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Abstract: To develop a mechanistic-empirical pavement design system for Norwegian conditions,
this paper evaluates the influence of the adoption of different models and shifting techniques on the
determination of dynamic modulus master curves of asphalt mixtures. Two asphalt mixture types
commonly used in Norway, namely Asphalt Concrete (AC) and Stone Mastic Asphalt (SMA) contain-
ing neat bitumen and polymer-modified bitumen, were prepared by the roller compactor, and their
dynamic moduli were determined by the cyclic indirect tensile test. The dynamic modulus master
curves were constructed using the standard logistic sigmoidal model, a generalized logistic sigmoidal
model and the Christensen–Anderson–Marasteanu model. The shifting techniques consisted of log-
linear, quadratic polynomial function, Arrhenius, William–Landel–Ferry and Kaelble methods. The
absolute error, normalised square error and goodness-of-fit statistics encompassing standard error
ratio and coefficient of determination were used to appraise the models and shifting methods. The
results showed that the standard logistic sigmoidal model and the Williams–Landel–Ferry equation
had the most suitable fits for the specimens tested. The asphalt mixtures containing neat bitumen
had a better fit than the ones containing polymer-modified bitumen. The Kaelble equation and
log-linear equation led to similar results. These findings provide a relevant recommendation for the
mechanistic-empirical pavement design system.

Keywords: asphalt mixture; dynamic modulus; master curve model; shift factor; goodness of fit

1. Introduction

To develop the mechanistic–empirical pavement design system for Norwegian condi-
tions envisaged by the Norwegian Public Roads Administration (NPRA) [1], the mechanical
characterization of asphalt pavement is of primary importance. The asphalt material is
sensitive to the temperature and the rate-of-load due to its viscoelastic properties [2,3].
Based on the Mechanistic–Empirical Pavement Design Guide (MEPDG) [4], the dynamic
modulus is a relevant parameter to characterise the mechanical properties of asphalt pave-
ments. Due to the time-consuming process of specimen preparation and testing, master
curves were developed according to the time–temperature superposition principle [5,6].
It is necessary to select an appropriate method to evaluate the dynamic modulus master
curve among all the formulated extrapolation methodologies in order to develop a proper
mechanistic–empirical pavement design system.

The Standard Logistic Sigmoidal (SLS) model used in the MEPDG is widely used to
construct the dynamic modulus master curve of asphalt materials. The SLS model can
more accurately fit the dynamic modulus test data in a wider temperature range than
a single polynomial model [7,8]. However, the SLS model is more applicable when test
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data are symmetrical, whereas the Generalized Logistic Sigmoidal (GLS) model developed
by Rowe et al. is better employed to fit asymmetric data [9,10]. Moreover, Marasteanu
and Anderson proposed a Christensen–Anderson–Marasteanu (CAM) model based on the
Christensen–Anderson (CA) formulation [11], which provides a better fit of the dynamic
modulus of asphalt mixtures within very low and very high frequencies for unmodified
and polymer modified bituminous binders [12–14].

To construct the dynamic modulus master curve, different shifting techniques (shift
factor, αT) were used to model the time–temperature superposition relationship related to
the viscoelastic properties of asphalt materials. Traditionally, the temperature dependence
of relaxation modes in the vicinity of glass transition temperature (Tg) is modelled with the
Williams–Landel–Ferry (WLF) equation [15]. However, recent experimental studies [16,17]
found that the temperature dependence of viscoelastic properties deviate from the WLF
equation below Tg. To address this issue, the Kaelble equation based on the WLF formula-
tion was proposed [18–20]. The Kaelble equation is a symmetric function devised to reflect
the temperature dependence of viscoelastic properties below Tg [21]. The Arrhenius equa-
tion is another popular model used to describe the temperature dependence of viscoelastic
properties of materials. The WLF and Arrhenius equations focus on the volume processes
and the thermally activated processes, respectively [10,22]. In addition to the above two
methods, the log-linear equation can also describe the temperature dependence of asphalt
materials [7]. The log-linear equation presents the straight-line relationship between log(αT)
and temperature, and is normally used for asphalt mixtures [23]. The quadratic polynomial
equation is another well-known shift factor equation that can accurately fit the shift factors
over a wide range of temperatures [24–26].

The objective of this study is to adopt various models and shift factor equations
to evaluate the dynamic modulus of four types of asphalt mixtures commonly used in
Norwegian highway by means of Cyclic Indirect Tensile Tests (CITTs) conducted in the
laboratory. The three master curve models and five shift factor equations were employed
to assess the dynamic modulus master curve. The quality of the extrapolation calculations
was assessed by error analysis and goodness-of-fit statistics. The results can provide
recommendations for the selection of the proper master curve model and shift factor
equation for developing the mechanistic–empirical pavement design system.

2. Materials and Methods
2.1. Materials

The Neat Bitumen (NB) of Pen 70/100 and the Polymer Modified Bitumen (PMB)
of Pen 65/105 were supplied by Veidekke company (Trondheim, Norway) and Nynas
company (Göteborg, Sweden), respectively. Their main physical properties are given in
Table 1. In PMB, the critical network structure is formed between the polymer molecule
and the asphalt binder, which enhances its deformation resistance at high temperature,
resulting in a lower penetration and a higher softening point [27].

Table 1. Physical properties of neat bitumen and PMB.

Physical Properties
Bitumen

Test Standard
NB PMB

Penetration at 25 ◦C [0.1 mm] 92 86 EN 1426:2015 [28]
Softening point (Ring and Ball) [◦C] 46.0 62.6 EN 1427:2015 [29]

Crushed rock aggregates supplied by Franzefoss company (Heimdal, Norway) were
adopted, and their resistance to wear and fragmentation are specified in Table 2. The
aggregates fulfilled the requirements for AC and SMA mixture with an Annual Average
Daily Traffic (AADT) higher than 15,000 [30].
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Table 2. Resistance to wear and fragmentation of crushed rock aggregates.

Test Value Requirements for
AADT > 15,000 Test Standard

Micro-Deval coefficient 14.2 ≤20 EN 1097-1:2011 [31]
Los Angeles value 18.2 ≤15 EN 1097-2:2020 [32]

2.2. Cyclic Indirect Tensile Test
2.2.1. Sample Preparation

The asphalt mixture specimens were prepared in the laboratory based on the average
value of the upper limit and lower limit in the gradation curves of AC 11 and SMA 11 shown
in Figure 1 [30], and the Optimum Binder Contents (OBC, by asphalt mixture weight) were
determined by the Marshall mix design. Therefore, four types of mixtures were used in
this study, as shown in Table 3. The OBC of AC 11-NB, AC 11-PMB, SMA 11-NB and SMA
11-PMB were, respectively, 5.1%, 5.2%, 5.3% and 5.3%.
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Figure 1. Gradation curves of (a) AC 11 and (b) SMA 11.

Table 3. Designation of the tested specimens according to selected mixture types and bitumen types.

Mixture Type Bitumen Type Designation

AC 11
NB AC 11-NB

PMB AC 11-PMB

SMA 11
NB SMA 11-NB

PMB SMA 11-PMB

The asphalt slabs were compacted using a roller compactor based on the gradation
curves and OBC of asphalt mixtures. Then, designated specimens with a diameter of
100 mm and a height of 40 mm were drilled, cut and further used to perform CITT. A total
of 16 specimens were prepared (four replicate specimens for each type of mixture). The
maximum density of each asphalt mixture was determined by its aggregate density and its
bitumen density based on the mathematic procedure method. The void characteristics of
specimens are given in Table 4.

Table 4. Maximum density and void characteristics of specimens.

Mixture
Maximum

Density
[Mg/m3]

Air Voids Content [%] Voids in Mineral Aggregate [%] Voids Filled with Bitumen [%]

Value Standard
Deviation Value Standard

Deviation Value Standard
Deviation

AC 11-NB 2.753 3.5 0.197 16.9 0.170 79.1 0.947
AC 11-PMB 2.748 2.9 0.314 16.6 0.269 82.8 1.636
SMA 11-NB 2.740 4.4 0.252 18.1 0.216 75.8 1.101

SMA 11-PMB 2.740 3.1 0.296 17.1 0.254 81.6 1.438
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2.2.2. Testing Procedure

The CITT was performed using the Nottingham Asphalt Tester (NAT) produced by
Cooper Technology Company (Ripley, United Kingdom). The controlled harmonic sinu-
soidal load was applied without rest period through a servo-controlled double acting
pneumatic actuator. The horizontal deformation was detected by two Linear Variable Dif-
ferential Transformers (LVDT). The sets of frequencies and temperatures were, respectively,
10 Hz, 5 Hz, 3 Hz, 1 Hz, 0.3 Hz, 0.1 Hz and −15 ◦C, −10 ◦C, 0 ◦C, 15 ◦C, 30 ◦C for each test.
The applied load ensured that the tested samples were in the linear viscoelastic range as
the initial horizontal strain was in a range between 50 µε to 100 µε for each temperature
and frequency. This research presents the average results deriving from the testing of four
replicate specimens.

2.3. Master Curve Construction
2.3.1. Master Curve Models
SLS Model

The SLS model used in the MEPDG is one of the most popular models used to describe
the rheological properties of asphalt mixture. The SLS model is given by Equation (1).

log(|E∗|) = δ +
α

1 + eβ−γ·log ( fr)
(1)

where |E*| is the dynamic modulus, fr is the frequency at the reference temperature of
15 ◦C in this research, and δ, α, β and γ are the fitting parameters. δ and δ + α represent the
minimum and maximum values of |E*|, respectively. β and γ describe the shape of the
SLS model as depicted in Figure 2.
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Figure 2. Graphical interpretation of SLS model.

GLS Model

The SLS model provides an excellent fit to symmetric experimental data points, but
it cannot acceptably fit non-symmetric curves. Therefore, the use of a GLS model was
recommended by Rowe et al., as it is the general form of sigmoidal function applicable to
asymmetric curves [33] as given by Equation (2).

log(|E∗|) = δ′ +
α′[

1 + λ · eβ′−γ′ ·log ( fr)
] 1

λ

(2)

where δ′, α′, β′, γ′ and λ are the fitting parameters. λ characterizes the asymmetric
characteristics shown in Figure 3. δ′ and δ′ + α′ represent the minimum and maximum
values of |E*|, respectively. β′ and γ′ describe the shape of the GLS model.
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CAM Model

The CAM model given by Equation (3) can also satisfactorily describe the viscoelastic
properties of asphalt mixtures.

|E∗| = E∗e +
E∗g − E∗e[

1 +
(

fc
fr

)v]w/v (3)

where E∗e is the equilibrium modulus representing the minimum modulus, E∗g is the glassy
modulus representing maximum asymptotic modulus, fc is the location parameter with
dimensions of frequency, v and w are fitting parameters and describe the shape of the model
as shown in Figure 4.
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2.3.2. Shift Factor Equations

The shift factor describes the temperature dependency of the dynamic modulus and
the general form is given in Equation (4). It can be used to shift the dynamic modulus
at different test temperatures to the reduced frequency of the master curve based on the
reference temperature of 15 ◦C.

fr = f · αT (4a)

log( fr) = log( f ) + log(αT) (4b)

Five commonly used shift factor equations were adopted in this research, which were
the log-linear equation, quadratic polynomial equation, Arrhenius equation, WLF equation
and Kaelble equation.
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Log-Linear Equation

The log-linear equation is one of the most popular temperature-shifting methods
for asphalt mixtures. Christensen and Anderson [11] suggested that below 0 ◦C, log(αT)
varies linearly with temperature for many binders, and this same relationship has been
deemed suitable for asphalt mixture at low to intermediate temperatures [34]. The log-linear
equation for calculating the shift factor is:

log(αT) = C · (T − Tr) (5)

where αT is the shift factor, T is the temperature, Tr is the reference temperature (15 ◦C), C
is the constant which is determined by analysis of the experimental data.

Quadratic Polynomial Equation

The quadratic polynomial equation can well fit the shift factors over a wide range of
temperatures, and is expressed as:

log(αT) = a · (T − Tr) + b · (T − Tr)
2 (6)

where a and b are regression parameters.

Arrhenius Equation

The Arrhenius equation for calculating the shift factor is presented in Equation (7):

log(αT) = C′ ·
(

1
T
− 1

Tr

)
=

0.4347 · Ea

R
·
(

1
T
− 1

Tr

)
(7)

where C′ is a constant, Ea is the activation energy (J/mol) and R is the ideal gas constant
(8.314 J/mol·K). The Arrhenius equation has only one constant to be determined and can
describe the behaviour of the material below Tg [16].

WLF Equation

The WLF equation is widely used to describe the relationship between shift factor and
temperature above Tg and thereby assess the shift factor of asphalt mixtures:

log(αT) =
−C1 · (T − Tr)

C2 + (T − Tr)
(8)

where C1 and C2 are two regression parameters.

Kaelble Equation

The Kaelble equation is a modification of the WLF equation and can describe the
relationship between shift factor and temperature below Tg as given in Equation (9).

log(αT) =
−C1

′ · (T − Tr)

C2′ + |T − Tr|
(9)

where C1
′ and C2

′ are two regression parameters.

2.3.3. Fitting Procedure

To construct the master curves deriving from the experimental data, the nonlinear
least squares regression analysis was integrated in the Microsoft Excel Solver tool. The Sum
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of Square Error (SSE) between measured values after shifting, |E*|measured, and predicted
values, |E*|predicted, as shown in Equation (10) was used for the fitting procedure.

SSE = ∑

(
|E∗|measured − |E∗|predicted

)2

(|E∗|measured)
2 (10)

To define the optimal results of master curves, the coefficients of the models and shift
factor equations were fitted to minimize SSE. The constraint range of variables was not
defined due to well fitting results for the cases. The selection of solving method was GRG
Nonlinear. Furthermore, the same initial values of fitting parameters were used for each
fitting procedure.

2.4. Goodness of Fit Statistics

The standard error ratio and coefficient of determination (R2) were used to evaluate the
goodness of fit between measured and predicted values. The standard error of estimation
and standard error of deviation are defined as follows [35]:

Se =

√√√√∑
(
Y− Ŷ

)2

(n− k)
(11)

Sy =

√√√√∑
(
Y−Y

)2

(n− 1)
(12)

where Se is the standard error of estimation, Sy is the standard error of deviation, n is
sample size, k is the number of independent variables, Y is the measured value, Ŷ is the
predicted value and Ȳ is the average value of measured values. The standard error ratio is
defined as Se/Sy. R2 is determined as follows:

R2 = 1− (n− k)
(n− 1)

·
(

Se

Sy

)2
(13)

Lower Se/Sy and higher R2 values indicate better goodness between predicted and
measured data. Based on the criteria of the goodness of fit from previous research [36],
Se/Sy and R2 of this research are lower than 0.35 and higher than 0.90, respectively, which
indicates that all results have a good fit.

3. Results and Discussion
3.1. Dynamic Modulus Master Curve

The fitting results of master curves are presented in Figure 5, where red represents
the SLS model, blue represents the GLS model and green represents the CAM model,
moreover, circle markers, square markers, triangle markers, diamond markers and crosses
represent the log-linear equation, the polynomial equation, the Arrhenius equation, the
WLF equation and the Kaelble equation, respectively. The results of the three model fits are
similar for the four types of asphalt mixtures. The differences appear in the various shift
factor equations. No matter at high or low reduced frequency, the dynamic modulus values
fitted by the log-linear equation, Arrhenius equation and Kaelble equation are bigger than
the ones fitted by the polynomial equation and WLF equation. The fitting parameters of
the log-linear equation and the Kaelble equation are similar, and the fitting parameters of
the polynomial function and the WLF equation are very close.
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Figure 6 shows the changes in shift factors with temperature, where the colour and
shape of the marker represent the same master curve models and shift factor equations
as in Figure 5. The curves of the log-linear equation, Arrhenius equation and Kaelble
equation are relatively close and show a linear shape, while the curves of the polynomial
equation and the WLF equation are similar and more curved than the former ones. This
indicates that the polynomial equation and the WLF equation shift the curve more to the
right at high reduced frequency and more to the left at low reduced frequency, as shown in
Figure 5, resulting in the higher dynamic modulus values fitted by the log-linear equation,
the Arrhenius equation and the Kaelble equation. Meanwhile, the difference in the shift
factor of the PMB asphalt mixtures is more obvious than the one of the NB asphalt mixtures,
and the SMA mixtures have a more pronounced effect on the difference between shift
factors than the AC mixtures. This indicates that the PMB and the SMA mixtures are more
sensitive to the shift factor equations. This can be explained considering that the different
cross-linked structures of the NB and the PMB and the different skeleton structures of the
SMA and the AC mixtures lead to the distinction in the mechanical response of the asphalt
mixtures, which causes the difference in the shift factor equations on the modelling of
dynamic modulus.
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Figure 7 presents the modelling values of the dynamic modulus at the reduced fre-
quency of 104 Hz (Tr = 15 ◦C) for three master curve models and five shift factor equations.
The distinction of dynamic modulus is not greatly affected by the master curve models.
The influence of the five shift factor equations can be divided into two categories. The
first category including the log-linear equation, Arrhenius equation and Kaelble equation,
shows a higher value in dynamic modulus. Another category including the polynomial
equation and the WLF equation exhibits a lower dynamic modulus of mixtures. The dy-
namic modulus of the former category is on average about 23% higher than that of the
latter one.
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The modelling values of the dynamic modulus at the reduced frequency of 10−2 Hz
(Tr = 15 ◦C) are given in Figure 8 and have a similar trend as the results at 104 Hz, which
can also be divided into the same two categories. The former one has an average 19%
higher dynamic modulus than the latter one. The results of Figures 7 and 8 indicate that
the modelling values of dynamic modulus fitted by the log-linear equation, Arrhenius
equation and Kaelble equation are approximately 20% higher than the ones fitted by the
polynomial equation and the WLF equation, both at high and low reduced frequencies.
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becomes smaller again at −15 °C (higher reduced frequency). This result is attributed to 
the elastomer of asphalt mixture at very low temperature, resulting in a constant dy-
namic modulus. 
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3.2. Error Analysis
3.2.1. Absolute Error

After comparing the master curves constructed by different models, the error analysis
of each model and shift factor equation was carried out. The absolute errors of the dynamic
modulus between the modelling values fitted by the three master curve models and the five
shift factor equations, and the measured values are shown in Figure 9, where the colour
and shape of the marker represent the same master curve models and shift factor equations
as in Figure 5. The absolute error is small at high temperatures and relatively big at the
temperature range between −15 ◦C to 0 ◦C for all mixtures. The maximum absolute error
at −10 ◦C can be explained by the connection between viscoelastic stage and elastic stage,
which in turn changes the mechanical response of mixtures. As the temperature continues
to decrease (the reduced frequency increases), the absolute error becomes smaller again
at −15 ◦C (higher reduced frequency). This result is attributed to the elastomer of asphalt
mixture at very low temperature, resulting in a constant dynamic modulus.
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The shift factor equation has more influence on the Sum of Absolute Error (SAE)
than the master curve models, as shown in Figure 10. There are 15 master curve model-
shift factor equation combinations for 4 types of mixtures resulting in a total of 60 fitting
procedures. The average SAE of the fitting procedures with the controlled fitting condition
are used for comparing the distinctions of the master curve models, shift factor equations
and asphalt mixture types as expressed in Equation (14).

SAE =
∑ SAE(master curve models, shift factor equations, asphalt mixture types)

n
(14)

where SAE is the average SAE and n is the number of fitting procedures. The SAE of the
fitting procedures with the SLS model, the GLS model and the CAM model are 21,598 MPa,
23,851 MPa and 27,244 MPa, respectively. This indicates that the SLS model has the smallest
absolute error, the CAM model has the largest absolute error and the GLS model is in
between. Regarding the shift factor equations, the SAE for the log-linear equation and the
Kaelble equation are similar and classified as class 1, the SAE for the polynomial equation
and the WLF equation are close and grouped into class 2 and the value for the Arrhenius
equation lies between them as class 3. The absolute error of class 1 is more than twice
that of class 2. The results reveal that the SLS model and the polynomial function have
the smallest absolute errors in three master curve models and five shift factor equations,
respectively. For class 1, the absolute error of SMA mixtures is larger than the one of AC
mixtures. Comparing four types of mixtures, the AC 11-PMB has the highest absolute error
of class 2.
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3.2.2. Normalised Square Error

Since the dynamic modulus of asphalt mixtures is distinct at different temperatures
and frequencies, it is difficult to compare the error under the same condition over the full
frequency range. The normalised square error was analysed to compare different models
and shift factor equations at the same condition. From Figure 11, the normalised square
error is larger at high temperatures and smaller at low temperatures, contrary to the results
of the absolute error, which reflects the error of dynamic modulus at high temperatures. The
maximum normalised error appears at the high temperature of 30 ◦C. As the temperature
increases, the asphalt transitions to a viscous flow state, and its dynamic modulus is more
obviously affected by the loading conditions, becoming unstable, resulting in an increasing
normalised square error. Furthermore, the distinction between different asphalt mixtures
can also be found. The normalised square error for asphalt mixtures containing PMB is
relatively higher than the one for asphalt mixtures containing NB. Compared to the NB,
the polymer molecular in the PMB also provides a portion of the stiffness modulus for the
asphalt mixture. The complex connection between the polymer molecular and the asphalt
binder, such as the composition and distribution of the polymer molecular in the asphalt
binder, determines the stiffness modulus of the asphalt mixture [37,38]. Therefore, the
dynamic modulus change of the asphalt mixture containing PMB is more complicated than
that of the NB asphalt mixture, resulting in a larger error. Otherwise, the SMA mixtures
have a higher normalised square error than the AC mixtures. The SMA mixture contains
more coarse aggregates than the AC mixture, leading to more particle angularity. The
greater the particle angularity, the higher the stiffness modulus of the asphalt mixture [39].
Thus, the change of the dynamic modulus of the SMA mixture is more complex than that
of the AC mixture, resulting in a larger error.
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Figure 11. Normalised square errors of (a) AC 11-NB, (b) AC 11-PMB, (c) SMA 11-NB and (d) SMA
11-PMB.

The SSE for different models has the same trend as the SAE as shown in Figure 12.
The same approach as SAE is used for SSE as shown in Equation (15).

SSE =
∑ SSE(master curve models, shift factor equations, asphalt mixture types)

n
(15)

where SSE is the average SSE. The SSE of the SLS model is 0.20, which is also smaller than
those of the GLS model (0.25) and the CAM model (0.26). Based on SSE values, five shift
factor equations are divided into three classes, the same as the classification in Section 3.2.1.
The SSE of class 1 is around five times that of class 2. The results show that the SLS model
and the polynomial function have the smallest normalised square errors in the three master
curve models and the five shift factor equations, respectively. The mixtures containing
PMB have a lower SSE than the mixtures containing NB, which indicates that the fit of the
model for NB is better than the one for PMB, which can be explained by the effect of the
PMB structure on the dynamic modulus of the asphalt mixture.
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3.3. Goodness of Fit

The Se/Sy and R2 are used to evaluate the quality of the model. From Figure 13, the SLS
model has the smallest average value of Se/Sy (0.0853) and the highest average value of R2

(0.9915) compared to the GLS model (0.0951, 0.9906) and the CAM model (0.1090, 0.9859).
Otherwise, the average values of Se/Sy and R2 for the polynomial equation are the smallest
(0.0394) and the largest (0.9982), respectively. While the Kaelble equation has the biggest
average value of Se/Sy (0.1441) and the smallest average value of R2 (0.9810). These results
indicate that the SLS model and the polynomial function have the best goodness-of-fit in
the three master curve models and the five shift factor equations, respectively. Among the
15 kinds of fits, the NB asphalt mixture shows an overall better goodness-of-fit than the
PMB asphalt mixture. This indicates that the dynamic modulus of PMB asphalt mixture
is affected by more factors than that of NB asphalt mixture due to the effect of polymer
molecular in the binder.
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3.3.1. Master Curve Models

The comparison of master curve models between measured dynamic modulus and
predicted dynamic modulus is shown in Figure 14, where blue represents AC 11-NB, orange
represents AC 11-PMB, gray represents SMA 11-NB and yellow represents SMA 11-PMB,
and the shape of the marker represents the same shift factor equation as in Figure 5. All the
models fit the data satisfactorily according to the goodness-of-fit ranking criteria. The SLS
model had the lowest Se/Sy of 0.0925 and the highest R2 of 0.9916, which indicates that this
model shows a better goodness-of-fit than the GLS model and the CAM model under the
test conditions of this study. The Se/Sy and R2 of the CAM model were, respectively, 28.2%
higher and 0.5% lower than the respective parameters of the SLS model, showing the worst
correlation in the three models. Therefore, the SLS model with better goodness-of-fit can be
considered for modelling the four asphalt mixtures.
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3.3.2. Shift Factor Equations

The comparison between measured dynamic modulus and predicted dynamic modu-
lus related to the selection of shift factor equation is shown in Figure 15, where the colour
represents the same type of asphalt mixtures as in Figure 14. Furthermore, circle markers,
square markers and triangle markers represent the SLS model, GLS model and CAM model,
respectively. The fitting results showed that all the considered five equations had fit the
data satisfactorily according to the goodness-of-fit ranking criteria. The log(αT) of the
Kaelble equation showed a linear trend within the test temperature range, the fitting results
of the Kaelble equation and the log-linear equation were similar, and the same findings
were also shown in the former sections. The quadratic polynomial equation displayed
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the best goodness-of-fit with the lowest Se/Sy of 0.0275 and the highest R2 of 0.9984. The
fitting results of the WLF equation and the quadratic polynomial equation were similar
and showed a good fit. The fit related to the Arrhenius equation was in the middle among
the five equations. Furthermore, the transform between frequency and temperature was
more convenient for the WLF equation than the quadratic polynomial due to the quadratic
form. Therefore, the WLF equation was recommended for modelling the dynamic modulus
of the asphalt mixtures.
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3.4. Comparison of Fits

In this study, four indicators of absolute error, normalised square error, Se/Sy and R2

were used to evaluate the fitting quality of the models. The 15 permutations of the three
master curve models and five shift factor equations for the four types of asphalt mixtures
were ranked from good to poor (from 1 to 15), and the index of fitting quality is expressed
by Equation (16).

I f q =
Aae+Anse+ASe/Sy+AR2

4

Aae, Anse, ASe/Sy and AR2 =
AAC11−NB+AAC11−PMB+ASMA11−NB+ASMA11−PMB

4

AAC11−NB, AAC11−PMB, ASMA11−NB and ASMA11−PMB = 1, 2, . . . , 15

(16)

where Ifq is the index of fitting quality, Āae, Ānse, ĀSe/Sy and ĀR2 are the average arrays of
absolute error, normalised square error, Se/Sy and R2, respectively, AAC 11-NB, AAC 11-PMB,
ASMA 11-NB and ASMA 11-PMB are the arrays of the order in 15 permutations. The average
values of sequences are summarised in Table 5. The shift factor equation has a more
significant effect on the dynamic modulus modelling than the master curve model. The
modelling of the SLS model with the polynomial equation has the best fitting quality, while
the result fitted by the CAM model with the Kaelble equation is the worst in this study.
Among the five shift factor equations, the polynomial equation has the best fit, followed
by the WLF equation. The intertransform between frequency and temperature is more
convenient for the WLF equation than the quadratic polynomial due to the quadratic form.
Therefore, the SLS model and the WLF equation were recommended for modelling the
dynamic modulus of these mixture types.

Table 5. Comparison of fits for three master curve models and five shift factor equations.

Shift Factor
Equation

Master Curve Model

SLS Model GLS Model CAM Model
Log-linear 9.75 12.56 14.00

Polynomial 1.94 2.31 3.44
Arrhenius 6.81 8.50 9.75

WLF 3.31 4.00 6.19
Kaelble 10.75 12.44 14.25

Colour bar of fitting quality: Good (1)
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The same method was used to compare the models and how well the models fit
different asphalt mixtures. The degree-of-fit for the four types of asphalt mixtures was
ranked from good to poor (from 1 to 4) as shown in Table 6. The results indicate that the
models have a better fit for asphalt mixtures containing NB than the ones containing PMB.
The fitting results of AC mixtures are better than those of SMA mixtures when the bitumen
is the same. These results are caused by more impact factors of the PMB asphalt mixture
and the SMA mixture on the dynamic modulus.

Table 6. Comparison of fits for different asphalt mixtures.

Mixture Type
Bitumen Type

NB PMB
AC 11 1.45 2.92

SMA 11 2.38 3.25

Colour bar of fitting quality: Good (1)

Materials 2022, 15, x FOR PEER REVIEW 18 of 21 
 

 

3.4. Comparison of Fits 
In this study, four indicators of absolute error, normalised square error, Se/Sy and R2 

were used to evaluate the fitting quality of the models. The 15 permutations of the three 
master curve models and five shift factor equations for the four types of asphalt mixtures 
were ranked from good to poor (from 1 to 15), and the index of fitting quality is ex-
pressed by Equation (16). 

2

2

/

11 11 11 11
/

11 11 11 11

4

,  ,    
4

,  ,    1,  2,  ...,  15

e y

e y

ae nse S S R
fq

AC NB AC PMB SMA NB SMA PMB
ae nse S S R

AC NB AC PMB SMA NB SMA PMB

A A A A
I

A A A A
A A A and A

A A A and A

− − − −

− − − −

+ + +
=

+ + +
=

=  

(16)

where Ifq is the index of fitting quality, Āae, Ānse, ĀSe/Sy and ĀR2 are the average arrays of 
absolute error, normalised square error, Se/Sy and R2, respectively, AAC 11-NB, AAC 11-PMB, ASMA 

11-NB and ASMA 11-PMB are the arrays of the order in 15 permutations. The average values of 
sequences are summarised in Table 5. The shift factor equation has a more significant 
effect on the dynamic modulus modelling than the master curve model. The modelling of 
the SLS model with the polynomial equation has the best fitting quality, while the result 
fitted by the CAM model with the Kaelble equation is the worst in this study. Among the 
five shift factor equations, the polynomial equation has the best fit, followed by the WLF 
equation. The intertransform between frequency and temperature is more convenient for 
the WLF equation than the quadratic polynomial due to the quadratic form. Therefore, 
the SLS model and the WLF equation were recommended for modelling the dynamic 
modulus of these mixture types. 

Table 5. Comparison of fits for three master curve models and five shift factor equations. 

Shift Factor Equation 
Master Curve Model 

SLS Model GLS Model CAM Model 
Log-linear 9.75 12.56 14.00 

Polynomial 1.94 2.31 3.44 
Arrhenius 6.81 8.50 9.75 

WLF 3.31 4.00 6.19 
Kaelble 10.75 12.44 14.25 

Colour bar of fitting quality: Good (1)  Poor (15). 

The same method was used to compare the models and how well the models fit 
different asphalt mixtures. The degree-of-fit for the four types of asphalt mixtures was 
ranked from good to poor (from 1 to 4) as shown in Table 6. The results indicate that the 
models have a better fit for asphalt mixtures containing NB than the ones containing 
PMB. The fitting results of AC mixtures are better than those of SMA mixtures when the 
bitumen is the same. These results are caused by more impact factors of the PMB asphalt 
mixture and the SMA mixture on the dynamic modulus. 

Table 6. Comparison of fits for different asphalt mixtures. 

Mixture Type 
Bitumen Type 

NB PMB 
AC 11 1.45 2.92 

SMA 11 2.38 3.25 

Colour bar of fitting quality: Good (1)  Poor (4). 
  

Poor (4).



Materials 2022, 15, 4325 19 of 21

4. Conclusions

In this study, the reliability of calculation of dynamic modulus using the three master
curve models and the five shift factor equations was evaluated by the absolute error,
normalised error and the goodness-of-fit encompassing Se/Sy and R2 for four types of
asphalt mixtures. The conclusions are summarised as follows.

• The selected shift factor equations were more influent with respect to the employed
models in determining the final fitting reliability.

• The relationship between log(αT) and temperature of both the log-linear equation and
the Kaelble equation were linear in the testing temperature range. These two shift
factor equations had similar goodness-of-fit when extrapolating dynamic modulus
master curves.

• Considering the results of absolute error, normalised square error, Se/Sy and R2, the
combination of the SLS model and the polynomial equation had the best fitting quality
index (1.94), while the combination of the CAM model and the Kaelble equation had
the worst fitting quality index (14.25). Regarding the different asphalt mixtures, the
fitting quality index of AC 11-NB (1.45) was the best, whereas the one of SMA 11-PMB
(3.25) was the worst.

• The SLS model showed the best fitting quality and was considered to model the
dynamic modulus of the asphalt mixtures most used as surface layer for Norwegian
highway within the investigated CITT temperature range.

• Due to better goodness-of-fit and more convenience for temperature and frequency
transform, the WLF equation was considered for modelling the dynamic modulus of
the asphalt mixtures most adopted in Norway.

• The master curves constructed according to all the models and all shifting techniques
were characterized by better goodness-of-fit for the asphalt mixtures containing NB
than the ones comprised of PMB due to the effect of PMB structure on the dynamic
modulus of the asphalt mixture. The modelling of dynamic modulus master curves for
SMA mixtures has a better fit than the one for SMA mixtures because of the influence
of more particle angularity on the dynamic modulus of the asphalt mixture. Therefore,
the models can be developed further to be suitable for the asphalt mixtures containing
the PMB and SMA types of asphalt mixtures.
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