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                   Figure 0.1 Collapse of the Tacoma Narrows Bridge at 11:15 AM on 7 November 1940 (Scott, 2001) 
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Preface 

We knew we had to write a bachelor thesis like every other teacher-student by our third year. 

Little did we know that we were allowed to write about an event that we were used to as early 

as our first semester here at the University of Stavanger. While attending the course FYS100 

and learning about oscillatory motion, we were introduced to and shown a video of this 

peculiar bridge oscillating in a torsional matter. Our lecturer told us this was a topic we would 

have to understand before our upcoming exams. However, he also questioned if the bridge's 

torsional motion was caused by Resonance or something else. The book also mentioned that 

this view is still contested by mathematicians and physicists today. But should such an example 

be used if it only brings confusion around the understanding of Resonance? The case of Tacoma 

Narrows Bridge shows that not everything one reads has to be a definitive truth and that one 

should always question what one reads, even if the source is an academic book or article. When 

we researched which topic of our thesis we should request, we were struck by nostalgia and 

curiosity over the bridge we remembered from our earlier course. And we are both happy and 

satisfied with the thesis we have written. We want to thank Alex Bentley Nielsen for showing us 

this bridge back in FYS100 and bringing us this topic for our thesis. We also want to thank him 

for helping us throughout this semester when working on the thesis. We also want to thank 

Jasna Bogunovic Jakobsen for finding time to answer some of our questions regarding the 

Tacoma Narrows Bridge and how she and the professional community view the bridge's 

collapse today. We would also like to thank Stian Penev Ramsens for helping us with the 

program Tracker and tracking the video data. 

Fredrik Monclair Pedersen, Anders Bringedal Waldeland, Audun Boge 
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Abstract 

On 7 November 1940, a historical event occurred for suspension bridge construction and 

aerodynamic engineering around suspension bridges. Engineers investigating the event 

concluded the bridge collapsed due to high winds but did not explain how. Later lab tests by 

other engineers and scientists demonstrated that the collapse happened either due to forced 

oscillations with Resonance or aeroelastic flutter. Forced oscillations with Resonance treated 

the bridge as an object being periodically pushed by the winds in Resonance with its natural 

frequency. And aeroelastic flutter treats the bridge as a wingspan in a fluid stream where the 

winds would alternate the pushing of the bridge span as it enters above and under the plate. 

Due to historical similarities, some believed the collapse occurred due to Resonance. However, 

later articles would discuss the aeroelastic flutter and criticize the resonance argument. One of 

these articles would be written by Billah and Scanlan, criticizing the use of the bridge as an 

example of Resonance in physics books and showing an alternative interpretation of the 

collapse. After discussing the collapse with an expert in aerodynamics on bridges from the 

University of Stavanger, we were informed that the Billah and Scanlan article is considered the 

modern explanation by the professional community. However, there are still physics books 

today that still misrepresent the circumstances around the collapse. We, as teaching students, 

agree with the Billah and Scanlan article and the opinion of the professional community that 

the collapse was most likely due to aeroelastic flutter. And that the collapse being represented 

as Resonance simplifies and misrepresents a more complicated and comprehensive problem 

around the Tacoma Narrows Bridge. 
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Introduction 

On the morning of 7 November 1940, the Tacoma Narrow Bridge in Washington, USA, collapsed 

due to high winds, making it move up and down and oscillate in a torsional motion until it tore 

itself up and fell into the narrows. But what phenomena caused the collapse? There are many 

leading theories as to why this happened, but physicists and engineers are still in debate about 

what is the real cause that led to the bridge collapse.  

 

The theories for the collapse are many, but the most common theories are forced oscillations 

with Resonance or aeroelasticity and flutter on the bridge. The argument for forced oscillations 

and Resonance builds upon the thought of wind forces hitting the bridge with a frequency like 

that of the bridge's natural frequency, making it oscillate in the torsional matter. This theory is 

the most common explanation in physics books used in schools and universities, as shown in 

section 8 of this thesis. However, is it correct to show early physicists this as the cause of the 

collapse when the explanation is still up for debate? Another common explanation is that 

aeroelasticity and aeroelastic flutter and is the explanation favored by most engineers. This 

theory builds upon wind theory and how the span of the bridge worked as a wingspan in high 

winds. The steady flow of the wind and the internal damping force of the bridge created the 

torsional motion, which caused the bridge to collapse. 

 

An example of these textbooks and one that we are familiar with from one of our earlier 

courses is a figure from the FYS100 book used at the University of Stavanger. This figure in the 

resonance part of the book shows the bridge's collapse. It states:  

 

"In 1940, turbulent winds set up torsional vibrations in the Tacoma Narrows Bridge, causing it to 

oscillate at a frequency near one of the natural frequencies of the bridge structure. Once 

established, this resonance condition led to the bridge's collapse. (Mathematicians and 

physicists are currently challenging some aspects of this interpretation)". (Serway & Jewett, 

2017) 
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We will also show more examples of this type of representation of the collapse in section 8. 

 

As mentioned earlier, the main objective of this thesis is to summarize the different 

mathematical explanations of what caused the collapse and the strengths and weaknesses of 

the arguments. But, again, to emphasize that this problem is not as simple as a forced 

oscillation and resonance problem shown in the different physics books. But there are quite a 

few articles that have been written since the collapse in 1940. And these articles all have other 

arguments for why the bridge collapsed or criticism for earlier explanations in earlier articles. 

So, we will try to present these different articles and understand their views from a 

mathematical standpoint and what they believed caused the collapse of the Tacoma Narrows 

Bridge. And show that the problem is more complicated and comprehensive than a simple 

forced oscillation and resonance problem.  

1. Suspension bridges  

A suspension bridge comprises two towers, a deck and curved cables, as you can see on the 

picture of the Lysefjord bridge below. The cables carry tension forces. These forces are 

transferred to the two towers who leads the forces to the foundation in the form of 

compression. Since the start of the 20th century deflection theory has been used to design 

suspension bridges. Deflection theory says that when the structure becomes heavier, and the 

spans become longer the stiffness needed from the deck is decreased. This was especially 

important for the design of suspension bridges in the 1930s. They wanted to make the bridges 

thinner and more elegant. (The Editors of Encyclopaedia Britannica, 2021) Maybe this 

contributed to the failure of the Tacoma Narrow Bridge? Because when a bridge gets slimmer it 

is more susceptible to oscillations. Therefore, you can relate this to the Tacoma Narrows bridge 

because it collapsed due to oscillations. 
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Figure 1.1 Picture of the Lysefjord suspension bridge. Photo: Fredrik M. Pedersen 

 

1.1 Theory about suspension bridges 

As we will see later in this thesis, there are certain types of bridges with a medium- and long 

span that can be influenced by aerodynamic forces that will then generate a motion in the 

structure. The motion that the bridge will be induced is self-exited, which will, in turn, be 

affected by the aerodynamic force that it produces self, hence the name. The actions that are 

associated with self-excited motion are also known as aeroelastic. 

The aeroelastic phenomena on bridges are of interest to different fields, like engineering, 

physics, and mathematics (Simiu & Miyata, 2006). However, engineers who study bridges and 

those who look at aeronautics differ in three ways. First, bridge structures are typically bluff, 

although, in modern suspension and cable-stayed bridges, streamlined box-like deck shapes are 

being used increasingly. Second, bridge decks have appurtenances such as handrails, curbs, 

parapets, center barriers, grillages, and so on that can significantly affect the flow and the 

aeroelastic forces. Third, unlike flows typically considered in aeronautical engineering, the flows 
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in which civil engineering structures are immersed are, in most cases, turbulent (Simiu & 

Miyata, 2006).  

Atmospheric turbulence comes from the thermal stratification of the flow. So, if there were 

high wind velocities, mechanical turbulence is the dominant turbulence. Therefore, the airflow 

may be assumed to be neutrally stratified. But the atmospheric flow is not necessarily neutrally 

stratified, even at relatively high wind velocities. Hence, the actual flow turbulence may differ 

substantially from, in some cases, be considerably weaker than the turbulence inherent in 

standard models. There is a chance that this affects bridge behavior unfavorably, especially 

under vortex-induced excitation, which is typically stronger in smoother flow (Simiu & Miyata, 

2006). 

 

Suspension bridges have also been a standard construction method for Norwegian bridges. 

They used the knowledge obtained by the Americans and other countries and made adaptions 

to Norwegian conditions. For example, are the Norwegian suspension bridges often slimmer 

than in other countries because there are usually only two-field roads and not four-field ones, 

so you do not need the bridge to be that wide? (Øderud & Nordhal, 2021) 

 

 

2. The Story of Tacoma Narrows  
 

In the 1930s, there was a surge of suspension bridges in the USA. Bridges like the Golden Gate 

Bridge and the Bronx-Whitestone Bridge finished construction in 1937 and 1939 and were 

significant successes for the engineering world. Golden Gate Bridge was the largest suspension 

bridge globally built, and Bronx-Whitestone Bridge was considered the most graceful 

suspension bridge to be made at that time. Another suspension bridge that was proposed in 

1929 was the Tacoma Narrows Bridge. This bridge would connect the city of Tacoma to the 

sparsely developed Olympic Peninsula in northwest Washington, and a couple of assorted 

designs were petitioned over the years that followed. However, none of the designs would 
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follow through until 1938, when the Toll Bridge Authority petitioned a design under the 

direction of engineer Clark H. Eldridge. This design would later be compromised to form a 792-

m span flanked by longer 396-m side spans. There would also be a 12m wide floor truss 

stiffened by a 12m deep stiffening truss. They applied for funding of $3.3 million but only 

received $2.7 million. Something that would spark a later independent review of the 

construction plans (Scott, 2001).  

 

After being denied proper funding for the suspension bridge, The Washington State Toll Bridge 

Authority obtained an independent review of its plans by Leon Moisseiff, arguably the most 

prolific suspension bridge designer of the era. This review would again alter the bridge's design, 

where the stiffening truss would be changed to a solid plate girder that would be both lighter 

and cheaper than the trusses. However, because of Moisseiff's working theories for suspension 

bridges, the change would not raise suspicion; instead, it would be praised for its economic and 

graceful design (Scott, 2001). The Toll Bridge Authority's Advisory Board of Engineers also 

stated, "We have full confidence in Mr. Moisseiff and consider him to be among the highest 

authorities in suspension bridge design" (Scott, 2001). And would not provide cause for 

suspicion on the design or potential grounds for disaster. There were some skeptics about the 

layout, like the septuagenarian engineer T.L Condron, who had done examinations of the design 

and was concerned with the width to span ratio of the design. However, despite Condron's 

concerns, the design would remain unaltered (Scott, 2001). 

 

The construction of The Tacoma Narrows Bridge was not a smooth occurrence either. During 

the construction of the two caissons, box-like structures were used to build the underwater 

foundation for the bridge. Unfortunately, a crane boom buckled and dropped a load of steel 

into one caisson, injuring two and delaying work for ten days (Scott, 2001). One of the caissons 

also sank further down than estimated because of poor rock, causing further work and 

unintentionally making the caissons one of the deepest bridge peers ever at 68m depth below 

the span, which prompted the contractors to sue the Toll Bridge Authority (successfully) over 
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faulty tidal information. Other signs of unease came during the final stages of construction 

when an unusual rhythmic vertical motion began to grip the main span in only moderate winds. 

These motions had plagued the construction workers with nausea and the engineers with 

concern. It was becoming apparent that a potentially dangerous phenomenon was around the 

corner. By early June, the bridge had been fitted with additional wires to support the midspan 

cable band to the plate girder. By the end of June, it was also fitted with hydraulic buffers like 

the ones on the similar Bronx-Whitestone Bridge. Tacoma Narrows Bridge then opened on 1 

July 1940. 

 

Despite all these measures, the vertical motion continued and became the subject of much 

local interest. Motorists and tourists gathered by the bridge to spectate and drive over the 

bridge during these motions. Because of this, the bridge earned the nickname Galloping Gertie, 

and a local bank even planted a billboard near the bridge, proclaiming it "as safe as the Tacoma 

Narrows Bridge." The bridge also proved to be financially stable; commuting tolls were reduced 

by 25% within a month. However, the bridge's motional behavior continued to worry Toll 

Bridge Authority engineers. By the end of July, it was devised to provide additional restraining 

measures on the bridge. Therefore, markers were planted on the lampposts along the span and 

a camera on top of one of the toll towers to document the angle and amplitude of the 

oscillations. And throughout August, observations and photographs were taken of the bridge 

and its oscillations. These videos and observations would prove that the span would also start 

to move during small winds, but since there was little evidence for side sways, the engineers 

saw little cause for concern. However, mindful of autumn winds, the engineers added hold-

down cables to restrain the east side span and were repeated three days later for the west 

span. 

 

On the night of 6 November 1940, a storm began to assert high winds on the bridge. The first 

signs of concern came from the Toll bridge Authority employee stationed overnight on a scow 

(wide beamed sailing boat) beneath the west side span. Some of the temporary hold-down 
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cables had loosened by the bridge's motion, but the side spans had remained placid. By 05:00 

AM, the motion had subsided. However, by 08:00 AM, the wind had increased to 17 m/s, and 

the main span had started to move up and down again. Then around 09:30 AM, a contractor's 

employee noticed the center ties on the north cable "alternately tightening and loosening, 

causing considerable snapping at this point." His motion picture film would later provide a lot of 

evidence for the events around the bridge on this day. In addition, Professor Farquharson of the 

Department of Civil Engineering at the University of Washington reportedly rushed to a local 

camera shop to borrow a camera to document the chaos unfolding on the bridge. The same 

man also tried to walk out on the span to save a dog stuck in one of the stranded vehicles on 

the bridge but had to retreat due to the increasing motion. Two truck occupants were out on 

the span during the large oscillations, but luckily, they managed to escape before the truck fell 

over on its side. By 10:00 AM, the winds had increased to 19m/s. And shortly after, astonished 

onlookers and aghast engineers watched as the bridge's behavior started oscillating in a violent 

motion so that the span seemed to almost roll completely over (Scott, 2001). At 10:30 AM, a 

floor panel broke and fell into the narrows. These events were the heaviest sign for 

Farquharson and the curious onlookers that the bridge would collapse on this day. And by 

11:00 AM, some of the main span by the west tower peeled away and fell into the narrows. By 

11:10 AM, the rest of the span plunged into the water, taking both the abandoned vehicles and 

the dog. The most spectacular bridge collapse ever was over. The Tacoma narrows bridge lasted 

just four months, but an entire era of engineering philosophy went with its demise. (Scott, 

2001) 

 

2.1 The Aftermath of Tacoma Narrows bridge 

What transpired after the bridge collapse was a thorough investigation and attempt to explain 

the events at Tacoma Narrows Bridge. How could a span designed to withstand 45m/s winds 

and static horizontal wind pressure of 146 kg/m2 succumb under the wind of less than half that 

velocity imposing a static force one-sixth the design limit? And how could horizontal wind 

forces be transformed into dynamic vertical and torsional motion? A baffled Moisseiff was 

quoted to be "completely at a loss to explain the collapse." The collapse was well documented 
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when one accounted for the cameras at the scene. The camera installed on top of the spans toll 

booth and the ones brought onto the scene by Farquharson and the onlookers would provide 

incalculable scientific value to the subsequent investigations.  

 

In the wake of the collapse, The Board of Engineers (known as the Carmody Board after Public 

Works Administration (PWA) head John M. Carmody) was established to investigate the 

collapse and find a solution to make sure this would not happen again. The board included big 

names from the industry like: 

 Othmar Ammann known for being the chief engineer during the construction of the 

Bronx-Whitestone Bridge and George Washington Bridge.  

 Glenn B. Woodruff, Engineer of design for Transbay.  

 Theodore von Kármán (1881-1963), director of the Guggenheim Aeronautical 

Laboratory, was a leading figure in airfoil aerodynamics and had pioneered the study of 

wake turbulence since 1911.  

In March of 1941, the Carmody board reported its findings. They pointed out three main flaws 

that caused the bridges to collapse. First was its flexibility, and second, was the plate girder and 

deck acting like an airfoil creating drag and lift. And third, was the aerodynamic forces acting on 

the bridge from the storm and how engineers did not have enough understanding of how these 

forces could influence the bridge. 

 

The years that followed Gertie's demise would also prove to be difficult for the citizens of 

Tacoma. The bridge had been a lifeline for many as it connected their rural area to commercial 

hotspots like Seattle and the rest of Washington state. The new bridge had to be thoroughly 

planned and researched to prevent another disaster. This new bridge would not see the light of 

day until a decade later after salvaging, World War 2, and material shortages. The new Tacoma 

Narrows Bridge would stand completed in October 1950 and was nicknamed "Sturdier Gertie" 

by local promoters. The bridge was wider with four lanes, Heavier, and more robust with a deep 
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stiffening truss, and with it came a new era for bridge design and aerodynamics around bridges. 

(Washington State Department of Transportation, 2020) (Scott, 2001) 

 

 

Figure 1.1 A picture with both designs of the Tacoma Narrows bridge before the collapse (1940) and the design after (1950) 
which still stands today. (Scott, 2001) 

 

2.2 Tacoma's Influence on later bridges 

As the Tacoma narrow span hit the narrow waters bridge, engineers had to reevaluate the use 

of long and thin suspension bridge design. The design that Leon Moisseiff had proposed was up 
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to the standards of the time, but that was the main problem. The standards at the time failed 

to consider aerodynamics on bridges. As a result, former bridges that were similar in scale and 

design prevented the motions that occurred at the collapse and were thought to be 

constructed due to preference, not the ingenuity around bridges and their stiffness and ability 

to resist the winds. An example of this would be the Brooklyn Bridge, constructed by John 

Roebling in 1883. He consciously reinforced his spans with trusses and tower stays not because 

of innovative ideas but because it was already established after the introduction of deflection 

theory in the late 19th century trusses and reinforced spans faded into memory. In other words, 

the bridge engineering society had forgotten the problems with the aerodynamics of 

suspension bridges in favor of cheap and majestic bridges with long and thin spans (Scott, 

2001). 

 

So, what happened with the suspension bridge design after the Tacoma Bridge collapsed? 

Stiffening trusses quickly became more popular again in bridge design. Engineers soon realized 

that the trusses from earlier works like The Brooklyn bridge worked to prevent the torsional 

motion that had torn up The Tacoma Narrows Bridge. Therefore, it was not unusual to fit new 

suspension bridges with stiffening trusses after the collapse. A notable example of this would 

be the new Tacoma Narrows Bridge fitted with stiffening trusses like those proposed in the 

original design for the bridge, which would be the same as the trusses used at Mackinac in 1957 

seen in figure 2.2. And as trusses evolved, so would the aerodynamic stability of the bridges 

become with them. An invention used at Severn Bridge to reduce aerodynamic instability was 

an enclosed box girder where the surface would run over the box of an airfoil shape where the 

winds could run through the box. A similar design can be seen in figure 2.2, as Tsing Ma (1997) 

also used an enclosed box girder. Not only did this improve stability, but it also reduced 

construction costs. The box girder would prove to be a new favorite for stability in suspension 

bridges next to the use of trusses. Bridges that would become significant accomplishments for 

suspension bridge history would later be the Mackinac Bridge and The Verrazano-Narrows 

Bridge, building upon the failures and lessons learned from the Tacoma Narrows Bridge 

disaster.  
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Figure 2.2 Different truss designs and which bridge they were applied to. (Scott, 2001)  

 

Another invention that proved the structure's ability to prevent the deck from oscillating was the 

introduction of Inclined Hangers. As shown in figure 2.3, the hanger suspended from the main 

cables to the deck would be hung in an inclined fashion. This simple employment would assist 

the bridge, together with the longitudinal movements and the distribution of weight due to 

traffic, improve the damping potential of the structure (Severn Bridge Trust, 2019).  
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Figure 2.3 A model of the Severn Bridge and its use of both an enclosed box girder and inclined hangers. (Scott, 2001) 

 

2.3 The Norwegian difference 

An exciting contender in bridge history and theory is our own sparsely populated country of 

Norway. Throughout the 19th and 20th centuries, Norway has strived to make traversing the 

fjords a more straightforward and shorter task. The first recorded suspension bridge dated to 

1844, the Bakke bridge in Sira Flekkefjord, and remained standing for 110 years. The nation 

continued to construct many suspension bridges throughout the century. What makes this part 

interesting is that during the 1920s and 1930s, the American trend of constructing long, thin, 

and cheap suspension bridges was also observed in Norway. A natural evolution of suspension 

bridge design in the times of economic instability and post wartimes. Norway, however, would 

continue to construct bridges that were indeed thin and long with depth to span ratios of 1:458 

like the Elverum bridge. A feat that would perplex American investigators since it proved to be 

immune to aerodynamic oscillations. The most crucial Norwegian suspension bridge history 

case comes from the Fyksesund Bridge. The bridge experienced the same kind of oscillations as 

the ones observed at the Tacoma narrows. However, this was back in 1937, three years before 

the Tacoma collapse, and Fyksesund Bridge did not meet its demise by these oscillations. But 

this event influenced the up-and-coming bridge engineer Arne Selberg, a man who would 

pioneer aerodynamic suspension bridge design in Norway in the years to come. He would get 

his doctorate thesis on Design of Suspension Bridges accepted in 1946 and later the post of 

Professor of structural Mechanics in 1949 at NTH (Norwegian Institute of Technology). And 



  
 

18 
 

after the completion of a wind tunnel at NTH, he would investigate the aerodynamic behavior 

of suspension bridges. His research would earn him the reputation of one of the world's leading 

experts in the field. 

 

3. Local suspension bridges in the Stavanger area 

To look at how suspension bridges are built later than Tacoma Narrow Bridges, we have visited 

two local suspension bridges, the Lysefjord bridge and the Bybru in Stavanger.   

 

3.1 The Lysefjord bridge  

The Lysefjord bridge is a suspension bridge that was opened in 1997. It has a main span of 446 

meters, about half of the main span of the Tacoma Narrow Bridge. The bridge is constructed 

with two towers, one on each side of the fjord (NAF, u.d.). So overall, it is pretty similar to the 

Tacoma narrows bridge, just a bit shorter.     

 

 

Figure 3.1 The Lysefjord bridge from the road. Photo: Fredrik M. Pedersen.  
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Figure 3.2 Tacoma Narrows Bridge. (Ann, 2018)  

 

 

As you see from the pictures above, there are similarities between the Lysefjord bridge and the 

Tacoma Narrow Bridge when you see the bridges from above. They are both much like a 

standard suspension bridge. In the pictures below, you can observe the Lysefjord from below. 

The deck is shaped like a trapeze and is not rectangular as it was for the Tacoma Narrows 

bridge. You can see the profile of the Tacoma Narrow Bridge in figure 2.1. This is probably to 

make the bridge more aerodynamic so an accident like the Tacoma Narrow Bridge collapse will 

not happen in the future.     
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Figure 3.3 The Lysefjord bridge from below. Photo: Fredrik M. Pedersen. 

 

3.2 Stavanger Bybru 

The Bybru in Stavanger was opened in 1978 and is on the national protection plan for roads and 

bridges. The bridge is 1067 meters long with a main span of 185 meters. (Stor norske leksikon, 

2018) What differentiates this bridge from many other suspension bridges is that the bridge is 

only made of one tower with wires. This is when the tower crosses the Straumsteinsundet. 

When the bridge crosses over land, it is founded to the ground with columns to support it. So, 

the bridge is a hybrid when it comes to construction methods.  
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Figure 3.4 The Bybru in Stavanger. Photo: Fredrik M. Pedersen 

 

Figure 3.5 The Bybru in Stavanger. Photo: Fredrik M. Pedersen 

 

  

4. Differential equations.  

The Tacoma Narrows bridge collapsed due to oscillations. Mathematical oscillations can be 

expressed as differential equations. More generally, differential equations describe all kinds of 

continuous motion. Differential equations are equations of motion. Different people have tried 

to explain the collapse with several types of differential equations.  

 

To discuss the different mathematical models for the Tacoma collapse, you need to distinguish 

different differential equation types from each other. There are various terms to describe the 
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equations. For example, are the ordinary or partial differential equations linear or nonlinear, 

and are they homogenous or nonhomogeneous? And what order does the equation have? First, 

second, or maybe higher. These are different terms you can use to describe what type of 

differential equation you are dealing with. (Adams, 2018)  

 

The difference between an ordinary and a partial differential equation is that an ordinary 

differential equation only has derivatives with respect to one variable. A partial differential 

equation includes the derivatives with respect to at least two variables. The highest order 

derivative determines the order of a differential equation in the equation. For example, if the 

highest order of derivatives in the equation is a second-order derivative. The equation is called 

a second-order differential equation. This can include the zeroth-order derivatives too. If one or 

more of the derivatives in a differential equation has power, we say it is a nonlinear equation. 

So, if none of the derivatives has power it is a linear equation. If we have a linear ordinary 

differential equation it is homogeneous if the function f(x) = 0 and inhomogeneous if f(x) is 

nonzero. For example, the equation 

 

 ௗ
మ௫

ௗ௧మ
+

ௗ௫

ௗ௧
+ 𝑥 = 0       (4.1) 

is homogenous because it is equal to zero. An example of a nonhomogeneous equation looks 

like this. (Adams, 2018) 

 

ௗమ௫

ௗ௧మ
+

ௗ௫

ௗ௧
+ 𝑥 = 𝐹(𝑡) sin(𝜃 𝑡)     (4.2) 

 

The equation is not equal to zero.  

 

One of the explanations for the bridge collapse is forced oscillation and Resonance. This is 

described by the second-order nonhomogeneous ordinary linear differential equation: 
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ௗమ௫

ௗ௧మ
+ 𝑏

ௗ௫

ௗ௧
+ 𝑘𝑥 = 𝐹𝑠𝑖𝑛𝜔𝑡     (4.3) 

 

You can see that the highest order derivative is of second-order (ௗమ௫

ௗ௧మ) therefore, it is a second-

order equation. 𝐹 𝑠𝑖𝑛𝜔𝑡 is a nonzero term, so the equation is nonhomogeneous. The derivatives 

are only with respect to one independent variable t. Therefore it is an ordinary differential 

equation. In the equation, you do not take the power of any of the derivatives; consequently, it 

is a linear equation. (Adams, 2018)    

 

 

5. Forced oscillations and Resonance  

A frequent example used in the textbooks which mention the Tacoma narrows bridge collapse 

is that of harmonic oscillations. An oscillation where the object in question oscillates with a 

constant frequency in a harmonic motion and where the restoring force is proportional to the 

displacement in the opposite direction. However, although one of the collapse's leading 

theories is that of type oscillation, the theory is that of forced oscillation and Resonance.  

 

But what are forced oscillations? Forced oscillations can be described as a repetitive motion 

where an external force does positive work on a system, making the system oscillate with 

respect to its central axis or a certain point. Examples of this can be a pendulum, a swing, or a 

string on an instrument. A typical example forced oscillator is a damped oscillator driven by an 

external force that varies periodically, such as  

𝐹(𝑡) = 𝐹଴𝑠𝑖𝑛𝜔𝑡     (5.3) 

 where 𝐹଴ is a constant, and 𝜔  is the angular frequency of the driving force. Where the 

frequency of 𝜔  is generally the driving variable of the equation. And the natural frequency 𝜔଴ 

of the system is fixed by values of 𝑘 (stiffness) and 𝑚 (Mass of the object). By modeling a forced 

oscillator with both a driving and retarding force, Newton's second law gives us the equation 
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 𝐹଴ sin 𝜔 𝑡 − 𝑏
ௗ௫

ௗ௧
− 𝑘𝑥 =

ௗమ௫

ௗ௧మ
       ௗ

మ௫

ௗ௧మ
+ 𝑏

ௗ௫

ௗ௧
+ 𝑘𝑥 = 𝐹଴ sin 𝜔 𝑡  (5.4) 

where b is a constant known as the damping coefficient. 

When an external force starts working on the initially stationary system. The oscillation will 

start, and the amplitude will increase. The system in question and the surrounding medium in 

question is an isolated system. This means the work done by the driving force will make the 

vibrational energy (kinetic energy of the object, elastic potential energy in a spring) and the 

internal energy of the object and the medium increase (Serway & Jewett, 2017). After a 

sufficiently long period of time when the energy input per cycle from the driving force equals 

the amount of mechanical energy transformed into internal energy for each cycle, a steady-

state condition is reached in which the oscillations continue with a constant amplitude. In this 

situation, the solution of the equation transforms into that of  

𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑)      (5.5) 

 

𝐴 =
ிబ/௠

ට൫ఠమିఠబ
మ൯

మ
ାቀ

್ഘ

೘
ቁ

మ
     (5.6) 

And were   

                                                     𝜔଴ = ට
௞

௠
  

Is the natural frequency of the undamped oscillator. The equations show that the forced 

oscillator vibrates at the frequency of the driving force and that the amplitude of the oscillator 

is constant for a given driving force because it is in a steady-state by an external force. When 

the damping is small, and the frequency of the driving force is the same or close to that of the 

natural frequency of the oscillation 𝜔 ≈ 𝜔଴. The amplitude will dramatically increase, as shown 

in the equation and figure 5.1.  
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𝐴 =
ிబ/௠

ට൫ఠమିఠబ
మ൯

మ
ାቀ

್ഘ

೘
ቁ

మ
,  𝑤ℎ𝑒𝑛 𝜔 ≈ 𝜔଴  →  𝐴 =

ிబ

௕ఠ
   (5.7) 

 

Figure 5.1 Graph of the amplitude versus frequency for a damped oscillator when a periodic force is present. (Serway & Jewett, 
2017) 

This is what we call Resonance. And what does this have to do with the Tacoma narrows 

collapse? We will look at this and the theories of how this worked in section 8 of the thesis. 

 

But what does Resonance have to do with forced oscillations? Resonance is a particular case of 

forced oscillations. There are also several types of Resonance in forced oscillation systems like: 

 Acoustic Resonance: A branch of mechanical Resonance that deals with the vibrations 

produced within the frequency range of 20 Hz and 20kHz. Instruments with strings 

under tension have resonant frequencies directly related to mass (m), length (L), and 

tension of the string (T). This can be expressed in the equation: 

𝑓 =
௡ට

೅

೘/ಽ

ଶ௅
      (5.8) 

Where n is a positive integer multiple of the fundamental frequency (Vendantu, 2022). 

 Electrical Resonance: Is the phenomenon of Resonance in electrical circuits seen in 

wireless communication. Transmitting and receiving signals in phones, television, and 

radio. This happens because of capacitors and inductors and can be expressed in terms 

of the equation: 
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𝜔 =
ଵ

√௅஼
      (5.9) 

Where 𝜔 = 2𝜋𝑓 , in which 𝑓 is the resonant frequency in Hertz (Hz), L inductance in  

 Henries (H), and C is capacitance in farads (F) (Vendantu, 2022) 

 Parametric Resonance: This is when oscillations are driven by some varying parameter 

of the system's frequency, typically different from the natural frequency of the 

oscillator. Resonance occurs when the system is parametrically excited with one of its 

resonant frequencies. Unlike forced oscillating Resonance, the action appears as a time-

varying modification on a system parameter. The parametric oscillator can be expressed 

in terms of the equation: 

ௗమ௫

ௗ௧మ
+ 𝛽(𝑡)

ௗ௫

ௗ௧
+ 𝜔ଶ(𝑡)𝑥 = 0    (5.10) 

A linear equation in x(t). And by assumption, the parameters 𝜔ଶ and 𝛽 depend only on 

 the time and not by the state of the oscillator. If the parameters vary roughly twice 

 the natural frequency of the natural frequency the oscillator phase locks to the  

 parametric variation and absorbs energy at a rate proportional to the energy it already 

 has. Without compensation for the energy-loss mechanism of 𝛽 the amplitude will grow 

 exponentially (Wikipedia, 2022). 

However, in the case of Tacoma and the physics at play, we will focus on mechanical 

Resonance. At least before section 8, where this last Resonance is mentioned. Mechanical 

Resonance is when a mechanical system absorbs more energy when the frequency of the 

external force working on the system matches or is close to matching that of the natural 

frequency of the object, causing the amplitude of the oscillation to increase in great magnitude. 

Hence the name of Resonance as the two frequencies start to resonate with each other. Forced 

Oscillation and Resonance is one of the leading theories why Tacoma Narrows Bridge is often 

referenced in physics and university books when giving an example of real-life mechanical 

Resonance, as seen in section 7. 
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6. Aeroelastic flutter  

This section describes aerodynamic and aeroelastic phenomena affecting the bridge's structure. 

First, we will look closer at aeroelastic behavior like different types of vortices, galloping, flutter, 

and a two-dimensional problem of the Tacoma Narrow Bridge. 

 
6.1 Aeroelasticity  

Aeroelastic is a complex phenomenon not thought of when the Tacoma Narrow Bridge was 

built in 1940. Even though there was a similar collapse in 1836 on the Brighton chain pier 

caused by aeroelastic flutter (Simiu & Miyata, 2006). The only difference between the bridge in 

Brighton and Tacoma Narrow Bridge was that Tacoma was approximately six times longer than 

the Brighton chain pier. In the nineteenth century, when the bridge collapsed, engineers and 

professors did not know about aeroelastic flutter. So, when the phenomenon occurred in 

Brighton, they called it "undulation" because of the lack of knowledge on aeroelastic flutter 

(Simiu & Miyata, 2006). To fully understand the interaction between the aerodynamics forces 

and the effect of structural motion on the body, its necessary to solve the equation of motion 

describing the flow with time-dependent boundary conditions imposed by the moving structure 

(Simiu & Miyata, 2006). This is not a simple problem to solve because the problem is defying 

analytical capabilities and therefore is hard to solve by the computational fluid dynamics 

method. So, solving the problem of aerodynamic force is not yet done by computing. Still, it 

must be tested on prototypes in the laboratory to understand how the aerodynamic force 

interacts with the body. This has to be done very carefully, so the results obtained from 

laboratory testing can be used to scale how the original bridge should be built. Therefore, 

experiments done at a laboratory on the model of the bridge can generally be assumed to be 

yielded to act like the realistic bridge and give the same results as the model in the laboratory 

did  
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Figure 6.1 Brighton chain pier failure, 1836. (Simiu & Miyata, 2006) 

When the wind flow interacts with the bridge's body, energy transfer will occur. This energy can 

go from the wind flow to the bridge and from the bridge to the wind flow. When discussed, the 

viscous damping force reduces the energy that is induced to the oscillating body (Holms, 2001). 

In aerodynamics, this is referred to as negative aerodynamic damping force. If a body is 

induced, energy from the wind flow will lead to the body's oscillation due to increasing energy 

and will destabilize the body (Simiu & Miyata, 2006). So, when the body has a positive 

aerodynamic, it will be stabilized, and the oscillatory energy will decrease and eventually come 

to rest. We will look at this later in the thesis in section 6.4. The motion of galloping takes place 

in one dimension. Because the aeroelastic behavior happens in one dimension, it is relatively 

simple to get a very accurate picture of how basic flow interacts with the body. This 

understanding of how galloping behaves in one dimension leads to how the structure interacts 

with wind flow (Simiu & Miyata, 2006). As we have seen, only some bodies will start galloping, 

and this comes from where the angle hits the body of the relative velocity of the flow with 

respect to the body changes. In the sense of aeroelastic phenomena, what governs galloping is 

similar to what governs the flutter motion. But for flutter motion, it gets more complicated due 

to two reasons. The first reason is that this is associated with motion in three degrees of 

freedom instead of one degree of freedom like galloping is. Secondly, flutter motion is affected 

by vorticity, which is absent in the galloping case. 
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When building large suspension bridges, one is interested in bridge movement and the primary 

interest, i.e., acceleration, deflection and wind loads, etc. The stress induced on the bridge's 

structure should be considered when designing the bridge. The bridge should withstand the 

total wind load induced on the bridge deck Ftot , which is found by adding up all the other forces 

that occur and affect the bridge's structure. Three forces are the main components induced on 

the bridge deck/structure. The time-averaged mean wind load, Fq , the motion-induced wind 

load, Fm, and the fluctuating wind load due to air turbulence, also known as buffeting Ft. 

𝐹௧௢௧ = 𝐹௤ + 𝐹௧ + 𝐹௠     (6.1.1) 

Of the three forces acting on a suspension bridge, the force that comes from the motion-

induced wind load and aerodynamic damping is the force that most impacts the bridge's 

structure, especially cable-supported bridges. Because these two forces are strongly dependent 

on the wind velocity, the bridge's vibrating frequency and the aerodynamic damping come from 

the wind flow. In the mathematical equation represented above, there is a clear distinction 

between still-air and in-wind bridge characteristics (Dyrbye & Hansen, 1999).  

For flutter to occur, it will get to critical flutter wind velocity. The wind velocity inputs a certain 

energy from the motion-induced wind load, equal to the energy dissipated by the structural 

damping. When critical flutter occurs, it will lead to the energy from the wind being more 

significant than the energy that is dissipated by the structural damping. The dominating term in 

the equation will be the motion-induced wind load Fm. Finding the critical flutter wind velocity 

by assuming that there is zero buffeting wind load and zero mean wind load is often a 

mathematical abstraction used as a guideline for judging the aerodynamic behavior of the 

bridge (Dyrbye & Hansen, 1999). Many modes are involved in the structural vibration of the 

bridge. The vibration of the bridge will come from a coupling of torsional mode and vertical 

bending mode, where both with significant bridge-deck movement. Therefore, where both the 

vertical and torsional modes are vibrating, it will have the largest deflection on the bridge-deck 

structure. But it is not said that the first symmetrical bending mode is likely to couple with the 

first antisymmetrical torsional mode since the largest vertical bending mode occurs or is found 
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where the torsional mode is vibrating small relative to the vertical mode (Dyrbye & Hansen, 

1999). 

We have seen that the bridge will be affected by torsional and vertical deflection, but bridges 

will also be affected by horizontal deflection. However, the deflection from vertical 

deflection/vertical load and torsional moment/ angular rotation are not coupled strongly to the 

horizontal deflection. There is a formulation to this type of uncoupling that is assumed. For 

horizontal deflection to be significant on suspension bridges, the bridge has to have a span 

between 1-2 km to have an impact. It is also essential to consider the shape of the modes and 

where vertical, horizontal, and torsional deflection couple. It is also possible to expand the 

formulation by adding motion-induced load terms, as shown in Wind loads on structures, 

where it gets 18 different aerodynamic derivatives: 3 load components, combined with 3 

deflection and 3 velocity terms    ൫18 = 3 × (3 + 3)൯.       (Dyrbye & Hansen, 1999) 

 
6.2 Vortex shedding  

Generally, when talking about vortex shedding, a smooth, steady flow induces a body, typically 

a prism or a cylinder. But in this thesis, we are taking that the flow is the wind velocity that 

induces the body's motion. While the wind is flowing against the body, there will be vortices 

behind the body. This vortex shedding alternates with a dominant frequency ns. This frequency 

has the relation  

                                                                   𝑛௦ = 𝑆𝑡
௏

஽
     (6.2.1) 

The St is the Strouhal number depending on the Reynolds number and the cross-section of the 

body, D is the characteristic dimension of the body, and V is the velocity of the flow that hits 

the body where the flow is constant (Kaneko, et al., 2008). We describe it here in two 

dimensions, but vortex shedding also occurs in three dimensions. When it occurs in three 

dimensions, it has some conditions for the vortex. The condition is that the body has to be 

relatively short and/or tapered and in a nonuniform and turbulent flow. Something that can 

happen when the wind flows, and this is something that can occur at any given time when the 

wind is flowing on the body. That is when the fluctuating flow in a body makes the wind flow 
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asymmetrical about the parallel line to the oncoming flow. This makes the pressure induced on 

the body asymmetrical to the flow. Therefore, the body will get a transverse fluctuating load 

perpendicular to the oncoming flow, which is also called the lift force. (Simiu & Miyata, 2006) 

 

 

Figure 6.2 Flow around a rectangular cylinder (Re=200) (Simiu & Miyata, 2006)  

6.3 Different types of vortex induced  

6.3.1 Vortex-induced Lock-in 

"The shedding of vortices in the wake of a body gives rise to fluctuating lift forces. If the body is 

flexible or if it has elastic support, it will experience motion due to aerodynamic forces and, in 

particular, to the fluctuating lift force" (Simiu & Miyata, 2006). So, when the motion is 

sufficiently small, the wind flow will not affect the vortex shedding, leading to equation 6.2.1, 

which remains valid. Therefore if the vortex-shedding frequency n, which is associated with the 

frequency of the lift force, is equal to the natural vibration frequency of the body nbody, 

resonant amplification can occur. (Simiu & Miyata, 2006). While the flow affects the body 

motion, the body motion affects the flow insofar as it produces lock-in, that is, synchronization 

of the vortex-shedding frequency with the frequency of the body's vibration. 

6.3.2 Vortex-induced oscillations and lift-force 
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A second aeroelastic effect due to the cylinder's vibration is of interest in practice. So if we take 

an infinitely rigid cylinder, vortex-induced lift forces per unit span at the different stations along 

the cylinder are imperfectly correlated. This means they are not perfectly in tune with each 

other. However, the amplitudes of the cylinder oscillation will increase under excitatiton by 

vortex-induced lift force. (Simiu & Miyata, 2006) 

 

6.4 Galloping 

The Tacoma Narrow Bridge got the nickname Galloping Gertie because of the bridge's motion 

(Scott, 2001). Galloping comes from structural vibration in a perpendicular direction to the wind 

direction. So, if there are vibrations in the structure, these come mainly from negative 

aerodynamic damping. These large amplitude aeroelastic oscillations can vary from one to ten 

or more cross-sectional of the body. Bodies with a cylindric or prism-like shape and a certain 

cross-section (e.g., Ice-laden power cables, rectangular section, D-section). If there were a 

constant oncoming flow velocity, the oscillation would occur in a plane normal to the flow. But 

the frequencies will be much lower than the vortex shedding frequencies for the same section. 

The velocity causing a body to have a galloping motion is typically considerably larger than 

galloping from vortex lock-in." Flow reattachment, which is present at vortex lock-in and at 

flutter, does not occur in the galloping case; fully separated flows are thus a feature of galloping 

motion and result in the absence of the vortex-induced effects on the body" (Simiu & Miyata, 

2006). If a body is at rest and gets induced by a flow velocity, that can either be a fluid velocity 

or a wind velocity; both can be expressed as a flow. Here we can take the equation from 

aeroelastic, that the total force or wind load, Ftot , is the sum of the motion of the structure, Fm, 

the force from the time-averaged mean wind load, Fq, and Ft from the turbulence force.  

These contributions of the different forces cannot be considered mutually independent. The 

value of the force from the motion of structure, Fm, is usually significantly influenced by force 

for the turbulence, which may come in beneficial use or come as a disadvantage. What is 

fundamental to the galloping phenomenon is the angle of where the wind attacks the relative 

flow velocity with respect to the body that is changing due to the flow." The changed relative 
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flow velocity creates in bodies with certain cross-sectional shapes asymmetrical pressure 

distributions that enhance that incipient motion, rather than suppress it, as would be the case if 

the body were aeroelastically stable (Simiu & Miyata, 2006)”.  

 

 

Figure 6.3 Flow velocity V and relative flow velocity Vr on a square cylinder moving upward in the y-direction. Drawn by: Anders 
B. Waldeland  

To understand how a body is galloping and which forces are acting to make it gallop. In figure 

6.3, we can see what force is acting on the body. Here we neglected the influence of 

turbulence. When we neglect the force of turbulence, then the lift and drag force can be 

expressed as 

𝐹஽(𝛼) =
ଵ

ଶ
𝜌𝐴

௏మ

௖௢௦మఈ
 𝐷(𝛼)    (6.4.1) 

𝐹௅(𝛼) =
ଵ

ଶ
𝜌𝐴

௏మ

௖௢௦మఈ
 𝐿(𝛼)     (6.4.2) 
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Where both the drag and lift forces are expressed as a force that depends on the angle α, which 

can be found by looking at the difference between the two velocities that hit the body V and Vr , 

where the V is the velocity that hits the body at a horizontal level and Vr which is the relative 

velocity that comes from the same direction as V but hits the body with an angle α, the 

difference between the two velocities are that comes from the angle α, that is obtained from 

the angle between the two velocities. So, the lift and drag forces are almost the same, apart 

from the coefficients D(α) and L(α). The other components in the equation are A, the structural 

area, 𝜌 is the density of the air, and L(α) and D(α) are the coefficients. These two coefficients 

depend on the wind direction, geometry of the structure, and the wind's turbulence. Therefore, 

the only way to determine the value of the coefficients is by the wind-tunnel test of a model of 

the structure. (Dyrbye & Hansen, 1999) (Simiu & Miyata, 2006) 

When we know the forces acting on the body, we can find how much force is acting in the y-

direction. The force in the y-direction is the sum of the forces that affect the body and only 

depends on the angle. 

𝐹௬(𝛼) = 𝐹஽(𝛼)𝑠𝑖𝑛𝛼  + 𝐹௅(𝛼)𝑐𝑜𝑠𝛼   (6.4.3) 

From this equation 6.4.3, we can write the force in the y-direction differently than a sum of two 

forces. We know the only difference between the drag and lift forces is the coefficient. The 

alternative form for the force in the y-direction is 

𝐹௬(𝛼) =
ଵ

ଶ
𝜌𝑉௥

ଶ𝑑𝐶ி೤
(𝛼)     (6.4.4) 

Since we know that the V = Vr cosα, hence the coefficient in the y-direction is 

 𝐶ி೤
(𝛼) =

஼ಽ(ఈ)ା஼ವ(ఈ)௧௔௡ఈ

௖௢௦ఈ
      (6.4.5) 

As mentioned in section 3.1 about aeroelasticity, bridges have an aerodynamic damping force 

that will stabilize the bridge to rest if the velocity is below critical velocity. For the bridge to 

come to rest, the aerodynamic damping force has to be positive; otherwise, it will increase the 

galloping and break (Dyrbye & Hansen, 1999) (Simiu & Miyata, 2006) 
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6.5 Flutter 
 
6.5.1 Basic about flutter 

This section of the text looks at the aeroelastic phenomenon of flutter and classical and 

turbulent flutter. The last thing we are looking at in this section is how the effect of flutter on 

the Tacoma Narrow Bridge has been solved if it was a two-dimensional problem. This 

phenomenon occurs to flexible bodies with a relatively flat shape on the span. What happens to 

the body is that it will begin to oscillate to small degrees, but the amplitude will grow over time. 

If this goes over an extended period, this will result in a catastrophic failure of the structure. 

Flutter behaves like other aeroelastic phenomena, and therefore the solution to the equation 

of motion has to involve different types of force: mechanical damping, elastic restraint, inertial 

and aerodynamic forces. The latter force will depend on the body's shape, motion of the body, 

and the flow that will affect the body andnclude the self-excited forces (Simiu & Miyata, 2006). 

 

 

Figure 6.4 An example of the motion of aeroelastic flutter and how it affects a bridge. (Seo, 2020) 

  

If we neglect that there is mechanical damping to a body. The body will be aeroelastic stable for 

motion if the body can come back to equilibrium after being affected by a small perturbation 

away from the equilibrium position. This comes from the self-excited force that will stabilize the 

force associated with perturbation (Simiu & Miyata, 2006). But if the velocity increases in the 

perturbation, it will change the aerodynamic forces that act on the body. So, at some point, the 
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velocity will increase so much that it will come to a critical velocity that will cause the self-

excited force to the body to be neutrally stable. Therefore, if we take a velocity that is larger 

than the critical velocity, the body will start to oscillate that is initiated from the small 

perturbation from the equilibrium point, and the oscillation will be larger over time. So, instead 

of having a positive aerodynamic damping effect, the self-excited force is the cause of the 

growing oscillation on the body and, therefore will have a negative aerodynamic damping force 

on the body (Simiu & Miyata, 2006). 

 

 

Figure 6.5 Vortex separation from sharp corners and protuberances of a typical bridge box deck. (Simiu & Miyata, 2006) 

Just because the flutter is accompanied by the vortex-shedding, which has the same frequency 

that is always equal to the flutter frequency, this does not mean that the flutter is the same as 

vortex-induced oscillation but that there is a distinct difference between flutter and vortex-

induced oscillation. The vortex-induced oscillation means an interaction between the body and 

the velocity flow where the body's structure and the vortex shedding have approximately the 

same frequency. If the velocity is higher than in vortex-induced oscillation, lock-in occurs. 

(Simiu & Miyata, 2006) 
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6.5.2 Torsional flutter 

According to some literature, the collapse of the Tacoma Narrow Bridge was caused by 

torsional flutter (Simiu & Miyata, 2006). They have based their theory of the collapse on wind 

tunnel experiments, where there is a constant flow that hits and goes around an H-shaped 

section similar to the deck on the Tacoma Narrow Bridge. The wind-tunnel testing shows that 

the torsional response increases nonlinearly with reduced velocity (Simiu & Miyata, 2006). 

Figure 6.6 shows the patterns of the wind tunnel flow around an H-shaped section similar to 

the shape of the deck of the first Tacoma Narrow Bridge. 

 

Figure 6.6 Torsional motion at the time of collapse by torsional (stall) flutter, original Tacoma Narrow Bridge, and smoke 
visualization of separated vortex flow. (Simiu & Miyata, 2006) 

"The patterns correspond to the three instants during the one cycle of a periodic torsional 

motion. Also shown is a picture of the torsional displacement of the bridge at each of those 

three instants. Note the vortices generated at the first of the three instants at the front edge of 

the deck, which subsequently travel toward the deck's rear edge." (Simiu & Miyata, 2006) . At 

the first instant in Figure 6.6, a large vortex separated from the front edge is associated with 

strong negative pressure on the windward half of the lower deck surface. At the same time, a 

somewhat flatter flow is produced on the upper surface. In the second instance, the vortex that 

was started in the earlier instant, which has traveled along the underside of the deck, is broken. 
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And the vortex flow on the upper deck is flatter than in the earlier instant. At the last instant in 

Figure 6.6, the flow pattern is approximately symmetrical to the first pattern. "The flow 

patterns of Figure 6.6 produce pressures consistent with the moments that cause the torsional 

motion.  

 

6.5.3 Classical flutter  

In sections 6.4 and 6.5.2, galloping and torsional flutter, we discussed the self-excited vibration 

of the bridge structure. These self-excited vibrations could be an interaction between separated 

vortices and the structure oscillating with one degree of freedom. However, classical flutter, 

also known as coupled flutter, is a type of self-excited motion that engages several degrees of 

freedom of the system. It can be argued that torsional flutter is a form of classical flutter where 

the dominant effect comes from the aerodynamic derivative 𝐴ଶ
∗  in the equation NUMBER. 

In an attempt to explain the collapse of the Tacoma Narrow Bridge, Bleich (Simiu & Miyata, 

2006) was trying to explain by assuming that coupling between vertical bending and torsion, 

even though it showed that the torsion was dominant by far and used similar vibration modes 

in vertical bending and torsion. The expression that Bleich found did not reflect correctly with 

the aeroelastic behavior of the H-section like the Tacoma Narrow Bridge had. There was an 

introduction made by Selberg (Simiu & Miyata, 2006) of a simplified empirical expression of the 

critical coupled flutter velocity. In other words, what is the lowest velocity that will lead to 

coupled flutter. 

𝑉ி = 0.44𝜔ఈ𝑏ට1 − ቀ
ఠ೓

ఠഀ
ቁ

ଶ

⋅ ට√జ

ఓ
    (6.5.1) 

Where 𝜐 =
଼௥మ

௕మ  and𝜇 =
గఘ௕మ

ଶ௠
, 𝜔ఈ and 𝜔௛ are natural circular frequencies of the torsional and 

vertical motion, m is the mass per unit length, b is the bridge's half-width, ρ is the bridge 

density and r is the radius of gyration of the bridge cross-section. However, this equation is 

independent of the aerodynamics of the bridge and can then give incorrect results. 
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6.6 Tacoma Narrow Bridge as a two-dimensional problem 

Looking at what happened to Tacoma Narrow Bridge the hours before the collapse, we can see 

this as a two-dimensional problem. Some stuff needs to be assumed to solve this two-

dimensional problem, which indicates that this is not valid in the real world. For this to be valid, 

the flow must be smooth with an unknown velocity, where the velocity can vary. Something 

typical for bridges is that the deck is symmetrical, which leads to the center of mass and elastic 

center having the same center on the bridge. The flutter derivatives on the oscillation 

frequency n of the fluttering body can then be expressed in terms of the nondimensional 

equation of reduced frequency  

𝐾 =
ଶగ஻௡

௏
      (6.6.1) 

Where the V is the mean velocity flow, and the B is the bridge's width. If we then look at x, 

which is the displacement in the horizontal plane of the deck. If we take this into account, we 

can express the motion in a two-dimensional symmetrical bridge that has an elastic restoring 

force and linear viscous damping in a smooth flow as 

𝑚
ௗమ௫

ௗ௧మ
+ 𝑏௫

ௗ௫

ௗ௧
+ 𝑘௫ 𝑥 = 𝐷௫      (6.6.2a) 

𝑚
ௗమ௬

ௗ௧మ
+ 𝑏௬

ௗ௬

ௗ௧
+ 𝑘௬ 𝑦 = 𝐿௬            (6.6.2b) 

𝐼
ௗమఈ

ௗ௧మ
+ 𝑏ఈ

ௗఈ

ௗ௧
+ 𝑘ఈ  𝛼 = 𝑀ఈ     (6.6.2c) 

 Where x, y, and α are the horizontal displacement, vertical displacement, and torsional angle 

shown in figure 6.7 below. These three equations are coupled nonhomogeneous linear 

equations where the forces on the right side of the equation are the aerodynamic lift force Lx, 
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drag force Dy and the mass of inertia Mα. 

 

Figure 6.7 Motion of a bridge in two-dimensional with notation. Drawn by: Anders B. Waldeland 

The m in the vertical and horizontal planes is the bridge section's mass. Like in forced 

oscillation, the equation is similar where both have the damping coefficient b, only here it 

depends on the direction and angle the body moves in. The latter one in the equations is the 

stiffness coefficient k that, like b, depends on the direction of the body. So we know that when 

a body is experiencing an aerodynamic phenomenon, galloping, it is like a motion of a single 

degree of freedom. This will lead to a small displacement in the aerodynamic force acting on 

the body will be linear with respect to the time change of the displacement. 

 

On the other hand, the expression for flutter to be induced to the bridge body gets a bit more 

complicated. Here the motion has three degrees of freedom instead of one like in the galloping 

case. The concept for galloping and flutter is the same if, and only if, the wind flow comes 

parallel to the bridge deck. Here the wind comes with no angle difference to the bridge. Still, if 

the velocity comes with a different angle α, the equation gets more complex than the three 

nonlinear differential equations in the galloping stage in a 2-dimensional scenario. Here the 

equation for the lift force, drag force, and the inertia will look like this in vertical, horizontal, 

and torsional  
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𝐿௬ =
ଵ

ଶ
𝜌𝑉ଶ𝐵 ቂ𝐾𝑌ଵ

∗(𝐾)
ௗ௬

ௗ௧

ଵ

௏
+ 𝐾𝑌ଶ
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ௗఈ

ௗ௧

஻

௏
+ 𝐾ଶ𝑌ଷ

∗(𝐾)𝛼 + 𝐾ଶ𝑌ସ
∗(𝐾)

௬

஻
+

𝐾𝑌ହ
∗(𝐾)

ௗ௫

ௗ௧

ଵ

௏
+ 𝐾ଶ𝑌଺

∗(𝐾)
௫

஻
ቃ (6.6.3a) 

𝐷௫ =
ଵ

ଶ
𝜌𝑉ଶ𝐵 ቂ𝐾𝑋ଵ
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ௗ௫

ௗ௧

ଵ

௏
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ௗఈ

ௗ௧

஻

௎
+ 𝐾ଶ𝑋ଷ
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௫

஻
+

𝐾𝑋ହ
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ௗ௬

ௗ௧

ଵ
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𝑀ఈ =
ଵ

ଶ
𝜌𝑉ଶ𝐵 ቂ𝐾Αଵ

∗ (𝐾)
ௗ௬

ௗ௧

ଵ

௏
+ 𝐾Αଶ

∗ (𝐾) +
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஻

௏
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௬
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+
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ௗ௫

ௗ௧

ଵ

௏
+ 𝐾ଶΑ଺

∗ (𝐾)
௫

஻
ቃ (6.6.3c) 

direction for where the wind flows come from. The terms related to the second derivative of x, 

y and α in the nonlinear partial differential equation are neglected from the equation due to 

how the wind engineer applies different forces. Here, the x and y term are there to take in the 

change in the vibration frequency that occurs due to the aeroelastic effect on the deck. As 

previously mentioned in the thesis, the angle α is where the wind flow comes and attacks the 

deck. The first derivative in the y and a motion,  ௗఈ

ௗ௧

஻

௏
andௗ௬

ௗ௧

ଵ

௎
are nondimensional quantities that 

imply the efficiencies of the angels of velocity. Like in the galloping case, the first derivative in 

the y-direction,ௗ௬

ௗ௧

ଵ

௎
 that it will represent the angle of the velocity of the relative velocity. The 

relative velocity has been shown previously in section 6.4. The last coefficient 𝑋௜
∗, 𝑌௜

∗ , and Α௜
∗ 

are nondimensional coefficients that are known as Scanlan flutter derivatives.  

But for small α, each equation 6.6.3 can be written in a similar form as this: 

𝐿 =
ଵ

ଶ
𝜌𝑉ଶ𝐴𝐶௅ =

ଵ

ଶ
𝜌𝑉ଶ𝐴

ௗ஼ಽ

ௗఈ
𝛼    (6.6.4) 
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7. The Theories about the collapse 
7.1 The original report 

The initial report of the bridge collapse was that of the Carmody board, who was the board of 

engineers tasked with explaining why the Tacoma narrows bridge collapsed. The report was 

published on 28 March 1941 (Ammann, et al., 1941). focused primarily on the bridge's 

structural design and did not reach a conclusive reason why the bridge tore itself apart. 

However, they did concur that the dynamic forces of the wind somewhat caused the collapse. 

The investigations showed no structural damage that could have caused the oscillations 

beforehand. However, they concluded that the aerodynamic instability of its design was why 

the bridge started to oscillate. There was no incompetence shown in designing the bridge or ill 

intent. It was both economic and stable against static forces. However, the slim and long design 

caused the wind to influence the bridge's destruction. Further testing with wind tunnels would 

have to be done to explain the collapse further.  

 

One of the first critics of the explanations for the collapse was David Barnard Steinman. He 

argued in 1941 (that the original report by the Carmody board contained several questionable 

statements and conclusions. He criticized the notion that the bridge’s slim design was the cause 

of the collapse and set out to prove that mathematically the critical velocity and, by extension, 

the rigidity of the bridge was not proportional to the deck width (Scott, 2001). Steinman would 

continue to criticize the report by the Carmody board as he insinuated that the mid-span stays 

used at Tacoma Narrows Bridge had been copied by him without a word of credit or 

acknowledgment. This emotionalism was characteristic of Steinman in a conservative 

profession (Scott, 2001). Steinman would later design the Mackinac bridge building on 

Tacoma's failures. 

 

An article published in the New York Times attempted to explain the collapse to be that of 

Resonance some days after the initial report was published. The article read like this: "like all 

suspension bridges, that at Tacoma both heaved and swayed with a high wind. It takes only a 
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tap to start a pendulum swinging. Time successive taps correctly and soon the pendulum swings 

with its maximum amplitude. So with the bridge. What physicists call Resonance was 

established, with the result that the swaying and heaving exceeded the limits of safety" (Arioli & 

Gazzola, 2013) (New York Times, 1940). This is most likely where the argument for forced 

oscillations and Resonance started and what many physics books and university books later 

adapted as one of the leading arguments for the Tacoma Narrows Bridge collapse. Books like 

those that will be mentioned in section 8. However, the article was criticized for not explaining 

how the wind, random in nature, could produce such oscillations.  

 

History may also be a factor in why this theory was favored by many. Earlier examples of 

bridges can be attributed to Resonance causing a collapse. For example, in 1831, the Broughton 

suspension bridge collapsed due to mechanical Resonance induced by soldiers marching on the 

bridge in step (Arioli & Gazzola, 2013). This is because the probability of the step being exactly 

in frequency with the bridge's natural frequency is zero. However, if the frequency coincides 

only by some margin, it can cause the structure to oscillate and destroy itself. A similar situation 

happened in 1850 when a battalion of soldiers marched across the Angers suspension bridge 

during a thunderstorm. But even though the soldiers did not march in step like in the previous 

example, the combination of the wind forces and the marching soldiers caused the bridge to 

collapse. 

 

But how does forced oscillations and resonance work on the Tacoma Narrows bridge on the day 

of the collapse? To better understand this, we need to look further at the physics and the 

maths around Resonance; as shown earlier in section 5, we showed that the formula for forced 

oscillations on a stationary object could be derived from newton's second law as: 

𝐹଴𝑠𝑖𝑛𝜔𝑡 − 𝑏
ௗ௫

ௗ௧
− 𝑘𝑥 =

ௗమ௫

ௗ௧మ
    (7.1.1) 

From this equation, we could transform x to that of 𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑) where we could find the 

amplitude A: 
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 𝐴 =
ிబ/௠

ට൫ఠమିఠబ
మ൯

మ
ାቀ

್ഘ

೘
ቁ

మ
     (7.1.2) 

The theory is that the frequency of the wind 𝜔 matched or was close to that of the natural 

frequency of the bridge 𝜔଴, increasing the amplitudes of the oscillating bridge as mechanical 

Resonance. These oscillations combined with periodic eddies (sometimes called Karman 

vortices, a theory proposed by Von-Karman in the original report) have been mentioned as a 

possible inducement to the large oscillations that occurred on the day of the collapse. 

 

 
7.2 The Billah and Scanlan article 

Even though the notion of Resonance was criticized, physics books were still published where 

the Tacoma Narrow Bridge collapse was used as an example of forced oscillations and 

Resonance. This was something K. Jusuf Billah and Robert H. Scanlan could not accept. So they 

set out to write an article and disprove the notion of forced oscillations and Resonance. Scanlan 

had already criticized the notion in another document published in 1982, writing: Others have 

added to the confusion. A recent mathematics text, for example, seeking an application for a 

developed theory of parametric Resonance, attempts to explain the Tacoma Narrows failure 

through this phenomenon. (Scanlan, R.H., "Developments in low-speed aeroelasticity in the civil 

engineering field,"). And in June of 1990, Billah and Scanlan published an article titled 

"Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks" to disprove 

the notion of using the collapse as an example of Resonance in physics books. The article set 

out to prove that Resonance and that self-excitation were both physically and mathematically 

different and that one should be aware of the difference when discussing the collapse. 

 

One of the first topics of the article is that of the vortex-induced vibration, where they discuss 

the topic of Strouhal vortices and the Strouhal frequency (𝑓௦). When fixed in a fluid stream, bluff 

(non-streamlined) bodies generate detached or separated flow over substantial parts of their 
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surfaces. At some critical Reynolds-number, two thin layers form to the lee of the body, where 

these layers act nonlinearly with each other and produce a regular periodic array of vortices. 

These are the Strouhal vortices, and in this case, the vortex arrays arrange themselves in two 

rows with opposite directions of circulation (Billah & Scanlan, 1990). 

 

The frequency of these shedding vortices over a fixed (restrained body) is often termed the 

Strouhal frequency (𝑓௦). And it follows the relation. 

𝑓௦𝐷/𝑈 = 𝑆                (7.2.1) 

Where U is the crossflow velocity, D is the frontal dimension, and S is the Strouhal number 

appropriate to the body in question. The values of D and S for the original Tacoma narrows 

bridge are 8 ft (2.43 m) and 0.11 (Billah & Scanlan, 1990). A frequent assumption that was made 

in the textbooks that Billah and Scanlan were criticizing was that the Strouhal frequency (𝑓௦) 

matched the natural mechanical frequency of the bridge. Billah and Scanlan then set out to test 

if this was true regarding this assumption. They were working with the information given at the 

scene of the collapse by Professor Farquharson. They concluded the final destructive oscillation 

to be that of 0.2 Hz (𝑓 ) while the frequency of the wind of 42 mph (68km/h) at natural vortex 

shedding according to the Strouhal relation to be at 1 Hz. A wholly out of sync with the actual 

catastrophic oscillation then going on (Billah & Scanlan, 1990). 

 

We set out to test this theory of the frequencies ourselves. First, we acquired some of the 

collapse footage through YouTube (Lenz, 2008). And used the program Tracker to estimate the 

amplitudes of the bridge oscillations. Then by tracking the movements of one of the lampposts 

at the bridge in the video, we were given a trigonometric function and a set of data about the 

positions of the x and y planes at the given times of the video.  
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Figure 7.1 Curve showing the movement of the bridge. Taken from the Tracker file.  

 

Figure 7.2 A Screenshot from Tracker.  

 

t(s) y(m) 

0 32.511 

1.5 35.414 

3 17.417 

4.5 42.38 

6 12.192 

7.5 38.316 

9 20.9 

10.5 35.414 

12 27.866 
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13.5 34.833 

15 35.414 

16.5 24.964 

18 41.8 

19.5 43.541 

21 25.544 

22.5 34.833 

24 41.219 

25.5 4.644 

27 42.38 

28.5 5.806 

30 41.8 

31.5 13.933 

Figure 7.3 Table from the Tracker data showing the y plots every 1.5 seconds. 

 

By noting down the time taken per cycle and estimating the mean periods of T 

𝑇 =
∑ ்೔

೙
೔సభ

௡
      (7.2.2) 

We could estimate the frequency of the oscillations of the bridge with the frequency equation: 

𝑓 =
ଵ

்
       (7.2.3) 

 

Period 
(T): 

3.500 3.500 3.337 3.000 3.333 2.167 3.333 4.000 2.83 

Figure 7.4 Periods T per max amplitude 

We could also calculate the standard deviation in our data with the formulas for variance and 

standard deviation 
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𝜎ଶ =
∑ (௫೔ି௫)మ೙

೔సభ

௡ିଵ
     (7.2.4) 

𝜇 = √𝜎ଶ      (7.2.5) 

Where 𝜎ଶ are variance and 𝜇 is standard deviation and then estimate 𝜇 for period T from figure 

8.4 and find 𝜇  to be 0.514  seconds (s). Plotting this in our formula for frequency, we could then 

estimate the frequency at 0.313 ± 0.101 Hertz (Hz). However, these amplitudes were taken 

from the video sometime between 10 AM and the time of the collapse at 11:15 AM, not the 

final destructive oscillation observed by Farquharson. We also tracked the movement of the 

lamp manually at intervals of 1.5 seconds which brought uncertainties in our data than if a 

more advanced program did the tracking for us. The video was also old and of low quality, 

which could tamper with our data's precision. So even though we did not get the same 

frequency as the given destructive oscillation, the frequency estimated from the video would 

still be wholly out of sync with the frequency given by the natural vortex shedding of the wind 

(Billah & Scanlan, 1990). 

 

These observations led Billah and Scanlan to conclude that the natural vortex shedding of the 

wind could not cause the collapse. They then discussed the potential cause by looking at 

experiments duplicating the final destructive oscillation observed on the original Tacoma 

Narrows Bridge. Observations from 1/50 scaled models from both the 1940s and 1950s showed 

that several modes of the Tacoma narrows bridge responded with self-limiting amplitudes, 

except for one node. This particular low torsional node was identified as "1-NT 2nd". Which 

when divided by the model frequency scaling factor of √50 defined a prototype frequency of 

0.2 Hz. Farquharson observed precisely the frequency of the destructive mode at the collapse. 

After Scanlan and Tomoko repeated this research in 1970 and carried the work further. They 

concluded that the catastrophic node was a single-degree-of-freedom torsional flutter due to 

complex, separated flow. So, instead of describing the force as a single degree freedom 

oscillator as a purely external function of time. It was described as an aerodynamic self-
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excitation effect that imparted a net negative damping effect characteristic to the system. The 

torsional motion can then be described as: 

𝐼 ቂ
ௗమఈ

ௗ௧మ
+ 2𝜁ఈ𝜔ఈ

ௗఈ

ௗ௧
+ 𝜔ఈ

ଶ𝛼ቃ = 𝐹 ቀ𝛼,
ௗఈ

ௗ௧
ቁ   (7.2.6) 

Where 𝐼 is the associated inertia, 𝜁 is the damping ratio (simplified logarithmic decrement, 

2𝜋𝜁ఈ = 𝑙𝑜𝑔 𝑑𝑒𝑐), 𝜔ఈ is the natural frequency of the bridge, and 𝛼 is the angle of twist. The 

aerodynamic force of  𝐹 ቀ𝛼,
ௗఈ

ௗ௧
ቁ was postulated in the linearly self-excite form of: 

 𝐹 ቀ𝛼,
ௗఈ

ௗ௧
ቁ = 𝐴ଶ𝛼 + 𝐴ଷ𝛼     (7.2.7) 

Which non dimensionally, became: 

 𝐹 ቀ𝛼,
ௗఈ

ௗ௧
ቁ =

ଵ

ଶ
𝜌𝑈ଶ(2𝐵ଶ) ቂ𝐾𝐴ଶ

∗ ቀ𝐵
ௗఈ

ௗ௧
/𝑈ቁ + 𝐾ଶ𝐴ଷ

∗ 𝛼ቃ    (7.2.8) 

Where 𝜌  is the air density, U is wind velocity, B is deck width, 𝜔 is the circular frequency of 

oscillation, 𝐾 = 𝐵𝜔/𝑈 and 𝐴ଶ
∗  , 𝐴ଷ

∗  are the dimensionless aerodynamic ("flutter") coefficients, 

functions of 𝐾 . It is important to note that no external independent function of time is present 

in this formulation. This means that the equation is a homogeneous differential equation. 

Through Billah and Scanlan's experiments, they could determine the form coefficient of 𝐴ଶ
∗ : 

revealing the form plotted in figure 7.5. 

   

Figure 7.5 Plot of 𝐴ଶ
∗  (Billah & Scanlan, 1990) 
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wherein the evolution of this damping coefficient with reduced velocity exhibited a dramatic 

reversal in sign. When the body of the bluff body changes the angle of attack in a fluid stream, 

it sheds new vorticity in its wake. However, this shedding will not have anything to do with the 

naturally developed Karman vortex trail. Instead, bluff bodies in oscillatory motion shed wakes 

containing both the oscillation and the Strouhal frequencies, and under high amplitudes, it is 

the oscillations that predominate. The final destructive oscillation of the Tacoma Narrows 

bridge produced a flutter wake, not a Karman vortex street. In other words, the motion caused 

the vortices and led to the flutter of the bridge. This is what fundamentally brought the bridge 

down. However, it is important to note that this occurred 45 minutes before the collapse. A 

single degree driven unstable oscillation with negative damping representing an inflow of 

energy from the wind causing a synchrony with the motion induced pressure with the motion 

itself (Billah & Scanlan, 1990). 

 

Billah and Scanlan proposed that one could argue this to be a type of resonating phenomenon 

with the motion being self-induced with the wind supplying the power and the motion 

supplying the power-tapping mechanism. Although arguing this, one should emphasize it as 

externally forced linear Resonance since it differed strongly from normal Resonance. The 

mathematical difference is quite clear if one looks at equation 7.2.8 derived by Billah and 

Scanlan and the differential equation 4.3 for forced oscillations and Resonance. And the paper 

ends by remarking on physics books' lack of penetrating investigations of the Tacoma Narrows 

Bridge phenomena. That many of the examples of the collapse were loose descriptions, 

explanations, and speculations. While there was much physical and available literature 

collaborating on the mechanics and conditions around the bridge collapse. It is also important 

to note that there are more articles about the Tacoma Narrows Bridge collapse collaborating 

the flutter argument and some articles that try to explain the collapse with other mathematical 

phenomena. However, due to time constraints, we were unable to properly research these 

articles and discuss them here in the thesis. 
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7.3. Visiting an aerodynamic specialist at UiS (University of Stavanger) 

We also set out to get a modern view of the collapse and its potential cause for the torsional 

motion, which led us to contact and visit a professor in aerodynamics and engineering at UiS 

(university of Stavanger) and asked her expert opinion on the matter. The Professor in question 

was Jasna Bogunovic Jacobsen, a wind engineer who studies structural loads and aeroelastic 

flutter caused by wind on bridges (Wikipedia Jasna Bogunovic Jakobsen). Her opinion on the 

collapse aligned with the Billah and Scanlan article. And when asked if there was a definitive 

modern answer to the collapse, she replied: "In my opinion, there is no doubt that the prime 

cause of the bridge failure is torsional flutter, and I would say this is the well-established 

knowledge in the professional community. One of the reasons this is frequently misunderstood is 

that this particular bridge is prone to several forms of wind-induced vibrations (vortex-induced 

vibrations (VIV), possible galloping too) in a rather narrow interval of wind speeds, so they can 

appear almost together, the VIV was observed on several occasions on the bridge prior to the 

collapse… For modern bridges such as Hardanger bridge, these excitations are well separated, 

with a possible VIV (for which countermeasures are adopted) in the range around/less than 10 

m/s and flutter at 78 m/s. It is the latter one (flutter) that can destroy the bridge." (Jasna 

Bogunovic Jakobsen, 2022). This shows that even though several articles have been written 

throughout the years about the cause of the collapse. There is an established knowledge in the 

professional community that torsional flutter was the cause, like the ones mentioned in the 

Billah and Scanlan article. Some of these articles would be (Arioli & Gazzola, 2015), (Green & 

Unruh, 2004) and (Larsen, 2000). 

 

8. Misrepresenting the Tacoma Narrow Bridge 
8.1 Different types of academic books 

In textbooks about mechanics, there has been a belief that the reason behind the Tacoma 

Narrow Bridge collapse is forced oscillation and Resonance. Even though several physicists and 

engineers have disproved this, we can still see books that say this is the reason for the collapse. 
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In this section, we will represent some of these textbooks and show how they represent the 

Tacoma Narrows Bridge as a forced oscillation and resonance problem. 

 

The mechanic's book for the UIS course FYS100 by Serway and Jewett illustrates that the bridge 

collapsed due to the wind. They say that the wind made the bridge oscillate at a frequency near 

the bridge's natural frequency. This Resonance led to the collapse of the bridge. They say that 

physicists and mathematicians are challenging some aspects of the interpretation. So at least 

they say that this is maybe not the right answer. But they still use the Tacoma Narrow Bridge 

collapse as an example of Resonance even though it is wrong.  (Serway & Jewett, 2017) This 

could be because, in many physics books, this has been used as a classic example of Resonance. 

People have been learning it wrong, or they trust books that have been used before and say the 

same thing without thinking about the physics behind it.  

 

Another physic book by Tipler and Mosca also uses the Tacoma Narrow Bridge collapse as an 

example of forced oscillation and Resonance. In this book, they do not say directly that the 

reason for the collapse is Resonance, but they have a picture of it just below where they write 

about forced oscillation and Resonance. So, it is implied that there is a context. (Tipler & Mosca, 

2004) 

 

Young and Freedmann also use the Tacoma Narrow Bridge as an example in their section about 

forced oscillation and Resonance. They use a more diplomatic approach even though they say 

that the collapse is often described as Resonance driven by the wind, they say that this is 

debated, and some people mean there are other reasons for the collapse. (Young & Freedman, 

2004)    

 

Also, in Norwegian textbooks, Tacoma Narrow Bridge is used as an example. One example of 

this is the physics book for "Forkurs," a preparatory course for engineers. In this book, they take 

the Resonance to explain the Tacoma Narrow Bridge. They do not give any alternative 

explanation; they just put Resonance as the reason for the bridge's failure. They also use the 
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bridge as the basis, for example, for calculating wavelength. So, the Resonance is presented as a 

fact and the reason for the Tacoma Narrow Bridge. This book is on a bit lower level than the 

other books. (Storelvmo & Storelvmo, 2005) "Forkurs" is more like high school level physics 

than university level because it is a preparatory course before starting your university 

education. So maybe the authors have simplified the explanation to make it easier to 

understand the theme.      

 

Another Norwegian textbook is the mechanics book written by Lien and Løvhøiden. This is a 

book that is made for university students. On page 284, When they talk about forced 

oscillations and Resonance, they use the Tacoma Narrow Bridge as an example. Here Lien and 

Løvhøiden say that the bridge collapsed due to Resonance caused by intense winds. (Lien & 

Løvhøiden, 2001) They do not give any alternative explanation or mention that people are 

discussing the reason for the collapse. So, you can assume that they take this explanation as 

fact. 

 

To summarize, many physics textbooks still use the Tacoma Narrow Bridge as an example of 

Resonance. Some books are more diplomatic and make room for alternative explanations, 

while others do not leave any room for discussion around the reason for the collapse. The 

reason for using the Tacoma Narrow Bridge in textbooks can be because of tradition. Textbooks 

use this as an example of Resonance, so the authors keep on using it because all other books 

are doing it. You just do the same as people have done before. This is not how it should be. The 

authors of the books should always check if their sources are correct and make changes if they 

have to.  

 

8.2 Vitenfabrikk in Sandnes 

In Sandnes, a museum is dedicated to explaining scientific phenomena and theories that occur 

in nature. And one of their exhibition was about Resonance, where the goal was to break a 

wine glass using the human voice. But as an example of Resonance, as shown in figure 8.1, 

Vitenfabrikken in Sandnes says that the collapse of the Tacoma Narrow Bridge is similar to the 
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exhibition where one uses the voice to make a frequency to break the glass. When we met 

somebody that works there to discuss why they had the Tacoma Narrow Bridge as an example 

of Resonance. So, the person we discussed about the collapse of Tacoma Narrow Bridge was 

convinced that Resonance made the bridge oscillate and collapse. This argument comes from 

that the person we were discussing with had been to Tacoma and was told there that the 

reason for the collapse was resonance or forced oscillation. So the reason for why they have it 

is to explain that what's going on in the exhibition can be seen in a bigger scenario as Tacoma 

Narrow Bridge, as we have previously seen throughout the thesis, especially in section 7, where 

Jasna Bogunovic Jakobsen, a specialist in aerodynamic forces on bridges, concluded that the 

collapse was due to flutter and not Resonance. The impact of this will be discussed further in 

the conclusions. 

 

 

Figure 8.1 Poster from the exhibition about Resonance from the Vitenfabrikk. 
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Figure 8.2 Picture of the exhibition about Resonance at the Vitenfabrikk. You can crack a glass with the frequency of your voice.  

9. Conclusion  

Throughout this thesis we have seen that a real-life phenomenon like the collapse of the 

Tacoma Narrow Bridge in 1940 can be wrongly represented as a forced oscillation and 

resonance problem. In physics textbooks like the one used for the mechanic's course FYS100 at 

the University of Stavanger and the exhibition of Resonance in the Museum in Sandnes, we 

continue to see a trend of misrepresentation. Instead of researching many articles and studies 

about the Tacoma Narrow Bridge, the only recognition of uncertainty is the comments about 

the problem still being discussed today. However, by looking at these articles ourselves and 

discussing the topic with an expert in the field, it is clear that the collapse of the Tacoma 

Narrows Bridge does not correspond to the topic of forced oscillations and Resonance. 

 

As lektor students studying to understand and improve how we inform and educate future 

students, we believe that the Tacoma Narrows Bridge being expressed as a forced oscillation 

and resonance problem can lead to students misconceiving physics problems out in the real 

world. Furthermore, oversimplifying such an aerodynamic and advanced mathematical problem 
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to a degree of only forced oscillations and Resonance can also lead to oversimplifying other 

advanced and complicated problems around physics. However, we realize that the Tacoma 

Narrows Bridge representation in physics books is only a tiny fraction of what these books 

contain. Still, at the same time, it shows that it is important to question what one reads even 

though the book is academic. 

 Most people visiting the Vitenfabrikk probably never think of this peculiar bridge collapse 

outside the museum. Therefore, it is simpler to say that the Tacoma Narrow Bridge collapse 

was due to Resonance so that the person that's work which have a basic knowledge in science 

form school so they can explain the theory for Resonance. However, we believe that textbooks 

and museums are utilized to give people and students a better understanding of the world 

around us. In this case, they should also receive the correct interpretation around the Tacoma 

Narrows Bridge Collapse. 

Thus it is still misrepresenting the fact of the collapse, which is not very educational. And as a 

museum of science, it should always represent what is true and not just What looks similar or 

fits the description they want. Comparing a torsional motion on a bridge at high wind velocities 

with a resonating voice should at least accompany some scientific basis. Instead of just 

comparing the two because of their similar scientific name. This also brings the problem of 

calling the Tacoma Narrows Bridge collapse a forced oscillation and resonance problem 

So, the important part to take is that there is still a misrepresentation of why the Tacoma 

Narrows Bridge collapsed and that there is still a debate going on. However, there is an 

understanding in the professional community that the collapse was due to flutter like the one 

mentioned in the Billah and Scanlan report back in 1990 (Billah & Scanlan, 1990). And like the 

specialist from UiS, most of her peers believe that the matter is concluded with the Billah and 

Scanlan article. Therefore we conclude that the statement about the Tacoma Narrows Bridge 

given by Serway in the FYS100 book is incorrect.  

"In 1940, turbulent winds set up torsional vibrations in the Tacoma Narrows Bridge, causing it to 

oscillate at a frequency near one of the natural frequencies of the bridge structure. Once 

established, this resonance condition led to the bridge's collapse. (Mathematicians and 
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physicists are currently challenging some aspects of this interpretation)”. (Serway & Jewett, 

2017) 

And due to this, we believe that future representations of the Tacoma Narrows Bridge should 

be excluded from topics concerning forced oscillations and Resonance. 
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