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Abstract 

 

Influence of different modeling techniques on reservoir volume 

 

Ayyub Aghamoghlanov 

The University of Stavanger, 2015 

 

Supervisors:  Lothar Schulte, Rodmar Ravnas 

 
Facies modeling is one of the initial stages on the way to reservoir volume calculations. Typically, 

for each depositional environment a particular facies modeling method is used. The geology of the 

area of investigation can be described, by a stacked channel (deltaic) depositional environment. 

This work represents a set of models, which are created using Object Modeling and Sequential 

Indicator Simulation method. Each facies modeling method has its own parameters, which are 

influencing the reservoir volume. Sequential Indicator Simulation is a pixel based modeling 

method, which is based on an estimation of the probability of each facies at every grid point. The 

facies at the grid point is derived from the cumulative distribution function (CDF) of the facies 

probabilities and a random number generator used for deriving the facies from the (CDF). The main 

modeling parameters of the Sequential Indicator Simulation method are: The Global seed number, 

which is controlling the random number generator, the Major, Minor and Vertical variogram range. 

In the Object based modeling method, the main parameters describing channel geometry are: 

Thickness, Width, Amplitude and Wavelength.  

 

One of the main purposes of this project is to investigate the influence of the modeling parameters 

on the reservoir volume spread. Research is also covering the influence of the well positions with 

respect to the upscaled well, on the reservoir volume spread. This is accomplished thru defining 

areas of investigations at different locations with respect to the one upscaled well.  

Another topic of the thesis is the study of the influence of the “Global facies fraction” on the 

reservoir volume.  
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Finally, a close look is taken on the seismic impedance as a guide for facies modeling, which can 

help reducing the reservoir volume uncertainty. The outcome of the study will be a set of 

recommendations for facies modeling of a stacked channel environment that result in a more 

reliable reservoir volume estimation and uncertainty evaluation. 
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Chapter 1: INTRODUCTION 

Facies model building is typically done by either one of the following methods: pixel based 

Sequential Indicator Simulation (Figure 1) or Object based modeling (Figure 2).  The choice for the 

most appropriate method depends upon the available information, the characteristics and the 

geological knowledge about the field. The input data for both methods is subdivided into: hard data 

(e.g. wells data, such as facies proportions), and soft data (e.g. seismic attribute cubes). As a result, 

each of these methods comes up with a distinct architecture and facies distribution. 

 

 Reservoir models which are created using Sequential Indicator Simulation are represented by sand 

patches whose size is controlled by the horizontal model variogram range (Figure 1). Sand patches 

can also be elongated in a user defined direction in order to capture the facies anisotropy that is 

given by the channels. This is accomplished thru working with two horizontal variogram ranges of 

different sizes that are perpendicular to each other as shown in Figure 3.  

 

Reservoir models based on Object modeling consist of objects, such as channels or simple 

geometrical bodies, which are characterized by specific porosity and permeability ranges, while the 

background shale has low porosity and permeability values. All modeling methods described above 

will be applied to a conceptual structural model. This study intends to describe the variation of the 

reservoir volume, with respect to the changes of the variogram parameters of Sequential Indicator 

Simulation, as well as, the variations of the geometrical parameters used in channel (Object) 

modeling. 

  

The reservoir volumes are derived for circular polygons, which are located in different areas, 

relatively to the wells. In this way the influence of the wells on the reservoir volume uncertainty can 

be analyzed. 

 

In addition, the possible influence of the size of the area given by the circular polygon on the 

reservoir volume distribution will be investigated.  

Finally, this project analyzes how the seismic impedance cube can influence reservoir volume 

distribution. 
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In this study we will use data from 6 wells. Interpretation and analysis are aimed to fulfill the 

objectives stated below: 

 

1.1 Objectives: 

• Understanding the influence of the different facies modeling parameters on the modeled 

reservoir volume and reservoir volume uncertainty 

• Investigation of advantages and disadvantages of Sequential Indicator Simulation and 

Object modeling, and their impact on reservoir volume. 

• Volume spread analysis. P50 stability, comparing to P10 and P90 

• Analysis of changes in volume spread, in reservoirs, located differently with respect to the 

well DW1 . 

• Analysis of the influence of the seismic impedance cube, used for facies modeling on 

reservoir volume uncertainty. 

• The usage of analogue data to limit the parameter uncertainty of the facies modeling. 

Figure 1: Sequential Indicator Simulation method. Major and Minor variogram 
ranges are same 
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Figure 2: Sequential Indicator Simulation method. Minor is smaller than 
Major range. 

Figure 3: Object modeling method 
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1.2 Dataset 

Dataset used for research in this project includes: 

• Simple rectangular structural model of dimensions 15000m by 16000m (Figure 4) 

• Six wells with porosity, permeability and gamma ray logs: DW6. DW1, DW2, DW4, DW5 and 

DW3  

• Seismic impedance cube 

15 
km 20 km 

Figure 4: Simple conceptual 
model 

Figure 5: Well data 
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1.3 Methodology 
 
The main goal of this project is to assess the influence of the major parameters of two facies modeling 

methods on the reservoir volume uncertainty: Sequential Indicator Simulation method and Object 

Modeling method. Each facies modeling parameter has its own influence on reservoir volume spread, 

and the best way to investigate this, is to create different models, by changing one parameter at a time.  

 

1.3.1 Sequential Indicator Simulation 

Sequential Indicator Simulation is a facies modeling method, which relates to Pixel-based reservoir 

modeling technique. In many cases, Pixel-based reservoir modelling can approximate the reservoir in 

terms of its sedimentological architecture if sufficiently wells are available. Sequential Indicator 

Simulation is a geostatistical method that addresses the uncertainties, caused by, lack of data between 

the wells (Seifert and Jensen, 1999).  

 

The way Sequential Indicator Simulation works is discussed in the following: at the wells the facies 

which is going to be modeled is given a probability of “1”, if it is encountered at the well and “0” if it is 

not. Figure 6 shows the probability of sand at well locations, marked by , if the well shows sand 

(probability “1”) and by , if the well does not show sand (sand probability equal “0”). Grid points 

with calculated sand probability are represented by . These values are interpolated in order to get the 

probability of encountering sand at grid point . The method used for calculating the facies probability 

at the grid point , is called “Simple Kriging”.   

 

Simple kriging, is an interpolation technique that takes fundamental statistical properties of the data 

(mean and variance) into account.  Kriging is using a variogram model that needs to be derived from 

the sample variogram of the data (Caers, 2005). 

 

Variograms are used to describe the variance of data pairs of a separation distance called lag (Caers, 

2005) (Figure 7). Data pairs showing a large lag typically show a large variance, meaning their values 

show a large difference. Typically the variance of the data pairs decreases with smaller lags. The Range 

describes the distance between data pairs beyond which the variance is varying around a constant high 

value, the Sill. Beyond this range the data pairs do not show any correlation.  A Nugget means that data 

pairs that are very close to each other or share the same location (zero lag) show different values 
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(Caers, 2005). Such a behavior could be attributed to noise.  For this project, the variogram analysis of 

the data is not needed, because the goal is to understand the influence of the horizontal and vertical 

variogram range (anisotropy ranges) on the volume uncertainty

Figure 6: Map showing sand probability at well location and calculated sand probability at grid points  using 
kriging. 

 

Figure 7: Variogram scheme. 
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The two horizontal ranges are measured in perpendicular directions. When they are of the same 

size the data is regarded as isotropic, in case of a difference between the two ranges the data is 

anisotropic. 

 

When the facies probability has been derived the Cumulative Distributive Function (CDF) is set 

up from the facies probabilities, as shown in Figure 8.   A random number between 0 and 1 is 

drawn via a random number generator that is controlled by the so-called “Seed” number in the 

used modeling software package Petrel (Figure 8). Outside the radius of influence of the data 

points defined by the variogram range Simple kriging provides the mean value given by all data. 

In the case of indicator simulation this mean value is defined by the facies fraction given by the 

wells. This so-called “Global fraction” influences increasingly the cumulative distribution 

function of grid cells with increasing distance from the wells. It is the “Global distribution” that 

defines the facies fraction of the model to a large degree.   

 

 
Figure 8: Cumulative Distribution Function plot with random number 
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As shown in Figure 9, small ranges applied to the Sequential Indicator Simulation method, give a 

lot of small sand patches spread all over the model. In Figure 10 the major and minor ranges 

have the same large value, and as a result deliver a few big sand patches. The relationship 

between the small and the large horizontal range define the elongation of the facies patches 

(Figure 10).  

 

The operation mechanism of Seed number on Sequential Indicator Simulation method is visually 

explained in Figure 12 and Figure 13.  In Figure 12 and Figure 13 are shown two models with 

the same variogram ranges, but with different Seed numbers. Therefore, the global facies fraction 

distribution is the same for both models in Figure 12 and Figure 13. As it can be seen, the 

patches of channel sand, levee and shale are distributed differently in the model with Seed 

number 1 and Seed number 50. It is the Seed that is controlling the distribution of the facies 

patches. 
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Figure 9: Sequential Indicator Simulation method. Major and Minor anisotropy ranges: 700 

Figure 10: Sequential Indicator Simulation method. Major and Minor anisotropy ranges: 5000 
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Figure 12: Sequential Indicator Simulation method. Major and Minor range: 5000. Seed: 1 

Figure 13: Sequential Indicator Simulation method. Major and Minor range: 5000. Seed: 50  
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1.3.1 Object modeling method 

The Object modeling method is used to model the channel facies. The Object modeling method 

is a more accurate facies modeling method compared to Sequential Indicator Simulation, because 

it allows creating actual subsurface objects, by using data from the well logs (Caers, 2005).  

To create a channel model using Object modeling method a set of parameters describing the 

channel geometry is required: Channel width, channel wavelength, channel amplitude and 

channel thickness. Overall scheme of channel parameters is described in Figure 14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Map 
view description 
of channel 
parameters 

Figure 15: Cross-
section of the 
channelized model 

W 

Mw MA 

NE SW 
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According to the Figure a range of modeling parameter values are taken into consideration, listed 

in (Table 1): 

 
Channel parameters in meters Min Max 

Thickness  10 70 
Width 60 960 

Amplitude 110 610 
Wavelength 400 10400 

 

 

Each channel parameter has an influence on the model. Therefore, Figures 16 - 23 are showing 

these influences: 

 
Channel thickness variations 

 
 
 

 
 

Table 1: Range of modeling parameters according to the graph produced by (Leeder, 1973) 

 

Figure 16: Cross section of the channelized model. Channel thickness 10m 

 

Figure 17: Cross section of the channelized model. Channel thickness 70m 

SW NE 

NE SW 
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Channel width variations

Figure 18: Channel width 60m 

Figure 19: Channel width 960m 
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Channel amplitude variations 
 

Figure 20: Channel amplitude 110m 

Figure 21: Channel amplitude 610m 
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Channel wavelength variations 
 

Figure 22: Channel wavelength 400m 

Figure 23: Channel wavelength 10400m 
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The Seed number controls the location of the channels. As it can be seen from the Figure 24 and 

Figure 25, the meander channel changes its direction of flow, when changing the Seed number. 

  

Figure 24: Object modeling method. Seed number 1 

Figure 25: Object modeling method. Seed number 10 
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1.3.2 Influence of Sequential Indicator Simulation modeling parameters on reservoir 

volume distribution 

The process of analyzing the influence of Sequential Indicator Simulation modeling requires 

some data preparation: 

1. Simplified facies 

In order to simplify the investigation, two facies are derived from the VSH (Volume of shale): 

reservoir and non-reservoir (Figure 26) 

2. Area of interests 

It is assumed, that reservoir models of different sizes have different influence on the reservoir 

volume uncertainty. To investigate this theory, several reservoir polygons were created. To keep 

the model as simple as possible, the shapes of these polygons are circular. To investigate the 

impact of the reservoir polygon size on the reservoir volume spread, it was decided to create a 

small (polygon with radius 500m) and a big (polygon with radius 1000m). In addition it is 

investigated, whether there is a significant influence of location of the polygon with respect to 

the well DW 1, on the reservoir volume spread. 
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The volume spread uncertainty calculation, is following the next workflow scheme outlined in 

the (Figure 27). This scheme consists of several steps:  

• Define a variogram range – define horizontal and vertical anisotropy ranges 

• Set a SEED number 

• Calculate reservoir volume spread 

• Repeat the last 2 steps 100 times, using different SEED numbers 

• Change one parameter at a time – changing one parameter, keeping the other parameters 

constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the volume distribution for each set of parameters is calculated just thru changing the 

“Seed”, which controls the location, of the reservoir and non-reservoir facies. 

For calculation of the reservoir volume spread, the following formula is used: 

 

Volume spread = (P90-P10)/P50*100 

 

P10, P50 and P90 values are taken from the reservoir volume spread CDF (Cumulative 

Distribution Function) shown in (Figure 28) 

Figure 27: Sequential Indicator Simulation method workflow. 
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1.3.3 Influence of Object modeling method parameters on reservoir volume spread 

The Reservoir volume spread calculations based on Object modeling method will follow the next 

workflow (Figure 29): 

• Define channel parameter – channel thickness, channel width, channel amplitude or 

channel wavelength 

• Change SEED number 

• Calculate reservoir volume spread 

• Repeat last 2 steps 100 times, using different 100 SEED numbers   

• Change one channel parameter at a time within reasonable value range 

 

 

 

The goal of the work flow is to study the influence of the individual channel parameters on the 

reservoir volume distribution. 

These parameters are: Channel width and depth, channel sinuosity, wavelength and amplitude. 

Following the steps outlined for Sequential Indicator Simulation the influence of these 

parameters on the reservoir volume uncertainty will be analyzed. According to the graph 

published by (Leeder, 1973), the value range of channel width for different channel depths is 

estimated and used for analysis (Figure 30).

Figure 29: Object modeling method workflow  
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The Figure 30 is showing the ratio of the meander channel width vs channel depth (thickness) ratio. 

The data-points presented in the graph are showing the relationship between the channel width and 

channel thickness, in different meandering channels in UK. For this particular project, the thickness 

of the channels varies from 10m – 70m and therefore, the range of the values for the width of the 

channel has a range from 60m – 960m. In Figure 31, data published by (Leopold and Wolman, 1960) 

and (Carlston, 1965) relates the width of the channel to the width of the meander-belt (channel-belt). 

According to the minimal channel width, channel amplitude is given the range from 110m – 610m. 

(Wonham et al., 2000) published a graph in which is shown the some actual statistical data of 

wavelength, with minimum channel width 60m. Therefore the range of the wavelength for this 

particular width varies from 400m – 10400m (Figure 32). 

 

 

 

Figure 31: Data published by (Leopold and Wolman, 1960) and (Carlston, 1965). The ratio of 
meander belt width (Meander amplitude) vs channel width. 
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1.3.4 Acoustic impedance 

The seismic acoustic impedance cube represents an approximation of the rock parameter acoustic 

impedance (Becquey et al., 1979) (Figure 33). It uses reservoir and non-reservoir facies 

probability data as a function of acoustic impedance responses (Figure 34). The facies impedance 

relationship is used as a look-up table for getting the sand-shale probability for a grid cell. This is 

done in the following way: each grid cell has an acoustic impedance value. The sand-shale 

probability is taken from the look-up table at this grid cell impedance value. Taken from Figure 

33, the impedance range of 6500 (Pa*s/m) – 7500 (Pa*s/m) gives a sand probability of 56% and 

a shale probability of 44%. Instead of the global fraction derived from the wells these 

probabilities are used for building the cumulative distribution function for grid cells far away 

from the wells. The facies assigned to the grid cell is derived via a random number generator in a 

similar way as described in paragraph Sequential Indicator Simulation above. 

The workflow for the Sequential Indicator Simulation based on the Seismic acoustic impedance 

cube is the same, as for Sequential Indicator Simulation modeling discussed above: 

• Define a variogram range – define horizontal and vertical anisotropy ranges 

• Change SEED number 

• Calculate reservoir volume spread 

• Repeat last 2 steps 100 times, using different 100 SEED numbers 

• Change one parameter at a time – changing one parameter, while other parameters are 

remain still

Figure 32: Data published by (Wonham et al., 2000). The ratio of channel width vs meander 
wavelength. 
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Chapter 2 : OBSERVATIONS 

2.1 Sequential Indicator Simulation 

First the reservoir volume spread observations are done for reservoir polygon 3, which is located 

around the well (Figure 35) 

 
Figure 35: Location of reservoir polygon 3 

 

As shown in Figure 36a and Figure 36b, the volume spread distributions for two polygons with radius 

500m and 1000m, were plotted as a function of the horizontal variogram ranges, where the major range 

and minor range, have the same value. Color coded are the reservoir volume spread functions for the 

three vertical ranges: 1m, 10m and 50m. The reservoir volume spread calculations in Figure 36a and 

Figure 36b are made for polygon 3, which is located around the well.

Reservoir Polygon 3 

Reservoir Polygon 3 



 

 29 

  

Po
ly

go
n 

ra
di

us
 5

00
m

 
Po

ly
go

n 
ra

di
us

 1
00

0m
 

Fi
gu

re
 3

6:
 a

) R
es

er
vo

ir 
vo

lu
m

e 
sp

re
ad

 d
is

tri
bu

tio
ns

 fo
r p

ol
yg

on
 w

ith
 ra

di
us

 5
00

m
 u

si
ng

 d
iff

er
en

t v
er

tic
al

 ra
ng

es
. b

) R
es

er
vo

ir 
vo

lu
m

e 
sp

re
ad

 d
is

tri
bu

tio
ns

 fo
r p

ol
yg

on
 w

ith
 

ra
di

us
 1

00
0m

 u
si

ng
 d

iff
er

en
t v

er
tic

al
 ra

ng
es

. 

B 
A 



 

 30 

The volume spread for the vertical variogram range of 50m and the polygon with radius 500m shows 

the largest volume spread with increasing horizontal variogram range. For a small horizontal range 

(100-200m) the reservoir volume spread is around 40%, then the volume spread increases till 100% for 

the horizontal range of 300m. The volume spread increases slowly, reaching 114% for a horizontal 

range of 700m. For the vertical range of 1m and 10m, the reservoir volume spread is much lower. For 

the vertical range of 10m it increases from 23% for the horizontal range of 100m, till 51% for the 

horizontal range of 700m. The vertical range of 1m shows a volume spread function with the smallest 

values, giving 15% for the horizontal range of 100m, and increases till 34% at horizontal range of 

700m. The results for the reservoir polygon with radius 500m are given in Table 2: 

 

SIS Polygon radius 500m 
Varioqram ranges 100m 700m 
Vertical range 1 40 % 114 % 
Vertical range 10 23 % 51 % 
Vertical range 50 15 % 34 % 

                

 

As stated previously, the reservoir volume spread for the reservoir polygon with radius 1000m shows a 

lower volume spread compared to the polygon with radius 500m., The reservoir volume spread for the 

vertical range 50m increases from 27% for the horizontal range of  100m to 84% for the horizontal 

range of 700m. The volume spread for the vertical ranges 10m and 1m are around 10% for the 

horizontal range of 100m. The volume spread increases up to 50% and 24%, for the horizontal range of 

700m, and a vertical range of 10m and 1m respectively. The results for the reservoir polygon with 

radius 1000m are given in Table 3: 

 

SIS Polygon radius 1000m 
Varioqram ranges 100m 700m 
Vertical range 1 27 % 84 % 
Vertical range 10 10 % 50 % 
Vertical range 50 10 % 24 % 

                                

 

The reservoir volume spread seems to be sensitive to the variogram ranges, when the size of the 

reservoir is small. This is nicely observed in Figure 36a, where the increasing horizontal and vertical 

ranges, affect considerably the reservoir volume spread. In Figure 36b, the influence of the reservoir 

Table 2: Sequential Indicator Simulation: volume spreads for polygon 3, with radius 500m. 

Table 3: Sequential Indicator Simulation: volume spread for polygon 3, with radius 1000m 
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size on the reservoir volume spread is much smaller, compared to the reservoir polygon with radius 

500m. 

 

In Figure 37a, the reservoir volume spread functions for the three polygons with radius 500m are 

plotted, as a function of the horizontal variogram range, where the major and minor range have the 

same values. The vertical range is set to 10m. Figure 37b shows the three polygons together with the 

position of the well and also showing a Sequential Indicator Simulation result of the reservoir (sand) 

facies. Polygon 1 is located far away from the wells, polygon 2 is located close to the wells and 

polygon 3 is located around the well. Figure 37a shall show the influence of the position of a well with 

respect to the reservoir location on the volume spread. It was decided to make the calculations on the 

reservoir polygons with radius 500m because the reservoir volume spread function is more sensitive to 

variogram ranges for a small reservoir size. The three functions of the Figure 37a show the volume 

spread for the three polygons.  

 

For the horizontal range of 100m, the reservoir volume spread for all three polygons is about 24%. . 

The trend of the reservoir volume spread is increasing, delivering 81%, 69% and 51%, for the 

horizontal range of 700m and the three reservoir polygons (Table 4). Note that the volume spread for 

polygon1 (far away from the well) shows the largest volume spread values, whereas the polygon 3 

(positioned around the well) is giving the smallest numbers for the different horizontal variogram 

range. The volume spread functions for the polygons with a vertical range of 1m and 50m confirms this 

result. 

SIS Polygon radius 500m 
Varioqram ranges 100m 700m 
Polygon 1 24 % 81 % 
Polygon 2 24 % 69 % 
Polygon 3 24 % 51 % 

                       
Table 4: Sequential Indicator Simulation: volume spread function for the polygons 1, 2 and 3, 

with radius 500m. 
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The results of further investigation of the reservoir size influence on the reservoir volume spread 

function are summarized in Figure 38. This figure shows the reservoir volume spread as a function of 

the horizontal variogram range, where again the major and minor range have the same values. The 

vertical variogram range is set to 50m. The reservoir volume spread functions are shown for the 

polygon 3 located around the well and with a radius of 500m and 1000m.  

 

The volume spread functions for both polygons are increasing with increasing horizontal range. , The 

volume spread for the polygon with radius 1000m increases gradually from 27% at horizontal range 

100m, to 84% at horizontal ranges 700m. The reservoir volume spread function for the polygon with 

radius 500m shows higher values, starting around 40% for a horizontal range of 100m, and increasing 

to 114% for the horizontal ranges of 700m (Table 5). 

 

Varioqram ranges 100m 700m 
Polygon radius 500m 40 % 114 % 
Polygon radius 1000m 27 % 84 % 

 

 

Obviously the size of the reservoir polygon influences the reservoir volume spread function. The 

Figure 38 supports the theory of getting a high reservoir volume spread for a small reservoir and a large 

variogram range.  

Table 5: Sequential Indicator Simulation volume spread for polygon 3, with radius 500m and 1000m. 
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To observe the sensitivity of the reservoir volume spread on horizontal variogram ranges of different 

values (anisotropy), the Figure 39a and Figure 39b were plotted.  In both figures the volume spread 

distributions were plotted for the reservoir polygon 3 around the well with radius 500m, as a function 

of the horizontal anisotropy ranges.  In figure 39a the major and minor ranges have the same value, and 

in figure 39b they deviate by 30%   Color coded are the reservoir volume spread functions for the three 

vertical ranges: 1m, 10m and 50m. In both Figures the reservoir volume spread function for a vertical 

range of 50m, shows the largest values. The volume spread function for the vertical range of 1m shows 

the smallest values. Figure 39a shows an increase in volume spread for vertical range of 50m, from 

40% at horizontal ranges 100m, to 114% at horizontal range of 700m (Table 6). In Figure 39b the 

volume spread increases from 47%, to 106%, at horizontal ranges 100m and 700m respectively  

(Table 7).  

 

Major range = Minor range 
Varioqram ranges 100m 700m 
Vertical range 1m 15 % 34 % 
Vertical range 10m 23 % 54 % 
Vertical range 50m 40 % 114 % 

 

 

 

MInor range = 70%Major range 
Varioqram ranges 100m 700m 
Vetical range 1m 15 % 34 % 
Vertical range 10m 24 % 44 % 
Vertical range 50m 47 % 106 % 

Table 6: Sequential Indicator Simulation volume spread for polygon 3, using “Major range = Minor 
range”, and vertical ranges: 1m, 10m and 50m. 

 

Table 7: Sequential Indicator Simulation volume spread for polygon 3, using “Minor range = 70%Major 
range”, and vertical ranges: 1m, 10m and 50m. 
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To investigate and compare the influence of horizontal anisotropy ranges on the reservoir volume 

spread function, several plots for polygon 3 have been made. Figure 40a and Figure 40b show the 

reservoir volume spread, as a function of horizontal anisotropy ranges. Color coded are the reservoir 

volume spread functions  for equal horizontal ranges (blue) and for the case where the minor range 

constitutes 70% of the major range (red). The reservoir volume spread functions for the polygon with 

radius 500m are slightly higher compared to the reservoir volume spread for the reservoir polygon with 

radius 1000m. The results for the reservoir volume spread shown is Figure 40a and Figure 40b are 

given in Table 8 and Table 9: 

 

SIS Polygon radius 500m 
Varioqram ranges 100m 700m 

Major range = Minor range 39 % 
114 
% 

Minor range = 70%Major range 47 % 
106 
% 

. 
 
 
 

SIS Polygon radius 1000m 
Varioqram ranges 100m 700m 
Major range = Minor range 27 % 87 % 
Minor range = 70%Major range 20 % 80 % 

Table 9: Sequential Indicator Simulation: volume spread for polygon 3 with radius 
1000m, using different horizontal ranges 

Table 8: Sequential Indicator Simulation: volume spreads for polygon 3 with radius 
500m using different horizontal ranges. 
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2.2 Object modeling method 

To investigate the behavior of the reservoir volume spread for Object Modeling, the following channel 

parameters were investigated: Channel thickness, channel width, channel amplitude and channel 

wavelength. Following the publication of (Leeder 1973), the range of channel parameters used for 

reservoir volume spread analysis, was estimated from analogues. 

 

In Figure 41a and Figure 41b the reservoir volume spread was derived for various channel thicknesses. 

The channel thickness was increased from 10m to 70m, while the other geometrical parameters were 

set to the values shown in Table 10. 

 
Channel Thickness 10m - 70m 
Channel Width 60m 
Channel Amplitude 110m 
Channel Wavelength 400m 

 

 
Figure 41 shows an increasing trend of the reservoir volume spread with channel thickness for all 3 

polygons. Among all three reservoir polygons, polygon 3, which is located around the well, shows a 

smaller increase with the channel thickness compared to the volume spread linked to the other 

polygons.  The volume spread for the reservoir polygon of radius 500m shows a larger increase with 

increasing channel thickness compared to the reservoir polygon of 1000m radius. A summary of the 

volume spread is given in Table 11. 

 

  
Polygon 500m Polygon 1000m 

 

Channel 
Thickness 10m 70m 10m 70m 

Volume spread 
% 

Polygon 1 38 105,4 38 71,7 
Polygon 2 45,6 123,8 45,6 75,5 
Polygon 3 33,6 64,9 33,6 42,8 

 
 

Figure 42 shows the reservoir volume spread for different channel width values ranging from 60m to 

960m. All other parameters were set to the values shown in Table 12. 

Table 10: Channel thickness variations 

Table 11: Volume spread distribution for three polygons obtained by channel thickness variations 
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Channel Thickness 10m 
Channel Width 60m – 960m 
Channel Amplitude 110m 
Channel Wavelength 400m 

 
 

In comparison to the previous graphs, in the Figure 42, the polygon 3 which is located around the 

well does not show a significant trend of reservoir volume spread. The reservoir volume spread for 

the other two polygons with radius with 500m shows larger increase, comparison to the reservoir 

volume spread in polygon with radius 1000m. A summary of the volume spread is given in Table 

13.  

 

  
Polygon 500m Polygon 1000m 

 
Channel width 10m 70m 10m 70m 

Volume spread 
% 

Polygon 1 38,2 95,7 25,3 56,3 
Polygon 2 45,6 114,8 31,5 64,7 
Polygon 3 33,6 45,9 23 36,9 

 
 

Figure 43 shows the reservoir volume spread function of the channel amplitude for the 3 polygons. 

The channel amplitude increases from 110m to 610m (Table 14). As the graphs for all six polygons 

show, there is no significant influence of the channel amplitude on reservoir volume spread. 

 

Channel Thickness 10m 
Channel Width 60m 
Channel Amplitude 110m - 610m 
Channel Wavelength 400m 

 

 

The reservoir polygons with radius 500m, show a volume spread between 30%-50% for the 

analyzed channel amplitudes, while the reservoir polygon with radius 1000m, deliver a reservoir 

volume spread around 30%. 

Table 12: Channel width variations 
 

Table 13: Volume spread distribution for three polygons obtained by channel width variations 
 

Table 14: Channel amplitude variations 
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Polygon 500m Polygon 1000m 

 
Channel amplitude 110m 610m 110m 610m 

Volume spread 
% 

Polygon 1 38,2 41,2 27,4 34 
Polygon 2 45,6 51 31 36 
Polygon 3 33,6 38,2 25 26,2 

 
 
 

The reservoir volume spreads of Figure 44, are obtained through increasing the channel wavelength 

from 400m to 10400m (Table 16). They show almost the same trend for all polygons, similar to 

figure 3 discussed in the previous graphs. For the polygons with radius 500m, the reservoir volume 

spread varies around 40%, whereas for the reservoir polygons with radius 1000m, the reservoir 

volume spread lies around 30% (Table 17).  

 
Channel Thickness 10m 
Channel Width 60m 
Channel Amplitude 110m 
Channel Wavelength 400m – 10400m 

 
 
 

  
Polygon 500m Polygon 1000m 

 

Channel 
wavelength 400m 10400m 400m 10400m 

Volume spread 
% 

Polygon 1 33,2 40,2 25,4 24,3 
Polygon 2 45,6 51,9 32 30 
Polygon 3 33,6 39,9 24,5 25,6 

Table 15: Volume spread distribution for three polygons obtained by channel amplitude variations 

Table 16: Channel wavelength variations 
 

Table 17: Volume spread distribution for three polygons obtained by channel wavelength 
i i  
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2.3 Acoustic impedance 

As stated in previous chapter, a seismic acoustic impedance cube represents an approximation of the 

rock parameter acoustic impedance (Figure 45). This chapter mainly focuses on the influence of the 

seismic acoustic impedance cube on the reservoir volume spread distribution.  

 
Figure 45: The seismic acoustic impedance cube 

 

As seen in Figure 45 the seismic acoustic impedance responses shows a channel like structure with low 

impedance values (purple-blue), embedded in high acoustic impedance values shown in green-yellow-

Reservoir Polygon 3 

Reservoir Polygon 2 

Reservoir Polygon 1 



 

 47 

red. The low acoustic impedance responses show a trend from SE to NW, while relatively high acoustic 

impedance response does not show any obvious structure.   

 

Figure 46 explains the distribution of the probability of the reservoir facies, as a function of the 

acoustic impedance. It shows, a gradual decrease of the probability of the reservoir facies (yellow), 

with increasing acoustic impedance values, In Figure 46, which shows the probability distribution of 

non-reservoir facies (purple), the probability distribution of non-reservoir facies is increasing, whereas 

the acoustic impedance values increasing. 

 

 

 

 

Figure 46: Reservoir facies probability distribution, according to acoustic impedance responses 
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According to the reservoir and non-reservoir facies probability graphs, reservoir (sand) facies (Figure 

48) and non-reservoir (shale) facies (Figure 49) probability acoustic impedance cubes are constructed. 

 

Figure 48 shows the probability of reservoir facies, according to the acoustic impedance values. In this 

Figure, acoustic impedance values with high probability of reservoir facies are represented with 

yellow-green colors, therefore, it is clearly seen, that sand facies distribution at this time slice, have a 

SE-NW trend. 

 

The probability of non-reservoir facies according to the acoustic impedance responses is represented on 

Figure 49. As the impedance time slice shows, high probability non-reservoir (shale) facies which are 

represented by yellow-orange color are distributed on the sides of the conceptual model

Figure 47: Non-Reservoir facies probability distribution, according to acoustic impedance responses 



 

 49 

Figure 48: Reservoir (sand) facies probability cube 

Reservoir Polygon 1 

Reservoir Polygon 2 

Reservoir Polygon 3 
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Figure 49: Non-reservoir (shale) facies probability cube 

Reservoir Polygon 1 

Reservoir Polygon 2 

Reservoir Polygon 3 
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As shown in Figure 50a, the volume spread distributions for polygon 3 (around the well) with radius 

500m, were plotted as a function of the horizontal variogram range. Color coded are the vertical 

anisotropy ranges: 1m, 10m and 50m. The probability cubes shown in figure 49 were used to guide the 

facies simulations. Figure 50b, represents the volume spread distributions, obtained using Sequential 

Indicator Simulation modeling method, and using the same modeling parameters, as in figure 50a but 

without the facies probability cubes derived from the acoustic impedance cube. The reservoir volume 

spread results for the Sequential Indicator Simulation guided by the seismic impedance cube are 

smaller compared to the results of Sequential Indicator Simulation modeling method that does not take 

the seismic impedance into account.  

 

Figure 50: a) Reservoir 
volume spread distributions 
for Acoustic impedance in 
polygon 3 with radius 
500m, using different 
vertical ranges.  

 

 

 

 

 

 

 

b) Reservoir volume spread 
distributions for Sequential 
Indicator Simulation in 
polygon 3 with radius 
500m, using different 
vertical ranges 

B 
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 Figure 51a and Figure 51b, are comparing the reservoir volume spread results for reservoir polygon 3 

and polygon 1, by using Sequential Indicator Simulation modeling method guided by the  Acoustic 

impedance cube (blue function) and without the acoustic impedance cube (red function) . The reservoir 

volume spread function based on the Sequential Indicator Simulation method not guided by the 

acoustic impedance cube for Polygon 1, which is located away from the well DW 1, is higher than 

volume spread function for polygon 3. However for the Sequential Indicator Simulation guided by the 

Acoustic Impedance, the reservoir volume spread functions for Polygon 1 and Polygon 3 are very 

similar. In both cases, the reservoir volume spread distributions obtained by taking the Acoustic 

Impedance cube into account are smaller, comparing to volume spread distributions of the Sequential 

Indicator Simulation method without taking the acoustic impedance cube into account. A summary of 

the volume spread results are given in the Table 18 and Table 19: 

 
(Acoustic Impedance) Polygon radius 500m 

Variogram ranges 100m 700m 
Polygon 1 13 % 43 % 
Polygon 3 14 % 33 % 

                                        
 
 
 
 

(Sequential Indicator Simulation)  
Polygon radius 500m 

Variogram ranges 100m 700m 
Polygon 1 24 % 81 % 
Polygon 3 23 % 56 % 

                                        
 
 
 
Figure 52a and Figure 52b show the comparison of the reservoir volume distribution for polygon 1 for 

both methods: by using Seismic acoustic impedance cube (Figure 52a) and Sequential Indicator 

Simulation method (Figure 52b). As it can be seen from the figures, the P50 value in the model with 

Seismic acoustic impedance shows is larger compared to P 50 value of Sequential Indicator Simulation. 

Therefore the reservoir volume distribution of the polygon with Seismic acoustic impedance is lower 

compared to Sequential Indicator Simulation.

Table 18:  Volume spread based on Sequential Indicator Simulation guided by the Acoustic 
impedance volume for Polygon 1 and Polygon 3 

Table 19: Volume spread based on Sequential Indicator Simulation for Polygon 1 and 
Polygon 3 
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Chapter 3 : DISCUSSION 
 

This study is focusing on the influence of facies modeling parameters on the volume uncertainty of 

small reservoirs. It identifies the parameters that are most influential on the volume uncertainty and 

tries to show that the relationship between the reservoir size and the value of the parameters controlling 

the sand facies size are influencing the volume uncertainty to a large extend.   

 

3.1 Sequential Indicator Simulation 

 

As stated in the previous chapters, each modeling parameter has its own influence on reservoir volume 

spread. As the observations show, the rate of the influence differs from parameter to parameter. That 

basically means that some of the modeling parameters have higher influence on reservoir volume 

spread than others. 

In Sequential Indicator Simulation modeling method, the parameters which are influencing the 

reservoir volume spread the most, are: Horizontal (Major range, Minor range) and Vertical ranges. This 

is clearly seen in Figure 36, where increasing variogram ranges are contributing to the considerable 

increase of the reservoir volume spread. Increasing variogram ranges, lead to larger reservoir facies 

patches and non-reservoir facies, which causes a higher reservoir volume spread. 

 

3.2 Object Modeling 

 

In Object Modeling, the most influential parameters are: Channel thickness and channel width. As it 

can be seen from the previous observations, Channel amplitude and wavelength don’t have such a 

significant impact on the reservoir volume, compared to channel thickness and channel width. Similar 

to Sequential Indicator Simulation modeling method, these two parameters control the reservoir facies 

patches and consequently have a major impact on reservoir volume accuracy.  

 

Channel wavelength and channel amplitude variations, didn’t give any major differences in reservoir 

volume spread distributions. The reason is that these parameters do not control the size of the facies 

patches.   
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3.3 Reservoir size impact 

 

One of the factors of importance for the reservoir volume distribution is the size of the reservoir. To 

simplify the analysis reservoirs defined by circular polygons with different radius of 500m and 1000m 

were used for the volumetrics. By comparing the reservoir volume spread graphs of these two polygons 

it becomes obvious that the uncertainty in the reservoirs with smaller radius is higher than in reservoirs 

with the larger radius. These results are coming from the higher probability of getting reservoir facies 

inside of the reservoir polygon with larger radius compared to the polygon with smaller radius. 

 
 
3.4 Variation of the volume spread distribution in polygons with respect to the well 

 

Reservoir polygon 3 is located around the well and therefore, the reservoir volume spread resulting 

from the variation of channel thickness and width is smaller, in comparison to reservoir polygon 1 and 

reservoir polygon 2. In other words the vicinity of a well reduces the reservoir volume uncertainty. The 

reason for this behavior is shown in Figure 53(below). The facies encountered at the well makes sure 

that a simulated channel is passing by the well in order to honor the sand facies at the channel. 

Consequently the polygon around the well will be crossed by a channel for every simulation (SEED 

number).  

The situation is different for the other two polygons away from the well: In some models a channel 

passes through polygon 1 and polygon 2, in some cases it passes through polygon 2 without passing 

through polygon 1. The distribution of the channels is always changing with different Seed number. 

This causes the observed reservoir volume spread for polygon 1 and polygon 2.
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B 
Figure 53: a) Channel distributions in Object modeling method. Seed number 
10 b) Channel distributions in Object modeling. Seed number 50 

 

A 

Reservoir Polygon 1 

Reservoir Polygon 2 

Reservoir Polygon 3 

Reservoir Polygon 1 

Reservoir Polygon 2 

Reservoir Polygon 3 
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3.5 Influence of Acoustic impedance cube on reservoir volume spread 

 

The influence of the acoustic impedance cube on the reservoir volume spread was studied for the 

Sequential Indicator Simulation. The analysis is done for polygon 1 being far away from the well and 

polygon 3 which includes the well. Obviously the acoustic impedance cube has a reducing effect on 

reservoir volume spread compared to Sequential Indicator Simulation method without acoustic 

impedance as secondary input. . Note that the volume spread distributions for both polygons are quite 

similar. In addition it increases the P50 value of the volume for both polygons. The explanation for this 

observation is in Figure 54. The figure shows the average reservoir facies probability based on the 

acoustic impedance (54 A) and based on Sequential Indicator Simulation (54 B). Within the two 

polygons the reservoir facies probability shows higher values (ca 28%) compared to Sequential 

Indicator Simulation (ca 17%). This explains the difference in the P50 volumes for the two cases. For 

small reservoirs the reservoir volume uncertainty should decrease with increasing reservoir facies 

probability which is confirmed by the observation. 

 

 

 

 

 

Figure 54: a) Sand probability of the model based on Acoustic impedance      b) Sand probability of the model based on Sequential Indicator 
Simulation 

 

A B 
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3.6 Reservoir volume P50 stability, along with P10 and P90 values 

 

The stability of P50 along with P10 and P90 in Object modeling method is shown in Figure 55. These 

graphs are created, based on P10, P50 and P90 values of the volume distributions of Object modeling. 

As can be seen, the P50 reservoir volume trend of three polygons is nearly horizontal, whereas the P10 

has decreasing trend, and at the same time the P90 reservoir trend is increasing. 

 

 

 

3.7 Volume spread analysis for Sequential Indicator Simulation and Object modeling methods 

 

As the graphs are showing, in Object modeling and Sequential Indicator Simulation modeling methods, 

when the area of the investigation is getting closer to the well, a reduction in the reservoir volume 

spread is observed (Figure 56). The results obtained from Object Modelling, shows the nearly 

horizontal trend of stabilized volume spread for polygon 3. The volume spread is increasing with the 

variogram range for the other two polygons (Figure 57). To investigate smaller the lower reservoir 

Figure 55: Reservoir volume distributions of the channels, obtained via channel width variations. Stability of P50 value among P10 and P90. 

 

Legend: 

Channel width in meters Channel width in meters Channel width in meters 
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volume spread of Polygon 3 for Object Modeling method, compared to the volume spread coming from 

Sequential Indicator Simulation, it was decided to create, thickness maps for both methods. 

 

 

 

 

 

 

 

 

The thickness maps for Sequential Indicator Simulation modeling method show several areas of low 

sand thickness. It should be noted, that from simulation to simulation the positions of the high and low 

sand thickness patches is changing. This explains the large variations of the reservoir volume spread, 

also for the polygon around the well. Important: it can be assumed that the volume spread for the area 

of interest around the well is reduced in case of large horizontal variogram ranges (Figure 58). 

 

The areas of high channel sand thickness are larger than the patches of sand based on Sequential 

Indicator Simulation. The upscaled sand facies at the well is making sure that a channel is always 

crossing the well for every simulation. Consequently the reservoir channel sand thickness in the 

vicinity of the well is similar for all simulations. Therefore, the reservoir volume spread for polygon 3 

around the well is reduced comparing to the other reservoir polygons (Figure 59). 

Figure 56: Sequential Indicator Simulation method. 
Reservoir volume spread distributions for different 
polygons with radius 500m. Vertical range is taken 10m. 

 

Figure 57: Object modeling method. Reservoir volume 
spread distributions for different polygons with radius 
500m. 

Legend: 

A B 
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Chapter 4 : CONCLUSIONS 

 
 

The main conclusions of this research analysis of the influence of different modeling techniques on 

reservoir volume are: 

• The parameters in Sequential Indicator Simulation modeling method, which are influencing the 

reservoir volume spread, are Horizontal and Vertical variogram ranges. 

• The parameters in Object Modeling method, which are influencing significantly the reservoir 

volume spread, are channel thickness and channel width. 

• Comparing the reservoir volume spread of the two modeling methods, shows that for indicator 

simulation the reservoir volume spread is reduced moderately from Polygon 1 to Polygon 3 

(around the well) , However for Object modeling, the difference between the reservoir volume 

spread of Polygon 3 is much larger compared to Polygon 1 and Polygon 2 

•  The size of the reservoir polygon also plays an important role in the distribution of reservoir 

volume spread. The larger reservoir polygon, the smaller reservoir volume spread distribution 

appears to be. 

• The reservoir volume spread increases with increasing distance of the polygon to the well. The 

Acoustic impedance cube has a noticeable impact on the reservoir volume spread. By using an 

Acoustic impedance cube for the facies simulation, the reservoir volume spread of the reservoir 

polygons, decreases comparing to Sequential Indicator Simulation without the impedance cube 

as secondary input 

 

 Each of the modeling methods, have advantages and disadvantages. The major advantages of 

Sequential Indicator Simulation method are: 

• Possibility of building reservoir model with limited data 

• Workflow running takes less time compared to Object modeling. 

• There are only 3 influential parameters on the model and reservoir volume spread. 

The possibility of creating accurate fluvial models is regarded as an advantage of Object modeling 

method. 
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Disadvantages of Object modeling method are: 

• Workflow running time is more, comparing to Sequential Indicator Simulation method. 

• The number of parameters, which are influencing the reservoir volume spread is higher, 

than for Sequential Indicator Simulation modeling  

• There are four main parameters in Object Modeling method which are influencing the 

reservoir volume spread, the most. The main challenge in Object Modeling method is to get 

a proper estimation of the value range for these parameter 
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