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Extreme value prediction of the load-effect responses of complex offshore structures such
as the floating wind turbine (FWT) is crucial in ultimate limit state (ULS) design. This paper
considers two cases to understand the feasibility of the bivariate correction on the extreme
load andmotion responses of a 10-MW semi-submersible type FWT. The empirical anchor
tension force and surge motion used in this study are obtained from the FAST simulation
tool (developed by the National Renewable Energy Laboratory) with the load cases
stimulated at under-rated, rated and above rated speeds. Then, the bivariate
correction method is applied to model FWT extreme response for a 5-years return
period prediction with a 95% confidence interval (CI), based on just 2 min short
response record. The proposed methodology permits accurate correction of the
bivariate extreme value in case of, for example, corrupted measurement sensor data.
Based on the proposed novel method’s performance, it is concluded that the bivariate
correction method can offer better robust and precise bivariate predictions of coupled
surge motion and anchor tension of the FWT.

Keywords: floating wind turbine, FAST, bivariate correction method, extreme responses, bivariate probability
distribution

1 INTRODUCTION

The environmental pollution caused by the massive use of fossil fuels has triggered the
transformation of non-renewable energy to renewable energy. In 2020, global energy-related
carbon dioxide emissions dropped by 5.8%, which reached the highest record of the percentage
decrease since the secondWorldWar. Meanwhile, renewable energy reached 29%, the highest record
share in global electricity (Secretariat, 2021). As one of the most promising renewable energy, wind
energy has been evolving rapidly. 93 GW of new wind power installations was seen in 2020, which
brought the global cumulative wind power capacity up to 743 GW (Council, 2021).

Although today’s wind generation is mainly onshore, a great prospect is predicted for floating offshore
wind. This is because floatingwind turbines (FWTs) could harvest vast wind resources over deepwater, where
thewind capacity ismore than four times the bottom-fixedwind.However, the high cost is themain challenge
with the floating wind turbines. This is mainly due to the small scale of the floating wind farms and the
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immaturity of the technology and supply chain. Significant technology
improvement is a must to overcome the challenges and lower the
levelized cost of energy (LCOE) offloatingwind. Enhancing the insights
into the loads and load effects of the FWTs will be an efficient solution
to the successful deployment of floating wind. This is because a good
understanding of the FWT dynamics can aid to reduce the risk and
uncertainty associated with the wind turbine design and operating, thus
reducing the turbine, foundation and operating expenses.

Mooring equipment is a crucial cost driverwithin the floatingwind,
while significant efforts need to be taken to develop a target safety level
to realise a cost-effective design of mooring systems. Ultimate limit
state (ULS) check serves as the main criteria for the mooring system
design, which is performed based on extreme load effect analysis. The
FWT is a complex combination with aerodynamics, hydrodynamics,
control system and flexible structures and is subjected to various
environmental conditions with wind, wave and currents. Determining
the extreme values of themooring system requires effectivemethods to
deal with the extreme analysis problem.

Hsu et al. (Hsu et al., 2015) presented a comparative analysis in
predicting the extrememooring line tensions of an FWT exposed to a
100-years storm condition between model test and numerical
simulations. The importance of the snap events to the mooring
line tensions was investigated based on the exceedance probability
analysis, and results showed that normalised snap loads tend to a
constant 3, which can contribute to determining the safety factor of
mooring lines. In the study ofHsu et al. (Hsu et al., 2017), a composite
Weibull probability distribution was proposed for the mooring line
dynamic tensions due to the effects of snap loads. The results showed
that when the probability of the snap events is high, the developed
composite Weibull distribution method could be effectively used to
predict extreme tensions of FWT mooring systems. Xu et al. (Xu
et al., 2019a) studied the influence of non-linear wave kinematics on
fatigue damage and extreme responses of a 5MW semi-submersible
FWT. Gumbel fitting and Average Conditional Exceedance Rate
(ACER) methods were used to predict the extreme values of linear
mooring tensions, and the results showed that the fully non-linear
wave theory would lead to higher mooring line tensions than the
linear wave theory. Cao et al. (Cao et al., 2020) investigated the
extreme responses of a new concept of 10-MW semi-submersible
FWT based on the experimental tests. The mean up-crossing rate
method was used to estimate the extreme short-term values of the
mooring linear tensions. The results showed that the extreme
mooring line tensions are more likely to occur under harsh
environmental conditions than operational conditions. Most of the
previous studies predicting the extreme loads of mooring line
tensions are based on the extreme value distribution models.

However, the extreme values predicted by thismethod depend on
the tail of the probability distributions, which are pretty sensitive to
uncertainties. The well developed ACER method can enhance the
effectiveness and reliability in predicting the extreme values, but
significant numerical or experimental efforts are needed to produce
sufficient data for the ACER analysis. Motivated by this, it is essential
to improve the method to predict extreme responses without
devoting significant costs and efforts accurately.

This paper proposes a novel bivariate correction approach if the
sensor malfunctions or the available data record is too short. The
proposed method can more efficiently and reliably predict extreme

loads in a 10MW large floating wind turbine (FWT). More efficient
and reliable estimations of extreme responses will better help predict the
effects these loads have on the components allowing the development
and implementation of a better design or control system for the FWT.
Optimal wind turbine parameters would minimise potential FWT
mechanical damage due to excessive environmental loadings (Xu
et al., 2019a). Accurately predicted extreme loads will also allow the
components to be more optimally sized. It contributes to more refined
designs and lower failure rates, which is particularly important for the
offshore wind industry as it advances the design, manufacturing and
deployment of large FWTs (>10MW) in the coming decade.

2 SYSTEM DESCRIPTION

A 10-MW FWT system (Yu et al., 2017) is used in this work, and is
illustrated in Figure 1. The FWT system will be expounded in two
parts in the following sections. Firstly, the reference wind turbine will
be described, then the properties of the semi-submersible floater and
the mooring system will be introduced Figures 2 and 3.

2.1 DTU 10-MW Reference Wind Turbine
TheDTU10-MWreference wind turbine (RWT) is used in this paper,
designed from theNREL 5-MWRWT.Thewind turbinewas designed
per the International Electrotechnical Commission (IEC) Class 1A
wind regime and is a traditional three-bladed, clockwise rotation-
upwind turbine equipping with a variable speed and collective pitch
control system. The DTU 10-MW RWT numerical model has been

FIGURE 1 | The 10-MW OO-Star floating wind turbine (Yu et al., 2017).
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successfully developed and studied in many academic works, e.g., (Hu
et al., 2021; Muggiasca et al., 2021; Wang et al., 2022; Yu et al., 2022).
The summary of the DTU 10-MW RWT is shown in Table 1.

2.2 OO-Star Semi-SubmersibleWind Floater
and Mooring System
This work uses a semi-submersible floating structure to support
the 10-MW RWT. It was introduced by Dr. techn. Olav Olsen

AS in the LIFES 50 + project (Yu et al., 2017). The floater
comprises post-tensioned concrete, hosting a central column
with three outer columns. The four columns are mounted on a
star-shaped pontoon, where a slab is attached at the bottom.
Three catenary mooring lines are used to maintain the floater in
position, and in each line, a clumped mass is attached,
separating the line into two segments. Greater details of the
OO-Star Wind Floater and the mooring system are shown in
Table 2 and Table 3, respectively.

FIGURE 2 | Main dimensions of the OO-Star floater of the 10-MW wind turbine.

FIGURE 3 | Sketch of the mooring system in the 10-MW FWT (left: top view; right: side view).
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3 METHODOLOGY

This section describes the methodology adopted by authors to
address engineering challenges related to safe and reliable design
of FWTs (floating wind turbines). Note that the proposed ACER
(Average Conditional Exceedance Rate) method along with The
FAST simulation tool was already recently successfully used by
the authors, see, e.g., (Xu et al., 2020).

3.1z Aero-Hydro-Elastic-Servo Dynamic
Analysis of the 10-MW FWT
FAST (Fatigue, Aerodynamics, Structures and Turbulence)
(version8, v8.16.00a-bjj), an open-source WT simulation tool
developed by the National Renewable Energy Laboratory

(NREL), is utilised in this work for the fully coupled aero-
hydro-elastic-servo dynamic analysis for the 10-MW FWT.
The FAST code couples together five computer codes:
AeroDyn (Moriarty and Hansen, 2005), HydroDyn (Jonkman
et al., 2014), ServoDyn, andMoorDyn (Hall, 2015), to account for
the aerodynamic loads on rotor blades, hydrodynamic loads on
floaters, control dynamics, structural dynamics and mooring
system dynamics. In addition, FAST provides the interface for
reading the time-varying stochastic wind for time-domain
simulations. The FAST simulation tool has been successfully
used in other well-known projects such as OC3: Offshore
Code Comparison Collaboration (Jonkman and Musial, 2010)
and OC4: IEA Task Wind 30 (Robertson et al., 2014), and its
modelling capability has been authenticated using multiple
floating structures in the Netherlands (Coulling et al., 2013).

3.1.1 Aerodynamics
The blades aerodynamic loads are calculated based on the quasi-
steady Blade Element Momentum (BEM) theory. BEM theory
combines momentum theory and blade element theory. Various
advanced corrections, including tip loss, hub loss, skewed inflow
and dynamic stall corrections, are included in the BEM method.
The Prandtl corrections are implemented to account for the hub
and blade tip losses due to a finite number of blades. The Glauert
correction is applied to account for the induction factors, while
the Pitt and Peters’ model accounts for the skewed inflow
correction. The dynamic stall correction is employed in the
Beddoes-Leishman model. More details about the aerodynamic
load calculation in the FAST code can be seen in the AeroDyn
theory manual (Moriarty and Hansen, 2005).

3.1.2 Hydrodynamics
Hydrodynamic loads acting on the semi-submersible floater are
calculated based on potential flow theory withMorison’s drag term
considered. It accounts for the wave pressures and viscous loads,
respectively. Hydrodynamic coefficients, such as added mass and
potential damping coefficients, and first-order wave excitation load
transfer function are firstly estimated in the frequency domain by a
panel code, WAMIT, according to the potential flow theory. These
hydrodynamic coefficients are then transformed into the time
domain using the convolution technique.

3.1.3 Structural Dynamics
A combined multi-body and modal structural approach is
considered in the FAST code to account for the structural
dynamics of the FWT. The blades, tower and driveshaft are
considered flexible bodies, while the nacelle, hub and floater
are rigid bodies. The inherent structural damping in the blades
and tower are represented using the Rayleigh damping model.
The structural dynamic responses in the time-domain are
calculated by solving the equations of motion of the rigid-
flexible coupled system derived by Kane’s approach, see (Kane
and Levinson, 1983).

3.1.4 Control System Dynamics
The control system used in the 10-MW FWT is implemented
in two operational modes: the below-rated and full-rated

TABLE 1 | Key parameters of the DTU 10-MW reference wind turbine (Yu et al.,
2017).

Parameter Value

Rating 10-MW
Type Upwind/3 blades
Control Variable speed, collective pitch
Drivetrain Medium-speed, multiple stage

gearbox
Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25
Minimum and maximum rotor speed (rpm) 6.0, 9.6
Maximum generator speed (rpm) 480
Rotor diameter (m) 178.3
Hub height (m) 119.0
Rotor mass (kg) 227962
Nacelle mass (kg) 446036
Tower mass (kg) 1.257 × 106

TABLE 2 | The main properties for the 10-MW OO-Star wind floater.

Parameter Value

Water depth (m) 130
Draft (m) 22
Tower-base interface above mean sea level (m) 11
Displacement (kg) 24158
Overall gravity, including ballast (kg) 21709
Roll and pitch inertia about center of gravity (kg·m2) 1.4462 × 1010

Yaw inertia about center of gravity (kg·m2) 1.63 × 1010

Center of gravity height below mean sea level (m) 15.23
Center of buoyancy height below mean sea level (m) 14.236

TABLE 3 | The main properties for the mooring system of the 10-MW FWT.

Parameter Value

Radius to anchors from platform centerline (m) 691
Anchor position below MSL (m) 130
Initial vertical position of clump mass below MSL (m) 90.45
Initial radius to clump mass from centerline (m) 148.6
Length of clump mass upper segment (kg) 118
Length of clump mass lower segment (kg) 585
Equivalent weight per length in water (N/m) 3,200.6
Extensional stiffness (N/m) 1.506 × 109
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regions. The generator torque-speed curve regulates the rotor
rotational speed with an optimal tip speed ratio in the below-
rated region, achieving maximum power generation. A
proportional-integral (PI) algorithm regulates the blade
pitch angle to reduce the structural loading while keeping
the rated power generation in the full-rated region. The PI
parameters are modified from the land-based RWT to avoid
the negative damping effects, which are essential in affecting
the platform motions for FWTs.

3.2 ACER Method
Consider a long term global response process (such as anchor
tension force or FWT surge motion) X (t) of the FWT, measured
over a time interval (0, T). Let X1, . . . , XN be measurements of
the process X(t) at discrete time moments t1, . . . , tN in (0, T).
The target is to estimate the distribution function of the extreme
value MN � max {Xj ; j � 1, . . . , N} accurately namely, to
estimate CDF (cumulative density function) P(η) �
Prob(MN ≤ η) for large values of the response η. The
following random functions are introduced:

Akj(η) � 1{Xj > η, Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j � k, . . . , N, k

� 2, 3, ...

(1)
and

Bkj(η) � 1{Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j � k, . . . , N, k

� 2, 3, . . . , (2)
Where 1{A} � 1 if A is true, while it is 0 if not. As shown in
(Wang, 2001; Bak et al., 2013; Naess and Karpa, 2015a; Naess and
Karpa, 2015b; Gaidai et al., 2016; Jian et al., 2018; Gaidai et al.,
2019a; Gaidai et al., 2019b; Xu et al., 2019b; Gaidai et al., 2020; Xu
et al., 2021)

Pk(η) ≈ exp ( −∑N
j�k

E[Akj(η)]
E[Bkj(η)]) ≈ exp

( −∑N
j�k

E[Akj(η)]), η → ∞

(3)

The measured time series can be subdivided into K subsequent
(short term) blocks such that E[Akj(η)] remains approximately
constant within each block and such that

∑
j∈Ci

E[Akj(η)] ≈ ∑
j∈Ci

akj(η) for a sufficient range of η-values,

where Ci stands for the set of indices for the block with
number i; with i � 1, . . . , K, and where akj(η) are the realised
values of Akj(η) for the measured time series, then
∑N

j�kE[Akj(η)] ≈ ∑N
j�kakj(η). Thus, for a given stationary

process (short term sea current state), one has

Pk(η) ≈ exp ( − (N − k + 1)ε̂k(η)) (4)
Where

ε̂k(η) � 1
N − k + 1

∑N
j�k
akj(η) (5)

In the above equations, an assumption of ergodicity has been
used for each short term segment of the recorded time series in
order to estimate the short term expected values by using
observed values of the akj(η) functions. An alternative way of
expressing the long term extreme value distribution in Eqn. 4, is
obtained by considering the empirical probability distribution of
m � 1, ..,M sea current states having probabilities pm, so that∑M

m�1pm � 1. Next, introduce the long term ACER function of
order k:

ACERk(η) ≡ ∑M
m�1

ε̂k(η, m)pm (6)

Where ε̂k(η, m) is the same function as in Eqn. 5 but restricted to
a specific sea state with number m. As shown in (Gaidai et al.,
2020)- (Xu et al., 2019b), the long-term extreme value
distribution of M(T), can then be expressed as follows based
on the ACER function of order k:

P(η) ≈ exp( −N.ACERk(η)) (7)
Where ACERk(η) is the long term empirical ACER function of
order k, with k }N;N is the total number of data points from the
recorded time series used to estimate the ACER functions.
Typically, these could be local peaks from the measured time
series.

As the order k increases, the accuracy of Eqn. 7 improves and
ACERk(η) functions converge conveniently fast with growing k,
see (Gaidai et al., 2020)- (Xu et al., 2019b). Note that by increasing
the conditioning level k, possible data clustering effects, e.g. with
narrow-band response components in the recorded time series,
can be accounted for. This is an essential advantage of the ACER
method as it increases the accuracy of its extreme predictions and
avoids resulting in over-conservative design values.

The ACERk as functions of the level, η are generally quite
regular in the tail, i.e., for high response values of η. More
specifically, for η≥ η0, the tail behaves very closely like
exp{−(aη + b)c + d} with a, b, c, d being suitable constants.

It is suggested to do the optimisation on the log-level by
minimising the following mean square error function F with
respect to the four arguments ak, bk, ck, pk, qk.

F(ak, bk, ck, pk, qk) � ∫η1

η0

ω(η){ln(ACERk(η)) − dk + (akη + bk)ck }2dη, η≥ η0

(8)
Where η1 is a suitable data cut-off value, i.e., the largest η
response value with the confidence with acceptable interval
width. Weight function ω is defined as ω(η) �
{lnC+(η) − lnC−(η)}−2 with (C−(η), C+(η)) being a 95% CI,
empirically estimated from the measured data. Detailed
procedure for further optimising parameters ak, bk, ck, dk
has been outlined in (Gaidai et al., 2020)- (Xu et al., 2019b).
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3.3 Bivariate Correction
As already mentioned, the method proposed in this paper will
be based on the ACER methodology. This involves both the
univariate ACER functions and the bivariate ACER functions.
The unique feature of the ACER functions is that they provide
the possibility to portray the exact extreme value distribution
inherent in the data time series, both the univariate and the
bivariate (Wang, 2001)- (Xu et al., 2019b). Hence, the ACER
method is fundamentally different from the traditional
approach relying on the fitting of hardly asymptotic data
to asymptotic extreme value distributions, which are based on
the assumption of stationary time series instead of the ACER
method. The empirical ACER functions are represented in
nonparametric numerical functions with uncertainty bounds.
The accuracy obtained depends, of course, on the amount of
data available to estimate these functions. It is also an
essential feature of the ACER method that it is not limited
to stationary time series. It is entirely valid for nonstationary
time series as long as the measured data reflects this
nonstationarity. For the sake of easy reference, the
univariate ACER methodology has been briefly outlined
below. The bivariate case follows quite closely the
univariate case.

This section presents a statistical bivariate integral correction
based on the bivariate ACER method coupled with the Gumbel
logistic model (Gaidai et al., 2019a)- (Xu et al., 2019b). Note that
this correction is not limited to only extreme value estimates.
However, it can be applied with appropriate bivariate models for
any statistical values of interest to improve their accuracy based
on synchronously measured longer, highly correlated data
records.

LetX � max{R2(t); t ∈ [0, Treturn]}, Y � max{R3(t); t ∈ [0, T]},
where X � Surge and Y � Tension are responses simulated
synchronously, see Section 3.1, with T being return period of
interest, and let FXY(ξ, η) � Prob(X≤ ξ, Y≤ η) be the joint
bivariate cumulative distribution function (CDF) of (X, Y).

Raw response time series with dt � 0.0246 sec were blocked
into k � 10 consecutive discrete time points maxima to reduce
the neighbouring data points correlation effect. The
conditioning level k was chosen according to the response
power spectral density as it was observed that ACER
functions have converged at that level in the distribution tail,
see Section 3.2.

FX(ξ) and FY(η) denote the corresponding univariate
marginal CDFs for X and Y, respectively. In this paper, it is
assumed that the bivariate couple (Surge(t), Tension(t)) has
been observed over a period of time t ∈ [0, ~T], where the
observation duration ~T is not long enough for accurately
predicting the univariate extreme response levels with a target
low probability of interest. Now, consider the case when a ’long’
record of Tension(t) is available over a time t ∈ [0, T], with
T}~T, with a corresponding estimated CDF Flong

X (ξ) of the CDF
FX(ξ), which has a probability density function (PDF) pX � F′

X.
In this paperTreturn ≈ 5 years is the return period that corresponds
to the extreme probability p of interest, p � 0.5Δ10−7, T � 20 h,
~T � T/600 see Section 4. Then for any Y- response level of
interest ηp, with Δ → 0,

FY(ηp) � FXY(E, η) � ∫
+∞

0

Prob(Y≤ ηp
∣∣∣∣X � ξ)pX(ξ)dξ

� ∫
+∞

0

Prob(Y≤ ηp, X ∈ [ξ, ξ + Δ])
Prob(X ∈ [ξ, ξ + Δ]) pX(ξ)dξ

� ∫
+∞

0

F′
XY,X(ξ, ηp)dξ, (9)

with F′
XY,X(ξ, η) � z

zξFX,Y(ξ, η). See (Gaidai et al., 2019a)- (Xu
et al., 2019b) for the details related to these equations. The
following copula model for the bivariate extreme value
distribution is referred to as the Gumbel logistic model
(Wang, 2001)- (Xu et al., 2019b):

FXY(ξ, η) � exp{ − [( − ln FX(ξ))m + ( − ln FY(η))m]1/m}
(10)

In this model, it is seen that m = 1 corresponds to the case
when X and Y are independent. When 0 < m < 1, X and Y
become dependent, (Wang, 2001)- (Xu et al., 2019b). However,
this dependence structure is of a special kind since it only involves
the marginal distributions. Still, it appears to be useful in some
practical cases. Another popular extreme value copula is the
Asymmetric Gumbel logistic model, see (Wang, 2001)- (Xu
et al., 2019b). This bivariate extreme value model will not be
discussed further in this paper since it gives identical results as the
Gumbel logistic model. The Gumbel logistic model has been
verified to be useful for various offshore engineering practical
applications, provided the marginal extreme value distributions
are estimated using the univariate ACER method instead of
standard asymptotic extreme value distributions (Wang,
2001)- (Xu et al., 2019b). This is because the asymptotic
distributions typically used are often not accurate enough in
the tails, being the results of fitting real, subasymptotic data to
asymptotic distributions. If Eqn. 35 is differentiated with respect
to x, it is obtained that

F′
XY,X(ξ, ηp) � FXY(ξ, ηp)[1 + (ln FY(ηp)/ ln FX(ξ))m] 1

m−1 d
dξ

lnFX(ξ) (11)

The numerical estimates F̂Y(ηp) and F̂XY(ξ, ηp) of FY(ηp) and
FXY(ξ, ηp), respectively, based on the available time series of
recorded data, are now used in the following expression to obtain
the corrected estimate Fcorr

Y (ηp):

Fcorr
Y (ηp) � ∫+∞

0
F̂XY(ξ, ηp)[1 + (ln F̂Y (ηp)/ ln F̂

long

X (ξ))m]
1
m−1 d

dξ
ln F̂

long

X (ξ)dξ.
(12)

Note that all quantities on the right side of Eqn. 12 are known
from the available time series of recorded data. The Gumbel
copula parameter m has been calibrated to fit joint empirical
distribution F̂XY. For the latter optimisation task, the Trust-
region-reflective non-linear least-squares optimisation algorithm
can be used, and the interior-point algorithm to find the
minimum of constrained non-linear multivariable function; for
details, see (Wang, 2001)- (Xu et al., 2019b).
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FIGURE 4 | Phase space between simulated Surge and Tension FWT responses. Red star indicates predicted extreme coupled response value.

FIGURE 5 | ACER functions for shorter and longer FWT response records: Surge and Tension FWT responses, upper and lower figures, respectively. The ACER
function decimal logarithm values are on the vertical axes. Mean current velocity 8 m/s.

Frontiers in Mechanical Engineering | www.frontiersin.org July 2022 | Volume 8 | Article 8884977

Gaidai et al. Improving Record With Correlated Signal

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


4 BIVARIATE CORRECTION RESULTS

Three realistic mean wind velocities of 8, 12 and 16 m/s are
studied in this paper. For the three environmental conditions, 20
different random samples of wind and wave are applied for each
sea state. Each simulation lasts 4000s, where the first 400s is
removed to reduce the transient effect induced by the wind
turbine start-up. Therefore, 1-h data in each simulation is
formed and is used for extreme value analysis in this work.
The results shown in this work are based on the average of
20 1-h simulations to reduce the stochastic variability.

Simulated surge motion and anchor tension, Surge and
Tension correspondingly, FWT responses possess a high
correlation coefficient Rcorr ≈ 0.9. This paper studies
synchronous measurements of Surge and Tension FWT
responses, also referred to in figures as X and Y, respectively.
It is seen from Figure 4 that there is a non-linear dependency
between Surge and Tension FWT responses, therefore task of
bivariate prediction is not trivial.

Figure 5 shows the ACER functions for the more extended
observation period T, which is 20 h of numerical simulation, and
for the shorter period ~T � T/600. It is seen that, due to the high
correlation between the two FWT response processes, both
overestimate the ACER function levels compared with the
more extended dataset ACER curve.

The following results were obtained for the simulated FWT
response motions bivariate correction.

Table 4 presents the correction results for the corrected FWT
anchor Tension. There are no monotonic relationship between
the results and mean wind speeds. It is seen that the proposed
correction technique resulted in remarkable improvement in
accuracy, from about 90% over-prediction down to 30% in the
case of mean wind velocity 12 m/sec. The return period for the
predicted response level was chosen to be 5 years. The latter
provides a practical example, supporting the novel correction
technique introduced in this paper.

5 CONCLUSION

The FWT surge motion and anchor tension force due to
environmental wind and wave loads were studied for three
operating conditions of mean wind speeds of 8, 12 and 16m/s.

The bivariate correctionmethodwas briefly described and applied to
account for the coupled load effects, namely surge motion and
anchor tension force simulated synchronously in time.

This paper proposed using the bivariate correction method to
investigate the extreme structural responses (motion surge and
anchor tension force) during FWT realistic operation. High
correlation between the two processes is the key requirement
for the described correction to achieve improved prediction
accuracy. As shown in the presented study, there is a practical
advantage in applying the bivariate correction introduced in this
paper, as it brings prediction based on short time series of data
quite close to the prediction based on a much longer time series.
Thus, a significant improvement in extreme value prediction
accuracy is obtained. Some practical situations that may justify
the above-mentioned analysis would be:

⁃ Another similar FWT is being designed for the same
environmental condition, then data collected from one
FWT may be useful for another.

⁃ Malfunctioning of one measuring sensor, while another is
well-functioning.

This paper shows that applying the bivariate correction for
the particular cases studied has increased extreme FWT
response prediction accuracy. This improvement shows that
the proposed correction method can be useful in engineering
design in case of sensor malfunctioning or available data
record is too short.
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