be ligated into pWEN25 

Reagent Amount used for pWEN25 

(µl) 

BSA 2 

Buffer 1 4 

KpnI 2 

Template  35 

 

Table 25. Second digestion of PSY2L to be ligated into pWEN25 

Reagent Amount used for pWEN25 

(µl) 

BSA 2 

Buffer 3 4 

SalI 2 

Template (ligation mix from 

table 20) 

35 

 
2.2.3.3 PCR cleanup, cleaning digested vectors and inserts 

 

PCR cleanup was performed using the PCR cleanup kit from Sigma. The procedure given 

with the kit was followed with one exception;-being the amount of water used for elution. 

Elution was done using 38µl water, free of any DNase-, RNase- and protease activity.  

 

 

2.2.3.4 Dephosphorylation of 5´end of PSY2L for pCAT-EYFP 

 

When cloning PSY2L into vector pCAT-EYFP, only one restriction enzyme could be used. 

This resulted in no positive colonies found for any bacteria transform with said plasmid. 

Phosphorylation of the 5´end of PSY2L was thought to help improve the process, eliminating 

some of the problems arising when ligating the vector and insert, such as the insert being 

ligated into the vector in tandem, or being ligated in upside down. The shrimp alkaline ligase 

system was used to attempt to improve the process.  

The following mix was prepared (Table 26). 

 

Table 26. Shrimp alkaline ligase mix 

 

Reagent  Amount 

DNA 9 µl 

rSap buffer 2 µl 

rSap 1 µl 

dH2O 8 µl 

 

The mix was incubated at 30˚C for 30 min., followed by heat inactivation of the enzyme at 

65˚C for 5 min. The resulting DNA mix was then  used for ligation. 
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2.2.3.5 Ligation, molecular cloning 

When ligating the insert into the vector, the amount of insert and vector was calculated 

following the instruction from the provider (Promega). The following equation was used: 

Equation 1. Calculations of the amount of insert (ng) to be used for ligation into vector, 

1:1 vector/insert ratio 

)(

)()(
)(

kbpVector

kbpInsertngVector
ngInsert


  

This equation gives the amount of insert in ng to be used for a 1:1 Vector/insert ratio. The 

optimal ratio differs with the size of the insert and vector. For this study a 1:6 ratio was used 

for most of the genes. 

To find the amount of insert in µl for the correct ratio, the following equation was used: 

Equation 2. Calculations of the amount of insert (µl) to be used for ligation into vector, 

Not 1:1 vector/insert ratio 

 

 

 Due to difficulties encountered when cloning the large PSY2L gene, ligation was performed 

using three different ratios for both vectors; pCAT-DECR-EYFP and pWEN25. The 

following ratios were used: 1:3, 1:6 and 1:8, shown as ratio (3,6,8) in equation 2. Meaning 

that the insert amount was multiplied with 3 for 1:3 ratio, 6 for  1:6 ratio and 8 for 1:8 ratio. 

None of the ratios proved more effective than the others for this study. An overview of the 

amount of reagents used for ligation follows in table 27. 

Table 27. Overview of generic ligation mix 

Reagent amount 

Vector 2 µl (variable depending on 

concentration of vector) 

Insert 3 µl (variable depending on 

ratio and concentration) 

Buffer 1 µl 

Ligase 1 µl 

dH2O 3 µl (variable, used to make 

final amount 10 µl) 

Total 10 µl  

 

Following the above equations and tables, the amount of reagents for each ligation mix was 

prepared. The ligation mixture was left at room temperature overnight before it was used in 

transformation of bacterial cells. 

 

 

 

 

)(

)8,6,3()(
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ngGene

RationgInsert
lInsert
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2.2.3.6 Transformation of bacterial cells 

 

The heat-shock method was used for transformation of competent bacterial cells, here 

Escherichia coli JM109. 

The competent cells were first thawed on ice for 10 min. DNA material was added to the 

bacterial cells and the resulting mixture was incubated on ice for 30 min. The bacterial cells 

were then given a heat-shock at 42˚C for 90 min. This was done on a heat block. Thereafter, 

the bacterial mixture was incubated on ice for five minutes, before LB medium (500 µl) was 

added. The bacterial suspension was then incubated at 37˚C for 1 h and 30 min (larger 

plasmids were incubated 3 h). Bacterial colonies were then transferred to LB agar plates 

containing Ampicillin.  

 

2.2.4 Plasmid isolation, localization studies of proteins; PP4-2, PSY2L and PP4R2L 

 

Plasmid isolation was performed using the plasmid miniprep kit from SIGMA-ALDRICH. 

The protocol given by the supplier was followed. 

 

2.2.5 Plasmid check, localization studies of proteins; PP4-2, PSY2L and PP4R2L 

To ensure that the plasmids obtained from the bacterial cells did indeed contain the gene of 

interest, the plasmids were first digested using the restriction enzymes corresponding to the 

restriction sites present, then analyzed on gel to make sure the plasmids displayed two distinct 

bands. Any samples deemed to be positive were sent to sequencing. The procedure for 

agarose-gel electrophoresis described earlier was followed.  

 

2.2.6 Sequencing, localization studies of proteins; PP4-2, PSY2L and PP4R2L 

 

The isolated plasmids were sent to Seqlab-Sequence Laboratories Göttingen GmBh, address; 

Hannah-Vogt-Str.1 37085 Göttingen Postfach 3343 37023 Göttingen Germany. After 

sequencing, the resulting sequence was used to check its alignment with the CDS from the 

original sequence for the gene in question (PP4-2, PSY2L or PP4R2L). The alignments were 

produced using T-Coffee alignment. (appendix A-3, A-4, A-5 and A-6)  

 

2.2.7 Protoplast isolation and DNA-Peg transfection 

 

The method used was devised by Dr. Behzad Heidari Ahootapeh after studying the following 

articles: “Signal transduction in Maize and Arabidopsis Mesophyll Protoplasts”  and 

“Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression 

analysis” (Sheen 2001; Yoo, Cho et al. 2007). The PSY2L gene was not successfully cloned 

and localization studies were only performed for PP4-2 and PP4R2L. Below follows an 

overview of the fusion-proteins studied (Table 28). 
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Table 28. Overview of fusion-proteins used in localization studies 

Gene Vector EYFP tag Fusion-protein 

PP4R2L pCAT-EYFP N EYFPPP4R2L 

PP4R2L pCAT-DECR-EYFP C PP4RL2EYFP 

PP-4 pCAT-EYFP N EYFPPP4-2 

PP-4 pCAT-DECR-EYFP C PP4-2EYFP 

 

Enzyme solution was prepared following table 29. 

 

Table 29. Enzyme solution for Protoplast isolation 

 

Reagent Amount for 1 reaction 

1, Cellulase  15 mg 

2, Mannitol 5 ml 

3, KCl 1 M 0.2 ml 

4, Pectinase 10 mg 

5, MES 100 mM 2 ml 

6, dH2O 2.7 ml 

- - 

7, CaCl2 1 M 0.1 ml 

8, BSA 10 mg 

 

Reagents 1 through 6 were added, and the solution was placed on a stirrer until everything 

was dissolved. Reagents 7 and 8 were then added to the dissolved enzyme solution. 

Leaves were harvested from Arabidopsis thaliana wild type, 10-15 leaves depending on the 

size. The leaves were then cut into thin strips using a sterile scalpel and submerged into the 

enzyme solution (10 ml). The leaves were incubated in darkness at room temperature for 24 h. 

Peg solution was prepared following the below table (Table 30) 

 

Table 30. Peg solution for Protoplast production 

 

Reagent Amount  

PEG 400 2 g 

dH2O 1.5 ml 

Mannitol 0.8 M 1.25 ml 

CaCl2 1 M 0.5 ml 

 

The reagents were added to a Falcon tube in the order shown above, then shaken vigorously to 

make sure the reagents were mixed properly.  

 Protoplasts were released from the leaves by gentle stirring, using a sterile pipette tip in a 

sterile environment. The protoplast solution was then filtered using a nylon mesh and cells 

were checked using a microscope after filtration (10 µl). The protoplast solution was then 

centrifuged at 100xg for 1 minute and the supernatant was discarded. Ice cold W5 solution (2 

ml) was added, and the protoplasts were carefully resuspended into solution. The solution was 

incubated for 20 minutes on ice. Some cells (10 µl) were again checked using a microscope 

during this incubation. The solution was centrifuged at 100xg for 1 minute and the 

supernatant was discarded. The protoplast pellets were then resuspended in MMg (2 ml). The 

protoplast solution (250 µg) was added to the plasmid to be studied (10 µg) in a small petri 
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dish and the two solutions were mixed gently by careful pipetting. PEG solution (220 µl) was 

added drop by drop, and the mixture was incubated for 20 min. at room temperature. Ice cold 

W5 solution was added (880µl), and the resulting solution was mixed carefully by pipetting. 

The protoplast solution was then transferred to a falcon tube and centrifuged at 100x g for 1 

minute at 4˚C. The supernatant was discarded, and the cells were resuspended in ice cold W5 

solution (1 ml) before the solution was transferred to a small petri dish. The protoplasts were 

then incubated for 25 h. in darkness at room temperature followed by microscopy to study the 

localization of the fusion-proteins. 

 

2.2.8 Microscopy    

 

The microscope used for this study was Nikon A1R confocal microscope. The localization of 

the fusion-proteins; PP4-2-EYFP, EYFP-PP4-2, PP4R2L-EYFP and EYFP-PP4R2L were 

checked using microscopy after one day of incubation and after two days of incubation. 

  

2.2.9 Surface sterilization of A. thaliana seeds 
 

Calcium hypochlorite pellets (0.25 g) was added to dH2O (25 ml) to make a saturated 

solution. One droplet of tween was added, and the solution mixed rigorously before placed 

aside to settle. The calcium hypochlorite solution (2.5 ml) was added to 95% ethanol (22.5 

ml). One ml. of the solution was then added to dry seeds and incubated for 5 min. The seeds 

were then washed twice using 95% ethanol, and left in a sterile environment to dry. 

2.2.10 Screening of seeds 

 

2.2.10.1 Screening of seeds from T-DNA plants 

 

Seeds were harvested from each plant (already available in the lab). Seeds obtained from 

homozygous plants were sown directly on soil, to be genotyped when mature enough (full 

overview of the number of homozygous plants found is given in table 6). Seeds obtained from 

two of the heterozygous plants (PP4R2L Salk 093041, plant 3 and plant 7) were sown on half 

strength MS medium containing kanamycin for further screening. The seeds were first surface 

sterilized, and then sown on kanamycin plates in the sterile hood. Seeds from each plant were 

sown on four plates, giving a total of eight plates. Three plates containing kanamycin, and one 

positive control with no antibiotic in the medium. The plates were then placed in darkness at 

4˚C for 72 h., before they were moved to a plant growth room with 16 h. light cycle, where 

they remained until they were ready to be transferred to pots containing soil. Seeds from two 

different plants were screened twice. The first time four plates were sown for each plant 

whereas six plates were sown for each plant the second time. Since the second experiment did 

not reflect the results from the first experiment (Tables 5 and 6), it was decided to transfer 20 

plants from each type to soil, and then proceed with genotyping of each individual plant to 

find homozygous individuals, if present. 

  

2.2.10.2 Screening of seeds from MicroRNA plants 

 

Seeds were harvested from each of the mutant plants. The seeds were then surface sterilized, 

and sown on half strength MS plates containing the corresponding screening chemical; for 

pER10 Kanamycin was used and for pBA002 BASTA was used. The plates were placed in 

the dark at 4˚C for three days, then moved to a plant growth room with a 16 h. light/8 h. 
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darkness cycle. Any surviving plants were transferred to soil to be observed for any difference 

in phenotype w.r.t. the wild type. 

 

2.2.11 Protocol for production of growth medium 

 

When cultivating plants sown on soil, Hoagland solution was used as nutrient solution for the 

growing plants. Seeds sown on plates were sown on half strength MS medium, screening with 

the corresponding screening agent (Kanamycin or BASTA). Bacterial colonies were 

cultivated using LB broth for overnight cultures and LB agar for plated colonies. The LB 

broth and LB agar was prepared following the labels on the containers. Ampicillin was added 

to the medium as screening agent for bacterial colonies. 

 

2.2.11.1 MS plant medium 

 

Minor I and Minor II were prepared by adding the reagents from table 32 and 33, respectively 

to 1 l. water. 

Normal strength MS solution was prepared by adding the chemicals listed below in order; A, 

B, C, D, E, Minor I, Minor II, Fe/EDTA to 200 ml water (table 31).  The pH was adjusted to 

reach pH5.8, then more water was added until the solution reached 2 l. in volume to achieve 

half strength MS medium. For full strength MS, a total volume of 1 l. would be necessary. 

The liquid medium was divided amongst four bottles, and sucrose was added to three of them. 

One bottle remained without sucrose for possible future uses.  Agar-agar was added to all 

bottles achieve solidification of the medium to be used in screening of Arabidopsis thaliana 

seeds.   

 

Table 31. Overview of chemicals used for MS nutrient solution 

 

Order Chemical  Amount 

A KNO3 20 ml 

B HN4NO3 13 ml 

C MgSO4 ·7H2O 10 ml 

D KH2PO4 20 ml 

E CaCl2·2 H2O  10 ml 

Minor I  10 ml 

Minor II  10 ml 

Fe/EDTA Fe/EDTA 50 ml 

 

 

Table 32. Overview of chemicals used for Minor I solution, 1 l. 

 

Chemical  Amount 

ZnSO4·7H2O 0.920 g 

H3BO3 0.620 g 

MnSO4 ·4H2O 2.230 g 
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Table 33. Overview of chemicals used for Minor II solution, 1 l. 

 

Chemical  Amount 

NaMoO4·2H2O 0.025 g 

CuSO4·5 H2O 0.003 g 

CoCl2·6 H2O 0.003 g 

KI 0.0083 g 

 

 

2.2.11.2 Hoagland plant nutrient solution 

 

The chemicals of the micronutrient solution (Table 35) were dissolved in 1 l. water. 

Water (2 l.) was added to an empty bottle (5 l.). The chemicals listed in table nr 34 were 

added in the following order; A, B, C, D, E, micronutrient solution (Table 35). Water was 

added to reach a total volume of 5 l., giving 10x Hoagland solution. 100 ml. 10x Hoagland 

was added to 900 ml. water for 1x Hoagland solution. 

  

Table 34. Overview of chemicals used for Hoagland solution 

 

Order Chemical  Amount Nutrient 

concentration in 

1x Hoagland 

A KH2PO4 50 ml 1 m MPO4
-  

B KNO3 250 ml 5 mM NO3
- 

C Ca(NO3)2·4H2O 250 ml 10 mM NO3
- 

5 mM Ca++ 

D MgSO4 ·7H2O 100 ml 2 mM Mg++ 

2 mM SO4
- 

E Fe/EDTA, 1% 50 ml - 

Micronutrients  50 ml - 

  

Table 35. Overview of chemicals used for 1 l. micronutrient solution 

  

Chemical Amount in one liter 

H3BO3 2.86 g. 

MnCl2·4 H2O 1.81 g. 

CuSO4·5 H2O 0.089 g. 

ZnSO4·7H2O 0.22 g. 

H2MoO4·1H2O 0.029 g. 
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3. RESULTS 

 

3.1 Observed phenotype for mutant T-DNA plants, Arabidopsis thaliana 

 

The mutant plants (all three lines) displayed shorter stems and fewer stems than the wild type 

(for mutant PSY2L Salk 125872, see figure 5). The mutants also displayed foliage growth 

along the length of the stems. Leaves growing like this was not seen with any of the wild type 

plants. The mutants displayed impaired growth, taking about one month longer to mature and 

produce seeds when compared to the wild type (impaired growth can be seen in figure 6, 7, 8 

and 9). The three mutant types did not display any significant difference when compared to 

one another. 

 

 

Figure 5. PSY2L Salk 125872 mutants. The mutants displayed impaired growth when compared to the wild type. The two top 
rows of pots carry mutant plants whereas the two bottom rows carry wild type plants. 
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Figure 6. PSY2L Salk 048064 mutants.  At the early stage the mutants display a higher degree of  impaired growth than that 
of the PSY2L Salk 125872 mutants when compared to the wild type. The top-left mutant, circled in red, was found to be 
homozygous after genotyping. Its impaired growth was extreme, and it did not survive into maturity (figure 6).  

 

 

Figure 7. The PSY2L Salk 048064 from figure 2 at a later stage. The difference in size between the mutants and wild type 
becomes more evident. The homozygous plant is circled in red. 
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Figure 8. PSY2L Salk 125872 homozygous and heterozygous plants. The mutant plants are present at the two leftmost rows. 
The two rows to the right are inhabited by wild type.  Shorter stems are clearly visible for the mutants when compared to the 
wild type. 

One homozygous plant for PSY2L Salk 049064 was of particular interest due to its small size 

when compared to its siblings and the wild type (Figures 6, 7 and 9) 
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Figure 9. PSY2L Salk 048064 homozygous plant next to heterozygous individuals for the same Salk line. The believed 
homozygous plant is circled in red. The small size of the homozygous plant is evident. The homozygous plant did not survive 
to produce seeds. 

This small homozygous plant from Salk 048064 did not survive to produce seeds. It died one 

week after the above photo was taken. 

3.2 Observations made for Arabidopsis thaliana amiRNA plants 

Mutant plants appeared shorter than that of the wild type, the number of leaves and number of 

stems being fewer than what was observed with the wild type. The length of the stems were 

also slightly shorter than what is common to see for the wild type. The two mutant types did 

not differ much in regards to each other. The expectation that plants containing the 

constitutive vector would display impaired growth was not observed.  Mutant plants for both 

vectors had leaves growing from the stem along the entire length of the plant. The wild type 

did not exhibit such foliage. The time needed for the mutant plants to produce seeds was also 

observed to be about one month longer than that of the wild type. One particular individual 

for pER10 RNA1-2 displayed an abnormally thick and flat stem (Figures 10 and 11). 
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Figure 10. Abnormal individual for pER10 RNA 1-2. Leaves are growing along the length of the stem. The stem in itself is the 
interesting part, being much thicker than what was commonly observed. It also displayed a flatness giving it a resemblance 
to a ribbon. 

 

Figure 11. Close up of the abnormal plant shown in figure 6. The ribbon-like qualities of the stem is evident at the top right of 
the picture (circled in red), where it is shown to twist displaying the flatness of the stem. 
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The observations made for these mutants proved to be very similar to any observations made 

for the mutant plants in the gene expression study for PSY2L Salk 048064, Salk 125872 and 

PP4R2L Salk 093041 (Table 36). In regards to the stem of the abnormal individual, this was 

not thought to be caused by the plasmid and/or amiRNA. It is more likely that it was caused 

by a naturally occurring mutation giving rise to that specific phenotype. Offspring of that 

particular plant could be used for further studies. 

 

Table 36. Overview of phenotypes of mutant plants 

 

Plant type Mutant Phenotype, 

Homozygous 

plants 

Phenotype, 

Heterozygous 

plants 

T-DNA plant PSY2L Salk 125872  Fewer and 

shorter stems. 

Impaired 

growth. 

Fewer and 

shorter stems. 

Impaired 

growth. 

T-DNA plant PSY2L Salk 048064 Did not reach 

maturity. 

Extremely 

small size. 

No seed 

production 

due to death 

of the 

individual. 

Fewer and 

shorter stems. 

Impaired 

growth, more 

severe than 

for the other 

two Salk 

lines. 

T-DNA plant PP4R2L Salk 093041 Fewer and 

shorter stems. 

Impaired 

growth. 

Fewer and 

shorter stems. 

Impaired 

growth. 

amiRNA plant pER10 Fewer and shorter stems. Leaf 

growth along stems. 

Impaired growth.* 

amiRNA plant pBA002 Fewer and shorter stems. Leaf 

growth along stems. 

Impaired growth.* 

            * No genotyping was performed on amiRNA plants, so discerning homozygous plants             

               from heterozygous ones was not possible. 

 

3.3 Genotyping of hetero- and homozygous T-DNA plants, Arabidopsis thaliana 

 

Of the plants already provided, none of the PP4R2L T-DNA plants were found to be 

homozygous. Seeds from both homozygous and heterozygous plants were then surface 

sterilized, screened on medium containing kanamycin and sown on soil to be used for a 

second genotyping. The same procedure was performed on plants from the second generation. 

Homozygous plants were found for the three different Salk lines for the second generation 

(F1), however time did not allow for expression studies to be done on F1 plants. Table 37 

gives an overview of the total amount of homozygous, heterozygous and wild type plants 

found from genotyping. 
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Table 37. Overview of total number of homozygous, heterozygous and wild type plants 

found when genotyping 

Gene  Salk line Generation Number of 

heterozygous 

plants 

Number 

of WT  

plants 

Number of 

homozygous 

plants 

PSY2L Salk 048064 F0 14 3 0 

PSY2L Salk 048064 F1 16 2 1* 

PSY2L Salk 125872 F0 4 4 3 

PSY2L Salk 125872 F1 5 0 1 

PP4R2L Salk 093041 F0 5 9 2 

PP4R2L Salk 093041 F1 5 0 4 

 

Figure 1 shows the result for the first genotyping of plants from seeds harvested from 

homozygous plants. The plan marked with * died before it could produce any seeds (Figure 6, 

7 and 9). 

Below follows the results of genotyping of PSY2L Salk 048064 and PSY2L Salk 125872 

(Figure 12).  Given that there are 15 wells at the top lane and 20 wells at the bottom lane, the 

result can be tricky to read. Two of the plants that believed to be homozygotes (shown by 

arrows in figure 12, orange arrow connecting A and B from Salk 048046, and blue arrow 

connecting A and B from Salk 125872,) were used for expression studies.  

 

 

Figure 12. Agarose gel electrophoresis of amplified T-DNA (PSY2L Salk 048064 and PSY2L Salk 125872 ) and wild type DNA. 
Top lane (Gel A) shows amplified T-DNA while the bottom lane (Gel B) shows amplified wild type DNA. The wells with plant 
material used for cDNA production are indicated with a red arrow for Salk 048064 and a blue arrow for Salk 125872. The 
arrows are connecting wells with plant material from the same plant. Well content is given in table 38. 

 

 

     A 
600-800 bp 
 T-DNA  

     B 
800bp 
 WT 
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Table 38. Overview of content of each well from figure 12 

 Hyperladder is denoted HL, the Salk lines are given by the last two numbers, 64-1 meaning 

plant 1 for Salk line 048064 and 72-1 meaning plant 1 for Salk line 125872, etc. Negative 

control is denoted N, and empty wells are denoted E.    

Top H

L 

64

-1 

64

-2 

64

-3 

64

-4 

64

-5 

W

T 

N 72

-1 

72

-2 

72

-3 

72

-4 

72

-5 

W

T 

N E E E E 

Botto

m 

H

L 

64

-1 

64

-2 

64

-3 

64

-4 

64

-5 

W

T 

N 72

-1 

72

-2 

72

-3 

72

-4 

72

-5 

W

T 

N N N N N 

 

A follow up of the genotyping showed that the believed homozygous plant for Salk line 

048064 (Figure 12, red arrow) was heterozygous for the gene (Figure 13, red arrow) as well 

as confirmed that the homozygous plant for Salk line 72 (Figure 12, blue arrow) was 

homozygous (Figure 14, blue arrow). 

 

 

Figure 13.  Gel electrophoresis from genotyping of PSY2L Salk 048064. Plant material from the believed homozygous 
individual indicated by the orange arrow in figure 12 was loaded in well 2, and displays clear bands for both the T-DNA and 
the wild type DNA (indicated with a red arrow). Plant material from well 3 and 5 could be from homozygous plants. Top lane 
shows PCR product where primers designed to amplify T-DNA was used and bottom lane contains PCR product where 
primers designed to amplify wild type DNA was used. Wild type material was used for well 8, and hyperladder was used in 
well1.  

 

 

A  

400-600 bp 

T-DNA 

B 

800 bp 

WT 
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Figure 14. Gel electrophoresis from second genotyping for PSY2L Salk 125872. Top lane shows PCR product where primers 
designed to amplify T-DNA was used and bottom lane contains PCR product where primers designed to amplify wild type 
DNA was used. Wild type material was used for well 8, and hyperladder was used in well 1.The top lane has hyperladder in 
both wells 1 and 2 as well as PCR product from plant 1 due to a loading error. The homozygous plants from figure 12 is 
retested in well 2, shown by a blue arrow.  

There are clear bands with the correct size for the T-DNA for all plant material tested, wild 

type excluded. The bands shown in the bottom lane of figure 14 are not of the correct wild 

type size, so the plants are believed to be homozygotes despite the presence of these bands. 

The specificity of the primers used to amplify T-DNA for Salk line 125872 could be 

questioned. Due to the presence of these ghost bands in some wells but not all, contamination 

of any chemicals used is not in question. A negative control could be preferable to add.  

Figure 15 shows one result from the genotyping of PP4R2L Salk 093041 mutant plants 

A 
600-800 bp 

T-DNA 

B 
800 bp WT 
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Figure 15.  Gel electrophoresis of genotyping of PP4R2L Salk 093041. Samples to detect T-DNA were loaded in the top lane 
and samples to detect WT DNA was loaded in the bottom lane. Two believed homozygous individuals were found shown by 
the blue arrows. 

The genotyping had to be performed multiple times on the same plants due to some 

contradictory results. A negative control was added for many of the attempts, but these proved 

to be positive some times and negative other times. Any genotyping results obtained with 

bands showing up for the negative control were retested at a later time to ensure its validity.  

  

3.4 Molecular cloning, and localization of fusion-proteins 

 

The molecular cloning attempts resulted in the production of fusion-proteins PP4-2-EYFP, 

PP4R2L-EYFP and EYFP-PP4R2L. The EYFP-PP4-2 fusion-protein was already available in 

the lab, produced by Dr. Amr Kataya.  

 

3.4.1 Colony PCR and plasmid check for PP4-2, PP4R2L and PSY2L 
 

Agarose gel electrophoresis results of one colony PCR check for PSY2L with vector pCAT-

EYFP is shown in figure 16, PSY2L with vector pCAT-DECR-EYFP is shown in figure 17, 

PP4R2L with vector pCAT-DECR-EYFP is shown in figure 19, PP4R2L with vector pCAT-

EYFP is shown in figure 20, and PP4-2 with vector pCAT-DECR-EYFP is shown in figure 

22. Figure 16 shows no positive colonies. 

 

A 
T-DNA 
600 bp 

B 
WT DNA 
800 bp 
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Figure 16. Agarose gel electrophoresis results of colony PCR of PSY2L with vector pCAT-EYFP, no positive colonies found. 
Vector specific primers were used. The higher of the two bands is believed to be remains of the vector. The lower of the two 
bands is though to be primer-dimers. 

Colony PCR of PSY2Lwith vector pCAT-DECR-EYFP showed one positive colony (Figure 

17). 

 

Figure 17. Agarose gel electrophoresis results of colony PCR of PSY2L with vector pCAT-DECR-EYFP, one believed positive 
colony found, colony 38 circled in red.  

After positive colonies were found, plasmid isolation was performed, and a small amount of 

the plasmid was digested using the corresponding restriction enzymes. The digestion was then 

run on gel to make sure the plasmid contained the insert. Digestion of pCAT-DECR-EYFP 

Insert 

 2500-3000 bp 
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with insert PSY2L is shown in figure 18, two clear bands are visible where the plasmid has 

been cut correctly. 

  

Figure 18. Agarose gel electrophoresis of plasmid digestion, PSY2L with vector pCAT-DECR-EYFP (figure 13). Well 3 contains 
uncut plasmid and well 5 contains digested plasmid and insert. 

Colony PCR check of PP4R2L with vector pCAT-DECR-EYFP is shown in figure 19, where 

two colonies were thought to be positive. Plasmid check of these two, plus an additional 

plasmid from a believed positive colony found at a later time, is shown in figure 23. 

 

Figure 19.  Agarose gel electrophoresis of colony PCR for PP4R2L with vector pCAT-DECR-EYFP. Two believed positive results 
found, colonies 24 and 28, both circled in red. 

Figure 20 shows results from colony PCR of PP4R2L with vector pCAT-EYFP. Positive 

colonies were found as described in the figure text. 

Plasmid: 4000 bp 

Insert: 2500-3000 bp 

1500 bp 
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Figure 20. Agarose gel electrophoresis of Colony PCR for PP4R2L with vector pCAT-EYFP. Insert specific primers used. Positive 
results for colonies 2, 4, 5 and 9. Negative control yielded positive results. The plasmid was isolated from the colonies, cut 
with restriction enzymes and run again on another gel. 

Plasmid check of the believed positive colonies shown in figure 20 was performed and results 

are displayed in figure 21. Three of the four plasmids from believed positive colonies were 

cut correctly. 

 

Figure 21. Agarose gel electrophoresis of plasmid digestion from the positive colonies from figure 20, PP4R2L with vector 
pCAT-EYFP. Colonies 2, 6 and 10 gave rise to one band at the insert size and one band at the vector size. The smears visible 
for top wells 2, 5 and bottom wells 2 are uncut plasmids with insert. 

Insert  

(ca 800 bp) 

Insert (800 bp) 

Vector 

(4500 bp) 

Vector 

(4500 bp) 

Insert (800 bp) 



40 
 

Results from colony PCR of PP4-2 with vector pCAT-DECR-EYFP is shown in figure 22. 

One colony was believed to be positive for the plasmid with insert, however on closer 

inspection of the plasmid (digestion with restriction enzymes) that assumption did not appear 

to hold true (figure 23). 

 

Figure 22. Agarose gel electrophoresis for colony PCR of PP4-2 with vector pCAT-DECR-EYFP. One positive, colony 8, circled in 
red. Imaging from the correct UV device was impossible due to the mechanical errors. 

Digestion of plasmids from believed positive colonies for PP4-2 with vector pCAT-DECR-

EYFP (Figure 22), PSY2L with vector pCAT-DECR-EYFP (Figure 17) and PP4R2L with 

vector pCAT-EYFP (Figure 19) is shown in figure 23. 

 

Figure 23. Gel electrophoresis of plasmid digestion for PP4-2, PSY2L and PP4R2L. Correct digestion can be observed for PSY2L 
with vector pCAT-DECR-EYFP as well as for the tree samples containing PP4R2L with the pCAT-EYFP vector. The sample 
containing PP4-2 was not digested, indicating that the plasmid did not contain the insert. 

PP4-2 
DECR 

PSY2L 
DECR 

PP4R2L 
pCAT-EYFP 

1500 bp 

Vector (4000-

5000 bp) 
Insert (2500 bp) 

Insert (800 bp) 
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A new colony PCR check of PP4-2 was performed, and one positive colony was found. 

Digestion of the isolated plasmid from this colony is shown in figure 24.  

 

Figure 24. Gel electrophoresis of plasmid digestion for PP4-2 with vector pCAT-DECR-EYFP. Uncut plasmid was loaded in well 
2, and digested plasmid was loaded in well 3. Well 3 shows two clear bands, indicative of digestion having occurred. Imaging 
from the correct UV device was impossible due to the mechanical errors. 

Cloning of PP4R2L into the vector pCAT-EYFP yielded three positive results after being sent 

to sequencing. PP4-2 displayed one mutation after sequencing, due to time restrictions this 

sample was still used for localization studies even though a mutation was present.  

No positive colonies were found for the PSY2L with pCAT-EYFP or the PSY2L with 

pWEN25 plasmids. One positive colony was found for the PSY2L pCAT-DECR-EYFP 

plasmid. This plasmid proved to contain a stop codon at the wrong location due to an error 

occurring when ordering the primer being used (Table 39, the plasmid with the wrongfully 

placed stop codon is marked in blue). 

 

Table 39. Overview of cloning results for genes; PP4-2, PP4R2L and PSY2L 

 

Gene Vector Nr of confirmed 

positive colonies 

(after digestion 

of plasmid) 

Nr of samples 

sent to 

sequencing 

Nr of 

positive 

samples 

confirmed 

by 

sequencing 

PP4-2 pCAT-DECR-

EYFP 

1 1 0 

PSY2L pCAT-EYFP 0 0 0 

PSY2L pWEN25 0 0 0 

PSY2L pCAT-DECR-

EYFP 

1 1 1 

PP4R2L pCAT-EYFP 3 3 3 

PP4R2L pCAT-DECR-

EYFP 

2 2 2 

 
 

Vector 
(4000-5000 bp) 

Insert (600 bp) 
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Due to the low number of positive colonies found for the PSY2L gene (Table 37), multiple 

ligation attempts were made for ligation of this gene into the vectors where the Vector:insert 

ratio was altered. This was done in an attempt to find the optimal ratio for this insert to vector 

combination. Below follows an overview of the number of colonies tested and the number of 

positive colonies found for each gene. The table also gives an overview of the ratios used for 

each cloning attempt (Table 40). 

 

Table 40. Overview of number of colonies tested by colony PCR to find positive colonies 

(colonies from successful cloning) 

 

Gene Vector Vector: insert 

ratio 

Nr of colonies 

tested 

Nr of positive 

colonies before 

sequencing 

PP4-2 pCAT-DECR-

EYFP 

1:6 112 1 

PSY2L pCAT-EYFP 1:8 107 0 

PSY2L pWEN25 1:8 184 0 

PSY2L pCAT-DECR-

EYFP 

1:8 60 1* 

PSY2L pCAT-DECR-

EYFP 

1:6 33 0 

PSY2L pCAT-DECR-

EYFP 

1:3 66 0 

PP4R2L pCAT-EYFP 1:6 9 3 

PP4R2L pCAT-DECR-

EYFP 

1:6 67 2 

 

Some problems were encountered when cloning the PSY2L gene. The high fidelity PCR 

performed on this large gene yielded a smear in all occasions (Figure 25). The resulting 

concentration was also somewhat lower than that of the smaller genes; PSY2L concentration 

being in the 27-44 range, whereas PP4R2L was in the 67-206 and PP4-2 had a range between 

34-65. This low yield is thought to be due to the large size of PSY2L, being larger than 2600 

bp. This size can also pose some problems i.r.t. the actual sequencing as the lab performing 

the sequencing has a limit of 1000 bp. A primer that binds in the middle of the large PSY2L 
gene was prepared for this particular instance.  
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Figure 25.  Agarose gel electrophoresis of PSY2L gene to be used for cloning. A smear is evident for all four wells, well 1 
containing hyperladder with gel-red. Wells 2 and 3 containing 3 µl sample, well 4 is empty and wells 5 and 6 contains 15 µl 
sample. The lighting is reduced significantly to improve the quality of the image. 

 
3.4.2 Cellular localization predictions using software 

 

Today many software programs exists that can predict the subcellular localization of proteins. 

This prediction can give an indication as to where the protein might be located, but empirical 

evidence is needed to be able to conclude with more certainty where the actual localization 

the protein is. Subcellular localization predicitons for PP4-2, PP4R2L and PSY2L from the 

following software has been added to the table below; SubLoc v1.0, CELLO, BaCeLo , Euk-

mPLoc 2.0 and SUBA (Table 41).  

 

Table 41. Overview of localization predictions performed using software for PP4-2, 

PP4R2L and PSY2L 

Gene Locus SubLoc 

v1.0 

CELLO BaCeLo Euk-mPLoc 

2.0 

SUBA 

PP4-2 AT5G55260 Cytoplasmic Cytoplasmic Nuclear Cytoplasmic 

nuclear 

mitochondrial 

Cytoplasmic 

ER 

Golgi  

Nuclear 

mitochondrial 

extracellular 

PP4R2L AT5G17070 Nuclear Cytoplasmic Nuclear Nuclear Cytoplasmic 

mitochondrial  

nuclear 

PSY2L AT3G06670 Nuclear Cytoplasmic Nuclear Nuclear Cytoplasmic 

mitochondrial 

nuclear 

 

 

 

 

 

 

Smear at 

2000 bp 
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3.4.3 Microscopy, protein localization results 

 

Microscopy was only performed once for this study. The PP4-2 fusion-proteins both 

displayed aggregation in the cells. The aggregation was prominent enough to lead to pixel 

saturation for samples analysed after one day of incubation as well as after two days. The 

fusion-proteins seem to be widespread throughout the cells, giving the impression of PP4-2 

being a cytosolic protein (Figures 26, 27, 28 and 29). The PP4R2L fusion-proteins do not 

display any aggregation in the cell. They do, in similarity to PP4-2, appear cytosolic due to 

the proteins being distributed evenly along the inside of the cell (Figures 30, 31, 32 and 33).   
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3.4.3.1 PP4-2-EYFP fusion-protein localization 

Figures 26 and 27 show microscopy results for the PP4-2-EYFP fusion-protein. Figure 26 was 

taken after one day of incubation and figure 27 was taken after two days of incubation. Both 

samples were taken from the same plant material. Aggregation of the protein can be seen in 

both samples, but the signal is stronger after a two day incubation period. 

 

 

Figure 26. Microscopy of the fusion-protein PP4-2-EYFP in protoplasts taken after one day of incubation. Aggregation of the 
protein is evident as saturated areas of green. The plastids are visible in red. 

 

Figure 27. Microscopy of the PP4-2EYFP fusion-protein in protoplasts taken after two days of incubation. 
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3.4.3.2 EYFP-PP4-2 fusion-protein localization 

Results from localization study of fusion-protein EYFP-PP4-2 follows in figure 28 and 29. 

Figure 28 shows the results from one day incubation, giving the impression of some cytosolic 

activity and some aggregation, and figure 29 shows results after incubating the same sample 

for two days. Figure 29 displays strong aggregation of the protein.  

 

Figure 28. Microscopy of the fusion-protein EYFP-PP4-2 in protoplasts taken after one day of incubation. The fusion-protein 
displays aggregation shown by the bright green spot. 

 

Figure 29. Microscopy of EYFP-PP4-2 fusion-protein in protoplasts taken after two days of incubation. Aggregation of the 
protein is more evident for the second day than the first in this instance. 
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3.4.3.3 PP4R2L-EYFP fusion-protein localization 

Localization of fusion-protein PP4R2L-EYFP. Figure 30 shows believed cytosolic 

distribution of the protein after one day of incubation. Figure 31 displays a stronger signal 

after two days of incubation, also cytosolic in nature. No aggregation is seen for this fusion 

protein. 

 

Figure 30. Microscopy of the fusion-protein, PP4R2L-EYFP, in protoplasts taken after one day of incubation. No protein-
aggregation is seen for this fusion-protein. It appears widespread throughout the cell. 

 

Figure 31. Microscopy of PP4R2L-EYFP fusion-protein after two days of incubation. The protein is more abundant after 
incubating for two days, as was expected. It still displays a cytosolic localization. 
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3.4.3.4 EYFP-PP4R2L fusion-protein localization 

Believed cytosolic localization of fusion-protein EYFP-PP4R2L can be seen in figure 32 and 

33. The signal from figure 33 is stronger, which is to be expected after a two-day incubation 

period. Similar to the PP4R2L-EYFP fusion-protein, the EYFP-PP4R2L fusion-protein does 

not display any aggregation in the cell. 

 

Figure 32. Microscopy of the EYFP-PP4R2L fusion-protein in protoplasts. Taken after incubation for one day. The regulatory 
protein displays cytosolic localization, the dark area at the bottom is believed to be a vacuole. 

 

Figure 33. Microscopy of the EYFP-PP4R2L fusion-protein in protoplasts taken after a two-day incubation period. The 
regulatory protein does not display any aggregation, even after two days of incubation. 
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3.5 PSY2L and PP4R2L, a study of protein expression in T-DNA plants 
 

The heterozygous PSY2L Salk 048064 mutant plant appear to have about the same amount of 

RNA as the wild type, and the homozygous PSY2L Salk 125872 mutant sample appears to 

have less RNA (Figures 34 and 35).  

 

Figure 34. Agarose gel electrophoresis of product of PCR performed after production of cDNA. The gel contains samples run 
at 30 cycles. Top lane: Well 1-hyperladder, well 2-empty, well 3-Wild type 1 1 µl, well 4-Wild type 2 1 µl, well 5-Salk 048064  
1 µl, well 6-Salk 125872 1 µ, well 7-empty, well 8-100 bp ladder. Bottom lane: Well 1-hyperladder, well 2-empty, well 3-Wild 
type1 3 µl, well 4-Wild type 2 3 µl, well 5-Salk 048064 3 µl, well 6-salk 125872 3 µl, well 7-empty, well 8-100 bp ladder. 

The bottom wells of figure 34 displays saturation for the bands. This indicates that 3µl at 30 

cycles can not be used to correctly determine the amount of cDNA present. Below follows the 

results obtained when using plant material from the same plants with only 25 cycles for the 

PCR (Figure 35).  

1µl cDNA 

400 bp 

 

3µl cDNA 

400 bp 
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Figure 35. Agarose gel electrophoresis of product of PCR performed after production of cDNA. The gel contains samples run 
at 25 cycles. Top lane: Well 1-hyperladder, well 2-empty, well 3-Wild type 1 1 µl, well 4-Wild type 2 1 µl, well 5-Salk 048064  
1 µl, well 6-Salk 125872 1 µ, well 7-empty, well 8-100 bp ladder. Bottom lane: Well 1-hyperladder, well 2-empty, well 3-Wild 
type1 3 µl, well 4-Wild type 2 3 µl, well 5-Salk 048064 3 µl, well 6-salk 125872 3 µl, well 7-empty, well 8-100 bp ladder. 

The bands shown in figure 35 are very weak, however the trend seen in figure 34 remains true 

also here. The fourth band on the top lane, belonging to the homozygous PSY2L Salk 125872 

plant, seems weaker than the rest. For the bottom lane, all four bands seem to be of somewhat 

equal intensity.  

 

3.6 Screening results  

 
3.6.1 T-DNA plants 

 

Screening results of PP4R2L Salk 093041 follows below in table 42. The seeds were sown on 

half strength MS medium with the corresponding screening agent, Kanamycin for pER10 and 

BASTA for pBA002. 

 

 

 

 

 

 

cDNA band 

400 bp 

 

cDNA band 

400 bp 
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Table 42. Overview of screening results for seeds from heterozygous plants of PP4R2L 

Salk 093041 for a total of eight plates 

Plant nr and 

plate nr. 

Total 

number of 

green plants 

Total 

number of 

yellow plants 

Number of 

seeds sown 

Number of 

surviving 

plants 

(fraction) 

Number 

of 

surviving 

plants 

(%) 

Plant 3, dish 

1 

29 20 49 29/49 59% 

Plant3, dish 2 34 14 49 34/49 69% 

Plant 3, dish 

3 

37 15 52 37/52 71% 

Total for 

plant 3 

100 49 148 100/148 67% 

Plant 7, dish 

1 

38 9 47 38/47 80% 

Plant 7, dish 

2 

32 15 48 32/48 66% 

Plant 7, dish 

3 

40 10 50 40/50 80% 

Total for 

plant 7 

110 34 145 110/145 75% 

Plant 3, 

positive 

control-no 

kanamycin 

40 0 40 40/40 100% 

Plant 7, 

positive 

control- no 

kakamycin 

40 0 40 40/40 100% 

 

Results obtained form the above experiment indicates the presence of homozygous 

individuals from the offspring of plant 7, whereas the percentage obtained from plant 3 

indicates the presence of heterozygotes ( 3/4, 75% survival rate being indicative of 

homozygous and heterozygous plants being present in the offspring, whereas 2/3, 66% 

survival rate is theorized to indicate only heterozygous plants present in the offspring). The 

positive control displayed normal growth for all seeds sown on medium containing no 

antibiotic. A second experiment was conducted to check if the above results were 

reproducible (results in table 43). The second time six plates were sown for each plant, one 

positive control with no antibiotic present and five screening plates with antibiotic in the 

medium, giving a total of 12 plates. The results obtained from the second screening did not 

reflect the results obtained from the first screening. 
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Table 43. Overview of screening results for seeds from heterozygous plants of PP4R2L 

Salk 093041 for a total of 12 plates 

Plant nr and 

plate nr. 

Total 

number of 

green plants 

Total 

number of 

yellow plants 

Number of 

seeds sown 

Number 

of 

surviving 

plants 

(fraction) 

Number 

of 

surviving 

plants 

(%) 

Plant 3, dish 1 43 6 49 43/49 87% 

Plant3, dish 2 43 6 49 43/49 87% 

Plant 3, dish 3 36 13 49 36/49 73% 

Plant 3, dish 4 37 11 48 37/48 77% 

Plant 3, dish 5 43 6 49 43/49 87% 

Total for plant 

3 

202 42 244 202/244 82% 

Plant 7, dish 1 37 6 43 37/43 86% 

Plant 7, dish 2 43 4 47 43/47 91% 

Plant 7, dish 3 37 11 48 37/48 77% 

Plant 7, dish 4 41 7 48 41/48 88% 

Plant 7, dish 5 38 8 46 38/46 84% 

Total for plant 

7 

196 36 232 196/232 84% 

Plant 3, 

positive 

control-no 

kanamycin 

40 0 40 40/40 100% 

Plant 7, 

positive 

control-no 

kanamycin 

40 0 40 40/40 100% 

 

The screening worked efficiently as shown in figure 36, 37 and 38. All wild type plants 

showed impaired growth and whitening of leaves, whereas only a fraction of the mutant plants 

displayed the same.  
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Figure 36.  Screening of heterozygous PP4R2L seeds from plant 7. Seeds from the wild type are visible on the left, evidently 
not surviving on medium containing kanamycin. Green plants are marked with a black marker. 
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Figure 37.  Screening of heterozygous PP4R2L seeds from plant 3. Seeds from the wild type are visible on the left. Green 
plants are also here marked with a black marker on the backside of the plate. 

 

 
Figure 38. This figure shows an example of one seed batch with all surviving seeds, one seed batch with a fraction of 
surviving seeds and one negatice control (wild type seeds on screening medium). 

3.6.2 MicroRNA plants 

 

Screening of seeds obtained from the first generation (f1, the original plants being regarded as 

f0) yielded no seed batches where every seed survived, one plant giving rise to one batch of 

seeds. Screening of seed batches from the second generation (f2) gave the results shown in 
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table 2 and 3. Expression studies for any plants from a seed batch with only surviving plants 

(f2) was not possible to do in the time frame of this thesis, due to the plants still being too 

young at the time the thesis was being finished. The mutant plants needed more time to 

produce seeds than their wild type counterparts, as mentioned earlier. Below follows table 44, 

giving an overview of the second-generation seed screening.  

Table 44. Overview of the amount of seed batches (one batch harvested from one plant) 

used when screening for surviving plants (f2) 

Micro RNA Vector Nr. of seed batches 

with some surviving 

plants. 

Nr. of seed 

batches with all 

surviving plants. 

1-2 pER10 14 1 

2-1 pER10 5 6 

2-2 pER10 9 9 

NA (vector only) pER10 7 0 

1-1 pBA002 3 2 

1-2 pBA002 2 3 

2-1 pBA002 3 4 

2-2 pBA002 11 6 

NA (Vector only) pBA002 0 3 

 

Phenotype and expression studies for plants from seed batches with all surviving plants could 

not be done within the time frame of this thesis.  
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4. DISCUSSION AND OUTLOOK 
 

4.1 T-DNA plants 

 

Some larger differences were expected to become evident for both phenotype and expression 

studies in regards to the mutants versus the wild type. More so for the PSY2L Salk 048064 

and the PP4R2L Salk 093041 mutant due to the inserts being located within the expressed 

regions of the gene. The survival of the homozygous mutant plants for two of the Salk lines 

can indicate that T-DNA insertion at those two locations for this study, PSY2L Salk 125872 

and PP4R2L Salk 093041 does not prove fatal to the plant in question. It is instead thought to 

merely impair the growth of the plants. The mechanisms behind this impaired growth remains 

unclear. Since the only confirmed homozygous plant for PSY2L Salk 048064 died without 

producing any seeds, it is possible that the T-DNA insert at this location could be fatal. For 

this Salk line, the insert was in exon 3 of a total of 25 exons. More work needs to be done to 

try to breed forth a surviving individual confirmed to be a homozygous individual for this 

particular line. If it is indeed impossible to procure a homozygous individual for this line, the 

logical conclusion remains that it is important for exon 3 to be intact for the regulator to work 

properly. With only one individual to refer to, no real conclusion can be drawn at this time. 

Repetition of this study where no homozygous plants for this line were to be found can 

confirm the lethality of an insertion at exon 3 for PSY2L. Seeing a similar phenotype for the 

mutants of all Salk lines, shows that incorrect regulation of PP4-2 impairs the plant’s growth, 

and is less than ideal for the plant. The expression of PP4-2 for PSY2L Salk line 125872 was 

slightly lower than that of the wild type, meaning that the insert at that particular location 

(downstream of translation) impairs mRNA production to some degree. Due to this being a 

homozygous plant, no wild type allele was present to make up for the decrease in protein 

production. The decrease of mRNA production introduced by the T-DNA insert does not 

appear to be very substantial when looking at the results of the expression study. A repetition 

of the experiment is needed to be able to further strengthen this theory and to be able to say 

anything about the effect on expression for the other two Salk lines. The difficulty in finding a 

homozygous plant for PSY2L Salk 048064 could indicate that the T-DNA insert is more 

damaging to the plant for that location (exon 3) than for the PSY2L Salk 125872 location 

(downstream of translation). However, it could also be a random effect due to not all seeds 

from a mother plant being sown on soil. The possibility that there are homozygous plants 

within the remaining seeds, but none of them were sown is present. Or, as aforementioned; 

the insert at exon 3 could prove to be fatal to a homozygous plant. More research is needed to 

be able to say something about this theoretical fatality, whether it can occur early or later in 

the plants lifecycle. Time did not allow for expression studies to be done upon the PP4R2L 

Salk 093041 T-DNA mutants. Checking the expression of PP4-2, and not the expression of 

the regulators as was done in this thesis, in the same T-DNA plants can also be done at a later 

time. Seeing if the disruption of the regulators cause a higher expression for PP4-2 than what 

is normally seen for the wild type could give some useful information, and is a possible way 

forward in regards to this project.   

When screening plants obtained from a homozygous plant (confirmed by genotyping), it was 

commonly found that not all plants survived on the screening medium. This low number of 

surviving individuals after screening these plants obtained from a homozygous individual can 

indicate that there could have been some cross contamination occurring during the harvesting 
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procedure. After being harvested from the mother plant, the seeds were left in open containers 

to dry for 24 h. This period is thought to be a window for possible cross contamination. Cross 

contamination could also have occurred during the actual harvesting process, however, this is 

not believed to happen at such a high rate as the one observed here. 

 4.2 AmiRNA plants 

 

No significant differences were observed when watching the mutant plants growth and 

phenotype in regards to each other. The mutants for both vectors displayed impaired growth 

when compared to the wild type. The inducible pER10 vector mutants were expected to 

appear identical to the wild type plants until the amiRNA production was induced by the plant 

being exposed to estradiol. The fact that these plants displayed impaired growth without being 

exposed to the chemical gave rise to new questions. Is the vector in itself somehow 

responsible for the impaired growth of the plants? Given that the mutant plants were kept in 

the same room and given the same treatment as the wild type plants, when the wild type 

plants displayed normal growth, the idea that the environment was responsible for the 

impaired growth was discarded. The mutant plants were also sown in a similar fashion as the 

wild type; an equal amount of seeds in each pot. Overpopulation and competing for nutrients 

would not be an issue, and was not thought to have an impact on the growth of the mutant 

plants. No significant differences were observed for the mutants bearing only the vectors 

when compared to the mutants with both vector and amiRNA. These results were not as 

expected, as the mutants bearing only vectors should display a phenotype similar to the wild 

type. Observations like the ones stated above gave rise to the idea that the vector in itself 

might have some influence on the plant growth, as mentioned earlier. The two vectors do not 

in theory contain any elements that could cause this effect, however, theory is often tested by 

practice. Further repetitions of the study are needed to decide whether or not the vector might 

impair the growth of the mutant plants, as this study only brought forth two generations of 

mutant plants. Not all seeds were screened and sown on soil, so the road ahead could be to 

check if these results are reproducible before drawing any conclusion. During the 

development of this thesis, time did not allow for any expression studied to be performed on 

these plants, and no attempt was done to induce the inducible plants with estradiol. The 

decreased growth rate of the mutant plants made it impossible to grow forth more than two 

generations of the mutants. Seeds are available for all plants of both generations to continue 

this study. Producing more plant material for expression studies, and study the effects of 

inducing the mutant plants with estradiol could be a step forwards in regards to this project. 

 

4.3 Molecular cloning and localization study 

 

The localization results for PP4-2 and PP4R2L showed that both fusion-proteins for both 

genes was located in the cytosol with PP4-2 aggregating in the cell. 

The aggregation of PP4-2 displayed in this study can be thought to be caused by the protein 

being toxic in large amounts. If the protein did appear to have a detrimental effect in large 

amounts, the cell would benefit from collecting the abundant proteins in vacuoles, to keep 

them away from any cytosolic elements, or in an attempt to have the excess proteins 

destroyed. Such an action would give rise to areas of high protein content as seen in figures 

26, 27, 28 and 29. Due to the regulatory protein, PP4R2L, not being seen in higher amounts at 

certain places in the cell, one could surmise that PP4-2 does not act upon said areas. Due to 

the nature of the localization study, these areas were not identified in the cell. Tagging other 

localizations in the cell along with the proteins to be studied could prove useful for future 

studies. Any conclusion could not be drawn due to the localization study only being 
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performed once. Further studies are needed to be able to say anything with any certainty 

regarding the localization of the fusion-proteins in question. The time allotted for this thesis 

did not allow for further studies on localization for PP4-2 or PP4R2L. These results only give 

a small indication to the localization of the protein. The fact that the results are quite uniform 

gives rise to the thought that they might give an indication comparable to the actual event.  

The results obtained from this localization study can indicate that both PP4-2 and the one 

regulator studied here; PP4R2L, are present in the cytosol at a specific time. Whether they are 

active there throughout the cell cycle, or are transported to different locations at different 

times remains to be examined. Doing localization studies at different times for many more 

protoplasts is ideal to see if the protein is localized at different places at different times. After 

localization studies have been done, studying if the protein does indeed interact with the 

believed regulators would be the next logical step. This can be achieved by protein-protein 

interaction analysis. Protein-protein interaction analysis procedures available today are, 

among others; techniques such as bimolecular fluorescence complementation (proteins 

believed to interact are tagged with one fluorescent tag and one activator tag that will give off 

light if they come in close proximity to each other), protein complex immunoprecipitation 

(protein complexes or interacting proteins are precipitated out of solution using an antibody 

targeting one of the proteins in the complex), label transfer (a label is transferred from one 

protein to the interacting protein) or tandem affinity purification (beads are used to pull the 

protein to be examined out of solution, any interacting protein will be pulled out with it). The 

discrepancy found between the results obtained using subcellular localization prediction 

software and the results from the microscopy, emphasizes the fact that actual biological 

events are difficult to predict given the tools available today. Continuing with the molecular 

cloning for the PSY2L gene can give useful information about the localization of this putative 

regulator for PP4-2, and should be done for future studies.  

 

As it stands now, no definite conclusion can be drawn for any of the three experiments 

performed throughout this thesis. More work is needed, and many more repetitions must be 

performed to be able to confidently say anything with some degree of certainty, in regards to 

the workings of PP4-2 and its regulators in Arabidopsis thaliana.  
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APPENDIX 
 

A1- Overview of Arabidopsis thaliana At3g06670 PSY2L T-DNA insertion lines: Salk 

048064 and Salk 125872 
 

  

A-2 Overview of Arabidopsis thaliana At5g17070 PP4R2L T-DNA insertion line Salk 

093041 

 

 
 

 

Salk 125872 Salk 048064 



B 
 

 

 

 

 

 

 

A-3 Multiple sequence alignment from sequencing, PP4-2-EYFP result; one mutation 
 
3_PP4_2_VF_1_AK93f  ACCATTTACGAACGATAGCCATGGGTATGTCAGACCTAGACAAGCAAATA 

PP4_2               --------------------------ATGTCAGACCTAGACAAGCAAATA 

                                              ************************ 

 

3_PP4_2_VF_1_AK93f  GAGCAGCTTAAACGCTGCGAGGCTTTGAAGGAATCAGAAGTGAAGGCTCT 

PP4_2               GAGCAGCTTAAACGCTGCGAGGCTTTGAAGGAATCAGAAGTGAAGGCTCT 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TTGTCTTAAAGCTATGGAGATTCTAGTTGAAGAGAGCAATGTTCAAAGAG 

PP4_2               TTGTCTTAAAGCTATGGAGATTCTAGTTGAAGAGAGCAATGTTCAAAGAG 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TCGATGCTCCTGCCACTATATGTGGCGACATTCATGGACAGTTCTATGAC 

PP4_2               TCGATGCTCCTGTCACTATATGTGGCGACATTCATGGACAGTTCTATGAC 

                    ************ ************************************* 

 

3_PP4_2_VF_1_AK93f  ATGAAAGAGCTTTTCAAAGTTGGGGGTGATTGCCCTAAGACCAATTATTT 

PP4_2               ATGAAAGAGCTTTTCAAAGTTGGGGGTGATTGCCCTAAGACCAATTATTT 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  GTTTCTTGGAGATTTTGTTGACCGAGGTTTTTATTCGGTTGAGACATTTC 

PP4_2               GTTTCTTGGAGATTTTGTTGACCGAGGTTTTTATTCGGTTGAGACATTTC 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TACTTCTTCTAGCTCTCAAGGTTAGATATCCAGACCGTATAACTCTCATT 

PP4_2               TACTTCTTCTAGCTCTCAAGGTTAGATATCCAGACCGTATAACTCTCATT 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  AGAGGGAACCACGAGAGCCGGCAGATTACGCAGGTATATGGATTTTATGA 

PP4_2               AGAGGGAACCACGAGAGCCGGCAGATTACGCAGGTATATGGATTTTATGA 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TGAGTGTCTGCGTAAATATGGCTCTGTAAATGTTTGGAGATACTGCACAG 

PP4_2               TGAGTGTCTGCGTAAATATGGCTCTGTAAATGTTTGGAGATACTGCACAG 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  ATATCTTTGACTACTTGAGTCTTTCAGCTCTTGTCGAGAACAAGATATTT 

PP4_2               ATATCTTTGACTACTTGAGTCTTTCAGCTCTTGTCGAGAACAAGATATTT 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TGTGTTCATGGAGGTCTCTCTCCAGCTATTATGACTCTAGACCAGATCAG 

PP4_2               TGTGTTCATGGAGGTCTCTCTCCAGCTATTATGACTCTAGACCAGATCAG 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  GGCTATTGATCGAAAGCAAGAAGTACCACATGATGGTGCTATGTGTGATC 

PP4_2               GGCTATTGATCGAAAGCAAGAAGTACCACATGATGGTGCTATGTGTGATC 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  TTTTATGGTCTGATCCAGAAGATATTGTCGATGGTTGGGGATTGAGTCCC 

PP4_2               TTTTATGGTCTGATCCAGAAGATATTGTCGATGGTTGGGGATTGAGTCCC 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  CGTGGTGCCGGATTCCTTTTCGGCGGCAGTGTTGTTACGTCTTTTAACCA 

PP4_2               CGTGGTGCCGGATTCCTTTTCGGCGGCAGTGTTGTTACGTCTTTTAACCA 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  CTCAAACAACATTGATTACATATGTCGAGCTCATCAGCTAGTGATGGAAG 



C 
 

PP4_2               CTCAAACAACATTGATTACATATGTCGAGCTCATCAGCTAGTGATGGAAG 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  GTTACAAATGGATGTTCAATAGCCAGATAGTCACTGTTTGGTCTGCCCCA 

PP4_2               GTTACAAATGGATGTTCAATAGCCAGATAGTCACTGTTTGGTCTGCCCCA 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  AATTACTGTTATAGATGCGGTAATGTAGCTGCAATTCTAGAGCTCGATGA 

PP4_2               AATTACTGTTATAGATGCGGTAATGTAGCTGCAATTCTAGAGCTCGATGA 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  GAATCTAAACAAAGAGTTTCGTGTCTTCGATGCAGCCCCACAAGAATCGA 

PP4_2               GAATCTAAACAAAGAGTTTCGTGTCTTCGATGCAGCCCCACAAGAATCGA 

                    ************************************************** 

 

3_PP4_2_VF_1_AK93f  GAGGAGCTCTAGCCAAGAAACCTGCACCTGATTATTTCCTGGCGGCCGCT 

PP4_2               GAGGAGCTCTAGCCAAGAAACCTGCACCTGATTATTTCCTG--------- 

                    *****************************************          

 

3_PP4_2_VF_1_AK93f  GCCGCGGCAATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCC 

PP4_2               -------------------------------------------------- 

                                                                       

 

3_PP4_2_VF_1_AK93f  CATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCMCAAGTTCAGCGTGT 

PP4_2               -----------------------------------------------T-- 

                                                                   *   

 

3_PP4_2_VF_1_AK93f  CCGGCRAGGGCAAGGGCGATGCCMCCTACGGCAAGYTGACCCTGAAATTC 

PP4_2               -------------------------------------------------- 

                                                                       

 

3_PP4_2_VF_1_AK93f  AT 

PP4_2               GA 

 

A-4 Multiple sequence alignment from sequencing, PP4R2L2-EYFP; positive result 
 

 

7_PP4R2L_DECR_57_AK93  AATTTTCACCATTTACGAACGATAGCCATGGGTATGGAGAATCCGTCATC 

PP4R2L                 ---------------------------------ATGGAGAATCCGTCATC 

                                                        ***************** 

 

7_PP4R2L_DECR_57_AK93  ATCGGAAACTTCCGAGATTTCCTCCGTCGTTCATCCCAATGACGGCGTTC 

PP4R2L                 ATCGGAAACTTCCGAGATTTCCTCCGTCGTTCATCCCAATGACGGCGTTC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  ATCCCAATGACGGCGTTCATCCCAATGACGGCGTTCAACGCCAGGATCAC 

PP4R2L                 ATCCCAATGACGGCGTTCATCCCAATGACGGCGTTCAACGCCAGGATCAC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  GCCGTCCTTCCCGAAGTTCTTGAGCATCCTGGAGCTGAGCAGATAGCAGA 

PP4R2L                 GCCGTCCTTCCCGAAGTTCTTGAGCATCCTGGAGCTGAGCAGATAGCAGA 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  TATGTCTGAGGAAGAAGTAAAGCGCACATTAGAAGCTGTAGCATCTACTG 

PP4R2L                 TATGTCTGAGGAAGAAGTAAAGCGCACATTAGAAGCTGTAGCATCTACTG 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  GGAAGTTCTGGCAGGACTGGGAGATACTAAAGGGAACGCTATCGTACTGG 

PP4R2L                 GGAAGTTCTGGCAGGACTGGGAGATACTAAAGGGAACGCTATCGTACTGG 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  TTGAAGAAGGTTCTATCGGAATATTCTGAGGCAAAAATGACGGATGAGCA 

PP4R2L                 TTGAAGAAGGTTCTATCGGAATATTCTGAGGCAAAAATGACGGATGAGCA 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  ACAAAAGGAAGCTCTTGGAGAACCATATTCAGAGCTGGTTAGTCGATTGG 

PP4R2L                 ACAAAAGGAAGCTCTTGGAGAACCATATTCAGAGCTGGTTAGTCGATTGG 

                       ************************************************** 



D 
 

 

7_PP4R2L_DECR_57_AK93  ATGAAGCCCTTCTTAGATTCGATGATGGACCTCCATTTACATTGCAGAGA 

PP4R2L                 ATGAAGCCCTTCTTAGATTCGATGATGGACCTCCATTTACATTGCAGAGA 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  CTCTGTGAGATCCTTTTGGCTGCAAGGAGCATCTACCCAAAGCTCTCAAA 

PP4R2L                 CTCTGTGAGATCCTTTTGGCTGCAAGGAGCATCTACCCAAAGCTCTCAAA 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  ACTCGCTCTTGCATTAGAAAAGAATCTGTTGGTTACTTCTATGTTAGCCA 

PP4R2L                 ACTCGCTCTTGCATTAGAAAAGAATCTGTTGGTTACTTCTATGTTAGCCA 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  TCAGTACAGAGCCACAATCACAAACCACTGAGGATCCAAACACAGCAACC 

PP4R2L                 TCAGTACAGAGCCACAATCACAAACCACTGAGGATCCAAACACAGCAACC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  TCAGAGACAATAACATCTGCTGCAAGTTGCGATCCAAATGTAATTGAGTC 

PP4R2L                 TCAGAGACAATAACATCTGCTGCAAGTTGCGATCCAAATGTAATTGAGTC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  AATGGGAGGCGATAAGGATGAGATAATGACAGAGGTAGAAGAAGCAGATG 

PP4R2L                 AATGGGAGGCGATAAGGATGAGATAATGACAGAGGTAGAAGAAGCAGATG 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  TTGATGACGCAATGACTGTTGACATGGAAACAATCGATGAACCATCAGAG 

PP4R2L                 TTGATGACGCAATGACTGTTGACATGGAAACAATCGATGAACCATCAGAG 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  ACAATGACGACCACGAGTGAGAGTGAGACTCTAAGCGAAAACACTGCTGC 

PP4R2L                 ACAATGACGACCACGAGTGAGAGTGAGACTCTAAGCGAAAACACTGCTGC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  ACAACCATTATCGGATTCAATGGTGGCAGAGGAAGGAGATTCACGGTTGC 

PP4R2L                 ACAACCATTATCGGATTCAATGGTGGCAGAGGAAGGAGATTCACGGTTGC 

                       ************************************************** 

 

7_PP4R2L_DECR_57_AK93  CTACAACGTGTGCCGCGGCCGCTGCCGCGGCAATGGTGAGCAAGGGCGAG 

PP4R2L                 CTACAACGTGTGCC------------------------------------ 

                       **************                                     

 

7_PP4R2L_DECR_57_AK93  GAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGT 

PP4R2L                 -------------------------------------------------- 

                                                                          

 

7_PP4R2L_DECR_57_AK93  AAACGGCCACAAGTTCAGCGTGTCCGGCAAGGGCCAAGGCGATGCCACCT 

PP4R2L                 -------------------------------------------------T 

                                                                        * 

 

7_PP4R2L_DECR_57_AK93  ACGGCAAGCTGACCCTGAAGTTCATCTGCMCCM 

PP4R2L                 AG------------------------------- 

                       *                                 

 

A-5 Multiple sequence alignment from sequencing, EYFP-PP4R2L; positive result 
 
2_Ey_PP4R2_6_EYFP_F  TCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCA 

PP4R2L_CDS           -------------------------------------------------- 

                                                                        

 

2_Ey_PP4R2_6_EYFP_F  TGGACGAGCTGTACAAGGCGGCCGCTATGGAGAATCCGTCATCATCGGAA 

PP4R2L_CDS           --------------------------ATGGAGAATCCGTCATCATCGGAA 

                                               ************************ 

 

2_Ey_PP4R2_6_EYFP_F  ACTTCCGAGATTTCCTCCGTCGTTCATCCCAATGACGGCGTTCATCCCAA 

PP4R2L_CDS           ACTTCCGAGATTTCCTCCGTCGTTCATCCCAATGACGGCGTTCATCCCAA 

                     ************************************************** 

 



E 
 

2_Ey_PP4R2_6_EYFP_F  TGACGGCGTTCATCCCAATGACGGCGTTCAACGCCAGGATCACGCCGTCC 

PP4R2L_CDS           TGACGGCGTTCATCCCAATGACGGCGTTCAACGCCAGGATCACGCCGTCC 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  TTCCCGAAGTTCTTGAGCATCCTGGAGCTGAGCAGATAGCAGATATGTCT 

PP4R2L_CDS           TTCCCGAAGTTCTTGAGCATCCTGGAGCTGAGCAGATAGCAGATATGTCT 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  GAGGAAGAAGTAAAGCGCACATTAGAAGCTGTAGCATCTACTGGGAAGTT 

PP4R2L_CDS           GAGGAAGAAGTAAAGCGCACATTAGAAGCTGTAGCATCTACTGGGAAGTT 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CTGGCAGGACTGGGAGATACTAAAGGGAACGCTATCGTACTGGTTGAAGA 

PP4R2L_CDS           CTGGCAGGACTGGGAGATACTAAAGGGAACGCTATCGTACTGGTTGAAGA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  AGGTTCTATCGGAATATTCTGAGGCAAAAATGACGGATGAGCAACAAAAG 

PP4R2L_CDS           AGGTTCTATCGGAATATTCTGAGGCAAAAATGACGGATGAGCAACAAAAG 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  GAAGCTCTTGGAGAACCATATTCAGAGCTGGTTAGTCGATTGGATGAAGC 

PP4R2L_CDS           GAAGCTCTTGGAGAACCATATTCAGAGCTGGTTAGTCGATTGGATGAAGC 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CCTTCTTAGATTCGATGATGGACCTCCATTTACATTGCAGAGACTCTGTG 

PP4R2L_CDS           CCTTCTTAGATTCGATGATGGACCTCCATTTACATTGCAGAGACTCTGTG 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  AGATCCTTTTGGCTGCAAGGAGCATCTACCCAAAGCTCTCAAAACTCGCT 

PP4R2L_CDS           AGATCCTTTTGGCTGCAAGGAGCATCTACCCAAAGCTCTCAAAACTCGCT 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CTTGCATTAGAAAAGAATCTGTTGGTTACTTCTATGTTAGCCATCAGTAC 

PP4R2L_CDS           CTTGCATTAGAAAAGAATCTGTTGGTTACTTCTATGTTAGCCATCAGTAC 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  AGAGCCACAATCACAAACCACTGAGGATCCAAACACAGCAACCTCAGAGA 

PP4R2L_CDS           AGAGCCACAATCACAAACCACTGAGGATCCAAACACAGCAACCTCAGAGA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CAATAACATCTGCTGCAAGTTGCGATCCAAATGTAATTGAGTCAATGGGA 

PP4R2L_CDS           CAATAACATCTGCTGCAAGTTGCGATCCAAATGTAATTGAGTCAATGGGA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  GGCGATAAGGATGAGATAATGACAGAGGTAGAAGAAGCAGATGTTGATGA 

PP4R2L_CDS           GGCGATAAGGATGAGATAATGACAGAGGTAGAAGAAGCAGATGTTGATGA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CGCAATGACTGTTGACATGGAAACAATCGATGAACCATCAGAGACAATGA 

PP4R2L_CDS           CGCAATGACTGTTGACATGGAAACAATCGATGAACCATCAGAGACAATGA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  CGACCACGAGTGAGAGTGAGACTCTAAGCGAAAACACTGCTGCACAACCA 

PP4R2L_CDS           CGACCACGAGTGAGAGTGAGACTCTAAGCGAAAACACTGCTGCACAACCA 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  TTATCGGATTCAATGGTGGCAGAGGAAGGAGATTCACGGTTGCCTACAAC 

PP4R2L_CDS           TTATCGGATTCAATGGTGGCAGAGGAAGGAGATTCACGGTTGCCTACAAC 

                     ************************************************** 

 

2_Ey_PP4R2_6_EYFP_F  GTGTGCCTAGCCGCGGTCTAGAGTCCGCAAAAATCACCAGTCTCTCTCTA 

PP4R2L_CDS           GTGTGCCT------------------------------------------ 

                     ********                                           

 

2_Ey_PP4R2_6_EYFP_F  CAAATCTATCTCTCTCTATTTTCTCCAGAATAATGTTGTGAGTAGTTCCA 

PP4R2L_CDS           -------------------------------------------------- 

                                                                        

 



F 
 

2_Ey_PP4R2_6_EYFP_F  GATAAGGGAATTAGGGTYCTTATAGGGTTTCGCTCATGTGTTGAGCATAT 

PP4R2L_CDS           -------------------------------------------------- 

                                                                        

 

2_Ey_PP4R2_6_EYFP_F  AAGAACCCTTARGAAGGATTTGGATTTGGAAAATACTTCTATCAATAAAA 

PP4R2L_CDS           -------------------------------------------------- 

                                                                        

 

2_Ey_PP4R2_6_EYFP_F  TTT 

PP4R2L_CDS           -AG 

 

A-6 Multiple sequence alignment from sequencing, PSY2L-EYFP; positive result 

 

Forward primer 
  
1_PSY2L_DECR_35F_AK93  AATTTTCACCATTTACGAACGATAGCCATGGGTATGGGCGCTCCGGAAAA 

PSY2L                  ---------------------------------ATGGGCGCTCCGGAAAA 

                                                        ***************** 

 

1_PSY2L_DECR_35F_AK93  GTCTCAATCTAATACCAATTCGATGCAGAGAGTGAAAGTCTATCATTTGA 

PSY2L                  GTCTCAATCTAATACCAATTCGATGCAGAGAGTGAAAGTCTATCATTTGA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  ATGAAGATGGTAAATGGGATGATCGAGGAACTGGGCACGTAAGCATCGAC 

PSY2L                  ATGAAGATGGTAAATGGGATGATCGAGGAACTGGGCACGTAAGCATCGAC 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  TTTGTGGAGCGATCTGAAGAACTCAGTCTATGTGTAATTGATGAAGAAGA 

PSY2L                  TTTGTGGAGCGATCTGAAGAACTCAGTCTATGTGTAATTGATGAAGAAGA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  TAACGAGACGTTACTTGTTCATCCCATCAACCCTGAGGATATTTACAGGA 

PSY2L                  TAACGAGACGTTACTTGTTCATCCCATCAACCCTGAGGATATTTACAGGA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  AACAAGAAGACACAATAATCTCATGGAGAGACCCAGAGCGCTCAACAGAA 

PSY2L                  AACAAGAAGACACAATAATCTCATGGAGAGACCCAGAGCGCTCAACAGAA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  TTGGCTTTAAGCTTTCAAGAGACTGCAGGGTGCTCTTATGTATGGGATCA 

PSY2L                  TTGGCTTTAAGCTTTCAAGAGACTGCAGGGTGCTCTTATGTATGGGATCA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  AATCTGCACTATGCAACGAAATTTGCATTTCAGCTCTCTAAACAGCGAAA 

PSY2L                  AATCTGCACTATGCAACGAAATTTGCATTTCAGCTCTCTAAACAGCGAAA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  CATTTCACAGCTTGAACAGTGAGTTGAGGGAGCTTCCTGCTGTAGAGCTT 

PSY2L                  CATTTCACAGCTTGAACAGTGAGTTGAGGGAGCTTCCTGCTGTAGAGCTT 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  ACTACTCTTCCCCTAATACTGAAGATTGTTACAGAGAGTGGCATTACAGA 

PSY2L                  ACTACTCTTCCCCTAATACTGAAGATTGTTACAGAGAGTGGCATTACAGA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  TCAGATGCGCCTAACTGAACTTATTTTGAAGGATCATGATTTCTTCCGGA 

PSY2L                  TCAGATGCGCCTAACTGAACTTATTTTGAAGGATCATGATTTCTTCCGGA 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  ATCTGATGGGTGTTTTTAAAATATGCGAGGACTTGGAAAATGTTGATGGC 

PSY2L                  ATCTGATGGGTGTTTTTAAAATATGCGAGGACTTGGAAAATGTTGATGGC 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  CTTCACATGATATTCAACATTGTCAAGGGAATCATTTTGCTTAACAGTTC 

PSY2L                  CTTCACATGATATTCAACATTGTCAAGGGAATCATTTTGCTTAACAGTTC 

                       ************************************************** 



G 
 

 

1_PSY2L_DECR_35F_AK93  TCAGATCTTGGAGAAAATATTTGGAGATGAATTGATTATGGAGATTATCG 

PSY2L                  TCAGATCTTGGAGAAAATATTTGGAGATGAATTGATTATGGAGATTATCG 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  GATGCCTTGAATATGATCCTGGTGTTCCTCACTCTCAGCATCACCGGAAT 

PSY2L                  GATGCCTTGAATATGATCCTGGTGTTCCTCACTCTCAGCATCACCGGAAT 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  TTTCTGAAGGAGCATGTTGTTTTTAAGGAGGCTATACCAATCAAAGATCC 

PSY2L                  TTTCTGAAGGAGCATGTTGTTTTTAAGGAGGCTATACCAATCAAAGATCC 

                       ************************************************** 

 

1_PSY2L_DECR_35F_AK93  CTTAGTCC------------------------------------------ 

PSY2L                  CTTAGTCCTGTCAAAGATACACCAGACGTACAGAATTGGTTACTTGAAGG 

                       ********                                           

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ATGTTGTTTTGGCTAGAGTACTAGATGATGCTATTGTTGCAAACTTGAAT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TCTGTAATCCATGCGAACAATGCCATAGTAGTTTCATTGCTGAAGGACGA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TAGCACTTTTATTCAAGAGTTATTTGCAAGGTTGAGGTCGCCTTCTACTT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CTATGGAATCCAAGAAAAATTTGGTATATTTCTTGCACGAATTTTGTAGT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TTAAGCAAGAGCCTCCAGGTGGTGCAGCAGCTGCGACTTTTTAGGGACCT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TATTAATGAAGGCATTTTTCATGTCATAGAAGAAGTCTTGCAGATTCCAG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ACAAAAAACTCGTATTGACTGGGACAGATATCCTGATTCTTTTCTTGACT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CAAGACCCCAACCTTTTACGTTCTTATGTTGTTCGGACAGAAGGAAACCC 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CCTCCTCGGTCTCCTGGTCAAGGGAATGATGGAAGACTTTGGTGATAAGA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TGCACTGCCAATTTCTAGAAATTATCCGTACCTTACTAGATGCAAATGCA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TTGTCTGGTGGAGCTCAGAGAGCAAATATCATGGATATTTTCTACGAGAA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GCATCTACCTGAGTTAGTGGATGTTATTACTGCCTCATGTCCTGAGAAGT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CGAGCAACGCATCTGAAGGTGCTGCCAGAAGGATTTTCACAAAGCCTGAA 

                                                                          



H 
 

 

1_PSY2L_DECR_35F_AK93  ----TGTCAAAGATACACCAGACGTACAGAATTGGTTACTTGAAG----- 

PSY2L                  GTCCTGTTGAACATATGTGAATTGTTGTGCTTTTGCATTATGCAAGATGC 

                           ***  ** ***    *   **   *  ** *     ** *       

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ATCCAGGACAAAATGCAGTTTTCTCCAAAACAATGTGACTGAAAAGGTTT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TGCATCTCACACGGAGAAAGGAAAAATACCTAGTGGTCGCTGCTATACGA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TTTGTCCGTACTCTCCTCTCTGTCCATGATGATTATGTCCAGAATTACGT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GGTTAAAAACAACTTGTTGAAACCGATCATAGATGTCTTCATTGCCAATG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GAACCCGGTACAATCTGCTGAACTCTGCAGTCTTGGATCTGCTTGAGCAC 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ATACGCAAGGGAAATGCAACTCTGTTGCTCAAATACATAGTTGATACGTT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CTGGGACCAGTTGGCCCCATTTCAGTGCTTGACCTCCATCCAGGCTTTCA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  AGGTTAAGTATGAACAGTGTTTAGAAAGTGCCGGACCAAAAAGCACTTCT 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GATGCGGTTGATCCAAGAAGAAGAGTTGACGAGCGGGCATTGGAGAAAGA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GGAAGAAGATTATTTCAATGAAGACAGCGATGAAGAAGATTCAGCCTCTG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CTTCTAATACACAAAAGGAAAAACCTGCTTCTAATATACAGAAAGAACAA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  CCTAAGCCTCATCTCTCCAATGGAGTGGCTGCAAGCCCTACTTCTTCAAG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TCCGAGGTCTGGAGGCTTGGTTGATTATGAGGACGATGAAGATGATGAAG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ACTATAAACCTCCTCCGCGGAAACAGCCAGAAGCCTCTGAGGATGAGGAA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GGCGAGCTCCTGAGGCTGAAACGAAAATCCGCTCTTGTAGAAAGAGAACA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  AGAGCCGTCCAAGAAACCACGGCTGGGGAAAAGTTCGAAAAGGGAAAATG 

                                                                          



I 
 

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  TATTTGCTGTGCTATGTTCGACACTGAGCCATGCAGTGCTTACGGGTAAG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  AAAAGTCCAGGCCCCGCTGGATCAGCAGCCCGGTCAATAGTAGCGAAAGG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  AGCTGAGGATTCAAAAAGTAGTGAAGAGAATAATAGCAGCAGTTCAGATG 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  ATGAGAATCATAAGGATGATGGAGTATCGAGTTCTGAACATGAAACATCA 

                                                                          

 

1_PSY2L_DECR_35F_AK93  -------------------------------------------------- 

PSY2L                  GACAATGGAAAGCTAAATGGGGAAGAATCTCTGGTAGTAGCTCCAAAATC 

                                                                          

 

1_PSY2L_DECR_35F_AK93  ------------------------------- 

PSY2L                  ATCACCTGAAATGGCTGTAAATGGATCCTGA 

 

Reverse primer 
                                                       

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            ATGGGCGCTCCGGAAAAGTCTCAATCTAATACCAATTCGATGCAGAGAGT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GAAAGTCTATCATTTGAATGAAGATGGTAAATGGGATGATCGAGGAACTG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GGCACGTAAGCATCGACTTTGTGGAGCGATCTGAAGAACTCAGTCTATGT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GTAATTGATGAAGAAGATAACGAGACGTTACTTGTTCATCCCATCAACCC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGAGGATATTTACAGGAAACAAGAAGACACAATAATCTCATGGAGAGACC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CAGAGCGCTCAACAGAATTGGCTTTAAGCTTTCAAGAGACTGCAGGGTGC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TCTTATGTATGGGATCAAATCTGCACTATGCAACGAAATTTGCATTTCAG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CTCTCTAAACAGCGAAACATTTCACAGCTTGAACAGTGAGTTGAGGGAGC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TTCCTGCTGTAGAGCTTACTACTCTTCCCCTAATACTGAAGATTGTTACA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GAGAGTGGCATTACAGATCAGATGCGCCTAACTGAACTTATTTTGAAGGA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 



J 
 

PSY2L            TCATGATTTCTTCCGGAATCTGATGGGTGTTTTTAAAATATGCGAGGACT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGGAAAATGTTGATGGCCTTCACATGATATTCAACATTGTCAAGGGAATC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            ATTTTGCTTAACAGTTCTCAGATCTTGGAGAAAATATTTGGAGATGAATT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GATTATGGAGATTATCGGATGCCTTGAATATGATCCTGGTGTTCCTCACT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CTCAGCATCACCGGAATTTTCTGAAGGAGCATGTTGTTTTTAAGGAGGCT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            ATACCAATCAAAGATCCCTTAGTCCTGTCAAAGATACACCAGACGTACAG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            AATTGGTTACTTGAAGGATGTTGTTTTGGCTAGAGTACTAGATGATGCTA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TTGTTGCAAACTTGAATTCTGTAATCCATGCGAACAATGCCATAGTAGTT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TCATTGCTGAAGGACGATAGCACTTTTATTCAAGAGTTATTTGCAAGGTT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            GAGGTCGCCTTCTACTTCTATGGAATCCAAGAAAAATTTGGTATATTTCT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGCACGAATTTTGTAGTTTAAGCAAGAGCCTCCAGGTGGTGCAGCAGCTG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CGACTTTTTAGGGACCTTATTAATGAAGGCATTTTTCATGTCATAGAAGA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            AGTCTTGCAGATTCCAGACAAAAAACTCGTATTGACTGGGACAGATATCC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGATTCTTTTCTTGACTCAAGACCCCAACCTTTTACGTTCTTATGTTGTT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CGGACAGAAGGAAACCCCCTCCTCGGTCTCCTGGTCAAGGGAATGATGGA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            AGACTTTGGTGATAAGATGCACTGCCAATTTCTAGAAATTATCCGTACCT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TACTAGATGCAAATGCATTGTCTGGTGGAGCTCAGAGAGCAAATATCATG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 



K 
 

PSY2L            GATATTTTCTACGAGAAGCATCTACCTGAGTTAGTGGATGTTATTACTGC 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            CTCATGTCCTGAGAAGTCGAGCAACGCATCTGAAGGTGCTGCCAGAAGGA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TTTTCACAAAGCCTGAAGTCCTGTTGAACATATGTGAATTGTTGTGCTTT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGCATTATGCAAGATGCATCCAGGACAAAATGCAGTTTTCTCCAAAACAA 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGTGACTGAAAAGGTTTTGCATCTCACACGGAGAAAGGAAAAATACCTAG 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TGGTCGCTGCTATACGATTTGTCCGTACTCTCCTCTCTGTCCATGATGAT 

                                                                    

 

2_PSY2L_reverse  -------------------------------------------------- 

PSY2L            TATGTCCAGAATTACGTGGTTAAAAACAACTTGTTGAAACCGATCATAGA 

                                                                    

 

2_PSY2L_reverse  --ATTTCATTGCCAATGGAACCCGGTACAATTTGCTGAACTCTGCAGTCT 

PSY2L            TGTCTTCATTGCCAATGGAACCCGGTACAATCTGCTGAACTCTGCAGTCT 

                     *************************** ****************** 

 

2_PSY2L_reverse  TGGATCTGCTTGAGCACATACGCAAGGGAAATGCAACTCTGTTGCTCAAA 

PSY2L            TGGATCTGCTTGAGCACATACGCAAGGGAAATGCAACTCTGTTGCTCAAA 

                 ************************************************** 

 

2_PSY2L_reverse  TACATAGTTGATACGTTCTGGGACCAGTTGGCCCCATTTCAGTGCTTGAC 

PSY2L            TACATAGTTGATACGTTCTGGGACCAGTTGGCCCCATTTCAGTGCTTGAC 

                 ************************************************** 

 

2_PSY2L_reverse  CTCCATCCAGGCTTTCAAGGTTAAGTATGAACAGTGTTTAGAAAGTGCCG 

PSY2L            CTCCATCCAGGCTTTCAAGGTTAAGTATGAACAGTGTTTAGAAAGTGCCG 

                 ************************************************** 

 

2_PSY2L_reverse  GACCAAAAAGCACTTCTGATGCGGTTGATCCAAGAAGAAGAGTTGACGAG 

PSY2L            GACCAAAAAGCACTTCTGATGCGGTTGATCCAAGAAGAAGAGTTGACGAG 

                 ************************************************** 

 

2_PSY2L_reverse  CGGGCATTGGAGAAAGAGGAAGAAGATTATTTCAATGAAGACAGCGATGA 

PSY2L            CGGGCATTGGAGAAAGAGGAAGAAGATTATTTCAATGAAGACAGCGATGA 

                 ************************************************** 

 

2_PSY2L_reverse  AGAAGATTCAGCCTCTGCTTCTAATACACAAAAGGAAAAACCTGCTTCTA 

PSY2L            AGAAGATTCAGCCTCTGCTTCTAATACACAAAAGGAAAAACCTGCTTCTA 

                 ************************************************** 

 

2_PSY2L_reverse  ATATACAGAAAGAACAACCTAAGCCTCATCTCTCCAATGGAGTGGCTGCA 

PSY2L            ATATACAGAAAGAACAACCTAAGCCTCATCTCTCCAATGGAGTGGCTGCA 

                 ************************************************** 

 

2_PSY2L_reverse  AGCCCTACTTCTTCAAGTCCGAGGTCTGGAGGCTTGGTTGATTATGAGGA 

PSY2L            AGCCCTACTTCTTCAAGTCCGAGGTCTGGAGGCTTGGTTGATTATGAGGA 

                 ************************************************** 

 

2_PSY2L_reverse  CGATGAAGATGATGAAGACTATAAACCTCCTCCGCGGAAACAGCCAGAAG 

PSY2L            CGATGAAGATGATGAAGACTATAAACCTCCTCCGCGGAAACAGCCAGAAG 

                 ************************************************** 

 

2_PSY2L_reverse  CCTCTGAGGATGAGGAAGGCGAGCTCCTGAGGCTGAAACGAAAATCCGCT 



L 
 

PSY2L            CCTCTGAGGATGAGGAAGGCGAGCTCCTGAGGCTGAAACGAAAATCCGCT 

                 ************************************************** 

 

2_PSY2L_reverse  CTTGTAGAAAGAGAACAAGAGCCGTCCAAGAAACCACGGCTGGGGAAAAG 

PSY2L            CTTGTAGAAAGAGAACAAGAGCCGTCCAAGAAACCACGGCTGGGGAAAAG 

                 ************************************************** 

 

2_PSY2L_reverse  TTCGAAAAGGGAAAATGTATTTGCTGTGCTATGTTCGACACTGAGCCATG 

PSY2L            TTCGAAAAGGGAAAATGTATTTGCTGTGCTATGTTCGACACTGAGCCATG 

                 ************************************************** 

 

2_PSY2L_reverse  CAGTGCTTACGGGTAAGAAAAGTCCAGGCCCCGCTGGATCAGCAGCCCGG 

PSY2L            CAGTGCTTACGGGTAAGAAAAGTCCAGGCCCCGCTGGATCAGCAGCCCGG 

                 ************************************************** 

 

2_PSY2L_reverse  TCAATAGTAGCGAAAGGAGCTGAGGATTCAAAAAGTAGTGAAGAGAATAA 

PSY2L            TCAATAGTAGCGAAAGGAGCTGAGGATTCAAAAAGTAGTGAAGAGAATAA 

                 ************************************************** 

 

2_PSY2L_reverse  TAGCAGCAGTTCAGATGATGAGAATCATAAGGATGATGGAGTATCGAGTT 

PSY2L            TAGCAGCAGTTCAGATGATGAGAATCATAAGGATGATGGAGTATCGAGTT 

                 ************************************************** 

 

2_PSY2L_reverse  CTGAACATGAAACATCAGACAATGGAAAGCTAAATGGGGAAGAATCTCTG 

PSY2L            CTGAACATGAAACATCAGACAATGGAAAGCTAAATGGGGAAGAATCTCTG 

                 ************************************************** 

 

2_PSY2L_reverse  GTAGTAGCTCCAAAATCATCACCTGAAATGGCTGTAAATGGATCCTGAGC 

PSY2L            GTAGTAGCTCCAAAATCATCACCTGAAATGGCTGTAAATGGATCCT---- 

                 **********************************************     

 

2_PSY2L_reverse  GGCCGCTGCCGCGGCAATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGG 

PSY2L            -------------------------------------------------- 

                                                                    

 

2_PSY2L_reverse  TGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTCA 

PSY2L            -------------------------------------------------- 

                                                                    

 

2_PSY2L_reverse  GCGT 

PSY2L            --GA 

                   *  

 

 

Middle primer 
 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    ATGGGCGCTCCGGAAAAGTCTCAATCTAATACCAATTCGATGCAGAGAGT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GAAAGTCTATCATTTGAATGAAGATGGTAAATGGGATGATCGAGGAACTG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GGCACGTAAGCATCGACTTTGTGGAGCGATCTGAAGAACTCAGTCTATGT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GTAATTGATGAAGAAGATAACGAGACGTTACTTGTTCATCCCATCAACCC 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TGAGGATATTTACAGGAAACAAGAAGACACAATAATCTCATGGAGAGACC 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CAGAGCGCTCAACAGAATTGGCTTTAAGCTTTCAAGAGACTGCAGGGTGC 



M 
 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TCTTATGTATGGGATCAAATCTGCACTATGCAACGAAATTTGCATTTCAG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CTCTCTAAACAGCGAAACATTTCACAGCTTGAACAGTGAGTTGAGGGAGC 

                                                                            

 

3_PSY2L_DECR_35M_Middle  --------------------------------GATGATGCTATTGTT--- 

PSY2L                    TTCCTGCTGTAGAGCTTACTACTCTTCCCCTAATACTGAAGATTGTTACA 

                                                                  ******    

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GAGAGTGGCATTACAGATCAGATGCGCCTAACTGAACTTATTTTGAAGGA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TCATGATTTCTTCCGGAATCTGATGGGTGTTTTTAAAATATGCGAGGACT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TGGAAAATGTTGATGGCCTTCACATGATATTCAACATTGTCAAGGGAATC 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    ATTTTGCTTAACAGTTCTCAGATCTTGGAGAAAATATTTGGAGATGAATT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GATTATGGAGATTATCGGATGCCTTGAATATGATCCTGGTGTTCCTCACT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CTCAGCATCACCGGAATTTTCTGAAGGAGCATGTTGTTTTTAAGGAGGCT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    ATACCAATCAAAGATCCCTTAGTCCTGTCAAAGATACACCAGACGTACAG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    AATTGGTTACTTGAAGGATGTTGTTTTGGCTAGAGTACTAGATGATGCTA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -----GCAAACTTGAATTCTGTAATCCATGCGAACAATGCCATAGTAGTT 

PSY2L                    TTGTTGCAAACTTGAATTCTGTAATCCATGCGAACAATGCCATAGTAGTT 

                              ********************************************* 

 

3_PSY2L_DECR_35M_Middle  TCATTGCTGAAGGACGATAGCACTTTTATTCAAGAGTTATTTGCAAGGTT 

PSY2L                    TCATTGCTGAAGGACGATAGCACTTTTATTCAAGAGTTATTTGCAAGGTT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  GAGGTCGCCTTCTACTTCTATGGAATCCAAGAAAAATTTGGTATATTTCT 

PSY2L                    GAGGTCGCCTTCTACTTCTATGGAATCCAAGAAAAATTTGGTATATTTCT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TGCACGAATTTTGTAGTTTAAGCAAGAGCCTCCAGGTGGTGCAGCAGCTG 

PSY2L                    TGCACGAATTTTGTAGTTTAAGCAAGAGCCTCCAGGTGGTGCAGCAGCTG 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  CGACTTTTTAGGGACCTTATTAATGAAGGCATTTTTCATGTCATAGAAGA 

PSY2L                    CGACTTTTTAGGGACCTTATTAATGAAGGCATTTTTCATGTCATAGAAGA 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  AGTCTTGCAGATTCCAGACAAAAAACTCGTATTGACTGGGACAGATATCC 

PSY2L                    AGTCTTGCAGATTCCAGACAAAAAACTCGTATTGACTGGGACAGATATCC 



N 
 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TGATTCTTTTCTTGACTCAAGACCCCAACCTTTTACGTTCTTATGTTGTT 

PSY2L                    TGATTCTTTTCTTGACTCAAGACCCCAACCTTTTACGTTCTTATGTTGTT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  CGGACAGAAGGAAACCCCCTCCTCGGTCTCCTGGTCAAGGGAATGATGGA 

PSY2L                    CGGACAGAAGGAAACCCCCTCCTCGGTCTCCTGGTCAAGGGAATGATGGA 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  AGACTTTGGTGATAAGATGCACTGCCAATTTCTAGAAATTATCCGTACCT 

PSY2L                    AGACTTTGGTGATAAGATGCACTGCCAATTTCTAGAAATTATCCGTACCT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TACTAGATGCAAATGCATTGTCTGGTGGAGCTCAGAGAGCAAATATCATG 

PSY2L                    TACTAGATGCAAATGCATTGTCTGGTGGAGCTCAGAGAGCAAATATCATG 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  GATATTTTCTACGAGAAGCATCTACCTGAGTTAGTGGATGTTATTACTGC 

PSY2L                    GATATTTTCTACGAGAAGCATCTACCTGAGTTAGTGGATGTTATTACTGC 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  CTCATGTCCTGAGAAGTCGAGCAACGCATCTGAAGGTGCTGCCAGAAGGA 

PSY2L                    CTCATGTCCTGAGAAGTCGAGCAACGCATCTGAAGGTGCTGCCAGAAGGA 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TTTTCACAAAGCCTGAAGTCCTGTTGAACATATGTGAATTGTTGTGCTTT 

PSY2L                    TTTTCACAAAGCCTGAAGTCCTGTTGAACATATGTGAATTGTTGTGCTTT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TGCATTATGCAAGATGCATCCAGGACAAAATGCAGTTTTCTCCAAAACAA 

PSY2L                    TGCATTATGCAAGATGCATCCAGGACAAAATGCAGTTTTCTCCAAAACAA 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TGTGACTGAAAAGGTTTTGCATCTCACACGGAGAAAGGAAAAATACCTAG 

PSY2L                    TGTGACTGAAAAGGTTTTGCATCTCACACGGAGAAAGGAAAAATACCTAG 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TGGTCGCTGCTATACGATTTGTCCGTACTCTCCTCTCTGTCCATGATGAT 

PSY2L                    TGGTCGCTGCTATACGATTTGTCCGTACTCTCCTCTCTGTCCATGATGAT 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  TATGTCCAGAATTACGTGGTTAAAAACAACTTGTTGAAACCGATCATAGA 

PSY2L                    TATGTCCAGAATTACGTGGTTAAAAACAACTTGTTGAAACCGATCATAGA 

                         ************************************************** 

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TGTCTTCATTGCCAATGGAACCCGGTACAATCTGCTGAACTCTGCAGTCT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TGGATCTGCTTGAGCACATACGCAAGGGAAATGCAACTCTGTTGCTCAAA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TACATAGTTGATACGTTCTGGGACCAGTTGGCCCCATTTCAGTGCTTGAC 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CTCCATCCAGGCTTTCAAGGTTAAGTATGAACAGTGTTTAGAAAGTGCCG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    GACCAAAAAGCACTTCTGATGCGGTTGATCCAAGAAGAAGAGTTGACGAG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CGGGCATTGGAGAAAGAGGAAGAAGATTATTTCAATGAAGACAGCGATGA 



O 
 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    AGAAGATTCAGCCTCTGCTTCTAATACACAAAAGGAAAAACCTGCTTCTA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    ATATACAGAAAGAACAACCTAAGCCTCATCTCTCCAATGGAGTGGCTGCA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    AGCCCTACTTCTTCAAGTCCGAGGTCTGGAGGCTTGGTTGATTATGAGGA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CGATGAAGATGATGAAGACTATAAACCTCCTCCGCGGAAACAGCCAGAAG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CCTCTGAGGATGAGGAAGGCGAGCTCCTGAGGCTGAAACGAAAATCCGCT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CTTGTAGAAAGAGAACAAGAGCCGTCCAAGAAACCACGGCTGGGGAAAAG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  ---------------TGTCTTCATTGCCAA-------------------- 

PSY2L                    TTCGAAAAGGGAAAATGTATTTGCTGTGCTATGTTCGACACTGAGCCATG 

                                        *** **   **                         

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CAGTGCTTACGGGTAAGAAAAGTCCAGGCCCCGCTGGATCAGCAGCCCGG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TCAATAGTAGCGAAAGGAGCTGAGGATTCAAAAAGTAGTGAAGAGAATAA 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    TAGCAGCAGTTCAGATGATGAGAATCATAAGGATGATGGAGTATCGAGTT 

                                                                            

 

3_PSY2L_DECR_35M_Middle  -------------------------------------------------- 

PSY2L                    CTGAACATGAAACATCAGACAATGGAAAGCTAAATGGGGAAGAATCTCTG 

                                                                            

 

3_PSY2L_DECR_35M_Middle  ------------------------------------------------ 

PSY2L                    GTAGTAGCTCCAAAATCATCACCTGAAATGGCTGTAAATGGATCCTGA 

 
 


